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ABSTRACT 

 

Current therapies for treatment of mycobacterial infections are adequate when 

diagnosis and pathology is well defined. Yet more evidence is beginning to accumulate 

for the multitude of reasons behind drug insensitive mycobacterial cases, especially for 

Mycobacterium tuberculosis (M. tuberculosis). Drug resistant strains are not always the 

sole cause for complications in treatment. Heterogeneity of bacterial sub-populations and 

the micro environments they reside in can contribute to mycobacteria’s ability to evade 

treatment.  Elucidation of the mechanisms essential for bacterial virulence and 

persistence as well as developing antibiotics with more diverse mechanisms of action 

will allow clinicians to make more effective decisions regarding treatment regimens for 

each individual pathology.  

 One of the first stages in drug development is the identification of small 

molecules which effectively inhibit bacterial growth as well as determining their 

mechanism of action. The first part of this study focuses on establishing a High 

Throughput Screening (HTS) assay for the identification of growth inhibitors of M. 

tuberculosis, Mycobacterium smegmatis (M. smegmatis), Mycobacterium abscessus (M. 

abscessus), and Mycobacterium fortuitum (M. fortuitum). Pathogenesis is not exclusive 

to M. tuberculosis and these other non-tubercular species not only contribute to the 

disease epidemic, but can also serve as model organism(s) in a laboratory setting for M. 

tuberculosis due to their rapid growth rate and low infectivity in healthy individuals. A 

HTS of over 100,000 molecules was carried out against M. tuberculosis, M. fortuitum, 

and M. abscessus. The identified hits were validated in a dose response assay and 
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attempts to identify the intracellular target of inhibition were determined via selection of 

resistant mutants in M. smegmatis, M. abscessus, and M. fortuitum. 

The second part of this study focuses on the characterization of a protein 

identified as a potential target of a growth inhibitor of M. tuberculosis identified in the 

original HTS. This enzyme, Rv0272, encodes for a hypothetical α/β hydrolase and has 

no significant sequence homology to any previously characterized enzymes. Purified 

recombinant Rv0272 was biochemically and biophysically characterized. The crystal 

structures of ligand bound Rv0272 combined with binding studies revealed the ligand 

promiscuity of Rv0272 and provided clues for potential enzymatic function(s). The 

enzyme has demonstrated binding affinity for small dicarboxylic acids, especially 

methylmalonate, phthalate, and maleate. Moreover, products of enzyme mediated 

reactions were observed in the active site of solved crystal structures after soaking with 

metabolites.  These results suggest that Rv0272 is a previously uncharacterized serine 

hydrolase that may be functioning in the B12-dependent methylmalonate pathway for 

degradation of odd chain fatty acids. Additionally, Rv0272 may moonlight as an 

amidase, esterase, and/or thioesterase under certain physiological conditions.  
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CHAPTER I 

INTRODUCTION 

HISTORY OF TUBERCULOSIS

It seems almost unbelievable to imagine that in the last 200 years, tuberculosis has 

been responsible for the deaths of approximately one billion people. The battle against the 

disease is one of the most important struggles in human history, yet its story appears to 

have been lost in modern times, replaced by the notion that tuberculosis is a ghost from 

the past. Nothing could be further from the truth as we face one of the worst epidemics 

ever recorded. Perhaps, in order to comprehend the magnitude of the disease itself, the 

origin of the bacterium and its relationship with human beings needs to be examined. 

It is believed by many that tuberculosis evolved from a soil born micro-organism. 

The disease most likely first infected animals which inhaled or ingested it from the soil 

and was contracted by humans through eating of their flesh or drinking of their milk (1). 

The fossil record shows that human ancestry is only 3-5 million years old. In these records, 

evidence exists of several infections. A dental abscess was identified in a fossil skull from 

Homo erectus, dating back over 2 million years.1 Also, a 40,000 year-old skull found in 

Broken Hill, Rhodesia, had a cavity indicative of a mastoid infection which would be 

easily recognizable by any ear, nose, and throat specialist today (3). Although neither 

infection was tuberculosis, it is suggestive that other infections were also present during 

these times. 

1 Personal communication between Keith Manchester and Frank Ryan. (2) 
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 The first direct evidence of tuberculosis infection comes from investigating the 

remains of Egyptian mummies, some over 6,000 years old. M. tuberculosis has the 

capacity to eat away bone, especially vertebrae, which leads to the collapse of the spinal 

column, commonly referred to as “hunchback”. The disease is easily recognizable by these 

disfiguring changes in many Egyptian mummies and re-affirmed from the “hunchback” 

depictions created by many Egyptian artists. Famously, the remains of a high priest of 

Amon still had signs of pus discharging from a spinal abscess along the course of the psoas 

muscle, unique to tuberculosis infections (4). Similar evidence has been found throughout 

grave sites dating from antiquity in Italy, Denmark, and the Jordan valley (5) (6). 

Therefore, it has been speculated that the first tuberculosis epidemic occurred during the 

Stone Age, paralleling the rise of the Egyptian empire.  

 By 2,500 BC, archeological evidence shows that tuberculosis was already well 

established in Europe and may have even been in Britain over a thousand years prior (7). 

Interestingly, there is clear evidence of the disease in skeletal remains from American 

Indians in Pre-Columbian America in what is now Ontario and New York State (8). 

Additional evidence of the disease was also found in a Peruvian mummies as well as in 

the skeletal remains from the ancient Ainu culture of Japan (9).  

Tuberculosis has continued to persist and its prominence has been well 

documented for the last two thousand years throughout Europe. By the 1600’s, the London 

Bills of Mortality recorded that consumption (older name previously used to describe 

tuberculosis) was responsible for one in five deaths. By the 19th century, seven million 

people a year died from tuberculosis while 50 million people were openly infected, the 
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worst areas being the metropolises of London and New York City. The course of the 

disease would remain steady, without any hope for treatment until the beginning of the 

20th century, when the cause of tuberculosis was finally unraveled. However, to fully 

appreciate the strides which have been made in combating tuberculosis infections, one 

must first examine the foundation laid down previously by the generations of scientists 

whose perseverance and ingenuity led to the eradication of consumption, sepsis, gas 

gangrene, and pneumonia as the leading cause(s) of mortality in the U.S (2). 

HISTORY OF ANTIBACTERIAL CHEMOTHERAPEUTICS

The stage was initially set by a totally unknown German doctor named Robert 

Koch on March 24, 1882 in Berlin. On this night he was set to address the German 

Physiological Society in front of many prominent attendees including Rudolph Virchow, 

Friedrich Loeffler, and Paul Ehrlich. Loeffler would later state “Koch was by no means a 

dynamic lecturer who would overwhelm his audience with brilliant words. He spoke 

slowly and haltingly, but what he said was clear, simple, logically stated – in short, pure 

unadulterated gold.” Koch had done what so many before him and tried and failed, he 

discovered bacteria in organs which had been altered by tuberculosis. He had developed a 

new staining technique which allowed him to identify the characteristic rod shape of 

tuberculosis. He successfully detected tuberculosis bacilli in many varieties of animal and 

human tissues and had them on display for anyone to check the results for themselves. To 

every scientist or doctor at the time, the cause of tuberculosis was one of life’s greatest 

mysteries. Koch ended his talk by saying, “All of these facts taken together can lead to 
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only one conclusion: that the bacilli which are present in the tuberculosis substances not 

only accompany the tuberculosis process, but are the cause of it. In the bacilli we have, 

therefore, the actual infective cause of tuberculosis.” This was so profound that his speech 

would circulate around the world and in less than three weeks be enshrined in a Berlin 

medical journal. Paul Ehrlich would later confess, “I hold that evening to be the most 

important experience of my scientific life.” Koch would go on to win the Nobel Prize in 

Medicine just 23 years later in 1905. 2  

Although Paul Ehrlich had already pioneered and perfected bacterial staining with 

his invention of methylene blue in the late 1800’s, which Koch modified to in order to 

discover the bacterial origin of tuberculosis, his greatest contributions would come a little 

later. In the early 1900’s, Ehrlich pioneered the idea of chemotherapy, through 

modification(s) of atoxyl, an arsenic derivative at the time believed to be an unmodifiable 

compound. Extensive chemical substitution and reduction products led to the creation of 

nr. 606, which became the first successful chemotherapeutic against syphilis, which he 

was awarded the Nobel Prize for Medicine in 1908 [Figure 1.1]. It was called Salvarsan, 

meaning “the arsenic that saves” and was known as the magic bullet of medicine at the 

time. Ehrlich donated 65,000 free samples for clinical testing which led to the 

development of a successful treatment method of Salvarsan for dementia and paralysis 

due to late stage syphilis at Rockefeller Hospital. 3 

                                                           
2 Taken from Professor Brock and Springer Verlag’s biography of Robert Koch. Not Published. (2)  
3 Tuberculosis: The Greatest Story Never Told by Frank Ryan. Pages 88-90. (2) 
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A colleague of Ehrlich’s, Williams Roehl, began working on a chemotherapeutic 

against African sleeping sickness based on azo-dyes from the textile industry. He 

theorized that the more intensely a dye stained textile fibers, the more likely it was to 

penetrate living cells. After testing more than 200 different agents, a carbide compound, 

“Bayer 205” was discovered which would later be world renown as “Germanin”, the first 

potent treatment for sleeping sickness [Figure 1.2]. Since the 17th century, quinine has 

been used to treat malaria. In addition, Fritz Schoenhoefer synthesized a Plasmachin in 

1924, a chinolin compound that was over 30 times more effective than quinine for 

treatment of malaria [Figure 1.3]. 4  

 

 

 

Figure 1.1. Salvarsan 606 and its formulation from Ehrlich’s journal. 

 

                                                           
4 Tuberculosis: The Greatest Story Never Told by Frank Ryan. Pages 74, 90-96. (2) 
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These prior successes set the stage for one of the single most important 

contributors to modern medicine, Gerhard Domagk. His first breakthrough came in 1932, 

when he discovered Prontosil rubrum, a relatively non-toxic azo derivative of chrysoidine 

for the treatment of streptococci infections [Figure 1.4]. Due to its low solubility, it had to 

be orally administered. However, he later developed a sodium sulfate version which could 

be topically applied. 5 In 1936, it was determined that an intermediate product of Prontosil 

was the bio-active form, thus the first discovery of a pro-drug.  In 1935, Domagk identified 

an ethyl-dimethyl-vinyl ammonium chloride compound which was effective against a 

wide range of bacteria. “Zephirol” as Domagk called it, would become the world’s 

primary disinfectant for decades [Figure 1.5] (10) .  

 

 

 

Figure 1.2. Chemical structure of Germanin discovered by William Roehl. 

 

                                                           
5 From Domagk’s private diary referenced by Frank Ryan (2) 
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Then in 1941, Domagk identified sulfonamides that contained either a theodiazole 

or thiazole group which were active against tubercular bacilli in vitro. Around the same 

time, he developed three trial drugs, Conteben, Solvoteben, and Nikoteben for the 

treatment of Lupus Vulgaris, a disease which mercilessly decomposes a victim’s face, 

often leading to patient suicide [Figure 1.6]. Conteben would later be proven to be a mildly 

effective treatment option for tuberculosis as well. However, these discoveries opened the 

door for the first therapeutics aimed at combating tuberculosis and coincided with the 

development of other equally important anti-tubercular chemotherapeutics. 6 

 

 

 

Figure 1.3. Compounds used for the treatment of malaria. Plasmochin (left) compared to 

quinine (right) which it surpassed in efficacy and potency.  

 

 

 

 

 

                                                           
6 Tuberculosis: The Greatest Story Never Told by Frank Ryan. Pages 342-348 (2) 
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HISTORY OF TUBERCULOSIS TREATMENT

The outlook for tuberculosis changed dramatically with the introduction of 

chemotherapy. The first discovery, para-amino salicylic acid (PAS), was made by Jorgen 

Lehmann in 1943 paralleled by Domagk’s Conteben in in 1945. Unfortunately both drugs 

were found to be bacteriostatic. In 1944 Selman Waksman, Albert Schatz, and Elizabeth 

Bugie were the first to isolate streptomycin, the first bactericidal agent effective against 

M. tuberculosis. The first orally administered drug used for the treatment of tuberculosis 

was isoniazid, which was discovered to be effective against M. tuberculosis in 1952. This 

was followed 5 years later with the discovery of the rifamycins in 1957. These discoveries 

began a new chapter in the war on tuberculosis, where the disease could not only be 

managed, but cured. 

CURRENT TREATMENT

As of 2015, The World Health Organization (WHO) recommends a cocktail of 

first line anti-tuberculosis drugs for all new patients for the first two months. It is made up 

of isoniazid, rifampicin, pyrazinamide, and ethambutol. This is followed by four months 

of isoniazid and rifampicin treatment. Taking each drug daily is recommended during the 

first two months, but can be switched to three times weekly dosing during the final four 

months. With high patient adherence to this prescribed regimen, treatment is effective over 

95% of the time in eliminating the disease caused by antibiotic susceptible M. 

tuberculosis. 
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Figure 1.4. Chemical structure of Prontosil rubrum, one of the first highly effective general 

antibiotics.  

 

 

 

 

 

Figure 1.5. Comparison of the chemical structure(s) of Conteben, Solvoteben, and 

Nikoteben. 

 

 

 



10 
 

When M. tuberculosis has demonstrated resistance to at least two first line drugs, 

it is considered multi-drug resistant (MDR) and second line drug treatments must be 

implemented. Second line anti-tuberculosis drugs are less safe, more expensive, and call 

for a much longer treatment duration. These drugs include flouroquinolones, para-

aminosalicylic acid, aminoglycosides, cyclic peptides, cycloserine, and ethionamide.  

Rational MDR tuberculosis (MDR-TB) treatment involves a minimum of four active 

drugs, a fluoroquinolone, an injectable aminoglycoside, and any first line drug to which 

the strain is sensitive. This treatment regimen should last for a minimum of 18 months and 

is estimated to cost over 160,000 euros. MDR strains which become resistant to key drugs 

from second line therapy, any fluoroquinolone and at least one injectable drug 

(Kanamycin, Capreomycin, Amikacin), are considered extensively drug resistant. (XDR). 

Treatment options for patients with XDR tuberculosis (XDR-TB) are extremely limited 

and it is estimated that 54% of XDR-TB patients die within a month of diagnosis (11). 

 

 

 

 

Figure 1.6. Chemical structure of Zephirol, one of the first widely available disinfectants. 
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FIRST-LINE ANTIBIOTICS FOR DRUG-SUSCEPTIBLE M. TUBERCULOSIS 

 

Isoniazid (INH) 

 

General Information, Dosage, Adverse Effects 

 

 INH is a component of the first line drugs recommended by the World Health 

Organization for all anti-tuberculosis chemotherapeutic regimens. It can also be prescribed 

alone to be used as a prophylactic to help prevent transmission in areas or individuals at 

high risk. INH is generally taken orally at a dose of 100-300mg or in more severe cases as 

an injectable at a dose of 2ml of 25mg/ml. The maximum recommended dose is 300mg or 

5mg/kg daily and is usually administered once a day for at least 6 months. Systemic or 

cutaneous hypersensitivity reactions can occur during the first weeks of treatment. 

Peripheral neuropathy, optic neuritis, toxic psychosis, and convulsions can occur in 

susceptible individuals but is exceedingly rare. Epilepsy can be provoked with in 

susceptible individuals. INH has a minimal inhibitory concentration (MIC) of 0.016-0.06 

µg/ml against wild type tuberculosis H37rv (12).  

 

Discovery 

In 1949, two U.S. doctors, Corwin Hinshaw of Stanford and Walsh McDermott of 

Cornell Medical school traveled to Germany to investigate reports of a potent anti-

tuberculosis drug. They discovered that Domagk had derived a synthetic chemical of the 

thiosemicarbazone series which had successfully treated well over 7,000 patients suffering 

from tuberculosis infection. They brought Conteben back to the US and proceeded to 

synthesize thousands of thiosemicarbazone derivatives in hopes of not only synthesizing 
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Conteben for themselves, but to improve on its potency. This endeavor was made possible 

because the U.S. declared that any German patent filed during the course of World War II 

was void. Conteben was quickly synthesized in the U.S. and renamed Amithiozone, 

without any compensation made to Bayer (2). 

 

 

Figure 1.7. Chemical structure of isoniazid.  

 

 

 

The thiosemicarbazones became the template to which many pharmaceutical 

companies targeted in order to create libraries of Conteben like molecules for treatment of 

tuberculosis. Simultaneous and independent work was on-going by Herbet Fox of 

Hoffman-La Roche and Jack Bernstein of E.R. Squibb & Sons in the US and Gerhard 

Bomagk of Bayer in West Germany. In 1951, all three arrived at the same chemical 

derivate, isonicotinyl hydrazine (isoniazid), and were able to demonstrate that isoniazid 

had a very high degree of anti-tubercular activity [Figure 1.7]. However, since the 
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synthesis had been published by Hans Meyer and Josef Mally of German Charles 

University in Prague in 1912 as part of their doctoral requirements, it was public domain 

and therefore no company could successful obtain a patent on isoniazid [Figure 1.7]. 

Regardless, it was soon hailed as one of the most potent, if not the most potent single anti-

tuberculous drug available.  

 

Mode of Action 

From 1953 to 1980 many modes of action for INH were proposed. It was thought 

to interfere with cell division, pyridoxal-dependent metabolic pathways, lipid 

biosynthesis, fatty acid biosynthesis, nucleic acid biosynthesis, glycerol metabolism, 

NAD+ biosynthesis, and NADH dehydrogenase activity (13-15). It wasn’t until 1970 that 

Winder and Collins made a break through and showed that INH inhibited synthesis of 

mycolic acids, which are a critical component of the mycobacterial cell wall. In addition, 

they demonstrated that mycolic acid synthesis was unaffected by INH in an INH-resistant 

strain of M. tuberculosis (16). This was later confirmed in 1972 by Takayama et al who 

showed that in less than one hour after exposure to INH, the bacterium completely lost the 

ability to produce the individual mycolic acid components: alpha-mycolate, 

methoxymycolate, and beta-mycolate (17). In 1975, Takayama at al demonstrated that 

isoniazid inhibited the synthesis of long chain saturated and unsaturated fatty acids greater 

than C24. This led to the hypothesis that these fatty acids were precursors to mycolic acids 

and INH must be targeting an enzyme responsible for mycolic acid biosynthesis (18). 
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Then in 1979, Takayama and Davidson showed that INH led to the inhibition of 

the first specific reaction in mycolic acid synthesis, the desaturation of tetracosanoic acid 

(19). However, it wasn’t until 1992 that the specific mode of action of INH was 

determined. Zhang et al discovered that mutations in a catalase-peroxidase encoding gene 

conferred resistance to INH. This gene, KatG was shown to restore sensitivity in INH-

resistant isolates. Shortly after, it was discovered that INH is a pro-drug which requires 

the catalase peroxidase KatG to activate INH to form a hypothetical isonicotinoyl radical. 

This radical interacts with NAD+ to form an INH-NAD adduct which then binds to the 

active site of the NADH-dependent enoyl-ACP reductase, InhA, disrupting mycolic acid 

synthesis (20).  

In the early 2000’s, the role of a β-ketoacyl synthase enzymes (KasA and KasB) 

were being evaluated for their contribution to INH resistance. KasA has been shown to be 

involved in both Type I and Type II fatty acid synthase systems in mycobacteria. The gene 

which encodes for KasA is part of the five-gene operon which is believed to be involved 

in mycolic acid synthesis. In vitro enzyme assays of KasA revealed that INH was able to 

inhibit KasA-associated fatty acid production by 41% at 10µg/ml. In addition, mutations 

in KasA have been identified in clinical isolates of M. tuberculosis resistant to INH (21). 

Constructs of KasA with these point mutations were made and tested for in vitro activity. 

It was shown that the individual mutations had at least a 29% reduction in activity 

compared to wild type. This result was recapitulated by creating mutant KasA 

recombinants and testing for activity of INH compared to wild type KasA. Strains which 

contained the plasmid with wild type KasA had a 5-fold decrease in MIC compared to the 
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mutant strains (22). These results implicated KasA in INH resistance and mutations in 

KasA may lead to a reduced enzymatic activity in exchange for drug resistance.  

In 2007, the role of M. tuberculosis KasA mutations in INH resistance were again 

re-evaluated. There are two mutations in kasA seen in clinical isolates, G312S and G269S 

which are believed to contribute to INH resistance. Extensive analysis of 160 INH-

resistant and drug-susceptible M. tuberculosis clinical isolates has shown that the G312S 

and G269S mutations occur at the almost the same frequency between both INH-resistant 

and drug-susceptible strains of M. tuberculosis . Further investigation revealed that all the 

isolates with the G312S mutation belonged to one evolutionary clade of the M. 

tuberculosis East-African-Indian (EAI) family, while all the G269S mutations belonged 

to the M. tuberculosis T family. The T family share a 13-band IS6110 restriction fragment 

length polymorphism. This suggests that KasA may not be directly related to INH 

resistance but represent a lineage of M. tuberculosis which are associated with these 

specific sequence polymorphisms. In further support of this hypothesis, 68 EAI and 30 T 

drug-susceptible M. tuberculosis isolates were sequence and analyzed looking for G312S 

mutations. Of the 69 EAI isolates, 28 had G312S mutations while the remaining were kasA 

wild type at 312 (23). A more recent study examined 609 INH-susceptible and 403 INH-

resistant isolates were the T genotype is prevalent and found the G269S mutation in 9% 

of the INH-resistant strains and 14% in the INH-susceptible strains (24).  
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Mechanism of Resistance 

There are two general mechanisms proposed to lead to resistance to INH in 

clinical isolates of M. tuberculosis. Preventing the activation of INH through mutation(s) 

in the activator, KatG or through mutation of transcription factors which regulate KatG 

expression (25). The most common mutation found in INH-resistant M. tuberculosis is a 

S315T mutation in KatG. The other mechanism is through mutations in the target, InhA 

which would prevent the binding of the INH-NAD adduct (26). Other mechanisms 

which may confer resistance but have yet to be extensively investigated include drug in-

activators, alterations in redox, and efflux pumps.  

One of the most studied mutations which leads to INH resistance is a S94A 

mutation in InhA. This mutation does not perturb the binding of the enoyl substrate to 

InhA, however it does increase the Km for NADH by 5-fold. This effectively allows for 

NADH to outcompete the INH-NAD adduct for binding and markedly reduce its 

effectiveness. Another well documented mechanism of resistance found in clinical 

isolates is a c-15t base pair change in the inhA regulatory region which increases 

expression of InhA by over 20 fold. This subsequently increases the minimum inhibitory 

concentration (MIC) of INH by up to 10 fold in M. tuberculosis. In one study this 

mutation was seen in 35% of INH-resistant, over 48% of MDR and 85% of XDR clinical 

isolates acquired from South Africa and is believed to be a marker for MDR (27).  

Isolation of INH-resistant mutants in vitro has also revealed an additional site of 

mutation in Rv1854c, a gene which encodes for a type II NADH dehydrogenase. This 

enzyme functions by oxidizing NADH into NAD+. Single point mutations have been 
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shown to reduce the enzyme’s activity by 95% compared to wild type. This change in 

activity leads to higher levels of cellular NADH while maintaining similar levels of NAD+. 

This increased pool of NADH concentration competes with the INH-NAD adduct for 

binding to InhA, leading to INH resistance (28). 

There are five enzymes which are required to synthesize mycothiol, a detoxifying 

agent found in mycobacteria. Mutations in 2 of these genes, mshA and/or mshC, cause a 

drastic reduction in mycothiol levels which can lead to INH resistance. The relationship 

between mutations in mshA and mschC and INH resistance is ambiguous but it has been 

shown that reducing the amount of mycothiol in the cell is responsible for low levels of 

INH resistance (29).  

There are more than 300 mutations in katG that have been identified throughout 

the open reading frame (ORF). The most frequently identified mutation is at codon S315 

where each base can be mutated to make a different amino acid. The S315T mutation is 

identified in as high as 94% of INH-resistant clinical isolates in certain areas of the world 

(30). In addition, deletions in a gene encoding for an iron uptake protein, furA, lead to 

overexpression of katG and a hyper-susceptibility to INH in a laboratory setting. It was 

later shown that mutations in the intergenic region between furA and katG resulted in a 

decrease in INH oxidase activity and subsequently a two to four fold increase in INH 

resistance (31, 32). This data suggest that the furA-katG intergenic region should be 

examined in clinical isolates to possibly probe for low levels of INH resistance.  

M. tuberculosis contains an arylamine N-acetyltransferase NAT2 which can 

acetylate INH and inactivate it. Mutations have been identified in the nat2 gene which 
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confer low levels of INH resistance. However, these mutant Nat proteins are incapable of 

acetylating INH, so the obvious correlation between mutation and resistance is lacking in 

this case (33, 34).  

Three genes which all encode for enzymes which contain an NAD+ binding motif 

were found to confer low levels of INH resistance when overexpressed. The authors 

concluded that NAD-binding proteins may play a role in resistance by reducing the 

cellular levels of NAD+, which in turn limits the amount of INH-NAD adduct which could 

potentially form (35). It has also been shown that expression of several efflux pumps are 

upregulated in the presence of INH which may play a role in drug resistance in M. 

tuberculosis (36).  

 

Ethambutol (EMB) 

General Information, Dosage, Adverse Effects 

 EMB is a primary component of the first line of anti-tubercular drugs 

recommended by WHO for short course treatment of drug susceptible M. tuberculosis. 

