
STATE ESTIMATION OF SPATIO-TEMPORAL PHENOMENA

A Dissertation

by

DAN YU

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Suman Chakravorty
Committee Members, John Junkins

Sharath Girimaji
Swaroop Darbha

Head of Department, Rodney Bowersox

December 2016

Major Subject: Aerospace Engineering

Copyright 2016 Dan Yu

ABSTRACT

This dissertation addresses the state estimation problem of spatio-temporal phe-

nomena which can be modeled by partial differential equations (PDEs), such as

pollutant dispersion in the atmosphere. After discretizing the PDE, the dynami-

cal system has a large number of degrees of freedom (DOF). State estimation using

Kalman Filter (KF) is computationally intractable, and hence, a reduced order model

(ROM) needs to be constructed first. Moreover, the nonlinear terms, external distur-

bances or unknown boundary conditions can be modeled as unknown inputs, which

leads to an unknown input filtering problem. Furthermore, the performance of KF

could be improved by placing sensors at feasible locations. Therefore, the sensor

scheduling problem to place multiple mobile sensors is of interest.

The first part of the dissertation focuses on model reduction for large scale sys-

tems with a large number of inputs/outputs. A commonly used model reduction

algorithm, the balanced proper orthogonal decomposition (BPOD) algorithm, is not

computationally tractable for large systems with a large number of inputs/outputs.

Inspired by the BPOD and randomized algorithms, we propose a randomized proper

orthogonal decomposition (RPOD) algorithm and a computationally optimal RPOD

(RPOD∗) algorithm, which construct an ROM to capture the input-output behaviour

of the full order model, while reducing the computational cost of BPOD by orders of

magnitude. It is demonstrated that the proposed RPOD∗ algorithm could construct

the ROM in real-time, and the performance of the proposed algorithms on different

advection-diffusion equations.

Next, we consider the state estimation problem of linear discrete-time systems

ii

with unknown inputs which can be treated as a wide-sense stationary process with

rational power spectral density, while no other prior information needs to be known.

We propose an autoregressive (AR) model based unknown input realization tech-

nique which allows us to recover the input statistics from the output data by solving

an appropriate least squares problem, then fit an AR model to the recovered input

statistics and construct an innovations model of the unknown inputs using the eigen-

system realization algorithm. The proposed algorithm outperforms the augumented

two-stage Kalman Filter (ASKF) and the unbiased minimum-variance (UMV) algo-

rithm are shown in several examples.

Finally, we propose a framework to place multiple mobile sensors to optimize

the long-term performance of KF in the estimation of the state of a PDE. The

major challenges are that placing multiple sensors is an NP-hard problem, and the

optimization problem is non-convex in general. In this dissertation, first, we construct

an ROM using RPOD∗ algorithm, and then reduce the feasible sensor locations into

a subset using the ROM. The Information Space Receding Horizon Control (I-RHC)

approach and a modified Monte Carlo Tree Search (MCTS) approach are applied

to solve the sensor scheduling problem using the subset. Various applications have

been provided to demonstrate the performance of the proposed approach.

iii

DEDICATION

TO MY FAMILY

iv

ACKNOWLEDGEMENTS

I am deeply indebted to many people who have helped and inspired me over the

years. First and foremost, I would like to express my deepest respect and gratitude to

my advisor, Prof. Suman Chakravorty for supporting and encouraging me through-

out my graduate career. His positive outlook and enthusiasm are contagious; his

keen insight would always nudge me in the right direction. Especially, I would like

to thank Dr. Chakravorty for his great help and support with my career decision.

This work would not have been possible without his support.

I would also like to thank my committee members, professor John Junkins,

Sharath Girimaji and Darbha Swaroop for their time, encouragement and precious

advice. In addition to my committee members, I would like to thank Dr. Sivakumar

Rathinam for being defense examiner, and Dr. Robert Skelton for his constructive

suggestions. I would like to thank Dr. Jianer Chen for his great courses. I have

benefited from all of them over the years as a student or simply through friendly

conversations.

I would like to thank the current and past members of Dr. Chakravorty’s group:

Ali-akbar Agha-mohammadi, Saurav Agarwal, Amirhossein Tamjidi, Dilshad Raihan

and Weston Faber for their friendship and for all the discussions over the years. I

am especially grateful to Anshu Narang and Xiao Li Bai, for sharing their precious

experience, and their persistent help. I have been fortunate to have so many friends

who make my Ph.D journey enjoyable.

I would like to thank the staff in the Department of Aerospace Engineering,

particularly Karen Knabe and Rose Sauser, for their constant help.

Finally, to my family, I am eternally grateful of their love and support. Being so

v

far away from home has been difficult both for me and for my parents. I would like

to thank my parents for their unconditional love, and their support for every decision

I have made. I also wish to thank my grandparents for their encouragement. This

dissertation is dedicated to them.

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

TABLE OF CONTENTS . vii

LIST OF FIGURES . x

LIST OF TABLES . xiii

1. INTRODUCTION . 1

1.1 Motivation . 1
1.2 Literature Review . 3

1.2.1 Model Reduction Methods . 4
1.2.2 Unknown Input Filtering . 8
1.2.3 Sensor Scheduling . 9

1.3 Contribution . 12
1.4 Organization . 13

2. RANDOMIZED PROPER ORTHOGONAL DECOMPOSITION TECH-
NIQUE (RPOD) . 15

2.1 Introduction . 15
2.2 Preliminaries: POD-Galerkin Projection 16
2.3 Preliminaries: Balanced Truncation and BPOD 20
2.4 Simplified Analysis . 24
2.5 RPOD Algorithm . 33
2.6 Computational Results . 41

2.6.1 Pollutant Transport Problem 41
2.6.2 Linearized Channel Flow Problem 44
2.6.3 Discussion . 48

2.7 Summary . 51

vii

3. COMPUTATIONALLY OPTIMAL RANDOMIZED PROPER ORTHOG-
ONAL DECOMPOSITION (RPOD∗) . 52

3.1 Introduction . 52
3.2 Computationally Optimal Snapshot Ensemble 54
3.3 RPOD∗ Algorithm . 57
3.4 Implementation Issues . 66
3.5 Comparison with Related Algorithms 71

3.5.1 Comparison with BPOD . 71
3.5.2 Comparison with Random Projection 72
3.5.3 Comparison with BPOD output projection 73
3.5.4 Comparison with RPOD . 76

3.6 Computational Cost Analysis . 77
3.7 Computational Results . 78

3.7.1 Heat Problem . 79
3.7.2 Atmospheric Dispersion Problem 82
3.7.3 Comparison of Computational Time 86

3.8 Summary . 87

4. AN AUTOREGRESSIVE (AR) MODEL BASED STOCHASTIC UNKNOWN
INPUT REALIZATION AND FILTERING TECHNIQUE 88

4.1 Introduction . 88
4.2 Problem Formulation . 89
4.3 AR Model Based Unknown Input Realization Technique 90

4.3.1 Extraction of Input Autocorrelations via a Least Squares Prob-
lem . 90

4.3.2 Construction of the AR Based Innovations Model 101
4.3.3 Extension to Estimate Unknown Input Locations 106

4.4 Augmented State Kalman Filter and Model Reduction 107
4.4.1 Augmented State Kalman Filter 107
4.4.2 Unknown Input Estimation Using Model Reduction 108

4.5 Computational Results . 109
4.5.1 Heat Problem . 110
4.5.2 Stochastically Perturbed Laminar Flow 117

4.6 Summary . 123

5. GAUSSIAN PROCESS (GP) FOR STATE ESTIMATION 125

5.1 Introduction . 125
5.2 Preliminaries on GP . 126
5.3 State Estimation Using Spatial GP Model 127

5.3.1 Computational Results: 1D Heat Problem 128

viii

5.3.2 Computational Results: 2D Heat Problem 130
5.4 Summary . 132

6. SENSOR SCHEDULING FOR SPATIO-TEMPORAL PHENOMENA . . 135

6.1 Introduction . 135
6.2 Problem Formulation . 135
6.3 ROM Based Sensor Placement . 138

6.3.1 ROM and Modal Observability 139
6.3.2 ROM Based Sensor Placement Optimization Problem 140

6.4 ROM Based Sensor Scheduling . 142
6.4.1 Discussion on the Sensor Scheduling Problem 143
6.4.2 Preliminaries: Information Space Receding Horizon Control

(I-RHC) . 144
6.4.3 Preliminaries: Monte Carlo Tree Search (MCTS) 148
6.4.4 Modified MCTS . 152

6.5 Three-Step Sensor Scheduling Framework 152
6.6 Computational Results . 154

6.6.1 Comparison of the sensor scheduling performance using the full
set and the reduced subset . 154

6.6.2 Sensor scheduling for 2D atmospheric dispersion problem . . . 155
6.6.3 Sensor scheduling for 3D atmospheric dispersion problem . . . 157

6.7 Summary . 158

7. CONCLUSION AND FUTURE WORK 160

REFERENCES . 163

APPENDIX A. KALMAN FILTER (KF) . 176

APPENDIX B. EIGENSYSTEM REALIZATION ALGORITHM (ERA) . . . 178

APPENDIX C. OPTIMAL TWO-STAGE KALMAN FILTER (OTSKF) . . . 180

APPENDIX D. UNBIASED MINIMUM-VARIANCE FILTER (UMV) 182

APPENDIX E. COMPARISON OF Q-MARKOV COVARIANCE EQUIVA-
LENT REALIZATION (Q-MARKOV COVER) AND ERA 184

E.1 Problem Statement . 184
E.2 Review of the q-Markov COVER Algorithm 186
E.3 Comparison with ERA . 189

E.3.1 Proof of Proposition 1 . 190
E.3.2 Proof of Proposition 2 . 193

ix

LIST OF FIGURES

FIGURE Page

1.1 State estimation procedure of spatio-temporal phenomena 3

2.1 Contour plot of 2D contaminant concentration at time t = 10min,
numerical solution using full order system 42

2.2 Comparison of ROM constructed using RPOD and BPOD for 2D pol-
lutant transport problem. (a) Comparison of extracted eigenvalues
with the actual eigenvalues of the full order system. (b) Comparison
of the output/state relative error over time, each plot is the average
performance of 3 trials. 43

2.3 Contour plot of 2D linearized channel flow at t = 1000s. (a) Actual
wall-normal velocity field. (b) Actual wall-normal vorticity field. . . . 45

2.4 Comparison between ROM wall-normal velocity modes and actual ve-
locity modes. (a) Actual first velocity mode. (b) ROM first velocity
mode. (c) Actual second velocity mode. (d) ROM second velocity mode. 46

2.5 Comparison between ROM wall-normal vorticity modes and actual
vorticity modes. (a) Actual first vorticity mode. (b) ROM first vor-
ticity mode. (c) Actual second vorticity mode. (d) ROM second
vorticity mode. 47

2.6 Comparison of eigenvalues extract by RPOD and BPOD for linearized
channel flow problem . 48

2.7 Comparison of ROM errors between RPOD and BPOD for linearized
channel flow problem. (a) Comparison of the output relative error
over time. (b) Comparison of the state relative error over time. Each
plot is the average performance of 20 trials. 49

2.8 Simulation results using RPOD for linearized channel flow problem
when BPOD is not feasible. (a) Eigenvalues extracted using RPOD.
(b) Output relative errors using RPOD. 50

x

3.1 This figure explains when to take the snapshots in RPOD∗. The snap-
shots are taken at every ∆T time, and the averaged output relative
error is plotted as a function of ∆T . 67

3.2 Comparison of time domain errors between RPOD∗, BPOD and BPOD
output projection for heat transfer problem. (a) Comparison of Markov
parameters. (b) Comparison of output relative errors. 81

3.3 Comparison of frequency responses between RPOD∗, BPOD and BPOD
output projection for heat transfer problem. (a) Comparison of fre-
quency responses. (b) Comparison of frequency response errors. . . . 82

3.4 Contour plot of air pollutant concentration at t = 200s. 84

3.5 Comparison of time domain errors between RPOD∗ and BPOD output
projection for atmospheric dispersion problem. (a) Comparison of
Markov parameters. (b) Comparison of output relative errors. 85

3.6 Comparison of frequency responses between RPOD∗ and BPOD out-
put projection for atmospheric dispersion problem. (a) Comparison
of frequency responses. (b) Comparison of frequency response errors. 86

4.1 Comparison of the recovered input autocorrelations with actual un-
known input autocorrelations for heat problem. 112

4.2 Comparison of input autocorrelation relative error using full order
model with ROM for heat problem. 113

4.3 Unknown input filtering for heat problem using ROM. State estima-
tion error and 3σ bounds for two randomly chosen states. 114

4.4 Comparison of the performances of AR model based algorithm with
OTSKF and UMV algorithms for heat transfer problem. The ARMSE
is plotted as a function of NSR. 116

4.5 Comparison of recovered input autocorrelations with actual unknown
input autocorrelations for stochastically perturbed laminar flow. . . . 120

4.6 Comparison of input autocorrelation relative error using full order
model and ROM for stochastically perturbed laminar flow. 121

4.7 Unknown input filtering for stochastically perturbed laminar flow us-
ing ROM. State estimation errors and 3σ bounds for two randomly
chosen states. 122

xi

5.1 GP model learned from training data at time t0 for 1D heat problem. 129

5.2 Comparison of state estimation at t ≥ t0 using GP model and ROM
for 1D heat problem. (a) Comparison of state estimation error and
3σ bounds. (b) Comparison of normalized RMSE. 131

5.3 GP model learned from training data at t0 for 2D heat problem. (a)
Training Data (b) GP model. 132

5.4 Comparison of state estimation at t ≥ t0 using GP model and ROM
for 2D heat problem. (a) Comparison of state estimation error and
3σ bounds. (b) Comparison of normalized RMSE. 133

6.1 This figure illustrates the differences between constructing subset sen-
sor locations S∗ using local maxima criterion and threshold ε. 142

6.2 Outline of MCTS approach [1] . 149

6.3 Parallelization approaches for MCTS [2] 151

6.4 Comparison of optimal reward using S∗ and S for 1D heat problem.
The optimal reward using S∗ is plotted as a function of design param-
eters nl and δ. 156

6.5 Comparison of I-RHC, modified MCTS, exhaustive search and myopic
approaches for 2D atmospheric dispersion problem. 157

6.6 State estimation using I-RHC, modified MCTS and myopic approaches.158

6.7 Comparison of I-RHC and myopic approaches for 3D atmospheric dis-
persion problem. 159

xii

LIST OF TABLES

TABLE Page

2.1 Comparison of performance (BPOD V.S. RPOD) 49

3.1 Computational Complexity Analysis for RPOD∗ and BPOD Output
Projection . 77

3.2 Parameters of Heat and Atmospheric Dispersion System 80

3.3 Comparison of Computational Time using RPOD∗ and BPOD output
projection for Heat Transfer and Atmospheric Dispersion 87

4.1 Performances of the AR model based algorithm, OTSKF and UMV
for Heat Problem . 116

4.2 Performances of the AR model based algorithm, UMV and OTSKF
for stochastically perturbed laminar flow 123

xiii

1. INTRODUCTION

1.1 Motivation

Many real-world phenomena can be viewed as spatio-temporal processes which

are modeled by partial differential equations (PDEs). For example, the motion of

fluids such as precipitation [3], ocean currents [4, 5], air pollution [6] and water flow

in a pipe [7] can be described by Navier-Stokes Equations [8]. In addition, the

temperature distribution of a large battery pack [9], biological phenomena [10] ,

power system state-time behavior [11] and many other engineering applications are

also modeled by PDEs.

Historically, there has been a lot of theoretical research in the Control Systems

community on the estimation and control of systems driven by PDEs [8, 12–15]. A

standard approach is to transform PDEs to a set of ordinary differential equations

(ODEs) by discretizing the PDEs in space using the finite difference method (FDM)

or finite element method (FEM). The discretized system has a large number of de-

grees of freedom (DOF) which leads to the following problem: state estimation of

such a system using standard Kalman Filter (KF) is not computationally tractable.

Therefore, a reduced order model (ROM) constructed via model reduction algorithms

is used for state estimation. The benefit of using an ROM based KF is that the ex-

pensive computations for constructing the ROM can be done offline, and the online

state estimation computations are essentially trivial.

In addition, in order to estimate the states of stochastic dynamical system, it

is generally assumed that all system parameters, noise covariance, and inputs are

known. However, in practice, unknown inputs are often present in the systems due

to the unmodeled dynamics, nonlinear terms or external disturbances. The state

1

estimation of stochastic systems in presence of unknown inputs is known as the

unknown input filtering (UIF) problem, and has been investigated for decades.

There are many applications where the unknown inputs can be modeled as a

stochastic process. In [16], a stochastic disturbance model is used to force the lin-

earized Navier-Stokes equation, which leads to a simulated flow state with certain

second-order statistics closely matching the flow statistics computed from the Di-

rect Numerical Simulation (DNS) of turbulent channel flow. Based on this result,

the state estimation of perturbed laminar flows is considered in [17]. It shows that

the external disturbances and nonlinear coupling terms can be modeled as unknown

stochastic inputs, which perturb the linearized Navier-Stoke equations. Thus, the

state estimation problem of such system is transformed into the unknown input fil-

tering problem with stochastic unknown inputs. Also, there is some research that

considers Kalman filtering with unknown noise covariances. The process noise is as-

sumed to be white noise with unknown covariance [18,19], while in our research, the

process noise can be colored in time as well. There are also applications of unknown

stochastic inputs estimation in signal processing, such as the wideband power spec-

trum estimation [20], where the problem is to recover the unknown power spectrum

of a wide-sense stationary signal from the obtained sub-Nyquist rate samples. In this

dissertation, we consider the UIF problem when the unknown inputs can be modeled

as stochastic processes.

Another important problem considered in this dissertation is to place multiple

mobile sensors to optimize the long-term behavior of the KF in the estimation of

the state of a PDE. Since sensors have become much smaller and less expensive in

the last few decades, there is increasing attention of using mobile sensors for moni-

toring spatio-temporal phenomena. Moreover, installing and maintaining stationary

sensors are costly, and in scenarios when the phenomena changes in a short dura-

2

tion, stationary sensors collect limited information. The major challenges are that

placing multiple sensors is an NP-hard problem [21], and the optimization problem

is non-convex in general. Hence, most algorithms focus on placing sensors which can

optimize performance of the current time instant, i.e., a myopic policy.

In this context, the motivation for this research arises from the desire to design

a KF based approach for estimating and predicting spatio-temporal phenomena.

The proposed approach is capable of handling uncertainties as well as unknown

inputs. The performance of the state estimator is optimized by placing multiple

mobile sensors to take measurements, and most importantly, the approach can be

implemented efficiently. The general structure of the proposed approach is shown in

Fig. 1.1.

Spatio-Temporal Dynamical System

Model Reduction

Unknown Input Realization Sensor Scheduling

State Estimation

Figure 1.1: State estimation procedure of spatio-temporal phenomena

1.2 Literature Review

In this section, we review the literature most relevant to our research. Section

1.2.1 reviews different model reduction techniques that have been widely used. In

Section 1.2.2, we give an overview of the unknown input filtering methods, and in

Section 1.2.3, we review the literature relates to the sensor placement problem. The

open research problems are enumerated in each subsection respectively.

3

1.2.1 Model Reduction Methods

Model reduction has attracted considerable attention in the past several decades.

It is a technique that constructs a lower-dimensional subspace to approximate the

original high-dimensional dynamic system.

The Proper Orthogonal Decomposition (POD), also known as Karhunen-Loeve

decomposition or principle component analysis, followed by a Galerkin projection

has been used extensively in the Fluids community to produce reduced order models

(ROMs) of fluid phenomena such as turbulence and fluid structure interaction [22–

24]. A review of the POD is given in [25]. An empirical basis of orthonormal

eigenfunctions is obtained from experimental or simulation data, and the original

higher-dimensional system is projected onto this basis. The POD modes are optimal

in the sense that the energy captured in the ROM are optimized, and the most

significant modes are the ones that carry most of the kinetic energy. However, the

most energetic modes are not always the most dynamically significant ones. Hence,

a major disadvantage of POD technique is that the ROM constructed using POD is

not accurate [26]. Techniques to improve performance of POD are reviewed in [27].

In the context of control theory, balanced truncation introduced in [28] has been

successfully applied to linear dynamical systems. Balanced truncation yields a stable

reduced system with a bounded approximation error. Both the inputs and outputs of

the dynamical system are taken into account, and consequently, the ROM captures

the input-output behavior of the original system. However, balanced truncation

suffers from high computational complexity when generating the controllability and

observability Gramians for large scale systems.

To reduce the computational cost of balanced truncation, Balanced POD (BPOD)

[29, 30], which is based on the snapshot POD and balanced truncation has been

4

proposed. Balancing transformations are constructed using the impulse responses of

both the primal and adjoint system, and hence, the most controllable and observable

modes can be kept in the ROM. In 1978, Kung [31] presented a new model reduction

algorithm in conjunction with the singular value decomposition (SVD) technique,

and the eigensystem realization algorithm (ERA) [32] was developed based on this

technique. The BPOD is equivalent to the ERA procedure [33], and forms the

Hankel matrix using the primal and adjoint system simulations as opposed to the

input-output data as in ERA. More recently, there has been work on obtaining

information regarding the dominant modes of the system based on the snapshot

POD, followed by an eigendecomposition of an approximating linear operator, called

the dynamic mode decomposition (DMD) [34,35].

The primary drawback of BPOD and ERA is that for a large scale system, such

as that obtained by discretizing a PDE, with a large number of inputs/outputs,

the computational burden incurred is very high. There are two main parts to the

computation: First is to collect datasets from computationally expensive primal and

adjoint simulation in order to generate the Hankel matrix. The second part is to

solve the SVD problem for the resulting Hankel matrix.

Improved algorithms have been proposed to reduce the computational complexity

of BPOD. For example, [30] proposed an output projection method to address the

problem when the number of outputs is large. The outputs are projected onto a small

subspace via an orthogonal projection Ps that minimizes the error between the full

impulse response and the projected impulse response. However, the method cannot

make any claim regarding the closeness of the solution to one that is obtained from

the full Hankel matrix, and is still faced with a very high computational burden when

both the numbers of inputs and outputs are large. There have also been methods

proposed [36] to reduce the number of snapshots. First, the DMD is used to estimate

5

the slowly decaying modes that dominate the long-term behavior of the impulse

responses, and then analytic expressions are formulated for the contribution of these

modes. Therefore, there is no need to run the long impulse response simulations.

However, the primary problem regarding large number of inputs/outputs remains

the same.

Randomized algorithms motivated by problems in large-scale data analysis have

been developed recently. The advantage of the randomized algorithm is that: 1)

often the execution time or space requirement of a randomized algorithm is smaller

than that of the best deterministic algorithm, and 2) it lead to a simpler algorithm to

implement. There are two major classes of randomization algorithms used for low-

rank matrix approximations and factorizations: random sampling algorithms [37]

and random projection algorithms [38,39].

For a large scale matrix H, random sampling algorithms construct a rank k

approximation matrix Ĥ by choosing and rescaling some columns of H according to

certain sampling probabilities [38], so the error satisfies ‖H − Ĥ‖F ≤ ‖H −H(k)‖F +

ε‖H‖F , with high probability, where H(k) is a best rank k approximation of H, ε

is a specified tolerance, and ‖H‖F denotes the Frobenius norm of H. The improved

algorithm proposed in [39] is to sample some columns according to leverage scores,

where the leverage scores are calculated by performing the SVD of H, so that the

error satisfies ‖H − Ĥ‖F ≤ (1 + ε)‖H −H(k)‖F , with high probability.

A recently developed “Scenario Method” for systems and control design [40, 41]

can also be related to the random sampling algorithm. For a robust convex opti-

mization problem, the number of optimization variable d is finite, while the num-

ber of constraints may be infinite. The scenario method randomly samples Ns

convex constraints from the uncountable set of constraints, and with the bound

Ns ≥ 2
ε
(log(1

β
) + d), the optimal solution can be guaranteed to satisfy an ε- fraction

6

of the constraints, with probability no smaller than 1− β, where ε and β are design

parameters.

In random projection method [37], the large matrix H is projected on to an

orthonormal basis Q such that the error satisfies ‖H −QQ∗H‖ ≤ (1 + ε)‖H −H(k)‖

with high probability, where ‖H‖ denotes the spectral 2-norm of H, x∗ denotes the

complex conjugate transpose of x. A Gaussian test matrix Ω is generated, and the

orthonormal basis Q is constructed by performing a QR factorization of the matrix

product HΩ.

A direct application of both the random sampling algorithm and random projec-

tion algorithm would require the full Hankel matrix to be constructed, however, such

a construction of the Hankel matrix is computationally prohibitive when the num-

ber of inputs/outputs is large. Further, in random sampling algorithm, the leverage

scores are calculated by performing the SVD of the Hankel matrix, which is also

computationally prohibitive owing to the size of the problem.

In this dissertation, we aim to reduce the computational costs and storage re-

quirements of BPOD while keeping the same accuracy as BPOD. In Section 2, we

propose a Randomized POD (RPOD) algorithm, which is closely related to the “Sce-

nario Method”. We randomly choose a subset of the input/output trajectories and

construct a sub-Hankel matrix, which has the same rank as the full Hankel matrix

with a high probability. We derive a bound on the number of input/output trajecto-

ries to be sampled, and the derivation of our bound, albeit different from the bound

in [40], is nonetheless inspired by the developments in that reference. Similar to the

BPOD algorithm, the controllable and observable modes are retained in the ROM,

the Markov parameters of the ROM are close to the Markov parameters of the full

order system, while the error is bounded. The computations required by RPOD are

orders of magnitude cheaper when compared to the BPOD/BPOD output projection

7

algorithm.

In Section 3, we propose a computationally optimal RPOD (RPOD∗) algorithm,

which is closely related to the random projection algorithm. The RPOD∗ algorithm

can be viewed as applying the random projection on the full Hankel matrix H twice

without constructing the full Hankel matrix H. We believe that RPOD∗ is the most

computational efficient POD algorithm.

1.2.2 Unknown Input Filtering

Observers are dynamic systems that can be used to estimate the state of a plant

using its input-output measurements. In some cases, the inputs to the plant are un-

known or partially known, which leads to the development of the so-called unknown

input observer (UIO). The unknown input observer has been well established for de-

terministic systems [42–44]. Various methods of building full-order or reduced-order

observers have been developed, such as [45–47]. Recently, sliding mode observers

have been proposed for systems with unknown inputs [48]. The design parameters

and matrices need to be well chosen to satisfy certain conditions in order for the

observers to perform well. For systems without the “observer matching” condition

being satisfied, a high-gain approach is proposed [49]. The high-gain observers are

used as approximate differentiators to obtain the estimates of the auxiliary outputs.

In the presence of measurement noise, the high-gain observer amplifies the noise, and

extra care needs to be taken when designing the gain matrix.

For stochastic systems, the state estimation problem with unknown inputs is

known as unknown input filtering (UIF) problem, and many UIF approaches are

based on the Kalman filter [50–52]. When the dynamics of the unknown inputs is

available, for example, if it can be assumed to be a wide-sense stationary (WSS) pro-

cess with known mean and covariance, one common approach called Augmented State

8

Kalman Filter (ASKF) is used, where the states are augmented with the unknown

inputs [53]. To reduce the computational complexity of ASKF, optimal two-stage

Kalman filters (OTSKF) and optimal three-stage Kalman filters have been developed

to decouple the augmented filter into two parallel reduced-order filters by applying a

U-V transformation [54–56]. When no prior information about the unknown input is

available, the invalid assumption about the model may have a major adverse effect

on the filter’s performance, and hence, an unbiased minimum-variance (UMV) filter-

ing technique has been developed [57, 58]. The problem is transformed into finding

a gain matrix such that the trace of the estimation error matrix is minimized. The

“observer matching” condition needs to be satisfied, and certain algebraic constraints

must be satisfied for the unbiased estimator to exist. When the assumed unknown

input model used in OTSKF is accurate, the performance of OTSKF is better than

UMV algorithm in the sense that the error covariances are smaller, otherwise, UMV

algorithm is more accurate than OTSKF.

In Section 4 we propose a new UIF algorithm when the unknown inputs can be

treated as a wide-sense stationary process with rational power spectral density, while

no other prior information needs to be known. The algorithm is based on the system

identification technique, which is more accurate than OTSKF and UMV algorithms,

and can tolerate more sensor noise. A milder assumption than the “observer match-

ing” condition needs to be satisfied. Also, the algorithm we propose can be applied

to estimate the locations of the unknown inputs.

1.2.3 Sensor Scheduling

The optimal sensor placement problem is to place multiple sensors in a spatial

field, which can maximize a performance metric. Optimal sensor placement in spatial

field faces the challenges such as placing multiple sensors is NP-hard [21], and the

9

optimization problem is non-convex in general. As the number of sensors or the num-

ber of possible sensor locations increases, an exhaustive search for global optimum is

computationally infeasible, so many near-optimal or sub-optimal sensor placement

methods have been developed. For the purpose of field estimation, there are two

major classes of sensor placement techniques: Gaussian Process (GP) based [59, 60]

and mode shape based algorithms [61,62].

The Gaussian Process (GP) [63] has been widely used to estimate and predict

spatial phenomena. For example, in [59], the temperature measurements in two-

dimensional space are assumed to be spatially correlated, and can be modeled by a

GP. Given measurements at some locations, we can predict the temperature at arbi-

trary locations. A near-optimal sensor placement approach is developed by adding

sensors in sequence, and choosing the next sensor which provides the maximum in-

crease in mutual information. However, for the spatio-temporal phenomena which

also evolve with time, predictions using the learned GP model could result in large

errors. Hence, current research has focused on modelling the desired phenomena

using a spatio-temporal GP, with a mobile sensor network [64–66]. However, in such

a case, a more complicated GP model needs to be learned, and the computational

complexity of GP regression increases as the number of observations increases.

When the spatio-temporal phenomena can be modeled by PDEs, one research

direction focuses on placing the sensors using spatial structure of the underlying

phenomena [61,62]. For example, in [67], sensors are placed using the eigenfunctions

of the PDEs and is formulated as an optimization problem to maximize the system

observability. In [68–70], the original systems are projected onto lower-dimensional

subspace using the POD algorithm. The sensors are placed at the extrema of the

POD projection bases, and the ROMs are used for state estimation, which is com-

putationally tractable.

10

The mobile sensor placement problem can be viewed as an extension of the static

sensor placement problem, which allows the sensors to move in time. When the

sensors are placed to maximize the performance metric at the next time instant, it

results in a myopic sensor scheduling problem. The non-myopic sensor scheduling

problem is to optimize the performance metric over a suitably long time-horizon.

