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ABSTRACT 

 

Drought is a natural phenomenon induced by precipitation deficiency and it 

impacts economy, environment and society. The drought monitoring tools include direct 

measurements, such as precipitation, soil moisture and streamflow and indirect 

estimations, like drought indices and model simulations. The newly developed North 

American Soil Moisture Database (NASMD) provides quality-controlled soil moisture 

observations over the entire U.S. to help assess the reliability of these drought 

monitoring tools. In this dissertation study, we focused on the assessment of drought 

indices and model simulated soil moisture using in situ data from NASMD. 

First, we focused on four soil moisture statistics: percentile, trend, variability and 

persistence in 0-10 cm and 0-100 cm soil layers. The result reveals that the crop 

moisture index well represent the soil moisture conditions in the top 100 cm soil layer 

based on higher correlation, more similar trend, variability and persistence. In the top 10 

cm soil layer, no drought index is the most appropriate one for all the statistics. In 

general, drought indices considering potential evapotranspiration (PET) are more 

appropriate for representing soil moisture in 0-10 cm soil layer. Then we developed a 

more realistic Palmer Drought Severity Index (PDSI) using two-source PET model. 

Based on the comparison with original PDSI and Penman-Monteith based PDSI, we 

found the choice of PET method would impact the spatial and temporal patterns of 

drought and the drought severity during extreme drought events. Thirdly, we tested the 

reduced optimal interpolation (ROI) method to soil moisture in Oklahoma and compared 
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it with two geo-statistical interpolation methods: the inversed distance weighting (IDW) 

method and Cokriging method. The ROI method is significantly more accurate than 

IDW and it also outperforms Cokriging. We demonstrate that ROI can recreate soil 

moisture at unsampled locations. Last, we assessed the accuracy of soil moisture in Earth 

system models (ESMs) by using in situ and satellite observations. The results show that 

models can reproduce the seasonal variability in soil moisture over CONUS but with 

overestimation in the western U.S. and underestimation in the eastern U.S. There are 

significant regional and inter-model variations in performance. 
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NOMENCLATURE 

 

2S the two-source PET model 

AET Actual Evapotranspiration 

CAFEC climatically appropriate for existing conditions 
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CMI Crop Moisture Index 

CMIP5 Coupled Model Intercomparison Project Phase 5 

CPC Climate Prediction Center 

DAR Daily Average Replacement 

ECV Essential Climate Variable 

EDI Effective Drought Index 

EOF Empirical Orthogonal Function 

ESM earth system model 

GCM general circulation model 

GLACE Global Land-Atmosphere Coupling Experiment 

MAE mean absolute error 

NARR NCEP North American Regional Reanalysis 

NASMD North American Soil Moisture Database 

NLDAS-2 Phase 2 of the North American Land Data Assimilation System 

IDW Inversed Distance Weighting 
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PM Penman-Monteith equation 

PDSI Palmer Drought Severity Index 

PET potential evapotranspiration 

RCM regional climate model 

ROI Reduced Optimal Interpolation 

SPEI Standardized Precipitation Evapotranspiration Index 

SPI Standardized Precipitation Index 

TH Thornthwaite equation 

VIC Variable Infiltration Capacity 

VWC volumetric water content 
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CHAPTER I  

INTRODUCTION 

 

1.1 Introduction 

Drought is a naturally recurring feature of the climate system that is 

characterized by a prolonged deficiency of precipitation (Dai, 2011a). Drought affects 

society, environment and economy and causes large losses. Quantitative information on 

the duration, severity and spatial extent of drought events can help monitor and predict 

drought conditions (Rhee et al., 2008). Accurate information is important for decision-

makers to develop better mitigation adaptation strategies (Yuan et al., 2016). 

Soil moisture is a critical variable for drought monitoring (Anderson et al., 2012) 

and prediction (Ford et al., 2015a). Although there are relatively few direct 

measurements of soil moisture (Hartmann et al., 2013), it is very useful for assessing 

drought duration and intensity (Seneviratne et al., 2010). The application of in situ 

measured soil moisture is limited by its spatial and temporal coverage. The North 

American Soil Moisture Database, NASMD (Quiring et al., 2016), aims to collect the 

densest possible network of in situ soil moisture in North America. The NASMD has 

data from ~1800 soil moisture stations in the U.S. This is much less than the number of 

precipitation site (more than 10,000 in the U.S. based on the National Weather Service 

Cooperative Observer Program). Soil moisture observations also have a much shorter 

period of record than other meteorological observations. The longest record of in situ 

soil moisture in U.S. only extend back to the 1990s (e.g., Soil Climate Analysis 
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Network), while temperature and precipitation records start from late 19th century 

(Menne et al., 2009). Because of the limited spatial and temporal coverage of soil 

moisture, it is necessary to find other ways of representing observed soil moisture. These 

so-called soil moisture proxy variables are useful because they can help fill the spatial 

and temporal gaps in observed soil moisture. They can also help for provide insights on 

future changes in soil moisture under a changing climate. 

This doctoral research will use soil moisture observations to evaluate which 

drought monitoring tools/indices are most appropriate for representing soil moisture 

conditions. It will also develop better methods to more realistically measure and monitor 

drought conditions. This dissertation will address two main research questions: 1) How 

accurate are current drought indices for representing soil water conditions? 2) How 

accurate are simulations of future drought conditions? Four objectives are required to 

answer the research questions: 

1) Identify the drought index that best represents soil moisture; 

2) Develop a more physically-realistic drought index and validate it using 

observed soil moisture; 

3) Identify the best methodology for estimating observed soil moisture at 

unsampled locations. 

4) Evaluate the accuracy of soil moisture simulations in the Earth System Models 

that are part of CMIP5. 
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1.2 Background 

Due to lack of direct measurements of drought impacts, there is no uniform 

method to characterize drought conditions. Many different drought indices have been 

used to monitor drought (Heim, 2002;Quiring, 2009). The drought indices that are 

commonly used to monitor drought conditions include: Palmer Drought Severity Index 

(PDSI) introduced by Palmer (1965), Standardized Precipitation Index (SPI) introduced 

by McKee et al. (1993), Standardized Precipitation Evapotranspiration Index (SPEI) 

introduced by Vicente-Serrano et al. (2009), and Effective Drought Index (EDI) 

introduced by Byun and Wilhite (1999). Each drought index has advantages and 

disadvantages and therefore it may not accurately represent drought conditions at every 

location or for every type of drought (Vicente-Serrano et al., 2010). 

Previous studies have evaluated the performance of drought indices using 

different observations in different regions. For example, Keyantash and Dracup (2002) 

assessed seven meteorological drought indices using observed precipitation, streamflow 

and computed soil moisture. They found that the SPI ranked highly in terms of 

robustness, sophistication and extendibility. Morid et al. (2006) compared seven drought 

indices in Iran and found that there was significant variability in terms of their ability to 

accurately detect drought onset and to represent the spatial and temporal patterns of 

drought. Jain et al. (2015) evaluated six drought indices in India and found that the time 

scale and location of interest had a significant influence on the performance of the 

drought indices and that there was not a single best index for all locations and time 

scales. McEvoy et al. (2012) evaluated two multi-scalar drought indices, SPI and SPEI 
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using temperature percentile, reservoir elevation and streamflow, in Nevada and 

California at time scales ranging from 1 to 72 months. They found that the SPEI 

performed slightly better than SPI when compared to summer stream flow. Vicente-

Serrano et al. (2010) also compared a multi-scalar drought index (SPEI) with two 

different versions of the PDSI and found that the PDSI provides information on medium-

term or long-term drought conditions in most regions. However, among previous 

evaluation studies, there are very rare studies using in situ soil moisture to evaluate 

drought indices. 

Soil moisture is not only a variable that reflects drought conditions, but also a 

factor that causes drought. Previous studies have identified three main reasons that cause 

drought. First, large-scale atmospheric circulation patterns, which are associated with sea 

surface temperature anomalies, are an important remote forcing that can cause drought to 

occur (Hoerling and Kumar, 2002;Trenberth and Guillemot, 1996). Second, local land-

atmosphere interactions influence rainfall variability and can either trigger drought 

initiation or contribute to drought intensification (Guo et al., 2011). Finally, random 

variability (“noise”) within the climate system can also contribute to drought occurrence 

(Hoerling et al., 2014;Kumar et al., 2013). Among the three reasons, the local effect of 

land-atmosphere interactions is closely associated with soil moisture (Seneviratne et al., 

2010). 

Soil moisture plays an important role in land-atmosphere interactions by 

affecting energy and water fluxes (Eltahir, 1998;Seneviratne et al., 2010). Both the water 

balance and the energy balance are coupled through evapotranspiration and it is strongly 
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influenced by soil moisture in the water limited regimes (Teuling et al., 

2009;Seneviratne et al., 2006). A positive (negative) soil moisture anomaly increases 

(decreases) the evapotranspiration, cools (warms) the land surface and alters patterns of 

moisture and atmosphere circulations (Eltahir, 1998;Namias, 1991). 

Due to lack of available observed soil moisture, numerical simulations based on 

land surface models and General Circulation Models (GCMs) are commonly used to 

evaluation soil moisture-climate interactions. For soil moisture-temperature interactions, 

Durre et al. (2000) used a simple water balance model to evaluate the dependence of 

summertime daily maximum temperature on antecedent soil moisture. Brabson et al. 

(2005) used HadCM3 to examine the relationship of soil moisture to extreme 

temperatures in Britain and found longer spells of extreme temperature are associated 

with extended periods of low soil moisture. Fischer et al. (2007) found soil moisture-

temperature interactions increased the duration of heat waves in the Climate High-

Resolution Model (CHRM). Soil moisture-temperature feedbacks in plains, mountain 

and coastal regions, were examined by Stéfanon et al. (2014). Similarly, a large number 

of GCMs (Kim and Wang, 2007;Meng, 2009;Oglesby, 1991;Koster et al., 

2004;Seneviratne et al., 2013) and regional climate models (RCMs) (Bosilovich and Sun, 

1999;Paegle et al., 1996;Wei and Dirmeyer, 2012) have been used to study interactions 

between soil moisture and precipitation. Most of these studies support a positive 

feedback between soil moisture and precipitation. Positive feedback means that 

anomalies in soil moisture lead to accordant anomalies in precipitation, which can then 

enhance the soil moisture anomalies. Oglesby and Erickson (1989) imposed desert-like 
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initial soil moisture over an extensive area of North America using the Community 

Climate Model (CCM1). They found that soil moisture reductions in July prolonged 

and/or amplified drought over North America, and moisture advection from the Gulf of 

Mexico played an important role in determining the areas where the reduced soil 

moisture persisted. Bosilovich and Sun (1999) found that simulations of the 1993 flood 

became much less severe when initial soil moisture was reduced in two 1-month 

integrations starting from 1 June and 1 July by using the Purdue Regional Model (PRM). 

In addition, Bosilovich and Schubert (2002) suggested strong precipitation recycling (a 

direct pathway through which soil moisture influences precipitation) over the 

Mississippi River basin during summer. Kim and Wang (2007) investigated the impact 

of anomalous soil moisture conditions on subsequent precipitation over North America 

through a series of numerical experiments. They showed that the impact of spring soil 

moisture anomalies is not evident until early summer. Meng and Quiring (2010) 

conducted a series of numerical experiments to evaluate the influence of spring soil 

moisture anomalies on summer precipitation variations in the U.S. Great Plains. Their 

results showed that the timing of soil moisture anomalies is an important factor that 

influences soil moisture-precipitation interactions. Model simulated soil moisture-

climate interactions contribute a lot to our understanding, but since GCMs have large 

uncertainties (Flato et al., 2013), multi-model ensembles are commonly used to evaluate 

soil moisture-climate interactions. The Global Land-Atmosphere Coupling Experiment 

(GLACE) (Guo and Dirmeyer, 2006;Koster et al., 2006;Koster et al., 2004) investigated 

soil moisture-climate interactions using a 12-GCM ensemble. The second phase of this 
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experiment began in 2011 (Koster et al., 2010) and its experimental design were 

conducted in the context of CMIP5 in 2013 (Seneviratne et al., 2013). The GLACE 

identified the regions with strong soil moisture-climate coupling strength at global scale. 

The experiment showed consistent signals of soil moisture-precipitation interactions 

with soil moisture-temperature interactions. However, they also found the changes of 

initial soil moisture will affect temperature mean and extremes more strongly than 

precipitation. 

The number of observation data based soil moisture-climate interactions studies 

are relatively limited. Globally, FLUXNET measurements showed similar spatial 

distribution of soil moisture-temperature coupling strength from model simulations 

(Teuling et al., 2009). Taylor et al. (2012a) demonstrated afternoon rain preferentially 

falls over dry soil based on top 5-cm satellite observed soil moisture. Regionally, 

Mahmood et al. (2012) found weaker association between soil moisture and precipitation 

than between soil moisture and maximum surface temperature. In situ soil moisture is 

found to strongly impact air temperature in the upper quantile of the percent hot days 

distribution in Oklahoma (Ford and Quiring, 2014b). Ford et al. (2015c) found 

convective precipitation in Oklahoma preferentially over dry soils. More negative 

feedback of soil moisture is found based on observations. Therefore, to close the 

disagreement between model and observation studies, more work on verifying model 

simulated soil moisture-climate interactions using multi-source based observations is 

necessary.  
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The relatively short period of record and sparse spatial coverage of in situ soil 

moisture make drought evaluation and land-atmosphere interactions studies challenging. 

Therefore, in some previous studies, the SPI has been used as a proxy of surface 

moisture deficits to characterize the impacts on warm temperature (Hirschi et al., 

2011;Mueller and Seneviratne, 2012;Ford et al., 2016). Even though, there has not yet 

been a comprehensive assessment of which drought indices are most appropriate for 

representing soil moisture conditions. These drought indices are important because they 

can be calculated with readily available data (temperature and precipitation) and 

therefore they will although soil moisture proxies to be developed to fill in the spatial 

and temporal gaps in observed soil moisture. The first objective of this dissertation is to 

provide a comprehensive evaluation of these drought indices and to determine which 

drought indices are most strongly associated with soil moisture conditions (Chapter 2). 

Existing drought indices have limitations as soil moisture proxies because they are not 

physically-based and do not include all of the relevant processes that influence soil 

moisture. Therefore, another avenue of research (Chapter 3) in this dissertation is to 

develop an improved version of the PDSI that will explicitly account for ET from 

multiple sources. An additional challenge faced when using in situ soil moisture is the 

lack of spatial coverage. Therefore, this dissertation evaluates two-commonly used 

approaches for estimating soil moisture at unsampled locations and compares it to an 

approach that has not previously been applied to soil moisture (Chapter 4). Finally, we 

are not only interested in variations in soil moisture conditions in the past, but how those 

conditions may change in the future. Therefore, the final objective of this dissertation 
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(Chapter 5) will use observed soil moisture measurements, both in situ and satellite, to 

evaluate the accuracy of soil moisture simulations in the CMIP5 models. The results of 

this analysis will be useful for identifying which ESMs are most appropriate for 

assessing future changes in drought conditions and for evaluating how the strength and 

nature of land-atmosphere interactions may change in the future in the U.S. Great Plains. 

 

 

1.3 Study Area 

The U.S. Great Plains lie between the Mississippi River and the Rocky 

Mountains in the United States, covering North Dakota, South Dakota, Nebraska, 

Kansas and parts of Oklahoma, Texas, New Mexico, Colorado, Wyoming and Montana. 

In this doctoral research, the study region is the U.S. Great Plains which is defined as 

Texas, Oklahoma, Kansas, Nebraska and South Dakota (Figure 1.1). 

The climate of the U.S. Great Plains is characterized by a strong north – south 

temperature gradient and a strong east – west precipitation gradient (Karl et al., 

2009;Meng, 2009). While there are 70 to 90 days with over 32 C°  in the south, only 10 

to 20 days are above 32 C°  in the north (Karl et al., 2009). Annual precipitation ranges 

from less than 200 mm in the west to over 1100 mm in the east of GP, but large season-

to-season and year-to-year fluctuations are frequent and July and August are often hot 

and dry (Miller et al., 2002;Padbury et al., 2002;Meng, 2009). The region is periodically 

subjected to extended periods of drought; high winds in the region may then generate 

dust storms. The U.S. Great Plains is one of three areas in the world (the central Great 
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Plains of North America, the Sahel, equatorial Africa and India) that have the strongest 

land-atmosphere coupling strength (Koster et al., 2004). 

Over 70% of the U.S. Great Plains’ region is used for agriculture. Annual 

agricultural production is more than $41.5 billion dollars. Droughts (such as 1930s Dust 

Bowl, 1988 drought (Namias, 1991) and 2010 – 2013 droughts (Wang et al., 2014) have 

affected agriculture in this region, caused numerous agricultural and economic losses. 

Therefore, drought is the main limiting factor for agricultural production in the U.S. 

Great Plains. 

 

 

Figure 1. 1. U.S. Great Plains study region 
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CHAPTER II 

EVALUATION OF DROUGHT INDICES AS SOIL MOISTURE PROXIES 

 

2.1 Introduction 

Drought is a recurring climate phenomena characterized by below-normal 

precipitation over an extended period of months, years, or even decades (Dai, 2011a). 

Drought can have a major influence on organisms, ecosystems, economy, and society 

(Heim, 2002). Globally, droughts cause billions of dollars in damage and affect millions 

of people each year (Dai, 2011a). However, it is difficult to define and monitor drought, 

and there are many different definitions and indices for measuring drought. 

Drought indices are commonly used to monitoring drought conditions because 

there are few high-quality and long-term direct measures of drought (Hartmann et al., 

2013). The development and application of these indices goes back to the beginning of 

twentieth century (Heim, 2002). A large number of drought indices exist, each having a 

variety of data input requirements and each providing a somewhat different measure of 

drought. Some of the indices that are commonly used include the following: Palmer 

Drought Severity Index (PDSI) and Moisture Anomaly Index (Z index) (Palmer, 1965), 

Standardized Precipitation Index (McKee et al., 1993), percent normal, satellite-based 

measures of vegetation health (Quiring and Ganesh, 2010), and indices that are based on 

soil moisture such as the Standardized Soil Moisture Index and the Multivariate 

Standardized Drought Index (Hao and AghaKouchak, 2013).  
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Soil moisture is a direct measure of drought (Hartmann et al., 2013) and its 

feedback to climate may cause prolonged drought events. Soil moisture is documented to 

influences temperature and precipitation on sub-daily (Ford et al., 2015b) to seasonal 

scales (Meng, 2009). The impact of soil moisture on climate occurs via influencing 

surface energy balance and water transfer (Seneviratne et al., 2010). Previous studies 

commonly found negative soil moisture anomalies would limit the evapotranspiration so 

that to increase the near-surface air temperature (Teuling et al., 2010;Guo and Dirmeyer, 

2013). However, more complicated soil moisture-precipitation feedback mechanisms are 

discussed based on different approaches. Positive feedback shows that dry soil would 

limit evapotranspiration, leading to less moisture enters into atmosphere, which may 

cause less precipitation (Koster et al., 2004). On the contrast, negative feedback 

demonstrates that reduced evapotranspiration would increase near-surface air 

temperature and then strengthen the convective process. As a result, higher possibility of 

convective precipitation may occur over dryer soil (Ford et al., 2015c). Hence, soil 

moisture is a critical variable to evaluate and predict drought and associated extreme 

climatic events, such as heat waves. 

Soil moisture and drought indices are able to reflect moisture deficits over land 

surface. Several previous studies used the drought index SPI as soil moisture proxy to 

investigate land-atmosphere interactions. Hirschi et al. (2011) applied quantile 

regression method to show the relations between SPI and summer hot extremes in the 

southeastern Europe. The results showed the intensification of hot extremes over drier 

soil conditions. Ford et al. (2016) also used SPI to express the soil moisture deficits and 
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identified the long-term variability of soil moisture-maximum temperature coupling over 

contiguous U.S. They pointed out the coupling strength varies over time and is affected 

by SST anomalies.  

Since previous studies have used drought index as soil moisture proxies and lack 

of studies focused on comprehensive evaluation of different drought indices using soil 

moisture, it is necessary to do inter-comparison of multiple drought indices with soil 

moisture. This chapter will evaluate different drought indices for approximating soil 

moisture in land-atmosphere interaction studies.  