EMB is administered orally with a recommended dosage of 50mg/kg up to a maximum of 

2.5g twice weekly. The plasma half-life has been shown to range from 2.5-4 hours in 

individuals with healthy renal function and is mainly eliminated in the urine (37). EMB 

does not appear to be extensively metabolized by the body and only 8-15% of an oral dose 

was found excreted as biologically inactive break-down products. However, the 

modifications that did occur appeared to involve oxidation of both alcohol groups 

corresponding to the dicarboxylic acid(s) (38). Although EMB failed to enter meninges or 
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spinal fluid of healthy patients, it surprisingly was able to enter the spinal fluid of patients 

with tuberculosis meningitis at therapeutic levels (>1µg/ml) (39). The lethal dose (LD50) 

of EMB in mice and rats was determined to be 8.9 and 6.8 g/kg respectively (40). 

Ocular toxicity has been observed in rare cases as well as other allergic 

manifestations including jaundice, skin rash, gastrointestinal upset, joint pain, numbness, 

fever, and headache. In general, these effects are reversible once the drug is discontinued 

(41, 42). EMB has been found to be active against all strains of M. tuberculosis, 

Mycobacterium Bovis (M. Bovis), and Mycobacterium Kansasii (M. Kansasii), 

Mycobacterium smegmatis (M. smegmatis), Mycobacterium ranei (M. ranei), and 

Mycobacterium phlei (M. phlei) with an MIC of 0.5-2.0µg/ml (43). Additional 

susceptibility studies have shown that EMB is active against certain atypical mycobacteria 

such as Mycobacterium aquae (M. aquae), Mycobacterium fortuitum (M. fortuitum), and 

Mycobacterium avium (M. avium) on Lowenstein-Jensen medium (44).  EMB is 

bacteriostatic and possesses little sterilizing ability but is active against M. tuberculosis 

strains resistant to INH and SM. It does not demonstrate activity against fungi, viruses, or 

other pathogenic bacteria.  
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Figure 1.8. Chemical structure of ethambutol. 

 

 

 

Discovery 

 In 1962, Shepherd and Wilkinson at Lederle Laboratories first discovered a 

molecule, N, N’-diisopropylethylenediamine, which had a very high activity against M. 

tuberculosis. This discovery was exciting because its chemical structure was completely 

unrelated to the other known anti-tuberculosis drugs at the time. This lead to extensive 

modifications and screening to synthesize an optimal drug from this parent compound. 

Shepherd and Wilkinson found that N-alkyl substitutions no bigger than sec-butyl groups 

were required for activity as well as branching on the diamine nitrogens. This led to the 

hypothesis that chelation was responsible for the observed anti-tuberculosis activity. From 

this theory, a series of N,N’-bis (hydroxyalkyl) alkyldiamines were made and tested for 

activity. The resulting compounds which demonstrated the most activity all contained a 

dextro-2-amino butanol moiety and dextro-2,2’-(ethylenediimino)-di-1-butanol 

dihydrochloride [Figure 1.8]. This was later shortened to ethambutol, which was four 

times more active in vivo, eight times more active in vitro¸ and less toxic than the original 
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lead molecule. It was concluded that EMB had a similar efficacy based on the ratio of drug 

tolerance to drug potency as INH and SM (45, 46) 

 

Mode of Action 

 There have been several proposed mechanisms over the years and most studies 

have implicated EMB in detrimentally altering the mycobacterial cell wall structure. One 

such study demonstrated that EMB inhibited the transfer of arabinogalactan into the cell 

wall of M. smegmatis which led to the accumulation of trehalose mono- and dimycolates 

in the culture medium (47). In addition, EMB was shown to inhibit the transfer of glucose 

into the D-arabinose molecule of arabinogalactan. This leads to the accumulation of D-

arabinofuranosyl-P-decaprenol, an intermediate in arabinogalactan biosynthesis (48). 

From these results, it was hypothesized that EMB blocks the transfer of arabinogalactan 

to the cell wall, resulting in the accumulation of mycolic acids. This agrees with the 

phenotypic observations that EMB treatment causes bacterial de-clumping and 

morphological changes (49).  

 The gene embB, which encodes for an arabinosyl transferase, an enzyme involved 

in the synthesis of arabinogalactan, is thought to be the target of EMB. In M tuberculosis, 

embB is located on an operon with embA and embC, sharing over 65% sequence identity 

with each and are predicted to encode for transmembrane proteins. This assumption was 

recapitulated by one study which showed that EMB-resistant M. tuberculosis isolates have 

frequent missense mutations in embB while EMB-sensitive M. tuberculosis did not (50). 
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However, EMB has also been reported to interfere with RNA metabolism, mycolic acid 

transfer, phospholipid synthesis, and spermidine biosynthesis (51-54) 

 

Mechanism of Resistance 

 The mutation frequency which leads to EMB resistance is quite high and has been 

shown to occur at a frequency of 10-5 in both M. tuberculosis and M. bovis. However, the 

level of resistance achieved was never greater than five times the MIC, unless the cultures 

were passed and inoculated with fresh drug twice weekly for 10 weeks. In this case, a 

strain of M. tuberculosis was isolated that had an MIC of 120µg/ml, or about 60 times the 

MIC. In general these mutations are stable when passed into a drug free medium in vitro 

(55, 56).   

EMB resistant M. tuberculosis strains usually have a mutation somewhere in the 

embCAB operon. The embCAB operon is comprised of three genes, embC, embA, and 

embB. Proteins EmbA and EmbB are believed to be charged with the proper terminal 

formation of hexaarabinofuranoside motif during arabinogalactan synthesis while EmbC 

is involved in lipoarabinomannan synthesis (57, 58). Mutations are most often found in 

embB but are occasionally seen in embC (59). Codon 306 in EmbB is the most commonly 

observed mutation in M. tuberculosis clinical isolates accounting for almost 70% of all 

resistant strains. Interestingly, a study on a large number of M. tuberculosis clinical 

isolates showed that mutations in embB306 were not necessarily conferring resistance to 

EMB (60). Instead the mutation appears to give the strain a predisposition to develop 

resistance to several other drugs, possibly an indicator of MDR-TB. Furthermore, the 
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authors found that it was specific amino acid substitutions which determine whether or 

not the strain would be EMB resistant or give rise to additional resistances. Additional 

mutations found implicated in EMB resistance are a Gln379Arg substitution in embR as 

well as mutations in rmlD, rmlA2, and Rv0340. There still remain almost 30% of EMB 

resistant strains where no known mechanism of resistance can be determined and 

mutations in the embCAB operon are absent (61). 

 

Rifampicin (RIF) 

General Information, Dosage, Adverse Effects 

 RIF is an orally administered, semisynthetic derivative of rifamycin and a primary 

component of the WHO recommended first line short course therapy for the treatment of 

tuberculosis. It is a potent bactericidal antibiotic with extensive sterilizing capacity against 

bacilli in both cellular and extracellular locales. Rifampicin is never used as a stand-alone 

anti-tuberculosis drug due to the high rate of resistance seen in clinical isolates. The overall 

prevalence of RIF-resistant M. tuberculosis strains is estimated to be as high as 25% 

among all infected patients, with nearly half of those being resistant to more than one drug 

(62). Rifampicin is lipid soluble and is readily absorbed and distributed amongst all bodily 

tissues and fluids. A maximum recommended daily dose of 600mg or 10mg/kg of RIF 

will have a peak serum concentration of 10µg/ml in 2-4 hours with a half-life of about 3 

hours. RIF is recycled in the enterohepatic circulation and its metabolites are eventually 

secreted in the feces after extensively deacetylation occurs in the liver.  
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 Minor gastrointestinal intolerances are common with RIF treatment and additional 

side effects such as skin rashes, fever, and thrombocytopenia can occur with intermittent 

use. Dose-related hepatitis can occur when patients exceed the recommended daily 

allowance of 600mg. Additionally, RIF can induce hepatic enzymes which could alter the 

dosage requirements for maximum effectiveness of other drugs. These include 

corticosteroids, steroid contraceptives, oral hypoglycemic agents, oral anticoagulants, 

phenytoin, cimetidine, quinidine, cyclosporine, and digitalis glycosides. RIF has an MIC 

of 0.25-0.5 µg/ml against M. tuberculosis in 7H10 growth media (12).  

 

Discovery 

 Sensi et al at Dow-Lepetit Research Laboratories in Milan, Italy first synthesized 

rifampicin in 1957 as part of an extensive program design to chemically modify 

rifamycins, metabolites of Norcardia mediterranei. Rifamycins are a complex composed 

of 5 individual rifamycins (A, B, C, D, E). All molecules which demonstrated a capacity 

to kill mycobacteria were derived from rifamycin B, which itself is mainly inactive. It was 

shown that rifamycin B undergoes spontaneous “activation” in the presence of an aqueous, 

oxygenated environment. It was later realized this process converted rifamycin B into 

rifamycin O, which is reversibly converted into rifamycin S after the loss of one glycolic 

acid. Then through a mild reduction of rifamycin S, rifamycin SV was obtained. 

Rifamycin SV was extremely potent against gram-positive bacteria, especially M. 

tuberculosis. However, rifamycin SV was not orally bioavailable. Therefore, systematic 

structurally modifications of most of the functional groups of rifamycin SV eventually led 
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to the discovery of an orally available, anti-tubercular agent, rifampicin in 1965 [Figure 

1.9]. However, it would not be commercially available until 1971 and its clinical 

evaluation would last an additional 10 years. 

 

Mode of Action 

 RIF is highly lipophilic and easily passes across the M. tuberculosis cell 

membrane. Rif has been shown to inhibit mRNA synthesis by directly binding to bacterial 

DNA-dependent RNA polymerase (63). Bacterial RNA polymerase is composed of 

α2ββ’ω subunits and is highly conserved among prokaryotes (64) (65). Structural studies 

have elucidated the mechanism by which RIF inhibits RNA polymerase. This data 

demonstrates the interaction between RIF and RNA polymerase from Thermus aquaticus 

and revealed that RIF binds in a pocket located between two domains of the RNA 

polymerase β subunit. This interaction effectively blocks the RNA transcript at the 5’ end 

from elongating past the second or third nucleotide, inhibiting transcription (66).  
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Figure 1.9. Chemical structure of rifampicin. 

 

 

 

 

 Even though the molecular target of RIF has been well characterized, the 

mechanism of how this interaction leads to cell death remains unclear. However, recent 

evidence has shown that the transcriptional inhibition of the toxin-antitoxin mazEF 

module by RIF leads to programmed cell death in E. coli. Inhibition of mazEF is believed 

to reduce the cellular levels of the antitoxic protein MazE, resulting in elevated levels of 

the toxic protein MazF, ultimately leading to cell death (67). Although M. tuberculosis 

contains homologues for these toxin-antitoxin proteins, it appears they are more involved 

in arresting cell growth and modulating persistence under adverse conditions rather than 

programmed cell death (68).  
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Mechanism of Resistance 

Mutations leading to Rif resistance in laboratory strains occur at a frequency from 

10-9 to 10-7 and develops in a single step. In Rif resistant M. tuberculosis clinical isolates, 

more than 85% are also resistant to INH, as it appears that resistance to Rif alone is rare 

(69). Similar to other bacterial species, over 95% of all Rif-resistant M. tuberculosis 

isolates have a mutation in the 81 base pair region of the rpoB gene, which encodes for 

the β subunit of RNA polymerase (70). Mutations at positions 531, 526, and 516 are the 

most frequent and generally result in high levels of resistance. Low level resistance to Rif 

is found in mutations at positions 511, 516, 518, and 522 (71, 72). At each of these loci, a 

single amino acid change was most common, with Serine-351 and Histidine-526 being the 

most frequently affected. The most common mutation found in clinical isolates is S531L 

(73). In vitro selection of spontaneous Rif resistance in M. tuberculosis also revealed 

mutations at Serine-351 and Histidine-526 as being the most dominant (74). Interestingly, 

mutations in codons 531 and 526 also confer high levels of cross-resistance to all 

rifamycins while mutations at codons 511, 516, and 522 only confer resistance to Rif and 

rifapentine, while still remaining susceptible to rifabutin and rifalazil (75, 76).  

In rare cases mutations have been found in the 5’ region of the rpoB gene with the 

V176F mutation conferring high levels of resistance to Rif. Several other mycobacterial 

species have the ability to confer low levels of resistance to Rif by inactivating it through 

ribosylation leading to innate antibiotic resistance (77). In a small percentage of Rif-

resistant clinical isolates of M. tuberculosis, no identifiable mutation could be recognized 

which would explain resistance. This suggests that M. tuberculosis contains alternative 



28 
 

mechanisms of resistance which may affect the Rif’s permeability or previously 

unidentified mutations may exist in other RNA polymerase subunits.  

 

Pyrazinamide (PZA) 

General Information, Dosage, Adverse Effects 

 PZA is a slightly bactericidal first line anti-tubercular drug recommended by WHO 

as a component for the treatment of drug sensitive M. tuberculosis. PZA is highly 

sterilizing, particularly in the acidic environments of macrophages and in areas of acute 

inflammation. It is orally bioavailable and reaches peak plasma concentrations two hours 

after ingestion. PZA has a half-life of 10 hours, is metabolized by the liver, and excreted 

primarily in the urine. PZA is usually well tolerated with little reported side-effects. In 

rare cases, hepato-toxicity, flushing of the skin, and moderate rises in serum transaminases 

can occur. More common adverse effects include hyperuricemia, gout, and arthralgia but 

are usually asymptomatic. The MIC for PZA in M. tuberculosis h37Rv in 7H12 liquid 

medium has been shown to be as high as 50µg/ml at pH 5.5 and 400µg/ml at pH 6.0 (78).  

 

Discovery 

PZA’s discovery is interesting given that it has no activity in vitro against M. 

tuberculosis under normal growing conditions. It was originally synthesized in 1936 by 

Dalmer and Walter but its antimicrobial properties wouldn’t be realized until 1952 [Figure 

1.10]. What was known at the time was that nicotinamide displayed inhibitory activity 

against M. tuberculosis. This was later confirmed by Mckenzie et al at the Lederle 
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Laboratories of American Cyanamid and at Merck Laboratories. After extensive efforts, 

PZA was identified as the most active synthetic analogue of nicotinamide. Isoniazid, 

Ethionamide, and the first known anti-depressant, Marsilid, were also eventually derived 

from nicotinamide. Even more remarkable was that immediately following its synthesis, 

without additional investigation, it was tested in patients infected with M. tuberculosis. It 

demonstrated appreciable activity in humans in contrast to previous studies in the guinea 

pig. This led to extensive studies in the laboratories of Walsh McDermott at Cornell 

University which showed that PZA was only active against M. tuberculosis at an acidic 

pH [Figure 1.10]. They also were able to show that a combination of PZA and INH at high 

dosage was capable of inducing a sterile state in which tubercle bacilli could not be 

isolated by culture or animal inoculation from organs. However, the bacilli still were 

present in a persistent state and would eventually cause relapse and a future infection. 

McDermott later demonstrated that PZA is a prodrug which requires a bacterial amidase 

to convert it into the active molecule, pyrazinoic acid (POA) (79).  
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Figure 1.10. Chemical structure of pyrazinamide.  

 

 

 

Mode of Action 

 PZA has been shown to be a pro-drug which requires a pyrazinamidase (PZase), 

encoded by the pncA gene to be converted into its active form, POA in M. tuberculosis. 

There have been several proposed mechanisms of action, but early hypothesis’ state that 

POA can disrupt the mycobacterial membrane and interfere with energy production 

necessary for the bacilli to survive at the site of an infection (80). This is supported by the 

fact that PZA has increased activity against non-replicating bacteria with decreased 

membrane potential and the ability of POA to disrupt these membranes at acidic pHs (81). 

PZA shows little activity against intracellular M. tuberculosis in human monocyte-derived 

macrophages, but become highly active when these macrophages are activated with 

inferno gamma leading to the acidification of the phagosome (82). Another study suggest 

that PZA is only active against bacilli inside acidified lung compartments during the early 

stages of infection (83). This agrees with the current recommended treatment for PZA, 

which is usually limited to the first 2 months.  
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 There is evidence which suggests that PZA enters the bacteria through passive 

diffusion, is converted to POA and excreted by an efflux pump. Under acidic conditions, 

POA becomes protonated and is re-absorbed into the cell where it accumulates faster than 

the efflux pump can remove it, causing cellular damage (84). A more recent study showed 

that PZA was able to inhibit the enzyme activity of quinolinic acid 

phosphoribosyltransferase, which is a key enzyme in the de novo synthesis of 

nicotinamide adenine dinucleotide (NAD) (85).  

New evidence has confirmed the ribosomal protein S1 (RpsA) as a new target of 

POA. RpsA is involved in protein translation and the ribosome-sparing process of trans-

translation. Shi et al demonstrated that POA binds to the 30S ribosomal protein S1 and 

inhibits protein synthesis. They also showed that mutations in rpsA resulted in altered 

binding profiles of POA to RpsA and resulted in PZA resistance (86). However, rpsA 

mutations from PZA-resistant clinical isolates have yet to be reported. Moreover, rpsA 

mutations have been identified in PZA-susceptible strains, making mutations in rpsA a 

poor indicator of PZA resistance in clinical strains (87).  

There are several identified PZA-resistant strains which lack mutation in both 

pncA and rpsA and their regulatory regions. Sequence analysis of several mutants with 

low levels of PZA resistance were found to harbor mutations in the panD gene (88). PanD 

encodes for an aspartate-alpha-decarboxylase which is involved in the synthesis of β-

alanine, a precursor for pantothenate and co-enzyme A biosynthesis (89). In agreement 

with these findings, PZA activity against laboratory strains of M. tuberculosis in vitro was 
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found to be antagonized when supplemented with β-alanine, pantothenate, and pantetheine 

(90). 

 

Mechanism of Resistance 

The hallmark of PZA resistant M. tuberculosis strains is the loss of pyrazinamidase 

and/or nicotinamidase activity. Mutations are found scattered across the entire pncA gene 

but there appears to be some localization at three distinct regions: 3-17, 61-85, and 132-

142 (91, 92). However, new pncA mutations are identified frequently and there appears to 

be little correlation between pncA mutation genotypes and the resulting resistance 

phenotype. PZA is highly specific to M. tuberculosis and many species of mycobacteria 

are naturally resistant to PZA. In the case of M. bovis, the bacteria produces an inactive 

PZase protein, rendering the drug inactive because PZA is not converted into POA (93). 

In addition, PZA potentially has multiple cellular targets resulting in a varying correlation 

between the presence of mutations and resistance (94). Yet mutations in in the pncA gene 

or in its regulatory region are found in over 70% of PZA resistant M. tuberculosis isolates. 

Surprisingly, a recent study identified M. tuberculosis strains with high levels of resistance 

to PZA, with MICs above 1600µg/ml. Upon sequencing it was found that the strains 

contained large deletions in not only the pncA gene, but also several genes upstream and 

downstream (95).  
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SECOND-LINE DRUGS FOR THE TREATMENT OF MDR-TB AND XDR-TB 

Streptomycin (SM) 

General Information, Dosage, Adverse Effects 

 SM is a component of the second line of drugs recommended by WHO for the 

treatment of tuberculosis, usually reserved as part of a treatment regimen for MDR-TB. It 

is sometimes substituted for EMB depending on the type of infection, especially in the 

case of tuberculosis meningitis. SM is not absorbed in the intestinal tract and must be 

given as an intramuscular injection at 15mg/kg daily during the first 6-12 months of 

treatment. The plasma half-life is around 2-3 hours and is excreted unchanged in the urine. 

SM is not recommended in children due to the possibility of irreversible auditory nerve 

damage. It should not be used during pregnancy because it can cross the placenta and 

cause fetal nephrotoxicity. SM is bacteriostatic and has an MIC against wild type H37rv 

of 0.25-1.0µg/ml in 7H10 media (12).  

 

Discovery 

Selman Waksman with the help of his graduate students Rene Dubos and Albert 

Schatz, theorized that micro-organisms were capable of performing a vast number of 

biochemical reactions, which in the case of soil bacteria would be dependent on their 

environment. These potentialities could be induced by altering the environment, which led 

to the discovery of several potent antibiotics including Gramicidin. However, in 1943, 

they identified a new species of Actinomyces through a swab obtained from the throat of 

a sick chicken. This particular strain of Actinomyces, Streptomyces griseus, produced 



34 
 

streptomycin which was active against a broad range of bacteria [Figure 1.11]. Its anti-

tubercular activity wasn’t published until late 1944 after Dr. H. Corwin Hinshaw 

successfully tested streptomycin against guinea pigs infected with tuberculosis. In 1945, 

at a New Haven hospital, a child was successfully treated with streptomycin to cure a 

hopeless case of tuberculosis meningitis (2).  

 

Mode of Action 

SM has been shown to inhibit protein synthesis by binding to the 30S subunit of 

the mycobacterial ribosome, which would result in reading errors during translation. SM 

is believed to function by interrupting the initiation of protein synthesis by inhibiting the 

fusion of the 50S and the 30S particle by binding at the S12 and 16S rRNA junction in the 

30S. This resulting complex is unstable which can lead to continuous frameshift mutations 

and ultimately cell death. At low concentrations, SM only inhibits bacterial cell growth 

(96).  
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Figure 1.11. Chemical structure of streptomycin.  

 

 

 

Mechanism of Resistance 

In M. tuberculosis, the S12 protein and the 16S rRNA are encoded by rpsL and rrs 

genes respectively. Mutations in these two genes account for over 50% of all streptomycin 

resistance isolates. The most commonly observed mutation is a lysine to arginine mutation 

in codon 43 of rpsL which results in a high level of resistance. Mutations in codon 88 of 

rpsL are also quite frequent. Mutations in the rrs gene occur in the loops of the 16S rRNA 

and are centered in two distinct regions around nucleotides 530 and 915. SM-resistant M. 

tuberculosis arise due to a C insertion in the 530 loop. However, in about 20% of SM-

resistant strains, mutations in either rpsL or rrs could not be identified. Recent evidence 

has shown that mutations in gidB, which encodes for a 7-methylguanosine 

methyltransferase confers low levels of resistance to SM in M. tuberculosis. Additionally, 

up-regulation of efflux pumps is another mechanism by which resistance to SM is believed 

to be achieved by.  
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Ethionamide (ETH) 

General Information, Dosage, Adverse Effects 

ETH is part of a group of second line drugs used in the treatment of tuberculosis 

when resistance or toxicity to any of the first line drugs has developed. It is orally 

administered and it is always given in combination with other antimycobacterial drugs. 

The daily recommended dose is 15-20mg/kg with the maximum allowance of 1g 

depending on body weight and tolerance. ETH is highly bactericidal against M. 

tuberculosis in vitro with an MIC range of 0.6 to 1.2µg/ml in 7H12 media (97). However, 

it is bacteriostatic within the recommended therapeutic window and at bactericidal 

concentrations is quite toxic. ETH has been shown to be active against other mycobacterial 

species such as M. kansaii, M. leprae, and M. avium (97).  

ETH has several well documented side effects including toxic hepatitis, 

obstructive jaundice, acute hepatic necrosis, encephalopathy, peripheral and optic neuritis, 

hypoglycemia, and hypothyroidism.  Plasma half-life is reported to be about 3 hours. ETH 

is completely metabolized in the liver and must be monitored or avoided in patients with 

hepatic impairment. Ethionamide-sulfoxide is a major metabolite of ETH and only 1% of 

ETH is excreted unchanged in the liver. Plasma protein binding is estimated to be 30% of 

total ETH (12).  

 

Discovery 

ETH is an isoniazid derivative developed by Grumbach et al while working at 

Theraplix in 1956 [Figure 1.12]. They were ultimately trying to improve on the 
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antimycobacterial properties of thioisonicotinamide (98). ETH was found to be active 

against INH, PAS, and SM-resistant M. tuberculosis strains.  

 

Mode of Action 

ETH is a structural analog of INH and also behaves as a prodrug. ETH is activated 

by the NADPH-specific Flavin adenine dinucleotide-containing monoxygenase EthA 

encoded by Rv3854c (99). Once activated, the mode of action mimics INH where it forms 

an Eth-NAD adduct which then binds and inhibits InhA, blocking mycolic acid 

biosynthesis. However, it differs from INH in that it requires two activation steps before 

it forms a covalently modified NAD-ETH derivative. EthA first converts ETH into a 

sulfoxide intermediate which is then converted again by EthA into a 2-ethyl-4-

amidopyridine product (100). This final product demonstrates no anti-tubercular activity. 

In the case of ETH dependent inhibition of InhA, the addition of NAD+ or NADH does 

not alter its inhibition profile. It has been suggested that the mode of action of the ETH 

mediated product differs from that of INH. Structural evidence has shown that an ETH-

NAD adduct binds to InhA but the reaction leading to the ETH-NAD adduct is still unclear 

as to whether it is catalyzed by EthA alone or in conjunction with other enzymes (101). 

EthA also activates two other second line anti-tuberculosis drugs: thiacetazone and isoxyl, 

but they appear to inhibit a different final target other than InhA (102).  
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Figure 1.12. Chemical structure of ethionamide.  