Myopic scheduling is attractive due to its low computational complexity and ease of

implementation, while the use of non-myopic scheduling is imperative for dynami-

cal systems as it can perform significantly better than myopic scheduling. This is

because myopic decisions do not take into account the long-term effects of these

decisions. Although the sensor scheduling problem has been well studied, applying

the non-myopic algorithms on large scale spatio-temporal system is still not com-

putationally tractable. Hence, most mobile sensor placement algorithms are myopic

when monitoring spatio-temporal systems.

There are two major classes of non-myopic sensor scheduling algorithms. The first

class is based on the exhaustive tree search [71, 72], which requires the enumeration

at every iteration. The benefits of the branch-and-bound based tree search algorithm

is its wide range of applications, while the size of the decision space poses challenge.

Another class of sensor scheduling algorithm is to relax the non-convex optimization

problem into a convex problem [73,74]. The advantage of using the convex relaxation

algorithm is that once the problem is convex, it can be solved efficiently.

In Section 6, we apply two non-myopic sensor scheduling algorithms to place

multiple mobile sensors for spatio-temporal systems and compare the performance

with myopic algorithm.

11

1.3 Contribution

This dissertation focuses on monitoring and predicting spatio-temporal phenom-

ena which can be modeled by partial differential equations (PDEs), such as pollutant

dispersion. Three problems are solved in this dissertation. First, new model reduc-

tion algorithms are proposed to reduce the computational cost of state estimation

using the Kalman Filter (KF). Next, we consider the problem of state estimation

in the presence of unknown inputs, and provide a new unknown input realization

algorithm. Finally, we present a framework for non-myopic sensor scheduling to op-

timize the performance of a KF monitoring a spatio-temporal process. The major

contributions are as follows:

• Model Reduction: We present a new perspective to analyze the relation

between the snapshot ensembles and ROM. The concept of computationally

optimal snapshot ensembles is introduced, and we propose a RPOD∗ algorithm

which can reduce the computational cost of BPOD by orders of magnitude,

while keeping the same accuracy. We also relate the RPOD∗ algorithm to

randomized algorithms.

• Unknown Input Realization: We propose an autoregressive (AR) model

based unknown input realization technique, which constructs an unknown input

model using only the output information. The unknown inputs are assumed to

be a wide-sense stationary process with rational power spectral density while

no other information needs to be known. The so-called matching condition

is avoided, and sufficient conditions for the convergence of estimation error

in the presence of unknown inputs are derived. The ROM constructed using

RPOD∗ algorithm is used to reduce the computational complexity. We show

that the performance of AR model based algorithm is significantly better than

12

the OTSKF and UMV algorithms (two other UIF algorithms).

• Sensor Scheduling: We propose a three-step framework to place multiple

mobile sensors for spatio-temporal systems efficiently. First, an ROM is con-

structed using RPOD∗ algorithm, and an optimization problem using the ROM

is formulated to reduce the possible locations of sensors into a subset. Two

sensor scheduling algorithms are used to place mobile sensors in a receding

horizon fashion. The proposed algorithm is tested on moderate to large scale

spatio-temporal phenomena.

This research has been reported in several publications. Different POD based

model reduction algorithms are reported in [75–78]. The AR model based unknown

input realization method is reported in [79,80].

1.4 Organization

The rest of the dissertation is organized as follows:

Section 2 presents a brief review of existing model reduction techniques which

are related to our research, with a simplified analysis of BPOD in a new perspective.

The ROM is related to the controllable and observable eigenmodes of the dynamical

system, which reveals some fundamental insights into the model reduction technique.

A new model reduction algorithm RPOD is presented which can reduce the com-

putational cost required by existing approaches, and several computational results

comparing RPOD with BPOD are provided.

Section 3 extends the study of Section 2, and proposes a computationally opti-

mal RPOD algorithm, which can further reduce the computational cost of RPOD.

Discussion of implementation issues and comparison with all related model reduction

algorithms are included. The computational complexity analysis is provided, and the

proposed algorithm is tested on several advection-diffusion problems.

13

Section 4 considers the design of a stochastic unknown input realization algo-

rithm. The problem is formulated, and necessary conditions for convergence of the

estimation error are analyzed. Applications on heat problem and linearized channel

flow problem are presented to demonstrate the performance of the proposed algo-

rithm.

Section 5 discusses state estimation of spatio-temporal phenomena using Gaus-

sian Process (GP) model. GPs are briefly reviewed, and simulation results are shown

to illustrate the issues with using GP for estimation of spatio-temporal phenomena.

Section 6 proposes a three-step sensor scheduling framework for large scale sys-

tems. First, an ROM is constructed using RPOD∗ algorithm. Then the possible

locations are reduced onto a subset using the ROM. Two sensor scheduling ap-

proaches are applied to place multiple mobile sensors in a receding horizon control

fashion. Computational results are presented to compare performances of different

sensor scheduling approaches.

Section 7 concludes the dissertation and discusses future research directions.

14

2. RANDOMIZED PROPER ORTHOGONAL DECOMPOSITION

TECHNIQUE (RPOD)

2.1 Introduction

The main goal and contribution of this dissertation is to develop a model reduc-

tion algorithm for large scale systems with a large number of inputs/outputs. As

discussed in Section 1, the spatio-temporal phenomena we are interested in can be

modeled by partial differential equations (PDEs), and after discretizing the PDEs

using finite element or finite difference method, the system can have dimension of

O(105∼9). Standard state estimation and control design methods for such a system

are computationally intractable, and hence, the use of a reduced order model (ROM)

is necessary.

In this section, we begin by reviewing standard model reduction methods which

are related to our work. Proper orthogonal decomposition (POD) with Galerkin

projection is a standard model reduction approach, where the original system is pro-

jected onto a lower-dimensional subspace using a set of orthogonal bases. In linear

control theory, balance truncation is a widely used model reduction approach, which

takes into account of both the inputs and outputs, and hence, the ROM can cap-

ture the input-output behavior of the original system. Balanced proper orthogonal

decomposition (BPOD) algorithm is based on the snapshot POD and balance trun-

cation, and is most related to our work. The goal of this section is to propose a

randomized proper orthogonal decomposition (RPOD) algorithm, which reduce the

computational cost of BPOD while the ROM retaining almost the same information

as BPOD, especially for the system with a large number of inputs/outputs.

The rest of the section is organized as follows. In Section 2.2, we introduce

15

the main idea of POD via Galerkin projection. In Section 2.3, we introduce the

balance truncation approaches, with a detail description of BPOD algorithm. Then

we analyze the BPOD algorithm in a simplified fashion in Section 2.4. The simplified

analysis is crucial to understanding the fundamental of the RPOD algorithm. We

propose the RPOD algorithm in Section 2.5, and we show that the sub-Hankel matrix

we construct retains almost the same information as the full Hankel matrix in terms

of the numbers and accuracy of the underlying modes. In Section 2.6, we compare the

simulation results using RPOD and BPOD for several advection-diffusion equations.

2.2 Preliminaries: POD-Galerkin Projection

POD-Galerkin Projection is a projection method where the dynamical system is

projected onto a subspace of the original space. POD provides a method for finding

the best approximating subspace to a given set of data in an optimal least-square

sense, and Galerkin projection is a standard technique to reduce partial differential

equations with a method of lines to a system of ordinary differential equations.

POD Algorithm. Consider a high-dimensional Hilbert space H = <N , where N is

large, and a given set of data in H:

X = {x1(t), x2(t), · · · , xm(t)} ∈ <N×m, (2.1)

where t ∈ [0, T]. POD method [81] aims to find an orthogonal projection Ps : H →

Hd which projects the original data onto a d-dimensional subspace that minimizes

the total least-squares distances:

‖X − PsX‖2 =
m∑
i=1

∫ T

0

‖xi(t)− Psxi(t)‖2dt, (2.2)

where ‖.‖ denotes the L2 norm.

16

Solving the optimization problem (2.2) leads to an eigenvalue problem:

Kφi = λiφi, i = 1, · · · , N, (2.3)

where K ∈ <N×N is called the kernel and is defined as:

K =
m∑
i=1

∫ T

0

xi(t)xi(t)
′dt, (2.4)

where (.)′ denotes the transpose of (.).

By definition, K is a symmetric positive semi-definite matrix with real, nonneg-

ative ordered eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0. The optimal subspace Hd of

dimension d is given by Hd = span {φ1, · · · , φd}, and the eigenvectors φi, i = 1, · · · d

are called the POD modes. The major results of POD is given as follows [82].

Theorem 1 Let K be the kernel of the data, and λ1, · · · , λN ≥ 0 be the ordered

eigenvalues of K. Then it holds

min
Hd
‖X − PsX‖ =

N∑
i=N−d+1

λi, (2.5)

where the minimum is taken over all subspaces Hd of dimension d. Further, the

optimal orthogonal projection Ps : H → Hd, with PsP
′
s = I is given by:

Ps =
d∑
i=1

φiφ
′
i. (2.6)

For a large scale system, solving eigenvalue problem for matrix K ∈ <N×N , where

N = O(105 ∼ 109) is computationally intractable. Therefore, in [83], the method

of snapshots is introduced to approximate the kernel matrix K without explicitly

calculating (2.4). Snapshots are constructed from the trajectories of the dynamical

17

system by evaluating them at certain discrete time instances t1, · · · tm ∈ [0, T], and

the kernel matrix is approximated by:

K =
m∑
i=1

x(ti)x(ti)
′. (2.7)

where x(ti) is the instantaneous system state at time ti, and m � n is the number

of snapshots. Denote the snapshot ensemble as X =

(
x(t1), · · · , x(tm)

)
∈ <N×m.

In the method of snapshots, instead of solving eigenvalue problem for K = XX ′ ∈

<N×N , one considers to solve an m×m eigenvalue problem:

X ′Xvj = λjvj, j = 1, · · · ,m, (2.8)

where λ1 ≥ · · · ≥ λm are the ordered eigenvalues, and vj are the corresponding

eigenvectors. The POD modes are given by:

φj =
1√
λj
Xvj, j = 1, · · · , d. (2.9)

After constructing POD modes Φ = {φ1, · · · , φd}, the ROM is obtained by pro-

jecting dynamical system onto the POD modes via Galerkin projection.

Galerkin Projection. Consider a dynamical system which is governed by PDE

with variable x(t) ∈ H. If the spatial domain is Ω, then H is a space of functions

defined on Ω. The dynamical system satisfies

ẋ(t) = f(x(t)), (2.10)

where f : H → H is a spatial differential operator. Given a subspace Hd ⊂ H, which

is constructed via POD, Galerkin projection specifies a dynamical system which

18

evolves on Hd and approximates the original dynamical system. The ROM is given

by:

ẋd(t) = Psf(xd(t)), (2.11)

where Ps : H → Hd is the orthogonal projection map, and xd(t) ∈ Hd.

Let φk ∈ H, k = 1, · · · d be an orthogonal basis for the subspace, then xd(t) could

be represented by

xd(t) =
d∑

k=1

ak(t)φk, (2.12)

where φk are time-independent basis functions, and ak(t) are the corresponding time

coefficients. Therefore, the ROM can be obtained using POD modes, and the evolu-

tion of the time coefficients are governed by r ordinary differential equations (ODEs)

as follows

ȧk(t) = φ′kf(xd(t)) = φ′kf(
d∑
j=1

aj(t)φj), k = 1, · · · d. (2.13)

Discussion. The advantages of using POD approach are summarized as follows.

First, the POD modes are constructed from the sampled data, and hence, the ap-

proach can be applied to linear and nonlinear system, as well as to parametrically

varying systems. Also, solving eigenvalue problem takes time O(m3), where m is

the number of snapshots, and m � N . However, POD modes are sensitive to the

snapshot ensemble X, and could only capture the system behavior for a particular

time range for particular inputs. A good snapshot set selection leads to a better

performance of ROM, while there is no guidance on how to select the snapshots.

19

Furthermore, POD approach only takes into account the system inputs, and hence,

inefficient modes may be obtained. From the control point of view, the input-output

relationship is important, and needs to be taken into consideration.

2.3 Preliminaries: Balanced Truncation and BPOD

Balanced Truncation. Balanced truncation is a standard model reduction

algorithm which is introduced by [84]. Both the inputs and outputs are taken into

account, and hence, the ROM can capture the input-output behavior of the original

dynamical system.

For a linear time-invariant (LTI) stable discrete-time input-output system:

xk+1 = Axk +Buk,

yk = Cxk, (2.14)

where xk ∈ <N , uk ∈ <p, and yk ∈ <q is the state vector, input vector, and output

vector at time tk respectively.

The adjoint/dual system is defined as:

zk+1 = A′zk + C ′vk,

ŷk = B′zk, (2.15)

where zk is the adjoint state vector at time tk.

Balanced truncation aims to find a transformation matrix Ts, such that the con-

trollability and observability Gramians

Wc =
∞∑
k=0

AkBB′(A′)k,Wo =
∞∑
k=0

(A′)kC ′CAk (2.16)

20

are equal and diagonal.

The transformation matrix Ts is constructed by solving the eigenvalue problem:

Wcoφj = λjφj, j = 1, · · ·n, (2.17)

where Wco = WcWo, λ1 ≥ · · · ≥ λn, and Ts =

(
φ1, · · · , φr

)
∈ <n×r contains the

first r eigenmodes.

The ROM is given by:

ak+1 = T−1
s ATsak + T−1

s Buk,

yrk = CTsak. (2.18)

And the controllability and observability Gramians of the ROM are:

W̃c = W̃o = Σ, (2.19)

where Σ is a diagonal matrix, with element σi, i = 1, · · · , r, and σi =
√
λi are known

as the Hankel singular values of the system.

Balanced truncation has the following property.

Theorem 2 The error bound on the output is:

‖yk − yrk‖ ≤ 2
n∑

i=r+1

σi‖uk‖. (2.20)

Same as POD approach, generating the controllability and observability Grami-

ans for large scale system is computationally expensive, and hence, in [29, 30], bal-

anced truncation using the method of snapshots are proposed which do not require

to compute the Gramians, and BPOD algorithm proposed in [30] is reviewed here.

21

BPOD Algorithm. BPOD algorithm constructs the snapshot ensembles Xb, Zb

by perturbing the primal system (2.14) and adjoint system (2.15) with impulse re-

spectively, and it is shown in [85] that the Gramians in (2.16) can be approximated

as

Wc ≈ XbX
′
b,Wo ≈ ZbZ

′
b. (2.21)

BPOD constructs two bi-orthogonal transformation matrices Tb, Sb by solving the

singular value decomposition (SVD) problem of

Hb = Z ′bXb, (2.22)

where Hb is known as Hankel matrix.

The BPOD algorithm is summarized in Algorithm 1.

Discussion. Recall the impulse response snapshot ensembles collected in the

BPOD are:

Xb = [x1(t1), · · · , xp(t1), · · · , x1(tm), · · · , xp(tm)]︸ ︷︷ ︸
N×pm

,

Zb = [z1(t̂1), · · · , zq(t̂1), · · · , z1(t̂n), · · · , zq(t̂n)]︸ ︷︷ ︸
N×qn

, (2.29)

and the Hankel matrix is:

Hb = Z ′bXb ∈ <qn×pm. (2.30)

There are two main parts to the computation:

1. The primal and adjoint snapshot ensembles Xb ∈ <N×pm, Zb ∈ <N×qn, and

22

Algorithm 1 BPOD Algorithm

1. Collect impulse response Xb of the primal system (2.14):
Use bi, i = 1, · · · , p as initial conditions for (2.14) with uk = 0. Take m
snapshots at discrete times t1, t2, · · · , tm, and

Xb = [x1(t1), · · · , xp(t1), · · · , x1(tm), · · · , xp(tm)], (2.23)

where xi(tk) is the state snapshot at time tk with bi as the initial condition,
k = 1, 2, · · · ,m and i = 1, 2, · · · , p.

2. Collect impulse response Zb of the adjoint system (2.15):
Use c′j, j = 1, · · · , q as initial conditions for (2.15) with vk = 0. Take n snap-

shots at time step t̂1, t̂2, · · · , t̂n, and

Zb = [z1(t̂1), · · · , zq(t̂1), · · · , z1(t̂n), · · · , zq(t̂n)], (2.24)

where zj(t̂k) is the state snapshot of the adjoint system at time t̂k with c′j as
the initial condition, k = 1, 2, · · · , n and j = 1, 2, · · · , q.

3. Construct Hankel matrix Hb:

Hb = Z ′bXb, (2.25)

4. Solve the SVD problem of Hb:

Hb =
(
Lb L1

)(Σb 0
0 Σ1

)(
R′b
R′1

)
, (2.26)

where Σb contains the first l non-zero singular values, and (Lb, Rb) are the cor-
responding left and right singular vectors. Σ1 contains the rest of the singular
values.

5. Construct the BPOD bases:

Tb = XbRbΣ
−1/2
b ,

Sb = Σ
−1/2
b L′bZ

′
b. (2.27)

6. The ROM is:

Ab = SbATb,

Bb = SbB,

Cb = CTb. (2.28)

23

hence, the construction of Hb takes time O(pqmnN).

2. The computational cost to solve the SVD of Hb is O(min{p2m2qn, pmq2n2}).

For the large scale system with a large number of inputs/outputs considered in

this work, p, q are large, for example, p = q = N . Therefore, it is computationally

expensive to construct the Hankel matrix and solve SVD problem of resulting Hankel

matrix, and the storage of the data set Xb, Zb, Hb also causes problem. Thus, we are

interested in developing model reduction algorithm which can reduce computational

cost require by BPOD while retaining same information as BPOD.

We start from a simplified analysis of BPOD, which discusses the relationship

between the BPOD snapshot ensembles and BPOD ROM, and explain what do we

mean by the “information” retained in BPOD ROM.

2.4 Simplified Analysis

In this section, we illustrate in a simplified fashion how the transformation bases

and Markov parameters of the ROM constructed using BPOD algorithm can be

related to the controllable and observable modes of the dynamical system. The

simplified analysis is critical to understand the intuition behind the proposed RPOD

algorithm in Section 2.5 and RPOD∗ algorithm in Section 3.

Consider the dynamical system given in (2.14), we start from the following as-

sumption.

Assumption 1 Assume that A is diagonalizable and stable.

Under Assumption 1, A could be diagonalized using its eigenvalues and eigenvectors,

and let

A = V ΛU ′, (2.31)

24

where Λ are the eigenvalues, (V, U) are the corresponding right and left eigenvectors.

For the discrete-time LTI system (2.14), the system is controllable if

C =

(
B AB · · · AN−1B

)
(2.32)

has full rank (i.e., rank (C) = N), and the system is observable if the adjoint system

(2.15) is controllable.

The controllability and observability could also be tested using the eigenvectors of

the dynamical system, and the definition of the uncontrollable/unobservable eigen-

modes is given as follows.

Definition 1 A mode (Λi, Ui, Vi) is uncontrollable if U ′iB = 0, and is unobservable

if CVi = 0, where (Λi, Vi, Ui) is the ith eigenvalue-eigenvector pair of matrix A.

From Definition 1, we can partition the eigenvalues and eigenvectors (Λ, V, U)

into four parts:

A =

(
Vco Vcō Vc̄o Vc̄ō

)


Λco

Λcō

Λc̄o

Λc̄ō





U ′co

U ′cō

U ′c̄o

U ′c̄ō


, (2.33)

where (Λco, Vco, Uco) are the controllable and observable modes, (Λcō, Vcō, Ucō) are

the controllable but unobservable modes, (Λc̄o, Vc̄o, Uc̄o) are the uncontrollable but

observable modes, and (Λc̄ō, Vc̄ō, Uc̄ō) are the uncontrollable and unobservable modes.

We make the following assumptions.

25

Assumption 2 Denote the number of the controllable and observable modes as l,

and l� N .

Assumption 3 U ′c̄oB = 0, U ′c̄ōB = 0, CVcō = 0, CVc̄ō = 0.

Assumption 4 U ′c̄oB = εC1, U
′
c̄ōB = εC2, CVcō = εC3, CVc̄ō = εC4, where ε is a

small number, C1, C2, C3, C4 are constant matrices. And if ‖U ′coB‖ = O(‖C5‖),

‖CVco‖ = O(‖C5‖), then ‖C1‖, ‖C2‖, ‖C3‖, ‖C4‖ = O(‖C5‖), where C5 is a constant

matrix.

Discussion on Assumptions. For most of the practical applications we consider,

Assumption 1 is satisfied. Assumption 2 needs to be satisfied for the system to

have an ROM, this assumption is typically satisfied for a large-scale system. It

should be noticed that from Definition 1, Assumption 3 is the statement of con-

trollability/observability of the different modes of the system. However, in practice,

U ′c̄oB,CVcō are never exactly zero, and hence, in Assumption 4, we assume that

‖U ′c̄oB‖ ∝ ε, ‖CVc̄o‖ ∝ ε, where ε is small.

In the following, BPOD algorithm is analyzed under Assumption 1, 2 and 3, and

the formal proof using perturbation theory is provided in Section 3.

First, we construct a modal BPOD ROM by projecting the BPOD bases (Tb, Sb)

onto the ROM eigenspace as in Algorithm 2.

Under Assumption 1, 2 and 3, we have the following result.

Theorem 3 Denote (Âb, B̂b, Ĉb) as the modal ROM constructed using Algorithm 2,

26

Algorithm 2 BPOD modal ROM Algorithm

1. Construct BPOD ROM (Ab, Bb, Cb) and BPOD bases (Tb, Sb) using BPOD
Algorithm 1.

2. Solve the eigenvalue problem of Ab:

Ab = PbΛbP
−1
b , (2.34)

where Λb are the eigenvalues, and Pb are the corresponding eigenvectors.

3. Construct BPOD modal bases:

Φb = P−1
b Sb,Ψb = TbPb, (2.35)

4. The modal ROM is:

Âb = ΦbAΨb, B̂b = Φ′bB, Ĉb = CΨb. (2.36)

(Φb,Ψb) are BPOD modal bases. Then

Âb = ΦbAΨb = Λco,

B̂b = Φ′bB = U ′coB,

Ĉb = CΨb = CVco, (2.37)

where (Λco, Uco, Vco) are the controllable and observable modes of the system, and the

Markov parameters

ĈbÂ
i
bB̂b = CAiB, i = 1, 2, · · · . (2.38)

Proof 1 Consider the snapshots in the primal snapshot ensemble (2.23),

xi(tk) = Atkbi, (2.39)

27

where i = 1, · · · , p and k = 1, · · · ,m. Hence,

(
x1(tk), · · · , xp(tk)

)
= AtkB, (2.40)

and the snapshot ensemble Xb can be written as:

Xb =

(
At1B At2B · · · AtmB

)
. (2.41)

Under Assumption 1, A could be partitioned using its eigenvalue and eigenvec-

tors, and written as in (2.33). Under Assumption 3, U ′c̄oB = 0, U ′c̄ōB = 0, CVcō =

0, CVc̄ō = 0. Therefore,

AtkB =

(
Vco Vcō

)Λco

Λcō


tk
U ′co
U ′cō

B,

=

(
Vco Vcō

)αkco
αkcō

 , (2.42)

where αkco, α
k
c̄o are the coefficient matrices. Substitute (2.42) into (2.41), and the

primal snapshot ensemble Xb can be written as:

Xb =

(
Vco Vcō

)αbco
αbcō

 , (2.43)

where αbco, α
b
cō the coefficient matrices. Similarly, the adjoint snapshot ensemble Zb

28

can be written as:

Zb =

(
Uco Uc̄o

)βbco
βbc̄o

 , (2.44)

where βbco, β
b
c̄o are some coefficient matrices.

Hence, the Hankel matrix

Z ′bXb = ((βbco)
′U ′co + (βbc̄o)

′U ′c̄o)(Vcoα
b
co + Vcōα

b
cō),

= (βbco)
′αbco, (2.45)

where U ′coVcō = 0, U ′c̄oVco = 0, U ′c̄oVcō = 0, U ′coVco = Il×l since the left and right

eigenvectors are orthogonal.

Under Assumption 3, rank (Z ′bXb) = l, i.e., there are exactly l non-zero singular

values in the resulting SVD problem, thus,

Z ′bXb = LbΣbR
′
b, (2.46)

where Σb ∈ <l×l are the l non-zero singular values and (Lb, Rb) are the corresponding

left and right singular vectors. Moreover, it can be proved that

Z ′bAXb = (βbco)
′Λcoα

b
co. (2.47)

29

Now, consider the BPOD ROM:

Ab = SbATb = Σ
−1/2
b L′b(Z

′
bAXb)RbΣ

−1/2
b

= Σ
−1/2
b L′b(β

b
co)
′︸ ︷︷ ︸

Pb

Λco α
b
coRbΣ

−1/2
b︸ ︷︷ ︸

P̂b

. (2.48)

We show that Λco are the eigenvalues of Ab, and Pb are the eigenvectors as follows:

Pb︸︷︷︸
l×l

P̂b︸︷︷︸
l×l

= Σ
−1/2
b L′b (βbco)

′αbco︸ ︷︷ ︸
Z′bXb

RbΣ
−1/2
b ,

= Σ
−1/2
b L′bLbΣbR

′
bRbΣ

−1/2
b = I. (2.49)

Also,

P̂bPb = αbcoRbΣ
−1/2
b Σ

−1/2
b L′b(β

b
co)
′ = αbco((β

b
co)
′αbco)

+(βbco)
′ = I, (2.50)

where (.)+ denotes the pseudoinverse of (.). Hence, P̂b = P−1
b and from (2.48),

Λco = (P−1
b Sb)︸ ︷︷ ︸
Φb

A (TbPb)︸ ︷︷ ︸
Ψb

. (2.51)

We prove that Ψb,Φb are bi-orthogonal as follows.

ΨbΦb = TbPbP
−1
b Sb = TbSb,

ΦbΨb = P−1
b SbTbPb = P−1

b Pb = I, (2.52)

where (Tb, Sb) are BPOD bases, and are bi-orthogonal.

30

Hence, the modal BPOD bases

Ψb = TbPb = XbRbΣ
−1/2
b Σ

−1/2
b L′b(β

b
co)
′ = (Vcoα

b
co + Vcōα

b
cō)RbΣ

−1
b L′b(β

b
co)
′

= VcoP̂bPb + VcōC6 = Vco + VcōC6, (2.53)

where C6 = αbcōRbΣ
−1
b L′b(β

b
co)
′. Similarly,

Φb = P−1
b Sb = U ′co + C7U

′
c̄o, (2.54)

where C7 = αbcoRbΣ
−1
b L′b(β

b
c̄o)
′. The modal BPOD ROM constructed using (Ψb,Φb)

is:

Âb = ΦbAΨb = Λco,

B̂b = Φ′bB = U ′coB + C7U
′
c̄oB = U ′coB,

Ĉb = CΨb = CVco + CVcōC6 = CVco. (2.55)

And the Markov parameters of the ROM are:

ĈbÂ
i
bB̂b = CVcoΛ

i
coU

′
coB = CAiB. (2.56)

Discussion on Theorem 3. Recall the impulse response snapshot ensembles

collected in the BPOD are:

Xb = Vco︸︷︷︸
N×l

αbco︸︷︷︸
l×pm

+Vcōα
b
cō︸ ︷︷ ︸

N×pm

, Zb = Uco︸︷︷︸
N×l

βbco︸︷︷︸
l×qn

+Uc̄oβ
b
c̄o︸ ︷︷ ︸

N×qn

, (2.57)

From the development of Theorem 3, we see that the modal BPOD ROM given

in (2.55) is completely determined by the l controllable and observable modes and

31

is invariant to the data Xb and Zb, i.e., as long as the snapshot ensembles can be

written as:

Xopt︸︷︷︸
N×m

= Vco︸︷︷︸
N×l

αopt︸︷︷︸
l×m

+Vcōᾱopt︸ ︷︷ ︸
N×m

, Zopt︸︷︷︸
N×n

= Uco︸︷︷︸
N×l

βopt︸︷︷︸
l×n

+Uc̄oβ̄opt︸ ︷︷ ︸
N×n

, (2.58)

where αopt, βopt are rank l constant matrices, and ᾱopt, β̄opt are some constant matrices

of suitable dimensions, then under Assumption 1, 2 and 3, the following corollary

holds.

Corollary 1 Denote (Aopt, Bopt, Copt) as the modal ROM constructed using Algo-

rithm 2 with snapshot ensembles Xopt, Zopt as in (2.58). Then

Aopt = Λco, Bopt = U ′coB,Copt = CVco, (2.59)

where (Λco, Uco, Vco) are the controllable and observable modes of the system, and the

Markov parameters CoptA
i
optBopt = CAiB, i = 1, 2, · · · .

Proof 2 Corollary 1 can be proved by replacing Xb, Zb in Theorem 3 with Xopt, Zopt,

and the proof is omitted here.

We make the following observations.

Remark 1 1) The snapshot ensembles do not have to be collections of the impulse

responses as in BPOD. 2) Only l snapshots may be enough to extract all the control-

lable and observable modes of the system.

Bearing this observation in mind, in the next section, we introduce the RPOD

algorithm which generates subsets of snapshot ensembles, such that the Corollary 1

holds.

32

2.5 RPOD Algorithm

In this section, we introduce a randomized proper orthogonal decomposition

(RPOD) algorithm, which randomly chooses a small subset of the inputs/outputs,

and constructs a sub-Hankel matrix from the full Hankel matrix, such that Corollary

1 holds. The RPOD algorithm is based on BPOD, and is related to the random

sampling algorithm.

First, the random sampling algorithm [37] is briefly reviewed here.

Random Sampling Algorithm. For a large scale matrix H, random sampling

algorithm construct a rank k approximation matrix Ĥ by choosing and rescaling

some columns of H according to certain sampling probabilities, so the error satisfies

‖H − Ĥ‖F ≤ ‖H −H(k)‖F + ε‖H‖F with high probability, where H(k) is a best rank

k approximation of H, and ε is a specified tolerance.

From the discussion in Section 2.4, we see that Hankel matrix H ∈ <qn×pm is a

large matrix with small rank l. Therefore, we are motivated from random sampling

algorithm that a sub-Hankel matrix could be constructed by randomly choosing

some columns and rows from H, while all the controllable and observable modes

will be preserved in the sub-Hankel matrix. However, the construction of the full

Hankel matrix is required, which is computationally prohibitive when the number

of inputs/outputs is large. Therefore, we construct the sub-Hankel matrix in the

following procedure.

Consider the stable linear system (2.14), we randomly choose r columns from B

according to the uniform distribution, denoted as B̂, and randomly choose s rows

from C with uniform distribution, denoted as Ĉ. Denote (.)(:,i) as the ith column of

(.), and (.)(j,:) as the jth row of (.).

33

Definition 2 Define an M1-block as

Xi = [xi(t1), · · · , xi(tM1)], (2.60)

where xi(tk) is the state snapshot at time tk with bi as the initial condition, k =

1, 2, · · · ,M1 and i = 1, 2, · · · , p.