 

 

2.2 Data and Methods 

2.2.1 Long-term (1980 – 2012) Soil Moisture 

Long-term soil moisture is derived from Phase 2 of the North American Land 

Data Assimilation System (NLDAS-2; http://ldas.gsfc.nasa.gov/nldas/). Hourly soil 

moisture is simulated by four land surface models: Mosaic, Noah, Sacramento (SAC) 

and Variable Infiltration Capacity (VIC). Each model showed different biases relative to 

in situ soil moisture (Xia et al., 2015b). In general, Noah and VIC are wetter than the 

observations while Mosaic and SAC are drier than the observations. We calculate the 

four-model ensemble to reduce the biases induced by each individual model. Hourly soil 

moisture is averaged to daily then to weekly. We used soil moisture content in 0 – 10 cm 

and 0 – 100 cm to represent water content in surface and deep soil layer. All the 

NLDAS-2 data are with 1/8 spatial resolution. 
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2.2.2 Short-term (2003 – 2012) Soil Moisture 

Besides simulated soil moisture from NLDAS, weekly in situ soil moisture is 

added for short-term (2003 – 2012) evaluation. Daily soil moisture data were obtained 

from North American Soil Moisture Database (http://soilmoisture.tamu.edu/). The North 

American Soil Moisture Database archives data from a variety of national and state 

networks (Quiring et al., 2016). Data from 132 stations are used in this study (Figure 

2.1). These stations are collected from four observational networks (AmeriFlux, 

Oklahoma Mesonet, West Texas Mesonet and Soil Climate Analysis Network), as 

shown in Table 2.1. In this study, any stations with short periods of missing data (< 10 

days) are infilled using the daily average replacement (DAR) method (Ford and Quiring, 

2014a). Soil moisture measurements at different depths are used to estimate the 

volumetric water content (VWC) in the top 10 cm and top 100 cm of the soil column. 

For example, the VWC measured at 5 cm is assumed to represent the VWC in 0 – 10 cm 

soil layer. When there are multiple soil moisture sensors within the top 100 cm, the 

measurements are combined using a depth-weighted average. Daily soil moisture 

measurements are then averaged to a weekly value. The in situ measurements are also 

aggregated spatially to facilitate comparison with the drought indices. We use a simple 

spatial average to aggregate all of the stations within each 0.125° × 0.125° grid cell. 

Then all of the grid cells with stations in them are averaged to produce a regional or 

national dataset for comparing the in situ and modelled soil moisture. Although this 

spatial average method is not the optimal technique to reduce sampling errors (Crow et 

al., 2012), it is simple and has been widely used in previous evaluations studies (Robock 

http://soilmoisture.tamu.edu/
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et al., 2003;Albergel et al., 2012a;Xia et al., 2015b). This approach reduces some of the 

bias associated with the point-versus-grid scale mismatch. 

 

 

Figure 2. 1. Spatial distribution of in situ soil moisture measurements 
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Table 2. 1. List of observational networks in this chapter.  

Network Number of Sites 
(Used in this dissertation) Reference 

AmeriFlux 3 (Baldocchi et al., 2001) 

Oklahoma Mesonet 104 (Scott et al., 2013) 

Soil Climate Analysis Network 7 (Schaefer et al., 2007) 

West Texas Mesonet 18 (Schroeder et al., 2005) 
 

 

2.2.3 Soil Moisture Trend, Variance and Persistence 

The drought indices will be evaluated based on their ability to accurately 

represent four soil moisture characteristics: percentile, trend, variance and persistence. 

The soil moisture percentile is calculated using the cumulative distribution function 

(CDF) of the soil moisture measurements and the drought indices. The degree of 

similarity between the soil moisture and drought index percentiles is evaluated using the 

correlation coefficient. Significance tests are done using the 95% confidence level. The 

soil moisture trend is calculated based on the spatially-averaged mean annual percentile 

for both the drought indices and the soil moisture observations. The inter-annual and 

intra-annual variance of drought indices and soil moisture are represented using standard 

deviation. The standard deviation of ith week from all the years is shown for the inter-

annual variance of ith week. The standard deviation of all the weeks in one year is shown 

as intra-annual variance of that year. The persistence is based on the lagged 

autocorrelation of weekly time series. For each grid cell or station site, lagged 

autocorrelation is calculated from lagged 1 week to 12 weeks. Robock et al. (1995) 
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found that a linear fit does not change significantly after ( )rln  drops below -1. The time, 

that r takes to drop below e1 , is persistence. 

 

2.2.4 Meteorological Data 

Gridded meteorological data, including precipitation and temperature, are 

necessary to calculate the drought indices. These data are also obtained from NLDAS-2. 

NLDAS-2 precipitation data are derived from NOAA Climate Prediction Center (CPC) 

gauge-based precipitation data. This data set is adjusted by Parameter-elevation 

Regressions on Independent Slopes Model. Temperature data for NLDAS-2 are derived 

from the analysis fields of the NCEP North American Regional Reanalysis (NARR). 

Original data from NLDAS-2 are hourly data with 0.125° × 0.125° spatial resolution. 

For estimating weekly PET, precipitation data are accumulated from hourly to weekly 

values; temperature data are averaged to weekly values. 

 

2.2.5 Drought Indices 

Four drought indices are evaluated in this chapter.  The Standardized 

Precipitation Index (SPI) and the Standardized Precipitation and Evapotranspiration 

Index (SPEI) are based on the probability distribution. The SPI is calculated by 

standardizing the probability of precipitation, while the SPEI standardizes the difference 

between precipitation and potential evapotranspiration. In this chapter, we used Gamma 

distribution while calculating SPI and SPEI. The Crop Moisture Index (CMI) and Palmer 
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Z Index (Z index) are branches of Palmer Drought Severity Index (PDSI). These two 

indices are designed for relative short time scale.  

Except for SPI, the PET is necessary to calculate SPEI, CMI and Z index. In this 

chapter, the PET is calculated by the Thornthwaite equation. The Thornthwaite equation 

is a function of monthly air temperature, latitude, and month. 

a

I
TPET 





=
1016                                                                                                (2.1) 

where T is monthly averaged temperature, I is the heat index, and a is estimated 

by an I-related third-order polynomial. Heat index I is a function of T: 

51.112

1 5∑
=







=

i

TI                                                                                                      (2.2) 

 

 

2.3 Results 

2.3.1 Percentile Comparison 

Figure 2.2 and 2.3 show the relationship between the spatially-averaged soil 

moisture percentiles and drought-index based percentiles during 1980 – 2012 and 2003 – 

2012, respectively. For 1980 – 2012, the relationship between SPI, SPEI and Z index in 

the 0 – 100 cm soil layer is weaker and more random than in the 0 – 10 cm soil layer. 

Hence, SPI, SPEI and Z index have higher correlation with 0 – 10 cm soil moisture (r = 

0.58, 0.65 and 0.63) than with 0 – 100 cm soil moisture (r = 0.36, 0.37 and 0.52). The 

only exception is CMI. Figure 2.2e shows that the relationship in the higher percentiles 
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of CMI and soil moisture in 0 – 10 cm soil layer is more scattered. As a result, the 

correlation for 0 – 100 cm soil layer (r = 0.8) is higher than 0 – 10 cm soil layer (r = 

0.71). Among the four drought indices, CMI has the highest correlation with soil 

moisture, followed by the Z index. The correlation between SPI and soil moisture is 

similar to the correlation between SPEI and soil moisture.  

A similar analysis was conducted using in situ soil moisture from 2003 – 2012 

(Figure 2.3). The results are consistent with the comparisons done using the model-

simulated soil moisture. Generally, the relationships between SPI, SPEI and Z index and 

soil moisture in 0 – 100 cm soil layer are weaker. CMI is highly correlated with soil 

moisture percentiles in both layers, especially in the 0 – 100 cm. This agrees with the 

model-simulated results. 
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Figure 2. 2. Scatter plots of spatially-averaged NLDAS soil moisture percentiles and 
(a), (b) SPI, (c), (d) SPEI, (e), (f) CMI and (g), (h) Z index. Left panel: 0 – 10 cm, 

right panel: 0 – 100 cm, 1980 – 2012. 
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Figure 2. 3. Scatter plots of spatially-averaged in situ soil moisture percentiles and 
(a), (b) SPI, (c), (d) SPEI, (e), (f) CMI and (g), (h) Z index. Left panel: 0 – 10 cm, 

right panel: 0 – 100 cm, 2003 – 2012. 
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2.3.2 Spatial Pattern of Correlation 

Figure 2.4 shows the spatial pattern of correlations over the U.S. Great Plains 

from 1980 to 2012. SPI and SPEI have a similar spatial pattern of correlations in the 0 – 

10 cm soil layer (Figure 2.4a and b). In western Oklahoma, northern Texas, parts of 

central Texas and along the Texas coast, the correlations are relatively higher (r > 0.7). 

In the rest area, the SPI and SPEI are moderately correlated (r = 0.4 – 0.7) with soil 

moisture. High correlations (r > 0.7) between CMI and 0 – 10 cm soil moisture (Figure 

2.4c) are found over most part of the U.S. Great Plains, except in western and most 

southern Texas (r = 0.4 – 0.7). The area with high correlations (r > 0.7) of Z index, as 

shown in Figure 2.4d is larger than that of SPI and SPEI but smaller than that of CMI. In 

0 – 100 cm soil layer, the correlations between SPI, SPEI and soil moisture (Figure 2.4e 

and f) in northern Great Plains are lower (r < 0.4) than in southern Great Plains (r = 0.4 – 

0.7). The correlations in this layer are lower than in 0 – 10 cm soil layer. The area 

(Figure 2.4g) with high correlations (r > 0.7) between CMI and 0 – 100 cm soil moisture 

still covers most parts of the U.S. Great Plains, except western Texas and central 

Nebraska. As shown in Figure 2.4h, over the entire South Dakota, Nebraska, Kansas, 

eastern Oklahoma, western and northeastern Texas, Z index is moderately correlated  

with soil moisture (r = 0.4 – 0.7) while in western Oklahoma, northcentral and 

southeastern Texas, Z index is highly correlated with soil moisture (r > 0.7). In general, 

drought indices are more highly correlated with soil moisture in 0 – 10 cm layer than in 

0 – 100 cm. In both soil layers, CMI is highly correlated with soil moisture over larger 

area than the other three indices. 
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Figure 2. 4. Spatial pattern of correlations in the U.S. Great Plains between 
NLDAS-2 soil moisture in the 0 – 10 cm and 0 – 100 cm soil layers and 4 drought 

indices (SPI, SPEI, CMI and Z-index) from 1980 to 2012. 
 

 

Figure 2.5 shows the correlation between in situ soil moisture and four drought 

indices at each station from 2003 to 2012. SPI shows high (r > 0.7) and low (r < 0.4) 

correlations with soil moisture in 0 – 10 cm layer (Figure 2.5a) at 10 and 9 stations, 

respectively. In the same layer, SPEI, CMI and Z index show high correlations with soil 

moisture at 11, 41 and 29 stations, respectively (Figure 2.5b, c and d). The stations with 



 

24 

 

high correlations for CMI are located in southcentral Oklahoma while for Z index, the 

high correlation sites are concentrated in eastern Oklahoma. In 0 – 100 cm soil layer, 

several stations in northwest Texas show very low correlations (r < 0.2) between SPI, 

SPEI and Z index and soil moisture (Figure 2.5e, f and h). In this layer, CMI shows 

substantially higher correlation than the other drought indices (Figure 2.5g). At 33 out of 

75 sites, CMI is highly correlated with soil moisture, while the numbers of sites with 

high correlation for SPI, SPEI and Z index is 0, 0 and 4. 

 

 

Figure 2. 5. Correlations between in situ soil moisture in the 0 – 10 cm and 0 – 100 
cm soil layers and 4 drought indices (SPI, SPEI, CMI and Z index) from 2003 to 

2012 at sites in the U.S. Great Plains. 
 

 

2.3.3 Trend Analysis 

Global drought trends are a matter of significant debate in the literature. Dai 

(2011a) pointed out under climate change, the drought severity is increasing. However, 
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Sheffield et al. (2012) found there is no significant change of drought in the past 60 

years by comparing different forcing data and potential evapotranspiration models. This 

section evaluates the trends in the mean annual drought indices and soil moisture 

percentiles in the U.S. Great Plains (Figure 2.6). In both the 0 – 10 cm and 0 – 100 cm 

layer, all of the drought indices show statistically significant decreases from 1980 to 

2012, except SPI. This indicates that there is generally a drying trend in the U.S. Great 

Plains. The SPI indicates a different trend because it does not account for temperature 

changes and evapotranspiration. Therefore, the difference between the SPI and other 

drought indices can be used to demonstrate that much of the drying trend is due to an 

increase in temperatures in the region (and therefore more evaporative demand) as 

opposed to a decrease in precipitation (less supply). Warmer temperatures tend to 

enhance evapotranspiration and this in turn leads to lower soil moisture and drier 

conditions in the U.S. Great Plains. As shown in Figure 2.6a, there are statistically 

significant decreases in soil moisture in both layers. The drying trend is stronger in the 0 

– 10 cm soil layer (-0.0021 year-1) than in the 0 – 100 cm soil layer (-0.0014 year-1). 

When comparing these trends to the SPEI, CMI and Z index, it is apparent that these 

drought indices tend to overestimate the drying trend in the U.S. Great Plains. This may 

result from the use of the Thornthwaite equation to estimate Potential Evapotranspiration 

(PET) because it is solely based on the temperature and therefore may overestimate PET. 

We will test the impact of using more physically-based approaches for calculating PET 

in the next chapter. 
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All the drought indices and soil moisture indicate a significant drying trend from 

2003 to 2012 (Figure 2.6b). The drying trend of SPI (-0.0079 year-1) is weaker than SPEI 

(-0.0111 year-1), CMI (-0.0166 year-1) and Z index (-0.0196 year-1). This is consistent 

with the results based on 1980 – 2012 data. The drying trends of drought indices and soil 

moisture are much stronger in the last 10 years. This is likely due to internal climate 

variability, but a specific attribution of the causes of this drying is beyond the scope of 

this study. 

The percentiles of observed soil moisture in the 0 – 100 cm soil layer during 

2003 to 2012 changes more dramatically (-0.0148 year-1) than the observed soil moisture 

in the 0 – 10 cm soil layer (-0.0089 year-1). The drying trend of 0 – 10 cm soil is closer 

to SPI (-0.0079 year-1) while the trend of 0 – 100 cm soil moisture is more similar with 

CMI (-0.0166 year-1). This could demonstrate that surface soil moisture is more sensitive 

to precipitation than deep soil moisture. 
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Figure 2. 6. Time series of spatially-averaged mean annual SPI (brown), SPEI (red), 
CMI (green), Z index (blue), soil moisture in 0 – 10 cm soil layer (black solid) and 
soil moisture in 0 – 100 cm soil layer (black dashed) over the U.S. Great Plains. (a) 

NLDAS-2 soil moisture from 1980 to 2012, (b) in situ soil moisture from 2003 to 
2012. 

 

 

2.3.4 Inter-annual Variability of Drought Indices and Soil Moisture 

Inter-annual variability in the drought indices and soil moisture are evaluated 

using the standard deviation. It is calculated on a weekly basis from 1980 to 2012 

(Figure 2.7a). The standard deviation of soil moisture in 0 – 100 cm (black dash line) is 

lower than that of soil moisture in 0 – 10 cm (black solid line) all over the year. Among 

the four drought indices, Z index (blue solid line) shows the greatest variability. The 

peak of inter-annual variability of CMI (green solid line) is found in summer. The 
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seasonal patterns of inter-annual variabilities of CMI and soil moisture in 0 – 100 cm 

layer are similar: increasing from the beginning of year till summer and then decreasing 

till the end of year. The seasonal patterns of inter-annual variabilities of SPI (red solid 

line), SPEI (brown solid line), Z index and soil moisture in 0 – 10 cm layer are similar 

which show greater variability in the late spring and summer, less variability in the fall. 

For the time period from 2003 to 2012 (Figure 2.7b), the standard deviation of Z index is 

overall larger than the other drought indices, as well as soil moisture throughout the year. 

The variability of soil moisture in 0 – 100 cm is consistently lower. Summer is 

commonly indicated as the season with higher inter-annual variability by all the indices 

and soil moisture. Especially for CMI, the standard deviation keeps low in winter and 

then increases rapidly till summer. The change ranges from 0.1 to 0.44, which is bigger 

than SPI (0.25 – 0.34), SPEI (0.23 – 0.38), Z index (0.28 – 0.42) and soil moisture in 0 – 

10 cm (0.19 – 0.32) and in 0 – 100 cm (0.13 – 0.33). 
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Figure 2. 7. Inter-annual variability of SPI (brown), SPEI (red), CMI (green), Z 
index (blue), soil moisture in 0 – 10 cm soil layer (black solid) and soil moisture in 0 

– 100 cm soil layer (black dashed) over the U.S. Great Plains (a) NLDAS-2 soil 
moisture from 1980 to 2012, (b) in situ soil moisture from 2003 to 2012. 
 

 

2.3.5 Intra-annual Variability of Drought Indices and Soil Moisture 

We also assess the intra-annual variance of each index and soil moisture by 

calculating the standard deviation of all the weeks in each year. The histograms of the 
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standard deviations are shown in Figure 2.8a – f and Figure 2.9a – f for 1980 – 2012 and 

2003 – 2012, respectively. As shown in Figure 2.8c, the standard deviation of CMI is 

more evenly distributed than the other three drought indices This is similar to the 

standard deviation of soil moisture in the 0 – 100 cm soil layer (Figure 2.8f). The shape 

of histogram of soil moisture in 0 – 10 cm layer (Figure 2.8e) is most similar to the SPEI 

(Figure 2.8b). We also compare the multi-year averaged standard deviation of each 

drought index with soil moisture. Based on Figure 2.8, multi-year averaged standard 

deviation of SPI (0.263) is slightly smaller than soil moisture in 0 – 10 cm (0.268) while 

Z index is slightly larger (0.272). The mean standard deviation of CMI (0.245) is the 

closest to soil moisture in 0 – 100 cm (0.240). 

The histogram of intra-annual variabilities of CMI from 2003 to 2012 (0.18 – 

0.32) ranges wider than the other three indices (SPI: 0.24 – 0.30, SPEI: 0.24 – 0.30 and 

Z index: 0.26 – 0.32). Compared with soil moisture in 0 – 10 cm layer (0.20 – 0.28) and 

in 0 – 100 cm layer (0.18 – 0.30), the range is more similar to the later one. On the 

contrary, the mean standard deviation of CMI (0.253) is closer to the mean standard 

deviation of 0 – 10 cm soil moisture (0.239). Relative to the mean standard deviation of 

soil moisture (0 – 10 cm: 0.239, 0 – 100 cm: 0.225), SPI (0.271), SPEI (0.269) and Z 

index (0.281) all show larger difference than CMI (0.239). 

We also calculate the difference of intra-annual variability between drought 

indices and soil moisture in each layer. We compare the differences and select one 

drought index with largest difference and one with smallest difference for each year. 

Then we count how many times each drought index is selected as the most different 
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drought index with soil moisture (blue bar) or the least different drought index with soil 

moisture (brown bar). The result based on the differences between drought indices and 

NLDAS-2 soil moisture from 1980 to 2012 is shown in Figure 2.8g (0 – 10 cm) and h (0 

– 100 cm). The result based on the differences between drought indices and in situ soil 

moisture from 2003 to 2012 is shown in Figure 2.9 g (0 – 10 cm) and h (0 – 100 cm). 

From 1980 to 2012, SPEI is most frequently (14 years) selected as the drought index 

with the least different intra-annual variability with 0 – 10 cm soil moisture, followed by 

CMI and SPI (8 years) and then Z index (3 years). During the same period, Z index is 

selected as the drought index with the most different intra-annual variability with 0 – 10 

cm soil moisture in 11 years, followed by CMI in 10 years, SPI in 8 years and SPEI in 4 

years. In 0 – 100 cm soil layer, CMI is most frequently (14 years) identified as the 

drought index with most similar intra-annual variability with NLDAS-2 soil moisture 

while Z index is most frequently (14 years) identified as drought index with least similar 

intra-annual variability. Relative to in situ 0 – 10 cm soil moisture from 2003 to 2012, 

SPEI (5 years) and Z index (5 years) is most frequently selected as the drought index 

with the least and most different intra-annual variability, respectively. In 0 – 100 cm soil 

layer, CMI is selected in 5 years because of its closest intra-annual variability to soil 

moisture. The Z index has the most different intra-annual variability in 5 years. The 

statistical results based on simulated and observed soil moisture are consistent with each 

other. 
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Figure 2. 8. Histograms of intra-annual variability of (a) SPI, (b) SPEI, (c) CMI, (d) 
Z index, (e) soil moisture in 0 – 10 cm soil layer and (f) soil moisture in 0 – 100 cm 
soil layer over the U.S. Great Plains from 1980 to 2012 and frequency of minimum 
difference year (brown bar) and maximum difference year (blue bar) relative to (g) 

soil moisture in 0 – 10 cm soil layer and (h) soil moisture in 0 – 100 cm soil layer. 
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Figure 2. 9. Same as Figure 2.8, but for 2003 – 2012 using in situ soil moisture. 
 