 

 

 

Mechanism of Resistance 

There are a few documented mechanisms of resistance specific for ETH. These 

mechanisms of resistance involve mutations in the activator, ethA, the target, inhA, or the 

ethA regulator, ethR. To date, 85 ethA mutations have been identified with a wide range 

of demonstrated resistance. Mutations span the entire coding region in ethA, and unlike 

katG mutations, there does not appear to be a dominant mutation. Most of the observed 

nucleotide changes are missense mutations which results in amino acid substitutions, but 

insertions, deletions, and non-sense mutations have also been identified. It has been 

hypothesized that the lack of a dominant ethA mutation could be attributed to the presence 

of numerous monooxygenase homologs in M. tuberculosis, which could protect against a 

loss of EthA activity (103). A recent analysis concluded that 47% of all ETH-resistant M. 

tuberculosis clinical strains had an ethA mutation, while 62% had a mutation in the inhA 

gene or promotor region. Only 4% of ETH-resistant strains had mutations in ethR, and 
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many share additional mutations in the promotor region of inhA and in ethA. This study 

concluded that mutations in the target gene, inhA, were the main mechanism of ETH 

resistance in M. tuberculosis (104). 

Para-aminosalicylic Acid (PAS) 

General Information, Dosage, Adverse Effects 

PAS a bacteriostatic against M. tuberculosis most commonly administered to 

patients with MDR-TB, XDR-TB or in place of RIF or INH when intolerance or resistance 

has occurred. PAS is never used as a stand-alone anti-mycobacterial drug and is usually 

accompanied by two other agents to which the strain which the strain is sensitive to. The 

recommended daily dosage is 4g for adults and 2g for children and should never exceed 

4g. Approximately 50% of PAS is protein bound and penetration into the cerebrospinal 

fluid is rare. 80% of PAS is excreted in the urine with 50% in an acetylated form. PAS has 

a half-life of 2 hours and a MIC of 1µg/ml for M. tuberculosis grown in 7H12 media. 

PAS has several rare but undesirable side effects including jaundice, hepatitis, 

optic neuritis, encephalopathy, hypoglycemia, hypothyroidism, vasculitis, and 

eosinophilic pneumonia. Additionally, PAS treatment reduces vitamin B12 absorption by 

over 50% and is often accompanied by vitamin B12 supplementation. PAS can also 

interfere with the overall serum levels of INH when taken in conjunction with INH serum 

levels being reduced by up to 20% (12). 
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Discovery 

Jӧrgen Lehmann originally designed a chemical agent which was believed to not 

only act as a source of nutrition for tuberculosis, but would also impair their growth and 

kill them. His designs ultimately led to the synthesis of PAS, which on October 30, 1944 

would be used to successfully treat a terminally ill Swedish woman infected with M. 

tuberculosis [Figure 1.13]. Although PAS was developed before streptomycin, it would 

not become an acceptable form of treatment until 2 years after the appearance of 

streptomycin (105).  

 

Mode of Action 

 The exact mechanism through which PAS-mediate killing occurs has been highly 

speculative over the last 60 years. Given its structural similarity to para-aminobenzoic 

acid (pABA), it has been proposed to inhibit dihydropteroate synthase (DHPS) in the 

folate biosynthetic pathway, which makes DHPS from pABA (106). However, in vitro 

enzymatic data has not been able to show inhibition of DHPS by PAS. The folate pathway 

is ultimately responsible for generating tetrahydrofolate, a precursor for the synthesis of 

purine, thymidine, glycine, methionine, pantothenate, and formylmethionyl tRNA. The 

last step in the folate pathway is mediated by the enzyme dihydrofolate reductase (DHFR) 

which converts dihydrofolic acid to tetrahydrofolic acid. Recent evidence suggests that 

PAS is converted by the folate pathway into an “anti-metabolite” as a pABA mimic and 

inhibits DHFR activity. The PAS anti-metabolite has been shown to be a substrate for 

DHPS and converted into hydroxyl dihydropteroate. This product is then recognized by 
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dihydrofolate synthase (DHFS) to form hydroxyl dihydrofolate. Evidence shows that the 

hydroxyl dihydrofolate competes with dihydrofolate for binding to the active site of 

DHFR, blocking the production of tetrahydrofolate. Therefore, it has been speculated that 

PAS is a pro-drug for a metabolite which gets incorporated into the folate pathway, mimics 

essential substrates, and inhibits DHFR activity (107). However, more recent evidence has 

shown that although PAS is an in vitro inhibitor of DHFR, it did not affect M. tuberculosis 

growth through inhibition of DHPS. Instead, the data suggests that PAS modulates folate-

dependent pathways entirely and irreversibly by serving as mimic substrate(s), product(s), 

and inhibitor(s) for enzymes subsequent to DHPS (108). 

 New data has shown that an additional enzyme exists in M. tuberculosis, RibD, 

which can function as a DHFR analogue and catalyze the turnover of DHF to THF. RibD 

is believed to function in the riboflavin biosynthetic pathway by converting 2,5-diamino-

6-ribosylamino-4(3H)-pyrimidinone (DAROPP) to 5-amino-6-ribitylamino-2,4(1H,3H)-

pyrimidinedione 5’-phosphate (ARIPP). Mutations upstream of the gene encoding for 

RibD were shown to be associated with PAS resistance in laboratory derived resistant 

strains. These mutations also demonstrated increased expression levels of RibD and 

enzymatic activity data demonstrated inhibition of RibD by known DHFR inhibitors. This 

may implicate RibD and the riboflavin biosynthetic pathway in PAS resistance and/or 

suggest that PAS acts as a metabolite mimic in more than just the folate-dependent 

pathway (109). 
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Mechanism of Resistance 

 Mutations in dfrA, the gene encoding DHFR have yet to be identified in PAS-

resistant M. tuberculosis isolates. Other enzymes in the folate pathway, predominantly 

thymidylate synthase (ThyA) have been well described in contributed to PAS resistance. 

These include thyA, folC, folP1, folP2, and thyX. Additionally, three N-acetyltranssferase 

genes [rhoA, aac(1), aac(2)] have also been implicated in PAS resistance. ThyA catalyzes 

the reductive methylation of deoxyuridine monophosphate (dUMP) to yield 

deoxythymidine monophosphate (dTMP) and dihydrofolate. Mutations in thyA account 

for 37% of clinical isolates resistant to PAS with 24 distinct mutations currently annotated. 

The most prevelant mutation observed is AAC to GCC in codon 202. Most notably, over 

60% of PAS-resistant isolates have no mutations which could explain resistance. This 

suggest PAS resistance in M. tuberculosis must involves additional targets or pathways 

which have yet to be elucidated (110).   

 

 

Figure 1.13. Chemical structure of para-aminosalicylic acid. 
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Fluoroquinolones (FQs) 

General Information, Dosage, Adverse Effects 

 FQs are bactericidal antibiotics which are recommended by WHO as a second line 

therapy for the treatment of MDR-TB and XDR-TB. These include moxifloxacin, 

gatifloxacin, sparfloxacin, levofloxacin, ofloxacin, and ciprofloxacin. Moxifloxacin and 

gatifloxacin are currently being evaluated as potential first line therapeutics in order to 

shorten the duration of treatment. FQs have MICs against M. tuberculosis in vitro of 0.1 

to 4.0µg/ml and have an early sterilizing effect. Levofloxacin and moxifloxacin are the 

most widely used FQs in treatment of MDR-TB with in vivo activity comparable to INH. 

The recommended daily dose ranges from 200mg to 800mg for 3-6 months. FQs have also 

been suggested as a prophylaxis for individuals who may be exposed to MDR-TB (111).  

 The most commonly reported adverse effects of FQs include tendonitis, tendon 

rupture, photosensitivity, and seizure. In less than 2% of cases, gastrointestinal issues can 

occur, hepatitis, renal dysfunction, hypoglycemia, vertigo, and insomnia. FQ absorption 

has been shown to be reduced when combined with antacids or multivalent cations (112). 

Non-steroidal anti-inflammatory drugs have also been shown to increase the possibility of 

seizures. The first generation of FQs (ofloxacin, ciprofloxacin, levofloxacin) are generally 

well tolerated and have a well-documented history of low toxicity and safety (113).  

 

Discovery 

The first synthesis of quinolones was an accident, a by-product from the synthesis 

of chloroquine, an anti-malaria drug commonly used in the treatment of malaria.  In 1962, 
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at the Sterling-Winthrop Research Institute, George Lesher et al developed a series of 1,8-

napthyridine derivatives from nalidixic acid which demonstrated good potency against a 

broad range of  bacteria, most notably gram-negatives. This discovery led to the 

development of a library of quinolone compounds, which were first introduced into 

clinical practice in the early 1980s and are still highly used today due to their potent 

antimicrobial and anti-mycobacterial properties (114) [Figure 1.14]. 

 

 

Figure 1.14. Chemical structure of quinolone derivatives.  
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Mode of Action 

FQs target and inhibit type II topoisomerases. The role of type II DNA 

topoisomerases is to introduce transient double-stranded breaks to force the passage of 

one segment of double stranded DNA through another. Most bacteria contain two type II 

topoisomerases, DNA gyrase and topoisomerase IV. DNA gyrase tends to be the primary 

target of FQs in gram-negative bacteria while topoisomerase IV is most often inhibited in 

gram-positive organisms. However, M. tuberculosis only contain one type II 

topoisomerase, DNA gyrase, which is therefore the sole target of FQs. Specifically, FQs 

target the catalytic core of DNA gyrase formed by the Toprim domain of the GyrB subunit 

and the BRD of GyrA subunit. Based on available data from crystal structures, it is 

believed that quinolones bind to a binary complex of gyrase and DNA. This interaction 

stabilizes the covalent enzyme tyrosyl-DNA phosphate ester bond and blocks DNA 

replication. In addition, hydrolysis of the tyrosyl-DNA linkage leads to the accumulation 

of double-stranded breaks, causing cell death (111, 115, 116).  

 

Mechanism of Resistance 

Mutations conferring FQ resistance in M. tuberculosis occur in the genes encoding 

the gyrase, frequently in the quinolone-resistance-determining region (QRDR) of gyrA but 

also in the QRDR of gyrB. The most commonly mutated residues are amino acids 89, 90, 

91, and 94 in the QRDR-A and rarely amino acids 88 and 74 (117). Mutations in gyrB 

occur at amino acids 500, 538, 539, and 540 in QRDR-B. Several studies have looked at 

frequency of mutations outside of the QRDR regions in the entire gyrA and gyrB genes 
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and found that gyrB shows a higher propensity for mutations than gyrA. These mutations 

only lead to low levels of resistance, if any at all (118, 119). Often mutations outside of 

the QRDR region are accompanied by mutations inside the QRDR region of the other 

gyrase. For example, mutations found outside of the QRDR region in gyrA were often 

associated with mutations in the QRDR region in gyrB. N538D and E540V amino acid 

substitutions in gyrB confer the highest levels of resistance to FQs, while D500H, D500N, 

E540D, and T539P have all been found to confer lower levels of resistance (120, 121). 

Mutations outside of the gyrase genes have also been reported in clinical isolates resistant 

to FQs. The mechanisms by which resistance is obtain is still unknown. It is assumed that 

FQ resistant strains are cross resistant among many analogues. However, there are cases 

of strains resistant to moxifloxacin and gatifloxacin, but are still susceptible to oxfloxacin. 

It is possible that FQ resistance in M. tuberculosis can be caused by mutations which 

activate alternative resistance mechanisms, such as efflux pumps (122).  

 

Cycloserine (CS) 

General Information, Dosage, Adverse Effects 

 CS is a bacteriostatic antimicrobial recommended by WHO as a second line 

therapeutic for treatment of MDR-TB and XDR-TB. CS has a recommended daily dose 

of 250mg or 500mg three times a week with a maximum dose of 1000mg. CS has been 

shown to markedly deplete pyridoxine levels and therefore every 250mg of CS must be 

supplemented with 50mg of pyridoxine (123). CS has been shown to exacerbate some of 

the toxicities associated with ETH and INH co-administration. CS is often associated with 
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neurologic and psychiatric perturbations. These may include headaches, dizziness, 

nightmares, depression, anxiety, confusion, and coma. Severe kidney failure can also 

occur in individuals who frequently abuse alcohol (12).  CS has an in vitro MIC against 

M. tuberculosis ranging from 5-20µg/ml (124).  

 

Discovery 

 In 1955 while working at Merck, Kuekl et al discovered a metabolite from a new 

species of Streptomyces which demonstrated a broad range of antibiotic activity. They 

originally designated it “oxamycin” (125). This same team was also responsible for the 

total synthesis of oxamycin which they later termed cycloserine (126) [Figure 1.15]. At 

the same time, Hidy et al identified an identical metabolite from Streptomyces orchidaceus 

while working at Eli Lilly (127).  

 

Mode of Action 

 CS, specifically the D enantiomer, is a structurally mimic of the amino acid D-

alanine. This allows CS to infiltrate two different enzymatic reactions and prevent them 

from proceeding. CS has been shown to bind and inhibit both alanine racemase and D-

alanine-D-alanine ligase. These are unique targets comparted to all known and previously 

reported inhibitors of M. tuberculosis. As such, CS displays no cross resistance to other 

approved anti-tubercular drugs currently employed. D-alanine-D-alanine ligase catalyzes 

the ATP-dependent formation of the amide bond between two D-alanine molecules, 

creating the dipeptidyl D-alanyl-D-alanine precursor for the peptidoglycan. Interestingly, 
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D-alanine-D-alanine ligase has two distinct and independent D-alanine binding sites, one 

on the N-terminus and one on the C-terminus of the enzyme. Recent studies have shown 

that CS binds exclusively to the C-terminal binding site, even in the absence of bound D-

alanine at the N-terminus site (128, 129). 

 

 

Figure 1.15. Chemical structure of cycloserine. 

 

 

 

Mechanism of Resistance 

 The molecular basis of CS resistance in M. tuberculosis clinical isolates is 

incomplete and poorly understood. Studies in M. smegmatis have shown that 

overexpression of alr and ddlA, the genes which encode for alanine racemase and D-

alanine-D-alanine ligase, confers resistance to CS (130). Furthermore, it is known that M. 

bovis is intrinsically resistant to CS, which is only partially explained by an identified 

mutation in cycA, a gene which encodes for an alanine transporter (131). A recent study 
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attempted to provide a more complete understanding of CS resistance found in M. 

tuberculosis clinical strains. It was found that CS resistance was most frequently due to a 

loss of function mutation in ald, which encodes for L-alanine dehydrogenase, followed by 

mutations in alr. Mutations in ddlA or cycA were only found in seven strains compared to 

42 strains which contained an ald or alr mutation. Genetic background did not seem to 

influence the varying drug susceptibility phenotypes observed for each mutant. Clinical 

isolates with ald and alr mutations displayed the highest MIC compared to wild type M. 

tuberculosis which were found to be as high as 60µg/ml. Interestingly, ald and alr 

mutations were not additive and having both mutations did not confer a higher level of 

resistance to CS (132).  

 

Aminoglycosides (Kanamycin, Capreomycin, Amikacin, Viomycin)  

General Information, Dosage, Adverse Effects 

 These four aminoglycosides similar to SM, are highly bactericidal, have very poor 

oral bioavailability and therefore must be administered via intramuscular or intravenous 

injections. Aminoglycosides are a part of the second line group of drugs recommended by 

WHO used to treat MDR-TB and XDR-TB. The recommended daily dose is 15 to 

30mg/kg with a maximum dose of 750mg for capreomycin and 1000mg for kanamycin. 

Resistance to aminoglycosides occurs at a high rate when administered as a single agent 

and as such is always used in conjunction with at least 4 other anti-mycobacterial drugs. 

Adverse effects include acute renal failure, ototoxicity, and hypersensitivity with 

kanamycin usually being the least tolerated of the four. Average peak serum 
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concentrations occur in less than one hour after treatment and the MIC range of the 

aminoglycosides is 4-10µg/ml against M. tuberculosis in vitro (12).  

 

Discovery  

 Although kanamycin and amikacin are aminoglycosides and capreomycin and 

viomycin are polycyclic peptides, all four have a similar mechanism of action. 

Kanamycins were first discovered by researchers at the National Institute of Health in 

Tokyo, Japan in 1957. These antibiotics are produced by Streptomyces kanamyceticus and 

display a wide range of antibacterial activity, especially the most common form, 

kanamycin A. Capreomycin was first isolated in 1950 from Streptomyces capreolus. 

Amikacin is a synthetic derivative of kanamycin first published by the Bristol-Banyu 

research institute in Japan. Amikacin was developed to treat kanamycin resistant bacteria. 

Viomycin was first described by Alexandar Finlay along with 11 co-authors in 1951 and 

it was developed independently at both Pfizer and the Park, Davis Company (133) [Figure 

1.16]. 
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Figure 1.16 – Chemical structure of kanamycin, capreomycin, viomycin, and amikacin. 

 

 

 

Mode of Action 

 Kanamycin and Amikacin are believed to bind to the A-site on the 16S rRNA and 

interferes with the accurate recognition of cognate tRNA by rRNA during translation. The 

translocation of tRNA from the A-site to the peptidyl-tRNA site is also thought to be 

perturbed. Capreomycin and Viomycin differ slightly in that they appear to bind across 

the ribosomal interface involving 23S rRNA helix 69 and 16S rRNA helix 44 (134). 

 

Mechanism of Resistance 

 The most observed clinical mutation in kanamycin-resistant M. tuberculosis 

strains are at positions 1400 and 1401 of the rrs gene, which encodes for the 16S ribosomal 
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RNA subunit. Mutations at these two positions confer high levels of resistance to both 

kanamycin and amikacin. Additional mutations at position 1483 have also reported and 

there are resistant strains not cross resistant between the two antibiotics, suggesting other 

possible mechanism of resistance. To support this idea, mutations in the promotor region 

of the eis gene, which encodes for an aminoglycoside acetyltransferase, have been shown 

to confer low levels of kanamycin resistance but not to amikacin. These mutations have 

been reported in almost 80% of all isolates demonstrating resistance to kanamycin (135).  

 All reports of capreomycin resistant strains of M. tuberculosis show complete cross 

resistance to viomycin and vice versa. Mutations in the tylA gene, which encodes for a 

rRNA methyltransferase specific for 2’-O-methylation of ribose in RNA, is thought to be 

the sole progenitor of resistance to the cyclic peptides (136).  

 

THIRD-LINE DRUGS USED FOR THE TREATMENT OF MDR-TB AND XDR-

TB 

 

 Third line drugs most often have very poorly defined efficacy and undefined roles 

in the treatment of M. tuberculosis infections. The purpose of introducing many third line 

drugs is to reduce the treatment duration and to address the rise of XDR-TB cases which 

are less responsive to traditional therapies. Many third line drugs are previously well 

described to treat other bacterial or viral infections and are being repurposed for the 

treatment of tuberculosis.  
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Linezolid 

 Linezolid is a synthetic antibacterial from the oxazolidinone class which were first 

discovered in the 1970’s at E. I. du Pont de Nemours & Co. They were initially 

investigated for their activity against methicillin-resistant bacteria. They were 

discontinued to due liver toxicity issues but were re-investigated in the early 1990s. In 

1996, linezolid was discovered at Pharmacia & Upjohn and is under the Pfizer trade name 

Zyvox (137) [Figure 1.17]. 

 Although the specific mechanism by which linezolid exhibits is antibacterial 

properties is not complete, it is known that oxazolidinones bind to the 23S portion of the 

50S subunit of the ribosome, and prevents the initiation complex from maturing, blocking 

protein synthesis. It is unique among protein synthesis inhibitors in that it blocks at the 

step of initiation and not at elongation. This allows Linezolid to have very little cross 

resistance between other protein synthesis inhibitors (138).  

 

 

Figure 1.17. Chemical structure of linezolid. 
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 M. tuberculosis resistance to linezolid is quite unusual, but in a study analyzing 

over 200 MDR strains, it was found that 2% were resistant to linezolid. Mutations in the 

23S rRNA of the resistant isolates were found to have a 4 to 8 fold increase in MIC. A 

more recent study found point mutations in rplC, which encodes for the 50S ribosomal L3 

protein. The most common base change was T460C in both in vitro and clinical isolates 

of M. tuberculosis. Other evidence suggest that efflux pumps are also involved in linezolid 

resistance (139). 

 

Clofazimine 

Vincent Barry et al originally synthesized Clofazimine in 1954 at Trinity College. 

It was originally investigated for anti-tuberculosis properties, but it failed to be effective. 

Five years later it was shown to be an effective treatment against leprosy. In 1969, Novartis 

launched clofazimine under the name Lamprene [Figure 1.18]. It was granted FDA 

approval in 1986 as an orphan drug (140). 

 The exact mechanism of clofazimine mediated antimicrobial activity has yet to be 

elucidated. However it is believed that the outer cell membrane appears to be the primary 

site of action while most likely interfering with the bacterial respiratory chain and ion 

transporters.  It has been hypothesized that oxidation of reduced clofazimine generates 

reactive oxygen species (ROS), superoxide, and H2O2, which could lead to bacterial cell 

death. Conversely, clofazimine is also believed to interact with membrane phospholipids, 

which in turn promotes membrane dysfunction, ultimately leading to a suboptimal uptake 

of potassium ions, resulting in cell death (141). 
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 There is currently very little characterization of clofazimine resistance in M. 

tuberculosis. However, it has been shown that in wild type H37Rv, mutations in the 

transcriptional regulator, Rv0678, resulted in an upregulation of MmpL5, a proposed 

efflux pump, which caused innate resistance to clofazimine (142). 

 

 

Figure 1.18. Chemical structure of clofazimine.  

 

 

 

 

Beta-lactams 

 Amoxicillin and imipenem are broad spectrum antibiotics used in the treatment of 

aerobic, anaerobic, Gram-positive and Gram-negative bacteria [Figure 1.19]. Amoxicillin 

is broken down by β-lactamases produced by bacteria and therefore must always be co-

administered with a β-lactamase inhibitor such as clavulanic acid. Imipenem is resistant 

to β-lactamases, but is susceptible to inactivation by the renal enzyme dehydropeptidase 
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1 and must be taken with cilastatin, a dehydropeptidase inhibitor. Although these 

combinations have demonstrated appreciable activity against M. tuberculosis, the 

pharmacokinetic properties, including a very short half-life, preclude its general use for 

the treatment of tuberculosis (143).  

 

 

 

Figure 1.19. Chemical structure of amoxicillin and imipenem. 

 

 

 

 

Thiacetazone 

 Thiacetazone is an old drug which was widely used due to its good in vitro activity 

against M. tuberculosis and low cost [Figure 1.20]. However, toxicity problems, especially 

drug-drug interactions with anti-retrovirals, makes it less than desirable. It is believed to 

inhibit mycolic acid cyclopropanation but it is no longer used in the United States (144) 
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Figure 1.20. Chemical structure of thiacetazone. 

 

 

 

 

Macrolides 

 Intrinsic resistance to macrolides is often found in M. tuberculosis and as such is 

infrequently used in the treatment of tuberculosis. However, clarithromycin has been 

shown to reduce the MIC of first line drugs, notably EMB when co-administered [Figure 

1.21]. A mutation in emr37, a gene which encodes a methylase at a specific site in the 23S 

rRNA, blocks the binding of antibiotics. Low permeability of the cell wall is another 

feature that makes macrolides very ineffective against M. tuberculosis, but they are 

surprisingly good at treating Myccobacterium microti infections (145). 
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Figure 1.21. Chemical structure of clarithromycin. 

 

 

 

 

NEW CANDIDATES FOR TREATMENT OF TUBERCULOSIS 

 There are several criteria in which new drug candidates for the treatment of 

tuberculosis must fulfill in order to be considered. They must have a validated safety 

profile, be more potent than existing drugs, inhibit new targets, be compatible with anti-

retroviral medications, and display no antagonism to other anti-mycobacterial drugs or 

drug candidates. In addition, new drug candidates should aim at inhibiting M. tuberculosis 

at various physiological stages including latent infections (146).  

 

Bedaquiline 

 Bedaquiline was originally discovered in a High Throughput Screen (HTS) of 

thousands of compounds against Mycobacterium smegmatis (M. smegmatis) [Figure 
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1.22]. Originally named, TMC207, this compound demonstrated activity against M. 

tuberculosis in both in vivo and in vitro assays and was potent against both actively 

replicating and dormant bacilli (147, 148). It then proceeded to clinical trials and following 

the results of its phase II trial, it was given conditional approval by the FDA for the 

treatment of MDR-TB. However, it was issued a black box warning due to unexplained 

deaths following treatment. Bedaquiline is a diarlquinoline and it acts by inhibiting ATP 

synthase, a completely novel target in M. tuberculosis (149). Resistance to bedaquline has 

already been reported with the most prevalent mutations occurring in the atpE gene, 

specifically an A36P and I66M amino acid substitions. However, out of the 53 resistant 

isolates found, only 15 displayed mutations in the atpE gene (150). This suggests there 

are additional mechanisms of resistance that still need to be determined. 

 

 

 

Figure 1.22. Chemical structure of bedaquiline. 
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Delamanid 

 Delamanid is a derivative of nitro-dihydro-imidazooxazole that demonstrates 

activity against M. tuberculosis. It is currently in phase III clinical trials and has 

comparable activity to rifampicin with agreeable efficacy and safety for treatment of 

MDR-TB [Figure 1.23]. It is hypothesized to inhibit mycolic acid biosynthesis (151, 152). 

 

PA-824 

 PA-824 is a nitroimidazole prodrug that needs to be activated by a nitro-reductase. 

Evidence suggests that it exerts its antimicrobial activity by inhibiting protein synthesis 

and perturbing cell wall lipids. It has demonstrated very good in vitro and in vivo activity 

and is currently undergoing clinical trials [Figure 1.24]. M. tuberculosis resistance to PA-

824 have been associated with mutations in a glucose-6-phosphate dehydrogenase, 

dezaflavin cofactor F420, and in a nitroimidazo-oxazine-specific protein (153). 