Similarly, define an M2-block Yi = [yi(t̂1), · · · , yi(t̂M2)], where yi(t̂k) is the state snap-

shot of the adjoint system at time t̂k with c′i as the initial condition, k = 1, 2, · · · ,M2

and i = 1, 2, · · · , q.

The original Hankel matrix H was previously defined in (2.25). The reduced order

Hankel matrix Ĥ is then constructed using B̂, Ĉ, and it essentially is equivalent to

choosing a suitable random subset of the M1-blocks and M2-blocks of the primal/

adjoint responses, namely X̂ and Ŷ to generate the sub-Hankel matrix Ĥ = Ŷ ′X̂.

The RPOD procedure is summarized in Algorithm 3.

First, we provide a general result regarding randomly choosing a rank “l” sub-

matrix from a large rank “l” matrix. Suppose W ∈ <N×a is a rank l matrix, and

suppose that W is spanned by the vectors {v1, v2, · · · vl}, where vi ∈ <N , l � N, a.

Let W (i) denote the set of columns of W that contain the vector vi. Let

εi =
no.(W (i))

N
, (2.61)

denote the fraction of the columns in W in which vector vi is present. Further let

ε̄ = min
i
εi, (2.62)

and note that ε̄ > 0.

34

Algorithm 3 RPOD Algorithm

1. Pick ci ∈ {1, · · · , p} with probability P [ci = k] = 1
p
, k = 1, · · · , p, i = 1, · · · , p̂.

2. Pick rj ∈ {1, · · · , q} with probability P [rj = k] = 1
q
, k = 1, · · · , q, j = 1, · · · , q̂.

3. Set B̂(:,i) = B(:,ci), Ĉ(j,:) = C(rj ,:).

4. Use B̂(:,i), i = 1, · · · , p̂ as the initial conditions for the primal simulation, collect

the snapshots at t = t1, · · · , tM1 , denoted as X̂.

5. Use Ĉ ′(j,:), j = 1, · · · , q̂ as the initial conditions for the adjoint simulation, collect

the snapshots at t = t̂1, · · · , t̂M2 , denoted as Ŷ .

6. Construct the reduced order Hankel matrix Ĥ = Ŷ ′X̂.

7. Solve the SVD problem of Ĥ = ÛpΣ̂pV̂p.

8. Construct the BPOD basis: T̂r = X̂V̂pΣ̂
−1/2
p , T̂l = Ŷ ′Û ′pΣ̂

−1/2
p .

9. Construct the matrix: Ã = T̂ ′lAT̂r, and (Λ̂, P̂) are the eigenvalues and eigen-
vectors of Ã.

10. Construct the RPOD basis: Φ̂′ij = P̂−1T̂ ′l and Ψ̂ij = T̂rP̂ .

11. The ROM is: Âr = Φ̂′ijAΨ̂ij, B̂r = Φ̂′ijB, Ĉr = CΨ̂ij.

35

Lemma 1 Let M columns be sampled uniformly from among the columns of the ma-

trix W without replacement, and denote the sampled sub-matrix by Ŵ . Let (Ω,F , Pf)

denote the underlying probability space for the experiment. Given any β > 0, if the

number M is chosen such that

M > max(l,
1

ε̄
log(

l

β
)), (2.63)

then Pf (ρ(Ŵ) < l) < β, where ρ(Ŵ) denotes the rank of the sampled matrix Ŵ .

Proof 3 Let Ŵ (ω) = {W1(ω), · · ·WM(ω)} denote a random M-choice from the

columns of W . If the ensemble Ŵ has rank less than l then note that at least one of

the vectors vi has to be absent from the ensemble. Define the events

G = {ω ∈ Ω : ρ(Ŵ (ω)) < l}, and (2.64)

Gi = {ω ∈ Ω : Wk(ω) ∈ W̃ (i),∀k}, (2.65)

where W̃ (i) denotes the complement set of columns in W to the set W (i). Due to the

fact that the ensemble Ŵ is rank deficient if all of the columns of Ŵ are sampled

from at least one of the sets W̃ (i), and the fact that if Ŵ is rank deficient, all the

columns of Ŵ have to be sampled from at least one of the sets W̃i, it follows that:

G =
⋃
i

Gi. (2.66)

If we sample the M columns with replacement, Pf (Gi) = (1 − εi)M , and Pf (Gi) ≤

(1− εi)M if we sample the M columns without replacement. Thus, it follows that

Pf (G) ≤
l∑

i=1

Pf (Gi) =
l∑

i=1

(1− εi)M ≤ l(1− ε̄)M . (2.67)

36

Hence, it follows that Pf (ρ(Ŵ) < l) ≤ l(1− ε̄)M . If we require this probability to be

less than some given β > 0, then, it can be shown by taking log on both sides of the

above expression that M should satisfy

M >
1

ε̄
log(

l

β
). (2.68)

Noting that Ŵ is rank deficient unless M ≥ l, the result follows.

Remark 2 Effect of l, ε̄ on the bound M: It can be seen that the number of choices

M is influenced primarily by ε̄ and not significantly by the number of active modes/

rank of the ensemble l, since l appears in the bound under the logarithm. Thus,

the difficulty of choosing a sub-ensemble that is rank l is essentially decided by the

fraction ε̄i of the ensemble in which the rarest vector vi is present. Moreover, note

that as the number l increases, we need only sample O(l) columns to have a rank “l”

sub-ensemble.

Remark 3 Effect of Sampling non-uniformly: In certain instances, for instance,

when we have a priori knowledge, we may choose to sample the columns of W non-

uniformly. Define

εΠi =
N∑
j=1

1i(Wj)πj, (2.69)

where πj is the probability of sampling column Wj from the ensemble W , and 1i(Wj)

represents the indicator function for vector vi in column Wj, i.e, it is one if vi is

present in Wj and 0 otherwise. Note that εi as defined before is the above quantity with

the uniform sampling distribution πj = 1
N

for all j. It is reasonably straightforward to

show that Proposition 1 holds with ε̄Π = mini ε̄i
Π for any sampling distribution Π (we

replace εi in (2.67) with ε̄Πi). The effect of a good sampling distribution is to lower

37

the bound M by raising the number ε̄Π over that of a uniform distribution. This may

be an intelligent option when otherwise the bound on M with uniform sampling can

be very high, for instance when one of the vectors vi is present in only a very small

fraction of the ensemble W . However, we might have some a priori information

regarding the columns where vi may be present and thus, bias the sampling towards

that sub-ensemble.

Next, it can be seen how the RPOD procedure extends the above result to the

Balanced POD scenario where we consider the Hankel matrix. Denote X(i) as the

set of M1-blocks that the right eigenvector vi is present, where M1-block is defined

in (2.60), and εX,i = no.(X(i))
p

as the fraction of the M1-blocks in X which the right

eigenvector vi is present. Similarly, εY,i is the fraction of the M2-blocks in Y which

the left eigenvector ui is present. Define:

ε̄X = min
i
εX,i, ε̄Y = min

j
εY,j, (2.70)

where εX,i is the fraction of columns in X in which the right eigenvector vi is present,

and εY,j is the fraction of the columns in Y in which the left eigenvector uj is present.

Note that due to Lemma 1, given any β > 0, if we choose p̂m and q̂n satisfy the

bounds:

p̂ > max(l,
1

ε̄X
log(

l

β
)), q̂ > max(l,

1

ε̄Y
log(

l

β
)), (2.71)

then the probability of Ĥ having rank less than l is less than γ = 1− (1− β)2, since

then the probability that the ranks of the sampled input and output ensembles are

less than l, is less than β. Thus, if we repeatedly choose K such ensembles with

replacement, the probability of having a sub-Hankel matrix Ĥ that is still less than

38

rank l after the K picks, has to be less than γK . Thus, the probability of choosing

a rank l sub-Hankel matrix Ĥ exponentially approaches unity with the number of

trials. Noting that the value of β does not have a significant influence on the bounds

above, it follows that β can be chosen to be quite small without significantly affecting

the number of columns that need to be chosen to satisfy the confidence level of β, and

thus, the probability of choosing a rank l sub-Hankel matrix can be made arbitrarily

high by judiciously choosing the number of columns in the input/output ensembles

according to the bounds in (2.71).

We summarize the development above as follows.

Theorem 4 Let Hankel matrix H = Y ′X ∈ <qM2×pM1 with p inputs, q outputs, M1,

M2 time snapshots in every input and output trajectory respectively. Let the left/

right eigenvectors US = {u1, · · ·ul}, and VS = {v1, · · · vl} denote the eigenvectors

spanning the input and output ensembles X and Y respectively. Let ε̄X , ε̄Y be as

defined in (2.70) and β > 0 be given. Suppose we construct a sub-Hankel matrix

Ĥ according to the RPOD procedure: by uniformly sampling p̂ inputs and q̂ outputs

respectively, and that p̂ and q̂ are chosen as in (2.71), then the probability that the

sub-Hankel matrix has rank less than l is less than γ = 1 − (1 − β)2. Moreover,

the probability that after K RPOD choices, with replacement, the probability that the

sub-Hankel matrix is less than rank l is less than γK.

The following corollary immediately follows due to the developments in section

2.4.

Corollary 2 Let (Λco, Uco, Vco) be the eigenvalues, left and right eigenvectors under-

lying the data in the full Hankel matrix. Given any β > 0, and that a sub-Hankel ma-

trix Ĥ is chosen as in Proposition 4, let (Âr, B̂r, Ĉr) be the ROM constructed from the

sub-Hankel matrix Ĥ using RPOD algorithm. Then Âr = Λco, B̂r = U ′coB, Ĉr = CVco

39

with probability at least (1−β)2, and hence, with probability (1−β)2, the information

contained in H and Ĥ is identical in terms of the (Λco, Uco, Vco) triple.

Remark 4 Several remarks are made below about the above results.

1. The fractions ε̄X and ε̄Y are metrics of the “difficulty” of the problem. For

instance, if all the relevant modes were controllable/observable from every in-

put/output, then these fractions are unity, and any RPOD choice would have

rank l. The lower these fractions are, the higher the number of rows and

columns q̂m2 and p̂m1 need to be chosen such that Proposition 4 holds for

the sampled sub-Hankel matrix. This corresponds to a mode, or set of modes,

being controllable/ observable only from a very sparse set of actuator/ sensor

locations respectively.

2. We do not know ε̄X , ε̄Y a priori, and thus, we cannot directly apply Proposition

4. In practice, we repeatedly sample sub-Hankel matrices, and check the un-

derlying eigenmodes from each choice. If the underlying modes from different

choices are identical, then we can give a guarantee that the Hankel matrix is

actually rank l, given a difficulty level ε̄. Thus, we are able to quantify the

confidence in our ROMs for different values of the difficulty level ε̄. Typically,

we have seen that if the number of rows/ columns sampled are large enough,

we are able to extract all the relevant modes.

3. We can also vary the size of the sampled sub-Hankel matrices which in turn

raises the probability of sampling a random choice with rank equal to that of

the full Hankel matrix.

4. If we have a priori knowledge of the system, we can sample the sub-Hankel

matrix using some sampling distribution other than the uniform distribution

40

function, which as mentioned previously, has the effect of raising the fractions

ε̄X , ε̄Y , and thus, lower the required size of the sub-Hankel matrix.

5. In reality, the Hankel matrix is not exactly rank l but approximately rank l. In

such a case, we can show that the errors incurred due to this fact is small if

the contribution from the modes other than the dominant l modes are small.

2.6 Computational Results

In this section, we compare the RPOD algorithm with BPOD algorithm for two

examples: a 2D pollutant transport problem and a 2D linearized channel flow prob-

lem.

First, we define the output relative error:

Eoutput =
‖Ytrue − Yrom‖
‖Ytrue‖

, (2.72)

where Ytrue are the outputs of the full order system, and Yrom are the outputs of the

reduced order system.

2.6.1 Pollutant Transport Problem

The two-dimensional advection-diffusion equation describing the contaminant

transport is:

∂c(x, y, t)

∂t
= Dx

∂2c(x, t)

∂x2
+Dy

∂2c(x, t)

∂y2
− vx

∂c(x, t)

∂x
− vy

∂c(x, t)

∂y
+ Ss, (2.73)

where c is concentration of the contaminant, Dx, Dy are the dispersions and take

value 0.6 here. vx, vy are the velocities in x and y direction respectively, and take

value 1. Ss denotes the source of pollutant, and we assume that there are three fixed

sources. Also, we assume that there are three obstacles in the field. The locations

41

of the sources and obstacles are plotted in Fig. 2.1. The field is a square with the

length of each edge 5m.

The PDE is discretized using Finite Difference Method. We discretize the x di-

rection into 50 equi-spaced points, and y direction into 50 equi-spaced points. Hence,

the size of discretized system is 2500× 2500. The initial condition for the simulation

is zero, and we use Neumann boundary conditions. The model is simulated for a

period of 10 minutes, and the numerical solution of the actual field at time t = 10min

is shown in Fig.2.1.

Real System

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

0

50

100

150

200

250

300

350

Figure 2.1: Contour plot of 2D contaminant concentration at time t = 10min, nu-
merical solution using full order system

We construct ROMs using BPOD algorithm and RPOD algorithm as follows. We

take full field measurements, i.e., the number of outputs is 2500. For both algorithms,

we perturb the primal and adjoint system using impulse. For both algorithm, we

take 500 snapshots from t ∈ [0min, 10min] with 3 input trajectories. For the adjoint

42

simulation, taking 500 snapshots using BPOD algorithm is not computationally fea-

sible, since there are 2500 output trajectories. Notice that taking snapshots earlier

will allow us to extract more modes before they die out, and thus, 3 snapshots are

collected from t ∈ [0min, 1min] for each output trajectories. Therefore, for BPOD,

we need to solve a 7500× 1500 SVD problem. For RPOD, we randomly choose 500

measurements, and take 3 snapshots from t ∈ [0min, 1min] for the adjoint simu-

lation. Thus, we only need to solve a 1500 × 1500 SVD problem for RPOD. We

extract 80 modes using both methods, and construct the ROM using these modes.

In Fig.2.2(a), we show the comparison of the first twenty eigenvalues extracted by

two methods.

0 5 10 15 20
0.95

0.96

0.97

0.98

0.99

1
Eigenvalues extract by RPOD and BPOD

Actual eigenvalues

Eigenvalues extract by RPOD

Eigenvalues extract by BPOD

(a)

0 200 400 600 800 1000
10

−6

10
−4

10
−2

10
0

10
2

time (s)

||
Y
t
r
u
e−

Y
r
e
d
||

||
Y
t
r
u
e|
|

RPOD vs. BPOD output error

RPOD output error
BPOD output error

(b)

Figure 2.2: Comparison of ROM constructed using RPOD and BPOD for 2D pol-
lutant transport problem. (a) Comparison of extracted eigenvalues with the actual
eigenvalues of the full order system. (b) Comparison of the output/state relative
error over time, each plot is the average performance of 3 trials.

To test the ROM, we take the perturb the system with white noise, and take

average output/state error over the 3 different simulations. The state errors and the

output errors are the same because we take the full state measurements, thus, we

43

show the comparison of the output errors in Fig. 2.2(b). We can see that BPOD is

more accurate than RPOD, but both the errors are less than 1%, however, there is

significant computational savings in using the RPOD over the BPOD in solving the

SVD problem.

2.6.2 Linearized Channel Flow Problem

Consider the problem of the fluid flow in a plane channel. We focus on the

linearized case when there are small perturbations about a steady laminar flow. The

flow is perturbed by body force B(y, z)f(t), which means the force is acting in the

wall-normal direction. There is no-slip boundary condition at the walls y = ±1 and

the flow is assumed to be periodic in the x and z direction. Assume there is no

variations in the x direction, then the linearized equation of the wall-normal velocity

v and the wall-normal vorticity η are given by:

∂v

∂t
=

1

R
∇2v +Bf,

∂η

∂t
=

1

R
∇2η − U ′∂v

∂z
, (2.74)

where R = 100 is the Reynolds number and U(y) = 1−y2 is the steady state velocity.

The domain z ∈ [0, 2π].

We discretize the system using the finite difference method, where both the y

direction and z direction are discretized into 21 nodes. Thus, the size of the system

is 882× 882. There are 2 constant body forces on y = 0, and the measurements are

taken on all the nodes on boundaries. The actual velocity and vorticity at t = 1000s

are shown in Fig. 2.3.

For BPOD, we use 80 measurements on the boundaries, and take 1000 snapshots

from t ∈ [0, 1000s] for the primal simulation, 50 snapshots from t ∈ [0, 500s] for

44

z

y

Actual velocity at t=1000s

0 2 4 6
−1

−0.5

0

0.5

1

2

4

6

8

10

12

14

16

(a)

z

y

Actual vorticity at t=1000s

0 2 4 6
−1

−0.5

0

0.5

1

−20

−10

0

10

20

(b)

Figure 2.3: Contour plot of 2D linearized channel flow at t = 1000s. (a) Actual
wall-normal velocity field. (b) Actual wall-normal vorticity field.

the adjoint simulation, which leads to a 8000 × 2000 SVD problem. For RPOD,

we randomly choose 50 measurements from the 80 measurements on the boundaries,

take 200 snapshots from t ∈ [0, 200s] for the primal simulation, and take 20 snapshots

from t ∈ [0, 200s] for the adjoint simulation. Thus, we need to solve a 2000 × 400

SVD problem for RPOD.

In Fig. 2.4, we compare the velocity modes of the system using RPOD with the

actual velocity modes. The comparison of the vorticity modes are shown in Fig. 2.5.

Here, we should note that the sign and the modulus of the ROM velocity modes

are not the same as the actual modes, however, if needed, we can rescale the ROM

modes to make them match. For both methods, we extract 40 modes, the first 30

extracted eigenvalues are compared in Fig. 2.6.

The comparison of the state errors and output errors are shown in Fig. 2.7. To

test the ROM, we use 20 different white noise forcings and take the average out-

put/state error over these 20 simulation. We can see that the eigenvalues extracted

by RPOD and BPOD are almost the same. In this simulation, we notice that at first,

45

First velocity mode

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

(a)

First velocity mode

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

(b)

Second velocity mode

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

(c)

Second velocity mode

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

(d)

Figure 2.4: Comparison between ROM wall-normal velocity modes and actual veloc-
ity modes. (a) Actual first velocity mode. (b) ROM first velocity mode. (c) Actual
second velocity mode. (d) ROM second velocity mode.

46

First vorticity mode

0 2 4 6
−1

−0.5

0

0.5

1

−5

0

5
x 10

−7

(a)

First vorticity mode

0 2 4 6
−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
x 10

−6

(b)

Second vorticity mode

0 2 4 6
−1

−0.5

0

0.5

1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

(c)

Second vorticity mode

0 2 4 6
−1

−0.5

0

0.5

1

−0.1

−0.05

0

0.05

0.1

(d)

Figure 2.5: Comparison between ROM wall-normal vorticity modes and actual vor-
ticity modes. (a) Actual first vorticity mode. (b) ROM first vorticity mode. (c)
Actual second vorticity mode. (d) ROM second vorticity mode.

47

0 5 10 15 20 25 30 35 40 45
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Eigenvalues extracted using RPOD and BPOD

Actual eigenvalues

Eigenvalues extracted using RPOD

Eigenvalues extracted using BPOD

Figure 2.6: Comparison of eigenvalues extract by RPOD and BPOD for linearized
channel flow problem

the state error and output error using BPOD are slightly better than using RPOD,

but after some time, the errors are almost the same. The output errors using both

methods are less than 0.1%, and the state errors using both methods are around

5%. Thus, we can conclude that RPOD is comparable to BPOD but requires far less

computation.

2.6.3 Discussion

We compare the computational requirements/accuracy of the ROMs resulting

from the BPOD and RPOD for the pollutant transport problem and linearized chan-

nel flow problem in Table 2.1.

We can see that RPOD solves a much smaller SVD problem than the BPOD,

and although the errors incurred using RPOD are more than the BPOD, they are

small enough not to make a major difference to the results. Thus, using the RPOD

to generate a ROM is much more efficient while not sacrificing too much accuracy.

48

0 500 1000 1500

10
−4.9

10
−4.7

10
−4.5

10
−4.3

10
−4.1

time(s)

‖
Y
t
r
u
e
−
Y
e
s
t
‖

‖
Y
t
r
u
e
‖

RPOD vs BPOD output error

BPOD output error

RPOD output error

(a)

0 500 1000 1500
10

−4

10
−3

10
−2

time(s)

‖
X

t
r
u
e
−
X

e
s
t
‖

‖
X

t
r
u
e
‖

RPOD vs BPOD state error

BPOD state error

RPOD state error

(b)

Figure 2.7: Comparison of ROM errors between RPOD and BPOD for linearized
channel flow problem. (a) Comparison of the output relative error over time. (b)
Comparison of the state relative error over time. Each plot is the average performance
of 20 trials.

Table 2.1: Comparison of performance (BPOD V.S. RPOD)

Hankel matrix size average output error
Pollutant Transport (7500× 1500) : (1500× 1500) 0.055% : 0.6%

Linearized Channel Flow (8000× 2000) : (2000× 400) 0.13% : 0.16%

49

Moreover, sometimes, it may be impossible to solve the SVD problem result-

ing from BPOD. For example, in the channel flow problem, if we use the full state

measurements (882 measurements) and we take 20 snapshots for the adjoint sim-

ulation, there are 80 sources on the boundary and we take 1000 snapshots for the

primal simulation, then we need to solve a 17640× 80000 SVD problem for BPOD,

which is not solvable in Matlab. For RPOD, we randomly choose 50 sources on the

boundaries, and randomly choose 400 measurements. If we take 100 snapshots for

the primal simulation, and 20 snapshots for the adjoint simulation, then it leads to

a 8000 × 5000 SVD problem, which is a relatively small problem. We compare the

first 70 extracted eigenvalues with the actual eigenvalues and the output errors in

Figure 2.8.

0 10 20 30 40 50 60 70
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

Eigenvalues extracted using RPOD

Actual eigenvalues

Eigenvalues extracted using RPOD

(a)

0 200 400 600 800 1000
10

−3

10
−2

10
−1

10
0

10
1

time(s)

‖
Y
t
r
u
e
−
Y
e
s
t
‖

‖
Y
t
r
u
e
‖

RPOD output error

(b)

Figure 2.8: Simulation results using RPOD for linearized channel flow problem when
BPOD is not feasible. (a) Eigenvalues extracted using RPOD. (b) Output relative
errors using RPOD.

Thus, in problems where there are a large numbers of actuators/sensors, the

savings can be very significant. In terms of an experiment, this observation may have

added implications as it implies that we can reduce the scale of the instrumentation

50

required to get the data required to form an ROM by orders of magnitude without

losing much information that can be extracted from the resulting data, which can

result in significant cost savings.

2.7 Summary

In this section, we propose a randomized proper orthogonal decomposition tech-

nique for the extraction of ROMs for large scale systems such as those governed by

PDEs. The RPOD algorithm constructs a sub-Hankel matrix of the full order Hankel

matrix constructed by the BPOD algorithm without sacrificing too much accuracy.

This leads to an orders of magnitude reduction in the computation required for con-

structing ROMs for large scale systems with a large number of inputs/outputs over

the BPOD procedure.

51

3. COMPUTATIONALLY OPTIMAL RANDOMIZED PROPER

ORTHOGONAL DECOMPOSITION (RPOD∗)

3.1 Introduction

In this section, we consider the same model reduction problem as in Section 2, and

we propose a computational optimal randomized proper orthogonal decomposition

(RPOD∗) algorithm for constructing ROMs of large scale systems. In Section 2,

we had introduced the RPOD algorithm that randomly chooses a subset of the

input/output trajectories. A sub-Hankel matrix is constructed using these sampled

trajectories, which is then used to form a ROM in the usual BPOD fashion. The

Markov parameters of the ROM constructed using the sub-Hankel matrix were shown

to be close to the Markov parameters of the full order system with high probability.

We proved that a lower bound exists for the number of the input/output trajectories

that need to be sampled. The major problem associated with this algorithm is that

different choices of the sampling algorithms would lead to different lower bounds,

and the choice of a good sampling algorithm other than the uniform distribution is

unclear.

In this section, we propose the RPOD∗ algorithm which can construct the reduced

order model by perturbing the primal and adjoint system using Gaussian white

noise. We show that the computations required by the RPOD∗ algorithm are orders

of magnitude cheaper when compared to the BPOD algorithm and BPOD output

projection algorithm, while the performance of the RPOD∗ algorithm is much better

than BPOD output projection algorithm. The algorithm is optimal in the sense that

a minimal number of snapshots are needed.

Both the RPOD and RPOD∗ algorithm aim to reduce the computational cost of

52

constructing the full Hankel matrix and solving the SVD problem of the resulting

Hankel matrix. The differences between RPOD and RPOD∗ algorithm are that

the information preserved in the sub-Hankel matrix constructed using RPOD is an

approximation of the information preserved in the full Hankel matrix, while the

exact information is preserved in the Hankel matrix constructed using RPOD∗. Also,

RPOD∗ algorithm takes advantage of the white noise perturbation, and constructs

a much smaller Hankel matrix than RPOD, and hence, the computational cost is

further reduced. RPOD∗ can also be related to the random projection algorithm.

The contribution of RPOD∗ algorithm is that we answer the question of how many

snapshots are needed to construct a good ROM. The minimum number of snapshots

needed for the snapshot based POD algorithm is defined, and is used to construct the

RPOD∗ ROM, such that the construction of ROM can be implemented in real-time

even for large scale systems. Moreover, we provide the detailed instructions on when

to take snapshots and how to select ROM size, which are important in POD, and

have not been discussed yet.

The organization of this section is shown as follows. In Section 3.2, we define the

computationally optimal snapshot ensemble, and prove that the snapshot ensembles

generated by perturbing the primal/adjoint system with white noise are computa-

tionally optimal snapshot ensembles. Then we propose the RPOD∗ algorithm in

Section 3.3 with the formal proofs and discuss some implementation issues of the

algorithm in Section 3.4. In Section 3.5, we compare the RPOD∗ algorithm with the

related model reduction algorithm: random projection algorithm BPOD output pro-

jection algorithm, and RPOD algorithm. The computational complexity of RPOD∗

algorithm is shown in Section 3.6, with a comparison with BPOD output algorithm.

In Section 3.7, we provide the simulation results comparing the RPOD∗ with the

BPOD/BPOD output projection for several advection-diffusion equations.

53

3.2 Computationally Optimal Snapshot Ensemble

Recall that from the simplified analysis in Section 2, under Assumption 1, 2, and

3, the modal ROM consists of the controllable and observable modes, and is invariant

to the snapshot ensembles, i.e., as long as the snapshot ensembles can be written as:

Xopt︸︷︷︸
N×m

= Vco︸︷︷︸
N×l

αopt︸︷︷︸
l×m

+Vcōᾱopt, Zopt︸︷︷︸
N×n

= Uco︸︷︷︸
N×l

βopt︸︷︷︸
l×n

+Uc̄oβ̄opt, (3.1)

where (Λco, Vco, Uco) are the controllable and observable modes, and αopt, ᾱopt, βopt, β̄opt

are coefficient matrices. Here, m,n are the number of the primal and adjoint

snapshots respectively, l is the number of controllable and observable modes, and

l� m,n. If αopt, βopt has full rank l, then as a result of Corollary 1, the modal ROM

can be written as:

Aopt = Λco︸︷︷︸
l×l

, Bopt = U ′coB,Copt = CVco. (3.2)

Therefore, we can see that the minimum number of snapshots required is l, and

under Assumption 1, 2 and 3 in Section 2, we define a computationally optimal

snapshot ensemble of the system as follows.

Definition 3 A computationally optimal snapshot ensemble Xopt/Zopt is an l-snapshot

ensemble of rank l which can be written as (3.1), i.e., m = l, n = l.

The problem now is reduced to how to construct such a snapshot ensemble, and

we are motivated from the random projection algorithm.

Consider the system (2.14)-(2.15), under Assumption 1 that A is stable, there

exists a finite number tss, such that ‖Atss‖ ≈ 0. Under Assumption 1, 2 and 3, the

BPOD primal snapshot ensemble which collects the state response from time t = 0

54

to t = tss can be written as:

Xb︸︷︷︸
N×ptss

=

(
B AB · · · Atss−1B

)
=

(
Vco Vcō

) αbco︸︷︷︸
l×ptss

αbcō

 (3.3)

If we project Xb onto a Gaussian test matrix Ω ∈ <ptss×l, where the Gaussian

test matrix is a matrix whose elements are generated from a Gaussian distribution,

then

Xp︸︷︷︸
N×l

= XbΩ︸︷︷︸
N×l

=

(
Vco Vcō

)α
b
coΩ︸︷︷︸
l×l

αbcōΩ

 , (3.4)

where from random projection algorithm, rank (αbcoΩ) = l. Notice that αbcōΩ does

not need to be full rank, since Vcō would be cancelled out when constructing the

Hankel matrix.

Therefore, we see that a computationally optimal snapshot ensemble can be con-

structed by projecting the BPOD snapshot ensemble onto a Gaussian test matrix.

Furthermore, the coefficient matrix αbcoΩ is a Gaussian matrix, and hence, can be

viewed as white noise inputs.

Thus, under Assumption 1, 2 and 3, we have the following result.

Theorem 5 Perturb the primal system (2.14) with white noise uk, and collect m

snapshots at time t1, t2, · · · , tm, where tm ≥ tss, and ‖Atss‖ ≈ 0. Denote the snapshot

ensemble as Xr =

(
x1 x2 · · · xm

)
. If m = l, where l is the number of the

controllable and observable modes of the system, then Xr is a computationally optimal

snapshot ensemble.

55

Proof 4 For the snapshots taken before tss, the state snapshot xk at time k is:

xk =
k−1∑
i=0

AiBu(k − i), k ≤ tss. (3.5)

Suppose there is a snapshot ensemble Xf which takes tss snapshots at time k = 1

to k = tss, then from (3.5), the snapshot ensemble Xf can be written as:

Xf =

(
x1 x2 · · · xtss

)

=

(
B AB · · · Atss−1B

)
︸ ︷︷ ︸

Xb



u(1) u(2) · · · u(tss − 1) u(tss)

0 u(1) · · · u(tss − 2) u(tss − 1)

0 0 · · · u(tss − 3) u(tss − 2)

...
... · · · · · · ...

0 0 · · · 0 u(1)


︸ ︷︷ ︸

Ω

, (3.6)

where Xb is the BPOD snapshot ensemble from time k = 0 to k = tss − 1. Denote

Ω =

(
ω1 ω2 · · · ωtss

)
, where ωi is the ith column of Ω. The Ω matrix above has

columns that are linearly independent since it is upper triangular.

Since Xr consists of m columns of Xf , Xr can be written as:

Xr =

(
x1 · · · xm

)
= Xb

(
ω1 · · · ωm

)
︸ ︷︷ ︸

Ω1

, (3.7)

where

(
ω1 · · · ωm

)
are the corresponding columns of Ω, and hence, Ω1 has full

column rank.