 

2.3.6 Persistence of Drought and Soil Moisture 

The impacts of soil moisture on the climate system can last for months. This is 

known as soil moisture persistence, or memory (Wu and Dickinson 2004). In this section, 

we characterize the persistence of drought indices and soil moisture. Figure 2.10 shows 

the persistence of drought indices and soil moisture in warm season (April to September) 
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based on the lagged autocorrelation. Based on both long-term average (Figure 2.10a) and 

short-term average (Figure 2.10b), CMI and 0 – 100 cm soil moisture have substantially 

longer persistence. In Figure 2.10a, in April and May, the persistence of CMI and 0 – 

100 cm soil moisture are as long as 12 weeks. The persistence of CMI starts to decrease 

after May while the persistence of 0 – 100 cm soil moisture keeps 12-week persistence 

till June. From July to September, the persistence of CMI decreases faster than 0 – 100 

cm soil moisture. In contrast, the persistence of 0 – 10 cm soil moisture, SPI, SPEI and Z 

index are fairly stable. SPI shows shortest persistence (less than 2 weeks). The 

persistence of 0 – 10 cm soil moisture is longer than Z index, SPEI and SPI but much 

shorter than CMI and 0 – 100 cm soil moisture. In Figure 2.10b, consistent results are 

illustrated. CMI and 0 – 100 cm soil moisture have longest persistence. However, the 

persistence of 0 – 10 cm soil moisture, Z index and SPEI are more fluctuant. The longest 

persistence of 0 – 10 cm soil moisture and Z index reach to 7 weeks in June and 5 weeks 

in July respectively. 



 

35 

 

 

Figure 2. 10. Spatially-averaged persistence of SPI (brown), SPEI (red), CMI 
(green), Z index (blue), soil moisture in 0 – 10 cm soil layer (black solid) and soil 

moisture in 0 – 100 cm soil layer (black dashed) over the U.S. Great Plains (a) from 
1980 to 2012, (b) from 2003 to 2012. 

 

 

Figure 2.11 shows the spatial patterns of persistence of drought indices and soil 

moisture in different months based on 1980 – 2012 data. The persistence of SPI is 
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consistently shorter than 2 weeks over the entire U.S. Great Plains during the entire 

warm season. The persistence of SPEI is also short (< 3 weeks) over the most U.S. Great 

Plains during warm season. The regions with relative longer persistence (> 3 weeks) of 

SPEI shift from west Texas to southwest Texas and then to central Texas from April to 

August. The persistence of CMI is much higher than SPI and SPEI all over the U.S. 

Great Plains. In April, the persistence of CMI stays long (> 12 weeks) in the western 

Great Plains, while in southeast Oklahoma, the persistence value is relative shorter (~4 

weeks). The long persistence stays in western South Dakota and Nebraska and most 

Texas in May. The region with long persistence of CMI keeps reducing in June. Only in 

small parts of western South Dakota and Nebraska and central Texas, the persistence of 

CMI is still longer than 10 weeks. From July to September, the persistence of CMI is 

moderately long (4 – 10 weeks) over most U.S. Great Plains except in eastern Kansas, 

where the persistence is still longer than 10 weeks. The Z index persistence is also short 

in April and September (< 4 weeks). However, in May, June and July, the “hot spot” of 

long persistence (> 10 weeks) of Z index is found in Texas. In August, the area of the 

“hot spot” shrinks and locates in western Texas. The persistence of soil moisture in 0 – 

10 cm soil layer (~5 weeks) is shorter than that of soil moisture in 0 – 100 cm soil layer 

(~10 weeks). The higher persistence of 0 – 10 cm soil moisture is found over the 

boundary between Nebraska and Kansas. This region extends to South Dakota and 

Nebraska in June and July. The spatial pattern of persistence of 0 – 100 cm soil moisture 

does not change a lot from April to September. Over the boundary between Nebraska 

and Kansas, South Dakota and western Texas, the persistence (> 12 weeks) is much 
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longer than in other regions (< 10 weeks). Overall, the persistence of CMI and soil 

moisture in 0 – 100 cm soil layer is longer than other drought indices and soil moisture 

in 0 – 10 cm soil layer. 
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Figure 2. 11. Spatial pattern of persistence of drought indices and NLDAS-2 soil 
moisture in warm season (April to September) from 1980 to 2012. 
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2.4 Conclusions 

Drought indices and soil moisture are both useful sources of information for 

drought monitoring. Soil moisture observations can be used to improve the development 

and application of drought indices. Drought indices can be used as soil moisture proxies 

to describe surface moisture conditions. In this chapter, we evaluated four short-term 

drought indices using two independent soil moisture data sources: model simulations and 

in situ observations. The evaluation compared how four factors (percentile, trend, 

variability and persistence) are represented in the drought indices and soil moisture 

observations.  

Our results show that soil moisture percentiles in the 0 – 10 cm soil layer are 

more highly correlated with SPI, SPEI and Z index percentiles than soil moisture in 0 – 

100 cm while CMI is more highly correlated with soil moisture percentiles in the 0 – 100 

cm soil layer than the near-surface layer. Spatially, the highest correlation between soil 

moisture (0 – 100 cm) and drought indices occurs in the southern Great Plains regardless 

of the choice of drought indices. Soil moisture percentiles in the 0 – 10 cm soil layer are 

highly correlated with SPI, SPEI and Z index in Texas.  

A statistically significant drying trend from 1980 to 2012 is found in all the 

drought indices that account for PET. However, this trend is stronger than shown by the 

observed soil moisture. We will focus on assessing the impacts of the methodology used 

for calculating PET in the following chapter. As a result of increasing temperatures, the 

drying trend is more pronounced in the last 10 years. 



 

40 

 

We did not find good agreement regarding inter-annual variability between the 

drought indices and observed soil moisture (0 – 10 cm). However, the inter-annual 

variability of CMI does agree well with the 0 – 100 cm soil moisture. SPEI is the most 

appropriate index for capturing the intra-annual variability in the 0 – 10 cm soil based on 

distribution, mean standard deviation and frequency of minimum difference. While CMI 

is the most appropriate index for capturing the intra-annual variability in the 0 – 100 cm 

soil moisture. 

Among the four drought indices, CMI has the longest persistence, followed by Z 

index, SPEI and SPI. The persistence of 0 – 100 cm soil moisture is similar to CMI but it 

decrease slower than CMI from April to September. The persistence of 0 – 10 cm soil 

moisture is shorter than that of CMI and 0 – 100 cm soil moisture but longer than that of 

other three indices. Spatially, all the drought indices and soil moisture in 0 – 100 cm soil 

moisture commonly indicate there is longer persistence in Texas while soil moisture in 0 

– 10 cm show longer persistence between Nebraska and Kansas. 

In summary, CMI is the best index for representing soil moisture conditions in 

the top 100 cm based on the percentile, trend, variability and persistence because it was 

designed for measuring agriculture drought and moisture available for crops. Although 

SPI was used in previous studies to investigate land-atmosphere interactions, however 

due to the results of this study, we do not recommend using SPI to represent soil 

moisture condition because it is designed for meteorological drought and ignores the 

influence of ET. The three drought indices (SPEI, CMI and Z index) using PET in their 

calculations also show different performances and may over-estimate drought trends. 
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This leads to further questions on how to calculate PET. Therefore, this issue will be 

addressed in the next chapter. 
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CHAPTER III 

DROUGHT FROM 1980 TO 2012: A SENSITIVITY STUDY OF USING 

DIFFERENT METHODS FOR ESTIMATING POTENTIAL 

EVAPOTRANSPIRATION IN THE PALMER DROUGHT SEVERITY INDEX* 

 

3.1 Introduction 

Drought indices are an important tool that can be used to evaluate the timing, 

duration, and intensity of drought. Over 100 drought indices have been developed since 

the beginning of twentieth century (Heim, 2002). Previous review articles, such as 

Quiring (2009) have described many of the most commonly used drought indices and 

evaluated their strengths and weaknesses, while Mishra and Singh (2010) and Zargar et 

al. (2011) provide comprehensive reviews of nearly 100 drought indices. 

Given the range in derivations and the different responses of these drought 

indices, not all are suitable for monitoring agricultural, meteorological, or hydrological 

drought conditions (Quiring and Papakryiakou, 2003). Here we have chosen to focus on 

the Palmer Drought Severity Index (PDSI) because it is the most widely used drought 

index in the U.S. to monitor droughts (Dai, 2011b; Heim, 2002). The PDSI has been 

used in long-term analyses of drought variability and to detect changes in drought 

                                                 

* This chapter is reprinted with permission from “Drought in the U.S. Great Plains (1980-2012): A sensitivity study 

using three different methods for estimating potential evapotranspiration in the Palmer Drought Severity Index” by 

Shanshui Yuan and Steven Quiring, 2014. Journal of Geophysical Research-Atmospheres: 19, 10,996–11,010, doi: 

10.1002/2014JD021970, Copyright 2014 by John Wiley and Sons. 
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characteristics during the last 100 years (Dai, 2011a, 2012; Sheffield et al., 2012). It has 

also been used to examine how climate change may influence drought frequency, 

severity, and duration (Burke and Brown, 2008; Dai, 2012; Rind et al., 1990; Sheffield 

and Wood, 2008). 

The original PDSI was published in 1965 by W. Palmer (Palmer, 1965). It 

considers antecedent precipitation, moisture supply, and moisture demand using a simple 

two-layer bucket-type water balance model. The PDSI classifies moisture conditions into 

11 categories, as shown in Table 3.1. Traditionally, the PET calculated in the PDSI is 

based on the Thornthwaite equation. This is a temperature-dependent method of 

estimating PET that is not very accurate in energy-controlled regions (Alley, 1984; 

Hobbins et al., 2008; Mishra and Singh, 2010). Although Guttman (1991) demonstrated 

that precipitation is the most important factor that controls the PDSI, replacing the 

Thornthwaite equation with a more physically based PET method should strengthen the 

ability of the PDSI to accurately depict drought conditions (van der Schrier et al., 2011). 

A number of previous studies have used the Penman-Monteith equation, which considers 

wind speed, humidity, and radiation, to calculate PDSI (Burke et al., 2006; Dai, 2011a; 

Sheffield et al., 2012; van der Schrier et al., 2011, 2006a, 2006b). Dai (2011a) found that 

using the Penman-Monteith equation for calculating PET did not have a significant 

influence on global drought patterns, and this was confirmed by van der Schrier et al. 

(2011). They agreed the lack of sensitivity of PET estimates is due to Palmer’s 

“climatically appropriate for existing conditions” (CAFEC) coefficients which normalize 

the PET values using the long-term climatology. However, Sheffield et al. (2012) 
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demonstrated using the Penman-Monteith-based PDSI resulted in fewer observed 

changes in global drought characteristics during the last 60 years as compared to the 

original PDSI. Global drought trends are still a matter of debate. Dai (2011a) found a 

significant global drying trend based on using the PDSI with the Penman-Monteith 

equation for estimating PET. However, Sheffield et al. (2012) applied a similar approach 

and concluded that the drying trend found by (Dai, 2011a) is overestimated. Damberg 

and AghaKouchak (2014) confirmed the results of Sheffield et al. (2012) by using the 

Standardized Precipitation Index to examine global trends in moisture conditions. 

 

Table 3. 1. Categories of drought conditions for PDSI by Palmer (1965) 
PDSI Classification PDSI Classification 

Larger than 4.0 Extremely wet smaller than -4.0 Extremely dry 

3.0 – 4.0 Severely wet -4.0 – -3.0 Severely dry 

2.0 – 3.0 Moderately wet -3.0 – -2.0 Moderately dry 

1.0 – 2.0 Slightly wet -2.0 – -1.0 Slightly dry 

0.5 – 1.0 Incipient wet spell -1.0 – -0.5 Incipient dry spell 

-0.5 – 0.5 Near normal 

 

 

Although the Penman-Monteith equation is a physically based approach, it uses a 

“big leaf” assumption that is most suitable for regions that have complete canopy cover 

or bare soil (Stannard, 1993). The two-source PET model considers radiation balances at 

the canopy level and soil surface separately (Shuttleworth and Wallace, 1985). This 
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improvement helps PET models more accurately describe areas with sparse vegetation. 

However, there have been few studies applying the two-source model for calculating 

PDSI. Liu et al. (2009) analyzed the drought response to land cover land use changes in 

North China. Xu et al. (2012) applied the two-source model based PDSI to assess the 

response of vegetation to drought in the same region.  

The aim of this chapter is to improve the PDSI by replacing the Thornthwaite 

equation with the physically based two-source model and to compare the two-source 

PDSI with the Penman-Monteith PDSI and the original PDSI. Drought trends in the U.S. 

Great Plains (Texas, Oklahoma, Kansas, Nebraska, and South Dakota) from 1980 to 

2012 will be evaluated using all three versions of the PDSI. 

 

 

3.2 Data and Methods 

3.2.1 Meteorological Data 

Gridded meteorological data, including precipitation, maximum temperature, 

mean temperature, minimum temperature, wind speed, air pressure, downward long-

wave radiation, and downward shortwave radiation, are necessary to drive PET models. 

These data are obtained from NLDAS-2 (Xia et al., 2012). NLDAS provides reliable 

initial states for the atmosphere, ocean, and land surface (Mitchell et al., 2004). Hourly 

NLDAS meteorological forcing data (1/8°) are downscaled from the NARR which is 

with 32 km spatial resolution and 3 h temporal resolution. NLDAS-2 precipitation data 

are derived from NOAA CPC gauge-based precipitation data. This data set is adjusted 
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by Parameter-elevation Regressions on Independent Slopes Model. NLDAS-2 

downward shortwave radiation data are improved through applying a bias-correction 

algorithm to the NARR surface downward shortwave radiation. For estimating daily 

PET, precipitation and radiation data are accumulated from hourly to daily values; the 

other forcing data are averaged to daily values. 

 

3.2.2 Land Surface Parameters 

Land surface information is also critical for calculating the two-source PDSI. 

Elevation, vegetation classifications, and their corresponding parameters are obtained 

from NLDAS-2. The original source of the elevation data is the GTOPO30 database 

(Verdin and Greenlee, 1996). The vegetation data set is based on the global 1 km 

University of Maryland vegetation classification (Hansen et al., 2000). The frequency of 

each vegetation type in each 1/8° grid is the weighting factor that is used to rescale 

vegetation parameters from 1 km resolution to 1/8° resolution.  

Soil moisture is a direct measure of drought impact (Robock et al., 2000). In this 

study, the correlation between observed soil moisture and different PDSI values are used 

to evaluate the performance of different PDSIs. Observed soil moisture over the U.S. 

Great Plains from 2005 to 2012 is obtained from the North American Soil Moisture 

Database (http://soilmoisture.tamu.edu). A total of 142 stations from five different 

networks (South Dakota Automated Weather Network, Automated Weather Data 

Network, Atmospheric Radiation Measurement, Oklahoma Mesonet, and West Texas 

Mesonet) are used in this analysis. Observed soil moisture is converted from volumetric 
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water content (VWC) at the various sensor depths to VWC in the top 1m of the soil. This 

VWC value is compared to the different forms of PDSI evaluated in this study. 

 

3.2.3 PET Models 

Potential evapotranspiration influences the water balance in the PDSI by acting 

as a threshold in calculating actual evapotranspiration (AET). If precipitation is greater 

than PET, AET equals to PET, while if precipitation is less than PET, AET is 

contributed by PET together with soil water storage. In this study, we used three 

approaches to estimate PET: the Thornthwaite equation (TH), the Penman-Monteith 

equation (PM), and the two-source PET model (2S). In the original PDSI (Palmer, 1965), 

the TH (Thornthwaite, 1948) is used to calculate PET by building a function of monthly 

air temperature, latitude, and month, as shown in eq. 2.1 (last chapter). 

The Penman-Monteith equation (PM) is a physically based method that is widely 

used for estimating PET. Compared with the TH, the PM requires more variables and 

can more realistically simulate PET (van der Schrier et al., 2011). The PM creates a 

reference land cover and assumes that both energy and mass fluxes occur at the 

reference height. The Food and Agricultural Organization (FAO) defines the PM as 
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where nR  is net radiation, ∆  is slope of the vapor pressure curve, G  is soil heat 

flux, 2U  is wind speed, da ee −  is vapor pressure deficit, and γ  is psychometric constant. 
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The two-source PET model (2S), also known as the Shuttleworth-Wallace model, 

is an improvement over the PM because the PM assumes both heat fluxes and mass 

fluxes happen at the hypothetical reference height, which is covered by a single uniform 

big leaf. This assumption is rarely valid over a large area or a sparse vegetation covered 

region. The 2S identifies two independent heat sources: canopy surface and soil surface. 

At each heat source, there exists corresponding radiation balance and aerodynamic 

principles. 

As shown in Figure 3.1 (Zhou et al., 2006), the 2S model considers five land 

surface resistances: aerodynamic resistance between canopy source and reference level 

(ra
a), aerodynamic resistance between soil surface and canopy source (ra

s), bulk 

boundary-layer resistance of canopy (ra
c), bulk stomatic resistance of the canopy (rs

c) and 

soil surface resistance (rs
s) when soil moisture is at field capacity. ra

c and rs
c restrict the 

water vapor being out from the leaf stomata; rs
s and ra

s control the water movement from 

soil surface. Total PET consists of: transpiration (ETc), interception evaporation (ETi) 

and soil evaporation (ETs). These three components can be calculated as follows: 
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Where ∆  is slope of saturation vapor pressure curve, ncR  and nsR  mean net 

radiation is absorbed by canopy and soil, respectively, G  is the substrate soil heat flux, 

ρ  is mean air density, pC  is air specific heat, γ  is the psychrometric constant, λ  is the 

latent heat of vaporization, frW  is wetted fraction of the canopy and 0D  is the water 

vapor deficit at the source height. More detail on the equations for calculating the above 

variables are described by Mo et al. (2004). 
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Figure 3. 1. Schematic diagram of the two-source evapotranspiration model (Zhou 
et al., 2006). 

 

 

3.2.4 PDSI 

The Palmer Drought Severity Index (PDSI) uses a water balance model with two 

soil layers to evaluate moisture supply and demand (Palmer, 1965). The water balance 

model is governed by evapotranspiration (ET), recharge to soils (R), runoff (RO), water 

loss to the soil layers (L), and the potential values of PET, PR, PRO, and PL. The inputs 

for calculating the PDSI are precipitation (P) and temperature (T). Palmer (1965) 

introduced “climatically appropriate for existing conditions” (CAFEC) value to represent 
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the needed amount of each water flux to maintain a normal water condition. The CAFEC 

precipitation is calculated by eq 3.5. 

LPROPRPEP iiii δλβα −++=


                                                                      (3.5) 

In eq 3.5, iα , iβ , iλ  and iδ are water-balance coefficients, which equal to 
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, respectively. The bar indicates that these values are 

calculated based on multi-year mean values for each month. 

The moisture anomaly index (Z index) is calculated as ( )KPP


− , where P is the 

actual precipitation and K is a climatic characteristic coefficient. For the central U.S., K 

can be calculated by eq 3.6 and 3.7. 
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where D is “moisture departure”, represented by PP


− . Finally, the PDSI value 

is determined by 3897.0 1 ttt ZXX += − . 
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3.3 Results 

3.3.1 Comparison of PET Values 

PET is a key factor in calculating the PDSI. The original PDSI calculates PET 

using TH, which estimates PET as a function of day length, latitude, and temperature. 

The PM-based PET is more physically realistic, combining the energy balance and mass 

transfer approaches. The 2S further improves on PM by treating the soil surface and 

canopy layer as two independent heat sources. 