 

 

 

Figure 1.23 – Chemical structure of delamanid. 
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Benzothiazinones 

 A new class of drugs have emerged which are bactericidal and active against both 

drug-sensitive and MDR clinical isolates of M. tuberculosis [Figure 1.25]. It targets the 

gene products of Rv3790 and Rv3791 which catalyze the epimerization of 

decaprenylphosphorl ribose to decaprenylphosphoryl arabinose. These enzymes are 

known as DprE1 and DprE2. Recent studies have shown that reduction of an essential 

nitrogen group to a nitroso group, which allows benzothiazinones to interact with a 

cysteine residue in DprE1, inhibiting its function (154). 

 

 

Figure 1.24. Chemical structure of PA-824. 

 

 

 

 

SQ-109 

 SQ-109 is an analogue of ethambutol, demonstrates good activity against both 

drug-sensitive and MDR M. tuberculosis, and has shown synergistic activity with other 

first line drugs [Figure 1.26]. SQ-109 and bedaquiline have been shown to act 
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synergistically against M. tuberculosis in vitro, effectively increasing the potentcy of 

bedaquiline by more than 4 fold (155). It is currently in phase II clinical trials. Data 

suggests that SQ-109 targets MmpL3, a possible transporter of trehalose monomycolate. 

SQ-109 resistant M. tuberculosis isolates have mutations spanning the mmpL3 gene (156). 

Figure 1.25 – Chemical structure of the benzothiazinone, BTZ043. 

Figure 1.26 – Chemical structure of SQ-109. 
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Despite the introduction to inexpensive and combinatorial therapies more than 40 

years ago, tuberculosis still remains and has a footing in every corner of the world. It is 

apparent that even with abundance of chemotherapeutic options to treat M. tuberculosis 

infections, resistance will continue to arise as long as drugs are around. It can be argued 

that drug resistance in M. tuberculosis is a problem assisted by improper drug use and 

drug regimens. Drug resistance is a problem that does not have a single solution. In order 

to keep up with the evolving mycobacterial landscape, new drugs, new drug targets, and 

new mechanisms/ combinations of drugs must be identified and refined. There is need for 

shorter and less toxic treatment plans and quicker more efficient ways to evaluate plans 

for proposed drug therapies In addition, the mechanisms of resistance to current drugs 

need to be further elucidated, especially in the area of drug efflux pumps, to guide future 

drug discovery research. 
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CHAPTER II 

 

IDENTIFICATION OF NOVEL GROWTH INHIBITORS AND ELUCIDATION 

OF POTENTIAL DRUG TARGETS IN MYCOBACTERIUM TUBERCULOSIS 

 

 

BACKGROUND 

 

Central Carbon Metabolism 

 

Essential to the physiology of all bacteria, central carbon metabolism (CCM) is the 

enzymatic transformation of carbon through glycolysis, gluconeogenesis, the pentose 

phosphate shunt, and the tricarboxylic acid cycle (157).The transport and use of carbon 

substrates is afforded by multiple specific uptake systems and pathways which generate 

macromolecules such as proteins, nucleic acids, and cell wall components (158). The 

genes involved in CCM are controlled in part by transcriptional regulators which may 

sense key metabolites found in carbon metabolic pathways. Deconvolution of these global 

metabolic networks is challenging, yet sequence homology modeling, bioinformatics, 

mutation studies and transcriptional profiling have helped elucidate the structure and 

composition of CCM for in-vitro and in-vivo growth of intracellular pathogens.  

 

Central Carbon Metabolism in Mycobacterium tuberculosis  

CCM in M. tuberculosis diverges from most pathogens in that it is adapted to one 

host and one environment. M. tuberculosis has evolved interdependent physiological and 

pathological roles within the human macrophage and takes advantage of the metabolic 

flux which occurs during infection. Upon initial infection, M. tuberculosis has been shown 
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to perturb host cell glycolysis, engaging the metabolic pathways of the host cell and 

exploiting its ability to increase lipid accumulation and ATP synthesis (159). After initial 

infection, evidence suggests that M. tuberculosis primarily utilizes a diet of fatty acids 

derived from host lipids, then via beta-oxidation enters the TCA cycle as acetyl-CoA. In 

addition, M. tuberculosis has been shown to utilize carbon sources from glycerol, amino 

acids, and carbon dioxide fixation to feed central metabolism. Unique to M. tuberculosis 

is its ability to co-catabolize multiple carbon sources and direct individual components to 

distinct metabolic fates.  

 

Drug Discovery in Mycobacterium tuberculosis 

Traditional drug discovery in M. tuberculosis has followed a target-based 

approach. A target is usually a single gene, gene product, or molecular mechanism that 

has been identified on the basis of genetic or biological observations. In a target-based 

approach, HTS will facilitate identification of molecules that may interact with the target 

or target families. The benefit of a target-based approach is that the molecular mechanism 

of action (MMOA) is known. However, the most important obstacle to overcome is 

whether or not the identified inhibitors will translate into a phenotypic whole cell response.  

Therefore, phenotypic screens at the whole cell level have re-emerged as a much more 

successful strategy.  
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High Throughput Screening Assay 

The challenge in identifying novel therapeutics for M. tuberculosis is 

recapitulating an in vitro environment which would directly translate to the complex in 

vivo conditions faced within a macrophage. Acetate and glucose are primary carbon 

sources which feed into gluconeogenic and glycolytic pathways. Gluconeogenesis and 

glycolysis are essential for the pathogenesis and persistence of M. tuberculosis. In order 

to probe as many physiologically relevant metabolic pathways as possible, a HTS assay 

must be able to identify inhibitor(s) of enzymes required for M. tuberculosis infection 

and/or persistence.   

To identify more drug-like molecules, significant diversity is required among 

compound screening libraries in order to identify in-vitro screening conditions relevant to 

the conditions encountered by the bacteria during an infection. This platform carefully 

examines the required chemical diversity and in vitro growth conditions necessary to 

develop a HTS assay to systematically identify compounds which inhibit the growth of 

the bacteria. The versatility of the assay allows for the screen to accommodate many 

various in vitro growth conditions which may represent the nutritional milieu that 

mycobacteria encounter within its host.   

 

Non-Tuberculous Mycobacteria (NTMs) 

Interest in NTMs have grown significantly as a result of their infection in patients 

with AIDS and the recognition that disease caused by NTMs is also encountered among 

non-immunocompromised individuals. NTMs can be the cause of several clinical diseases 
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including pulmonary disease, lymphadenitis, disseminated disease, skin disease, soft 

tissue disease and bone disease. Several important observations have been made over the 

past two decades while monitoring pathogenesis of NTM infections. 1) In HIV infected 

individuals, disseminated NTM infections most often were seen only after the CD4+ T-

lymphocyte number had dipped below 50/µl. 2) In patients free of HIV infection, 

disseminated NTM infections were often found associated with specific mutations in 

interferon and interleukin synthesis and response pathways. 3) Pulmonary NTM infections 

were often associated with bronchiectasis in postmenopausal women with certain bodily 

habitus (pectus excavatum, scoliosis, mitral valve prolapse) (160-162). These data 

demonstrate that upon mycobacteria phagocytosis by macrophages, the proper regulation 

of interferon and interleukin, specifically IFN-γ and IL-12, is critical for the control of 

infection. Improper regulation of the IFN-γ/IL-12 pathways, either acquired or genetic, 

appears paramount for predisposition to NTM infection and dissemination of disease 

(163).  

NTMs pose major challenges in diagnosis and treatment. NTMs share many 

characteristics with M. tuberculosis and appear identical upon microscopic examination. 

Additionally, the symptoms associated with NTM and M. tuberculosis infection often 

present in similar fashion, resulting in possible misdiagnosis and mistreatment. In a recent 

study, it was found that at least 10% and in some areas as high as 30% of suspected 

tuberculosis cases were in fact NTM infections. Furthermore, in a small clinical sample of 

36 patients in Tanzania, 11.4% of patients with NTM infections were also found to be co-

infected with M. tuberculosis (164). Often, anti-tuberculosis medications are administered 
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to patients suffering from NTM infections, leading to less than satisfactory outcomes. This 

is not unexpected given the diversity found within mycobacteria as well as the documented 

differences in their pathogenicity, virulence, mode of transmission, and antibiotic 

susceptibility.  

Identifying potential therapeutics against NTMs is no small feat given the range of 

species which encompass the mycobacterial genus and their intrinsic resistance to 

antibiotics. Compounded by the realization that many NTM infections are associated with 

M. tuberculosis infections, treatment regimens may have to target multiple species of 

NTMs as well as M. tuberculosis. Ideally, a therapeutic would be identified by its ability 

to sterilize against a range of mycobacterial infections. Given the similarities among 

mycobacterial genomes, it may be possible to identify a chemotherapeutic that is active 

against a fast growing, non-pathogenic species such as M. smegmatis, that also 

demonstrates efficacy against other mycobacteria.  

There is some debate as whether M. smegmatis could serve as a model organism 

for M. tuberculosis in a laboratory setting (165). M. smegmatis does not enter epithelial 

cells, does not persist in professional phagocytes, and has none of the pathogenic 

properties described by M. tuberculosis (166). However, M. smegmatis is saprophytic, 

shares 70% of the 4034 protein coding genes with M. tuberculosis, and displays a rapid in 

vitro doubling time of 2-3 hours. It has also been shown that 12 out of the 19 genes 

identified in M. tuberculosis as required for virulence share close homologues in M. 

smegmatis (167).  
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In order to evaluate M. smegmatis as a potential vaccine candidate for M. 

tuberculosis, one research group identified 38 genes which were significantly up-regulated 

during active, latent, and reactivated stages of infections. From this they identified 1367 

T-cell epitopes and 140 B-cell epitopes on M. tuberculosis and compared those to M. 

smegmatis using a BLAST search. The results showed that the two shared 68 identical T-

cell epitopes and 11 B-cell epitopes on 18 different proteins in M. smegmatis and 13 

different proteins in M. tuberculosis. All 18 proteins have identified functions in M. 

smegmatis which correlate with the functions of the 13 identified proteins in M. 

tuberculosis (168).   

In addition, several whole cell screens have been conducted which compare the 

results of identified active molecules between M. smegmatis and M. tuberculosis. The 

evidence shows that in over 75% of the whole cell active molecules against M. smegmatis, 

the compounds were also active against M. tuberculosis. However, the inverse was not 

quite as predictable. In one study, only 21% of the identified compounds active against M. 

tuberculosis showed activity against M. smegmatis while 86% of the compounds active 

against M. smegmatis were also active against M. tuberculosis. Although, many whole cell 

active compounds against M. tuberculosis may be lost when using M. smegmatis as a 

model organism, the molecules which demonstrate activity on M. smegmatis will often 

demonstrate potency against M. tuberculosis.  Interestingly, M. abscessus shares more 

growth characteristics with non-pathogenic mycobacteria such as M. smegmatis, but it also 

shares 1675 protein coding regions with the pathogenic mycobacteria, M. tuberculosis and 

2117 with M. smegmatis (168-172). Therefore, utilizing a fast growing pathogenic 
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mycobacterial species in screening assays serves two purposes; a model organism for M. 

tuberculosis and also as a model for itself. As such, screening against NTMs could be a 

promising avenue for the discovery of M. tuberculosis and NTM therapeutics 

simultaneously. 

 

Methods for Target Identification 

 

 When using phenotypic whole cell screening techniques as a tool for drug 

discovery, the need to identify precise protein targets or mechanisms of action responsible 

for the phenotype(s) observed becomes critical. There are several methodologies 

employed for discovering target(s) of whole cell active small molecules: genetic 

interaction methods, classical genetic methods, computational inference methods, and 

direct biochemical methods (173). Genetic interaction works by modulating hypothesized 

targets in cells, presumably changing the sensitivity to the small molecule. This requires 

additional insight into the biological target and may be more practical when screening 

against known classes of compounds.  

Computational inference or target hypotheses, uses pattern recognition to compare 

sets of molecules and their effects to known reference molecules. Many times this only 

leads to pathway inferences and must await secondary confirmation of the actual protein 

receptor. Direct methods involve labeling of the small molecule or protein and attempting 

to observe a physical interaction between the two. The biggest drawback to the method is 

the label itself, which many times can interfere with binding or cause instability when 

ligated to a protein or small molecule. Classical genetics involves applying an 
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experimental selection pressure in order to identify a phenotype of interest. This is 

followed by identification of the gene responsible for the observed phenotype.  

 

Classical Genetics Method of Target Identification  

Bacterial antibiotic resistance can be achieved by horizontal acquisition of 

resistance genes, by recombination of foreign DNA into the chromosome, or by mutations 

in the chromosomal loci. Mutation rate is defined as the in vitro frequency at which 

bacterial growth appears within a population in the presence of a given antibiotic (174). 

In order to understand the mechanism of resistance within a population, each individual 

genotype which gave rise to the specific phenotype must be examined. This mutation 

selection process within the bacterial population is incredibly dynamic. Much work has 

been done to show that many factors play a role in varying the mutation frequency. 

Antibiotic concentration, growth media, oxidative stress, and population density all 

influence the genotype and phenotype(s) of the bacteria’s mutability.  

In regards to target identification, the selection pressure would be applied in the 

form of a small molecule which demonstrated a reduction in cell viability, and the 

expected phenotype would be lack of bacterial growth. However, in the event that a 

mutation occurred, which limited the efficacy of the compound while still maintaining an 

adequate level of fitness, bacterial growth may still occur. This population would be 

considered resistant against the compound used as selection pressure. Spontaneous 

mutation is rare and only occurs in 1x10-4 to 1x10-11 bacteria. In order to increase the rate 

of mutation, a mutagen can be added to the bacteria culture, effectively increasing the 
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frequency by up to 1000 fold. Ethyl methanesulfonate (EMS), methyl methanesulfonate, 

and ultraviolet (UV) light are commonly used mutagens.  

 

Model Organism(s) of M. tuberculosis for Target Identification 

Given the draw backs displayed by many of the described target identification 

methods combined with the advent of modern whole genome sequencing technology, 

classical genetics becomes the most practical approach. In order to successfully probe for 

desired phenotypes, the organism must first lend itself to genetic manipulation. It is quite 

difficult and time consuming to modify wild type M. tuberculosis (H37Rv) to the extent 

that a BSL3 laboratory would be required. The non-pathogenic strains of M. tuberculosis 

(BCG, MC27000) are possible candidates, but their long doubling time and low frequency 

of resistance, make them less than ideal (175). The fast growing mycobacteria share 

similar genome sequences, have shorter doubling times, and are relatively non-pathogenic. 

These traits make them ideal candidates as a model organism for M. tuberculosis. M. 

smegmatis, M. fortuitum, and M. abscessus were selected as candidates for in vitro target 

identification. They are more susceptible to spontaneous in vitro mutation, have a doubling 

time of about 2-4 hours, and share many homologous proteins to M. tuberculosis. The 

homology of NTMs to M. tuberculosis has been demonstrated not only by whole genome 

sequencing, but also through the compounds which were active across multiple species of 

mycobacteria shown in the previous HTS assay.   
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Whole Genome Sequencing 

Whole genome sequencing technology allows researchers to interrogate mutated 

genes and hypothesize on the mechanism of resistance based on the observed genotypes. 

Analysis of genome sequencing data is less complicated when the population is clonal, or 

void of genetic variation. This can be accomplished when the selection process takes place 

on solid agar media. Each colony which appears would be clonal and contain a uniform 

genotype. However, growth and selection in a liquid culture makes it more difficult to de-

convolute the sequencing data and pinpoint specific genes responsible for resistance. The 

advantage to liquid culture selection is that each mutant sequenced would theoretically 

give a snapshot of all the mutations within the mixed population. This is incredibly useful 

when one considers the cost per sequencing run as well as the time involved for preparing 

and sequencing individual clonal samples.  

 

 

MATERIALS AND METHODS 

 

Bacterial Strains 

 

M. abscessus (strain SYU3), M. fortuitum (strain PN), M. smegmatis (strain 

MC2155) were obtained from Dr. Eric Rubin at Harvard Medical School. MC27000 was 

obtained from Dr. William Jacobs. MC27000 is a genetically engineered attenuated strain 

of wild type M. tuberculosis (H37Rv) which is deficient in several genes (ΔpanCD ΔRD1), 

PanC and PanD are two genes involved in the biosynthesis of pantothenic acid and 

coenzyme A, which are required for intracellular replication and persistence (176). RD1 
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is an operon containing 9 genes essential for M. tuberculosis virulence and are missing in 

all attenuated strains (177).  

 

Compound Library Creation 

Two chemically diverse, small molecule libraries, with Tanimoto scores <0.7, 

were created following Lipinski’s rule of 5 and purchased from ChemBridge, Enamine, 

Asinex, Maybridge, ChemDiv, and Life Chemicals (178).  The compound libraries were 

also filtered for molecules which are known to contain reactive R groups or demonstrate 

any known problems of instability such as isonitriles, aliphatic aldehydes, sulfamates, 

thiosulfates, and oxiranes. Library 1 (Sac1) contains 51,780 compounds and Library 2 

(Sac2) contains 52,781 compounds. Solid material of each individual compound was 

dissolved into 100% dimethylsulfoxide (DMSO) to a concentration of 10mM and 

aliquoted into 96 well plates in order to create stock solutions (Mother Plates). 

Subsequently, working stock solutions (Daughter Plates) were created by making a 10:1 

dilution in 100% DMSO from the mother plates into 384 well daughter plates to a final 

concentration of 1mM.  

 

 

Chemicals, Media, Equipment and Supplies 

384 well and 96 well polypropylene and polystyrene plates were purchased from 

Costar. Middlebrook OADC Growth supplement (Oleic Albumin Destrose Catalase) was 

purchased from Fisher Scientific. Pantothenic Acid (PAN), Malachite Green (MG), 

Sodium Acetate (NaOAc), Dextrose, Sodium Chloride (NaCl), Calcium Chloride (CaCl2), 
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Magnesium Sulfate (MgSO4), Resazurin, Tween 80, Tyloxapol, Ethyl methanesulfonate 

(EMS), M9 Minimal Media, and Middlebrook 7H9 growth media were purchased from 

Sigma. HTS assays were carried out using a CyBio Vario and an inline 8+1. Results were 

monitored and recorded using a POLARstar Omega plate reader from BMG Labtech.  

 

 

Bacterial Media and Growth Conditions 

 

M. abscessus, M. fortuitum, M. smegmatis were grown in Middlebrook 7H9 media 

supplemented with 0.2% dextrose, 0.01% NaCl, 0.2µ/ml MG, and 0.04% Tween 80 until 

an optical density at 600nM (OD600) of about 1.0 was reached. The cells were passed into 

M9 minimal media supplemented with 1.0% NaOAc, 0.1mM CaCl2, 2mM MgCl2, 

0.2µg/ml MG, and 0.04% Tween 80. The cells were grown again to an OD600 of 1.0 and 

then diluted to a final working concentration of OD600 of 0.005 into M9 minimal media 

supplemented with 1.0% NaOAc, 0.1mM CaCl2, 2mM MgSO4, 0.2µg/ml MG, and 0.04% 

Tween 80. 

MC27000 was grown in Middlebrook 7H9 media supplemented with 0.2% 

dextrose, 0.01% NaCl, 0.2µl MG, 0.04% Tyloxapol, 100µg/ml PAN, and a 1:10 dilution 

of Middlebrook OADC grown to an OD600 of 1.0. Using NaOAc as the only carbon source, 

the cells were passed into M9 minimal media containing 1.0% NaOAc, 0.1mM CaCl2, 

2mM MgSO4, 0.2µg/ml MG, and 0.04% Tween 80, and 100µ/ml PAN to a final working 

concentration of OD600 of 0.05. Using mixed carbon sources of dextrose and NaOAc, the 

cells were passed into M9 minimal media containing with 0.2% dextrose, 0.2% NaOAc, 
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0.01% NaCl, 0.2µl MG, 0.04% Tyloxapol, and 100µg/ml PAN to a final working 

concentration of OD600 of 0.05. 

 

HTS Assay Conditions  

Using the CyBio Vario, either 1.0µL (single carbon source) or 0.5µL (mixed 

carbon source) of compound from each well of a Daughter Plate was pipetted into a 384 

well polypropylene assay plate. Columns 3-22 were reserved for compounds (320/plate) 

and columns 1,2, 23 and 24 were reserved for positive and negative controls (Rifampicin, 

Streptomycin, and DMSO) Next, 49µL of the working stock culture was added to each 

well, resulting in a final concentration of 1-2% DMSO, and 10-20µM of compound per 

well. Plates were then sealed with a semi-porous film and then placed into a 37oC non-

shaking incubator. MC27000 was grown in a CO2 jacketed incubator, negating the need to 

apply a seal.  

The fast growing mycobacteria (M. smegmatis, M. fortuitum, M. abscessus) were 

grown for 24 hours, removed from the incubator and 1.25µl of resazurin added to every 

well. The plates were then resealed and placed back into the incubator. The slow growing 

mycobacteria (MC27000) were incubated for 7 days when grown on a mixed carbon 

source of NaOAc and dextrose or for 21 days when grown on NaOAc alone, before the 

addition of resazurin. After an additional incubation of 24-48 hours, the plates were 

removed from the incubator and cell viability was determined by either measuring the 

difference in absorbance at 573nM and 603nM or by fluorescence using an excitation 

wavelength of 579nM and an emission wavelength of 584nM 
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HTS Data Analysis 

Metabolically active cells will reduce Resazurin in a NADH dependent manner 

producing Resorufin (179) [Figure 2.1]. Resazurin has an absorbance maximum at 605nM 

while Resorufin has an absorbance maximum at 573nM. Taking the difference of the two 

values will give a fairly accurate estimate for the amount of viable cells present in each 

well. Alternatively, Resorufin is a fluorescent product of Resazurin, therefore measuring 

the resulting emission at 584nM when using an excitation wavelength of 579nM will also 

yield an estimate to the amount of viable cells in each well. Both methods were used and 

values for cell viability were calculated by comparing unknowns to positive and negative 

controls. The assay was validated on a plate by plate basis using SM and RIF as positive 

controls with known MICs. Z-values were calculated for each plate and scores above 0.7 

were considered acceptable. 

 

 

Figure 2.1. Reduction of resazurin to resorufin. Actively respiring cells are shown in pink, 

which have oxidized resazurin to resorufin. Cells which are no longer respiring are shown 

in blue. A gradation of blue to pink (shades of purple) represents wells which either 

contain very few actively respiring cells or they are respiring very slowly.  
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Percent viability, or percent control was calculated using the following [% Control 

= 100*(1-((sample - negative control)/ (positive control – negative control))] Values that 

were at least three standard deviations away from the mean were used as criteria for 

determining which compounds gave a statistically significant phenotypic response, 

corresponding to decreased cell viability and respiration. Compounds which decreased 

cell viability were deemed “hits” and further validated using a dose response assay in order 

to determine approximate Minimum Inhibitory concentration of 50% growth (MIC50) 

values against each organism.  

 

Selection of Resistant Mutants 

Compounds were selected from the hits generated during the HTS which 

demonstrated activity against M. tuberculosis and at least one additional fast growing 

mycobacterium. M. abscessus, M. fortuitum, M. smegmatis were grown in Middlebrook 

7H9 media supplemented with 0.2% dextrose, 0.01% NaCl, 0.2µ/ml MG, and 0.04% 

Tween 80 until an optical density at 600nM (OD600) of about 1.0 was reached. The cells 

were passed into either M9 minimal media supplemented with 1.0% NaOAc, 0.1mM 

CaCl2, 2mM MgCl2, 0.2µg/ml MG, and 0.04% Tween 80, or 7H9 media supplemented 

with 0.2% dextrose, 0.01% NaCl, 0.2µg/ml MG, and 0.04% Tween 80. Media selection 

was based on the activity profile of the compounds used during the original HTS. The 

cells were grown again to an OD600 of 1.0 and then incubated with EMS for a period of 

time. The cells were then diluted to a final working concentration of OD600 of 0.01 into 

the same media used during the growth in the presence of EMS.  
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MIC50s of the selected compounds were used to determine working concentration 

for the assay. 10 compounds were used in each 96 well plate. Columns 1 and 12 were used 

as positive and negative controls (Rifampicin, DMSO). The 10 compounds were diluted 

to a final working concentration that was equal to 100x their MIC for a total of 8 dilutions. 

These values and concentrations were determined for each individual compound and for 

each bacterial strain being tested. Growth media was added to each well for a final 

concentration of 200µL. The plates were sealed and placed into a shaking incubator at 

37oC for 5 days. After 5 days, the plates were removed, and 2.5µL of resazurin was added. 

The plates were returned to the incubator and every 24 hours were checked to determine 

if the culture in any well displayed growth at a concentration greater than the original MIC 

of the compound. If so, the culture was aspirated from the well and split into two fractions. 

One was frozen at -80oC in order to preserve stock of the original mutant culture, and the 

other was diluted into the same growth media to a total volume of 5ml in the presence of 

the compound the resistant mutant was selected against at a concentration greater than the 

original MIC.  