For the snapshot xk taken after tss, xk could also be written as: xk = Xbωk, where

ωk is a column vector whose entries are white noises. Therefore, ωk is independent

56

of ω1, · · · , ωm in (3.7), and hence, for all the snapshots collected in Xr, Xr = XbΩ1,

where Ω1 has full column rank.

Recall that from (2.43), Xb can be written as:

Xb = Vco︸︷︷︸
N×l

αbco︸︷︷︸
l×ptss

+Vcōα
b
cō︸ ︷︷ ︸

N×ptss

, (3.8)

and αbco has full row rank. Thus, when m = l,

Xr = XbΩ1 = Vco︸︷︷︸
N×l

αbco︸︷︷︸
l×ptss

Ω1︸︷︷︸
ptss×l

+Vcōα
b
cōΩ1 = Vco︸︷︷︸

N×l

αco︸︷︷︸
l×l

+Vcōαcō, (3.9)

where rank αco = l. Hence, Xr is a computationally optimal snapshot ensemble.

Similarly, we take n = l snapshots by perturbing the adjoint system (2.15) with

white noise vk, and the adjoint snapshot ensemble can be written as:

Zr = Uco︸︷︷︸
N×l

βco︸︷︷︸
l×l

+Uc̄oβc̄o, (3.10)

where rank βco = l, and βc̄o is a constant matrix. Thus, Zr is a computationally

optimal snapshot ensemble. In Section 3.4, we discuss about how to choose m,n and

the snapshots in practice.

3.3 RPOD∗ Algorithm

In this section, we introduce the RPOD∗ algorithm, and provide a formal proof

of the error bound. In the simplified analysis, we assume that U ′c̄oB = 0, U ′c̄ōB =

0, CVcō = 0, CVc̄ō = 0, which are not true in practice, and in the formal proof, we

relax this assumption.

The RPOD∗ algorithm constructs ROM by perturbing the primal and adjoint

57

system with Gaussian white noise, and the algorithm is summarized in Algorithm 4.

Error Analysis In the simplified analysis, the modal ROM only consists of

the controllable and observable modes, which does not hold in practice. Under

Assumption 1, 2 and 4, we have the following results.

Theorem 6 Denote (Ar, Br, Cr) as the ROM constructed using RPOD∗ following

Algorithm 4. If we keep the first l non-zero singular values in (3.13), then

‖Ar − Λco‖ ∝ O(ε), ‖Br − U ′coB‖ ∝ O(ε), ‖Cr − CVco‖ ∝ O(ε), (3.18)

and the Markov parameters ‖CrAirBr −CAiB‖ ∝ O(ε), i = 1, · · · , where ε is a small

number defined in Assumption 4.

The proof of Theorem 6 uses perturbation theory [86, 87] to extend the proof of

the idealized Theorem 3 such that Assumption 4 holds instead of Assumption 3.

Proof 5 Under Assumption 4, the actual snapshot ensembles can be written as:

Xr =

(
Vco Vcō Vc̄o Vc̄ō

)


αco

αcō

δαc̄o

δαc̄ō


, (3.19)

where δαc̄o = εαc̄o, δαc̄ō = εαc̄ō and ε is defined in Assumption 4, and is a small

number . Therefore, ‖Vc̄oδαc̄o + Vc̄ōδαc̄ō‖ = O(ε) are small perturbations of the ideal

snapshot ensemble, and may expect the ideal result to be perturbed by a small amount

as well.

58

Algorithm 4 RPOD∗ Algorithm

1. Perturb the primal system (2.14) with white noise uk, collect m snapshots
at time step t1, t2, · · · , tm, where tm ≥ tss, ‖Atss‖ ≈ 0, m ≥ l. Denote the
snapshot ensemble Xr as:

Xr =
(
x1 x2 · · · xm

)
. (3.11)

2. Perturb the adjoint system (2.15) with white noise vk, collect n snapshots at
time step t̂1, t̂2, · · · , t̂n, where t̂n ≥ tss, n ≥ l. Denote the adjoint snapshot
ensemble Zr as:

Zr =
(
z1 z2 · · · zn

)
. (3.12)

3. Solve the SVD problem:

Z ′rXr =
(
Lr Lo

)(Σr 0
0 Σo

)(
R′r
R′o

)
, (3.13)

and truncate at σl, where l is the number of controllable and observable modes
present in the snapshot ensembles. Σr contains the first l non-zero singular
values σ1 ≥ σ2 ≥ · · · ,≥ σl > 0, (Rr, Lr) are the corresponding right and left
singular vectors.

4. Construct the POD bases:

Tr = XrRrΣ
−1/2
r , Sr = Σ−1/2

r L′rZ
′
r. (3.14)

5. Construct the ROM Ã, find the eigenvalues Λr and eigenvectors Pr of Ã.

Ã = SrATr = PrΛrP
−1
r , (3.15)

6. Construct modal RPOD∗ bases:

Φr = P−1
r Sr,Ψr = TrPr. (3.16)

7. The modal ROM is:

Ar = ΦrAΨr, Br = ΦrB,Cr = CΨr (3.17)

59

The adjoint snapshot ensemble Zr can be written as:

Zr = Ucoβco + Ucōδβcō + Uc̄oβc̄o + Uc̄ōδβc̄ō, (3.20)

where δβcō = εβcō, δβc̄ō = εβc̄ō, and βcō, βc̄ō are coefficient matrices.

From (3.19) and (3.20), the Hankel matrix

Hr = Z ′rXr = β′coαco + δβ′cōαcō + β′c̄oδαc̄o + δβ′c̄ōδαc̄ō

= β′coαco + ε (β′cōαcō + β′c̄oαc̄o)︸ ︷︷ ︸
E1

+O(ε2),

= β′coαco + εE1 +O(ε2). (3.21)

And similarly,

Z ′rAXr = β′coΛcoαco + ε (β′cōΛcōαcō + β′c̄oΛc̄oαc̄o)︸ ︷︷ ︸
E2

+O(ε2)

= β′coΛcoαco + εE2 +O(ε2). (3.22)

Here, E1, E2 are some matrices.

Under Assumption 2, there are exactly “l” controllable and observable modes, and

hence, rank (Z ′rXr) ≥ l due to the small perturbations.

Denote

H̄r = β′coαco = L̄rΣ̄rR̄
′
r + L̄oΣ̄oR̄

′
o,

Hr = Z ′rXr = β′coαco + εE1 = LrΣrR
′
r + LoΣoRo, (3.23)

where H̄r, Hr ∈ <n×m, and WLOG, n ≤ m.

60

Here, H̄r is the ideal Hankel matrix constructed with the simplifying assumption

(Assumption 3 is satisfied), and it can be seen that the true Hankel matrix Hr (As-

sumption 4 is satisfied) can be viewed as adding a small perturbation of H̄r, i.e.,

Hr = H̄r + εE1. Σ̄r ∈ <l×l contains the l non-zero singular values of H̄r and (L̄r, R̄r)

are the corresponding left and right singular vectors. Σ̄o ∈ <(n−l)×(n−l) = 0 are the

rest singular values, and (L̄o, R̄o) are the corresponding left and right singular vec-

tors. Similarly, Σr ∈ <l×l contains the first l non-zeros singular values of Hr, and

Σo ∈ <(n−l)×(n−l) contains the rest singular values. The left and right singular vectors

are partitioned in the same way.

First, we prove the following properties.

1. The perturbed singular values and singular vectors (Σr, Lr, Rr) are related to

the singular values and singular vectors (Σ̄r, L̄r, R̄r) as:

Σr = Σ̄r + εE3 +O(ε2),

Lr = L̄r + ∆Lr, Rr = R̄r + ∆Rr, (3.24)

where E3,∆Lr,∆Rr are some matrices, and ‖∆Lr‖, ‖∆Rr‖ ∝ O(ε).

2. Σ
−1/2
r = Σ̄

−1/2
r + εCr, where Cr is a diagonal coefficient matrix.

3. The ROM Ã = SrATr is a perturbation of Ab in (2.48), i.e., Ã = Ab + ∆3 +

O(ε2), where ‖∆3‖ = O(ε).

Property 1 is proved in [86, 87] using perturbation theory, and the expression of

E3 is given following the results from [86] as follows.

For σ̄i ∈ Σ̄r (strictly positive singular values) with multiplicity t, L̄t, R̄t are the

corresponding left and right singular vectors, the perturbed singular values σi ∈ Σr,

61

and

σi = σ̄i + ε
λi(R̄

′
tE
′
1L̄t + L̄′tE1R̄t)

2︸ ︷︷ ︸
ei

+O(ε2), i = 1, · · · , t (3.25)

where λi(.) denotes the ith eigenvalue of (.). Thus, E3 is a diagonal matrix with

diagonal element ei, i = 1, · · · , l computed from (3.25).

Property 2 is proved as follows. From (3.25), for i = 1, · · · , l,

1
√
σi

=
1√

σ̄i + eiε
=

1
√
σ̄r
√

1 + eiε
σ̄r

≤ 1√
σ̄r

1√
1− eiε

σ̄i

, (3.26)

where ei ≥ 0, ε ≥ 0, σ̄r ≥ 0, and σ̄i
ε
� 1 such that eiε

σ̄i
� 1. Furthermore,

(
1

1− eiε
σ̄i

)/(1 +
eiε

σ̄i
)2 =

1

(1− (eiε
σ̄i

))2(1 + eiε
σ̄i

)
≤ 1. (3.27)

Therefore,

1
√
σi

=
1√

σ̄i + eiε
≤ 1√

σ̄r

1√
1− eiε

σ̄i

≤ 1√
σ̄r

(1 +
eiε

σ̄i
). (3.28)

Thus, |σ−1/2
i − σ̄i−1/2| ≤ eiε

σ̄
3/2
i

, and could be written in the matrix form as

Σ−1/2
r = Σ̄−1/2

r + εCr, (3.29)

where Cr is a diagonal coefficient matrix.

Property 3 is proved as follows. Recall that the POD bases Tr, Sr are:

Tr = XrRrΣ
−1/2
r , Sr = Σ−1/2

r L′rZ
′
r. (3.30)

62

And the ROM Ã:

Ã = SrATr = Σ−1/2
r L′rZ

′
rAXrRrΣ

−1/2
r = Σ−1/2

r L′r(β
′
coΛcoαco + εE2)RrΣ

−1/2
r . (3.31)

As a result of Property 1 and 2, we can prove that

Σ−1/2
r L′r = (Σ̄−1/2

r + εCr)(L̄
′
r + ∆L′r) = Σ̄−1/2

r L̄′r + ∆1, (3.32)

where ∆1 is some matrix, and ‖∆1‖2 = k1ε, k1 is a constant. Similarly,

RrΣ
−1/2
r = R̄rΣ̄

−1/2
r + ∆2, (3.33)

where ∆2 is some matrix, and ‖∆2‖2 = k2ε, k2 is a constant. Thus,

Ã = Σ̄−1/2
r L̄′rβ

′
coΛcoαcoR̄rΣ̄

−1/2
r︸ ︷︷ ︸

Ab

+∆3 +O(ε2), (3.34)

where ∆3 is some matrix, and ‖∆3‖2 = k3ε, k3 is a constant. Therefore,

Ã = Ab + ∆3 +O(ε2). (3.35)

If we let

Ab = Σ̄−1/2
r L̄′rβ

′
co︸ ︷︷ ︸

P̄r

Λco αcoR̄rΣ̄
−1/2
r︸ ︷︷ ︸

P̄−1
r

, (3.36)

from the proof in Section 2.4 ((2.48) - (2.50)), Λco are the eigenvalues of Ab, and

63

P̄r are the corresponding eigenvectors. Then from perturbation theory [88],

Ã = Ab + ∆3 +O(ε2) = PrΛrP
−1
r , (3.37)

where ‖Pr − P̄r‖ ≤ ‖∆3‖ = k3ε, ‖Λr − Λco‖ ≤ ‖∆3‖ = k3ε.

Thus, RPOD∗ bases can be written as

Ψr = TrPr = XrR̄rΣ̄
−1/2
r P̄r + ∆4,

= Vco + Vcōαp + ∆5, (3.38)

where ∆4,∆5 are some matrices, and ‖∆4‖, ‖∆5‖ ∝ O(ε), αp is a coefficient matrix.

Similarly, we can prove that

Φr = P−1
r Sr = U ′co + βpU

′
c̄o + ∆6, (3.39)

where ‖∆6‖ ∝ O(ε) is some matrice and βp is a coefficient matrix. Substitute (3.38),

(3.39) into the modal ROM, we have:

Ar = Λr = Λco + ∆7,

Br = ΦrB = U ′coB + ∆8,

Cr = CΨr = CVco + ∆9, (3.40)

where U ′c̄oB = ε∆10, CVcō = ε∆11, and ‖∆7‖, ‖∆8‖, ‖∆9‖ ∝ O(ε), and the Markov

parameters are:

CrA
i
rBr = CVcoΛ

i
coU

′
coB + ∆, (3.41)

64

where ‖∆‖ ∝ O(ε).

In Assumption 4, ε is assumed to be a small number, and ε can also be related

to σl+1 as follows.

Corollary 3

‖CrAirBr − CAiB‖ ∝ O(ε) ∝ O(σl+1). (3.42)

Proof 6 For σ̄i ∈ Σ̄o (zero singular values) [86] with multiplicity n − l, the corre-

sponding left and right singular vectors are L̄o, R̄o. The perturbed singular values

σi ∈ Σo and

σi = ε
√
λi(R̄′oE

′
1L̄oL̄

′
oE1R̄o), i = 1, · · ·n− l. (3.43)

From (3.25) and (3.43), we can see that:

σl = σ̄l + elε+O(ε2), σl+1 = el+1ε, (3.44)

Hence, we have:

σl+1 ∝ O(ε), (3.45)

and

‖CrAirBr − CAiB‖ ∝ O(ε) ∝ O(σl+1). (3.46)

65

3.4 Implementation Issues

In this section, we discuss some implementation problems in the RPOD∗ algo-

rithm. We give the insight into how to collect the snapshot ensembles, and how to

select the ROM size.

Snapshot selection From the analysis in Section 3.2, we only need to collect

m = l snapshots from the primal simulations. However, l is not known a priori,

thus, in practice, we start with a random guess m << N , where N is the dimension

of the system, or we can choose m from experience. For instance, in a fluid system

with 106 degrees of freedom, m is O(10) ∼ O(102). Similarly, we guess n, and

then we check the rank of Z ′rXr. From the analysis in the proof, we see that rank

(Z ′rXr) ≥ l since there are small perturbations, and thus, if Z ′rXr has full rank, i.e.,

rank (Z ′rXr) = min (m,n), then it is possible that we did not take enough snapshots,

and hence, we increase m,n, until rank (Z ′rXr) < min (m,n).

Now we consider the question to when to take the snapshots. In the RPOD∗

algorithm, we only require that if we take m snapshots from time t1, · · · , tm, then

tm ≥ tss, where ‖Atss‖ ≈ 0. Now, for simplicity, we assume that the snapshots are

taken at ∆T, 2∆T · · · ,m∆T , where, ∆T is a small constant. In Fig. 3.1, we show

one simulation result comparing the accuracy of the ROMs using ∆T = 3, 5, 10, 20, 50

for the atmospheric dispersion problem introduced in Section 3.7.2. Here tss = 900,

and m = 300. The output relative error is defined in (2.72), and we take the average

of the output relative error for each ROM. It can be seen that as ∆T increases, each

column in Ω1 is well separated, and hence, the ROM is more accurate, while it takes

longer time to generate the snapshots. Thus, this is a trade-off between the accuracy

and the computational efficiency.

ROM size selection In Theorem 6, we assume that there are l controllable and

66

0 10 20 30 40 50
10

−7

10
−6

10
−5

10
−4

10
−3

∆ T

A
v
e

ra
g

e
 o

f
th

e
 o

u
tp

u
t

re
la

ti
v
e

 e
rr

o
r

Figure 3.1: This figure explains when to take the snapshots in RPOD∗. The snap-
shots are taken at every ∆T time, and the averaged output relative error is plotted
as a function of ∆T .

observable modes, and we keep exact l non-zero singular values. However, l is not

known as a priori. In the following, first, we give a proof regarding the ROM errors

when k ≥ l.

Proof 7 Consider the SVD problem of the Hankel matrix:

Hr = Z ′rXr = LΣR, (3.47)

where Σ = diag{σ1, · · · , σn} is a diagonal matrix, and σ1 ≥ σ2 ≥ · · · ≥ σn are the

singular values, (R,L) are the right and left singular vectors. If we keep the first k

singular values, and k ≥ l, then denote

Σp =


σ1

. . .

σk

 =

Σr

Σn

 , (3.48)

67

where Σr ∈ <l×l,Σn ∈ <(k−l)×(k−l). The corresponding left and right singular vectors

can be partitioned in the same way, and are denoted as Lp =

(
Lr Ln

)
, Rp =(

Rr Rn

)
.

Then the transformation matrices are partitioned as:

S =

S1

S2

 =

Σ
−1/2
r L′rZ

′
r

Σ
−1/2
n L′nZ

′
r

 , (3.49)

T =

(
T1 T2

)
=

(
XrRrΣ

−1/2
r XrRnΣ

−1/2
n

)
, (3.50)

and thus, the ROM is:

Ã = SAT =

A11 A12

A21 A22

 =

Σ
−1/2
r L′rZ

′
rAXrRrΣ

−1/2
r Σ

−1/2
r L′rZ

′
rAXrRnΣ

−1/2
n

Σ
−1/2
n L′nZ

′
rAXrRrΣ

−1/2
r Σ

−1/2
n L′nZ

′
rAXrRnΣ

−1/2
n

 .(3.51)

Here, A11 is exactly the ROM if we keep k = l non-zero singular values, and as

we proved in Theorem 6, A11 = PrΛrP
−1
r , where ‖Λr − Λco‖ ∝ O(ε).

Consider A12 ∈ <l×(k−l) for example,

A12 = Σ−1/2
r L′rZ

′
rAXrRnΣ−1/2

n ,

‖A12‖ ≤ ‖Σ−1/2
r L′rZ

′
rAXrRn‖‖Σ−1/2

n ‖, (3.52)

and ‖Σ−1/2
n ‖ = σ

−1/2
k , thus, it can be proved that

‖A12‖ ≤ k4σ
−1/2
k , ‖A21‖ ≤ k5σ

−1/2
k , ‖A22‖ ≤ k6σ

−1
k . (3.53)

68

where k4, k5, k6 are some constants. Therefore,

Ã =

Ab 0

0 0

+

∆3 A12

A21 A22


︸ ︷︷ ︸

E

(3.54)

where

‖E‖2 ≤ ‖E‖2
F = ‖∆3‖2

F + ‖A12‖2
F + ‖A21‖2

F + ‖A22‖2
F

≤ l‖∆3‖2 + (k − l)‖A12‖2 + (k − l)‖A21‖2 + (k − l)‖A22‖2, (3.55)

and suppose (k − l) ≤ l. Hence,

‖E‖ ≤ k3

√
lε+ k7

√
k − lσ−1/2

k + k6

√
k − lσ−1

k , (3.56)

where k7 is a constant.

The eigenvalues of

Ā11 0

0 0

 are Λ̄ij =

Λco

0

, and the corresponding eigen-

vectors are P̄ij =

P̄ 0

0 I

 , thus, the perturbed eigenvalues and eigenvectors of Ã

are:

Ã = PijΛijP
−1
ij , (3.57)

where Pij = P̄ij+∆12,Λij = Λ̄ij+∆13, and ∆12,∆13 are some matrices, ‖∆12‖, ‖∆13‖ ∝

69

O(‖E‖). Thus,

Ψ = TPij =

(
XrR̄rΣ̄

−1/2
r P̄ 0

)
+ ∆14,

Φ = P−1
ij S =

P̄−1Σ̄
−1/2
r L̄′rZ

′
r

0

+ ∆15, (3.58)

and ∆14,∆15 are some matrices, and ‖∆14‖, ‖∆15‖ ∝ O(‖E‖). Following the same

proof in Section 2.4, the ROM Markov parameters:

CrA
i
rBr = CΨΛiΦB = CVcoΛ

i
coU

′
coB

′ + ∆16, (3.59)

where ∆16 is a matrix, and ‖∆16‖ ∝ O(‖E‖). Thus, if we truncate at σk, and

σk = O(ε), then ‖E‖ ∝ O(σ−1
k+1), and ‖CrAirBr − CAiB‖ ∝ O(σ−1

k). Therefore,

the errors between the Markov parameters of the true system and the ROM system

increase as k increases, when k ≥ l.

As proved above, we see that if we keep k non-zero singular values, and k > l, then

undesired noise will be introduced. If k < l, not all the controllable and observable

modes can be recovered. Therefore, in practice, we decide l by trial and error. Since

rank (Z ′rXr) ≥ l is always true, we start with k = rank (Z ′rXr), and check the

eigenvalues of Ã = SAT . From the proof above, we can see that when k > l, k − l

eigenvalues of Ã are small, which are the perturbations of the zero eigenvalues. If

k >> l, then the perturbations in the ROM is too large to be neglected, which

results in unstable eigenvalues of Ã. Thus, we keep decreasing the value of k until

Ã is stable. If there are some small eigenvalues which are approximately zero, we

know k > l, and we decrease the value of k until we reach a region [l, l + a], where

a is a small number, such that most of the eigenvalues of Ã remain the same for

70

different value of k (l controllable and observable modes with k − l perturbations of

the zero eigenvalues), then we stop and pick the number l as the number of non-zero

eigenvalues of Ã.

3.5 Comparison with Related Algorithms

In this section, we compare the RPOD∗ algorithm with the most related al-

gorithms, which include BPOD, random projection, BPOD output projection and

RPOD algorithm.

3.5.1 Comparison with BPOD

In the following, we summarize the differences between the BPOD and RPOD∗

algorithm.

As we mentioned in Section 2.4, (p + q) simulations are needed for BPOD algo-

rithm, where p is the number of inputs and q is the number of outputs. Let Xb, Zb

denote the impulse response snapshot ensembles that need to be collected in BPOD

algorithm from time step (1, · · · , tss). Thus, Xb ∈ <N×ptss , Zb ∈ <N×qtss . It is ex-

pensive to store (p + q)tss snapshots, and it is expensive to solve the resulting SVD

problem due to the large size of the problem. For RPOD∗ algorithm, only (1 primal

+ 1 adjoint) simulations are needed, and only m + n, where m,n � tss snapshots

need to be stored. Also, it is easy to solve the resulting SVD problem.

Another practical problem with impulse responses snapshots is that the snapshots

after some time are dominated by very few slow modes, and including these snapshots

does not give much new information. On the other hand, the RPOD∗ trajectories

are white noise forced, and all the modes are always present in all the snapshots due

to the persistent excitation of the white noise terms. Hence, the RPOD∗ snapshots

can be taken till tss, and be assured that all of the relevant modes will be captured.

71

3.5.2 Comparison with Random Projection

From the analysis in Section 3.2, we see that the snapshot ensembles collected in

RPOD∗ can be written as:

Xr = XbΩ1, Zr = ZbΩ2, (3.60)

where Xb ∈ <N×ptss , Zb ∈ <N×qtss are the impulse response snapshot ensembles that

need to be collected in the BPOD algorithm from time step (0, · · · , tss − 1), and

‖Atss‖ ≈ 0. Ω1 ∈ <ptss×m and Ω2 ∈ <qtss×n are full rank Gaussian matrices. Also,

we have:

Hr︸︷︷︸
rank l

= Z ′rXr = Ω′2Z
′
bXbΩ1 = Ω′2 Hb︸︷︷︸

rank l

Ω1, (3.61)

Therefore, the Hankel matrix constructed in RPOD∗ algorithm can be viewed as

projecting the full Hankel matrix onto two Gaussian matrices using random projec-

tion algorithm. While a direct application of the random projection would require to

generate the Hankel matrix Hb (and Xb, Zb) first. However, in practice, the construc-

tion and the storage of the Hankel matrix is computationally prohibitive when N is

large and the number of inputs/outputs is large. Also, the bottleneck of the random

projection algorithm is the projection of Xb, Zb onto the Gaussian test matrices. In

RPOD∗ algorithm, the snapshot ensembles are constructed directly from the primal

and adjoint simulations, and hence, the computational cost to generate the Hankel

matrix and to project it onto the Gaussian test matrices is saved.

72

3.5.3 Comparison with BPOD output projection

As we mentioned in Section 2.4, when the number of the outputs q is large, the

computation of the BPOD adjoint simulations may not be tractable. To reduce the

number of the outputs, the output projection method in [30,89] is proposed. In this

section, we compare the RPOD∗ algorithm with BPOD output projection algorithm.

When the number of the outputs is large, BPOD output projection projects the

outputs onto a lower-dimensional subspace using POD algorithm first, i.e., construct

POD basis Θs ∈ <q×s, such that ỹk = Θ′sCxk ∈ <s×1, where s � q, and ‖y − Θsỹ‖

is minimized. Then collect the adjoint snapshot ensemble using s output channels.

The BPOD output projection method is summarized in Algorithm 5.

In the following, we compare the BPOD output projection method with RPOD∗

algorithm. From (3.63), the adjoint snapshot ensemble Zs can be written as:

Zs︸︷︷︸
N×stss

=

(
C ′Θs A′C ′Θs · · · (A′)tssC ′Θs

)

=

(
C ′ A′C ′ · · · (A′)tssC ′

)
︸ ︷︷ ︸

Zb



Θs

Θs

· · ·

Θs


︸ ︷︷ ︸

Θ

= Zb︸︷︷︸
N×qtss

Θ︸︷︷︸
qtss×stss

. (3.66)

And hence, the projected Hankel matrix Hs is:

Hs = Θ′Z ′bXb = Θ′Hb, (3.67)

73

Algorithm 5 BPOD output projection algorithm

1. Collect the primal snapshot ensemble Xb in (5).

2. Compute the POD modes of the dataset Yb = CXb.

Y ′bYbφk = λkφk, λ1 ≥ · · · ≥ λn ≥ 0, (3.62)

where λk are the eigenvalues, and φk are the corresponding eigenvectors. Thus,
the POD modes Θs = [φ1, · · · , φs], where s is the rank of the output projection,
and s� q.

3. Collect the impulse responses of the adjoint system:

zk+1 = A′zk + C ′Θsv, w = B′zk. (3.63)

The adjoint snapshot ensemble is denoted as Zs.

4. Construct the Hankel matrix:

Hs = Z ′sXb. (3.64)

5. Solve the SVD problem of Hs, and construct the BPOD output projection
bases as (Ts, Ss) using equations (8) and (9). The ROM is:

As = SsATs, Bs = SsB,Cs = CTs. (3.65)

74

Recall that the adjoint snapshot ensembles collected in RPOD∗ can be written

as Zr = ZbΩ2, and the projected Hankel matrix in RPOD∗ is Hr = Ω′2HbΩ1. Thus,

we make the following remark.

Remark 5 Both the BPOD output projection and RPOD* algorithms can be viewed

as projecting the full order Hankel matrix onto a reduced order Hankel matrix with

projection matrices Θ and (Ω1,Ω2).

However, the differences between two algorithms are summarized as follows.

Differences between two algorithms. First, the information preserved in

Hs, Hr are not the same. The output projection Ps = ΘsΘ
′
s minimizes the 2-norm

of the difference between the original transfer function and the output-projected

transfer function, i.e. ‖CAiB − ΘsΘ
′
sCA

iB‖, i = 1, · · · , is minimized. Thus, the

controllable and observable modes preserved in Hs are an approximation of those

in Hb, while in RPOD∗ algorithm, the exact controllable and observable modes are

preserved using the Gaussian random projection matrix. As mentioned in [89], when

s < l, where l is the number of non-zero Hankel singular values (number of con-

trollable and observable modes), then only the first s Hankel singular values are the

same as the full balanced truncations Hankel singular values.

Another difference between output projection algorithm and RPOD∗ algorithm is

that RPOD∗ algorithm can be used when both the number of the inputs and outputs

are large, while output projection can be used when the number of the inputs or the

outputs is large. When the number of inputs is large, we can construct an input

projection using the adjoint snapshot ensemble, but when both the number of inputs

and outputs are large, the construction of the projection matrix is not helpful.

75

3.5.4 Comparison with RPOD

Now, we can compare the RPOD algorithm and RPOD∗ algorithm proposed in

this dissertation.

Recall that for a system with p inputs and q outputs, RPOD algorithm randomly

chooses p̂, q̂ inputs and outputs respectively, where the lower bound of p̂, q̂ is given.

Then the snapshot ensembles are constructed by perturbing the primal and adjoint

system with impulses. Consider the RPOD primal snapshot ensemble X̂, suppose

b1, · · · , bp̂ columns of B are selected, WLOG, and denote B̂ = [b1, · · · , bp̂]. The

snapshots are taken from k = 0 to k = tss − 1.

From the analysis in section 2.5, if BPOD snapshot ensemble is spanned by

Vco, Vcō, i.e.,

Xb︸︷︷︸
N×ptss

=

(
B AB · · · Atss−1B

)
=

(
Vco Vcō

) αbco︸︷︷︸
l×ptss

αbcō

 , (3.68)

then with a high probability, the sub-snapshot ensemble X̂ constructed using RPOD

is also spanned by Vco, Vcō, i.e.,

X̂︸︷︷︸
N×p̂tss

=

(
B̂ AB̂ · · · Atss−1B̂

)
=

(
Vco Vcō

) α̂bco︸︷︷︸
l×p̂tss

α̂bcō

 , (3.69)

where the RPOD∗ snapshot ensemble Xr could be written as:

Xr︸︷︷︸
N×l

=

(
Vco Vcō

) αrco︸︷︷︸
l×l

αrcō

 . (3.70)

76

Therefore, both the algorithms construct a sub-snapshot ensemble which could

be spanned by Vco and Vcō. The difference is that Vco is guaranteed to be preserved in

RPOD∗ algorithm, while Vco is preserved in RPOD algorithm with a high probability,

so RPOD∗ is more accurate than RPOD algorithm. Moreover, RPOD∗ algorithm

takes fewer snapshots, and only need 1 simulation, and hence, the computational

cost of RPOD algorithm is further reduced.

3.6 Computational Cost Analysis

The comparison of the computational cost of BPOD output projection algorithm

with RPOD∗ algorithm is shown in Table 3.1. We collect m,n snapshots for RPOD∗

algorithm respectively, and tss snapshots for BPOD output projection algorithm. N

is the dimension of the system, p, q are the number of inputs and outputs respectively,

the rank of the output projection is s, and without loss of generality, we assume p ≤ q,

m ≤ n, and p ≤ s. Denote T as the time to propagate the primal/adjoint system

once.