Comparison of the area-averaged annual PET calculated using the TH, PM, and 

2S approaches (Figure 3.2) shows that there are substantial differences among them. The 

TH-based mean annual PET is the smallest and the 2S is the largest. Mean annual TH-

based PET for the U.S. Great Plains is 859.8 mmyr-1, which is less than the PM-based 

PET (1971.9 mmyr-1) and the 2S-based PET (2035.6 mmyr-1). The TH-based PET has 

the largest trend in annual values from 1980 to 2012 (2.33 mmyr-1), followed by the 2S-

based PET (1.89 mmyr-1) and the PM-based PET (0.98 mmyr-1). This increasing trend in 

annual TH-estimated PET occurs because TH is strongly controlled by air temperature. 

As shown in Figure 3.2, the mean annual 2-m air temperature from NLDAS-2 over the 

U.S. Great Plains increased by ~1°C between 1980 and 2012. 
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Figure 3. 2. Time series of area-averaged annual PET calculated by the TH (blue), 
the PM (red), and the 2S (green) and NLDAS-2 2m air temperature (purple) over 

the U.S. Great Plains from 1980 to 2012. 
 

 

Figure 3.3 shows the intra-annual variability of PET values. The PM and 2S PET 

estimates are similar. The 2S-based PET is generally higher than the PM-based PET, 

except during June and September. The peak in PM and 2S PET occurs in July, while 

the peak in TH PET is in August. In July – September, in contrast to the rest of year, TH 

PET is higher than the other two PET estimates. In the 2S model, transpiration is 

generally the dominant source of annual PET (Figure 3.4). It accounts for 52% of total 

annual PET. Transpiration is the largest component of PET between May and September. 

Soil evaporation is the largest component during the rest of the year. The largest values 

of transpiration and interception evaporation occur in July, which corresponds to the 
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peak in leaf area index (LAI) (not shown). Soil evaporation reaches its highest value in 

June due to the combination of energy and moisture availability. 

 

 

Figure 3. 3. Seasonal pattern of area-averaged PET estimated by the TH (blue), the 
PM (red), and the 2S (green) over the U.S. Great Plains. 
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Figure 3. 4. Seasonal pattern of three components of total PET (calculated by the 
2S model): canopy transpiration (blue), interception evaporation (red), and bare 

soil evaporation (green) over the U.S. Great Plains. 
 

 

3.3.2 Comparison of PDSI Values 

Three different versions of the PDSI were calculated using TH, PM, and 2S-

based PET. All of the other input variables (e.g., precipitation data) needed to calculate 

the PDSI were held constant. Wells et al. (2004) developed a self-calibrated version of 

the PDSI that automatically calibrates the parameters in the PDSI rather than using the 

empirical constants proposed by Palmer (1965). This is supposed to provide a better 

representation of local climate conditions. In this study, we chose to use the empirical 
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constants provided by Palmer (1965), because they were developed using data from the 

U.S. Great Plains.  

Overall, the TH, PM and 2S PDSI values are relatively similar (Figure 3.5), 

despite the differences in PET. However, there are substantial differences in the PDSI 

values in some instances. For example, in October 1983 the PM-based PDSI is smaller 

than the TH and 2S PDSI. While in December 1986, the 2S PDSI was drier than the TH 

and PM. Figure 3.6 (upper) shows the differences between the PM-based and TH-based 

PDSI, while Figure 3.6 (lower) shows the differences between the PM-based and 2S-

based PDSI. During most months before 1998, the PM-based PDSI is drier than the TH-

based PDSI. After 1998, the TH-based PDSI are generally drier than the PM-based PDSI. 

 

 

Figure 3. 5. Time series of area-averaged monthly PDSI calculated by the TH (blue), 
the PM (red), and the 2S (green) over the U.S. Great Plains from 1980 to 2012. 
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Figure 3. 6. Differences (top) between the PM-based PDSI and the TH-based PDSI 
and (bottom) between the PM-based PDSI and the 2S-based PDSI over the U.S. 

Great Plains from 1980 to 2012. 
 

 

There is significant inter-decadal variability in moisture conditions in the Great 

Plains, but little long-term trend (Figure 3.5). Linear functions were fit to all the PDSI 

time series (based on the mean annual PDSI value to remove seasonal impacts). The 

Mann-Kendall trend test was applied to test significance. The Mann-Kendall test 

requires serially independent data (Yue et al., 2002). We tested the lag-1 correlations of 

the mean annual PDSI and found that the correlations are not statistically significant (r2 

= 0.08, not significant) and therefore it meets the assumptions of the Mann-Kendall test. 

There are slight decreasing (drier) trends based on all three PDSIs and the TH-based 

PDSI has the strongest negative trend (-0.0226 year-1). Both the TH-based PDSI and the 

2S-based PDSI pass the Mann-Kendall trend test with 95% confidence interval. 

Spatial distributions of drought trends (1980 to 2012) are summarized in Figure 

3.7. The three versions of the PDSI generally show a consistent spatial pattern of drying 



 

58 

 

and wetting trends in the Great Plains. There are small positive trends in PDSI values 

(wetter conditions) in most of South Dakota, Nebraska and Kansas. There are negative 

trends in PDSI vales (drier conditions) in most of Oklahoma, except the northeast corner. 

Texas features a mixture of wetting and drying trends. However, the magnitude of the 

drying/wetting trends over some regions varies based on the different PDSI methods. 

The trends in South Dakota, Nebraska, Kansas and Oklahoma are robust because all 

three approaches show similar spatial patterns. In central Texas, there is a discrepancy 

between the TH-based PDSI and the other two PDSI methods. A closer examination of 

the spatial pattern of the locations with statistically significant trends in PDSI reveals 

that the TH-based and PM-based PDSI tend to be more spatially contiguous than the 2S-

based PDSI (Figure 3.7). That is, the locations with statistically significant positive and 

negative trends for the TH-based and PM-based PDSI are clustered together. This makes 

sense because these patterns are being determined solely by trends in weather conditions. 

The seemingly more random pattern in the locations of the statistically significant 

positive and negative trends for the 2S-based PDSI is due to the fact that these patterns 

are determined both by trends in weather conditions as well as variations in vegetation 

(land cover). Grid cells that are located right next to each will experience similar 

temperature and precipitation conditions, but may have different dominant vegetation. 

Therefore, the PET estimate in the 2S-based PDSI may be quite different in adjacent grid 

cells and so the spatial patterns of the 2S-based PDSI will be less spatially coherent than 

the TH-based and PM-based PDSI. 
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Figure 3. 7. Spatial pattern of trends in the PDSI estimated by (left) the TH, 
(middle) the PM, and (right) the 2S. Statistically significant trends at the 95% level 

are indicated by a cross. 
 

 

The Mann Kendall test based on the mean annual PDSI showed that there are 

statistically significant (p value = 0.05) drying/wetting trends in ~15% of the U.S. Great 

Plains (16.2% based on the TH; 11.8% based on the PM; 15.2% based on the 2S). Figure 

3.8 shows the spatial pattern of differences between the 2S-based PDSI and the other 

two PDSI methods. Compared with the PM-based PDSI, the 2S-based PDSI shows 

significantly drier conditions in northern South Dakota, western Nebraska, parts of 

Kansas, western Oklahoma and northern/western Texas. The stronger wetting trends are 

concentrated in northeastern South Dakota, eastern Nebraska, eastern Kansas, 

northeastern Oklahoma and eastern/western Texas. The 2S-based PDSI and the TH-

based PDSI show significant disagreement over broader regions of the U.S. Great Plains. 

The TH-based PDSI has drier trends in southern and eastern parts of Texas and southern 
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Oklahoma, and wetter trends in western South Dakota, western Nebraska, and 

northwestern Kansas. 

 

 

Figure 3. 8. Difference of trends in the PDSI (left) between the 2S and the PM, 
(right) between the 2S and the TH. Statistically significant trends at the 95% level 

are indicated by a cross. 
 

 

It appears that the spatial patterns of differences correspond, to some extent, with 

land cover type (Figure 3.9). Over regions dominated by croplands and closed shrub 

lands, the 2S-based PDSI indicates drier conditions than the PM-based PDSI. Over 

wooded grassland, the 2S-based PDSI tends to be wetter than the TH-based PDSI. Since 
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the TH-based PDSI includes no vegetation information, the PM-based PDSI considers 

land cover as a default parameterization at a reference height (“big leaf” assumption) and 

the 2S-based PDSI treats land cover as two independent sources (soil and canopy), the 

impact of land cover on the spatial distribution of PDSI trend differences cannot be 

ignored. 

 

 

Figure 3. 9. Spatial distribution of land cover type over the U.S. Great Plains. 
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To further identify the influence of land cover on PDSI estimation, we performed 

land cover sensitivity experiments in the U.S. Great Plains using the 2S-based PDSI. The 

six principal land covers are grassland (31.5%), cropland (28.8%), wooded grassland 

(20.9%), closed shrubland (6.2%), bare ground (6.0%) and woodland (4.4%). In each 

experiment, one of these 6 dominant land cover types was set as the only land cover for 

the entire U.S. Great Plains. All the experiments, except the one driven by wooded 

grassland (0.023 year-1), show a drying trend (Figure 3.10). Over bare ground, the most 

significant drying trend (-0.0168 year-1) occurs because bare ground has a direct impact 

on water and energy exchanges. For example, bare ground does not redistribute 

precipitation and solar radiation into two different layers in the 2S model (i.e., there is no 

canopy interception). 

 

 

Figure 3. 10. Time series of area-averaged monthly 2S-based PDSI driven by six 
land cover types: bare ground (red), cropland (green), wooded grassland (azure 

blue), closed shrubland (Prussian blue), grassland (yellow), and woodland (purple) 
over the U.S. Great Plains from 1980 to 2012. 
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The spatial patterns of PDSI trends (Table 3.2) are similar over grassland (Figure 

3.11 left), cropland (not shown) and closed shrubland (not shown). Wooded grassland 

(Figure 3.11 middle) and woodland (not shown) also have similar spatial patterns of 

PDSI trends. However, wooded grassland has more areas with statistically significant 

wetter trends (17.2%) as compared with grassland (10.3%). Over bare ground (Figure 

3.11 right) there is less spatial coherence in the location of the regions with statistically 

significant trends. It appears that the PET models are most sensitive to bare ground. 

Previous studies have showed that PET is strongly influenced by LAI (Zhou et al., 

2006;Yuan et al., 2008). As a result of the differences in seasonal patterns of LAI for 

different land covers and how this corresponds to trends in climate conditions (e.g., 

monthly temperature and precipitation), this can influence the monthly PDSI and impact 

the PDSI trends. 

 

Table 3. 2. Fraction of area with drying/wetting trend covered by different land 
covers 

 Drying 
Significant 

Drying 
Wetting 

Significant 

Wetting 

Grassland 55.70% 7.90% 44.30% 4.60% 

Cropland 56.50% 7.90% 43.50% 4.50% 

Closed Shrubland 58.80% 9.00% 41.20% 4.60% 

Wooded Grassland 34.70% 1.50% 65.30% 17.20% 

Woodland 35.80% 2.70% 64.20% 10.30% 

Bare Ground 61.50% 14.10% 38.50% 5.70% 
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Figure 3. 11. Spatial pattern of trends of the 2S-based PDSI driven by (left) 
grassland, (middle) wooded grassland, and (right) bare ground over the U.S. Great 

Plains. 
 

 

3.3.3 Comparison with Observed Soil Moisture 

The three PDSI methods were evaluated using observed soil moisture data. 

Monthly Z-index values were correlated with observed monthly soil moisture (top 1 m 

of the soil) at 142 stations in South Dakota, Nebraska, Kansas, Oklahoma and Texas. 

The May to October PDSI and monthly soil moisture anomalies were compared at each 

location and the correlation coefficients are shown in Table 3.3. All three versions of the 

PDSI have moderately strong correlations (~0.5) with soil moisture in South Dakota, 

Nebraska, Kansas and Oklahoma. In Texas, correlations are lower (~0.3). Theoretically, 

the 2S-based PET model is the most physically-based. However, according to the 

correlation analysis, the performance of the 2S-based PDSI is significantly better than 



 

65 

 

the TH-based PDSI, but it is not significantly better than the PM-based PDSI, especially 

in Nebraska, Oklahoma and Texas. 

 

Table 3. 3. Correlation analyses (r) of PDSI Z-Index and observed soil moisture 
r South Dakota Nebraska Kansas Oklahoma Texas 

TH-based 0.50 (3/9) 0.40 (6/40) 0.43 (1/8) 0.41 (4/47)  0.29 (15/38) 

PM-based 0.50 (2/9) 0.50 (1/40) 0.48 (1/8) 0.51 (3/47) 0.33 (12/38) 

2S-based 0.50 (2/9) 0.53 (2/40) 0.48 (1/8) 0.52 (2/47) 0.39 (5/38) 

() means number of stations with statistically significant correlations/total number of 

stations 

 

 

3.3.4 Evaluation of Drought Severity 

As discussed above, all three versions of the PDSI show that there is an overall 

tendency towards drier conditions in the U.S. Great Plains between 1980 and 2012. The 

use of different methods for estimating PET leads to the slight differences in the 

magnitude of the drying trends. The TH-based PDSI has the strongest trend and the PM-

based PDSI has the weakest trend. The percentage of the U.S. Great Plains area under 

drought conditions (PDSI < -3.0) is shown in Figure 3.12. There has been a notable 

increase in the area under drought since 2000. Before 2000, the largest percentage of dry 

area was less than 40%, after 2000, both the frequency and the coverage of droughts 

over the U.S. Great Plains increase dramatically. Although there are only small 
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differences between the 3 methods in the overall drought trends for the U.S. Great Plains, 

there are larger differences when comparing the area under drought. These differences 

are especially notable during severe drought events. The TH-based PDSI indicates a 

greater area under drought conditions than the other two approaches. The differences 

between the three are especially pronounced in 2006, 2011 and 2012. In 2006 and 2011, 

the area under drought as estimated by the TH-based PDSI is twice as large as the area 

estimated by the PM-based PDSI. In 2012, the differences among the three versions of 

PDSI exceed 15% of the area of the U.S. Great Plains. Extreme droughts in the U.S. 

Great Plains are always associated with extreme high temperature. Therefore, the TH-

based PDSI estimates the particularly large drought area. PET from soil is more sensitive 

to temperature than from canopy, the 2S-based PDSI estimates larger drought area than 

the PM-based PDSI. 

 

 

Figure 3. 12. Time series of the percentage of area in drought (left) estimated by the 
TH (blue), the PM (red), and the 2S (green) from 1980 to 2012. Area in droughts in 
2006, 2011, and 2012 (right) estimated by the TH (blue), the PM (red), and the 2S 

(green). 
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3.3.5 Comparison with Previous Studies 

Previous research conducted by Dai (Dai et al., 2004;Dai, 2011b) used a global 

PDSI dataset to evaluate drought trends. We compared our PDSI analysis with Dai’s 

results (Dai, 2011b, a) and found that our results are consistent with the temporal 

patterns shown in Dai (2011b) (Figure 3.13). However, Dai’s PDSI is more variable than 

ours. That is, Dai’s PDSI shows higher values during wet periods and lower values 

during dry periods. This is likely due to the differences in the length of record and 

CAFEC coefficients. Both Dai’s TH-based PDSI and PM-based PDSI have statistically 

significant (P < 0.05) decreasing trends. Although Dai’s TH-based PDSI is only 

available till 2005, and therefore does not include the droughts in 2006, 2011 and 2012, 

their drying trend (-0.0351 year-1) is larger than the trend in our TH-based PDSI (-0.0226 

year-1). Dai’s PM-based PDSI (-0.0192 year-1) also shows a stronger drying trend than 

both our PM-based PDSI (-0.0011 year-1, not significant) and 2S-based PDSI (-0.0083 

year-1, P < 0.05). These differences are likely because Dai’s used different climatic 

forcing data (Sheffield et al., 2012), a longer period for calculating climatological 

normals and a different PDSI parameterization. Hence, our results generally agree with 

Dai’s and show that there is a drying trend in the U.S. Great Plains. 
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Figure 3. 13. Similar with Figure 3. 5. Added Dai’s TH-based PDSI (yellow dashed 
line) from 1980 to 2005 and Dai’s PM-based PDSI (purple dashed line) from 1980 

to 2012. 
 

 

3.4 Discussion and Conclusions 

This chapter evaluated the sensitivity of the PDSI using three different methods 

for estimating PET. Our results demonstrated that there are large differences in mean 

annual PET over the U.S. Great Plains. The differences are reflected in both annual PET 

values and long-term (33 years) trends. The temperature-based TH may not be the best 

approach to estimate PET because it is overly dependent on temperature. Previous 

studies have shown that temperature is not the only factor that influences PET (or even 

the most important factor). For example, solar radiation (Roderick and Farquhar, 2002), 

wind speed (McVicar et al., 2012) and water vapor pressure deficit (Wang et al., 2012) 

have been shown to influence PET more than temperature. The TH approach does not 
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account for these factors. In addition, the empirical function used in the TH equation 

may not reflect the true nature of the relationship between temperature and PET. Wang 

et al. (2012) found that the trend in PET is not consistent with the increasing trends in 

temperature (Trenberth, 1990;Kutepov et al., 2006;Hao and AghaKouchak, 2013). More 

physically-based approaches such as the PM and the 2S address some of the 

shortcomings in the TH. Both of these methods estimate higher PET values, less 

interannual variability in PET and less pronounced drying trends. The PM treats the 

vegetation canopy as a “big leaf”, but ignores the bare soil evaporation. The 2S-based 

PET includes bare soil evaporation and has a higher mean annual PET than the PM. Due 

to the sensitivity of TH to temperature, the intra-annual variations in the TH-based PET 

are greater than the other two methods.  

Seasonal patterns of PET values indicate that canopy transpiration dominates the 

intra-annual variations in PET. Seasonal variations in transpiration are strongly 

controlled by the canopy growth stages, as well as incoming shortwave radiation (Mo et 

al., 2004). Over the U.S. Great Plains, there is substantial variation in vegetation types 

(Figure 3.9). Based on the monthly LAI, 92% of the U.S. Great Plains region has 

maximum LAI in July. In winter, soil evaporation plays a critical role in total PET. 

The PDSI is not very sensitive to differences among the PET values estimated by 

TH, PM and 2S. Moisture supply (precipitation) is the single most important factor that 

influences the PDSI in the U.S. Great Plains. Water supply, rather than energy supply 

plays the most critical role in producing AET. Hence, although replacing the TH with 

the PM or the 2S can provide better estimates of PET, there is limited impact and benefit 
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if these PET values are being used to calculate the PDSI. Correlation between the three 

versions of PDSI and observed top 1-m soil moisture also demonstrated that PDSI values 

are relatively insensitive to PET because the correlations for all 3 methods were very 

similar. 

IPCC AR5 (Hartmann et al., 2013) indicates that there is disagreement among 

global drought assessments after mid-1980s (Dai, 2011b;van der Schrier et al., 

2013;Sheffield et al., 2012). There are a number of reasons for these discrepancies. One 

reason is that a number of these studies have been based on using a version of the PDSI 

that relies on TH-based PET. Since the TH is overly dependent on the temperature, the 

TH-based PET has a significant drying trend which corresponds to the significant 

positive trend of temperature. Another reason for the discrepancies is the use of different 

calibration periods. The calibration period for Dai (2011b) was 1950 – 1979, while 

Sheffield et al. (2012) and van der Schrier et al. (2013) used 1950 – 2008 as their 

calibration period. This resulted in a drier PDSI from 1980 onwards. A third reason for 

disagreement among global drought assessments is the use of different forcing data. For 

example, Sheffield et al. (2012) used CRU TS 3.0 precipitation data, while Dai (2011b) 

used the GPCP product from 1979 to 2008 and CPC-Chen before 1979. The CRU 

precipitation product is wetter than others (Hartmann et al., 2013), and this contributes to 

a reduction in drought severity.  