 Once the culture was grown to late log phase, preparation for genomic DNA 

extraction began with the addition of glycine to a final concentration of 1%. The culture 

was grown for an additional 24 hours. To complete the process of DNA extraction, 

methods from a previously published protocol were used (180)  
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Whole Genome Sequencing and Data Analysis  

 Each individual genomic isolate was sequenced using an Illumina Genome 

Analyzer IIx, as previously described (181, 182). The results were analyzed by a 

comparative genome assembly method using proprietary software developed in our lab by 

Dr. Tom Ieorger. Mutations were identified by searching for single nucleotide 

polymorphism(s) (SNPs) in essential genes. Since the genomic population was a mixture 

of various resistant mutants, SNPs were often inferred in terms of heterogeneity between 

individual reads. SNPs and insertions/deletions were determined by comparing multiple 

sequence runs between each isolate and H37Rv. Mutations found in genes deemed 

essential were clustered and subjected to secondary assays for validation. Gene essentiality 

was determined from transposon site hydridization assays (TraSH) done previously (183, 

184). Genetic recombineering and over-expression studies were secondary assays 

employed to validate the individual genetic mutations responsible for resistance (185).  

 

RESULTS 

 

HTS of Sac1 Library  

Compounds from the Sac1 library were screened against MC27000 at a 

concentration of 20µM and against M. smegmatis, M. fortuitum, and M. abscessus at a 

concentration of 10µM using NaOAc as a primary carbon source. 1255 compounds hits 

were obtained from the primary screen against MC27000 (2.42%), 1236 compounds 

against M. abscessus (2.39%), 929 compounds against M. fortuitum (1.79%), and 545 

compounds against M. smegmatis (1.05%). MC27000 had 325 hits shared with M. 
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fortuitum, and 406 shared with M. abscessus. There were 251 hits shared between all three 

mycobacteria and 179 of the 251 compounds were also active against M. smegmatis 

[Figure 2.2]. These numbers are consistent with what has been reported in a recent study 

which showed that only 50% of compounds which kill M. tuberculosis could be detected 

when using M. smegmatis as a model organism (168).  

The 1255 hits against MC27000 were further validated in a dose response assay 

using NaOAc as a primary carbon source. Re-screening using NaOAc as the primary 

carbon source, 880 compounds demonstrated greater than a 50% reduction in cell viability 

at 20µM. 646 compounds at 10µM, 560 compounds at 5µM, 337 compounds at 2.5µM, 

and 297 compounds at 1.25µM. This represents a 70% re-test rate from the primary screen 

with 880 out of the 1255 compounds re-testing at a concentration of 20µM.  

 

 

Figure 2.2. Venn diagram of the Sac1 screen results. SYU3 = M. abscessus. PN = M. 

fortuitum. Mtb = M. tuberculosis. 1255 compounds were active against M. tuberculosis, 

with 406 of those also being active against M. abscessus¸ and 325 of the 1255 also active 

against M. fortuitum. 251 out of the 1255 were active against all three mycobacteria. 

There were 1236 compounds active against M. abscessus alone and 929 active against 

M. forutitum alone. 523 compounds were active against both M. fortuitum and M. 

abscesssus.  
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A comparison of the top 200 hits at 1.25µM with a subset of 200 random molecules 

which did not show inhibition at 20µM displayed very little differences between the two 

sets except in three criteria, average log P, average polar surface area and average pKa. 

Although pKa is a key physiochemical parameter influencing many biopharmaceutical 

characteristics, its absolute value does not lend itself to simple calculations and 

comparison. However, the active molecules have an average pKa of 6.53 while the 

inactive molecules have a slightly higher average of 7.23. In the case of the active 

molecules, at a neutral pH, they will exist primarily in a deprotonated form. This 

observation for the group of molecules reveals very little, but pKas when investigated on 

an individual basis can give insight into a drug’s absorptivity. This is because most drugs 

are weak acids or weak bases, and from a calculated pKa, the percent unionized or percent 

ionized of the molecule at varying biological pHs can be determined. The ratio of 

ionization to unionization can be used to determine how well the drug will be absorbed as 

well as predict its solubility at neutral pHs, such as blood plasma or acidic pHs, such as in 

the stomach.  

On the other hand, log P values have direct correlation to a molecule’s lipophilicity 

and cellular absorptivity. Therefore, the higher the log P value, the lower the 

hydrophilicity of the molecule which translates into poor cellular absorption. It has been 

shown that most compounds should have a log P less than 5 in order to have a reasonable 

probability of being well absorbed. The average log P for the active molecules was 4.05 

compared to 3.08 for the in-actives. Several active molecules lay outside the average by a 

great deal with a range of 8.22 to 0.38 [Figure 2.3]. The compound with a log P of 0.38 is 
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also active against M. abscessus at 1.25µM, but not M. fortuitum. In order to determine if 

the average log P of the hits were affected by these outliers, a cut off of 1-7 was used and 

the log P was re-calculated. By removing the outliers below 1 and above 7, the average 

log P was only slightly affected with an average of 4.07. This would seem to indicate that 

on average, the active molecules are slightly hydrophobic and may partition more 

efficiently into cellular compartments like the lipid bilayer of cells. Although a lower log 

P is usually preferable, there are several compounds which demonstrate anti-tuberculosis 

activity that are slightly more lipophilic than inactive ones. These include: bedaquiline, 

6.37; delamanid, 6.14; rifapentine, 4.83; SQ-109, 4.64; rifampin, 3.85.  However, three of 

the four first line drugs are hydrophilic; isoniazid, -0.71; ethambutol, -0.12; and 

pyrazinamide, -0.71 (186). A recent study showed that combinations of mostly lipophilic 

anti-tubercular drugs were highly sterilizing against M. tuberculosis in mice infections 

(187, 188). Therefore, a slightly higher log P may be a good indicator of molecules which 

may show promising activity against M. tuberculosis.  
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Figure 2.3. Log P of hits from Sac1 screened against M. tuberculosis at 1.25µM. 

 

 

 

 

Values for acceptable polar surface area for ideal drugs are usually in the range of 

75 Å2 to 140 Å2, with values above 140 Å2 being associated with poor membrane 

permeability and values below 75 Å2 being associated with an increased risk of non- 

specific cytotoxicity (189, 190). Interestingly, the average polar surface area was about 10 

Å2 lower for the active molecules than for the non-actives. There were a few molecules 

which deviated from the average with the highest PSA being 142.05 and the lowest at 6.48 

[Figure 2.4]. The molecule with the PSA of 142.05 was also active against M. fortuitum 

at 1.25µM, but not M. abscessus. Setting a cut off from 20 to 120, the average PSA was 

re-analyzed and did not vary much from the original with a value of 62.08.  
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Figure 2.4. PSA of hits from Sac1 screened against M. tuberculosis at 1.25µM. 

 

 

 

 

From a predictive and comparative stand point, there is very little that separates 

the two subsets. This may be more of a reflection of the selection criteria used in the 

creation of the library more than the differences between active and inactive molecules. 

Since similar values were obtained between the two data sets with only minor 

discrepancies found for all of the compared sets of molecules it is difficult to differentiate 

between active and inactive molecules based solely on predicted chemical properties 

[Table 2.1]. 

The 297 hits found against M. tuberculosis at 1.25µM were cross referenced for 

activity against M. abscessus and M. fortuitum and 140 and 112 actives were found 

respectively. The 140 actives against M. tuberculosis and M. abscessus at 1.25µM had an 

average PSA of 65.67, an average log P of 4.19, and an average molecular weight of 
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350.75. The 112 actives against M. tuberculosis and M. fortuitum at 1.25 µM had an 

average PSA of 64.34, log P of 4.23, and an average molecular weight of 347.39. Among 

the same pool of hits, the trend seems show that molecules active against M. fortuitum 

seem to be slightly smaller, less polar, and more lipophilic than molecules which are active 

against M abscessus.  

 

 

Table 2.1. Average statistics of the top hits from Sac1 against M. tuberculosis. 

 

 

 

 

 

The 112 compounds which demonstrated activity against M. fortuitum and M. 

tuberculosis were clustered using a binary clustering tool with a similarity score of 0.4. 
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This led to very little clustering based on molecular similarity except with one group of 

seven compounds. These seven compounds are all composed of poly-cyclic ring systems 

with only one compound containing a halogen R group [Figure 2.5]. Surprisingly, four 

out the seven were also active against M. abscessus at 1.25µM. These seven compounds 

had an average PSA of 58.12 and an average log P of 3.92. These values for the cluster 

are significantly lower than the values determined for all active molecules against M. 

fortuitum and M. tuberculosis at this concentration.  

 The 140 compounds which demonstrated activity against M. abscessus and M. 

tuberculosis were clustered in the same manner as above. This led to single compound 

clustering except in the case of two groups of three compound and four compounds. The 

cluster of four compounds were compound of poly-cyclic ring systems all containing a 

nitro group. Three out of the four compounds were also active against M. fortuitum. The 

three compound cluster were composed of poly-cyclic ring systems with multiple 

halogen R groups. Only one of the three was also active against M. fortuitum [Figure 

2.6]. The seven compound had an average PSA of 75.13 and an average log P of 4.40. 

These values are significantly higher than the averages found for the active molecules 

against M. fortuitum and M. tuberculosis which clustered together as well as the 297 hits 

which were active against M. tuberculosis at 1.25µM. The two compounds which had 

the highest PSA or 111.43 and 91.63, were not active against M. fortuitum. This is 

consistent with all the compounds which were active against M. abscessus and M. 

tuberculosis. There seems to be a preference for molecules with a higher log P and larger 

surface area for M. abscessus compared to M. fortuitum and M. tuberculosis 
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Figure 2.5. Seven molecules which are active against M. tuberculosis and M. fortuitum at 

1.25µM. The top four compounds are also active against M. abscessus at 1.25µM.  

 

 

 

 

 

 

Figure 2.6. Two clusters of four and three molecules respectively that were active 

against M. abscessus and M. tuberculosis at 1.25µM. Compounds which are also active 

against M. fortutium at 1.25µM are boxed in.   
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HTS of Sac2 Library  

Compounds from the Sac2 library were screened against MC27000 at a 

concentration of 10µM using a mixed carbon source of NaOAc and dextrose. 542 

compounds were obtained from the primary screen (1.03%). The hits were re-screened 

using NaOAc and dextrose as carbon sources in a dose dependent assay. 465 compounds 

retested for a greater than 50% reduction in cell viability at 10µM, 354 compounds at 

5µM, 156 compounds at 2.5µM, and 104 compounds at 1.25µM. In order to determine if 

chemical properties could be a predictor of potency, the hits at every concentration of the 

dose response were compared against one another as well as against 500 random 

molecules that displayed no activity. In contrast to the results from the Sac1 analysis, there 

were significant trends observed among most of the compound’s molecular properties. 

The average molecular weight, the average log P, the average number of hydrogen bond 

donors and acceptors, the average number of heavy atoms, the average number of rotatable 

bonds, and the average polar surface area decreased as the molecule’s potency increased 

[Table 2.2]. The average log P was 4.46 for the 104 active molecules at 1.25µM while it 

was 3.46 for inactive molecules. The log P values ranged from 7.12 to 0.37 and these 

outliers were removed before re-calculating the average log P which deviated just slightly 

with a new value of 3.57 [Figure 2.7]. The average PSA was 57.71 which ranged from 

127.55 to 3.88. These outlier were removed and the average PSA was re-calculated to a 

new value of 58.05 [Figure 2.8].  These observations seem to suggest that the most potent 

molecules against M. tuberculosis tend to have smaller molecular weights, which lead to 

a decrease in many of the other chemical properties.  
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Table 2.2. Average statistics of the top hits from Sac2 against M. tuberculosis. 

 

 

 

 

Figure 2.7. Log P of hits from Sac2 screened against M. tuberculosis at 1.25µM. 
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Figure 2.8. PSA of hits from Sac2 screened against M. tuberculosis at 1.25µM. 

 

 

 

 

Selection of Resistant Mutants 

 There were 179 compounds which demonstrated whole cell activity against M. 

abscessus, M. smegmatis, M. fortuitum, and MC27000. These compounds were screened 

in an attempt to select for resistance in the NTMs. Thirty-six compounds were identified 

in which resistance could be selected for in at least one of the NTMs. From those 36 

molecules, a total of 122 resistant isolates were selected, sequenced, and subjected to 

genotypic analysis. 104 mutants were selected from M. smegmatis, 10 from M. fortuitum, 

and 8 from M. abscessus [Table 2.3]. 

 

Mechanism of Resistance 

 SNPs were successfully identified in 28 of the 122 samples submitted for whole 

genome sequencing. SNPs which resulted in synonymous substitutions were eliminated 
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and the remaining genes were separated into two groups based on essentiality. Since gene 

essentiality is often variable and dependent on experimental conditions, genes considered 

non-essential in vitro were not entirely eliminated as a possible genotype conferring 

resistance. Essential genes which did not have an orthologue in H37Rv were also removed 

from consideration. 18 resistant isolates were identified containing SNPs in genes essential 

for growth and as well as being orthologous in H37Rv. From these 18 isolates, three genes 

were eventually selected for further study, Rv0206, Rv0272, and Rv2857 [Table 2.4].    
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Table 2.3. Compounds which resistant mutants were successfully selected against. 

 
 

Molecule 

Name
Structure

Active 

against M. 

fortuitum @ 

10µM

Active 

against M. 

abscessus @ 

10µM

MIC in 

MC27000 

Resistant 

Isolates in 

MC2155

Resistant 

isolates in 

M. fortuitum

Resistant 

isolates in M. 

abscesssus

GATB_SAM002

705352
 Yes Yes 2.5 µM 2 2 0

GATB_SAM002

705130
 Yes Yes 2.5 µM 2 0 0

EN:T6067980  Yes Yes 5 µM 2 0 0

EN:T5806624  Yes Yes 1.25 µM 2 0 0

EN:T5481663  Yes Yes 5.0 µM 2 0 0

EN:T5438905  Yes Yes 5.0 µM 2 0 0

EN:T5256576  Yes Yes 1.25 µM 2 0 0

EN:T5240565  Yes Yes 1.25 µM 4 2 0

EN:T0513-3325  Yes Yes 10 µM 2 0 0

CH3

H
N

O

H
N

F

F

F

N
+ O

O
–

CH3

O O

NH

O NH

Cl

O

O

H3C

N

N

F

F F

Br

OH

N

N

HN

N

O

FF

F

Br

O

H
3
C

S

N

S

N

N

O

O

O

N

N

N

N

NH

N
H

Cl

Cl

N

S

O

S

HN S

HN

H3C CH3

CH3

N

S

S

N

O

O
O

CH
3

CH
3



94 
 

Table 2.3 Continued 

 

 

Molecule 

Name
Structure

Active 

against M. 

fortuitum @ 

10µM

Active 

against M. 

abscessus @ 

10µM

MIC in 

MC27000 

Resistant 

Isolates in 

MC2155

Resistant 

isolates in 

M. fortuitum

Resistant 

isolates in M. 

abscesssus

EN:T0509-9548  Yes Yes 10 µM 8 0 0

EN:T0503-5068  Yes Yes 5 µM 2 0 0

EN:T0501-3547  Yes Yes 1.25 µM 16 2 0

CD:R091-0019  Yes Yes 5 µM 2 0 0

CD:C066-3108  Yes Yes 5 µM 2 0 0

CD:8001-2971  Yes Yes 5 µM 2 0 0

CB:7825760  Yes Yes No 0 2 0

CB:6691134  Yes Yes 10 µM 0 0 2

CB:6675077  Yes No 10 µM 1 0 0
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Table 2.3 Continued 

 

 

Molecule 

Name
Structure

Active 

against M. 

fortuitum @ 

10µM

Active 

against M. 

abscessus @ 

10µM

MIC in 

MC27000 

Resistant 

Isolates in 

MC2155

Resistant 

isolates in 

M. fortuitum

Resistant 

isolates in M. 

abscesssus

CB:6593752  Yes Yes 10 µM 13 0 0

CB:6429284  Yes Yes 10 µM 0 0 2

CB:6313742  Yes Yes 10 µM 2 0 0

CB:5944406  Yes No 10 µM 4 0 0

CB:5660393  No No 5 µM 0 0 2

CB:5650154  Yes Yes 2.5 µM 4 0 0

CB:5649218  Yes Yes Not Active 4 0 0

CB:5646983  Yes Yes 5 µM 3 0 0

CB:5551271  Yes No 5 µM 2 0 0
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Table 2.3 Continued 

 

 

Molecule 

Name
Structure

Active 

against M. 

fortuitum @ 

10µM

Active 

against M. 

abscessus @ 

10µM

MIC in 

MC27000 

Resistant 

Isolates in 

MC2155

Resistant 

isolates in 

M. fortuitum

Resistant 

isolates in M. 

abscesssus

CB:5302942  Yes No 2.5 µM 2 0 0

CB:5302408  Yes Yes 5 µM 2 0 0

CB:5275017  Yes Yes 10 µM 2 0 0

CB:5224399  No No 2.5 µM 2 0 0

CB:5217488  Yes Yes Not Active 2 0 0

CB:5210732  Yes Yes 1.25 µM 2 2 0

CB:5130983  Yes Yes 1.25 µM 3 0 0

CB:5104304  Yes No Not Active 2 0 2

306373  No No 1.25 µM 2 0 0
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Table 2.4. Identified SNPs in 28 resistant isolates via whole genome sequencing. 
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Examination of the Identified Target(s): Rv0206 

 One of the more intriguing targets identified was MSMEG_0250, which is 

orthologous to Rv0206. Rv0206 has been previously annotated as a large transmembrane 

transporter (MmpL3) belonging to a family of transmembrane proteins, specific to 

mycobacteria. Previous work has shown that MmpL3 may be involved in the transport of 

mycolic acids (156). Other work has demonstrated that MmpL3 may play a role in 

sequestering heme across the cell membrane (191). MmpL3 has also been the focus for 

drug development and increasingly more evidence suggest its importance for the survival 

of M. tuberculosis (192) (193). However, the abundance and diversity displayed by the 

multiple pharmacophores targeting MmpL3 have called into question its validity as a drug 

target.  

 Considerable work has been done in order to pinpoint a single mutation or an area 

of mutations in Rv0206 which may lead to resistance. To date, resistant isolates in both 

M. smegmatis and M. abscessus have been selected against 3 different whole cell active 

molecules [Figure 2.9]. In addition, other members of the lab have been successful in 

identifying mutations in Rv0206 from resistant isolates of MC27000 selected against 10 

compounds [Figure 2.10]. Furthermore, cross resistance has been demonstrated towards 

several of these molecules in M. smegmatis isolates with known mutations in Rv0206 

[Figure 2.11]. Yet, these efforts have so far failed to yield a definitive mechanism of 

resistance due to the diversity of compound chemo types and mutations identified. 

However, it can be conclusively stated that mutations in MmpL3 lead to resistance against 

a considerable amount of anti-tuberculosis compounds and the mutations are spread 



99 
 

throughout the gene (data not shown). This work is ongoing and in collaboration with 

several other academic and non-academic laboratories. These results are not the focus of 

this dissertation but instead provide an example which demonstrate some of the successes 

of this selection method.  

 

 

Figure 2.9. Chemical structure of the three whole cell active compounds which resistant 

mutants were selected against and mutations in Rv0206 were identified. The 

corresponding amino acid change is shown. 

 

 

 

 

 

Examination of the Identified Target(s): Rv2857 

 As described earlier, mmpL3 seems to be highly mutagenic, and susceptible to 

mutations spanning the entire gene. This data makes it difficult to reconcile MmpL3 as a 

potential drug target given the diversity observed between pharmacophores and the 

varying location of mutations. This led to the hypothesis that MmpL3 may be acting as a 

facilitator for transporting the drug in or out of the cell. If this is the case, mutations in 
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MmpL3 may be masking the identity of the true intracellular target. In order to discern the 

actual gene(s) which gave rise to the resistant phenotype, additional mutations besides the 

ones discovered in MSMEG_0250 were examined. MSMEG_2598, orthologous to 

Rv2857c in H37Rv, was identified as a potential candidate. Its gene product is annotated 

as a hypothetical protein with no assigned function and an A24V amino acid substitution 

in the resistant mutant. However, further validation of MSMEG_2598/ Rv2857c as the 

target of 7704244 was unsuccessful via recombineering and as such was eliminated from 

further rounds of characterization(s).   

 

 

Figure 2.10. Chemical structures of several whole cell active molecules which resistant 

isolates have been selected against in M. tuberculosis which have identified mutations in 

Rv0206. 
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Examination of the Identified Target(s): Rv0272  

 A mutation in MSMEG_0605 was identified as the potential mechanism of 

resistance towards EN:T0509-9548 [Figure 2.12]. Initially, the mutation was overlooked 

because traSH data eluded to it being non-essential in vitro. However, after examination 

of the SNPs in each of the 3 isolates resistant to EN:T0509-9548,  no essential genes which 

could describe the mechanism of resistance were identified. Therefore, all SNPs, 

regardless of essentiality, were re-evaluated. After a thorough analysis of all mutations 

leading to non-synonymous base changes, one particular gene stood out, MSMEG_0605.  

However, MSMEG_0605 was originally declared non-essential and its causation 

for resistance was questioned. Therefore, a manual examination of the traSH data was 

initialized, and after careful consideration it was discerned that all the insertions in 

MSMEG_0605 were at the termini of the gene under every growth condition except one. 

What this suggests is that the gene is essential for survival under in vitro conditions 

because mutations at the C-terminus or N-terminus of genes many times do not affect the 

function of the resulting gene product. Only when the culture was grown using glycerol 

as the sole carbon source, MSMEG_0605 became dispensable for growth.  

The identified codon mutation leads to a S333F amino acid substitution and 

MSMEG_0605 has an orthologue in M. tuberculosis, Rv0272. Rv0272c is predicted to 

encode for a hypothetical hydrolase of unknown function and does not map to any known 

biochemical pathway. This information combined with newly analyzed traSH data, 

presented a unique scenario to describe a possible drug target as well as annotate a protein 
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of unknown, but essential function. Given these criteria, Rv0272 was selected for further 

characterization. 

 

 

 

 

Figure 2.11. Cross resistance of one isolated mutant with an identified SNP in Rv0206. 

The top plate is wild type M. smegmatis and the bottom plate is M. smegmatis with a 

mutation in Rv0206 which leads to an A326T change. A 17-fold increase in MIC is 

shown for the parent compound (7252875) used in selection (black box) against the 

mutant strain. Each column is a dilution series of compounds which resistance has been 

generated against and mutations in Rv0206 identified. The mutant strain demonstrates a 

high level of resistance to four of the nine compounds compared to wild type. The top 

row has a drug concentration of 112µM and each subsequent well in the column is a 

two-fold dilution series down to 0.875µM. Pink wells represent respiring bacteria and 

blue wells represent non-respiring bacteria.  
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Figure 2.12. Chemical structure of EN:T0509-9548. 

 

 

 

 

 

 

DISCUSSION  

 

Classification of Small Molecule Growth Inhibitors  

 

1255 hits were found in Sac1 to be active against MC27000 when grown on NaOAc 

as the primary carbon source and 542 compounds from Sac2 when grown on both NaOAc 

and dextrose. In an attempt to define specific classes of molecules, a structure based 

clustering analysis was performed using Chemmine on the hits from the Sac2 library. 354 

clustered together when the similarity threshold was set to 0.4 or greater. The other 183 

compounds failed to cluster, which is not surprising given that the software uses Tanimoto 

scores as its main determinant to characterize similarity. The Sac1 and Sac2 libraries were 

designed using Tanimoto scores less than 0.7 as a selection criteria. When the similarity 

threshold was increased to 0.5, none of the compounds clustered successfully. Therefore, 

in order to attempt to identify chemical classes of molecules, hierarchical and 
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multidimensional clustering were used. This method differs slightly by computing 

similarity using Tanimoto scores against item-item distances and compares them across 

the entire input family to establish any linkage. However, this method failed to yield any 

significant clustering of compounds in terms of specific chemical classes. This gives merit 

to the chemical diversity present in the compound libraries and allows the screen to probe 

a broad range of biological targets.  

 

Cross Species Comparison of Small Molecule Growth Inhibitors 

The 880 hits which were active against MC27000 at 10µM grown on NaOAc were 

cross referenced against our HTS on Lymphoma 2631 cells. 827 of the 880 hits were not 

active against Lymphoma 2631 cells, which indicates low cytotoxicity against human 

cells. The active molecules are likely promiscuous inhibitors containing nitro or multi-

halogenated R groups. It is also possible that some of these cytotoxic molecules target 

homologous proteins in the lymphoma cell line. The 880 hits found from the Sac1 library 

were compared to the hits which were found on a similar screen with the primary carbon 

source being dextrose instead. 198 compounds were active on both NaOAc alone and 

dextrose alone. This result suggests that these compounds may inhibit intracellular targets 

which are not involved in metabolism, or are required for both glycogenesis and 

gluconeogenesis. It also suggests that these active compounds may have more than one 

target. In addition, at 2.5 µM, 284 compounds were specific to growth on NaOAc alone 

and 21 were specific to growth on dextrose alone. These compounds are most likely 
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specific inhibitors for proteins that are involved in gluconeogenesis (NaOAc) and 

glycolysis (Dextrose) respectively.  

 

Candidate(s) Targets of Whole Cell Active Small Molecules 

Utilizing a selection method in a liquid medium and EMS combined with 

sequencing of poly-clonal isolates allowed a high-throughput selection of 140 resistant 

mutants across multiples NTMs and the identification of 18 possible genes responsible for 

resistance. From this study, 3 potential targets were selected and subjected to validation 

as viable drug targets for further characterization; Rv0206, Rv2857, and Rv0272, with 

emphasis on the hypothetical genes, Rv0272 and Rv2857. However, further validation of 

Rv2857 and Rv0206 were unsuccessful which led to their removal from future 

consideration. Therefore, Rv0272 became the sole candidate for biochemical target 

validation and functional characterization.  