Table 3.1: Computational Complexity Analysis for RPOD∗ and BPOD Output Pro-
jection

RPOD* BPOD output projection
Generate snapshot ensembles 2tssT (p+ s)tssT
Construction of H O(mnN) O(pst2ssN)
Solve SVD O(m2n) O(p2st3ss)

First, we compare the computation time to generate the snapshot ensembles.

For BPOD output projection algorithm, (p + s) simulations are needed, and for

each simulation, we need to collect the snapshots up to t = tss. Thus, the total

computation time to generate the snapshot ensembles is (p+ s)tssT .

77

The RPOD∗ algorithm needs 1 primal and 1 adjoint simulation till timem∆T, n∆T

respectively, where m∆T ≥ tss, n∆T ≥ tss. When we choose ∆T such that m∆T =

tss, n∆T = tss, the performance of the ROM constructed using RPOD∗ is better than

those constructed using BPOD/BPOD output projection algorithm. While, the to-

tal computation time to generate the snapshot ensembles is 2tssT , which means that

RPOD∗ computational cost is the same as BPOD in a single input single output

(SISO) system. The comparison of the computation time to generate the snapshot

ensembles is shown in Table 3.3 for two examples.

Next, we compare the computational cost to construct the Hankel matrix and

solving the SVD problem. In practice, m,n ∝ O(10) ∼ O(102), and tss ∝ O(102) ∼

O(103), p, s ∝ O(10). Thus, for constructing the Hankel matrix, the computational

time using RPOD∗ is mn
pst2ss

∝ O(10−4) time that of using BPOD output projection,

and for solving the SVD problem, the computation time using RPOD∗ is m2n
p2st3ss

∝

O(10−6) times that of using BPOD output projection.

3.7 Computational Results

In this section, we compare the performance of ROMs constructed using RPOD∗

algorithm with BPOD and BPOD output projection algorithms. We start with a

small one-dimensional heat problem, which all three algorithms could be utilized.

Then we present the comparison between the RPOD∗ algorithm and BPOD output

projection algorithm for a large scale three-dimensional atmospheric dispersion prob-

lem, while the BPOD algorithm is not computationally feasible for the atmospheric

dispersion problem.

The frequency response for multiple input multiple output systems can be rep-

resented by plotting the maximum singular value of the transfer function matrix

max(σ(H(jω))) as a function of frequency ω. We define the frequency responses

78

error as:

Efre(jω) = |max(σ(Htrue(jω)))−max(σ(Hrom(jω)))|, (3.71)

where Htrue(jω) is the transfer function of the full order system, and Hrom(jω) is

the transfer function of the ROM.

3.7.1 Heat Problem

The heat transformation along a slab is described by the partial differential equa-

tion:

∂T

∂t
= α

∂2T

∂x2
+ f, (3.72)

with boundary conditions

T |x=0 = 0,
∂T

∂x
|x=L = 0, (3.73)

where α is the thermal diffusivity, and f is the forcing.

The parameters of the system are summarized in Table 3.2. There are two point

sources located at x = 0.15m and x = 0.45m. The system is discretized using

the finite difference method, and there are 100 grids which are equally spaced. We

take full field measurements, i.e., measurements at every node. In the following, we

compare the ROM constructed using RPOD∗, BPOD and BPOD output projection.

For RPOD∗, the system is perturbed by the white noise with distributionN(0, I2×2).

At time tss = 3000s, ‖Atss‖ ≈ 0, thus, for the primal/adjoint simulation, one real-

ization is needed, and we collect 80 equispaced snapshots during time t ∈ [0, 3200]s.

79

For BPOD, we need p = 2 realizations for the primal simulation, and q = 100

realizations for the adjoint simulations. In general, 3000 equispaced snapshots be-

tween [0, 3000]s should be taken in each realization for BPOD/output projection.

However, due to the memory limits on the platform, only 400 equispaced snapshots

can be taken and for the optimal performance of BPOD/output projection, the 400

equispaced snapshots are taken from time t ∈ [0, 400]s (first 400 dominant impulse

responses).

The rank of the output projection is 40, and hence, for the BPOD output pro-

jection algorithm, 40 realizations are needed for the adjoint simulations. RPOD∗

algorithm and BPOD algorithm extract 70 modes, and BPOD output projection

algorithm extract 50 modes. Here, we take 80 snapshots by trial and error following

the procedure in Section 3.4.

Table 3.2: Parameters of Heat and Atmospheric Dispersion System

Heat Atmospheric Dispersion
Domain x ∈ [0, 1](m) x ∈ [0, 2000](m), y ∈

[−100, 400](m), z ∈ [0, 50](m)
Dimension of system N = 100 N = 105

Parameters α = 4.2× 10−6(m2/s) Wind velocity ~u = (4m/s, 0, 0)
Number of Inputs 2 10

Number of Outputs 100 810
Primal Snapshots 400 V.S. 80 200 V.S. 400
Adjoint Snapshots 400 V.S. 80 200 V.S. 400

Snapshots taken during t ∈ [0, 400s] V.S. t ∈
[0s, 3200s]

t ∈ [0, 200]s V.S. t ∈ [0, 4000]s

ROM modes 50 V.S. 70 200 V.S. 380
Hankel matrix 16000× 800 V.S. 80×

80
4000× 2000 V.S. 400× 400

In Fig. 3.2(a), we compare the norm of the Markov parameters of the ROM

80

constructed using three algorithms with the true Markov parameters of the full order

system. We perturb the system with random Gaussian noise, and compare the output

relative errors in Fig. 3.2(b).

0 5 10 15 20
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

i

||
 C

A
i B

 |
|

True value

BPOD

RPOD

BPOD projection

(a)

0 2000 4000 6000 8000 10000
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

TIME (s)
‖Y

t
r
u
e
−
Y
r
o
m
‖

‖Y
t
r
u
e
‖

RPOD

BPOD

BPOD projection

(b)

Figure 3.2: Comparison of time domain errors between RPOD∗, BPOD and BPOD
output projection for heat transfer problem. (a) Comparison of Markov parameters.
(b) Comparison of output relative errors.

In Fig. 3.3(a), we compare the frequency responses of the ROM constructed using

three algorithms with the true frequency responses. In Fig. 3.3(b), we plot the error

of the maximum singular value of the input-output model as a function of frequency.

For all three methods, we can see that the Markov parameters of the ROM are

close to the true Markov parameters of the full order system. From Fig. 3.2(b),

it can be seen that all three methods are accurate enough. The output relative

error of BPOD output projection is less than 0.01%, and the performance of the

RPOD∗ algorithm is much better than the BPOD output projection algorithm, the

performance of RPOD∗ algorithm is better than BPOD algorithm because we do not

take all the snapshots up to tss due to the memory limits. From Fig. 3.3, we can

see that the frequency responses error of RPOD∗ algorithm is smaller than BPOD

81

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

10
3

ω

σ
m
a
x
(H

(j
ω
))

True
RPOD

BPOD
BPOD projection

(a)

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−20

10
−15

10
−10

10
−5

10
0

ω

E
f
r
e
(j
ω
)

RPOD

BPOD

BPOD projection

(b)

Figure 3.3: Comparison of frequency responses between RPOD∗, BPOD and BPOD
output projection for heat transfer problem. (a) Comparison of frequency responses.
(b) Comparison of frequency response errors.

and BPOD output projection algorithm in low frequencies. With the increase of the

frequency, the BPOD algorithm performs better than RPOD∗ algorithm, however,

the errors are below 10−10, and hence, the difference is negligible. The comparison

of computational time of RPOD∗ and BPOD output projection algorithm is shown

in Section 3.7.3. We can see that the construction of the snapshot ensembles using

RPOD∗ takes almost the same time as BPOD output projection, while the dominant

computational cost is solving the SVD problem, and it can be seen that RPOD∗ is

about 24 times faster than BPOD output projection.

3.7.2 Atmospheric Dispersion Problem

The three-dimensional advection-diffusion equation describing the contaminant

transport in the atmosphere is:

∂c

∂t
+∇ · (c~u) = ∇ · (K(~X)∇c) +Qδ(~X − ~Xs), (3.74)

where

82

c(~X, t) : mass concentration at location ~X = (x, y, z).

~Xs = (xs, ys, zs): location of the point source.

~u = (ucos(α), usin(α), 0): wind velocity. α is the direction of the wind in the

horizontal plane and the wind velocity is aligned with the positive x-axis when α = 0,

u ≥ 0 is constant.

Q: contaminant emitted rate.

∇: gradient operator.

K(~X) = diag(Kx(x), Ky(x), Kz(x)) : diagonal matrix whose entries are the tur-

bulent eddy diffusivities. In general K(~X) is a function of the downwind distance x

only.

In practice, the wind velocity is sufficiently large that the diffusion in the x-

direction is much smaller than advection, and hence, assume that the term Kx∂
2
xc

can be neglected.

Define σ2
y(x) = 2

u

∫ x
0
Ky(η)dη, σ2

z(x) = 2
u

∫ x
0
Kz(η)dη, where σy(x) = ayx(1 +

byx)0.5, σz(x) = azx(1 + bzx)0.5, and ay = 0.008, by = 0.00001, az = 0.006, bz =

0.00015.

The boundary conditions are:

c(0, y, z) = 0, c(∞, y, z) = 0, c(x,±∞, z) = 0,

c(x, y,∞) = 0, Kz
∂c

∂z
(x, y, 0) = 0. (3.75)

The system is discretized using finite difference method, and there are 100 ×

100 × 10 grids which are equally spaced. The parameters are summarized in Table

3.2. There are 10 point sources which are shown in Fig. 3.4. We take the full field

measurements (except the nodes on x = 0,∞ and y = ±∞). In Fig. 3.4, we show

the actual concentration of the full field at time t = 200s with Q as Gaussian white

83

noise where sources are the dotted points in the figure.

4.1191e-05 4.1191e-05

4
.1

1
9

1
e

-0
5

4
.1

1
9

1
e

-0
5

4.1191e-054.1191e-05

4
.1

1
9
1
e
-0

5

4
.1

1
9
1
e
-0

5

4
.1

1
9
1
e
-0

5

0.00041191 0.00041191

0
.0

0
0

4
1

1
9

1

0
.0

0
0

4
1

1
9

1

0.000411910.00041191

0
.0

0
0
4
1
1
9
1

0
.0

0
0
4
1
1
9
1

0.0041191

0
.0

0
4

1
1

9
1

0
.0

0
4

1
1

9
1

0.00411910.0041191

0
.0

0
4
1
1
9
1

0
.0

0
4
1
1
9
1

0.0041191 0.0
20595

0
.0

2
0

5
9

5

0
.0

2
0

5
9

5

0.020595

0.020595

0
.0

2
0
5
9
5

0
.0

2
0

5
9

5

0.020595

0
.0

4
1
1
9
1

0
.0

4
1

1
9

1

0
.0

4
1
1
9
1

0.041191

0.041191

0
.0

4
1
1
9
1

0
.0

4
1
1
9
1

0.041191

0.0
82381

0
.0

8
2
3
8
1

0
.0

8
2
3
8
1

0.082381

0.082381

0
.0

8
2
3
8
1

0
.0

8
2
3
8
1

0.082381

0
.2

0
5
9
5

0
.2

0
5
9
5

0
.2

0
5

9
5

0.20595

0.20595

0
.2

0
5
9
5

0.20595
0.20595

0
.4

1
1
9
1

0.4
1191

0
.4

1
1
9
1

0.41191

0.41191

Full Order Model

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-100

-50

0

50

100

150

200

250

300

350

400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3.4: Contour plot of air pollutant concentration at t = 200s.

In this example, since the system dimension is N = 105, constructing the ROM

with the full field measurements using BPOD is computationally impossible, and

thus, we only compare the RPOD∗ algorithm with BPOD output projection algo-

rithm.

For RPOD∗ algorithm, we collect the snapshots sequentially. The system is per-

turbed by white noise with distribution N(0, I10×10). One primal simulation and

one adjoint simulation are needed. We collect 400 equispaced snapshots from time

t ∈ [0, 4000]s, where at time tss = 4000, ‖Atss‖ ≈ 0, and extract 380 modes.

For BPOD output projection algorithm, we collect the impulse responses from the

primal simulations, and p = 10 realizations are needed. Same as the heat example,

we could not collect all the impulse responses from t ∈ [0, 4000]s due to the memory

limits on the platform. Hence, for the best performance available in this example, we

84

collect 200 equispaced snapshots from t ∈ [0, 200]s for each primal simulation. The

rank of the output projection is 80, and hence, 80 adjoint simulations are needed,

and in the adjoint simulations, we collect 50 equispaced snapshots from t ∈ [0, 50]s.

We can extract 200 modes. The parameters are summarized in Table 3.2.

In Fig. 3.5(a), we compare the Markov parameters of the ROM constructed using

RPOD∗ and BPOD output projection with the full order system. Also, we perturb

the system with random Gaussian noise, and compare the output relative errors in

Fig. 3.5(b). The comparison of the computational time is shown in Section 3.7.3.

0 5 10 15 20 25 30 35 40
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

i

||
 C

A
i B

 |
|

True value

BPOD projection

RPOD

(a)

0 200 400 600 800 1000
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

TIME (s)

‖Y
t
r
u
e
−
Y
r
o
m
‖

‖Y
t
r
u
e
‖

RPOD

BPOD projection

(b)

Figure 3.5: Comparison of time domain errors between RPOD∗ and BPOD output
projection for atmospheric dispersion problem. (a) Comparison of Markov parame-
ters. (b) Comparison of output relative errors.

In Fig. 3.6(a), we compare the frequency responses of the ROM constructed using

RPOD∗ and BPOD output projection with the full order system. We can see that

the frequency responses of the ROMs are almost the same as the frequency responses

of the full order system. In Fig. 3.6(b), we show the errors between the frequency

responses.

85

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

ω

σ
m
a
x
(H

(j
ω
))

True

RPOD

BPOD projection

(a)

ω
10

-4
10

-3
10

-2
10

-1
10

0
10

1

E
r
e
f
(j
ω
)

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

RPOD
BPOD projection

(b)

Figure 3.6: Comparison of frequency responses between RPOD∗ and BPOD out-
put projection for atmospheric dispersion problem. (a) Comparison of frequency
responses. (b) Comparison of frequency response errors.

The comparison of the computational time is shown in Section 3.7.3. It can be

seen that for this example, the construction of the snapshot ensembles using RPOD∗

is faster than the BPOD output projection, and the dominant computation cost is

the construction of Z ′X, where RPOD∗ algorithm is almost 16500 times faster than

BPOD output projection.

From the examples above, we can see that for both examples showed in this

paper, the RPOD∗ algorithm is much faster than BPOD/BPOD output projection

algorithm, and is much more accurate than BPOD output projection algorithm.

3.7.3 Comparison of Computational Time

Comparison of computational time is shown in Table 3.3 for two examples. All

of the experiments reported in this paper were performed using Matlab 2013b on a

Dell OptiPlex 9020, Intel(R) Core (TM) i7-4770CPU, 3.40GHz, 4GB RAM machine.

86

Table 3.3: Comparison of Computational Time using RPOD∗ and BPOD output
projection for Heat Transfer and Atmospheric Dispersion

Heat Atmospheric Dispersion
RPOD∗ output projection RPOD∗ output projection

Generate X 0.0148s 0.0518s 55.59s 30.461s
Generate Z 0.0340s 0.0864s + 0.1582s

(projection)
56.23s 421.99s + 9.287s (pro-

jection)
Construct Z ′X 0.0292s 0.0461s 0.321s 5311s

Solve SVD 0.1052s 2.5550s 0.4859s 9.118s
Total time 0.1832s 2.8975s 112.6269s 5781.856s

3.8 Summary

In this section, we develop a computationally optimal randomized proper orthog-

onal decomposition algorithms for the extraction of ROMs of large scale systems such

as those governed by PDEs. The ROM is constructed by perturbing the primal and

adjoint system with Gaussian white noise, and the error bound using the RPOD∗

algorithm is derived. The RPOD∗ algorithm is compared with the BPOD output

projection and random projection algorithm, and we show that the computational

cost to construct the snapshot ensembles is saved and also RPOD∗ algorithm leads

to a much smaller SVD problem. The simulation results show that the RPOD∗

algorithm is much more accurate than the BPOD output projection algorithm.

87

4. AN AUTOREGRESSIVE (AR) MODEL BASED STOCHASTIC UNKNOWN

INPUT REALIZATION AND FILTERING TECHNIQUE ?

4.1 Introduction

In this section, we consider the state estimation problem of systems with stochas-

tic unknown inputs. We assume that the unknown inputs can be treated as a wide-

sense stationary process (WSS) with rational power spectral density (PSD), while

no other prior information about the unknown inputs is known. We develop an AR

model based method which can recover the statistics of unknown inputs from mea-

surements. An innovations model of the unknown inputs is constructed, and the

Augmented State Kalman Filter (ASKF) is applied for state estimation. An ROM

constructed via RPOD∗ algorithm is used to reduce the computations of ASKF.

We start this section by formulating the problem and making some general as-

sumptions. Then we present the procedure of the AR model based unknown in-

put realization approach, and provide formal proofs regarding the estimation errors.

Next, we construct an augmented state model, and use KF for state estimation. Fi-

nally, we compare the simulation results using the AR model based algorithm with

optimal two-stage Kalman filter (OTSKF) and unbiased minimum-variance (UMV)

algorithms for several advection-diffusion equations. Brief reviews of eigensystem re-

alization algorithm (ERA), OTSKF and UMV algorithms are included in Appendix

B - D for completeness.

?Reprinted with permission from “A stochastic unknown input realization and filtering tech-
nique” by Dan Yu, Suman Chakravorty, 2016, Automatica, 26: 26-33, Copyright [2016] by Elsevier.

88

4.2 Problem Formulation

Consider a complex valued linear time-invariant (LTI) discrete time system:

xk = Axk−1 +Buk−1,

yk = Cxk + vk, (4.1)

where xk ∈ Cn, yk ∈ Cq, vk ∈ Cq, uk ∈ Cp are the state vector, the measurement

vector, the measurement white noise with zero mean and known covariance Ω, and

the unknown stochastic inputs respectively. The process uk is used to model the

presence of the external disturbances, process noise, and unmodeled terms. Here,

A ∈ Cn×n, B ∈ Cn×p, C ∈ Cq×n are known.

The following assumptions are made about system (4.1):

• A1. A is a stable matrix, and (A,C) is detectable.

• A2. rank(B) = p, rank(C) = q, p ≤ q and rank (CAB) = rank (B) = p.

• A3. uk and vk are uncorrelated.

• A4. We further assume that the unknown input uk can be treated as a WSS

process:

ξk = Aeξk−1 +Beνk−1,

uk = Ceξk + µk, (4.2)

where νk, µk are uncorrelated white noise processes.

Discussion on Assumptions A2 is a weaker assumption than the so-called

“observer matching” condition used in unknown input observer design. The observer

89

matching condition requires rank (CB) = rank (B) = p, which in practice, may be

too restrictive. A2 implies that if there are p inputs, then there should be at least

p controllable and observable modes. A4 implies that uk is a WSS process with a

rational power spectrum.

We consider the state estimation problem when the system (4.2), i.e., (Ae, Be, Ce)

are unknown. Given the output data yk, we want to construct an innovations model

for the unknown stochastic input uk, such that the output statistics of the innovations

model and system (4.2) are the same. Given such a realization of the unknown input,

we apply the standard Kalman filter for the state estimation, augmented with the

unknown input states.

4.3 AR Model Based Unknown Input Realization Technique

In this section, we propose an AR model based unknown input realization tech-

nique which can construct an innovations model of the unknown inputs such that

the ASKF can be applied for state estimation. First, a least squares problem is

formulated based on the relationship between the inputs and outputs to recover the

statistics of the unknown inputs. Then an AR model is constructed using the recov-

ered input statistics, and a balanced realization model is then constructed using the

ERA.

4.3.1 Extraction of Input Autocorrelations via a Least Squares Problem

Consider system (4.1) with zero initial conditions, the output yk can be written

as:

yk =
∞∑
i=1

hiuk−i + vk. (4.3)

Since vk is the measurement noise with known covariance Ω, the autocorrelation

90

function Rvv(m) can be written as:

Rvv(m) =


Ω,m = 0,

0, otherwise .

For a LTI system, the output {yk} is a WSS process when {uk} is WSS.

Therefore, under assumption A1 that A is stable, the output autocorrelation can be

written as:

Ryy(m) = E[yky
∗
k+m] =

∞∑
i=1

∞∑
j=1

hiuk−iu
∗
k+m−jh

∗
j +Rvv(m)

=
∞∑
i=1

∞∑
j=1

hiRuu(m+ i− j)h∗j +Rvv(m), (4.4)

where m = 0,±1,±2, · · · is the time-lag between yk and yk+m. Here, assumption

A3 is used.

We denote R̂yy(m) = Ryy(m) − Rvv(m). Therefore, the relationship between

input and output autocorrelation function is given by:

R̂yy(m) =
∞∑
i=1

∞∑
j=1

hiRuu(m+ i− j)h∗j . (4.5)

To solve for the unknown input autocorrelations Ruu(m), first we need to use a

theorem from linear matrix equations [90].

Theorem 7 Consider the matrix equation

AXB = C, (4.6)

where A, B, C, X are all matrices. If A ∈ Cm×n = (a1, a2, · · · , an), where ai are the

91

columns of A, then define vec(A) ∈ Cmn×1 and the Kronecker product A⊗B as:

vec(A) =


a1

...

an

 , A⊗B =


a11B · · · a1nB

... · · · ...

am1B · · · amnB

 . (4.7)

If A is an m× n matrix and B is a p× q matrix, then the Kronecker product A⊗B

is an mp× nq block matrix.

The matrix equation (4.6) can be transformed into one vector equation:

(BT ⊗ A)vec(X) = vec(C), (4.8)

where BT ⊗ A is the Kronecker product of BT and A.

Thus, by applying Theorem 7, (4.5) can be written as:

vec(R̂yy(m))︸ ︷︷ ︸
∈Rq2×1

=
∞∑
i=1

∞∑
j=1

h̄j ⊗ hi︸ ︷︷ ︸
∈Rq2×p2

vec(Ruu(m+ i− j))︸ ︷︷ ︸
∈Rp2×1

, (4.9)

Now, we estimate the unknown input autocorrelations by the following procedure.

Choose design parameter M . Under assumption A1, i.e., the system is stable,

the Markov parameters of the system (4.1) have the following property:

‖hi‖ → 0 as i→∞. (4.10)

We choose a design parameter M , such that (4.9) can be written as:

vec(R̂yy(m)) =
M∑
i=1

M∑
j=1

h̄j ⊗ hivec(Ruu(m+ i− j)). (4.11)

92

where M varies with different systems and can be chosen as large as desired.

Choose design parameters No, Ni. Under assumption A1 and A4, we have

the following property:

‖Ruu(m)‖ → 0, as m→∞,

‖R̂yy(m)‖ → 0, as m→∞. (4.12)

As a standard method when computing a power spectrum from an autocorrelation

function, we choose design parameters Ni and No, such that the input autocorrela-

tions are calculated when |m| ≤ Ni, and the output autocorrelations are calculated

when |m| ≤ No. The numbers No and Ni depend on the dynamic system and un-

known inputs, and can be chosen as large as required. We have the following result.

Lemma 2 The relation Ni ≤ No holds, which implies that all significant input au-

tocorrelations can be recovered from the output autocorrelations.

Proof 8 The support of R̂yy is limited to (−No, No), thus, we have:

R̂yy(No + 1) = 0. (4.13)

From (4.9),

vec(R̂yy(No + 1)) =
∞∑
i=1

h̄i ⊗ hivec(Ruu(No + 1)) +
∞∑
i=2

h̄i−1 ⊗ hivec(Ruu(No)) + · · · .

(4.14)

If Ni > No, which implies that

Ruu(No + 1) 6= 0, (4.15)

93

then it follows that Ryy(No + 1) is also not negligible, which contradicts the assump-

tion, and hence, as a consequence, Ni ≤ No.

Thus, the following equation is used for computation of the unknown input autocor-

relations.

vec(R̂yy(m)) =
M∑
i=1

M∑
j=1

h̄j ⊗ hivec (Ruu(m+ i− j))︸ ︷︷ ︸
|m+i−j|≤Ni

, |m| ≤ No. (4.16)

Solve the least squares problem We collect 2No+1 output autocorrelations, and

from the above assumptions, there are 2Ni + 1 unknown input autocorrelations:



vec(R̂yy(−No))

vec(R̂yy(−No + 1))

...

vec(R̂yy(0))

vecR̂yy(1))

...

vec(R̂yy(No))


︸ ︷︷ ︸

vec(R̂yy)

= Cyu



vec(Ruu(−Ni))

...

vec(Ruu(0))

vec(Ruu(1))

...

vec(Ruu(Ni))


︸ ︷︷ ︸

vec(Ruu)

, (4.17)

where Cyu is the coefficient matrix and can be calculated from (4.16). Under as-

sumption A1, A2 and A4, we have the following result.

Theorem 8 Equation (4.17) has a unique least-squares solution R̂uu(m), where m =

0,±1,±2, · · · ,±Ni.

Proof 9 We partition the matrix Cyu into three parts as Cyu =


Ct

Cm

Cb

 , where Cm

94

contains the q2(No −Ni) + 1, · · · , q2(No +Ni + 1) rows of Cyu and can be expressed

as:

Cm =



M∑
j=1

h̄j ⊗ hj
M−1∑
j=1

h̄j ⊗ hj+1 · · · · · ·

M−1∑
j=1

h̄j+1 ⊗ hj
M∑
j=1

h̄j ⊗ hj · · · · · ·

· · · · · · . . . · · ·

· · · · · · · · ·
M∑
j=1

h̄j ⊗ hj


. (4.18)

In the following, we prove that Cm ∈ Cq2(2Ni+1)×p2(2Ni+1) has full column rank p2(2Ni+

1) by induction.

Let Ni = 0, then

Cm(0) =
M∑
j=1

h̄j ⊗ hj

= (CVco ⊗ CVco)(I + Λco ⊗ Λco + · · ·+ ΛM−1
co ⊗ ΛM−1

co)(U ′coB ⊗ U ′coB),

(4.19)

where Λco are the controllable and observable eigenvalues of A, and (Vco, Uco) are

the corresponding right and left eigenvectors. Under the assumption A2, if rank

(CAB) = p, and since CAB = CVcoΛcoU
′
coB, which implies that rank (Cm(0)) = p2.

If rank Cm(Ni − 1) has rank p2(2Ni − 1), then consider Cm(Ni):

Cm(Ni) =


Cm(0) C12 C13

C21 Cm(Ni − 1) C23

C31 C32 Cm(0)

 , (4.20)

95

where C12, C13, C21, C23, C31, C32 are some matrices, and it can be proved that Cm(Ni)

has p2 + p2(2Ni − 1) + p2 = p2(2Ni + 1) independent columns, and hence, rank

(Cm(Ni)) = p2(2Ni + 1).

Thus, by induction, Cm has full column rank, and hence, Cyu has full column

rank. Since q ≥ p, it is an overdetermined system, so there exists a unique solution

to the least squares problem.

Remark 6 The size of Cyu is q2(2No + 1)× p2(2Ni + 1) and it would be large when

p and q increase, and hence, large scale least squares problem needs to be solved

for systems with large number of inputs/outputs. For example, a modified conjugate

gradients method [91] could be used as follows.

The least squares problem need to be solved is:

vec(R̂yy) = Cyuvec(Ruu). (4.21)

Multiply C∗yu on both sides:

C∗yuvec(R̂yy) = C∗yuCyuvec(Ruu). (4.22)

If we denote Ls = C∗yuvec(R̂yy), x̄ = vec(Ruu), and Cs = C∗yuCyu, then Cs = C∗s , and

the problem is equivalent to solve the least squares problem for x̄:

Csx̄ = Ls, (4.23)

and a conjugate gradient method to solve this problem is summarized in Algorithm

6.

The error of the input autocorrelations we extract results from two design pa-

96

Algorithm 6 Conjugate gradient algorithm

1. For a least-squares problem Csx̄ = Ls, where Cs = C∗s , x̄ is unknown.

2. Start with a random initial solution x̄0.

3. r0 = Ls − Csx̄0, p0 = r0.

4. for k = 0, repeat

5. αk =
r∗krk
p∗kCspk

,
x̄k+1 = x̄k + αkpk,
rk+1 = rk − αkCspk,
if rk+1 is sufficient small then exit loop.

βk =
r∗k+1rk+1

r∗krk
,

pk+1 = rk+1 + βkpk,
k = k + 1,
end repeat.

6. The optimal estimation is xk+1.

rameters: the choice of M and No, Ni. The following proposition considers the total

errors of input autocorrelations we recover.

Theorem 9 Denote Ruu(m) as the “true” input autocorrelations, R̂uu(m) as the

input autocorrelation function we estimate from the output autocorrelations, and let

∆(m) = Ruu(m) − R̂uu(m) be the error between the estimated input autocorrelation

and the “true” input autocorrelation. We assume that ‖hi‖ ≤ δ, i > M , ‖Ruu(m)‖ ≤

δ, |m| > Ni, and ‖R̂yy(m)‖ ≤ δ, |m| > No where δ is small enough. Then ‖∆(m)‖ ≤

kδ, where k is some constant.

Proof 10 Denote RM
uu(m) as the input autocorrelations we extract by using M Markrov

parameters of the dynamic system, ∆M(m) = Ruu(m) − RM
uu(m) as the error of

the input autocorrelations resulting choosing M such that ‖hi‖ ≤ δ, i > M . De-

note RN
uu(m) as the input autocorrelations we extract by using Ni input autocorrela-

97

tions, and No output autocorrelations, and ∆N(m) = Ruu(m)−RN
uu(m) as the errors

from choosing design parameters Ni, No, such that ‖Ruu(m)‖ ≤ δ, |m| > Ni, and

‖R̂yy(m)‖ ≤ δ, |m| > No. First, we analyze the errors separately.

The output autocorrelation function using the first M Markov parameters is:

R̂M
yy(m) =

M∑
i=1

M∑
j=1

hiRuu(m+ i− j)h∗j . (4.24)

Comparing with (4.5), the output autocorrelation errors resulting from using M

Markov parameters is:

∆1(m) =
∞∑

i=M+1

M∑
j=1

hiRuu(m+ i− j)h∗j +
∞∑

i=M+1

∞∑
j=M+1

hiRuu(m+ i− j)h∗j

+
M∑
i=1

∞∑
j=M+1

hiRuu(m+ i− j)h∗j . (4.25)

By choosing M large enough, we have ‖hi‖ ≤ δ, i > M , where δ is small enough,

thus,

‖∆1(m)‖ ≤
∞∑

i=M+1

M∑
j=1

δ × ‖Ruu(m+ i− j)‖‖h∗j‖

+
∞∑

i=M+1

∞∑
j=M+1

δ × ‖Ruu(m+ i− j)‖ × δ

+
M∑
i=1

∞∑
j=M+1

‖hi‖‖Ruu(m+ i− j)‖ × δ

≤ k1δ, (4.26)

where k1 is some constant.