This chapter addresses how using different versions of the PDSI can influence 

drought trends. Our results show some evidence that the U.S. Great Plains has 

experienced a drying trend between 1980 and 2012. However, the more physically-based 
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approaches (the PM and the 2S) show a weaker drying trend than the temperature-based 

approach (the TH). Though the reported trend in this study ends in 2012 (a year with 

extreme drought), our sensitivity analysis (not shown) shows that this does not unduly 

bias the slope of the trend line. We selected 5 different PDSI values for 2013 (PDSI = 0, 

-1, -2, -3 and -4), ranging from normal to extreme drought. If moisture conditions had 

been near-normal in 2013, this would slightly reduce the reported drying trend. Drought 

conditions in 2013 were present throughout much of the study region and therefore the 

trends reported in this study are considered to be robust. 

Sheffield et al. (2012) suggest that the TH overestimates the drying trend because 

the temperature-based PET model cannot capture the influence of radiation, wind speed, 

humidity and vapor pressure deficit (Roderick et al., 2007). The 2S accounts for some of 

these factors and it simulates the soil surface as independent source. The surface 

resistance of soil is more sensitive to the environment than the canopy resistance 

(Stannard, 1993). Therefore, distinguishing bare soil evaporation from total PET is 

important and produces a stronger drying trend than using the PM.  

Previous studies show increasing trends in global drought (Dai, 2012;Sheffield et 

al., 2012). However, the IPCC AR5 (Hartmann et al., 2013) concluded, with a high 

degree of confidence, that the frequency and intensity of drought in central North 

American has decreased since the 1950s. Our results show similar trend in South Dakota, 

Nebraska and Kansas. Damberg and AghaKouchak (2014) also highlighted southwest 

United States and Texas experience a significant drying trend. Our study is generally 

consistent with this study. The spatial patterns of drying and wetting in the U.S. Great 
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Plains are fairly consistent between the three versions of PDSI. Large parts of South 

Dakota, Nebraska and Kansas show wetting trends in all three versions of the PDSI. In 

Oklahoma and Texas, there is a mixture of drying and wetting trends. There are some 

differences in the trends between the three methods and the locations of these differences 

are coincident with differences in land. It is unclear how significant the causal link with 

land cover is, but land cover has been confirmed as a factor that influences PDSI 

calculation. This highlights the need for future work to investigate the relationships 

between land cover and drought trends. 

In summary, this study confirms that PDSI is relatively insensitive to the PET 

methods used (Dai, 2011b;van der Schrier et al., 2011;Sheffield et al., 2012;Guttman, 

1991). However, the use of different PET methods can influence the spatial and temporal 

patterns of drought and can be important for determining drought severity during major 

drought events (e.g., 2012 central Great Plains drought). 
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CHAPTER IV 

COMPARISON OF THREE METHODS OF INTERPOLATING SOIL MOISTURE IN 

OKLAHOMA* 

 

4.1 Introduction 

Soil moisture plays a critical role in hydrology, agriculture, ecology and climate. 

Spatial variability of soil moisture impacts runoff response to precipitation (Berg and 

Mulroy, 2006), drought (Houborg et al., 2012), land-atmosphere interactions 

(Seneviratne et al., 2010), and the carbon cycle (Falloon et al., 2011). Therefore, 

spatially continuous soil moisture surfaces are useful for many applications. However, in 

situ soil moisture measurements are typically not dense enough to capture the spatial 

variability of soil moisture at the regional scale (104 to 107 km2) (Robock et al., 2000). 

Alternatively, satellite remote-sensing, such as the Soil Moisture and Ocean Salinity 

(SMOS) mission (Kerr et al., 2001), NASA’s Aquarius (Le Vine et al., 2007) and Soil 

Moisture Active-Passive (SMAP) missions (Brown et al., 2013), can provide spatially 

continuous soil moisture estimates. Of course, the satellite-based approaches also have 

limitations; they typically only measure water in the top few centimeters of the soil 

(Crow et al., 2012) and the spatial resolution is relatively coarse (Vereecken et al., 2007). 

Collow et al. (2012) evaluated the accuracy of SMOS-derived soil moisture with in situ 

                                                 

* This chapter is reprinted with permission from “Comparison of three methods of interpolating soil moisture in 

Oklahoma” by Shanshui Yuan and Steven Quiring, 2016. International Journal of Climatology (in press), doi: 

10.1002/joc.4754, Copyright 2016 by John Wiley and Sons.  
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measurements in the United States Great Plains. They concluded that the lack of uniform 

soil moisture measurements makes evaluating SMOS difficult and therefore additional 

stations are needed to provide a more robust evaluation of satellite-derived soil moisture. 

There are significant scaling issues involved in comparing in situ soil moisture 

measurements (a point) to satellite-derived soil moisture (50 km pixel) and most in situ 

networks are not sufficiently dense to adequately resolve soil moisture variability within 

each satellite pixel. Model simulation is another method of estimating spatially 

continuous soil moisture. Pellenq et al. (2003) coupled a simple Soil Vegetation 

Atmosphere Transfer model with TOPMODEL and estimated soil moisture in the 

Williams River catchment, Australia. Meng and Quiring (2008) evaluated the accuracy 

of soil moisture simulations from the Variable Infiltration Capacity (VIC), Decision 

Support System for Agrotechnology Transfer (DSSAT), and Climatic Water Budget 

(CWB) models using Soil Climate Analysis Network data. Though numerical models are 

commonly applied for soil moisture-related research (Baudena et al., 2008;Koster et al., 

2004;Zehe and Blöschl, 2004), the reliability of model-simulated soil moisture varies 

significantly over time and space, as well as from model to model. Xia et al. (2015b) 

evaluated the accuracy of the soil moisture simulations from the four land surface 

models of the North-American Land Data Assimilation System Project Phase 2 

(NLDAS-2) using in situ data from hundreds of sites in Alabama, Colorado, Michigan, 

Nebraska, Oklahoma, West Texas and Utah. They demonstrated that the four NLDAS-2 

models were able to accurately capture seasonal variations in soil moisture variations in 

all three soil layers in most states. However, there were some systematic biases in the 
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simulated soil moisture values. Noah and VIC were systematically wetter than the 

observations, while Mosaic and SAC were systematically drier than the observations. 

Xia et al. (2015b) concluded that this may be due to errors in model-simulated 

evapotranspiration. Generally, evaluations of model-simulated soil moisture demonstrate 

that the models can accurately simulate variations in soil moisture, but have difficulty 

getting the absolute magnitude correct (Downer and Ogden, 2003;Meng and Quiring, 

2008). Given the limitations of both model-derived and satellite-derived soil moisture, it 

is useful to generate gridded soil moisture from in situ observations. There are a large 

number of activities that are reliant on gridded soil moisture data, these include: 

operational drought monitoring (Lawrimore et al., 2002), calibrating/validating satellites 

and land surface models (Robock et al., 2003;Xia et al., 2015b;Dirmeyer et al., 

2016;Ford et al., 2014) and documenting how soil moisture influences the climate 

system on seasonal to interannual time scales (Khong et al., 2015;Ford and Quiring, 

2014a;Ford et al., 2015a).  

Spatial interpolation of in situ soil moisture is challenging because there are 

many factors that influence how soil moisture varies at regional scales including soil 

properties, topography, vegetation/land cover/land use and climate (Crow et al., 2012). 

Heterogeneity of soil properties influences all components of soil water balance and 

therefore has a direct impact on soil moisture. Rodriguez-Iturbe et al. (1995) found soil 

properties affect soil moisture distribution because of their influence on infiltration. 

Famiglietti et al. (1998) and Vereecken et al. (2007) concluded that soil hydraulic 

conductivities and porosity jointly influence the variability in surface soil moisture. 
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Routing processes that are affected by topography also influence near-surface soil 

moisture. Numerous studies have demonstrated that soil moisture is generally lower at 

locations that are further upslope (Champagne et al., 2010;de Rosnay et al., 

2009;Mohanty et al., 2000b). Land cover also plays an important role in determining soil 

moisture through modifying infiltration and evapotranspiration. Mohanty et al. (2000a) 

found that vegetation dynamics had a significant impact on intra-seasonal spatial 

patterns of soil moisture, which is consistent with other studies (Jacobs et al., 

2004;Vinnikov et al., 1996). Isham et al. (2005) used a stochastic rainfall model and to 

demonstrate that the spatial variability of soil moisture is not only controlled by the 

spatial variability of vegetation, but also by rainfall. Precipitation is the dominant 

meteorological control of soil moisture (Seneviratne et al., 2010). The relative impact 

that these factors have on soil moisture varies depending on the spatial scale of analysis. 

Vinnikov et al. (1999) demonstrated the spatial variability of soil moisture includes two 

components: large-scale atmospheric forcing and small-scale land surface variability and 

hydrologic processes. Vinnikov et al. (1999) applied the optimal averaging technique to 

soil moisture observations. They evaluated the dependence of errors in interpolated soil 

moisture using this method as a function of station density and grid cell sizes (30 km to 

400 km). They found that the errors associated with spatial averaging decrease with an 

increase in the size of the grid cell or station density. Therefore, accurately interpolating 

soil moisture observations is a challenging task because of all the factors that influence it 

and the most appropriate solution will vary depending on the spatial scale of interest. 
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Previous studies have used a variety of approaches at the field and catchment 

scales to interpolate soil moisture and to investigate the spatial variability of soil 

moisture. Perry and Niemann (2008) used inverse distance weighting (IDW) to 

interpolate soil moisture in the Tarrawarra catchment, Australia. Using this approach 

they obtained a Nash-Sutcliffe efficiency coefficient of ~0.4. Multiple versions of 

kriging have also been applied to interpolate soil moisture (Bárdossy and Lehmann, 

1998;Baskan et al., 2009). These studies demonstrate that kriging is an accurate 

interpolation method, but cannot yield physically feasible spatial distribution of soil 

moisture because it lacks additional physical information such as topography and land 

cover. Yao et al. (2013) compared four interpolation approaches: ordinary kriging, IDW, 

linear regression model and hybrid regression kriging in a 2 km2 catchment in China. 

They found that distance-based interpolation methods, such as IDW, do not perform well 

in areas with complex terrain. These studies show that most of the methods used for 

interpolating soil moisture are not very accurate. It is useful to test other interpolation 

methods and identify the most appropriate method for accurately interpolating in situ 

soil moisture measurements. 

In this chapter, we evaluate the accuracy of generating soil moisture surfaces. We 

evaluate three interpolation methods: ROI, ordinary Cokriging (hereafter referred to 

simply as Cokriging) and IDW. We also evaluate the utility of model-simulated soil 

moisture. The accuracy of these approaches is evaluated using in situ soil moisture data 

from 65 stations in Oklahoma. 
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4.2 Data and Methods 

We evaluate three interpolation methods in this study: ROI, Cokriging and IDW. 

The ROI and Cokriging methods both utilize in situ and model-simulated soil moisture 

to develop soil moisture surfaces. Model-simulated soil moisture is used to capture the 

spatial variations/patterns in soil moisture since the model explicitly accounts for 

variations in land cover, soil type, elevation, and meteorological forcings. IDW is based 

solely on the in situ observations. It is included in the comparison because it is 

frequently used for interpolation and it is the simplest and least computationally 

expensive interpolation method. IDW provides a baseline (low skill method) that is used 

to show the relative value of employing a more sophisticated approach. These 3 methods 

are used to interpolate monthly soil moisture to a 0.5 degree grid over Oklahoma. The 

interpolated surfaces are evaluated using an independent set of in situ measurements. 

 

4.2.1 In Situ Soil Moisture 

Daily in situ soil moisture in Oklahoma from 2000 to 2012 were obtained from 

TAMU North American Soil Moisture Database (soilmoisture.tamu.edu). The North 

American Soil Moisture Database archives data from a variety of national and state 

networks, including the Oklahoma Mesonet (Quiring et al., 2015). Data from 65 

Oklahoma Mesonet stations are used in this study (Figure 4. 1). In situ soil moisture is 

measured at four depths (5 cm, 25 cm, 60 cm and 75 cm). We selected these 65 

Oklahoma Mesonet stations based on their spatial distribution and amount of missing 

data. They cover a diverse range of soil and climate regions in Oklahoma. These stations 
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have a relatively complete time series (> 70% complete) for at least 3 of the 

measurement depths. The 26 stations (circle) with less than 10% missing data are used 

for interpolation, while the other 39 stations (triangle) are used for validation (Figure 4. 

1). The Daily Average Replacement (DAR) method (Ford and Quiring, 2014a) is used to 

infill missing data from the 26 stations that are used for interpolation because the ROI 

method requires temporally continuous data. Soil moisture measurements at different 

depths are converted to Volumetric Water Content (VWC) in the top 1 m of the soil 

column. This depth (1 m) is assumed to be greater than the maximum root zone depth in 

Oklahoma. Therefore, we chose to evaluate the accuracy of the soil moisture 

interpolations based on the top 1 m. VWC at each depth is assumed to represent average 

VWC in the corresponding soil layer. For example, the VWC measured at 5 cm is 

assumed to be the average VWC in 0 – 10 cm soil layer. Then water content in each soil 

layer is calculated by multiplying VWC with depth of soil layer. The water content in 

each specific layer is accumulated and finally divided by the soil depth (1 m). Daily soil 

moisture is then averaged to generate a monthly value and it is used for the comparison 

of interpolation methods. We chose to focus on the monthly timescale because monthly 

soil moisture have been previously used in studies investigating climate variability 

(Huang et al., 1996;Luo et al., 2014), evaluating drought events (Hogg et al., 2013;Dai et 

al., 2004), and monitoring land surface (Sabater et al., 2008;Biggs et al., 2008) and 

ecosystem processes (Krishnan et al., 2006). Since the spatial variability of soil moisture 

is typically greater at daily timescales, we acknowledge that repeating this analysis using 

daily data may result in larger cross-validation errors for all interpolation methods. 
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However, the purpose of this paper is to compare the relative accuracy of the 

interpolation methods. We believe that the results of our analysis are robust and are not 

dependent on the timescale. 

 

4.2.2 Model-simulated Soil Moisture 

This study uses simulated soil moisture from the VIC model (Liang et al., 1994), 

as provided by the University of Washington Surface Water Monitor (Wang et al., 2009). 

VIC is forced with observed meteorological data, and it accounts for spatial variations in 

soil and vegetation. In this study we use the daily soil moisture percentiles for total soil 

column and these values are averaged to produce a monthly value. VIC output is 

available at 0.5 degree spatial resolution. Although this is relatively coarse, it is suitable 

for regional soil moisture studies (Fan and van den Dool, 2004;Hollinger and Isard, 

1994). This study will identify the optimum interpolation method for representing 

regional variations in soil moisture. We acknowledge that the optimum interpolation 

method may be a function of the spatial scale of analysis, as well as other factors (e.g., 

topographic complexity), and therefore our results may not be transferable to field-scale 

soil moisture interpolation. The depth of the soil column that is used in VIC varies from 

0.7 m to 1.1 m in Oklahoma, as shown in Figure 4.1. This does not have a significant 

influence on the results of this study because the soil water content is generally quite 

stable at 0.7 m to 1.1 m (Wu et al., 2002). 
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Figure 4. 1. Spatial distribution of in situ stations used in this study, including the 
stations used for interpolation (circle), the stations used for validation (triangle) 

and the soil depths in the VIC model. 
 

 

4.2.3 Reduced Optimal Interpolation, Cokriging and Inverse Distance Weighting 

The ROI method was first introduced for constructing gridded sea surface 

temperature (Kaplan et al., 1998) and sea level pressure fields (Kaplan et al., 2000). As 

far as we are aware, this is the first time that the ROI method has been applied to soil 

moisture. 

ROI method involves two steps: (1) Empirical Orthogonal Function (EOF) 

decomposition and (2) estimation of new amplitudes. In the first step, EOF analysis 

(Preisendorfer and Mobley, 1988) is used to decompose the VIC simulated soil moisture 

into spatial modes and their related temporal amplitudes as defined in eq. 4.1: 



 

82 

 

 

( ) ( ) ( )tyxtyx MMM αHSM ,,, =                                                                            (4.1) 

 

where ( )tyx ,,MSM  is a matrix of tempo-spatial signals of soil moisture 

simulated by the VIC model (each row is a particular grid cell, each column is each 

month), ( )yx,MH  are the spatial modes and ( )tMα  are the amplitudes over the time 

period. The EOF n which equals n-th column of ( )yx,MH  multiplied the n-th row of 

( )tMα  is a spatial-temporal pattern of soil moisture variability that can explain the 

percentage of total variance of soil moisture. The smaller n is, the larger percentage can 

be explained by spatial scale signals and less influenced by noise. In this study, we 

applied North’s rule (North, 1984) to determine the number of EOFs to retain. Therefore, 

the first 5 EOFs (which account for 96% of the soil moisture variance) were retained for 

the soil moisture interpolation. We approximate the Oklahoma soil moisture field RSM  

by multiplying the model projected 5-dimentional space of leading EOFs with the in situ 

optimal estimate of the 5-dimentional vector of temporal amplitudes (eq. 4.2).  

 

( ) ( ) ( )tyxtyx RMR αHSM ,,, =                                                                             (4.2) 

 

The second step is to estimate ( )tRα . The ROI gives the solution for ( )tRα  by 

minimizing the cost function (eq. 4.3) 
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( ) ( ) ( ) RR
0

InRM
0

InRM αΛαSMαNHRSMαNHS 11 −− +−−= TT

Rα                      (4.3) 

 

where N  is a projection matrix to transfer the full grid representation of soil 

moisture field InSM  to the available in situ observations 0
InSM . Each element of N  is 

equal to 1 when and where in situ data are available and 0 otherwise. R  is the error 

covariance matrix accounting for the observational error (instrument error and sampling 

error) and representational error (the error due to the truncation of the full set of EOFs to 

only the first 5 EOFs). Λ  is a diagonal matrix of the 5 largest eigenvalues of the 

covariance matrix. A least squares method is applied to find the Optimal Interpolation 

solutions by minimizing the S  in eq. 4.4 and eq. 4.5: 

 

0
InMR SMRNkHα 1−= TT                                                                                    (4.4) 

 

where 

 

( ) 111 −−− += ΛNHRNHk MM
TT                                                                           (4.5) 

 

Finally, the interpolated soil moisture field over Oklahoma can be estimated by 

eq. 4.2. 
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In addition to interpolating soil moisture using the ROI method, we also use the 

same 26 stations to interpolate soil moisture using the Cokriging method (Isaaks and 

Srivastava, 1989) and IDW method (Shepard, 1968). 

Cokriging utilizes the covariance between main data at the target location and 

more regionalized the secondary data. In order to keep the comparison fair, in this study, 

we use the same VIC simulated soil moisture data that are also used as secondary dataset 

in the ROI method. 

 

( ) ( ) ( )∑∑
==

+=
n

i
ii

n

i
ii StSZSZ

11
0 βλ                                                                          (4.6) 

 

Where, ( )iSZ  is the measured value at the thi  station; iλ  is the weight for the 

thi station; ( )0SZ  is the interpolated value at the target location; n  is the number of 

stations; ( )iSt  is the secondary value that is co-located with the ( )iSZ ; iβ  is weight for 

the ( )iSt . 

IDW is a weighting algorithm, so the value at the target location is most strongly 

influenced by the nearest stations. IDW is calculated as follows: 
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Where, ( )iSZ  is the measured value at the thi  station; iλ  is the weight for the 

thi station; ( )0SZ  is the interpolated value at the target location, n  is the number of 

stations, id  is the distance from the thi  station to the target location; p  is power 

parameter, equals to 2. The soil moisture in each grid cell was interpolated using all the 

26 stations. The distance weighting was based on the distance from the centroid of the 

grid cell to each of the stations. 

 

4.2.4 Evaluation of Interpolation Accuracy 

The accuracy of the soil moisture surfaces generated using the ROI, Cokriging 

and IDW methods are evaluated using 39 stations that were not part of the interpolation. 