 There were several limitations to this methodology, especially related to the 

technology available at the time of the experiments. The amount of sample coverage, 

complete coverage of whole genome sequencing data for some of the NTMs, the 

multiplexing capabilities of the Illumina, and the proprietary software used to identify 

mutations were all in stages of infancy. The technology and the methodology for selection 

and sequencing were being pioneered at the time of these experiments. The algorithms 

used to identify single base changes were still in the early stages of development and the 

feedback gathered as a result of these findings were used to develop more sophisticated 
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and accurate software revisions. If the sequencing were to be repeated today, the amount 

of correctly identified SNPs would be estimated to increase 10 fold.   

 

CONCLUSION 

Although M. tuberculosis is the causative agent of the world’s deadliest disease, 

discovering inhibitors of additional pathogenic mycobacteria is also paramount. The 

nontuberculous mycobacteria (NTMs) are closely related to M. tuberculosis but do not 

cause tuberculosis or leprosy. They can produce chronic pulmonary infection and little is 

known about optimal treatment and long term outcomes. These include but are not limited 

to M. abscessus and M. fortuitum, which are responsible for thousands of deaths a year in 

the United States (194). While the primary object of this screen was to find novel inhibitors 

of M. tuberculosis, secondary goals were successful in identifying inhibitors of other 

potentially pathogenic, closely related mycobacteria. Additionally, M. smegmatis, while 

non-pathogenic, shares more than 70% genome sequence homology with M. tuberculosis, 

has a rapid doubling time, and lends itself to genetic manipulation. Given these traits, M. 

smegmatis, is arguably a great model organism for the identification and development of 

M. tuberculosis therapeutics, and as such was included as part of the screen.  

The discovery of new small molecule hits against M. tuberculosis is the first step 

required when developing anti-mycobacterial therapeutics. What this HTS accomplished 

was not only the identification of whole cell active compounds against several 

mycobacterial strains, but also the validation of non-cytotoxic and M. tuberculosis specific 



107 
 

compounds. These can be further evaluated as potential drug candidates through target 

identification and characterization.  

Sequencing DNA of resistant mutants from a liquid culture treated with EMS 

provides several challenges. For one, the population is not clonal and therefore the 

mutations which occur will be a mixture of genetic populations across all reads of the 

sequencing run. Secondly, when exposing a culture to a mutagen, the amount of mutations 

increases as well as the rate of resistance. Identifying a single gene among the potential 

hundreds of SNPs and heterogeneous sites of conversion, is quite labor intensive and many 

times futile. Most often the data is broken down into a subset of mutated genes for each 

isolate that may be responsible for resistance. Only after these genes are subjected to 

secondary genetic and biochemical assays do we get a more precise understanding behind 

the mechanism of resistance. 
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CHAPTER III 

 

CHARACTERIZATON OF RV0272: A POTENTIAL DRUG TARGET OF 

 

UNKNOWN FUNCTION IN MYCOBACTERIUM TUBERCULOSIS 

 

 

BACKGROUND 

 

Sequenced Based Characterization 

  

 BLAST programs are widely used tools for identifying protein and DNA sequence 

similarities. A PSI-BLAST is a modified matrix which takes into account position specific 

sequence hits which are more sensitive to weak but biologically relevant sequence 

similarities (195). A PSI-BLAST search often reveals conserved functional domains 

which may give insight into an enzyme’s biology. A DELTA-BLAST is an updated 

BLAST algorithm which is more sensitive than a traditional BLAST (196). 

Rv0272 is 377 amino acid protein with no predicted function. A DELTA-BLAST 

was performed on Rv0272 against all known organisms. The results identified two 

conserved domains, YvaK and Abhydrolase_6. Residues 300-343 corresponded to the 

YvaK domain which is known to be a conserved region among certain esterases and 

lipases involved in secondary metabolite biosynthesis, transport and catabolism. Residues 

219-370 corresponded to the Abhydrolase_6 domain, which represents a family of α/β 

hydrolase enzymes of diverse specificity. Further sequence analysis revealed a 30-98% 

sequence identity with other proteins of unknown function with an Abhydrolase_6 

domain.   A detailed investigation of the BLAST results identified only three enzymes of 

predicted function. A 4-carboxymuconolcatone decarboxylase from Streptomyces with 
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11% sequence identity, a 3-oxoadipate enol-lactonase from Steptomyces with 12% 

sequence identity, and a pimeloyl-ACP methyl ester carboxylesterase with 16% sequence 

identity from Chelatococcus sambhunathii.  

 

Genetics Based Enzyme Characterization 

 Analysis of a gene’s location on a chromosome along with the upstream and 

downstream genes can lead to inferences about its particular role in the organism’s 

biology. Rv0272 does not appear in a previously annotated operon. The upstream and 

downstream genes are annotated as hypothetical or regulatory proteins (Rv0273c, Rv0274, 

Rv0275c, Rv0276). However, there are two genes downstream with proposed functions 

based on sequence similarity. FadD2 and FadE6 are annotated as a possible fatty-acid-

CoA ligase and an acyl-CoA dehydrogenase, respectively [Figure 4.1]. 

 

 

 

Figure 3.1. Proposed operon of Rv0272. Genes with no previously described function 

are depicted in red. Genes depicted in black are involved in lipid metabolism and genes. 

Genes depicted in blue encode for regulatory proteins. 
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AIM OF THE STUDY 

 The main goal of the project was to attempt to completely characterize potentially 

important enzymes that are indispensable for M. tuberculosis survival. Ultimately, 

characterization would be comprised of assigning one primary biology function for each 

individual enzyme as well as identifying where in an established biological pathway that 

function has a defined role. Secondary objectives included assessing identified enzymes 

for their relevance as a chemotherapeutic target. This included identifying small molecules 

which could perturb the enzyme’s function leading to the limitation or elimination of the 

organism’s ability to survive in vitro.  

 

MATERIALS AND METHODS 

Cloning, Expression, and Purification 

 The gene Rv0272 from M. tuberculosis was amplified by PCR using primers 

Rv0272-For-NdeI (5’-CATATGTTGACTGGTCGTGCTGC-3’) and Rv0272-Rev-

HindIII (5’-AAGCTTTCAGCGCCACCGCTTG-3’). The gene was cloned downstream 

of the Lac promoter, 6x Histidine and TEV cleavage coding sequence in a modified vector 

Pet28b. The gene was transformed into BL21(DE3) (EMD Millipore) chemically 

competent E. coli cells suitable for protein expression. The gene was verified via 

sequencing. (Eaton Biosciences)  

 E. coli BL3(DE3) transformed with Rv20272c-Pet28b was grown in LB medium 

containing 50µg/ml of Kanamycin at 37oC with shaking at 180rpm. Once the culture 

reached an OD600 of 0.8, the cultures were chilled on ice for 15 min, 0.5mM of isopropyl-
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β-D-thiogalactopyranosidase (IPTG) was added and the cultures were grown overnight at 

18oC. The cells were pelleted by centrifugation at 4,500 rpm for 30 minutes and re-

suspended in 40mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, 

pH 7.4, 300mM sodium chloride (NaCl), and 10mM imidazole. Cells were lysed by three 

passes through a French press at 20,000 psi and cell lysates were separated by 

centrifugation at 17,000 rpm for 30min at 4oC. Cell lysates were loaded onto a Nickel-

chelate resin for high capacity immobilized metal affinity chromatography (IMAC) 

(Roche) according to manufacturer’s instructions. The column was washed with the same 

buffer used during lysis. Three consecutive washes of 10 column volumes were performed 

and the enzyme was eluted with 300mM Imidazole in HEPES buffer pH 7.4, 150mM 

NaCl. The eluted enzyme was dialyzed against 30mM HEPES 7.4, 100mM NaCl for 4 

hours at 4oC in the presence of 0.5-1.0mg of tobacco etch protease (TEV) in order to cleave 

the 6x HIS tag. After dialysis, the tag-less enzyme was passed over the same IMAC Nickel 

column to separate Rv0272 from TEV and other potentially contaminating proteins. The 

purified enzyme was concentrated using vivaspin-30kD (Sartorius) and loaded onto a size 

exclusion gel filtration column. The resulting protein was analyzed for molecular weight 

and purity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, purified 

fractions pool together, concentrated to 5-10mg/ml, and used immediately for 

crystallization trials, biochemical assays, or frozen in liquid nitrogen and stored at -80oC 

for future use.  
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Crystallization 

 Initial crystallization trials were done in 96-well sitting drop intelli-plates by the 

sitting drop vapor diffusion method. (Art Robbins Institute) 50uL of crystallization 

condition was aliquoted into each well for a total of 96 different conditions per plate. A 

total 768 different screening conditions aliquoted into eight plates were utilized; Index, 

Peg/Ion, Salt, Crystal (Hampton Research), Wizard (Rigaku), Lab, Adventure Hike and 

Adventure Dive (Sacchettini). Each trial consisted of 0.5uL of screening condition and 

0.5uL of purified protein dispensed per well with a Mosquito LCP Robot (TTP Labtech). 

The wells were sealed and incubated at 16oC until crystal formation was observed. 

Conditions which were conducive to crystal formation were identified and optimized for 

hanging drop vapor diffusion experiments. Rv0272 yielded large hexagonal pyramidal 

crystals after 5 days in 3% Tacsmiate pH 5.0 and 22% PEG 3350 (Hampton Research) 

[Figure 4.2] Crystals reached full maturation after 20 days and were flash frozen in liquid 

nitrogen before data collection.  

 

Structure Determination 

Data were collected at Advance Photon Source (APS) at Argonne National 

Laboratory and utilizing a home source X-ray generator equipped with a copper rotating 

anode (CuKα, λ = 1.54 Å) (Bruker). Initial structure determination attempts began using 

crystals which were soaked in 1mM KAu(CN)2 overnight in an attempt to covalently bind 

gold to the crystallized enzyme. Diffraction data were collected from a single crystal with 

one degree oscillation widths for a total range of at least 160o at the gold edge of λ = 1.0Å. 
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Data were indexed, integrated, and scaled using HKL2000. Heavy atom positions and 

initial phases were obtained by Single Anomalous Diffraction (SAD) using HYSS and 

PHASER (Phenix). The resulting difference electron density maps were inspected and 

used to hand build the initial model in coot. Alternating rounds of refinements in Phenix 

combined with manual building in coot resulted in the final model of Rv0272. Data 

collection and refinement statistics are shown [Table 4.1]. 

 Apo and ligand bound structures, excluding malonic acid bound structures, were 

obtained by first back soaking crystals formed in 3-5% Tacsminate pH 5.0 (1.8305 M 

Malonic acid, 0.25 M Ammonium citrate tribasic, 0.12 M Succinic acid, 0.3 M DL-Malic 

acid, 0.4 M Sodium acetate trihydrate, 0.5 M Sodium formate, and 0.16 M Ammonium 

tartrate dibasic), 22% PEG3350 into a condition consisting of 100mM 

Tris(hydroxymethyl)aminomethane (Tris) pH 7.4, 100mM NaCl for 30 minutes. Crystals 

were then soaked in 1-10mM ligand in the same buffer condition for a minimum of 2 hours 

and flash frozen in liquid nitrogen prior to data collection. Ligand models and their 

geometric restraints were created in ELBOW (Phenix). The previously built model of 

Rv0272 was used to obtain the phases by molecular replacement for all inhibitor and 

ligand bound structures.  
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Table 3.1. Data Statistics for Rv0272 

 

          Wavelength (Å)                                

    Resolution range (Å)       50  - 1.42 (1.44  - 1.42)

              Space group                      P 21 21 21

                Unit cell  63.587 86.256 122.365 90 90 90

        Total reflections 708774

       Unique reflections 106548

             Multiplicity                       6.6 (4.4)

         Completeness (%)                   83.61 (37.47)

          Mean I/sigma(I)                    19.95 (2.24)

          Wilson B-factor 17.17

                  R-merge                   0.086 (0.857)

                   R-meas                                

                    CC1/2                                

                      CC*                                

                   R-work                 0.2357 (0.2390)

                   R-free                 0.2519 (0.3022)

                 CC(work)                                

                 CC(free)                                

          Number of atoms 6045

           macromolecules 5595

                  ligands  14

                    water  432

         Protein residues  733

               RMS(bonds)  0.006

              RMS(angles) 1.07

 Ramachandran favored (%) 97

Ramachandran outliers (%) 0

               Clashscore 0.53

         Average B-factor 19.1

           macromolecules 18.3

                  ligands 20

                  solvent 30
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Identification of Small Molecule Binders 

 10µM enzyme was incubated with 1-10mM of ligand in 50mM HEPES, and 7x 

Sypro orange in 96 well UV clear PCR plates. A Stratagene Mx3000P QPCR System was 

used to determine melting temperatures of Rv2072 in the presence and absence of 

biologically relevant molecules. The samples were subject to a protocol of incremental 

temperature increases of 1oC per minute from 25oC to 95oC. The melting temperatures 

were quantified by taking the first derivative of the fluorescent intensities versus 

temperature (MxPro-Mx3005P from Stratagene). Any molecule which increased the 

thermal stability of the enzyme by more than 3oC compared to control was qualified as 

binding to the enzyme.  

 

 

Figure 3.2. Crystals of Rv0272 formed from hanging drop vapor diffusion method.  
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 The 542 Compounds which were shown to be whole cell active growth inhibitors 

of M. tuberculosis were initially screened for binding. A fragment library consisting of 

1152 small molecules with a molecular weight less than 350g/mol were also screened 

(Enamine) for binding. In addition, Hampton Research’s Additive Screen, composed of 

96 compounds ranging from alcohols, metals, detergents to sugars, and enzyme co-factors 

were evaluated as potential binders. A hand-picked substrate plate made up of 80 

biological relevant molecules derived from dicarboxylic acids was screened (Sigma, 

Fluka). Hits were chosen based on their effect on enzyme thermal stability. These hits 

were used for secondary binding assays, enzyme assays, and crystallization trials on 

Rv0272.  

 

Enzymatic Assays: D-Ala-D-Ala Carboxypeptidase 

 Di-peptide hydrolysis was determined by measuring the release of free of amino 

acids using the cadmium-ninhydrin method (197). 10-100µg of purified enzyme was 

incubated with substrate for 30 minutes at 25oC or 37oC in 50mM HEPES pH 7.4. Then 

7X reaction volumes of cadmium-ninhydrin solution were added and the sample(s) were 

incubated at 100oC for 5 minutes to induce color development. The optical density at 505 

nm of each sample was determined using a Cary 100 UV/VIS spectrophotometer. 

Standards were read using 0.1, 0.5, 1.0, 5.0, and 10mM D-Alanine and D-Glycine. 

Negative controls consisted of substrate and buffer alone.   
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Enzymatic Assays: Beta-Lactamase  

 β-Lactamase activity was determined by the hydrolysis of the chromogenic 

cephalosporin, Nitrocefin (Caymen Chemicals). The resulting product is colored and has 

an optical density of 490 nm, which is directly proportional to the amount of β-Lactamase 

activity. In order to determine if Rv0272 demonstrated β-Lactamase activity, 0.1-1.0mM 

of Nitrocefin was added to 10-100 µg of purified enzyme in 50mM HEPES pH 7.4 and 

the reaction monitored at 490 nm using a Cary 100 UV/VIS Spectrophotometer at 25oC. 

The results were compared against samples without enzyme and samples with a known β-

Lactamase, BlaC (198).  

 

Enzymatic Assays: Esterase and Phosphatase 

 Esterase activity was determined by monitoring the product formation of 4-

nitrophenoxide via the hydrolysis of 4-nitrophenyl esters which have an absorbance at 410 

nm. 4-nitrophenyl-formate, 4-nitrophenyl-acetate, 4-nitrophenyl-butyrate, 4-nitrophenyl-

dodecanoate, 4-nitrophenyl-palmitate (Sigma) were tested for activity. 0.1-1.0 mM 

substrate was added to 10 µg purified enzyme in 50mM HEPES pH 7.4. The hydrolysis 

was monitored at 410 nm using a Cary 100 UV/VIS Spectrophotometer at 25oC. 

Phosphatase activity was measured in the same manner except using 4-nitrophenyl 

phosphate (sigma) as the substrate. All reactions were compared against a negative control 

reaction without enzyme.  
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Enzymatic Assays: Thioesterase 

 Thioesterase activity was determined by monitoring the product formation of 

mixed sulfides of 5, 5-dithio-bis-(2-nitrobenzoic acid) (DTNB) and Coenzyme A at 412 

nm. Acetyl-CoA, propionyl-CoA, buturyl-CoA, succinyl-CoA, benzoyl-CoA, malonyl-

Coa, methylmalonyl-CoA, glutaryl-CoA, and hydroxybutyryl-CoA (Sigma) were tested 

as possible substrates. Substrate was incubated in 50 mM HEPES pH 7.4 and 0.5 mM 

DTNB and the reaction was initiated with the addition of 10 µg purified enzyme. Substrate 

hydrolysis was monitored at 412 nm using a Cary 100 UV/VIS Spectrophotometer at 

25oC. Samples without substrate and without enzyme were used as negative controls. 

 

RESULTS 

Three-Dimensional Structure of Rv0272 

 Crystals of Rv0272 belong to the space group P212121 and diffract to a resolution 

of 1.4 Å. The asymmetric unit contains a physiological homo dimer, with each monomer 

made up of two domains. The first domain consists of a canonical α/β hydrolase catalytic 

domain which has 7 parallel and 1 antiparallel β-strands forming a mostly parallel β-sheet. 

The β-sheet demonstrates a left-handed super helical twist with the first and last strand 

nearly perpendicular to each other. This is flanked on either side by 6 α-helices [Figure 

4.3]. The second domain extends from the 6th β-strand and spans residues 161-315 ending 

at the 7th β-strand. This “foot” domain is comprised primarily of short loops and a long 31 

amino acid α-helix [Figure 4.3]. 
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Catalytic Site 

 Electrostatic surface maps and comparisons with canonical α/β hydrolase enzymes 

helped identify an active site pocket located between the two domains. Upon further 

investigation, the conserved Serine-Histidine-Aspartate catalytic triad was discovered. 

Serine-118 is positioned directly after β-strand 5 on what is called the “nucleophile 

elbow”. This elbow is identified by an X-X-N-X-X consensus sequence with the flanking 

residues on either side usually small amino acids. G-G-S-N-G is the sequence in Rv0272 

which agrees with the conserved sequence. Histidine-353 is located after the last β-strand, 

which is absolutely conserved in α/β hydrolases. Aspartate-324 is found after β-strand 7 

[Figure 4.4]. These locations are consistent with previous descriptions of the α/β hydrolase 

catalytic triad.   
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Figure 3.3. Overall structure of Rv0272. Blue colored ribbon is the “cap” domain while 

pink colored ribbon is the “α/β hydrolase” domain. 

 

 

 

 

After refinement and structure building, the final maps shows good electron 

density for the entire polypeptide chain except for the first 8 residues. Unknown electron 

density was found in the catalytic site of the α/β hydrolase domain which appeared to 

correspond to malonate, which is a component of Tacsimate from the original 

crystallization condition [Figure 4.5]. 
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Figure 3.4. Active site of Rv0272 showing the catalytic triad of Asp324, His353, and 

Ser118 depicted in cyan.  

 

 

 

Figure 3.5. Electron density corresponding to malonate bound in the active site 

coordinated by Arg166 and Ser119. Chemical structure of malonate is also shown. 
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Characterization of Rv0272 

 In order to establish a function for an enzyme which displays very little sequence 

homology and has no predicted biological relevance, a “shot gun” approach is a likely 

scenario. Molecule libraries which are usually reserved for drug discovery become useful 

tools to probe for scaffolds which may be recognized by the enzyme. In addition, many 

enzymes have certain requirements for functionality such as co-factors (NAD, CoA, FAD, 

PEP, etc), metals, other proteins, specific environmental conditions (reducing, acidic), 

post-translational modifications, and specific substrate concentrations. It is very difficult 

to probe for enzymatic activity when there is no pre-existing data on what the enzyme 

requires for proper function. Therefore, all the proceeding methods have a high rate of 

failure and mostly fall under the purview of “guess and check”. Furthermore, enzymes 

with no prescribed functionality are often somewhat promiscuous and may moonlight as 

the proprietor of many intercellular activities. However, after rigorous “guessing and 

checking” using the shotgun approach, it has been demonstrated that Rv0272 can perform 

multiple functions in vitro, with the most convincing evidence suggesting that Rv0272 

recognizes a variety of short chain esters and phthalated-molecules and can enzymatically 

cleave the esters into the corresponding alcohol and acid as well as the cleave the 

phthalated molecules into phthalate and its counterpart. Finally, the proceeding evidence 

will show that Rv0272 is a short chain esterase/ thioesterase, recognizing small 

dicarboxylic acyl chains as biological substrates and is also capable of cleaving phthalated 

compounds in vitro.  
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Identification of Small Molecule Binders 

 Based on the observation that Rv0272 co-crystallized with a small biologically 

relevant molecule, it became a priority to expand upon that evidence and identify other 

small molecules that bind and may offer insight into the enzyme’s function. Hampton 

Research developed a library of reagents that can affect the solubility and crystallization 

of large macromolecules. The library composition contains a diverse set of 96 molecules 

from 18 different classifications. DSF was used to identify ligands which stabilized the 

enzyme against thermal denaturation. Several molecules were found to increase the 

melting temperature (ΔTm) by more than 3oC. 50mM Sodium Malonate pH =7.0 

demonstrated the highest ΔTm of 10oC. 5mM Zinc chloride (ΔTm = 4oC) and 50mM 

Sodium citrate tribasic dihydrate (ΔTm = 5oC), also imparted thermal stability to the 

enzyme. These results suggest and agree with the ligand bound structure that dicarboxylic 

acids and possibly metal ions, such as zinc, could play a role in the enzyme’s biology.  

In order to expand the search and further validate Rv0272’s ligand specificity, a 

custom substrate screening plate was developed. This consisted of 24 small carboxylic 

acids, co-factors, and metabolites. Nine ligands were identified which increased the 

thermal stability of the enzyme by 2oC or more at a 5mM concentration [Table 4.2]. 

Notably malonate only shows a ΔTm of 5.0 oC compared to the 10 oC recorded previously. 

This can be attributed to the large difference in final concentration of substrate used 

(50mM vs 5mM). The ΔTm of citrate also decreased by 2 fold (5.0 oC vs 2.5 oC). The panel 

of molecules all contain one carboxylic acid and are metabolites mainly found in the citric 

acid cycle. Most notably is the 8.0 oC shift demonstrated by methylmalonate, an increase 
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of 3oC compared to malonate. Methylmalonate’s biological role is largely uncharacterized 

but is believed to be a product in three interconnected pathways; pyrimidine metabolism, 

valine, leucine, isoleucine degradation, and propionate metabolism (KEGG).  

A thorough investigation of the three pathways where methylmalonate has a 

predicted metabolic role revealed two possible methylmalonate utilizing enzymes which 

have yet to be described in M. tuberculosis. A predicted methylmalonyl-CoA hydrolase 

theoretically catalyzes the formation of CoA and methylmalonate and acts in the 

methylmalonate pathway as part of propionate metabolism and in the degradation of 

valine, leucine, and isoleucine [Figure 4.6]. Methylmalonate has also been shown to be 

the product of an ureidomalonase, an enzyme which normally converts 3-oxo-

ureidopropanoate into malonate and urea but can also utilize 3-oxo-3-ureidoisobutyrate as 

substrate to generate methylmalonate and urea [Figure 4.6]. This is a critical step in 

pyrimidine metabolism which feeds methylmalonate into the two other methylmalonate 

utilizing pathways.  
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Table 3.2. Ligands which when added to Rv0272 in solution show a positive change in 

melting temperature compared to protein alone. 

 

 

 

 

Careful interrogation of the other metabolites which demonstrated binding 

revealed previously characterized enzymes in M. tuberculosis which utilize each small 

molecule as a substrate(s) and/or a product(s). Only one predicted orphan metabolite, 

maleic acid, was found to be a substrate for a maleamate amidohydrolase, currently not 

annotated in M. tuberculosis. This enzyme is required in the nicotinate degradation 

pathway, which ultimately generates fumarate to feed into the alanine, aspartate, and 

glutamate metabolic pathways (199, 200). 
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Figure 3.6. Methylmalonyl-CoA hydrolase (top); Ureidomalonase (bottom). 

Methylmalonyl-CoA hydrolase catalyzes a water mediated thioester cleavage of 

malonyl-CoA to form malonate and CoA. Ureidomalonase catalyzes a water mediated 

ester cleavage to form malonate and urea.  

 

 

 

Methylmalonate Pathway 

 In M. tuberculosis, catabolism of odd chain fatty acids proceeds through two 

distinct pathways, the Vitamin B12-dependent pathway (methylmalonate pathway) and 

the vitamin B12-independent pathway (methylcitrate cycle). At least one pathway is 

required for survival to remove the toxicity associated with propionyl-CoA derivatives 

(201, 202). In the mathylmalonate pathway, propionyl-CoA is converted to (S)-

Methylmalonyl-CoA via propionyl-CoA carboxylase. Methylmalonyl-CoA can then be 

converted to succinyl-CoA by methylmalonyl-CoA epimerase and the B12-dependent 

methylmalonyl-CoA mutase or decarboxylated to form methylmalonate and CoA via 
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methylmalonyl-CoA hydrolase [Figure 4.7]. The purpose of converting methylmalonyl-

CoA to CoA and methylmalonate is widely unknown. There may be an unknown cellular 

function for methylmalonate, but presumably, hydrolysis of methylmalonyl-CoA would 

be to generate free CoA. This may be advantageous when vitamin B12 is limiting and 

propionyl-CoA can be regenerated in order to be catabolized through the vitamin B12 

independent methyl citrate cycle. Methylmalonate semialdehyde dehydrogenase utilizes 

CoA, NAD, and methylmalonate semi-aldehyde to form propionyl-CoA. 