Denote Cyu as the “true” coefficient matrix and CM
yu as the coefficient matrix

98

using M Markov papameters, we need to solve the least squares problem:

vec(R̂yy) = CM
yuvec(RM

uu). (4.27)

where RM
uu is the input autocorrelation we recover from using M Markov parameters,

and vec(R̂yy) is defined in (4.17).

Since

‖vec(R̂yy(m))− vec(R̂M
yy(m))‖2 = ‖R̂yy(m)− R̂M

yy(m)‖ = ‖∆1(m)‖ ≤ k3δ, (4.28)

we have vec(R̂yy(m)) = vec(R̂M
yy(m))+∆2(m), where ‖∆2(m)‖2 ≤ k1δ, or equivalently

vec(R̂yy) = vec(R̂M
yy) + ∆2, (4.29)

Consider (4.17), vec(R̂yy) and vec(R̂M
yy) can be written as:

vec(R̂yy) = Cyuvec(Ruu),

vec(R̂M
yy(m)) = CM

yuvec(Ruu), (4.30)

Substitute into (4.29), we have:

Cyuvec(Ruu)− CM
yuvec(Ruu) = ∆2. (4.31)

Since (CM
yu)−1 exists, we have:

vec (Ruu)− vec(RM
uu) = (CM

yu)−1∆2, (4.32)

99

which implies:

‖vec(Ruu)− vec(RM
uu)‖2 ≤ kMδ, (4.33)

where kM is some constant. Hence, ‖∆M(m)‖ ≤ kMδ.

Equation (4.9) can be seperated into two parts:

vec(R̂yy(m)) =
∞∑
i=1

∞∑
j=1

h̄j ⊗ hivec(Ruu(m+ i− j)︸ ︷︷ ︸
|m+i−j|≤Ni

)

+
∞∑
i=1

∞∑
j=1

h̄j ⊗ hivec(Ruu(m+ i− j)︸ ︷︷ ︸
|m+i−j|>Ni

). (4.34)

Thus, it can be written as:

vec(R̂yy(m)) = vec(R̂N
yy(m)) + ∆4(m), (4.35)

where

‖∆4(m)‖2 = ‖
∞∑
i=1

∞∑
j=1

h̄j ⊗ hivec(Ruu(m+ i− j)︸ ︷︷ ︸
|m+i−j|>Ni

)‖2

≤
∞∑
i=1

∞∑
j=1

‖h̄j ⊗ hi‖2 × δ

≤ k4δ, (4.36)

where k4 is some constant. Following the same procedure above, it can be proved that

‖∆N(m)‖ ≤ kNδ, where kN is some constant.

Denote output autocorrelation in (4.16) as R̂c
yy(m), comparing (4.16) with (4.9),

100

the output autocorrelation error is:

vec(R̂yy)− vec(R̂c
yy) = ∆2 +

M∑
i=1

M∑
j=1

h̄j ⊗ hivec(Ruu(m+ i− j)︸ ︷︷ ︸
|m+i−j|>Ni

)

≤ ∆2 + ∆4. (4.37)

Thus

‖vec(R̂yy)− vec(R̂c
yy)‖2 ≤ ‖∆2‖2 + ‖∆4‖2 ≤ k5δ, (4.38)

where k5 is some constant. Following the same procedure, we can prove:

‖∆(m) = Ruu(m)− R̂uu(m)‖ ≤ kδ. (4.39)

The results above show that if M , Ni, No are chosen large enough, the errors in

estimating the input autocorrelations can be made arbitrarily small.

4.3.2 Construction of the AR Based Innovations Model

After we extract the input autocorrelations from the output autocorrelations, we

want to construct a system which will generate the same statistics as the ones we

recovered in Section 4.3.1.

If assumption A4 is satisfied, i.e., {uk} is WSS with a rational power spectrum,

the power spectrum of uk is continuous, and can be modelled as the output of a

casual linear time invariant system driven by white noise [92]. Such system can

be constructed by using an autoregressive moving average (ARMA) model, and in

practice, a MA model can often be approximated by a high-order AR model, and

thus, with enough coefficients, any stationary process can be well approximated by

101

using either AR or MA models (Chapter 9, [93]), and in this research, we use an AR

model to fit the data.

In an AR model, the time series can be expressed as a linear function of its past

values, i.e.,

u(k) =

Mi∑
i=1

aiu(k − i) + ε(k), (4.40)

where ε(k) is white noise with distribution N(0,Ωr), Mi is the order of the AR model,

and ai, i = 1, 2, · · · ,Mi are the coefficient matrices.

For a vector autoregressive model with complex values, the Yule-Walker equation

[94] which is used to solve for the coefficients needs to be modified. The modified

Yule-Walker equation can be written as:

(
Ruu(−1) Ruu(−2) · · · Ruu(−Mi)

)
=

(
a1 a2 · · · aMi

)


Ruu(0) · · · Ruu(1−Mi)

Ruu(1) · · · Ruu(2−Mi)

...
...

...

Ruu(Mi − 1) · · · Ruu(0)


. (4.41)

Equation (4.41) is used to solve for the coefficient matrices ai, i = 1, 2, · · · ,Mi.

The covariance of the residual white noise ε(k) can be solved using the following

equation:

Rεε(m) = Ruu(m)−
Mi∑
i=1

Mi∑
j=1

aiRuu(m+ i− j)a∗j , (4.42)

where Ωr = Rεε(0).

102

The balanced minimal realization for the AR model (4.40) can be expressed as:

ηk = Anηk−1 +Bnuk−1,

uk = Cnηk + εk, (4.43)

where (An, Bn, Cn) are solved by using the ERA technique [95] with ai, i = 1, · · · ,Mi

as the Markov parameters of the system.

Equation (4.43) is equivalent to:

ηk = (An +BnCn)ηk−1 +Bnεk−1,

uk = Cnηk + εk, (4.44)

where εk is white noise with covariance Ωr. We make the following remark.

Remark 7 We need to find a stable An +BnCn in (4.44). In practice, we calculate

the Markov parameters of system (4.44) using ai, i = 1, · · · ,Mi first, and then use

the ERA for the state space realization. If the Markov parameters of system (4.44)

are âi, i = 1, · · · ,Mi, then â1 = CnBn = a1, â2 = Cn(An +BnCn)Bn = a2 +a1a1, · · · .

As we explained before, for a WSS process with rational power spectrum, from [92] ,

we can always find a stable realization (An +BnCn, Bn, Cn).

By using the Cholesky decomposition, we can find a unique lower triangular

matrix P such that: Ωr = PP ∗. If wk is white noise with distribution N(0, 1), then

Pwk would be white noise with distribution N(0,Ωr). Thus, the innovations model

103

we construct that has the same statistics as the unknown input system (4.2) is:

ηk = (An +BnCn)ηk−1 +BnPwk−1,

uk = Cnηk + Pwk, (4.45)

where wk is a randomly white noise with standard normal distribution.

Under assumption A4, the following result holds.

Lemma 3 Denote R̂uu(m) as the input autocorrelations recovered from the mea-

surements, then R̂uu(m) can be reconstructed exactly by using the innovations model

(4.45), i.e., R̃uu(m) = R̂uu(m), where R̃uu(m) is the input autocorrelations of the

realization of system (4.45).

From Theorem 9 and Lemma 3, under the same assumptions, the following corol-

lary immediately follows.

Corollary 4 Denote uk as the actual unknown input process, and Ruu(m) as the

actual input autocorrelation function. Then ‖R̃uu(m)− Ruu(m)‖ ≤ kaδ, where ka is

some constant, when δ is small enough. System (4.45) is an innovations model for

the unknown input uk.

The procedure of constructing the innovations model is summarized in Algorithm 7.

Remark 8 The AR model based unknown input realization technique we proposed

can also be used when the unknown inputs affect both the states and outputs, i.e.,

xk+1 = Axk +Buk,

yk = Cxk +Duk + vk, (4.46)

104

Algorithm 7 AR model based unknown input realization technique

1. Choose a finite number No, compute output autocorrelation function Ryy(m)
by using measurements yk, |m| ≤ No.

2. Choose a finite number M , construct the coefficient matrix Cyu from (4.16).

3. Choose a finite number Ni, solve the least squares problem (4.17) for unknown
input autocorrelation function Ruu(m), |m| ≤ Ni.

4. Construct an AR model for the unknown input u(k) =
∑Mi

i=1 aiu(k− i) + ε(k),
find the coefficient matrices ai, i = 1, 2, · · ·Mi by solving the modified Yule-
Walker equation (4.41).

5. Find the covariance Ωr of ε(k) by solving (4.42).

6. Construct the state space representation (4.43) for the AR model using ERA.

7. Find a unique lower triangular matrix P such that Ωr = PP ∗, and construct
an innovations model as in (4.45).

where uk is the stochastic unknown input, vk is the measurement noise. The solution

yk can be written as:

yk =
M∑
i=1

hiuk−i +Duk + vk, (4.47)

and the relationship between output autocorrelations and input autocorrelations is:

vec(R̂yy(m)) =
M∑
i=1

M∑
j=1

h̄j ⊗ hivec(Ruu(m+ i− j)) +
M∑
i=1

D̄ ⊗ hivec(Ruu(m+ i))

+
M∑
i=1

h̄j ⊗Dvec(Ruu(m− j)) + D̄ ⊗Dvec(Ruu(m)) (4.48)

where R̂yy(m) = Ryy(m)−Rvv(m). Notice that the first term is the same as (4.16),

and the last three terms correspond to the perturbation of the unknown inputs in the

105

outputs. It can also be formulated as a least squares problem (4.17), and an unknown

input system may be realized following the same procedure as in Algorithm 7.

Remark 9 For real valued system, we can save the computation by using the prop-

erties of autocorrelation functions:

Ruiui(−m) = Ruiui(m),

Ruiuj(−m) = Rujui(m), i 6= j (4.49)

Thus, we only need to collect No + 1 output autocorrelations and have p2(No + 1)

equations with q2(Ni + 1) unknowns in (4.17).

4.3.3 Extension to Estimate Unknown Input Locations

The AR model based unknown input realization technique we proposed can also

be applied to estimate the locations of unknown inputs.

Consider system (4.1), where both B and uk are unknown, but the locations of

the unknown inputs are known to be in some region Ω, for example, the unknown

inputs are known to be on boundaries, we can estimate the matrix B as well. There

is an augmented matrix B̂ ∈ Rn×p̂, which includes all the possible locations of the

unknown inputs, and without losing generality, we assume that rank CAB̂ = rank

B̂ = p̂.

Compared with system (4.1), the augmented system is:

xk+1 = Axk + B̂ûk,

yk = Cxk + vk, (4.50)

where A, B̂, C are known and ûk ∈ Rp̂ is the augmented unknown inputs. Following

106

the same procedure as in Algorithm 7, we can reconstruct the unknown input cor-

relations. If the unknown input autocorrelations R̂uiui(m) = 0, which means the ith

entry of ûk is zero, i.e., there is no input at the corresponding location in the actual

system. Thus, B is estimated by using all the columns of B̂ where the corresponding

unknown inputs are not identically zero.

Notice that in the augmented system, we need more measurements, i.e., q ≥ p̂,

which leads to a larger least-squares problem, and if R̂uiui(m) should be zero but not

due to the numerical errors of solving least-squares problem, it may also affect the

accuracy of the estimation of B matrix.

4.4 Augmented State Kalman Filter and Model Reduction

After we construct an innovations model for the unknown inputs, we apply the

standard Kalman filter on the augmented system with states augmented by the

unknown input states. A ROM based filter is also constructed using RPOD∗ for

reducing the computational cost of the resulting filter.

4.4.1 Augmented State Kalman Filter

The full order system can be represented by augmenting the states of the original

system as:

xk+1

ηk+1

 =

A BCn

0 An +BnCn


xk
ηk

+

BP

BnP

wk,

yk =

(
C 0

)xk
ηk

+ vk, (4.51)

where wk is white noise with standard normal distribution. vk is white noise with

known covariance.

107

Remark 10 The augmented state system (4.51) is stable and detectable. The eigen-

values of the augmented system (4.51) are the eigenvalues of A and the eigenvalues

of An +BnCn. From assumption A1, A is stable, from Remark 7, An +BnCn is sta-

ble, and hence, the augmented system (4.51) is stable. From assumption A1, system

(4.1) is detectable, and from the asymptotic stability of matrix An + BnCn, (4.44)

is also detectable, therefore, all the unobservable modes in (4.51) are asymptotically

stable, which implies that (4.51) is detectable. Thus, we may now use the standard

Kalman filter for state estimation of the augmented system (4.51).

4.4.2 Unknown Input Estimation Using Model Reduction

For large scale systems as we would like to consider, in particular, the systems

governed by partial differential equations (suitably discretized), we can use model

reduction technique such as RPOD∗ to construct a ROM first, and then extract the

input autocorrelations from the reduced order model. We apply the Kalman filter

to the ROM to reduce the computational cost.

The ROM system is extracted from the full order system using the RPOD∗ and

is denoted by:

ak = Arak−1 +Bruk−1,

yk = Crak + vk. (4.52)

Let ĥi = CrA
i−1
r Br, i = 1, 2, · · · ,M be the Markov parameters of the ROM. Then

the relationship between input autocorrelations and output autocorrelations can be

written as:

R̂yy(m) =
M∑
i=1

M∑
j=1

ĥiRuu(m+ i− j)ĥ∗j . (4.53)

108

Following the same procedure as in Algorithm 7, we can now recover the input

autocorrelations, and construct an innovations model which can generate the same

statistics as the unknown inputs.

The advantage of using model reduction is that for a large scale system, com-

puting ĥi = CrA
i−1
r Br is much faster than computing hi = CAi−1B because of the

reduction in the size of A. Also, the order of the ROM is much smaller than the

order of the full order system, and thus the computational cost of using the Kalman

filter is much reduced. Hence, even with the augmented states, the standard Kalman

filter remains computationally tractable.

Remark 11 To reduce the computational cost of the augmented states in Kalman

filter, we can also use the existing optimal two-stage or three-stage Kalman filtering

technique [54,56], which decouple the augmented filter into two parallel reduced order

filters. These techniques are preferable when the order of the innovations model is

high, while the RPOD based ROM filter is preferable when the order of the dynamic

system is high.

4.5 Computational Results

We test the AR model based algorithm on several advection-diffusion equations.

First, we compare the simulations results using full order model and the ROM con-

structed by RPOD∗ algorithm. We check the results by comparing the autocor-

relation functions of the inputs, outputs and the states. And we show the state

estimation using Kalman filter. Also, we compare the performance of AR model

based algorithm with OTSKF and UMV algorithms

Denote the average root mean square error(ARMSE) as:

ARMSE =
1

n

n∑
i=1

√∑n
k=1(x̂i(k)− xi(k))2

n
, (4.54)

109

where x̂i(k) is the state estimate x̂i at time tk, and xi(k) is the true state xi at time

tk, where i denotes the ith component of the state vector.

Suppose at the state component xi, the measurement noise vk is a white noise

with zero mean and covariance Ωi. We define a noise to signal ratio (NSR):

NSR =

√
|Ωi|

(E[xix∗i])
. (4.55)

4.5.1 Heat Problem

The heat transformation along a slab is given by the partial differential equation:

∂T

∂t
= α

∂2T

∂x2
+ f,

T |x=0 = 0,
∂T

∂x
|x=L = 0, (4.56)

where α is the thermal diffusivity, L = 1m, and f is the unknown forcing. There are

two point sources located at x = 0.5m and x = 0.6m.

The system is discretized using finite difference approach, and there are 50 grids

which are equally spaced.

Measurement Model. To satisfy the observer matching condition in the UMV

algorithm, we take two measurements at x = 0.5m, x = 0.6m. The measurement

noise is white noise with covariance 0.1I2×2.

Unknown Input Model. In the simulation, the unknown inputs are generated

110

by a second order model:

ξk =

0.3 0.5

0.4 0.2

 ξk−1 + I2×2µk,

uk = I2×2ξk, (4.57)

and µk ∼ N(0, 10I2×2).

Choosing Design Parameters. The design parameters M = 4000, Ni = 200,

No = 2000 are chosen as follows. M is chosen so that the Markov parameters

‖hi‖ ≈ 0, i > M . Ni and No are chosen by trial and error. First, we randomly choose

a suitable Ni and No, where Ni ≤ No. Then we follow the AR based unknown input

realization procedure, and construct the augmented state system (4.51). Given the

white noise processes wk, vk perturbing the system, we check the output statistics of

the augmented state system (4.51). If the errors are small enough, we stop, otherwise,

we increase the values of Ni and No, and repeat the same procedure until the errors

are negligible. Notice that increasing M , Ni, No would increase the accuracy of the

input statistics we can recover, but also increases the computational cost.

First, in Figure 4.1, we show the comparison of the input correlations we re-

cover with the actual input correlations. Since there are two inputs, thus, the cross-

correlation function between input 1 and input 2 are also included.

It can be seen that the statistics of the unknown inputs can be recovered almost

perfectly, and given the system perturbed by the unknown inputs innovations model

we constructed, the statistics of the outputs and the states are almost the same as

well.

Next, we compare the performance of the unknown inputs constructed using the

ROM with the full order system. The full order system has 50 states, and the ROM

111

0 5 10 15
0

1

2

3

Time lag

A
u

to
c
o

rr
e

la
ti
o

n

unknown input autocorrelation 1&1

Actual

Estimated

0 5 10 15
0

0.5

1

1.5

Time lag

A
u

to
c
o

rr
e

la
ti
o

n

unknown input autocorrelation 1&2

Actual

Estimated

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Time lag

A
u

to
c
o

rr
e

la
ti
o

n

unknown input autocorrelation 2&1

Actual

Estimated

0 5 10 15
0

0.5

1

1.5

2

Time lag

A
u

to
c
o

rr
e

la
ti
o

n

unknown input autocorrelation 2&2

Actual

Estimated

 Full Order System

Figure 4.1: Comparison of the recovered input autocorrelations with actual unknown
input autocorrelations for heat problem.

112

has 20 states. The relative error of the input correlation is shown in Figure 4.2.

0 5 10 15
0

0.1

0.2

0.3

0.4

Time lag

‖
R

u
u
−
R̂

u
u
‖

‖
R

u
u
‖

estimated unknown inputs 1&1

FULL

ROM

0 5 10 15
0

0.05

0.1

0.15

0.2

Time lag

‖
R

u
u
−
R̂

u
u
‖

‖
R

u
u
‖

estimated unknown inputs 1&2

FULL

ROM

0 5 10 15
0

0.05

0.1

0.15

0.2

Time lag

‖
R

u
u
−
R̂

u
u
‖

‖
R

u
u
‖

estimated unknown inputs 2&1

FULL

ROM

0 5 10 15
0

0.05

0.1

0.15

0.2

Time lag

‖
R

u
u
−
R̂

u
u
‖

‖
R

u
u
‖

estimated unknown inputs 2&2

FULL

ROM

 Full order V.S. ROM

Figure 4.2: Comparison of input autocorrelation relative error using full order model
with ROM for heat problem.

We can see that the statistics reconstructed by using the ROM is not as accurate

as using the full order system, however, the relative error is on the same scale, and

hence, the computational cost is reduced without losing much accuracy.

The state estimation using ROM is shown in Figure 4.3. We randomly choose two

states and show the comparison of the actual state with the estimated states. The

state estimation error and 3σ bounds are shown. It can be seen that the Kalman filter

using the ROM performs well, and hence, for a large scale system, the computational

complexity of ASKF can be reduced by using the RPOD.

113

0 0.005 0.01 0.015
0

2

4

6

8

Time (s)

s
ta

te

State 2 estimation

Actual

Estimated

0 50 100
0

2

4

6

8

Time (s)

s
ta

te

State 5 estimation

 Actual

Estimated

0 50 100
−1

−0.5

0

0.5

1

Time (s)

e
rr

o
r

State 2 Estimation Error

Estimation error

3σ bound

0 50 100
−1

−0.5

0

0.5

1

Time (s)

e
rr

o
r

State 5 Estimation Error

 Estimation error

3σ bound

 State Estimation

Figure 4.3: Unknown input filtering for heat problem using ROM. State estimation
error and 3σ bounds for two randomly chosen states.

114

Next, we compare the performances of the AR model based algorithm with OT-

SKF and UMV algorithms. The OTSKF and UMV algorithms we use are summa-

rized in Appendix C and Appendix D.

OTSKF model. The assumed unknown input model used in the OTSKF is not

the same as the true model, in particular, the system matrices of the input system

are perturbed from the true values, the model used for OTSKF is:

ηk+1 = Aoηk + vk =

0.4569 0.2768

0.2214 0.4016

 ηk + vk, (4.58)

where vk ∼ N(0, 10I2×2). Here, Ao is chosen as follows. The eigenvalues of Ae in

(4.57) are 0.7,−0.2. We perturb the eigenvalues of Ae with randomly generated

numbers between [−0.3, 0.3] and [−0.8, 0.8] with uniform distribution respectively,

and keep the eigenvectors same as the eigenvectors of Ae. The perturbed eigenvalues

are 0.6783, 0.1802. We calculate the output statistics of (4.57) and (4.58), and we

can see that the unknown input statistics used in OTSKF are perturbed by 5% about

the true value.

The estimation of the initial state x̄0 and covariance P̄0 in three algorithms are

the same.

We vary the measurement noise covariance Ωi, and for each Ωi, a Monte Carlo

simulation of 10 runs is performed to compare the magnitude of the ARMSE using

AR model based algorithm with the OTSKF and UMV algorithms in Table 4.2.

The comparison is shown in Figure 4.4. It can be seen that the AR model based

method performs the best. Note that when the assumed unknown input model used

in OTSKF is not accurate, the performance of AR model based algorithm is much

better while with increase in the sensor noise, the performance of the AR model based

115

Table 4.1: Performances of the AR model based algorithm, OTSKF and UMV for
Heat Problem

NSR AR model based OTSKF UMV
0.2215% 0.0036 0.0111 0.0033
6.8704% 0.0832 0.2418 0.0874
13.5171% 0.1309 0.3955 0.1528
20.3456% 0.3810 0.6516 0.4332
26.9467% 0.4190 0.7141 0.5112

algorithm gets better than the UMV algorithm. It should also be noted that when

the sensors and the unknown inputs are non-collocated, the “observer matching”

condition is not satisfied, and hence, the UMV algorithm can not be used, while the

OTSKF and the AR model based algorithm are not affected.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NSR (%)

A
R

M
S

E

Comparison of the performances

AR model based

OTSKF

UMV

Figure 4.4: Comparison of the performances of AR model based algorithm with
OTSKF and UMV algorithms for heat transfer problem. The ARMSE is plotted as
a function of NSR.

116

4.5.2 Stochastically Perturbed Laminar Flow

Consider the three-dimensional flow between two infinite plates (at y = ±1)

driven by a pressure gradient in the streamwise x direction with periodic boundary

condition in x- and z-directions. The equations are given as follows.

[(
∂

∂t
+ U

∂

∂x
)∇2 − U ′′ ∂

∂x
− 1

Re
∇4]v = 0

[
∂

∂t
+ U

∂

∂x
− 1

Re
∇2]η = −U ′∂v

∂z
(4.59)

The mean velocity profile is given by U(y) = 1 − y2. At each wavenumber pair

(α, β)mn, the wall-normal velocity v(x, y, z, t) and wall-normal vorticity η(x, y, z, t)

are:

v(x, y, z, t) = v̂mn(y, t)ei(αx+βz),

η(x, y, z, t) = η̂mn(y, t)ei(αx+βz). (4.60)

Denote

q̂mn(y, t) =

v̂mn(y, t)

η̂mn(y, t)

 , (4.61)

where (̂.) denotes the Fourier transformed variable, and (.)mn denotes the wavenum-

ber pair (α, β)mn.

The evolution of the flow in Fourier domain can be written as:

d

dt
Mq̂mn + Lq̂mn =

∑
k+l=m,l+j=n

N(q̂kl, q̂ij)︸ ︷︷ ︸
nonilinear coupling

+ êmn(y, t)︸ ︷︷ ︸
externalforcing

, (4.62)

117

where

M =

−∆ 0

0 I

 , (4.63)

L =

−iαU∆ + iαU
′′

+ ∆2/Re 0

iβU
′

iαU −∆/Re

 . (4.64)

The Laplacian operator is denoted as ∆ = D2 − k2, where D and D2 represent

first order and second order differentiation operators in the wall-normal direction,

and k2 = α2 + β2.

The boundary conditions on v and η correspond to no-slip solid walls

v(±1) = Dv(±1) = η(±1) = 0. (4.65)

The flow model can be written as

d

dt
Mq̂mn + Lq̂mn = Tf(y, t). (4.66)

Operator T transforms the forcing f = (f1, f2, f3)T on the evolution equation for

the velocity vector (u, v, w)T into an equivalent forcing on the (v, η)T system, where

T =

iαD k2 iβD

iβ 0 −iα

 , (4.67)

The derivation of T can be found in [16]. The forcing f(y, t) accounts for the

nonlinear terms and the external disturbances via an unknown stochastic model and

118

is assumed to be colored in time, i.e.,

ξ̇ = Aeξ +Beν,

f = Ceξ + µ (4.68)

where ν, µ are uncorrelated white noise processes.

System (4.62) can be discretized using Chebyshev polynomials, and in the simu-

lation, we assume there are two unknown inputs and two measurements.

Unknown input model. The unknown input f is assumed to be a colored

noise generated by a third order linear complex system (4.2). The process noise νk

is assumed to be white noise with zero mean and covariance 10I3×3.

The realization of the unknown inputs is a second order system. The measurement

noise vk is white noise with covariance 10I2×2.

Choosing design parameters. In the simulation, the design parameters M =

1000, Ni = No = 100 are chosen as follows. M is chosen so that the Markov

parameters ‖hi‖ ≈ 0, i > M . Ni and No are chosen by trial and error. First,

we randomly choose a suitable Ni and No, where Ni ≤ No. Then we follow the

AR based unknown input realization procedure, and construct the augmented state

system (4.51). Given the white noise processes wk, vk perturbing the system, we

check the output statistics of the augmented state system (4.51). If the errors are

small enough, we stop, otherwise, we increase the values of Ni and No, and repeat

the same procedure until the errors are negligible. Notice that increasing M , Ni, No

would increase the accuracy of the input statistics we can recover, but also increases

the computational cost.

First, in Fig. 4.5, we show the comparison of the input correlations we recover

with the actual input correlations in complex plane. Since there are two inputs, thus,

119

the cross-correlation function between input 1 and input 2 are also included.

−100 0 100 200 300
−150

−100

−50

0

Real

Im
a

g
in

a
ry

unknown input autocorrelation 1&1

Actual

Estimated

−100 0 100 200 300
−150

−100

−50

0

50

Real

Im
a

g
in

a
ry

unknown input autocorrelation 1&2

Actual

Estimated

−100 0 100 200 300
−200

−150

−100

−50

0

Real

Im
a

g
in

a
ry

unknown input autocorrelation 2&1

Actual

Estimated

−200 0 200 400 600
−200

−150

−100

−50

0

Real

Im
a

g
in

a
ry

unknown input autocorrelation 2&2

Actual

Estimated

 Full Order System

Figure 4.5: Comparison of recovered input autocorrelations with actual unknown
input autocorrelations for stochastically perturbed laminar flow.

It can be seen that the statistics of the unknown inputs can be recovered almost

perfectly, and given the system perturbed by the unknown inputs innovations model

we constructed, the statistics of the outputs and the states are almost the same as

well. The comparison of the statistics of outputs and states are omitted here.

Next, we compare the performance of the unknown inputs constructed using the

ROM with the full order system. The full order system has 30 states, and the ROM

has 15 states. The relative error of the input correlation is shown in Fig. 4.6, and

the comparison of the relative error of output correlations and the state correlations

are omitted here.

120

0 5 10 15
0

0.02

0.04

0.06

0.08

Time lag

‖
R

u
u
−
R̂

u
u
‖

‖
R

u
u
‖

estimated unknown inputs 1&1

FULL

ROM

0 5 10 15
0

0.02

0.04

0.06

Time lag

‖
R

u
u
−
R̂

u
u
‖

‖
R

u
u
‖

estimated unknown inputs 1&2

 FULL

ROM

0 5 10 15
0

0.02

0.04

0.06

Time lag

‖
R

u
u
−
R̂

u
u
‖

‖
R

u
u
‖

estimated unknown inputs 2&1

FULL

ROM

0 5 10 15
0

0.02

0.04

0.06

Time lag

‖
R

u
u
−
R̂

u
u
‖

‖
R

u
u
‖

estimated unknown inputs 2&2

FULL

ROM

 Full order V.S. ROM

Figure 4.6: Comparison of input autocorrelation relative error using full order model
and ROM for stochastically perturbed laminar flow.

121

We can see that the statistics reconstructed by using the ROM is not as accurate

as using the full order system, however, the relative error is on the same scale, and

hence, the computational cost is reduced without losing too much accuracy.

The state estimation using ROM is shown in Fig. 4.7. We randomly choose

two states and show the comparison of the actual state with the estimated states.

The state estimation error and 3σ bounds are shown. Since the error is complex

valued, only the absolute value of the error is shown. The state estimation using full

order system is a little better, and is omitted here due to the page limits. It can

be seen that the Kalman filter using the ROM perform well, and hence, for a large

scale system, the computational complexity of ASKF can be reduced by using the

RPOD∗.

0 50 100
0

20

40

60

Time (s)

s
ta

te
 (

m
a

g
n

it
u

d
e

)

State 5 estimation

 Actual

Estimated

0 50 100
0

10

20

30

Time (s)

s
ta

te
 (

m
a

g
n

it
u

d
e

)

State 7 estimation

 Actual

Estimated

0 5 10 15

x 10
4

0

20

40

60

Time (s)

e
rr

o
r

(m
a

g
n

it
u

d
e

)

State 5 Estimation Error

Estimation error

3σ bound

0 5 10 15

x 10
4

0

5

10

15

20

Time (s)

e
rr

o
r

(m
a

g
n

it
u

d
e

)

State 7 Estimation Error

Estimation error

3σ bound

 ROM State Estimation

Figure 4.7: Unknown input filtering for stochastically perturbed laminar flow using
ROM. State estimation errors and 3σ bounds for two randomly chosen states.

122

Next, we compare the performances of the AR model based algorithm with OT-

SKF and UMV algorithms. The assumed unknown input model used in OTSKF

is the same as the true model, but the noise covariance is 6I3×3. A Monte Carlo

simulation of 10 runs is performed and we compare the magnitude of the ARMSE of

three randomly chosen states in Table 4.2.