To evaluate the performance of these methods, we select the grid cells with stations in 

them and compare the mean soil moisture in these grid cells with the mean soil moisture 

from the 39 validation stations. Additionally, we also compare the ROI, Cokriging and 

IDW interpolations with observations at individual station by calculating the correlation 

coefficient (r), mean absolute error (MAE) and coefficient of efficiency (E) (Legates and 

McCabe, 1999). Although the point-versus-grid comparison may not be optimal because 

of the mismatch in spatial scale, it is a reasonable approach to use in this study since the 

purpose is to compare the relative performance of the ROI, Cokriging and IDW. 
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4.3 Results and Discussion 

4.3.1 Evaluation of ROI Interpolated Soil Moisture 

Figure 4.2a shows the time series of observed (purple), ROI interpolated (red), 

Cokriging interpolated (blue) and IDW interpolated (green) soil moisture. Based on the 

spatially averaged time series, all interpolation methods are highly correlated with the 

observed soil moisture and the correlations are statistically significant (p < 0.05). The 

correlation coefficient (r) for the ROI method is highest (0.92), followed by Cokriging 

(0.90) and IDW (0.82). The IDW-estimated soil moisture is systematically wetter than 

the observed soil moisture and it is more variable than ROI and Cokriging, as shown in 

Figure 4.2b. The plots also show a slight bias towards interpolated soil moisture which 

means soil moisture interpolated by the Cokriging method tends to be slightly wetter 

than in situ soil moisture. Overall, there is no systematic bias in the ROI interpolated soil 

moisture. However, both the ROI method and the Cokriging method overestimate the 

state-wide VWC in Oklahoma during the dry season. There are two possible reasons for 

this overestimate. First, VIC has been shown to have a systematic wet bias in summer in 

previous studies (Xia et al., 2015b). Wang et al. (2009) demonstrated that VIC simulates 

wetter soils in Oklahoma as compared with the Community Land Model (version 3.5) 

and Noah. Second, vegetation parameters in VIC are static and therefore the simulated 

soil moisture may not be representative during extremely dry periods (Ford and Quiring, 

2013).
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Figure 4. 2. (a) Time series of interpolated monthly soil moisture by ROI (red), IDW (green) and Cokriging (blue) and 
observed monthly soil moisture (purple). (b) Scatter plot of interpolated versus observed soil moisture.
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The ROI method uses the first 5 EOFs of the model-simulated soil moisture to 

represent the spatial patterns of soil moisture. Using EOFs helps reduce the 

noise/variability in the station-based soil moisture measurements and therefore improves 

the interpolation accuracy over IDW which is based solely on station data. Because both 

ROI and Cokriging utilize model-simulated soil moisture from VIC, our results are 

somewhat model-dependent. A future study could examine how utilizing different 

models, such as the Community Land Model or Noah, might influence interpolation 

accuracy.  

Figure 4.3 shows the spatial pattern of multi-year mean monthly soil moisture 

based on the ROI method. It shows the dry-to-wet moisture gradient from southwest to 

northeast in Oklahoma. The relatively dry location northwestern corner of the state, 

matches well with the observed soil moisture. The ROI method accounts for the impact 

that physical processes, via VIC model, and human factors, such as management and 

land cover, via the in situ observations, have on the soil moisture patterns. Therefore, 

theoretically, it should generate more accurate soil moisture interpolations. We quantify 

the accuracy of the ROI method and compare it with Cokriging and IDW in section 4.3.2. 
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Figure 4. 3. Spatial pattern of multi-year (2000 – 2012) mean monthly soil moisture 
(VWC) based on the ROI method. 

 

 

4.3.2 Comparison with IDW Interpolated Soil Moisture 

Figure 4.4a, b and c shows the spatial distributions of correlations for the ROI, 

the Cokriging and the IDW, respectively. The correlation coefficient is calculated using 

the interpolated and observed time series in each grid cell. Correlation coefficients for 

the ROI method range from 0.73 to 0.94, they range from 0.63 to 0.94 for the Cokriging, 

and 0.61 to 0.93 for the IDW. In 39 of 48 grid cells, the ROI method has higher 

correlations with the observed soil moisture than Cokriging and in 45 of 48 grid cells the 

ROI method has higher correlations than IDW. The IDW method is quite sensitive to the 

spatial distribution of stations used in the interpolation. In the three grid cells where the 
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IDW has higher correlation, there are more stations available for interpolation (> 2) and 

this increases the accuracy. 

To justify why it is necessary to develop interpolation method rather than directly 

utilizing the model-simulated soil moisture, we show the correlation map based on the 

VIC simulations in Figure 4.4d. It is interesting to note that, on its own, the VIC-

simulated soil moisture is not strongly correlated with the observed soil moisture and at 

most locations all of the interpolation methods have higher correlations. When the VIC-

simulated soil moisture is using as input to the ROI or Cokriging methods, the 

interpolated soil moisture is more accurate than using a method that solely relies on the 

observations (i.e., IDW) or model output (i.e., VIC). The low correlation between VIC 

and observations may also influence the performance of the Cokriging method because 

higher correlations between secondary and primary data tend to improve the accuracy of 

Cokriging (Isaaks and Srivastava, 1989). 
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Figure 4. 4. Spatial pattern of correlations between the in situ soil moisture and 
interpolated/simulated soil moisture based on: (a) ROI, (b) Cokriging, (c) IDW, and 

(d) VIC. 
 

 

The accuracy of the interpolation methods are also evaluated at the individual 

stations. The correlation coefficient (r), mean absolute error (MAE) and coefficient of 

efficiency (E) are calculated at the 39 stations that were not used in the interpolation. 

These three statistics show good agreement among the performance of the ROI, the 

Cokriging and the IDW methods. In terms of correlation, all methods are statistically 

significant (p < 0.05). The station-averaged correlation coefficient for ROI (0.89) is 

higher than that for Cokriging (0.83) and for IDW (0.78). Similarly, ROI has a higher 

mean E (0.58) and lower mean MAE (0.02) than Cokriging and IDW. This illustrates 

that the ROI method is able to accurately represent both the temporal variations in soil 

moisture and the absolute value. The performance of the Cokriging and the IDW 
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methods are more variable than ROI for all the three statistics (Figure 4.5). For the ROI 

method, 36 out of 39 stations have correlations > 0.8 as compared to 29 stations for the 

Cokriging and 7 for the IDW. The MAE for the ROI method is < 0.03 at all stations. 37 

out of 39 stations have the MAE < 0.03 for the Cokriging method and only 14 out of 39 

stations have the MAE < 0.03 for the IDW method. For the ROI method, all the stations 

have positive E, among which, 25 stations are > 0.5. 33 out of 39 stations have positive 

E and 11 stations are > 0.5 for the Cokriging method. Based on the IDW method, only 

19 stations have positive E, and only 7 stations are > 0.5.  
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Figure 4. 5. Histograms of performance evaluation statistics (interpolated versus 
observed): (a) correlation coefficient, (b) mean absolute error, and (c) coefficient of 
efficiency for all 39 validation sites based on ROI (red), IDW (green) and Cokriging 

(blue) methods. 
 

 

The IDW method performs better when there are more stations close to the target 

location. There is a direct relationship between the number of stations and the accuracy 

of this method and this relationship is quantified in Section 4.3.3. The ROI and 

Cokriging methods are less dependent on the number of stations, and the location of the 

stations used in the interpolation. Although the locations with the best accuracy tend to 
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be close to the stations used in the interpolation, ROI and Cokriging still perform well at 

locations that have few stations nearby. 

The above analysis focused on the mean performance of each interpolation 

method over 2000 – 2012. However, it is also important to examine how well each 

interpolation method does during an extreme event. Therefore, we have chosen to 

examine the differences between the interpolated and observed soil moisture during a 

recent severe drought in Oklahoma. Figure 4.6 shows the spatial distribution of 

difference between interpolated and observed soil moisture under extremely dry 

conditions associated with the 2011 drought. The interpolation errors vary from +0.03 to 

-0.06 in August for the ROI method. In comparison the errors vary from +0.06 to -0.09 

and +0.05 to -0.09 for the IDW and Cokriging methods, respectively. In September the 

interpolation errors vary from +0.06 to -0.06 for the ROI method, +0.08 to -0.1 for the 

IDW method, and +0.07 to -0.09 for the Cokriging methods. In October the interpolation 

errors vary from +0.07 to -0.06 for the ROI method, +0.08 to -0.11 for the IDW method, 

and +0.07 to -0.09 for the Cokriging methods. The overall mean error for the ROI 

method (across all 39 locations) is 0.0005, 0.0008 and 0.001 in August, September and 

October, respectively. In comparison, the overall mean error for the IDW method (across 

all 39 locations) is -0.01, -0.02 and -0.01 in August, September and October, 

respectively. Finally, the overall mean error for the Cokriging method (across all 39 

locations) is 0.003, 0.007 and 0.008 in August, September and October, respectively. It 

appears that for this event, and the others that we analysed (results not shown), the ROI 

method consistently outperforms IDW and Cokriging, and that the IDW method has the 
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largest errors. Our results indicate that for this event, both ROI and Cokriging have a wet 

bias. This is likely because both of the utilize VIC-simulated soil moisture which also 

has a wet bias for the 2011 drought event. While these two methods do not show a wet 

or dry bias for the overall results, it is apparent that this may occur for some 

hydroclimatic events. 

 

 

Figure 4. 6. Spatial distribution of differences between interpolated and observed 
soil moisture (August to October 2011). ROI minus observed soil moisture in 

August (a), September (d) and October (g). IDW minus observed soil moisture in 
August (b), September (e) and October (h). Cokriging minus observed soil moisture 

in August (c), September (f) and October (i). 
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4.3.3 Sensitivity to Station Density  

To develop a better understanding of how the density of stations influences the 

accuracy of the interpolations, we performed a sensitivity experiment with the ROI, 

Cokriging and IDW methods. The number of stations that are used for interpolation was 

varied from 1 to 26. The n stations that are used in each ensemble are selected randomly 

(with replacement), and the selection process is repeated 1000 times for each ensemble. 

That is, we randomly select 1 station to use for the interpolation (from the 26 

possibilities) and use that station to perform the interpolation. Then, another station is 

randomly selected and the process is repeated 1000 times. We calculate the correlation 

(r), mean absolute error (MAE) and coefficient of efficiency (E) for each replicate and 

then calculate the mean r, MAE and E for each ensemble. 

Figure 4.7 shows how the distributions for each statistic vary based on the 

number of stations used in the interpolation. Although the performance of the ROI 

method improves at a similar rate as the IDW method, as the number of stations used in 

the interpolation increase, ROI consistently has higher correlations than IDW. The 

Cokriging method has consistently higher correlations than the IDW method, but slightly 

lower correlations than the ROI method. The performance of the Cokriging method 

improves more slowly as the number of stations used in the interpolation increases, 

relative to the other two methods. This means that in terms of correlation, both the ROI 

and IDW method have a similar sensitivity to the number of stations used in the 

interpolation. The Cokriging method is less sensitive to the number of stations used than 

the other two methods. The ROI method also has higher E and smaller MAE regardless 
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of the number of stations used in the interpolation. However, the changes in E and MAE 

as a function of the number of stations are quite different. Figure 4.7b and c, show that 

once the number of stations is greater than three, the slopes of E and MAE are quite flat 

for the ROI and Cokriging methods. This illustrates that these two methods are relatively 

insensitive to the number stations used for interpolation. Although using more stations 

does increase the interpolation accuracy (E) and reduce the interpolation error (MAE), 

the incremental improvements are relatively modest. In comparison, IDW has dramatic 

changes in both MAE and E when the number of stations is smaller than ten. This 

demonstrates that the IDW method is relatively sensitive to the number of stations that 

are used in the interpolation. IDW is not an appropriate method to use for interpolating 

soil moisture when there are a limited number of stations. 
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Figure 4. 7. Interpolation accuracy as a function of the number of stations 
used in the interpolation: (a) correlation coefficient, (b) mean absolute 

error, and (c) coefficient of efficiency as a function of the number of 
stations used for IDW, ROI and Cokriging interpolations. Mean results 
are reported based on 1000 replicates, with n stations (where n varies 

from 1 to 26) being randomly selected for each replicate. 
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These sensitivity tests demonstrate that the ROI method and the Cokriging 

method can be successfully employed to interpolate soil moisture in regions where there 

are relatively few stations. 

 

 

4.4 Limitations and Conclusions 

4.4.1 Limitations 

In this study, we compared the accuracy of three interpolation methods in 

Oklahoma at a 0.5 degree spatial scale and a monthly temporal scale. This spatial 

resolution (0.5 degree) approximately matches that of current satellite products, such as 

SMOS (~50 km). Oklahoma is a state that has relatively little topographic complexity 

and a relatively high density of in situ soil moisture measurements. Therefore, we 

acknowledge that our results may not be transferable to other geographic regions or 

spatial scales of analysis (e.g., interpolation of field-scale soil moisture). For example, 

spatial heterogeneity of soil characteristics may play a more critical role in influencing 

soil moisture patterns at the field scale.  

We used VIC-simulated soil moisture as a secondary data input for two of the 

interpolation methods that were evaluated in this study. Xia et al. (2015b) showed that 

the accuracy of model-simulated soil moisture can vary from model to model due to 

systematic errors in model-simulated evapotranspiration. This study did not evaluate 

whether our choice of models had a significant impact on the accuracy of the 
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interpolations. Future research can focus on how the use of different secondary datasets 

influences the performance of these interpolation methods. 

 

4.4.2 Conclusions 

Soil moisture interpolation is challenging because the spatial variability of soil 

moisture is influenced by many factors, including soil properties, topography, land cover 

and meteorological conditions. In addition, there are relatively few locations where soil 

moisture is measured so it is difficult to accurately capture these effects. This study 

evaluates the utility of the ROI method for interpolating soil moisture data using a 

relatively sparse network of observations and compares it to the Cokriging and IDW 

methods.  

The spatially averaged state-wide results demonstrate that the ROI, Cokriging 

and the IDW methods perform reasonably well in Oklahoma. All of these methods had 

statistically significant correlations with observed soil moisture. However, when 

evaluating the performance of the three interpolation methods at individual locations, 

ROI performs better than Cokriging and IDW. One reason is that the ROI method 

utilizes the first 5 EOFs of model-simulated soil moisture from a physically-based land 

surface model that accounts for variations in soil properties, elevation, land cover and 

precipitation. The performance of IDW is strongly influenced by the density and the 

spatial distribution of in situ data. Our sensitivity tests confirm that the ROI and 

Cokriging methods can produce reliable estimates of regional soil moisture patterns, 

even in locations with relatively few stations. 
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CHAPTER V 

EVALUATION OF SOIL MOISTURE IN CMIP5 SIMULATIONS OVER 

CONTIGUOUS UNITED STATES USING IN SITU AND SATELLITE 

OBSERVATIONS 

 

5.1 Introduction 

Soil moisture plays a critical role in hydrological processes, land-atmosphere 

interactions and climate variability. Through controlling water mass transfer, soil 

moisture affects runoff (Penna et al., 2011;Latron and Gallart, 2008;Zhang et al., 2001) 

and evapotranspiration (Wetzel and Chang, 1987;Vivoni et al., 2008;Detto et al., 2006). 

Soil moisture also influences the surface energy balance by affecting latent heat and 

ground fluxes (Ek and Holtslag, 2004;Ford and Quiring, 2014b). Soil moisture is one of 

the direct measures of drought used to assess future drought conditions in the latest 

IPCC report (Hartmann et al., 2013). Therefore, accurate soil moisture simulation is 

useful for many applications.  

There are three main types of soil moisture data: in situ observations, remote 

sensing and model simulations. In situ observations provide point measurements at a 

variety of depths. The spatial and temporal coverage of in situ observations is quite 

limited and each in situ network may utilize different instruments and calibration 

techniques. These factors make it more challenging to use in situ soil moisture, however 

recent developments have improved the utility of these measurements. For example, the 

International Soil Moisture Network (ISMN) (Dorigo et al., 2011), which was initiated 
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in 2010, collects in situ soil moisture from more than 1400 station internationally and 

provides quality controlled hourly-to-weekly soil moisture data. The North American 

Soil Moisture Database (NASMD) (Quiring et al., 2016) provides quality controlled 

daily soil moisture from approximately 1800 stations, most of which are located in the 

United States. NASMD has been used for validating the North American Land Data 

Assimilation System (NLDAS) (Xia et al., 2015b, a) and to examine the nature of land-

atmosphere interactions (Ford et al., 2015b;Ford et al., 2015c;Wang et al., 2015). There 

are numerous other studies that use in situ soil moisture from NASMD and ISMN. Ford 

and Quiring (2014b) used quantile regression to examine the relationship between in situ 

soil moisture and extreme temperature in Oklahoma. They found the soil moisture 

anomalies can be used for predicting the percent hot days in the following month. Ford 

et al. (2015a) found that soil moisture can also be used to predict the onset of flash 

drought events earlier in Oklahoma. Brocca et al. (2013) found in situ soil moisture can 

be used to improve daily precipitation estimation at the catchment scale.  

Soil moisture observations from satellites remote sensing, such as the Soil 

Moisture and Ocean Salinity (SMOS) mission (Kerr et al., 2001), NASA’s Aquarius (Le 

Vine et al., 2007) and Soil Moisture Active-Passive (SMAP) missions (Brown et al., 

2013) can provide global soil moisture data. Previous studies have shown that satellite-

derived soil moisture can accurately capture the annual cycle (Albergel et al., 

2012b;Brocca et al., 2011), however, the accuracy of the satellite-derived soil moisture 

varies significantly both geographically and from product to product (Fang et al., 

2016;Wanders et al., 2012). Rötzer et al. (2015) investigated the spatial and temporal 
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behavior of the SMOS and the MetOp-A Advanced Scatterometer (ASCAT) soil 

moisture. They demonstrated that SMOS is more strongly affected by temporally 

invariant factors, such as topography and soil properties, while ASCAT soil moisture is 

influenced by temporally variant factors, such as precipitation and evaporation. To 

overcome the limitations of satellite-derived soil moisture estimates, assimilated satellite 

products have been developed. Renzullo et al. (2014) used the ensemble Kalman filter 

method to assimilate AMSR-E and ASCAT-derived soil moisture. They found that data 

assimilation can significantly improve the accuracy of root-zone soil moisture estimates. 

A merged soil moisture product from active and passive sensors was released by the 

European Space Agency (ESA) in 2010 (Liu et al., 2011). This is a part of the program 

on the Global Monitoring of Essential Climate Variables (ECVs), and hereafter it will be 

referred to as ECV soil moisture. ECV soil moisture has been validated globally (Dorigo 

et al., 2015) and in regional studies in places such as in China (An et al., 2016) and East 

Africa (McNally et al., 2016). One of the primary limitations of satellite-based 

approaches is that they can typically only measure water in the top few centimeters of 

the soil (Crow et al., 2012). 

Model simulation from offline land surface models (Koster et al., 2009) and fully 

coupled general circulation models (GCMs) (Srinivasan et al., 2000) is another source of 

spatially continuous soil moisture at variety of depths. However, validation studies have 

shown that these models can have significant bias. Guo and Dirmeyer (2006) compared 

11 land surface models from the Second Global Soil Wetness Project (GSWP-2) and 

found that although models can reproduce soil moisture anomalies, they do not 
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accurately simulate the absolute soil water content. (Xia et al., 2015b) evaluated four 

land surface models within the North-American Land Data Assimilation System Project 

Phase 2 (NLDAS-2). They concluded that Noah and VIC model are wetter while Mosaic 

and SAC are drier. Compared with land surface models, coupled GCMs are more 

commonly used to investigate soil moisture-atmosphere interactions (Seneviratne et al., 

2010). Koster et al. (2004) is a benchmark study of soil moisture-temperature and soil 

moisture-precipitation coupling strength using 12 GCMs in the Global Land-Atmosphere 

Coupling Experiment (GLACE). They identified three global “hot spots” where one 

finds strong land-atmosphere coupling. However, they also demonstrated that there are 

substantial inconsistencies in coupling strength between models. van den Hurk et al. 

(2010) used realistic soil moisture initializations in the second phase of GLACE 

(GLACE-2) to improve the forecast skill of summertime temperature and precipitation in 

Europe. 

In 2012, the fifth phase of the Coupled Model Intercomparison Project (CMIP5) 

was completed to provide a state-of-the-art multi-model dataset for advancing the 

knowledge of climate variability and climate change (Taylor et al., 2012b). Li et al. 

(2007) concluded, based on previous versions of the CMIP models, that these models 

have difficulty accurately simulating the seasonal cycle of soil moisture. They also found 

that improved simulation of solar radiation and precipitation leads to more accurate soil 

moisture simulations. Although the CMIP5 models have been used to investigate land-

atmosphere interactions (Dirmeyer et al., 2013;Seneviratne et al., 2013;May et al., 

2015;Lorenz et al., 2016), to date, there has not been a comprehensive evaluation of the 
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accuracy of the CMIP5 soil moisture simulations in the United States. Therefore, this 

paper will address this knowledge gap. 