Thioesterase Enzymatic Activity Assay 

Based on the data observed from DSF binding, Rv0272 was probed for thioesterase 

activity. Several acyl-CoAs were tested as possible substrates in a coupled DNTB reaction 

including acetyl-CoA, propionyl-CoA, malonyl-CoA, methylmalonyl-CoA, benzoyl-

CoA, glutaryl-CoA, succinyl-CoA, butyryl-CoA, and acetoacetyl-CoA. Initially, Rv0272 

displayed activity for propionyl-CoA, malonyl-CoA, and methylmalonyl-CoA. However, 

results were not repeatable and specific enzyme activity was never determined. 

Alternative Activity Assay(s) 

Due to the several short comings of a DTNB coupled assay, an alternative mass 

spectrometry based method of measuring enzyme activity was explored. The enzyme was 

incubated with methylmalonyl-CoA at several concentrations (0.1mM, 0.2mM, 0.5mM) 

for different intervals of time (10min, 30min, 1hour, 12hours). Potential turnover was 

monitored via liquid chromatography mass spectrometry (LCMS) to determine the 
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amount of CoA, methylmalonate, and methylmalonyl-CoA left in the reaction. The data 

showed no clearly identifiable enzyme activity and after extensive analysis it was 

concluded that methylmalonyl-CoA hydrolysis did not occur under these experimental 

conditions.  

 

 

Figure 3.7. Methylmalonate pathway in M. tuberculosis. Annotated enzymes in M. 

tuberculosis are depicted as empty boxes overlaid on top of arrows, while metabolites 

are depicted as empty circles. Relevant substrate(s)/ Product(s) are labeled adjacent to 

the empty circles. Methylmalonyl-CoA hydrolase is colored blue. 
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 Previous studies have shown that methylmalonyl-CoA hydrolase is specific for the 

R racemic form. Therefore, a mixture of R and S methylmalonyl-CoA may be inhibiting 

the enzymatic reaction. In an attempt to determine if that is the case, a hypothetical protein, 

Rv1322a, in M. tuberculosis was identified as a potential methylmalonyl-CoA epimerase 

based on sequence similarity to other homologous methylmalonyl-CoA epimerases. The 

X-ray crystal structure of Rv1322a was determined and through three-dimensional 

structural comparisons, confirmed as a methylmalonyl-CoA epimerase [Figure 4.8]. The 

purified epimerase was added to the DNTB coupled reaction with Rv0272 and 

methylmalonyl-CoA.  However, enzyme dependent hydrolysis of methylmalonyl-CoA 

was not observed. Methylmalonyl-CoA has been characterized as a metal dependent 

enzyme with a preference for cobalt or manganese. The reaction was again initiated in the 

presence of either Mn or Co. Neither metal had an observable effect on activity. However, 

this coupled assay does not eliminate the possibility of DNTB binding to the enzyme and 

interfering with hydrolysis.  
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Figure 3.8. Structure of Rv1322a; methylmalonate epimerase. Dimeric protein in the 

ASU with each monomer colored (blue and pink) 

 

 

 

 In order to move away from a DTNB coupled assay, a novel coupled reaction was 

proposed involving Rv0272 and Rv0753c, a predicted methylmalonate semi-aldehyde 

dehydrogenase. In this scheme, the free CoA generated from the hydrolysis of 

methylmalonyl-CoA would be utilized by Rv0753 and converted to propionyl-CoA in the 

presence of NAD+ and methylmalonate semi-aldehyde. The change in absorbance at 340 

nm due to the reduction of NAD+ to NADH could be monitored and enzymatic turnover 

by Rv0272 determined. The X-ray crystal structure of Rv0753 was determined and 

through three-deminsional structural comparisons, confirmed as a methmalonate semi-
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aldehyde dehydrogenase [Figure 4.9]. The coupled enzyme reaction was attempted both 

with and without the purified methylmalonyl-CoA epimerase. The addition of either 

enzyme did not seem to have an effect and no activity could be observed. This may be 

explained by the instability of the methylmalonate semi-aldehyde substrate as well as its 

unconfirmed identity after synthesis. 

There are a couple possibilities which may explain the absence of activity. The 

enzyme may require a co-factor such as a metal or additional small molecule for hydrolysis 

to occur. DSF results seem to suggest Zn may bind to the enzyme and could play a role in 

its activity. The addition of 0.1mM to 2mM ZnCl2 to the DTNB coupled assay did not 

significantly affect the results. Another possibility is that the enzyme is sensitive to 

oxidation and a reducing environment is a requirement for activity. In order to address this 

possibility, a reducing agent such as tris(2-carboxyethyl)phosphine (TCEP) was added 

during purification and slowly dialyzed away before proceeding with the enzyme reaction. 

Since TCEP will reduce DTNB to NTB, reducing agent is not conducive for this type of 

assay. The addition of TCEP during purification did not have an effect on the observed 

activity. In addition, it is possible that DTNB interacts with the enzyme and competes with 

the acyl-CoA for binding in the active site. This is a valid assumption given the overall 

structure of DTNB which contains two carboxyl groups and two nitro groups, both which 

could be coordinated into the active site by Arg166 [Figure 4.10]. DTNB could also be 

interacting with surface exposed cysteines on the enzyme, which could interfere with 

substrate binding and subsequent turnover.  
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Figure 3.9. Structure of methylmalonate semi-aldehyde dehydrogenase. Dimeric protein 

in the ASU with each monomer colored (blue and pink) 

 

 

 

 

 

 In an attempt to overcome these possible deficiencies, several rounds of 

optimization were tried. DSF experiments revealed enzyme stability was greatest at pH = 

6.0 with the addition of 100mM NaCl. This buffer composition was used in further assay 

experiments but failed to influence the outcome. Pre-incubation of enzyme with substrate 

before the addition of DTNB was also performed. In these trials initial activity was 

observed but remained consistent regardless of protein or substrate concentration and 

failed to hydrolyze more than 25µM of acyl-CoA substrate over 30 minutes. This is further 

evidence that DTNB, the acyl-group, or CoA could all be competing for binding, thus 

inhibiting the reaction and preventing a proper kinetic analysis. 
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Figure 3.10. DTNB reaction which reacts with free thiols to form a yellow colored TNB 

bound to thiol ligand product.   

 

 

 

In order to address the possibility that an additional co-factor may be required, 96 

different small molecules from the Hampton additive screen and the custom substrate plate 

were added in combination with the acyl-CoA substrate. Activity did not appear to be 

influenced with the addition of any tested small molecule. This does not preclude the 

possibility that the enzyme may require some un-recognized co-factor in order for the 

reaction to efficiently proceed.  

 

Identification of Additional Small Molecule Binders 

The pool of metabolites was increased to encompass even more biologically 

relevant molecules specific to Rv0272. From this set, 3 new compounds emerged which 

displayed an ability to increase the thermal stability of the enzyme when screen at 5mM. 

Phthalic acid (ΔTm = 11 oC), anthranilic acid (ΔTm = 3oC), and quinolinic acid (ΔTm = 5 

oC) compared to malonate (ΔTm = 6 oC) Comparing the three, it is interesting to note the 

subtle differences which lead to drastic changes in binding capacity [Figure 4.10]. Phthalic 
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acid is an aromatic dicarboxylic acid, while anthranilic acid is an aminobenzoic acid, 

swapping an amino group for a carboxylate group. However, the difference in melting 

temperature is 8oC between the two, suggesting that the second carboxylate is required for 

tight binding. Interestingly, if that amino group is replaced with a nitro group, the resulting 

nitrobenzoic acid molecule demonstrates no change in thermal stability compared to 

protein alone. If the benzene ring is replaced with a pyridine ring, the resulting quinolinic 

acid demonstrates only a 5oC change in thermal stability as compared to 11oC seen with 

phthalic acid.  

 

 

Figure 3.11. Comparison of benzoic acid derivatives and the differences in Rv0272 

melting temperatures observed in the presence of ligand.  
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 The relevance of phthalic acid to mycobacterium biology is unknown and does not 

belong to any known metabolic pathway. However, previous studies have identified a 

phthalyl amidase from Xanthobacter agilis which exhibits a broad substrate specificity for 

o-phthalylated amides. Phthalylating metabolites may serve as a novel route of protecting 

amino acids from premature degradation. In addition, the structural similarities shared 

between phthalic acid and maleic acid show that both would bind in a similar manner in 

the active site, which may implicate the more biologically relevant maleic acid in 

determining the function of Rv0272.  

 

NMR Based Metabolomics 

 In order to effectively expand the metabolite pool and have an additional 

measurement for binding, NMR-based metabolomics was employed. In collaboration with 

John Markley at the University of Wisconson-Madison, an NMR based ligand affinity 

screen was performed on Rv0272. The protein was screened against 500-metabolite-like 

compounds and binding was assessed based on the change in 1-D NMR spectra of the test 

molecule(s) upon addition of enzyme [Figure 4.11]. The screen for Rv0272 identified 33 

hits which could be classified into a few structurally similar compounds. Cholic acids are 

well represented as well as small acids such as α-ketoisovaleric acid, oxaloacetic acid, and 

fumaric acid [Figure 4.12]. Interestingly, D-alanyl-D-alanine was identified as a hit and 

also was shown to be enzymatically converted into D-alanine in the presence of Rv0272 

[Figure 4.13]. This activity represents a different class of enzyme, D-Ala-D-Ala 

carboxypeptidases, which hydrolyze peptides during bacterial cell wall biosynthesis. This 
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type of enzyme is a primary target of β-lactam antibiotics, which was also identified in 

this screen in the form of phenoxymethylpenicillinic acid (PMPA).  

This study agrees with previous data showing a preference for short chain acids 

and thiol groups but also introduces a new small peptide candidate in D-Alanyl-D-

Alanine. Interrogation of the additional hits shows that amino acid groups are additionally 

represented in glycocholic acid, glycodeoxycholic acid, N-(3-indolylacetyl)-DL-aspartic 

acid, N-acetyl-L-alanine, acetyl-L-cysteine, and DL-homocysteine.   

 

 

Figure 3.12. NMR metabolomics: example of signal flattening which is an indication of 

binding. The result below is an example using oxaloacetic acid alone (top) compared to 

Oxaloacetic acid and Rv0272 (bottom) is considered a positive hit for ligand binding.  
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Figure 3.13. Small molecule “hits” from the NMR metabolomics screen 
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Figure 3.13 Continued 

 

 

 

Enzyme Dependent Peptide Hydrolysis 

 In order to ascertain Rv0272’s ability to recognize di-peptides or other amino acid 

derivatives, two separate assays were employed. The first was a Cadmium-Ninhydrin 

based amino acid detection method while the other was a coupled enzymatic reaction.  

Ninhydrin reacts with primary amines and is a useful method for determining free amino 

acid concentration. In concordance with the NMR metabolomics, D-alanyl-D-alanine, 

taurocholate, deoxytaurocholate, glycocholate, and deoxyglycocholate were tested as 
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potential substrates and compared against a glycine or an alanine standard. However, the 

experiment failed to demonstrate activity for any of the four metabolites. A secondary 

assay was developed which coupled Rv0272 to D-Alanine oxidase, catalase, and lactate 

dehydrogrenase. The resulting reduction of NAD+ to NADH was monitored at 340 nm to 

determine conversion of D-alanyl-D-alanine to D-alanine. Enzyme activity for Rv0272 

using D-alanyl-D-alanine as a substrate was not observed using this method. It should be 

noted that D-alanyl-D-alanine, taurocholate, deoxytaurocholate, glycocholate, and 

deoxyglycocholate also failed to demonstrate a change in thermal stability using DSF.  

 

 

Figure 3.14. Results of NMR Metabolomics: The top figure in red depicts D-Ala-D-Ala 

alone. The bottom figure depicts the change in NMR spectrum which Rv0272 is added 

to D-Ala-D-Ala. The resulting peak is indicative of enzymatic conversion of D-Ala-D-

Ala to D-Ala. 
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Rv0272 Recognizes β-Lactam Antibiotics 

 Bocillin is a fluorescent penicillin which covalently binds to the active site serine 

of penicillin-binding proteins (PBPs). Rv0272 was incubated with Bocillin and analyzed 

via SDS-PAGE and a gel dock imaging system for penicillin binding. The results indicate 

that Bocillin does bind Rv0272 and may be a target for β-lactam antibiotics. In order to 

test whether or not Rv0272 hydrolyzes β-lactams, a chromogenic cephalosporin substrate, 

nitrocefin, was utilized. Upon hydrolysis of the lactam ring, the compound color changes 

from yellow to red which gives a measurable absorbance at 486 nm. The results show that 

Rv0272 has activity for nitrocefin with a turnover rate of 3µM nitrocefin/min/1µg enzyme. 

Although the result demonstrates activity, the reaction is almost 100 times slower than 

previously reported β-lactamase enzymes.       

Several β-lactam antibiotics were tested using DSF to determine their ability to 

bind Rv0272. Cloxacillin, Oxacillin, Amoxicillin, Ampicillin, Carbenicillin, Cephalexin, 

Cephalosporin, Cefixime, Cefpirome, Nitrocefin, and Bocillin were tested and all failed 

to yield a change in melting temperature. The enzyme catalyzed reaction of Nitrocefin 

may be somewhat non-specific and the observed activity might not represent the primary 

function of Rv0272. The enzyme may recognize certain structurally features of the β-

lactam including the amide and carboxylate groups without fully accommodating the 

entire molecule as a substrate. This may account for the Nitrocefin activity that was 

observed.  
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Esterase Activity of Rv0272 

 In general, esterases catalyze the hydrolysis of aliphatic and aromatic esters and 

function in a variety of metabolic functions. Based on previous results that Rv0272 may 

recognize thioester and amide moieties, its ability to recognize esters was also tested. 4-

nitrophenyl esters are ideal substrates for detecting esterase activity. Once the ester is 

hydrolyzed, the resulting 4-nitrophenol has an absorbance at 400 nm which can be 

measured to directly determine the amount of hydrolyzed ester. 4-nitrophenyl acetate, 

butyrate, octanoate, decanoate, phosphate, and palmitate were all tested as possible 

substrates. Only the short chain esters (acetate and butyrate) could function as potential 

substrates. 4-nitrophenyl acetate had a calculated Km of 600µM and a specific activity of 

1.7x105µM substrate/mg protein/min using 1µg of protein at 25oC. 4-nitrophenyl butyrate 

was a slightly worse substrate with a Km of 800µM and a specific activity of 3.8x104 µM 

substrate/mg protein/min using 1µg of protein at 25oC. No activity was observed for any 

4-nitro phenyl ester longer than four carbons.   

  

Using Fragment and Whole Cell Active Inhibitors as Molecular Probes for the 

Identification of Chemical Scaffolds Which May Represent Potential Biological 

Substrates  

 

In order to expand the search for molecules that bind to Rv0272 which may infer 

function, a library of 823 small molecular weight compounds were screened using DSF. 

There were 31 identified molecule which demonstrated a ΔTm of a least 3oC compared to 

control at a concentration of 5mM [Table 4.3]. There were 6 fragments which showed a 
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ΔTm greater than the ΔTm = 5.0oC of malonic acid. Five of the six fragments contain 6-

membered rings with a carboxylate group and at least one amide bond [Figure 4.14]. 

 

 

Figure 3.15. Fragments which showed a positive change in melting temperature of 

Rv0272 as determined by DSF.  

 

 

 

 

 

 An extended search for biologically relevant moieties included screening the 

library of whole cell active inhibitors against M. tuberculosis for binding to Rv0272 using 
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DSF. 542 compounds were tested at 0.5mM and binding was determined to occur when 

the thermal stability increased by 2oC or more compared to control.  There were 27 

compounds identified and 5 which demonstrated significant protection against heat 

denaturation [Figure 4.15].  

 

 

 

Figure 3.16. Whole cell active molecules which showed a positive change in melting 

temperature of Rv0272 determined using DSF.   
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Structural Comparison(s) of Small Molecules Bound to Rv0272 

 Three dimensional structures of the molecules which demonstrated a positive shift 

in melting temperature were obtained bound to the enzyme. Through comparisons of their 

binding interactions and binding locations within Rv0272, potential substrate preferences 

can be inferred. Detailed investigation of the individual hydrogen bonding atoms between 

substrate(s) and the active site residues revealed subtle differences which may attempt to 

explain the discrepancies in the change in enzyme thermal stability upon small molecule 

binding [Figure 4.16]. Binary structures of Rv0211172 were initially obtained with the 

following ligands bound: citrate, malonate, methylmalonate, and maleate. There are five 

amino acid residues in the active site which directly coordinate ligand binding, His52, 

Ser118, His153, Arg166, and His353. Interestingly, citrate, which had the lowest ΔTm of 

only 5oC of the four molecules, but displayed the most amount of potential hydrogen 

bonds with 13.  Citrate also makes the closest interaction in the active site with Oβ1 of the 

ligand binding to Oγ of Ser118 at 2.11 Å distance.  

Further interrogation of the differences in binding distance between ligands 

suggests that the overall thermal stability is determined by the amount of atomic 

interactions and distances between those interactions of the ligand and Arg166. 

Methylmalonate, which has a ΔTm of 8oC, greater than the other three, makes four distinct 

hydrogen bounds with Arg166. Oγ1 of methylmalonate is 2.99 Å away from Nε of Arg166 

and 3.37 Å away from NH1 of Arg166. Oγ2 of methylmalonate is 2.25 Å from NH1 of 

Arg166 and 3.37 Å from Nε of Arg166. Binding affinity may also be affected in some part 

by the distance of His52 from the bound ligand. However, it is still far from conclusive 
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which specific interactions dictate the observed differences in thermal stability between 

ligands [Table 4.4].  

 

 

 

Figure 3.17. Comparison of metabolite(s) binding in the catalytic site of Rv0272. Top 

Left -methylmalonate. Top Right - maleate. Bottom Left - citrate. Bottom Right – 

malonate. 
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Table 3.3. Possible bonding distances between active site residues and ligand 

 

 

 

Inconsistent with the results from DSF is the fact that CoA also binds in the active 

site. CoA differs from the previous four ligands in that a phosphate group of adenosine 

interacts with the active site amino acids and not a hydroxyl or a carboxyl group [Figure 

4.17]. The three available phosphate oxygen atoms form an extensive network of hydrogen 

bonds with the active site with Ser118, His52, His163 and Arg166. Notably, O9α from the 

phosphorylated adenosine, forms a hydrogen bond with the Oγ of Ser118 at a distance of 
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2.17 Å. Distinct from the other ligands, phosphate is coordinated into place through the 

dynamics of two residues, Arg166 and His163. The guanidinium group of arg166 moves 

3.77 Å towards His163 which in turn causes His163 to swing 4.13 Å away [Figure 4.18]. 

This movement positions NH1 of Arg166 into hydrogen bonding distance with O8α of the 

ligand at a distance of 2.89 Å as well as Nε2 of His163 with O7α at a distance of 2.55 Å 

with the ligand. Yet, CoA fails to give a positive shift in thermal stability except when the 

acyl chain is composed of a molecule which is known to bind on its own. 

Methylmalonyl-CoA was soaked into Rv0272 crystals which resulted in the 

appearance of two distinctly different electron densities in the active site. In one form, 

clear density is observed for methylmalonate in the same orientation as seen in previous 

methylmalonate soaks. This result indicates that the enzyme may be participating in the 

thioester cleavage of methylmalonyl-CoA. Additionally, methylmalonyl-CoA was 

incubated for 48 hours in the same crystallization condition, and analyzed via mass 

spectrometry to show the intact compound had not undergone enzyme independent 

hydrolysis. However, the second trial had an unusual outcome, resulting in electron 

density which was not easily discernable. Each active site displayed different and unique 

electron densities. In crystal chain A, density stems out from Arg166 at the γC, δC, and 

NE positions and extends past the γO of Ser118. Attempts to build any ligand product 

from methylmalonyl-CoA has been unsuccessful. In crystal chain B, density appears 

similar to what was observed with CoA alone, with the only major difference seen at the 

active site phosphate group [Figure 4.19]. The electron density does not correspond to 
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phosphate and all attempts to build in the CoA ligand have failed. The movement of 

residue His163 was also observed, however the Arg166 residue remained static.  

 

 

Figure 3.18. CoA binding in the active site of Rv0272. The sugar phosphate is located in 

the active site coordinated by Arg166 and His163.  

 

 

 

 

Figure 3.19. Dynamics of active site residues upon CoA binding. Arg166 moves 3.77 Å 

while His163 moves 4.13 Å. Teal residues represent the active site of Rv0272 with CoA 

bound while yellow represents Apo Rv0272.  
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Figure 3.20. Comparison of active site density after crystals were soaked with 

methylmalonyl-CoA. Top - monomer one of two from the dimeric protein found in the 

ASU. Bottom = monomer two of two from the dimeric protein found in the ASU. The 

molecule(s) which are represented by the observed electron densities have yet to be 

conclusively identified.  
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Structural Comparison(s) of Fragment and Whole Cell Active Inhibitors Bound to 

Rv0272  

 

The results from the binding studies revealed that a wide range of molecular 

compounds demonstrated binding to Rv0272. This presented an opportunity to use 

fragments and whole cell active molecules in a unique way. Instead of characterizing the 

small molecules as enzymatic inhibitors, the molecules were used to probe the chemical 

space required for recognition by Rv0272. These experiments were primarily carried out 

by soaking the aforementioned molecules into Rv0272 crystals and observing the resulting 

electron density in the active site. These experiments gave insight into the size and type 

of small molecules which bind and allowed inferences to be made on the types of potential 

substrates the enzyme could recognize. Additionally, the molecules that have an affinity 

for Rv0272 could be compared to known metabolites found within the KEGG database 

and possible functions for the enzyme could be postulated.  

 

EN:T6574300 

 Molecule EN:T6574300 showed a ΔTm of 4oC and the structure of ligand bound 

enzyme was successfully determined. Initial investigation of the molecule revealed some 

slight similarities with the metabolite methylmalonate. A search of the KEGG database 

using a similarity cut off of 75% identified one structurally similar molecule, benzyl 2-

methyl-3-oxobutanoate. This metabolite is a highly specific substrate for a NADP 

dependent dehydrogenase found in baker’s yeast (203).  In order to expand the pool of 

similar metabolites, an additional search of the KEGG database was performed without 

the benzyl group. One additional metabolite, 3-hydroxyisobutyrate, was identified. 3-
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hydroxyisobutyrate is found in the “valine, leucine, and isoleucine degradation pathway” 

and is utilized in two different enzymatic reactions. It is a product of a 3-hydroxy-

isobutyryl-CoA hydrolase and subsequently a substrate of the next enzyme in the pathway, 

a 3-hydroxy-isobutyrate dehydrogenase. This enzyme converts 3-hydroxy-isobutyrate 

into methylmalonate semialdehyde utilizing NAD as a cofactor. The isobutyryl-CoA 

hydrolase has yet to be annotated in M. tuberculosis and is two steps away from a potential 

methylmalonanyl-CoA hydrolase. 

 Comparison of the active site residue interactions with EN:T6574300 and 

methylmalonate demonstrate similar recognition, especially at Arg166 [Figure 4.20]. One 

major difference is the chirality of EN:T6574300 could not be determined from the 

structure. Both (R) and (S) chiral forms were properly built into electron density and 

refined. However, in methylmalonate structures, obtained from soaking Rv0272 crystals 

with methylmalonate, all appear bound in the (S) chiral form. In the (S) form of 

methylmalonate, the methyl group points away from the active site serine interacting with 

Trp173, Ile283, and Val169.  
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Figure 3.21. Structure of EN:T6574300 bound in the active site. Bottom - Overlay of 

EN:T6574300 and methylmalonate.  
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EN:EN300-25711 

 Molecule EN:EN300-25711 showed a ΔTm of 4oC and a co-crystal structure was 

successful obtained bound to Rv0272. Upon initial investigation of the binding 

interactions in the catalytic site with the ligand, several differences stand out. The ligand 

carboxylate tail is rotated out of plane from Arg166, replacing the usual hydrogen bond of 

carboxylate oxygen to Nε of Arg166 with the backbone nitrogen of Gly119. In addition, 

the catalytic Ser118 is flipped away from the ligand, now making interactions Nε2 of 

His353 and a water molecule. His163 is also dynamic, demonstrating partial occupancy 

between two positions in the active site. In one position it is interacting with Ile327, while 

in the other, it is potentially hydrogen bond with the ligand carboxylate. What appears to 

be occurring is that the nitrogen rich 5-membered ring is interacting with Gln54 and 

possibly Arg166, likely through electrostatic repulsion, which is moving the carboxylate 

tail deeper into the active site cavity. As a result, His163 is pulled closer to Ser118, 

possibly resulting in Ser118’s movement away from the active site. Interestingly, the 

sulfur atom does not appear to be interacting with any atoms in the active site. However, 

sulfur does have a Van Der Walls radius of 1.8 Å, therefore it be interacting Trp173 which 

is 3.83 Å away [Figure 4.21]. Not surprisingly, a similarity search of the KEGG database 

returned no biologicals which are at least 60% similar in structure.  
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Figure 3.22. Structure of EN:EN300-25711 bound in the active site. Bottom - Overlay of 

EN:EN300-25711 and methylmalonate 
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EN:T6531385 

 Molecule EN:T6531385 showed a ΔTm of 4oC and a co-crystal structure was 

obtained with Rv0272 [Figure 4.22]. Investigation of the interactions between the ligand 

and active site residues again demonstrated the dynamics of His163. The ligand methyl 

group points towards His163 and may be responsible for its movement out of the pocket 

and towards Ser118. However, in this case Ser118 remains unaffected and still is within 

hydrogen bonding distance of one of the nitrogen groups in the ligand ring. The chlorine 

atom may have Van Der Walls interactions with the hydroxyl group from Tyr354. A 

similarity search identified one molecule in the KEGG database that displayed a 60% 

structural similarity to EN:T6531385, N-methyl-L-alanine. N-methyl-L-alanine is 

described as a substrate involved in the reaction of N-methyl-L-alanine to form pyruvate 

and methylamine, using NADP as a cofactor. However, this enzyme can carry out the 

reverse reaction as well forming N-methyl-L-alanine, although the function of this 

metabolite in vivo has not been established (204).  
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Figure 3.23. Structure of EN:T6531385 bound in the active site. Bottom - Overlay of 

EN:T6531385 and methylmalonate 
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EN:EN300-49784 

 Molecule EN:EN300-49784 showed a ΔTm of 13oC and a co-crystal structure was 

determined with Rv0272 [Figure 4.23]. This compound gave the largest ΔTm of all the 

fragments and upon inspection of the active site it becomes a little more clear as to why. 