Table 4.2: Performances of the AR model based algorithm, UMV and OTSKF for
stochastically perturbed laminar flow

ARMSE AR model based UMV OTSKF
state 5 7.8637 9.9903 9.0868
state 7 3.1601 3.8012 3.3794
state 9 7.8377 10.0178 9.1438

We can see that when the assumed unknown input model used in OTSKF is

not accurate, the performance of AR model based algorithm is the best of three

algorithms, and when the sensor noise is not large, the performance of UMV is

better than OTSKF. With the increase of the sensor noise, the performance of the

UMV algorithm gets worse, and in Table 4.2, we can see that the performance of

UMV is even worse than OTSKF.

4.6 Summary

In this section, we propose a balanced unknown input realization method for the

state estimation of systems with unknown inputs that can be treated as a wide sense

stationary process. We recover the unknown inputs statistics from the output data

using a least squares procedure and then construct a balanced minimal realization

of the unknown input using an AR model and the ERA technique. The recovered

innovations model is used for the state estimation, and the standard Kalman filter is

123

applied to the augmented system. We compare the performances of the AR model

based algorithm with the OTSKF and UMV algorithms, and we see that AR model

based method performs the best.

The advantages of the AR model based algorithm we propose are summarized

as follows. First, the performance of the AR model based algorithm is better than

the ASKF, OTSKF and UMV algorithms when the unknown inputs can be treated

as WSS processes with rational PSDs. The AR model based algorithm we propose

constructs one particular realization of the true unknown input model, and the per-

formance of the AR model based algorithm is the same as OTSKF when the assumed

unknown input model used in OTSKF is accurate, and is better than UMV algorithm

in the sense that the error covariances are smaller. With the increase of the sensor

noise, we have seen that the performance of AR model based algorithm gets much

better than the UMV algorithm. Second, a milder assumption than the “observer

matching” condition needs to be satisfied. Also, to reduce the computational cost of

the ASKF, we apply the RPOD∗ technique to construct a ROM for filtering.

124

5. GAUSSIAN PROCESS (GP) FOR STATE ESTIMATION

5.1 Introduction

Gaussian Process (GP), which is also known as Kriging interpolation technique

[96], has been widely used to estimate and predict spatial phenomena. GP is a non-

parametric generalization of linear regression algorithm, which only assumes that the

spatial phenomena has a Gaussian distribution, while no prior information about the

underlying dynamics of the phenomena needs to be known. As a Gaussian distri-

bution is fully described by its mean and covariance matrix, a GP model is fully

described by its mean function and covariance function, which can be represented

using a small set of parameters (hyperparameters). For example, in [59], the temper-

ature measurements in two-dimensional space are assumed to be spatially correlated,

and can be modeled by a GP. A GP model is learned using sensor readings, and is

used to estimate the temperature at arbitrary locations. How to place a limited num-

ber of sensors to generate a GP model is formulated as a sensor placement problem

and has been studied [59,60].

In this section, we consider the state estimation of spatio-temporal phenomena

using GP model. In Section 5.2, we briefly review the GP, and in Section 5.3,

we estimate the phenomena using spatial GP model. We show that predicting the

spatio-temporal phenomena using spatial GP model is not accurate, and results in

large estimation errors using two examples. We are aware that currently there is

research focuses on constructing spatio-temporal GP models for application in field

estimation. Therefore, in future work, we would like to compare the state estimation

using spatio-temporal GP models with ROM based algorithm.

125

5.2 Preliminaries on GP

A Gaussian Process [63] is a collection of random variables, which any finite linear

combinations of samples has a joint Gaussian distribution. As mentioned, GP can

be used for estimating the spatial phenomena. In this section, first, we briefly review

the GP, and then we introduce GP sensor placement problem.

Denote input x = [x1, x2, · · · , xm] as a set of locations, and output y = [y1, y2,

· · · , ym] as the corresponding measurements at these locations. A Gaussian process

f(x) is fully described by the mean function m(x), and covariance function k(xp, xq),

and can be written as: f ∼ GP (m(x), k(xp, xq)). The covariance function is also

known as kernel function.

Assume the sensor measurement has an additive independent identically dis-

tributed zero-mean Gaussian noise with variance σ2
n, i.e.,

y = f(x) + µ, (5.1)

where µ ∼ N(0, σ2
nI). Then the prior on the noisy observations becomes:

ky(yp, yq) = k(xp, xq) + σ2
nδpq, (5.2)

where δpq is a Kronecker delta.

Given the measurements YS = [y1, · · · , yn] at locations XS = [x1, · · · , xn], the

GP can be used to predict the measurements YU at unobserved locations XU . The

posterior distribution conditioned on the measurements is given by:

mU |S = mU +K(XU , XS)(K(XS, XS) + σ2
nI)−1(YS −mS),

KU |S = K(XU , XU)−K(XU , XS)(K(XS, XS) + σ2
nI)−1K(XS, XU), (5.3)

126

where mS,mU are the mean vectors of YS and YU respectively, K(., .) is covariance

matrix, and K(XS, XS) denotes the n× n covariances evaluated at XS, K(XU , XS)

denotes the cross covariances evaluated at all pairs of XU and XS, and K(XU , XS) =

K(XS, XU).

It can be seen that if GP model f ∼ GP (m(x), k(xp, xq)) is known, then given

measurements at yS, the conditional distribution at unobserved locations can be

predicted. This process is described as the Gaussian regression approach. Notice

that the covariance KU |S does not depend on the actual measurements, and the

inverse of an n× n matrix involves when calculating the posterior distribution, and

as the number of measurements increases, the computational complexity of state

estimation also increases.

Now the problem is reduced to finding the mean and covariance functions m(x),

k(xp, xq). Normally, the mean and covariance functions are assumed to be some

functions with a few free parameters, which are called the hyperparameters. For

example, a commonly used covariance function in one dimension has the form:

ky(xp, xq) = σ2
fexp(−

1

2l2
(xp − xq)2) + σ2

nδpq, (5.4)

where θ = (l, σf , σn) are the hyperparameters, and are determined by solving an

optimization problem using training data.

Clearly, different choices of covariance functions, and how well the hyperparam-

eters are selected would affect the accuracy of the prediction.

5.3 State Estimation Using Spatial GP Model

In this section, we show a one-dimensional and a two-dimensional heat problem

to illustrate the state estimation of spatio-temporal system using GP model and its

existing issues.

127

The state estimation problem we are interested is formulated as follows. We

partition the spatial field into discrete grids, and take measurements at all possible

locations at time t0, where t0 is large enough, and learn a GP model using these

training data. Then the GP model is used to predict the states of the system after

time t0 using Kalman Filter. We also construct ROM for the system using RPOD∗

algorithm, and apply KF on the ROM for state estimation. At each time step, we

place two sensors randomly in the field to take new measurements. Denote the prior

mean and covariance at time t is mt|t−1 and Kt|t−1, the posterior mean and covariance

as mt|t, Kt|t respectively. Compared with the standard KF, the state estimation using

the GP regression model m(x), K(x, x′) can be written as:

mt|t−1 = mt−1|t−1,

Kt|t−1 = Kt−1|t−1, (5.5)

and

mt|t = mt|t−1 +Kt|t−1C
T
t (CtPt|t−1C

T
t +R)−1(yt − Ctmt|t−1),

Kt|t = (I −Kt|t−1C
T
t (CtPt|t−1C

T
t +R)−1Ct)Kt|t−1, (5.6)

with initial condition m0|0 = m(x), K0|0 = K(x, x′).

5.3.1 Computational Results: 1D Heat Problem

First, we consider the heat transfer in one-dimension space.

∂T

∂t
= c

∂2T

∂x2
+ f, (5.7)

128

where T (x, t) is the temperature at location x and time t. The thermal diffusivity

c = 0.1, and the spatial field is x ∈ [0, 1], and f = 0.

We partition x into 100 equi-spaced points. To learn a GP model, we take

measurements at these 100 locations, and the mean function is chosen to be:

m(x) = a0 + a1x+ a2x
2. (5.8)

The covariance function is chosen to be:

k(x, x′) = b0 + b2
1exp(−

1

2b2
2

(x− x)2), (5.9)

Therefore, the hyperparameters needs to be estimated are {a0, a1, a2, b0, b1, b2}, and

we estimate the hypeparameters using codes from [63]. In Fig. 5.1, we show the GP

model with the training data.

0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

state

T
e
m

p
e
ra

tu
re

GP model

3 σ bound

Mean

Training Data

Figure 5.1: GP model learned from training data at time t0 for 1D heat problem.

129

At time t ≥ t0, we predict the states of the system using new measurements. At

each time step, we place two random moving sensors Ct to take measurements yt. In

Fig. 5.2, we compare the estimation error using KF on the ROM constructed using

RPOD∗ and GP model.

5.3.2 Computational Results: 2D Heat Problem

We consider the prediction of the temperature in a two-dimensional space. The

2D heat transfer is described as follows.

∂T

∂t
= c(

∂2T

∂x2
1

+
∂2T

∂x2
2

) + f, (5.10)

where T (x1, x2, t) is the temperature at position x = (x1, x2)′ and time t, the thermal

diffusivity c = 0.1. The spatial field is x1 ∈ [0, 40], x2 ∈ [−10, 30], and f = 5 is a

constant source at (20, 10).

We partition x1 and x2 directions into 20 equi-spaced points, and take measure-

ments at these 400 locations. The mean function is chosen to be:

m(x) = a0 + a1x1 + a2x
2
1 + a3x2 + a4x

2
2, (5.11)

and kernel function is:

k(x, x′) = b0 + b2
1exp(−(

x1

x2

−
x′1
x′2

)′

b2

b3


−1

(

x1

x2

−
x′1
x′2

)/2), (5.12)

Therefore, the hyperparameters needs to be estimated are {a0, a1, a2, a3, a4, b0, b1,

b2, b3}, and we estimate the hypeparameters using codes from [63].

The training data is plotted in Fig. 5.3(a). In Fig. 5.3(b), we plot the GP

regression model, which is the mean function plus the 3σ bounds.

130

0 20 40 60 80 100 120
−3

−2

−1

0

1

2

3

State

E
rr

o
r

Comparison of Estimation Error at Time T

Estimation Error Using ROM

Estimation Error Using GP model

 3 σ bound using ROM

3 σ bound using GP model

(a)

0 500 1000 1500 2000 2500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

TIME

N
o
rm

a
liz

e
d
 R

M
S

E

Comparison of Normalized RMSE

ROM

GP model

(b)

Figure 5.2: Comparison of state estimation at t ≥ t0 using GP model and ROM
for 1D heat problem. (a) Comparison of state estimation error and 3σ bounds. (b)
Comparison of normalized RMSE.

131

x

y

GP Training Data

0 5 10 15 20 25 30 35 40
−10

−5

0

5

10

15

20

25

30

5

10

15

20

25

30

35

40

(a)

GP Model: estimation

0 5 10 15 20 25 30 35 40

x

-10

-5

0

5

10

15

20

25

30

y

5

10

15

20

25

30

35

(b)

Figure 5.3: GP model learned from training data at t0 for 2D heat problem. (a)
Training Data (b) GP model.

At time t ≥ t0, we predict the states of the system using new measurements. At

each time step, we place two random moving sensors Ct to take measurements yt. In

Fig. 5.4, we compare the estimation error using KF on the ROM constructed using

RPOD∗ and GP model.

It can be seen that GP estimation error is not within the 3σ bound, which is

because GP covariance matrix converges independent of the actual measurements,

and is not updated with the system dynamics. Therefore, as shown in Fig. 5.4(b),

as time increases, the RMSE using GP model keeps increasing.

5.4 Summary

From the analysis, and the simulation results shown in this section, we can see

that estimation of the states using GP models is not as accurate as desired.

The disadvantages of GPs for estimating spatio-temporal phenomena are sum-

marized as follows. 1) The mean functions m and kernels needs to be specified,

mean functions and kernels are chosen from experience, or from trial and error. 2)

Fitting GP models in high dimensional spaces might be difficult, and it may give

132

0 50 100 150 200 250 300 350 400
−25

−20

−15

−10

−5

0

5

State

E
rr

o
r

Comparison of Estimation Error at Time T

Estimation Error Using ROM

Estimation Error Using GP model

 3 σ bound using ROM

3 σ bound using GP model

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000
10

−3

10
−2

10
−1

10
0

TIME

N
o

rm
a

liz
e

d
 R

M
S

E

Comparison of Normalized RMSE

ROM

GP model

(b)

Figure 5.4: Comparison of state estimation at t ≥ t0 using GP model and ROM
for 2D heat problem. (a) Comparison of state estimation error and 3σ bounds. (b)
Comparison of normalized RMSE.

133

poor performance. 3) The estimation does not consider the dynamics of the system.

134

6. SENSOR SCHEDULING FOR SPATIO-TEMPORAL PHENOMENA

6.1 Introduction

The monitoring and prediction of spatio-temporal phenomena, such as pollution

concentration, surface temperature, natural disaster, or power grids [67–69, 97] has

been studied for decades. A limited number of sensors are placed in the spatial field,

and a sensor scheduling problem is formulated to optimize the performance of the

estimator.

In this section, we consider the sensor scheduling problem for spatio-temporal

phenomena which can be modeled by PDEs. We present a three-step framework

to place multiple mobile sensors which can optimize the performance of KF. First,

the sensor scheduling problem is formally stated in Section 6.2. An ROM based

sensor placement approach is provided in Section 6.3, which restricts the sensors to

the most informative locations. In Section 6.4, two sensor scheduling methods are

applied to maximize the long-term KF performance. The three-step framework is

summarized in Section 6.5. Finally, in Section 6.6, simulation results are presented

to demonstrate the efficiency of the proposed approach.

6.2 Problem Formulation

Consider the discrete-time linear time-invariant (LTI) system which is constructed

by discretizing a PDE:

xk = Axk−1 +Buk + wk, (6.1)

where xk ∈ <N , uk ∈ <p are the states and inputs at time instant tk respectively.

The process noise wk is assumed to be Gaussian white noise with zero mean and

135

covariance Q.

At each time step, we use q sensors to take measurements, and without loss of

generality, we assume that all the states are measurable. Denote S = {1, 2, · · · , N}

as the set of sensor locations, and |S| = N , where |S| denotes the size of the set S.

The measurements are given by

yk = Ckxk + vk, (6.2)

where Ck ∈ <q×N , and vk is the measurement noise, which is assumed to be Gaussian

white noise with zero mean and covariance R.

We make the following assumptions.

Assumption 5 The system is stable and diagonalizable.

Assumption 6 Each sensor can measure one state of the system, i.e., Ck is a (0,1)-

matrix with one non-zero element in each row, and Ck(i, j) = 1 if the ith sensor is

placed to measure state j, i = 1, · · · , q, j = 1, · · · , N .

Assumption 7 The initial state x0, the process noise wk and the sensor noise vk

are mutually independent.

The optimal estimate in the minimum mean square sense is given by a Kalman

filter. At time tk, denote the predicted state estimate as x̂k|k−1, and prediction error

is

ek = xk − x̂k|k−1. (6.3)

The prediction error covariance Pk = E[eke
′
k] evolves according to the Riccati recur-

136

sion

Pk+1 = APkA
′ +Q− APkC ′k(CkPkC ′k +R)−1CkPkA

′, (6.4)

with initial condition P0.

Define the T-step sensor placement sequence σ = {C1, · · · , CT}. Given initial

condition P0, and a sensor placement sequence σ, the prediction error covariances

are denoted by the sample path χ = {P1, · · · , PT}. Further, define a T-step averaged

reward as:

J(χ, σ, P0) =
1

T

T∑
i=1

r(Pi), (6.5)

where r(.) is the reward function, for instance, this could be the trace of the error

covariance.

The sensor scheduling problem is formulated as follows.

Find a T-step sensor schedule σ∗ = {C∗1 , · · · , C∗T} such that

σ∗ = arg max
C1,··· ,CT∈S

J(χ,C1, · · · , CT). (6.6)

For the sensor scheduling problem with |S| = N , the brute-force search takes

time O((N q)T), which is known to be an NP-hard problem. In addition, the di-

mension N is large due to the discretization of PDEs. Consequently, solving the

sensor scheduling problem is not computationally feasible using existing algorithms.

Therefore, we would like to find a subset S∗ ⊆ S of sensor locations, such that the

sensor scheduling problem considered in this work is:

137

Sensor Scheduling Problem:

σ∗r = arg max
C1,··· ,CT∈S∗

J(χ,C1, · · · , CT), (6.7)

where |S∗| = M is a subset of S, M is the number of locations in the reduced subset,

and M � N .

The three-step sensor scheduling framework is summarized as follows.

• Step 1. Construct an ROM (Ar, Br, Cr) (Section 3).

• Step 2. Find a reduced subset of sensor locations S∗ (Section 6.3).

• Step 3. Find a T -step sensor schedule σ∗r (Section 6.4)

1. using the Information Space Receding Horizon Control approach (Section

6.4.2),

2. using the modified Monte Carlo Tree Search approach (Section 6.4.4).

6.3 ROM Based Sensor Placement

State estimation and sensor scheduling of the spatio-temporal models suffer from

large computational demands due to the high dimensionality: the state estimation

using Kalman filter involves N ×N matrix multiplications at each time step, and T-

step sensor scheduling takes time O((N q)T), where N is the dimension of discretized

PDEs. In Section 2 and Section 3, we construct ROMs using RPOD and RPOD∗

which address the first problem of large N . To address the second problem, in this

section, an optimal sensor placement problem is formulated to find the subset S∗ ⊆ S

of sensor locations, such that V (S∗) is close to V (S), where V (.) is an optimization

criterion.

138

Various optimization criteria are used for optimal sensor placement problem [98].

For the open loop sensor placement problem, the most frequently used criteria are

maximizing the observability gramian [99], spatial H2 norm [100], and modal observ-

ability [67,101,102].

Modal observability is a standard optimization criterion for spatially distributed

systems. The optimization problem is motivated from the idea that for each mode,

the locations which give the best observability should be kept in the sensor location

subset S∗. In the following, first we define the modal observability and then relate

it with the ROM.

6.3.1 ROM and Modal Observability

Under assumption that the system is stable and diagonalizable, the measure of

observability for each eigenmode is defined as follows.

Definition 4 For an LTI system with output matrix C ∈ <q×N , define a measure

matrix Mo = CV ∈ <q×N , where V denotes the right eigenvectors of the system, and

Mo(i, j) is the element in the ith row, jth column. Then 0 ≤ |Mo(i, j)| ≤ 1 indicates

the observability of the eigenmode j from the ith sensor. |Mo(i, j)| = 0 implies that

the jth mode is not observable from the ith sensor, and |Mo(i, j)| = 1 implies the best

observability.

The output yk at time tk with zero initial condition is related to the controllable

and observable modes as follows.

yk =
k∑
i=1

CVcoΛ
i−1
co U

′
co(Buk−i + wk−i) + vk, (6.8)

where (Λco, Vco, Uco) are the controllable and observable modes defined in Definition

1, and we assume that wk � uk.

139

Therefore, we are interested in construct an ROM which can capture the input-

output behavior of the full order system by retaining only the controllable and ob-

servable modes in the ROM. From the analysis in Section 2 and Section 3, we see

that RPOD and RPOD∗ algorithms can be used.

Recall that the ROM constructed using RPOD∗ under Assumption 3 is:


Ar = Λco,

Br = U ′coB,

Cr = CVco,

(6.9)

where from Definition 4, Cr = CVco is exactly the measure matrix for all the con-

trollable and observable modes. Thus, the RPOD∗ ROM is directly related to the

modal observability, and the optimization problem is solved as follows.

6.3.2 ROM Based Sensor Placement Optimization Problem

An ROM is constructed following the RPOD∗ algorithm given in Algorithm 4

with C = IN×N . The ROM Cr = CVco = Vco is the measurement matrix for all the

controllable and observable modes with N sensors.

The subset of sensor locations S∗ is constructed by keeping the locations that give

the best observability of each controllable and observable mode, and the optimization

problem is to find the local maxima for each mode.

Suppose the ROM has rank l. Define design parameters δ > 0, and nl ≤ l, which

are chosen a priori, and denote |.|m is the Euclidean metric. The sensor placement

algorithm is given in Algorithm 8.

Remark 12 Effects of δ and nl. The subset S∗ constructed using Algorithm 8 con-

tains local maxima for first nl controllable and observable modes. More local maxima

140

Algorithm 8 S∗ = SP (Cr, nl, δ)

1. For the jth eigenmode, j = 1, · · ·nl, nl ≤ l, find the local maxima

I∗ = {i∗(j) : |Cr(i∗, j)| > |Cr(i, j)|,∀|i− i∗|m ≤ δ}, (6.10)

2. S∗ = {i∗(j),∀j}.

would be preserved in the subset S∗ if we choose a small δ and a large nl, while the

problem size is increased. Hence, there is a trade off between efficiency and accuracy.

Remark 13 Local maxima V.S. Threshold. In [67], the subset of sensor locations

which can maximize the modal observability is constructed as follows. For each eigen-

mode, locations where the modal observability is above a threshold ε should be kept.

So the optimization problem becomes:

For the jth eigenmode, j = 1, · · · l,

i∗ = {i∗ : |Cr(i∗, j)| > ε}, (6.11)

where ε is a design parameter.

The comparison of the solution to optimization problem (6.10) and optimization

problem (6.11) is shown in Fig. 6.1 for a simple eigenmode.

The subset S∗ constructed using Algorithm 8 includes five local maxima. If the

threshold ε is chosen as in Fig. 6.1, then the subset S∗t constructed using threshold

algorithm includes the global maximum/minimum and some extra locations. The local

maxima could be found if ε is small enough, but will result in a larger S∗t . Therefore,

constructing the subset S∗ using local maxima is more efficient in this work.

Also, it should be noticed that using the modal observability criterion does not

141

0 20 40 60 80 100 120

Sensor Location

-0.2

-0.1

0

0.1

0.2

0.3

0.4

M
o
d
a
l
O

b
s
e
rv

a
b
ili

ty

Eigenmode

Threshold ǫ

Global maximum/minimum

Local maximum/minimum

Figure 6.1: This figure illustrates the differences between constructing subset sensor
locations S∗ using local maxima criterion and threshold ε.

guarantee the optimal schedule in S is preserved in the subset S∗. However, in

practice, we’ve seen that the performance of sensor scheduling problem with a small

lookahead time period is actually improved by using the subset S∗. In Section 6.6.1,

we show an example comparing the sensor scheduling performance using the full set

S, and the reduced subset S∗.

6.4 ROM Based Sensor Scheduling

Given the subset S∗, with |S∗| = M , in this section, we solve the sensor scheduling

problem:

σ∗r = arg max
C1,··· ,CT∈S∗

J(χ,C1, · · · , CT), (6.12)

where J(χ,C1, · · · , CT) = 1
T

∑T
i=1 r(Pi), and r(.) is the reward function.

Several non-myopic sensor scheduling frameworks and optimization techniques

have been developed. For example, in [103], suboptimal sliding window and threshold

methods were proposed to increase search efficiency in non-myopic sensor scheduling,

and in [74], a random selection approach was proposed.

142

In the following, we start with a discussion on the sensor scheduling problem

considered in this work, and then provide two efficient sensor scheduling methods to

solve the problem.

6.4.1 Discussion on the Sensor Scheduling Problem

The sensor scheduling problem considered in this work is a non-convex optimiza-

tion problem, and the non-convexity is from the following two aspects.

First, consider the evolution of prediction error covariance given in (6.4):

Pk+1 = APkA
′ +Q− APkC ′k(CkPkC ′k +R)−1CkPkA

′︸ ︷︷ ︸
f(Pk,Ck)

. (6.13)

Function f(Pk, Ck) has several well-known properties.

It is proved in [74,104] that f(Pk, Ck) is monotone and concave in Pk provided Pk

is positive semidefinite and R is positive definite, i.e., for any P1, P2 ≥ 0, c ∈ [0, 1],

and fixed Ck,

P1 ≤ P2 =⇒ f(P1, Ck) ≤ f(P2, Ck),

f(cP1 + (1− c)P2, Ck) ≥ cf(P1, Ck) + (1− c)f(P2, Ck). (6.14)

However, f(Pk, Ck) is a nonlinear function of Ck and hence, leads to a non-convex

optimization problem.

Also, the reward function r(.) could be a non-convex function.

There are several choices of the reward function r(.) . A-optimality minimizes

the trace of error covariance, i.e., r(Pk) = tr(Pk), E-optimality minimizes the largest

eigenvalue of Pk, r(Pk) = λmax(Pk), and D-optimality minimizes the determinant of

error covariance, i.e., r(Pk) = lndet(Pk). In this problem, as N increases, the deter-

143

minant of Pk is large, and the changes in the determinant are also small, similarly,

the changes in the trace placing sensors at different locations are small. Hence, in

this work, we use E-optimality, or the condition number, as optimization criterion,

and change the problem into a maximization problem. The condition number gives

insight as to how a perturbation in the input, the initial state vector, perturbs the

output, the measurements. It also measures the sensitivity in taking the inverse of

the matrix. We maximize r(Pk) = σN
σ1

where σ1 is the largest singular value of Pk

and σN is the smallest singular value of Pk. The SVD ratio (condition number) is

quasiconvex (i.e., has convex level sets).

In this dissertation, the Information Space Receding Horizon Control (I-RHC)

algorithm [105] and the Monte Carlo Tree Search (MCTS) algorithm [106] are utilized

to solve the sensor scheduling problem. To further reduce the computations of the

MCTS algorithm, we propose a modified MCTS algorithm, which is a combination of

I-RHC algorithm and MCTS algorithm. First, we briefly review the I-RHC algorithm

and MCTS algorithm.

6.4.2 Preliminaries: Information Space Receding Horizon Control (I-RHC)

The I-RHC algorithm proposed in [105] starts from a stochastic relaxation of the

sensor scheduling problem (6.12).

We start from placing one sensor at each time step. Denote the sensor locations

as S∗ = {1, 2, · · · ,M}, and the control action at time step k as uk, where uk = j

implies that at time step k, the sensor is placed at location j. At each time step k,

instead of taking a particular control action, I-RHC takes control action uk = j with

probability πk,j, where 0 ≤ πk,j ≤ 1, and
∑M

j=1 πk,j = 1 for all k.

Define a randomized policy Π = {π1, · · · , πT} ∈ <T×M , where πk is a row vec-

tor with element πk,j, j = 1, · · · ,M . Then the T -step total expected reward with

144

stochastic policy Π could be written as follows:

E(J(χ,Π)) =
M∑
u1=1

· · ·
M∑

uT=1

J(χ, u1, · · · , uT)π1,u1 · · · πT,uT . (6.15)

And hence, the optimization problem we want to solve is:

arg max
Π

E(J(χ,Π))

subject to
M∑
j=1

πk,j = 1, k = 1, · · · , T,

0 ≤ πk,j ≤ 1, k = 1, · · · , T, j = 1, · · · ,M,

given some initial state χ0.

A standard approach to solve the optimization problem (6.4.2) is to use gradient

descent. The total expected reward can be written as:

E(J(χ,Π)) =
∑

u1,··· ,uT

(
M∑
j=1

J(χ, u1, · · · , ut = j, · · · , uT)πt,j)π1,u1 · · · πT,uT (6.16)

and hence,

∂E(J(χ,Π))

∂πt,j
=

∑
u1,··· ,uT

J(χ, u1, · · · , ut = j, · · · , uT)π1,u1 · · · πT,uT

= E(J(χ,Π|ut = j)). (6.17)

From the gradient descent method, the policy Π can be improved by ascending

along the gradient ∂J(χ,Π)
∂Π

, and we can adjust the policy at iteration n as follows:

Πn+1 = Θ(Πn + εn
∂J(χ,Π)

∂Π
|Π=Πn), (6.18)

145

where εn is a small step size, and Θ is a projection operator which project the

new policy onto the probability space. Evaluating the gradient ∂J(χ,Π)
∂Π

exactly would

require a large number of simulations, which is not tractable. Hence, a noisy estimate

of the gradient using a single sample path is used as follows:

∂Ĵ(χ,Π)

∂πt,j
=


J(ω)
πt,j

, if ut(ω) = j,

0, o.w,

(6.19)

where ω = {χ1(ω), u1(ω), · · · , χT (ω), uT (ω)} denotes a sample sample path. There-

fore, given some initial guess Π0, the optimum of J(χ,Π) with respect to the stochas-

tic policy Π could be found by updating the policy using (6.19).

The I-RHC algorithm proposed in [105] is to solve a T -step stochastic optimiza-

tion problem at each time step, and apply the control action in a receding horizon

fashion. Suppose at time k = 0, the initial state is P0 and initial guess is Π0. The

optimum policy could be found using (6.18) and (6.19), and suppose the policy con-

verge to Π∗ = {π∗1, · · · , π∗T}. Then as a standard procedure in RHC, we apply the

control u1 according to π∗1, and update the state to P1. Then at the next time step,

the procedure above is repeated.

Now, consider the problem to place q sensors at each time step. We place the

sensors sequentially using I-RHC, i.e., we start from placing one sensor, and then

repeat the I-RHC procedure q times.

Suppose the initial state error covariance at time k = 0 is P0, the lookahead

horizon is H, the step size is εn and the initial policy is Π0. The I-RHC Algorithm

is summarized in Algorithm 9.

Remark 14 Computation Complexity Analysis

Assume that the maximum number of iterations in I-RHC algorithm is Nl. In

146

Algorithm 9 I-RHC σ∗r = I-RHC (H, εn)

1. For each time step k, let χ0 = Pk, Ck = ∅.

(a) For i = 1 to q, let n = 0, with Π0

• while Πn does not converge, do

– Generate the sample path {χ0, · · · , χH}, with initial state χ0, and
policy Πn.

– Update the policy with Equation (6.18) and (6.19).

• Output converged H-step policy Π∗ = {π∗1, · · · , π∗H}, add the ith sen-
sor schedule Ck = {Ck, Cj} with probability π∗1,j, j = 1, · · · ,M .

(b) Update Pk+1 = f(Pk, Ck), go to Step 1.

2. Output optimal sensor schedule σ∗r = {C1, · · · , CT}.

each iteration, system propagates H times in one sample path, where system propa-

gation takes time O(l3), l is the size of the ROM. Policy update takes time O(HM).

Therefore, the total computation complexity for a T -step sensor scheduling problem

is O(qTHNl(l
3 + M)), which linearly increases with number of sensors q, sensor

scheduling time T and search space M . Here, l,M � N , and H is a small lookahead

region, Nl could also been tuned by varying step size εn.

Remark 15 Discussion on implementation issues.

In the following, we discuss how to improve the I-RHC performance in practice.

• Parallelization of I-RHC: The stochastic gradient descent technique based on

one sample path is noisy. To reduce the variance of the estimates, we can draw

multiple sample paths at each iteration parallelly, and update the policy. More-

over, at each time step k, multiple I-RHC algorithm could be run in parallel.

The converged policies might be different, so we can choose the best policy.