In this chapter, we evaluate CMIP5 soil moisture simulations in two soil layers (0 

to 10 cm and 0 to 100 cm) over CONUS using in situ and satellite-derived soil moisture. 

We evaluate both individual models and the multi-model ensemble mean using in situ 

soil moisture from 363 sites as well as satellite observations. 

 

 

5.2 Data and Methods 

5.2.1 Subregion Classification 

We evaluate the CMIP5 soil moisture simulations over CONUS and in eight 

regions (Figure 5.1). These regions were defined using a land cover classification from 

U.S. Geological Survey (Loveland et al., 2000). These regions (dashed boxes in Figure 

5.1) were utilized by Notaro et al. (2006) and they have been applied in other land-

atmosphere studies (Mei and Wang, 2012;Sanchez-Mejia et al., 2014;Wu and Zhang, 

2013). In this study, we made some small adjustments to these regions so that they 

included more in situ sites (solid boxes in Figure 5.1). The eight regions are: Midwest 

(MW: 38° – 47.5° N, 94° – 80° W), Northeast (NE: 38° – 47.5° N, 80° – 67° W), 

Northern Great Plains (NGP: 34.4°– 49° N, 105° – 94° W), Northern Shrubland (NS: 

40° – 49° N, 119.4° – 105° W), Northwest (NW: 40° – 49° N, 124° – 119.4° W), 

Southeast (SE: 30° – 38° N, 92.5° – 75° W), Southern Great Plains (SGP: 25° – 34.4° N, 

105° – 94° W) and Southern Shrubland (SS: 30.8° – 40° N, 119.4° – 105° W). 



 

106 

 

 

 

Figure 5. 1. Spatial distribution of in situ sites and map indicating classified 
subregions.  

 

 

5.2.2 CMIP5 Models 

All the Earth System Models (ESMs) in the CMIP5 archive that have soil 

moisture data are evaluated in this study. We evaluate monthly near-surface (0 – 10 cm) 

soil moisture from 17 ESMs and soil column (0 – 100 cm) soil moisture from 14 ESMs 

that are part of the CMIP5 archive (Table 5.1). Our analysis uses data from 2003 to 2012 

because this is the time period with the greater number of in situ observations. Although 

the CMIP5 experiment ends in 2005, some ESMs, such as BCC-CSM1.1 and CanESM2, 

have an extended historical simulation through 2012. Therefore, we extend all the model 

simulations to 2012 by combining the 2006 – 2012 outputs from future emission 
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scenario: the representative concentration pathways (RCP) 4.5 to the regular historical 

experiment outputs. RCP 4.5 is a pathway for stabilization of radiative forcing at 4.5 W 

m-2 by 2100 (Thomson et al., 2011). A similar approach was adopted in the IPCC AR5 

report (Bindoff et al., 2013). Jones et al. (2013) also used RCP4.5-forced CMIP5 

simulations from 2005 to 2010 to investigate near-surface temperature variations. To 

validate this approach, we compared simulated precipitation based on different RCP 

scenarios with the Climatic Research Unit (CRU) precipitation in CONUS from 2006 to 

2012 (results not shown) and found that the RCP 4.5 simulations closely match the CRU 

observations. 
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Table 5. 1. List of 17 CMIP5 models in this study 

Model Name Model Center 
Spatial 

Resolution 

Soil Moisture Simulation 

0 – 10cm 0 – 100 cm 

ACCESS1.3 

Commonwealth Scientific and Industrial Research 

Organization (CSIRO) and Bureau of Meteorology (BOM), 

Australia 

145×192 √ √ 

BCC-CSM1.1 
Beijing Climate Center, China Meteorological 

Administration 
64×128 √ √ 

BNU-ESM 
College of Global Change and Earth System Science, 

Beijing Normal University 
64×128 √ √ 

CanESM2 Canadian Centre for Climate Modelling and Analysis 64×128 √ √ 

CCSM4 National Center for Atmospheric Research 192×228 √ √ 

CESM1(CAM5) Community Earth System Model Contributors 192×228 √ √ 

CNRM-CM5 
Centre National de Recherches Météorologiques and Centre 

Européen de Recherche et Formation Avancée en Calcul 
192×228 √ √ 
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Scientifique 

CSIRO-MK3.6.0 

Commonwealth Scientific and Industrial Research 

Organization in collaboration with Queensland Climate 

Change Centre of Excellence 

96×192 √  

FGOALS-g2 
LASG, Institute of Atmospheric Physics, Chinese Academy 

of Sciences 
60×128 √ √ 

GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory 90×144 √ √ 

GISS-E2-H NASA Goddard Institute for Space Studies 90×144 √ √ 

HadGEM2-ES 
Met Office Hadley Centre (additional realizations 

contributed by Instituto Nacional de Pesquisas Espaciais) 
145×192 √ √ 

INM-CM4 Institute for Numerical Mathematics 120×180 √ √ 

IPSL-CM5A-LR Institut Pierre-Simon Laplace 96×96 √  

MIROC-ESM 
Japan Agency for Marine-Earth Science and Technology, 

Atmosphere and Ocean Research Institute (The University 
64×128 √ √ 
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of Tokyo) and National Institute for Environmental Studies 

MRI-CGCM3 Meteorological Research Institute 160×320 √  

NorESM1-M Norwegian Climate Centre 96×144 √ √ 
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5.2.3 In Situ Observations 

Daily in situ soil moisture from 2003 to 2012 were obtained from North 

American Soil Moisture Database (http://soilmoisture.tamu.edu/). The North American 

Soil Moisture Database archives data from a variety of national and state networks 

(Quiring et al., 2016). Data from 363 stations are used in this study (Figure 5.1). These 

stations are collected from eight observational networks, as shown in Table 5.2. Quality-

controlled daily soil moisture have been used to validate model simulations in previous 

studies (Xia et al., 2015c;Dirmeyer et al., 2016). In this study, any stations with short 

periods of missing data (< 10 days) are infilled using the daily average replacement 

(DAR) method (Ford and Quiring, 2014a). Soil moisture measurements at different 

depths are used to estimate the volumetric water content (VWC) in the top 10 cm and 

top 100 cm of the soil column. For example, the VWC measured at 5 cm is assumed to 

represent the VWC in 0 – 10 cm soil layer. When there are multiple soil moisture 

sensors within the top 100 cm, the measurements are combined using a depth-weighted 

average. Daily soil moisture measurements are then averaged to a monthly value to 

match the temporal resolution of the ESMs. The in situ measurements are also 

aggregated spatially to facilitate comparison with the CMIP5 models. We use a simple 

spatial average to aggregate all of the stations within each 0.25° × 0.25° grid cell. Then 

all of the grid cells with stations in them are averaged to produce a regional or national 

dataset for comparing the in situ and modelled soil moisture. Although this spatial 

average method is not the optimal technique to reduce sampling errors (Crow et al., 

2012), it is simple and has been widely used in previous model evaluations (Robock et 
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al., 2003;Albergel et al., 2012a;Xia et al., 2015b). This approach reduces some of the 

bias associated with the point-versus-grid scale mismatch. Utilization of this approach 

over the entire CONUS provides an overview of soil moisture simulations in CMIP5 

models. However, we are also interested in spatial variations in model performance. 

Therefore, we also evaluated model performance after dividing CONUS into eight 

regions. 

Measuring water content in frozen soils is a challenge (Xia et al., 2015c). 

Therefore, the CONUS analysis only evaluates the CMIP5 simulations during the warm 

season (April-September). For regional evaluation, we use data from all the months in 

the three southern regions (Southeast, Southern Great Plains and Southern Shrubland) 

where frozen soils do not occur. All other regions only use data from the warm season. 

 

Table 5. 2. List of observational networks used in this chapter. 

Network Number of Sites 
(Used in this dissertation) Reference 

AmeriFlux 4 (Baldocchi et al., 2001) 

North Carolina Environment 
and Climate Observing Network 24 (Pan et al., 2012) 

Illinois Climate Network 16 (Hollinger et al., 1994) 

Michigan Automated Weather 
Network 34 (Andresen et al., 2011) 

Oklahoma Mesonet 104 (Scott et al., 2013) 

Soil Climate Analysis Network 66 (Schaefer et al., 2007) 

Snowpack Telemetry 97 (Schaefer and Paetzold, 
2001) 
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West Texas Mesonet 18 (Schroeder et al., 2005) 
 

 

5.2.4 Satellite Observations 

Satellite-derived soil moisture from the soil moisture climate change initiative 

(CCI) project (http://www.esa-soilmoisture-cci.org/) is used in this study. This project is 

a part of the European Space Agency Programme on Global Monitoring of Essential 

Climate Variables (ECV) (Liu et al., 2012). ECV soil moisture is based on active and 

passive remote sensing data and it has been validated using reanalyses (Albergel et al., 

2013a;Albergel et al., 2013b) and in situ observations (Pratola et al., 2014). The spatial 

resolution of monthly ECV soil moisture is 0.25°. ECV soil moisture is not available 

during the cold season in the northern United States. Therefore, similar to the in situ 

observations, only warm season evaluations are undertaken for CONUS and the five 

northern regions. Data from all months is used in the three southern regions. 

 

5.2.5 Evaluation Metric 

Pearson correlation (r), mean absolute error (MAE), and the coefficient of 

efficiency (E) (Legates and McCabe, 1999) are used to quantify the agreement between 

observations and model simulations. Taylor’s skill score (S) (Taylor, 2001) is also used 

to measure the ability of individual CMIP5 models to reproduce the climatological soil 

moisture distribution. The equation of S is shown as following, eq. 5.1: 
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                                                                                     (5.1) 
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where R  is the correlation between the simulated and observed soil moisture. σ  

is the ratio of standard deviation of model simulation over standard deviation of 

observation, and 0R  is the theoretical maximum correlation, equals to 1. 

 

 

5.3 Results 

5.3.1 Evaluation of Model Ensemble over CONUS 

Figure 5.2 shows the relationship between the CMIP5 ensemble mean and 

satellite-derived and in situ soil moisture during the warm season. All three of these 

datasets were averaged over CONUS. The multi-model ensemble mean is highly 

correlated with the in situ observations (Figure 5.2a and c). The correlation (r) between 

the in situ and model-derived soil moisture is 0.92 in the 0 – 10 cm soil layer and it is 

0.91 in the 0 – 100 cm soil layer. Both of these correlations are statistically significant (p 

< 0.05). In the 0 – 100 cm soil layer, the CMIP5 soil water content is systematically 

higher than the in situ observations, especially during drier months (i.e., when soil water 

content is < 0.25 cm3 cm-3). Figure 5.2b shows that there is a weaker relationship 

between the CMIP5 ensemble and ECV soil moisture and the correlation is only 0.65. It 

appears that the variance of the satellite-derived soil moisture is much less than the 

CMIP5 ensemble. The ECV soil moisture only varies from ~0.18 to 0.24 cm3 cm-3, 

while CMIP5 varies from ~0.16 to 0.27 cm3 cm-3. Therefore, the ECV soil moisture 

tends to be systematically greater than CMIP5 during drier months and systematically 

lower than CMIP5 during wetter months. 
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Figure 5. 2. Scatter plots of spatial averaged CMIP5 ensemble with ECV in 0 – 10 
cm soil layer (a) with in situ in 0 – 10 cm soil layer (b) and with in situ in 0 – 1 m 

soil layer (c) during warm season (April to September). 
 

 

We also examined the mean monthly soil moisture in the 0–10 cm and 0–100 cm 

soil layers from April to September. Figure 5.3a shows the seasonal cycle in the 0–10 cm 

soil moisture for the in situ observations, ECV satellite data and CMIP5 models. 

Although there are substantial inter-model variations among the CMIP5 models, 

particularly with regards to the absolute soil water content, the CMIP5 ensemble (black 

line) shows strong agreement with in situ observations (red line). Both show that soil 

moisture decreases from April until August and then soil moisture recharge begins 

starting in September. Both the CMIP5 ensemble and the in situ observations have a 

similar seasonal cycle in terms of both the magnitude and timing. In comparison, the 

satellite-derived ECV soil moisture (blue line) shows little month to month variability 

and has a very weak seasonal cycle. Neither the timing nor the magnitude of these 

variations matches the in situ observations and the CMIP5 ensemble.  
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Figure 5.3b shows the seasonal cycle in the 0–100 cm soil moisture for the in situ 

observations and the CMIP5 models. ECV soil moisture data are not shown since 

satellites are only able to estimate near-surface soil moisture. The seasonal cycle of soil 

moisture in the 0–100 cm layer is similar to the 0–10 cm layer. Soil water content is 

highest during the early part of the warm season (April/May) and it declines until 

reaching a minimum in August. There is general agreement between the in situ 

observations and CMIP5 ensemble, however there are notable differences in the 

magnitude of the soil water content. In addition, the dry down shown in the CMIP5 

ensemble is less pronounced than in the in situ observations. There are substantial inter-

model variations among the CMIP5 models, particularly with regards to the absolute soil 

water content which is similar to the 0–10 cm soil layer. We will focus on evaluating the 

performance of individual models in the following sections of the chapter. 

 

 

Figure 5. 3. Month to month variation of spatial averaged soil moisture in 0 – 10 cm 
soil layer (a) and in 0 – 1 m soil layer (b) during warm season (April to September). 
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We also compared the spatial pattern of the mean soil moisture (2003–2012) 

during the warm season (April–September) (Figure 5.4). Based on the CMIP5 ensemble, 

the soils with the lowest soil water content in the 0–10 cm layer are typically found in 

the southwestern U.S. and the soils with the highest soil water content tend to be found 

in the northeastern U.S. (Figure 5.4a). This pattern is also evident in the 0–100 cm soil 

layer, however the gradient is less pronounced (Figure 5.4b). The patterns are somewhat 

less spatially consistent when one examines the in situ observations because of the 

influence of local factors (e.g., edaphic, climatic, topographic, vegetation, etc.).  

The differences between CMIP5 and the in situ observations are shown in Figure 

5.4e and 5.4f. Generally, CMIP5 tends to be significantly wetter than the in situ 

observations in the western U.S. and it tends to be significantly drier than the in situ 

observations in the eastern U.S. In fact, 79.3 percent of the differences between CMIP5 

and the in situ observations in the 0–10 cm layer are statistically significant. The same 

patterns are evident in the differences between CMIP5 and the in situ observations in the 

0–100 cm layer (Figure 5.4f). However, a greater number (8.8% more) of the positive 

biases in western U.S. and the negative biases in the eastern U.S. are statistically 

significant than in the 0–10 cm layer. These results agree with previous research. 

Sheffield et al. (2013) concluded that the CMIP5 models tend to overestimate 

precipitation in west North America. Given that precipitation is a principal control of 

soil moisture, a positive bias in precipitation can cause soils to be too wet. Sheffield et al. 

(2013) also found that CMIP5 models tend to overestimate evaporation in eastern North 
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America. This would lead to drier soils and could help to explain the dry biases in 

CMIP5 that were observed in the eastern U.S.  

 

 

Figure 5. 4. Spatial pattern of mean (2003 – 2012) soil moisture over CONUS 
during warm season (April to September). 0 – 10 cm soil moisture is shown in the 
left panel for: CMIP5 ensemble (a), in situ observations (c) and the difference (e; 

CMIP5 – in situ). 0 – 100 cm soil moisture is shown in the right panel: CMIP5 
ensemble (b), in situ observations (d) and the difference (f; CMIP5 – in situ). 
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Figure 5.5 compares the mean warm season (April–September) soil moisture 

(2003–2012) in 0–10 cm soil layer from the CMIP5 ensemble to the satellite-derived 

ECV soil moisture. The general spatial pattern of ECV is consistent with CMIP5, 

however ECV has much great spatial heterogeneity. This is partly due to the finer spatial 

resolution of the ECV data as compared to CMIP5. It is also apparent that there are 

significant differences in the near-surface soil water content in ECV versus CMIP5. For 

example, ECV shows that the regions with relatively low soil water content during the 

warm season (VWC < 0.2) are much more spatially extensive than in CMIP5. Similarly, 

the areas with relatively high soil water content (VWC > 0.3) are also more extensive 

with EVC. There has also been a shift in the soil water maxima in ECV into Maine and 

New Hampshire, with secondary maxima in Washington. The spatial pattern of the 

differences between ECV and CMIP5 are similar to those seen with the in situ 

observations. CMIP5 tends to have wet biases in the western U.S. and dry biases in the 

eastern U.S. The majority of statistically significant (p < 0.05) differences are 

concentrated in the places where CMIP5 is wetter than ECV (regions with a wet bias). 
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Figure 5. 5. Same as Figure 5.4, but for the CMIP5 ensemble and ECV soil 
moisture. 

 

 

We evaluate the performance of each CMIP5 model over CONUS during the 

warm season using Taylor’s skill score, as shown in Figure 5.6. Based on the skill score, 
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the individual models show a varying ability to capture the soil moisture distribution 

over CONUS. In the 0–10 cm soil layer, CCSM4, NorESM1-M, CESM1 and GFDL-

ESM2M all perform well (when compared to in situ observations) and have higher skill 

scores (S = 0.89, 0.87, 0.87 and 0.85) than the CMIP5 ensemble (S = 0.84). CanESM2 

(S = 0.39), INM-CM4 (S = 0.47) and HadGEM2-ES (S = 0.46) have the lowest scores. 

 

 

Figure 5. 6. Skill scores of CMIP5 over CONUS relative to the ECV observation 
(blue), in situ observation in 0 – 10 cm soil layer (green) and in 0 – 1 m soil moisture 
(brown). The line indicates the skill of the CMIP5 ensemble average. 
 

 

When model performance is evaluated using ECV soil moisture, the skill scores 

decrease for all the models. Among the 17 CMIP5 models that were evaluated, 8 have 

higher skill scores than the CMIP5 ensemble mean (BCC-CSM1.1, CCSM4, CESM1, 

FGOALS-g2, GFDL-ESM2M, GISS-E2-H, IPSL-CM5A-LR and MIROC-ESM). In the 

0–100 cm soil layer, CCSM4 (S = 0.86), CESM1 (S = 0.88), GFDL-ESM2M (S = 0.80) 

and HadGEM2-ES (S = 0.89) perform well. The performance of CanESM2, INM-CM4 
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and HadGEM2-ES improves in this layer as compared to the 0–10 cm layer. Generally, 

CCSM4, CESM1 and GFDL-ESM2M consistently perform well over CONUS in both 

the near-surface and deeper soil layers.  

The performance of each CMIP5 model is also evaluated using correlation, 

RMSE and “amplitude of variations” (relative standard deviation). These metrics are 

represented in Figure 5.7 using a Taylor diagram (Taylor, 2001). Correlations between 

soil moisture simulated by CMIP5 models and ECV and in situ observations are 

indicated by the azimuthal position of each dot in Figure 5.7. Correlations (r) between 

simulated 0–10 cm soil moisture and ECV observations (Figure 5.7a) are all lower than 

0.7. They tend to be clustered around 0.6, with the exception of BNU_ESM. 

Correlations between the CMIP5 models and the in situ soil moisture observations are 

more variable, as shown in Figure 5.7b. CCSM4 and CESM1 (r = 0.79) have the highest 

correlations, while IPSL-CM5A-LR (r = 0.55) and GISS-E2-H (r = 0.56) have the lowest 

correlations. The radial distance from the origin represents the standardized deviation of 

the CMIP5 models relative to the standardized deviation of the observations. When 

examing the performance of the CMIP5 models in the 0–10 cm soil layer, CanESM2, 

INM-CM4 and HadGEM2-ES are outliers showing much larger (σsim / σobs > 2) 

variations than either ECV or in situ observations. This leads to low Taylor’s skill scores 

for these three models. All the models show larger variations than ECV soil moisture, 

while only 10 (out of 17) models demonstrate larger variations than in situ soil moisture. 

In the 0–100 cm soil layer, the models in Figure 5.7c are more clustered than in 0–10 cm 

soil layer. In general, the models tend to under-estimate the variability in the 0–100 cm 
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layer. 12 of the 14 models have standardized deviations that are lower than the 

observations. This indicates that most of the models cannot capture the true variability of 

soil moisture in this layer. INM-CM4 significantly overestimates the standardized 

deviation which is consistent with the results for the 0–10 cm soil layer. FGOALS-g2 (S 

= 0.56) has the lowest Taylor’s skill score in the 0–100 cm layer. This is due to the low 

correlation (r = 0.69) and the model also significantly underestimates soil moisture 

variability (σsim / σobs = 0.51). 