The carboxylate of the ligand interacts with Arg166 in a similar manner as previous ligand 

bound structures. However, EN:EN300-49784 has several potential hydrogen bonding 

atoms in its ring moiety as well as its carboxylate tail linker. It has both an oxygen and 

nitrogen atom available to hydrogen bond with the Oδ of Ser118 as well as the backbone 

nitrogen from Gly119. A nitrogen and an oxygen atom are both within hydrogen bonding 

distance of the hydroxyl oxygen from Tyr354. In addition, the 6-membered ring of the 

ligand composed of 2 nitrogen atoms, 2 carbon atoms, and 2 oxygen atoms, form an entire 

network of hydrophobic and Van Der Walls interactions with residues in the surrounding 

environment (Ile55, Tyr269, Trp173, Ile283, Trp248).  

 A similarity search identified 3 metabolites which display at least a 65% 

structurally similarity to EN:EN300-49784. Uracil 5-carboxylate, thymine, and 5-

hydroxymethyluracil were all identified. Uracil 5-carboxylate is the product of an 

oxidoreductase reaction converting uracil 5-carbaldehyde and 2-oxoglutarate into uracil 

5-carboxylate and succinate. Succinate was a metabolite which also showed binding with 

a ΔTm of 6oC. Uracil 5-carboxylate is also the substrate for a decarboxylase which removes 

the carboxyl group to form uracil. This enzyme does not require a cofactor and is an 

intermediate in the conversion of pyrimidines to uracil (205, 206). Thymine can function 

as a substrate and/or product in several enzymatic reactions involved in pyrimidine 
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metabolism. It is the product of a dihydropyridime dehydrogenase, an iron-sulfur flavo-

enzyme which converts 5,6-dihydrothymine to thymine using NAD as a cofactor. 

Thymine is the product of a 5-methylcytosine aminohydrolase which converts 5-

methylcytosine to thymine and ammonia. Thymine can be the product of a thymidine 

phosphorylase, which catalyzes the formation of thymine and 2-deoxy-D-ribose-1-

phosphate from thymidine and phosphate.  

Thymine is also the substrate of a thymine dehydrogenase which converts thymine 

to 5-methylbarbiturate found in the oxidative pyrimidine-degrading pathway (207). 

Interestingly, this pathway is responsible for converting uracil or thymine into malonate 

or methymalonate with the help of 3 zinc dependent enzymes, 2 of which are hydrolases 

[Figure 4.24]. These function(s) are significant given the propensity of Rv0272 to bind 

EN:EN300-49784, malonate, and methylmalonate with high apparent affinities. 

Alternatively, these enzymes can also convert atrazine into carboxybiuret which then 

spontaneously decarboxylates to biuret and seem to be found almost exclusively in 

bacteria (208).  
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Figure 3.24. Structure of EN:EN300-49784 bound in the active site. Bottom - Overlay of 

EN:EN300-49784 and methylmalonate 
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Figure 3.25. Oxidative pyrimidine degradation pathway. Uracil is oxidized by uracil 

dehydrogenase to form barbitaric acid which then is converted into ureidomalonic acid 

by barbiturase. Finally ureidomalonase converts ureidomalonic acid into malonic acid 

and urea.  

 

 

 

 

 

EN:T6307026 

 Molecule EN:T6307026 showed a ΔTm of 9oC and a co-crystal structure was 

determined with Rv0272 [Figure 4.25]. Inspection of the active site residues involved in 

binding with the ligand revealed that Arg166 coordinates the carboxylate of the ligand. In 

this case Ser118 is within hydrogen bonding distance of the hydroxyl group of the ligand. 

The ligand hydroxyl is also interacting with the backbone nitrogen of Gly119 and Nε of 

His52. Additionally, the ring nitrogen of the ligand is within hydrogen bonding distance 

of both Ser118 and what originally appeared to be a water molecule. However, upon 

subsequent rounds of refinement, the electron density did not correspond to water, but to 

metal. Although the identity of the metal is not known, Zn refined perfectly into the density 

map. This is the first structure that electron density corresponding to a metal has been 

observed in the active site. However, this metal was only observed in one monomer of the 
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dimer in the ASU. The other active site had electron density which corresponded to a water 

molecule.  

 

 

Figure 3.26. Structure of EN:T6307026 bound in the active site. Bottom - Overlay of 

EN:T6307026 and methylmalonate. Zinc is shown in gray. 
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 A similarity search of the KEGG database found one metabolite which is at least 

65% similar in structure to EN:T6307026, 2,4-dihydroxyquinolone (DHQ) [Figure 4.26]. 

DHQ is an extracellular metabolite produce by Pseudomonas aeruginosa that is required 

for virulence and in quorum sensing. Its role has never been described in M. tuberculosis 

and it’s not well understood how it is regulated in Pseudomomas aeruginosa. It has been 

shown to be important in the process of biofilm production as well. DHQ is made through 

4 separate reactions using 2 enzymes, beginning with anthranilate as a substrate, a 

molecule which binds to Rv0272. The reaction process utilizes two different CoA 

molecules, malonyl-CoA and 3-(2-aminophenyl)-3-oxopropanoyl-CoA. 

 

 

Figure 3.27. Chemical structure of 2, 4-dihydroxyquinolone (DHQ). 
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EN:T5810855, EN:T5764482 & EN:T0518-6321 

  EN:T5810855, EN:T5764482 and EN:T0518-6321 gave positive shifts in ΔTm of 

4oC, 6oC, and 4oC respectively. However, attempts at obtaining a co-crystal structure with 

Rv0272 have failed. Although each molecule contains a carboxylate R group, electron 

density consistent corresponding to the three molecules was never seen. The only 

commonality between each molecule is a sulfur atom that may be inferring with binding 

in the crystal/ crystallization condition [Figure 4.27].  

 

 

 

 

Figure 3.28. EN:T5810855, EN:T5764482 & EN:T0518-6321. Three compounds which 

demonstrated a positive shift in melting temperature for Rv0272.  
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EN:T5970989 

 Molecule EN:T5970989 showed a ΔTm of 6oC and a co-crystal structure was 

attempted with Rv0272 [Figure 4.28]. The resulting structure had significant electron 

density in the active site which appeared to represent part(s) of the fragment. However, 

the entire molecule was not able to fit into the resulting density. The electron density did 

correspond to the carboxylate tail and parts of the bicyclic core, yet the tri-fluoro group 

could not be identified and neither could the molecule in its entirety. EN:T5970989 most 

likely underwent a cleavage event, either spontaneous or enzymatic, which altered the 

final product found in the crystal structure. To date, the fragment product has not been 

identified but future experiments will be aimed at determining its identity through a 

combination of mass spectrometry and reverse phase liquid chromatography. Attempts to 

identify metabolites in the KEGG database which showed at least 60% structural similarity 

failed to give a single positive hit.  
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Figure 3.29. Electron density in the active site of Rv0272 observed after soaking Rv0272 

crystals with EN:T5970989, also shown.  

 

 

 

 

 

EN:T6178680 & EN:T0501-0213 

 Molecules EN:T6178680 and EN:T0501-0213 showed a ΔTm of 5oC and ΔTm of 

6oC respectively, and co-crystal structure(s) were attempted with Rv0272. The results 

were similar to what was observed EN:T5970989 except in this case the fragment product 

could be determined from the electron density. Surprisingly, the density did not 

correspond to either molecule, yet both displayed identical density maps [Figure 4.29]. 

The resulting structures were collected at less than 1.8 Å resolution each and demonstrated 

clear electron density for a bi-substituted 6-membered ring. The substitutions occurred at 

adjacent positions and were clearly defined as either nitro or carboxyl groups and 

mimicked exactly what was seen earlier in the case of phthalate, nitrobenzoate, and 
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quinolinate. All 3 molecules could be successfully built into the model and refined without 

arguments. However, no previously defined enzymatic mechanism could predict any of 

the three possible products from either starting fragment. Each fragment was analyzed via 

mass spectrometry and the resulting mass matched the expected mass of each parent 

fragment. The soaks were repeated a total of 3 times, each time the same result was 

observed in the crystal structure.  

 In an attempt to rationalize this product formation enzymatically, the KEGG 

database was searched for any metabolite that had at least 60% structurally similarity 

between the fragment(s). The search returned no positive hits. Therefore, the KEGG 

database was investigated manually for any similar chemical scaffolds that may be found 

in biological pathways which phthate, anthranilate, or quinolinate are utilized. In 

tryptophan metabolism, a hydrolase enzyme was found to convert L-kynurenine into 

anthranilate and L-alanine [Figure 4.30]. L-Kynurenine shares a similar scaffold to 

EN:T6178680, but nothing could be identified for EN:T0501-0213. Attempts were made 

to soak L-Kynurenine into crystals of Rv0272, but electron density was never observed 

for the expected molecule, either Anthranilate or L-alanine. This reaction has been 

previously described as a pyridoxal-phosphate (PLP) dependent protein in Neurospora 

crassa (209). However, PLP was not used in the original attempts for obtaining a co-

crystal of the reaction product.  
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Figure 3.30. Observed electron density in the active site of Rv0272 after crystals had 

been soaked with EN:T6178680 (top left) and EN:T0501-0213 (bottom left). Bottom – 

Chemical structure of phthlate, quinolinate, nitrobenzoate, respectively. The electron 

density appears to correspond to pthlate.  
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Figure 3.31. Top: L-kynurenine hydrolase which catalyzes the cleavage of L-kynurenine 

into anthranilic acid and L-alanine, using PLP as a co-factor. Bottom: Comparison of 

EN:T617860, which when soaked into Rv0272 crystals resulted in an electron density 

which may correspond to anthranilic acid. Kynurenine is shown adjacent for comparison 

of the two chemical scaffolds.  

Rv0272 Demonstrates Phthalyl Amidase Activity in Crystals 

In order to ascertain whether nor not the conversion of these fragments to a benzoic 

acid derivative is specific to Rv0272 some assumptions were made based on DSF binding 

data. It was shown that phthalate had the highest change in thermal stability out of all the 

molecules tested. Therefore the compound libraries were probed for molecules, regardless 
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of whole cell activity, which contained a phthalyl moiety. Three compounds were initially 

identified and selected for testing, CB:9117573, CB:5105142, and CB:9156115 [Figure 

4.31].  They were first tested for binding DSF and compared against phthlalic acid. Two 

of the three molecules demonstrated the same ΔTm as phthlalic acid (ΔTm = 11oC) while 

one molecule, CB:5105142, was slightly less effective but still showed binding with a ΔTm 

of 9oC. The molecule identity of each compound was confirmed by analyzing the mass of 

each via liquid chromatography mass spectrometry. All three compounds were subjected 

to crystallization trials in order to obtain co-crystal structures by soaking crystals of 

Rv0272 for 2 hours with 1mM of compound. Ligand bound structures were obtained for 

each molecule and in all three cases density was observed which corresponded to phthalic 

acid. Phthalic acid was built into the electron density and refined into the active site 

[Figure 4.32]. In all three cases, the molecule is bound in the same location, interacting 

with the same active site residues, with no observable orphan density which could 

represent the rest of the compound.  

 Electron density differences between phthalate and other similar molecules such 

as anthranilate, quinolinate, and nitrobenzoate, may be hard to distinguish. A reference of 

electron density was obtained for each via co-crystallization of all four metabolites. 

Nitrobenzoate had very low occupancy, anthranilate was distinguishable from the others 

based on weaker electron density around the nitrogen atom compared to the two oxygen 

atoms of quinolinate and phthalate. However, based on electron density, quinolinate and 

phthalate were indistinguishable. This is some-what unexpected given the difference in 

melting temperatures from DSF between the two. The local environment of the active site 
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also remained unchanged between the two. As such, determining the location of the 

nitrogen atom on quinolinate was not possible.  

 Identification of a phthalyl amidase activity was unexpected and not a enzymatic 

function previously described in M. tuberculosis. However, Xanthobacter agilis has been 

shown to phthalate amino acids in order to protect them from degradation pathways. They 

contain an enzyme which is specific for phthalated substrates such as amino acids, but also 

demonstrate a broad activity on multiple phthalated substrates, including phthlated β-

lactams. It has been hypothesized that this enzyme would serve as a mechanism for 

deprotecting amino acids (210).  

  

 

 

Figure 3.32. Three phthalyl containing compounds identified from the Sac1 and Sac2 

chemical libraries selected to test for activity.  
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Figure 3.33. Phthalic acid bound in the active site to Rv0272. 

Rv0272 Binds Folic Acid 

Although folate metabolism is very well described in M. tuberculosis, folic acid 

gave a 4oC from DSF when screening against possible metabolites and cofactors that have 

amide bonds and are structurally similar to molecules which have previously demonstrated 

binding. A co-crystal structure of folic acid was obtained [Figure 4.33]. 
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Figure 3.34. Structure of folic acid bound in the active site of Rv0272. 

DISCUSSION

Rv0272 is an indispensable gene in M. tuberculosis in all conditions with the 

exception of in vitro growth on glycerol as a sole carbon source. Rv0272 demonstrates an 

incredible elasticity in its catalytic site with the ability to bind a broad spectrum of 

molecules. The binding of methylmalonate was able to increase the thermal stability of 

the enzyme by up to 10oC more than enzyme alone. Through crystallographic analysis of 

Rv0272 bound with ligand, CoA was also shown to bind to the enzyme but did not 
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demonstrate a shift in melting temperature. Interrogating the possible biological functions 

of an enzyme with a binding affinity for CoA and methymalonate lead to the hypothesis 

that Rv0272 is a methylmalonyl-CoA hydrolase. 

 In vitro attempts to support this hypothesize by demonstrating enzymatic turnover 

of methylmalonyl CoA were unsuccessful. Although initial attempts did show promise, 

the DNTB coupled reaction did not yield consistent and repeatable activity. Several factors 

could have influenced the failed outcomes, including the possible requirement of certain 

conditions for the reaction to occur in vitro (pH, salts, cofactors, metals), post-translational 

modifications, reduction/oxidizing environment, and inhibition by the DTNB reagent, 

either through modification of a surface exposed cysteine or by binding to the active site 

directly. In addition, the substrate chirality may play a role in preventing the reaction from 

occurring. 

In contrast, it was demonstrated that Methylmalonyl-CoA was modified 

enzymatically when soaked into a crystal of Rv0272. The extent of the modification and 

the specific reaction which is being catalyzed is still uncertain. Unexpectedly, in an 

attempt to co-crystallize Rv0272 with acetyl-CoA, the resulting structure was bound with 

CoA, yet soaks with malonyl-CoA yielded a malonate bound structure. 

In an attempt to further elucidate the function of Rv0272, several small molecule 

fragments, whole cell active inhibitors, and other potential metabolites were identified by 

their ability to bind to the enzyme. An in depth structurally comparison of the identified 

binders led to the exploration of other possible enzymatic functions. Maleate demonstrated 

binding to Rv0272 which prompted the hypothesis that the enzyme was functioning as a 
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maleamate amidase, converting maleate to maleamate in the nicotinic acid degradation 

pathway. Although an enzymatic assay has yet to be employed to pursue this possibility, 

co-crystallization attempts with the substrate maleamate did not yield the product, 

maleate, bound to the enzyme. 

The identification of a benzoic acid derivative bound to the crystallized enzyme 

when soaked with a structurally unrelated molecule led to the exploration of an additional 

activity. Based on the observed reaction, a kynurenine hydrolase function was proposed. 

Kynurenine did not demonstrate binding using DSF. However, PLP is not amenable for 

use in DSF and it may be that kynurenine requires PLP to bind first before it binds. 

Attempts to soak PLP and kynurenine into Rv0272 crystals abolished x-ray diffraction. 

This activity is still being considered as a possible function. Consistent with the binding 

of the benzoic acids and the previous observation of activity within Rv0272 crystals, a 

phthalyl amidase function was proposed. Several phthlated compounds were confirmed to 

bind using DSF and hydrolysis of the phthalyl group was observed upon soaking into 

enzyme crystals. An enzymatic assay is currently being developed to recapitulate these 

findings. NMR metabolomics demonstrated convincing results that Rv0272 is able to 

hydrolyze D-Ala-D-Ala peptides. However, this activity could not be confirmed via 

enzymatic assays or crystallization trials. The possibility that Rv0272 was functioning as 

a PBP, carboxypeptidase, serine protease, and/or β-lactamase were all considered but none 

yielded convincing evidence to support such a hypothesis. 
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CONCLUSION 

Rv0272 has demonstrated incredible substrate plasticity and the possibility exists 

that it may have multiple, essential biological functions. Evidence supports the notion that 

the enzyme recognizes a carboxylate group by coordinating the two carboxyl oxygens into 

the active site with Arg166. The catalytic triad of Ser, His, and Arg may recognize esters, 

thioesters, and amides, with specificity determined by the distance between the 

carboxylate tail and the site recognized by the catalytic serine. To date, two possible 

functions stand above the rest; a methylmalonyl-CoA hydrolase and a phthalyl amidase. 
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CHAPTER IV 

CONCLUSIONS AND FUTURE WORK 

Through careful consideration of host environmental conditions faced by 

mycobacteria, two separate screening protocols were created. One screen was performed 

using NaOAc as the sole carbon source. The rationale being that during persistent 

infections, fatty acids are most likely used as the primary carbon source. Although 

enzymes involved directly in fatty acid degradation may be dispensable for growth on 

acetate, the downstream pathways, specifically β-oxidation and the glyoxylate cycle are 

required. These pathways contain several enzymes which are essential for bacterial 

infection and persistence, notably malate synthase and isocitrate lysase (211, 212). The 

HTS was carried out against several NTMs for two reasons. First, modern diagnostics 

have revealed that NTM pathogenesis is much more pronounced that originally believed. 

Historically, NTMs have been treated with antibiotics developed for the treatment of M. 

tuberculosis. However, NTMs commonly display intrinsic resistance to known anti-

tubercular drugs and as such new hits for drug development specific to NTMs is required. 

Second, given NTMs genome similarity to each other and M. tuberculosis¸ they could be 

used as a model organism for M. tuberculosis drug target identification and resistant 

mutant selection. NTMs are more amenable to manipulate in vitro given their fast doubling 

time and low rate of pathogenicity in humans. 

The HTS carried out with NaOAc as the sole carbon source was successful in 

identifying almost 1,000 molecules which could inhibit bacterial cell growth at 10µM. 
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Hits specific for M. tuberculosis, M. smegmatis, M. abscessus, and M. fortuitum could be 

compared and molecules could be separated based on their activity, either specific or broad 

spectrum. Over 20% of the compounds from the NaOAc HTS were shown to demonstrate 

broad anti-bacterial properties and were active against all the NTMs and M. tuberculosis. 

In addition these hits could be compared against hits obtained from a previous screen 

carried out on dextrose as the sole carbon source.  

 A second HTS was carried out using a mixed carbon source of dextrose and 

NaOac. The rationale of this method was to attempt to identify molecules which may target 

enzymes which are indispensable for growth on either carbon source. In a cross-validation 

study, it was shown that less than 10% of compounds were lost when screening on a mixed 

carbon source versus two separate screens on individual carbon sources. These data 

compiled from the HTS served as hit libraries for potential enzymatic inhibitors which 

were also potent inhibitors of bacterial growth.  

 The hits identified from the HTS were the focus of resistant mutant selection in 

order to determine mechanism of resistance and in turn identify the inhibited target 

responsible for whole cell growth inhibition. Several enzymes were found which could be 

promising therapeutic targets. Rv0272 was the primary focus of this body of work, but 

two other enzymes were also partially characterized, Rv2857c and Rv0206c.  

 Rv0272 has demonstrated an ability to bind a broad range of molecules from short 

chain dicarboxylic acids such as methylmalonate to comparatively large, unrelated 

metabolites such as folic acid. Deciphering the identity of the most preferred substrate for 

Rv0272 has been a challenge. NMR based metabolomics demonstrated significant and 
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reproducible evidence of a D-Ala-D-Ala carboxypeptidase activity. In vitro activity assays 

have been inconsistent and have failed thus far to recapitulate a specific enzyme activity 

with any degree of certainty. The most promising avenue has been the observation(s) of 

the product of an enzyme driven reaction through co-crystallization and structure 

determination of hypothesized substrates. These experiments have demonstrated enzyme 

dependent reactions occurring within the crystal when using acyl-CoA’s and phthalated 

compounds as substrates. Although the data suggest a phthalyl amidase activity, the 

biological significance of such a function is still unclear. However, the data suggesting a 

methylmalonyl-CoA thioesterase activity is a little less convincing, but the biological 

significance is pronounced and in need of annotation in M. tuberculosis.  

 Future work involved in characterizing Rv0272 will focus on developing a 

colorimetric enzyme assay for a phthalyl amidase activity using a 4-nitrophenyl R group 

which when hydrolyzed could potentially have an absorbance at 400 nm. If the activity of 

Rv0272 becomes more defined, a structure and activity relationship study of this enzyme 

with potential whole cell active inhibitors would be ideal given its ability to form robust, 

highly diffracting crystals, which are amenable to ligand soaks, while maintaining 

enzymatic function in a crystalline state.  

There exist 4,019 protein encoding genes in the M. tuberculosis genome and 1096 

of those genes are annotated as hypothetical, conferring little to no functional information 

and fairly weak associations with enzymes of known function (213). Bioinformatics 

approaches can infer possible functions through homology and orthology based 

approaches. However, many of these “hypothetical” protein encoding genes only share 
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significant sequence homology with “hypothetical” protein encoding genes in other 

organisms. In fact, of the approximately 20,000,000 protein sequences from around 400 

completely sequenced genomes found in the NCBI protein database, one in three proteins 

had no assigned function and one in ten proteins was annotated as “hypothetical”. Even in 

the most well studied organism, E. coli K-12, almost half of its entire genome has yet to 

be experimentally characterized (214). This knowledge gap in the proteomic/ genomic 

database is a significant road block in understanding the biological complexity that exists 

not only in the host-pathogen relationship in M. tuberculosis infections but also in many 

other closely related human pathogens.  Although biochemically characterizing poorly 

annotated proteins is often time consuming and costly, the potential evidence garnered 

could be applicable across multiple homologous species which could reveal previously 

unknown biological pathways and enzymatic functions necessary for survival and 

pathogenicity. In addition, these proteins could potentially be attractive drug targets that 

once properly elucidated could be paramount in guiding future drug discovery efforts.  

 Tropism of pathogenic bacteria dictates the ability of the microbe to infect its host. 

A multitude of factors play a role in determining the range of host environments as well 

as the success rate at which a microbial pathogens can sustain an infection. The molecular 

and genetic mechanisms which determine host specificity are often times not understood 

and are comprised of many poorly characterized surface receptor proteins, excreted 

proteins, and virulence factors that are essential for nutrient acquisition and host immune 

evasion (215).  Tuberculosis is without question the most dangerous and adaptive of all 

human pathogenic bacteria, but many other human pathogens have evolved similar 
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mechanisms and cellular machinery to infect and persist within their host environment. A 

few of these include but are not limited to the species and antibiotic-resistant species from 

the genera of Streptococcus, Treponema, and Staphylococcus, which the CDC estimates 

are responsible for more than 700,000 deaths world-wide per year. Similar to E. coli, and 

M. tuberculosis, more than half of all their protein encoding genes have yet to be 

characterized biochemically.  

It becomes clear that identifying and characterizing “hypothetical” proteins, which 

may also include the factors involved in host specificity and pathogenicity, can provide 

potential clues to aid in the design of new strategies and antimicrobials for the control and 

elimination of microbial diseases. Therefore, significant efforts will be put towards 

identifying and characterizing proteins in M. tuberculosis which are poorly or 

incompletely annotated. In turn, the goal would be to establish useful information on 

molecular mechanisms responsible for M. tuberculosis infection and persistence that could 

potentially be applicable to drug development against a wide range of human pathogenic 

bacteria.   
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