 

 

Figure 5. 7. Taylor diagrams for CMIP5 models referred to (a) ECV soil moisture 
(b) in situ 0 - 10 cm soil moisture and (c) in situ 0 – 1 m soil moisture. Azimuthal 

angle represents correlation coefficient and radial distance is the standard 
deviation normalized to observations. 

 

 

5.3.2 Regional Evaluation  

The CMIP5 models are also evaluated in eight regions in CONUS (Figure 5.8). 

Correlations between model-simulated and in situ surface soil moisture (green bar) are 

higher in all regions than the correlations (blue bar) based on ECV soil moisture, except 
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in the NGP region (Figure 5.8a). Focusing on the correlations between CMIP5 ensemble 

and in situ soil moisture, correlations for 0–100 cm soil moisture (brown bar) are similar 

to the correlations for 0–10 cm soil moisture. Only in the NGP region, correlation in 0–

100 cm soil layer is substantially higher than in 0–10 cm soil layer. Examining the MAE 

gives a different perspective. In most regions, the CMIP5 ensemble has a lower MAE 

when compared to ECV versus the in situ observations. Only in the Northern Shrubland 

and Southern Shrubland regions is the MAE lower when compater to the in situ 

observations. Figure 5.8b indicates that MAE in the 0–100 cm soil layer is substantially 

higher than MAE in 0–10 cm soil layer in 7 of the 8 regions. Similarly, the coefficient of 

efficiency is generally higher in the 0–10 cm layer than in 0–100 cm. 

Model performance varies from region to region. Based on the ECV soil 

moisture, the CMIP5 ensemble has relatively high correlations (r = 0.64 and 0.66) in the 

MW and NE and relatively low correlations (r = 0.23) in the SS region. Based on the in 

situ soil moisture, correlations are consistently high (r > 0.85) in NS, NW, SE, SGP and 

SS in both the near-surface and deep soil layers. The lowest correlation (r = 0.50) 

between the near-surface in situ soil moisture and CMIP5 ensemble is in the NGP. The 

MAE based on ECV soil moisture is relatively low in the NE, NGP and NW (MAE = 

0.021, 0.021 and 0.021 cm3 cm-3) and relatively high in NS and SS (MAE = 0.042 and 

0.046 cm3 cm-3). However, when compared to the near-surface in situ soil moisture, 

MAE is relatively high in the NW (MAE = 0.037 cm3 cm-3).  

There is substantially more regional variability in MAE for the 0–100 cm soil 

moisture. The MAE exceeds 0.07 cm3 cm-3 in NS and NW, while in the NGP it is only 
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0.03 cm3 cm-3. The regional variation in coefficient of efficiency (E) is also substantial. 

When E is calculated based on the in situ observations it demonstrates that the CMIP5 

ensemble can skillfully simulate the 0–10 cm soil moisture in the NS, NW, SE, SGP and 

SS regions. The results also demonstrate that CMIP5 can accurately simulate the 0–100 

cm soil moisture in the NS, SE, SGP and SS regions during the warm season. However, 

these results do not agree with the performance assessment based on the ECV soil 

moisture. Based on ECV, E is best in the MW and NE regions and CMIP5 model 

ensemble is worse than climatology in the SS region.  

Based on the results presented above, model performance differs significantly 

when being evaluated with in situ versus ECV soil moisture. In addition, the selection of 

the best performing models is dependent on which statistic is used. For example, based 

on the in situ soil moisture in 0–10 cm layer, the NS and NW regions have relatively 

high MAE (MAE = 0.037 and 0.037 cm3 cm-3) even though the correlations are also 

strong (r = 0.87 and 0.89). This suggests that the model is able to simulate the wetting 

and drying of the soil, but there is a systematic bias in the absolute magnitude of the 

model-simulated soil moisture. 
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Figure 5. 8. Bar graphs of performance evaluation statistics for CMIP5 ensemble 
mean versus observed soil moisture (2003–2012): (a) correlation coefficient, (b) 

mean absolute error, and (c) coefficient of efficiency for the eight regions. 
 

 

Figure 5.9 shows the skill scores of each model in the eight regions using in situ 

observations from the warm season as reference. There is substantial inter-model 

variability in performance amongst the CMIP5 models as a function of soil depth and 

location. CESM1 has consistently high skill in the 0–10 cm soil layer in all eight regions. 

MRI-CGCM3 outperforms all the other models in the MW region and it also performs 

well in the NE along with ACCESS1.3. CanESM2 and HadGEM2-ES do not perform 

well in the majority of regions (6 out of 8 regions) and GISS-E2-H does not perform 

well in the MW and NE. For the 0–100 cm soil layer, HadGEM2-ES performs well in all 

regions, especially in NGP, NS, NW, SE and SGP. The models generally perform better 



 

127 

 

in the NE, compared to other regions. FGOALS-g2 and GISS-E2-H perform relatively 

poorly in all regions. 

 

 

Figure 5. 9. Comparison of CMIP5 models with in situ observations over eight 
regions based on Taylor’s skill scores: (a) 0 – 10 cm soil moisture, and (b) 0 – 1 m 
soil moisture. 

 

 

Due to the availability of ECV data and the issues with measuring soil moisture 

in frozen soils, the preceding analysis focused solely on the warm season. We also 

evaluated model performance using data from all months in the three southern regions 

(SE, SGP and SS) where frozen soils are not an issue. Figure 5.10 shows the seasonal 

cycle of soil moisture based on the CMIP5 ensemble, in situ and ECV data in the three 
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southern regions. CMIP5 ensembles in the three regions consistently show that soil 

moisture decreases first then increases in a year. However in SE, soil moisture reaches 

driest condition (in September) later than soil moisture in SGP (August) and SS (July). 

Both the in situ and ECV show more variable seasonal patterns than the CMIP5 

simulations, especially in the SGP and SS. In the SE, both the in situ and ECV soil 

moisture decrease starting in February and reach their lowest point in June. This is three 

months earlier than the CMIP5 ensemble. In situ observations are wetter than ECV soil 

moisture during the entire year in the SE, but they are most similar in October. In the 

SGP, in situ and ECV soil moisture generally decreases from April to August and then 

increases after August. There is good agreement between the in situ, ECV and CMIP5 in 

the SGP with regards to the timing of the wettest and driest months. This is the only 

region where the seasonal cycle is the same in all three data sources. However, the 

magnitude of the seasonal fluctuations differs substantially. CMIP5 is much more 

variable than both the in situ and ECV. While in the SS region, the ECV does not show 

much of a seasonal cycle. CMIP5 and the in situ observations show a similar drying of 

the soil from March through June, but they do not agree as well during the June to 

November period. Table 5.3 provides the correlation, MAE and E based on the month 

data from these three regions. During the warm season months the correlations and 

coefficient of efficiency are higher and the MAE is lower in all the cases. In terms of the 

surface layer, the CMIP5 ensemble is more highly correlated with in situ observations 

than ECV data in all three regions. However, in the SGP and SE, the MAE based on 

comparing the CMIP5 ensemble to the ECV is lower than the MAE based on the in situ 
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observations. With emphasis on in situ soil moisture in different layers, CMIP5 

ensemble has higher correlation, larger MAE and lower E in 0–100 cm soil layer than in 

0–10 cm soil layer in all the three regions. 

 

Table 5. 3. Evaluation of CMIP5 ensemble over Southeast, Southern Great Plains 
and Southern Shrubland using all monthly soil moisture and warm season only soil 

moisture 

  

Correlation MAE E 

  

All Warm All Warm All Warm 

SE 

v.s. ECV 0.44 0.50 0.030 0.024 0.11 0.17 

v.s. In Situ (0–10 cm) 0.80 0.88 0.032 0.028 0.61 0.72 

v.s. In Situ (0–100 cm) 0.89 0.91 0.067 0.052 0.21 0.43 

SGP 

v.s. ECV 0.38 0.44 0.026 0.024 0.05 0.15 

v.s. In Situ (0–10 cm) 0.82 0.86 0.032 0.027 0.63 0.67 

v.s. In Situ (0–100 cm) 0.90 0.92 0.071 0.056 0.19 0.45 

SS 

v.s. ECV 0.21 0.23 0.051 0.046 -1.12 -0.76 

v.s. In Situ (0–10 cm) 0.81 0.87 0.028 0.023 0.66 0.73 

v.s. In Situ (0–100 cm) 0.88 0.89 0.074 0.055 0.17 0.41 
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Figure 5. 10. Seasonal variation of mean monthly (2003 – 2012) soil moisture based 
on in situ observations (red), CMIP5 ensemble (black) and ECV observations (blue) 

in three regions: (a) Southeast, (b) Southern Great Plains, and (c) Southern 
Shrubland. 

 

 

5.4 Limitations and Conclusions 

5.4.1 Limitations 

This study compares model-simulated soil moisture from the CMIP5 models 

with in situ and satellite-derived soil moisture. The in situ stations were selected based 

on their record length spatial coverage. However, there are relatively few stations with 

10-year records. Therefore, some parts of CONUS are not well represented in this 

analysis. Future studies would benefit from including more in situ data to evaluate model 

performance. This would help to address issues with the spatial gaps in coverage and the 

issues related to comparing point measurements to model grid cells. Considering the in 

situ soil moisture come from different networks, there may also be some inconsistencies 

in the quality and representativeness of the soil moisture data (Dirmeyer et al., 2016). 

These inconsistencies can result from the use of different soil moisture sensors, 

calibration procedures and quality control processes. Dirmeyer et al. (2016) assessed the 
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random errors of 16 networks and found distinct differences between networks. 

Although we excluded from this study one of the networks with the largest random 

errors (e.g., COSMOS), more work is still needed to standardize and homogenize in situ 

soil moisture measurements.  

Another potential limitation of this work is that we applied bilinear interpolation 

method to regrid all the CMIP5 model output to a uniform resolution of 0.25° × 0.25° so 

that it matched the resolution of the ECV data. This is a simple way of re-scaling the 

data. Given that we are only evaluating model performance at the regional and 

continental scale, we believe that this method is reasonable because the spatial 

variability of soil moisture at these scales is dominated by precipitation patterns (Crow et 

al., 2012). However, applying more advanced interpolation or downscaling methods 

such as the reduced optimal interpolation (ROI) method (Yuan and Quiring, 2016) may 

provide a better estimates of model-simulated soil moisture at this spatial scale. 

 

5.4.2 Conclusions 

We evaluated soil moisture simulations in CMIP5 experiment (17 models for 0–

10 cm and 14 models for 0–100 cm) over CONUS using in situ observations and ECV 

satellite observations. The CONUS results show that the CMIP5 model ensemble has 

similar correlations with in situ observations when comparing the 0–100 cm soil layer 

with the 0–10 cm soil layer. However, there is evidence of a substantial wet bias in the 

deeper soil layer during months when the soil is dry. This wet bias is also reflected in the 
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multi-year mean monthly soil moisture. There is substantial variability in performance 

among the individual models, with the greater uncertainties in surface soil layer. 

The multi-model CMIP5 ensemble mean can generally capture the spatial pattern 

of soil moisture. However, wet biases in the western U.S. and dry biases in the eastern 

U.S. are evident. Sheffield et al. (2013) found that CMIP5 models tend to overestimate 

precipitation in the western U.S. and this may account for the wet biases that we 

observed. Dry biases in the eastern U.S. may be attributed to evapotranspiration, which 

tends to overestimated by CMIP5 models in the eastern U.S. (Sheffield et al., 2013). 

Performance of the CMIP5 ensemble varies significantly from region to region. In most 

regions (NS, NW, SE, SGP and SS), the CMIP5 ensemble can accurately simulate warm 

season surface soil moisture (e.g., high correlations and low MAE). In the three southern 

regions, we also evaluated soil moisture simulations during the cold season and found 

that there is generally a decrease in model performance (e.g., higher MAE and lower E 

than during the warm season). 

ECV soil moisture, as an independent data source, is introduced in this study to 

help evaluate the performance of CMIP5 soil moisture simulations. Relative to ECV soil 

moisture, CMIP5 ensemble shows greater month-to-month variations over CONUS. Due 

to this greater variance, CMIP5 models do not skillfully reproduce the ECV soil 

moisture. Similar with in situ soil moisture, ECV data also shows that the CMIP5 model 

ensemble tends to have wet biases in the western U.S. and dry biases in the eastern U.S. 

Additionally, in the three southern regions, the intra-annual variability shown by ECV 

soil moisture and in situ observations are relatively consistent. On the other hand, the 
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CMIP5 ensemble can only capture the general seasonal cycle, but fails to adequately 

capture some of the monthly variations. At the same time, there are some inconsistencies 

between the in situ and ECV soil moisture. For example, in the Southern Shrubland, the 

correlation between the CMIP5 models and ECV soil moisture (r = 0.23) is lower than 

the correlation with the in situ data (r = 0.87). Though comparing the two observational 

data is not the goal of this study, we can still point out future validation of satellite 

derived soil moisture is necessary. 

The skill of the individual CMIP5 models also varies significantly. In the top soil 

layer, the Taylor skill score varies from 0.39 (CanESM2) to 0.89 (CCSM4). Generally, 

the skill of the models in the deeper soil layer is similar to the surface layer, but the 

inter-model variability in skill is greater. HadGEM2-ES has the highest skill score 

because it matches the variability of the in situ observations. Generally, CESM1 

consistently performs well in the surface soil layer in all regions, and HadGEM2-ES 

performs well in the 0–100 cm soil layers in all regions. However, it is remains difficult 

to find a single model that consistently outperforms all others when it comes to 

accurately simulating soil moisture in all regions and seasons. Therefore, it is unclear 

whether the findings of this study will apply to other regions around the world with 

difference climate, soil and vegetation characteristics. 
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CHAPTER VI 

CONCLUSIONS 

 

6.1 Summary and Conclusions 

This dissertation provided a comprehensive evaluation of the utility of soil 

moisture for evaluating drought conditions in the U.S. Great Plains. Four drought indices 

(SPI, SPEI, CMI and Z index) are compared with two soil moisture products (in situ 

observation and land surface model simulation) in Chapter 2. The analysis focuses on 

whether these drought indices are able to accurately represent the percentile, trend, 

variability and persistence in observed soil moisture. In the 0 – 100 cm soil layer, CMI 

agrees well with soil moisture observations based on all four characteristics. In the 0 – 

10 cm soil layer, the results show that the best drought index depends on the goal of the 

application. For example, if the emphasis is on soil moisture variability, SPEI would be a 

good choice. In general, a more accurate representation of PET will help the drought 

indices to better approximate soil moisture. Except for CMI, the other three indices are 

more similar to soil moisture in 0 – 10 cm soil layer than in 0 – 100 cm soil layer. 

Therefore, we recommend using CMI as a proxy for soil moisture (0 to 100 cm) in future 

research. 

In Chapter 3, a more realistic version of the PDSI was developed by introducing 

a physically-based PET model into the PDSI. The comparison with the original PDSI 

and Penman-Montieth approaches based PDSI show the new PDSI estimates moderate 

drought trend from 1980 to 2012. This comparison also indicates the PDSI is not very 
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sensitive to the choice of PET model because precipitation is the more important factor 

that influences the PDSI in the U.S. Great Plains relative to energy supply. Though the 

spatially-averaged PDSI is insensitive to the choice of PET model, the influence of PET 

on the spatial and temporal pattern of drought cannot be ignored. Significant differences 

of drought area are revealed during severe drought events based on different PET 

estimates. The spatial pattern of land cover type is also found to correspond well with 

the spatial pattern of differences in the trends between the three methods. This leaves an 

open question for future research how significant the causal link with land cover is.  

Interpolation methods are used to estimate soil moisture at unsampled locations. 

Accurate interpolation method can provide spatially continuous drought information. 

Chapter 4 demonstrated the utility of the Reduced Optimal Interpolation method for soil 

moisture interpolation. Based on a comparison with IDW and Cokriging method, we 

found that ROI method significantly improves the accuracy of interpolated soil moisture 

at individual locations. In addition, it is not sensitive to the density and the spatial 

distribution of in situ measurements. 

The goal of Chapter 5 was to assess the accuracy of soil moisture simulations in 

ESMs using measurements and satellites. ESMs are the main tool for understanding 

future land-atmosphere interactions and drought conditions.The performance of 17 

ESMs were evaluated over CONUS relative to soil moisture observations based on 2003 

to 2012. The spatially-averaged multi-model ensemble is able to accurately represent the 

seasonal variations in soil moisture. However, there is a substantial wet bias, especially 

in 0 – 100 cm soil layer. Spatially, the CMIP5 ensemble has a wet bias in the western 
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U.S., and a dry bias in the eastern U.S. Model performance is better in warm season than 

in the cool season. The results demonstrated that there is substantial variability in 

performance among the individual models, especially in 0 – 10 cm soil layer. In 

addition, model performance as varies substantially across the sub-regions. Therefore, it 

is difficult to find one model that consistently performs well in all regions and seasons. 

 

 

6.2 Key Findings 

The spatial and temporal limitations of in situ soil moisture have limited their 

utility in past drought studies. This knowledge gap was addressed by this dissertation 

research through systematically assessing different ways of extending soil moisture data 

back in time (through the use of drought indices), estimating soil moisture at unsampled 

locations (through better interpolation methods), and estimating future changes in soil 

moisture (through using ESMs).  

First, this study identified the most appropriate soil moisture proxy based on the 

evaluation of four commonly-used drought indices. Although the SPI has been used in 

previous studies to represent soil moisture conditions, there have been very few 

evaluations of its ability to represent observed soil moisture conditions. Based on the 

results of this doctoral work, the SPI is not likely the best proxy for soil moisture. 

Generally, it appears that the CMI is the best index to use to represent soil moisture 

conditions. Therefore, the CMI should be used in studies that are interested in looking at 
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long term variations in soil moisture variability and land-atmosphere interactions when 

observed soil moisture is not available.  

Second, this dissertation research developed a more physically-realistic version 

of the PDSI and compared it with soil moisture. We quantified how PET influences 

drought index variability. This new drought index has the potential to provide more 

accurate information on soil moisture conditions to support drought monitoring activities. 

It may also be useful for serving as a proxy for soil moisture conditions in times and 

places that do not have in situ measurements.  

Third, this dissertation was the first to apply the ROI method for interpolating 

soil moisture. The comparison with other interpolation methods demonstrated that ROI 

significantly outperforms standard approaches. Therefore, ROI is a good approach to use 

for generating gridded soil moisture products. There are a large number of activities that 

are reliant on gridded soil moisture data, these include: operational drought monitoring, 

calibrating/validating satellites and land surface models, and documenting how soil 

moisture influences the climate system on seasonal to inter-annual time scales. 

Successfully applying the ROI method to estimate soil moisture at unsampled locations 

will help to address the limitations of the observing network. 

Finally, this dissertation is the first to evaluate the accuracy of the soil moisture 

simulations in the CMIP5 ESMs using both in situ and satellite data. Future projections 

of drought conditions, land-atmosphere interactions and hydrological cycle are strongly 

dependent on these ESMs. An improved understanding of where and when these models 

perform well and where and when perform poorly is essential for advancing the state-of-
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the-art in land-surface modeling and improving our understanding of future changes in 

soil moisture and hydroclimatic variability. These results can provide guidance on 

selecting the most appropriate model for climate assessment. 

 

 

6.3 Future Research 

The application of in situ soil moisture is always associated with scale problems. 

Comparison of point measurements with grid cells/pixels is problematic due to the scale 

mismatch. Future research should focus on developing methods for rescaling data 

(downscaling and upscaling) from point to grid cell in an optimal fashion that minimizes 

loss of information. Another issue related to in situ soil moisture is the uneven 

distribution of in situ sites. Therefore, further research is needed to improve interpolation 

methods and to identify the optimal resolution for gridded in situ products.  

There are also opportunities to utilize the results of the ESM evaluation that was 

performed here to investigate future changes in land-atmosphere interactions and 

hydroclimatic variability. Investigating how climate response to soil moisture anomalies 

via running selected ESMs with more realistic soil moisture initials.  

Variations in the soil moisture-climate coupling strength on decadal and multi-

decadal timescales is also an important topic. This dissertation has identified the drought 

indices that are best suited for being proxies of long-term soil moisture conditions. This 

will provide the basis for evaluating how and why land-atmosphere coupling strength 

varies over time and space. 
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