• Reduce computation time using a stopping criterion. The policy πk, k = 1, · · · , H

147

would converge to only a few choices in the first several iterations, but it takes

a long time for πk to converge to a single location. Therefore, we can use a

stopping criterion Ns, such that when the number of the non-zero elements in

Π is smaller than Ns, we stop the gradient ascent and find the best action using

exhaustive search.

Remark 16 Comparison with stochastic selection algorithm in [74].

In [74], a stochastic sensor selection algorithm is proposed, which also assigns

a probability π̂i, i = 1, · · · ,M as the probability to use the ith sensor, and the opti-

mization is to minimize the steady state prediction error covariance. Therefore, we

compare the I-RHC algorithm with the stochastic sensor selection algorithm proposed

in [74].

The major differences between the two algorithms are summarized as follows.

First, implementation of two algorithms are different. For I-RHC algorithm,

at each time step, the policy converges to one sensor location with probability 1,

and hence, the implementation of I-RHC algorithm is deterministic. For stochastic

sensor selection algorithm in [74], at each time step, the ith sensor is selected with

probability π̂i, i = 1, · · · ,M , which results in a random sensor schedule.

Second, the solution using both algorithms is an approximation to the true optimal

solution. In [74], the upper bound of the objective function is used for the optimization

problem. In I-RHC algorithm, the exact objective function is used, while the gradient

is approximated using one sample path.

6.4.3 Preliminaries: Monte Carlo Tree Search (MCTS)

The MCTS is a heuristic algorithm, which expands the search tree based on the

random sampling of the search space. Recently, the MCTS has been widely applied

in game play, such as the real-time computer Go [107].

148

There are four basic steps in one search iteration, and until the stopping criterion,

typically a limit on time or memory has been reached, MCTS repeats the four steps,

and build a search tree iteratively. The best performing root action is returned. The

four steps of MCTS are summarized in Fig. 6.3.

Figure 6.2: Outline of MCTS approach [1]

In the following, we briefly review the MCTS algorithm.

• Selection: Starting from the root node, a child selection policy is recursively

applied through the tree until the most urgent expandable node is reached. A

node is expandable if it represents a nonterminal state and has unvisited (i.e.,

unexpanded) children.

The selection policy balances the exploration and exploitation of the tree

search. One commonly used selection policy is the Upper Confidence Bounds

for Trees(UCT). A child node i is selected to maximize

UCT =
Ji
ni

+ 2cp

√
2lnnt
ni

, (6.20)

149

where Ji is the total reward after the ith move, and ni is the number of times

child node i has been visited, and hence, Ji
ni

denotes the estimated reward of

node j. nt is the number of times that the current node’s parent has been

visited, and cp > 0 is a constant, which is the exploration parameter.

• Expansion: one or more child nodes are added to expand the tree, according

to the available actions.

• Simulation: a simulation is run from the new nodes according to the default

policy to produce an outcome. The default simulation policy is to apply the

possible actions randomly until the end of the game, which is also called a

random rollout.

• Backpropagation: the simulation result is backpropagated through the selected

nodes to update their statistics. In the backpropagation step, the selected nodes

are updated by adding the reward of the simulation to the current node, and

increment the number of visited times to the current node.

The advantages of using MCTS is that as shown in [106], the MCTS using UCT

converges to the minimax tree and is thus optimal, and it can be implemented in

real-time.

6.4.3.1 Direct Application of MCTS

The direct application of MCTS has the following steps. At each time instant

k, we solve an H-step optimization problem by constructing a Monte Carlo Tree

with depth H, and select the first move in a receding horizon fashion. For system

with multiple sensors, we select the sensors sequentially. However, there are some

implementation issues with the direct application of MCTS.

150

First, for a 19 × 19 board Go game, at each game state, a player is faced with

a choice of about 250 possible moves and a typical game in Go might last for 150

moves. For a sensor scheduling problem, for example, to place one sensor in a 3D

field, the possible choices at each state could be 106, and the process could last for

thousands steps. Hence, it is a more complex problem than Go.

Second, the performance of MCTS is highly dependent on the rollout policy. A

carefully selected rollout policy rather than the uniform policy can significant improve

the performance.

Third, although there are several parallelization approaches, in general, MCTS

is not easy to implement in parallel, and the performance of the parallel MCTS is

typically worse than running serial MCTS for equivalent number of simulations.

The main parallelization approaches for MCTS are shown in Figure 6.3, as de-

scribed by [2].

Figure 6.3: Parallelization approaches for MCTS [2]

151

6.4.4 Modified MCTS

To reduce the computational cost and improve the performance of MCTS al-

gorithm, we propose a modified MCTS algorithm which combines the I-RHC and

MCTS algorithm.

Using the I-RHC method in Section 6.4.2, we can see that for a tree with depth

H, the probability that any node at level k takes action j is πk,j. Furthermore,

in each round of MCTS, one sample path is generated, and hence, can be used to

update the policy gradient. Therefore, for the modified MCTS algorithm, instead of

the naive uniform policy, we perform the rollout with the I-RHC policy.

We start with an empty tree, and an initial policy Π ∈ <H×M , with a lookahead

horizon H. Following the same procedure as MCTS, we select the best child node to

expand using UCT. In expansion step, the available actions is chosen using policy Π,

and as Π converges, the number of available actions is reduced. In simulation step,

we rollout with policy Π. If the current level is k, then we rollout H − k steps. In

the backpropagation step, the tree and the policy are updated as in standard MCTS.

The modified MCTS algorithm is summarized in Algorithm 10.

The major improvement is that in modified MCTS, we do not rollout randomly.

We rollout with policy Π which can provide a better approximation of the cost-to-go

than a naive random rollout. Also, the computational cost is reduced by expanding

the possible actions with Π. As Π converges, the number of branches is reduced.

6.5 Three-Step Sensor Scheduling Framework

Now, we can solve the sensor scheduling problem using a three-step approach

summarized in Algorithm 11.

Comparison of I-RHC and modified MCTS. The difference between I-RHC

and modified MCTS is how to choose the best node to explore. For I-RHC algo-

152

Algorithm 10 σ∗r = Modified MCTS (H, cp)

1. For each time step k, let χ0 = Pk, Ck = ∅.

(a) For i = 1 to q, let n = 0, d = 0, with Π0.

• While d ≤ H

– Search tree with selection policy (6.20) until node i at level d.

– Expand the jth child of i with probability πd,j.

– Rollout H − d steps with probability Π.

– Backpropagation.

– Update Πn+1 = Πn + ∂J
∂Π

as I-RHC.

• Search tree from root with tree search policy and cp = 0 for the first
action Ci = j. Add Ck = {Ck, Ci}.

(b) Update Pk+1 = f(Pk, Ck), go to Step 1.

2. Output optimal sensor schedule σ∗r = {C1, · · · , CT}.

Algorithm 11 Sensor Scheduling Algorithm

1. Choose l and construct ROM using RPOD∗ algorithm: (Ar, Br, Cr) =
RPOD∗ (A,B,C, l).

2. Choose δ, nl and construct subset: S∗ = SP (Cr, nl, δ).

3. Choose H, β, εn and find the optimal schedule σ∗r = I-RHC(H, εn),
or choose H, cp, nh and find the optimal schedule σ∗r = Modified MCTS (H, cp).

153

rithm, in each iteration, the best sample path is chosen simultaneously according to

the policy Π. For modified MCTS, in each iteration, the best node to be explored is

chosen with UCT criterion, which is equivalent to choose the node with the largest

expected reward with a variance after generating several sample paths. As the num-

ber of iterations increases, the expected reward is estimated more accurately, and

hence, modified MCTS is more accurate.

However, modified MCTS expands a large search tree, which in the worst case

scenario, has MH brunches in one simulation, and hence, the computational complex-

ity is O(qTHMH(l3 +M)), while the computational complexity of I-RHC algorithm

as analyzed before, is O(qTHNl(l
3 + M)), which is order of M . Moreover, I-RHC

algorithm is easy to implement in parallel.

Therefore, for a suitable sized problem, for example, M = 10, using stochastic

MCTS performs better and converges faster. For a large scale problem, for example,

M ≥ 100, the I-RHC algorithm should be used.

6.6 Computational Results

In this section, first, we show a one-dimensional heat example to compare the sen-

sor scheduling performance using the full set S and the reduced subset S∗. Then we

show the simulation results of placing three moving sensors for atmospheric disper-

sion problem. We start from a toy problem, which aims to compare the performances

of the I-RHC algorithm and Modified MCTS algorithm with the optimal schedule

for a lookahead horizon H = 5. Then we solve the sensor scheduling problem for a

large scale three-dimensional system.

6.6.1 Comparison of the sensor scheduling performance using the full set and the

reduced subset

Consider the one-dimensional heat example shown in (5.7).

154

The full order system has 100 DOFs, the ROM is constructed using RPOD∗,

and has 20 DOFs. The subset S∗ is constructed by keeping the peaks of first nl

eigenmodes, nl = 1, · · · , 20.

At each time step, we place one mobile sensor in the field, and the optimal sensor

scheduling problem is solved using exhaustive search in receding horizon fashion. At

each time step, we look ahead for 3 steps, and find the best action using exhaus-

tive search. Therefore, at each time step, we perform we perform |S|3 and |S∗|3

simulations to find the optimal action using the full set S and reduced subset S∗,

respectively.

In Fig. 6.4, we compare the optimal rewards for placing one mobile sensor using

S∗ and S. Since the performance of the sensor scheduling on the subset S∗ depends

on the design parameters nl and δ. Therefore, the optimal reward is plotted as a

function of nl and δ. From the simulation results, we can see that when nl ≥ 6,

δ ≤ 50, J(χ, σ∗r , P0) ≥ (χ, σ∗, P0), i.e., the performance of sensor scheduling using

subset S∗ is better than using full set S. This is because the sensor scheduling

problem is solved using a small lookahead region, the best action at time step k

using full set S is not guaranteed to be the optimal action, and hence, restricting the

choices to the most controllable and observable locations might eliminate the bad

locations, and give a better performance. In this simulation, the best performance

is achieved when nl = 10, δ = 30, and the size of the resulting subset S∗ is 38.

6.6.2 Sensor scheduling for 2D atmospheric dispersion problem

We start from a small scale 2D atmospheric dispersion example, where the ex-

haustive search is computationally tractable.

The evolution of the air pollutant concentration is described in (3.74), and we

assume that ∂c
∂z

= 0, ∂
2c
∂z2

= 0.

155

10 20 30 40 50 60 70 80 90 100
5.5

6

6.5

7

7.5

8

δ

T
o
ta

l
R

e
w

a
rd

Effect of n
l
, δ

n
l
 = 6

n
l
 = 10

n
l
 = 15

n
l
 = 20

S

n
l
 =10, δ = 30, |S

*
| = 38

n
l
 = 6, δ = 60, |S

*
| = 17

Figure 6.4: Comparison of optimal reward using S∗ and S for 1D heat problem. The
optimal reward using S∗ is plotted as a function of design parameters nl and δ.

The system is discretized using finite difference method, and there are 10 × 10

grids which are equally spaced, so the size of the full order system is 100. The ROM

(Ar, Br, Cr) is constructed using RPOD∗ algorithm, and the size of ROM is l = 10.

The subset S∗ is constructed by finding the local maxima of each column of Cr,

and |S∗| = 17. The simulation is performed for 100 time steps. At each time step, we

lookahead for H = 5 steps. We perform five independent simulations using I-RHC

algorithm and modified MCTS algorithms.

In Fig. 6.5, we compare the total rewards using exhaustive search, I-RHC, mod-

ified MCTS and myopic algorithms. The averaged computation time is also shown

in the figure. It can be seen that myopic algorithm is the fastest, and exhaustive

search is the slowest. The time reduction using modified MCTS is 98.5%, and us-

ing I-RHC is 96% compared with exhaustive search. The performance improvement

using modified MCTS and I-RHC is 23% compared with myopic algorithm.

156

1 2 3 4 5

Trial

16.5

17

17.5

18

18.5

19

19.5

20

20.5

21

T
o

ta
l
R

e
w

a
rd

AD ROM, l = 10, |S*| = 17, H = 5, 3Sensors

Myopic

Exhaustive Search

Modified MCTS

I-RHC

Modified MCTS Ave Time per step = 9.3s

Exhaustive Search Time per step = 10.68min

I-RHC Ave Time per step = 24s

Myopic time per step = 0.29s

Figure 6.5: Comparison of I-RHC, modified MCTS, exhaustive search and myopic
approaches for 2D atmospheric dispersion problem.

The comparison of state estimation error and 3σ bounds are shown in Fig. 6.6.

We can see that the state estimation errors using three approaches are close, and

all within the 3σ bounds.

6.6.3 Sensor scheduling for 3D atmospheric dispersion problem

In the following, we place three mobile sensors for the 3D atmospheric dispersion

problem introduced in (3.74). The dimension of the system after discretization is

105. The ROM is constructed using RPOD∗ algorithm, and the order of reduced

model is 30.

We start from |S| = N = 105, and reduce the feasible sensor locations to the

local maxima of the 30 modes, such that the subset |S∗| = 309. We perform the

simulation for 100 time steps, i.e., T = 100. At each time step, we lookahead H = 5

steps. In this example, the exhaustive search and modified MCTS are not feasible.

In Fig. 6.7, we compare the total rewards using I-RHC algorithm with myopic

157

0 10 20 30 40 50 60 70 80 90 100

States

-1.5

-1

-0.5

0

0.5

1

1.5

Myopic Error

Modified MCTS Error

I-RHC Error

Myopic 3 σ Bound

Modified MCTS 3σ Bound

I-RHC 3 σ Bound

Figure 6.6: State estimation using I-RHC, modified MCTS and myopic approaches.

algorithm. We run the simulation five times using I-RHC algorithm.

The average performance improvement using I-RHC is about 7% compared with

myopic algorithm. In this example, using modified MCTS approach takes about

twice time than the I-RHC approach, which is not efficient. Therefore, the modified

MCTS approach is not utilized for this example.

6.7 Summary

In this section, we propose a three-step sensor scheduling framework, which can

place multiple mobile sensors to monitor spatio-temporal phenomena. First, we

construct an ROM using RPOD∗ algorithm, wherein the ROM is directly related to

the modal observability. Next, we reduce the feasible sensor locations by solving an

optimization problem that maximizes the observability of the modes of the ROM. The

I-RHC algorithm, and a modified MCTS algorithm are proposed for the resulting

sensor scheduling problem. Both algorithms are applied in the receding horizon

158

1 2 3 4 5
13.8

14

14.2

14.4

14.6

14.8

15

15.2

15.4

Trials

O
p
ti
m

a
l
R

e
w

a
rd

I−RHC, average time per step = 10.2 min

Myopic, average time per step = 1.3s

Figure 6.7: Comparison of I-RHC and myopic approaches for 3D atmospheric dis-
persion problem.

fashion, and are used to optimize the long-term average reward.

From the simulation results shown in this section, we see that for a moderate size

system, the I-RHC algorithm and modified MCTS algorithm can solve the sensor

scheduling problem fast, and the performance improvement using I-RHC algorithm

and modified MCTS algorithms is much larger than myopic algorithm, while the

computational time saved is more than 90% compared with exhaustive search. As

is evident from the results, the implementation of I-RHC and MCTS is not efficient

enough for large scale problems, and has to be explored in the future.

159

7. CONCLUSION AND FUTURE WORK

This dissertation tackles three problems associated with the state estimation of

spatio-temporal phenomena. First, for the spatio-temporal phenomena, which can

be modeled by PDEs, the dimension of the system is large due to the discretization

of the spatial field. Therefore, state estimation using KF is not computationally

tractable. Also, in general, exact modeling of the spatio-temporal phenomena is

difficult. Therefore, the unmodeled dynamics, nonlinear terms and external distur-

bances can be treated as unknown inputs. The state estimation with unknown inputs

has been an active research area. Furthermore, the performance of the KF could be

improved by placing sensors at feasible locations.

In Section 2 and Section 3, we present two model reduction algorithms: RPOD

and RPOD∗ algorithm, which construct the ROMs for state estimation. In Section 4,

we propose an AR model based unknown input filtering algorithm, which can be used

to estimate the stochastic unknown inputs using measurements. Section 5 illustrates

the issues of using GP for estimating the spatio-temporal phenomena. In Section 6,

we present a three-step sensor scheduling framework to place multiple mobile sensors

to monitor the spatio-temporal phenomena. The conclusions and proposed future

work are discussed as follows.

Contributions on Model Reduction: The RPOD and RPOD∗ algorithms

proposed in this work construct ROMs, which can capture the input-output behavior

of the full order systems and are used for estimating the states of the original system.

It has been demonstrated that state estimation using the ROMs constructed by both

algorithms are accurate enough. The major contribution of the proposed model

reduction algorithms is that the computational cost and the storage requirement

160

are dramatically reduced compared with BPOD/output projection algorithm. More

importantly, the RPOD∗ algorithm could be implemented in real-time, which we

believe, is the most computationally efficient algorithm. Moreover, we provide a new

perspective to understand the relationship between the dynamical system and its

ROM. The RPOD∗ algorithm is easy to implement, and the implementation issues

are discussed in details.

Contributions on Unknown Input Filtering: The AR model based unknown

input realization approach proposed in this work could be used when the unknown

inputs are wide sense stationary with rational power spectrum. The algorithm is

based on standard system identification techniques, and is more accurate than OT-

SKF and UMV algorithms, and can tolerate more sensor noise. Moreover, the “ob-

server matching” condition needs not to be satisfied, and the proposed approach can

be generalized to estimate the locations of the unknown inputs as well.

Contributions on Sensor Scheduling: In Section 6, we propose a three-step

framework to solve the sensor scheduling problem. As discussed in Section 1, to

monitor the spatio-temporal phenomena, most of the existing algorithms focus on

placing stationary sensors, or place mobile sensors that can optimize the performance

at the current time instant, using myopic actions. On the other hand, non-myopic

algorithms outperform myopic algorithms drastically. Therefore, the major contribu-

tion of the proposed framework is that two non-myopic sensor scheduling algorithms

are proposed for the problem. The ROM constructed via RPOD∗ algorithm could

be used directly for finding the feasible subset of sensor locations. The simulation

results demonstrate that at least for a moderate sized problem, the proposed frame-

work can be used to solve the sensor scheduling problem efficiently, while significantly

improving performance over a myopic policy.

Future Work on Gaussian Process: The GP has been widely used for state

161

estimation when the dynamical system is unknown. As discussed in Section 5, the

state estimation using a spatial GP model is not accurate, and a lot of current

research focuses on developing suitable spatio-temporal GP models. Further study

in constructing spatio-temporal GP model has to be done, and a careful comparison

between state estimation using spatio-temporal GP model and that using physics

based ROMs may be of considerable interest.

Future Work on Model Reduction: The RPOD and RPOD∗ algorithms

proposed in this dissertation are limited to linear stable systems. However, more

general applications of RPOD∗ could be studied in the future work. The RPOD∗

algorithm can be implemented in real-time, even for a large scale system with field

measurements. Therefore, the applications of RPOD∗ for time-varying system is

of interest. Moreover, the dynamic mode decomposition (DMD) model reduction

approach has attracted lot of attention recently, and a comparison between RPOD∗

and DMD might help us improve the RPOD∗ algorithm as well.

Future Work on Sensor Scheduling: In this dissertation, we have applied the

I-RHC algorithm and modified MCTS algorithm for solving the sensor scheduling

problem for large scale systems. However, the performance of I-RHC and modified

MCTS does not improve significantly compared with a myopic algorithm in large

scale systems due to implementation issues. Hence, in future work, improving the

performance of I-RHC algorithm and MCTS algorithm has to be studied for large-

scale systems, in particular, via parallel implementation of the I-RHC and MCTS

methods.

162

REFERENCES

[1] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck, “Monte-Carlo Tree Search:

A New Framework for Game AI,” in Proceeding of Artificial Intelligence and

Interactive Digital Entertainment Conference, 2008, pp. 216–217.

[2] G. M.J-B.Chaslot, M. H. M. Winands, and H. J. van den Herrik, “Parallel

Monte-Carlo Tree Search,” in Proceeding of Computers and Games, 2008, pp.

60–71.

[3] C. Yoo, J. B. Valdes, and G. R. North, “Stochastic Modeling of Multidimen-

sional Precipitation Fields Considering Spectral Structure,” Water Resources

Research, vol. 32(7), pp. 2175–2187, 1996.

[4] J. C. McWilliams, “Modeling the Oceanic General Circulation,” Annual review

of fluid mechanics, vol. 28, pp. 215–248, 1986.

[5] G. Evensen, “Inverse methods and data assimilation in nonlinear ocean mod-

els,” Physica D, vol. 77, pp. 108–129, 1994.

[6] J. M. Stockie, “The Mathematics of Atmospheric Dispersion Modeling,” SIAM

Review, vol. 53, No.2, pp. 349–372, 2011.

[7] M. Ersoy, “Dimension Reduction for Compressible Pipe Flows Including Fric-

tion,” Asymptotic Analysis, IOS Press, vol. 98(3), pp. 237–255, 2016.

[8] R. Vasquez and M. Krstic, Control of Turbulent and Magnetohydrodynamic

Channel Flows, Systems and Control: Foundations and Applications. Boston,

MA: Birkhauser, 2007.

163

[9] A. Smyshlyaev, M. Kristic, N. Chaturvedi, J. Ahmed, and A. Kojic, “PDE

Model for Thermal Dynamics of a Large Li-Ion Battery Pack,” in Proceeding

of 2011 American Control Conference, 2011, pp. 959–964.

[10] B. Perthame, Parabolic Equations in Biology: Growth, reaction, movement and

diffusion. Springer, 2015.

[11] Y.-F. Huang, S. Werner, J. Huang, N. Kashyap, and V. Gupta, “State Estima-

tion in Electric Power Grids,” IEEE Signal Processing Magazine, pp. 33–43,

2012.

[12] G. Evensen, “The Ensemble Kalman Filter: theoretical formulation and prac-

tical implementation,” Ocean Dynamics, vol. 53, pp. 343–367, 2003.

[13] J. A. Burns, E. Cliff, and C. Rautenberg, “A distributed parameter control

approach to optimal filtering and smoothing with mobile sensor networks,” in

Proceeding of Mediterrenean Control Conference, 2009.

[14] H. T. Banks and K. Kunisch, Estimation Techniques for Distributed Parameter

Systems, Systems and Control: Foundations and applications. Boston, MA:

Birkhauser, 1989.

[15] M. Krstic and A. Smyshlaev, Boundary Controls of PDEs, Advances in Design

and Control. Philadelphia, PA: SIAM, 2008.

[16] M.Jovanovic and B. Bamieh, “Modeling flow statistics using the linearized

navier-stokes equations,” in Proceedings of the 40th IEEE conference on deci-

sion and control, 2001, pp. 4944–4949.

[17] J. Hepffner, M. Chevalier, T. R. Bewley, and D. S. Henningson, “State estima-

tion in wall-bounded flow systems. Part 1. Perturbed laminar flows,” Journal

of Fluid Mechanics, vol. 534, pp. 263–294, 2005.

164

[18] R. K. Mehra, “On the Identification of Variances and Adaptive Kalman Fil-

tering,” IEEE Transactions on Automatic Control, vol. 15, no. 2, pp. 175–184,

1970.

[19] J. Dunik and M. Simandl, “Estimation of state and measurement noise co-

variance matrices by multi-step prediction,” in Proceedings of the 17th IFAC

World Congress, 2008, pp. 3689–3694.

[20] D. D. Ariananda and G. Leus, “Compressive Wideband Power Spectrum Esti-

mation,” IEEE Transactions on signal processing, vol. 60, no. 9, pp. 4775–4789,

2012.

[21] D. Ucinski, Optimal Measurement Methods for Distributed Parameter System

Identification. CRC Press, 2004.

[22] G. Berkooz, P. Holmes, and J. L. Lumley, “The proper orthogonal decompo-

sition in the analysis of turbulent flows,” Annual review of fluid mechanics,

vol. 25, pp. 539–575, 1993.

[23] K. C. Hall, J. P. Thomas, and E. H. Dowell, “Proper Orthogonal Decomposi-

tion Technique for Transonic Unsteady Aerodynamic Flows,” AIAA Journal,

vol. 38, no. 10, pp. 1853–1862, 2000.

[24] L. Sirovich, “Turbulence and the dynamics of coherent structures. Part 1: Co-

herent Structures,” Quarterly of Applied Mathematics, vol. 45, pp. 561–571,

1987.

[25] M. Rathinam and L. R. Petzold, “A new look at proper orthogonal decompo-

sition,” SIAM Journal on Numerical Analysis, vol. 41, no. 5, pp. 1893–1925,

2003.

165

[26] T. Smith, J. Moehlis, and P. Holmes, “Low-dimensional models for turbulent

plane couette flow in a minimal flow unit,” Journal of Fluid Mechanics, vol.

538, pp. 71–110, 2005.

[27] S. G. Siegel et al., “Low-dimensional modeling of a transient cylinder wake

using double proper orthogonal decomposition,” Journal of Fluid Mechanics,

vol. 610, pp. 1–42, 2008.

[28] B. C. Moore, “Principal Component Analysis in Linear Systems: Controlla-

bility, Observability and Model Reduction,” IEEE Transactions on Automatic

Control, vol. 26, No.1, pp. 17–32, 1981.

[29] K. Willcox and J. Peraire, “Balanced Model Reduction via the Proper Orthog-

onal Decomposition,” AIAA Journal, vol. 40, pp. 2323–2330, 2002.

[30] C. W. Rowley, “Model Reduction for Fluids using Balanced Proper Orthogonal

Decomposition,” International Journal of Bifurcation and Chaos, vol. 15, pp.

997–1013, 2005.

[31] S. Kung, “A New Identification method and Model Reduction Algorithm Via

Singular Value Decomposition,” 12th Asilomar Conference on Circuits, Sys-

tems and Computers, pp. 705–714, Nov. 1978.

[32] J.-N. Juang and R. S. Pappa, “An Eigensystem Realization Algorithm for

Model Parameter Identification and Model Reduction,” Journal of Guidance,

Control, and Dynamics, vol. 8, No.5, pp. 620–627, 1985.

[33] Z. Ma, S. Ahuja, and C. W. Rowley, “Reduced Order Models for control of

fluids using the eigensystem realization algorithm,” Theoretical and Computa-

tional Fluid Dynamics, vol. 25, pp. 233–247, 2011.

166

[34] P. J. Schmid, “Dynamic Mode Decomposition of Numerical and Experimental

Data,” Journal of Fluid Mechanics, vol. 656, pp. 5–28, 2010.

[35] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz,

“On dynamic mode decomposition: Theory and applications,” Journal of Com-

putational Dynamics, vol. 1, Issue 2, pp. 391–421, 2014.

[36] J. H. Tu and C. W. Rowley, “An improved algorithms for balanced POD

through an analytic treatment of impulse response tails,” Journal of Compu-

tational Physics, vol. 231, pp. 5317–5333, June, 2012.

[37] N. Halko, P. Martinsson, and J. Tropp, “Finding structure with randomness:

probabilistic algorithms for constructing approximate matrix decompositions,”

SIAM review, vol. 52(2), pp. 217–288, 2011.

[38] P. Drineas et al., “Fast Monte Carlo Algorithms for Matrices II: Computing a

low rank approximation to a matrix,” SIAM Journal on Computing, vol. 36,

pp. 158–183, 2006.

[39] M. W. Mahnoey, “Randomized algorithms for matrices and data,” Foundations

and Trends in Machine Learning, vol. 3(2), pp. 123–224, 2011.

[40] G. Calafiore and M. Campi, “The Scenario Approach to Robust Control De-

sign,” IEEE Transactions on Automatic Control, vol. 51, pp. 742–753, 2006.

[41] M. C. Campi, S. Garatti, and M. Prandini, “The Scenario Approach for Sys-

tems and Control Design,” Annual Reviews in Control, vol. 33, pp. 149–157,

2009.

[42] S.-H. Wang, E.J.Davison, and P. Dorato, “Observing the states of systems

with unmeasurable disturbances,” IEEE Transactions on Automatic Control,

vol. 20, no. 5, pp. 716–717, 1975.

167

[43] S. Bhattacharyya, “Observer design for linear systems with unknown inputs,”

IEEE Transactions on Automatic Control, vol. AC-23, no. 3, pp. 483–484, 1978.

[44] P. Kudva, N.Viswanadham, and A. Ramakrishna, “Observers for linear sys-

tems with unknown inputs,” IEEE Transactions on Automatic Control, vol. 25,

no. 1, pp. 113–115, 1980.

[45] M. Hou and P. Muller, “Design of observers for linear systems with unknown

inputs,” IEEE Transactions on Automatic Control, vol. 37, no. 6, pp. 871–875,

1992.

[46] S. Hui and S. H. Zak, “Low-order state estimators and compensators for dy-

namical systems with unknown inputs,” Systems & Control Letters, vol. 21,

No.6, pp. 493–502, 1993.

[47] M. Darouach, M. Zasadzinski, and S. Xu, “Full-order observers for linear sys-

tems with unknown inputs,” IEEE Transactions on Automatic Control, vol. 39,

no. 3, pp. 606–609, 1994.

[48] S. K. Spurgeon, “Sliding mode observers: a survey,” International Journal of

Systems Science, vol. 39, no. 8, pp. 751–764, 2008.

[49] K. Kalsi, J. Lian, S. Hui, and S. H. Zak, “Sliding-mode observers for systems

with unknown inputs: A high-gain approach,” Automatica, vol. 46, Issue 2, pp.

347–353, 2010.

[50] M. Darouach, M. Zasadzinski, A. B. Onana, and S. Nowakowski, “Kalman

filtering with unknown inputs via optimal state estimation of singular systems,”

International Journal of Systems Science, vol. 26(10), pp. 2015–2028, 1995.

[51] M. Hou and R. J. Patton, “Optimal Filtering for Systems with Unknown In-

puts,” IEEE Transactions on Automatic Control, vol. 43, no. 3, pp. 445–449,

168

1998.

[52] D. Koenig and S. Mammar, “Reduced order unknown input kalman filter:

application for vehicle lateral control,” in Proceedings of American Control

Conference, 2003, pp. 4353–4358.

[53] C.-S. Hsieh, “A Unified Framework for State Estimation of Nonlinear Stochas-

tic Systems with Unknown Inputs,” in Proceedings of 9th IEEE Asian Control

Conference, 2013.

[54] C.-S. Hsieh and F.-C. Chen, “Optimal Solution of the Two-Stage Kalman

Estimator,” IEEE Transactions on Automatic Control, vol. 44, pp. 194–199,

1999.

[55] S. Kanev and M. Verhaegen, “Two-Stage Kalman Filtering via Structured

Square-Root,” Communications in Information and Systems, vol. 5, no. 2, pp.

143–168, 2005.

[56] F. B. Hmida, K. Khemiri, J. Ragot, and M. Gossa, “Three-stage Kalman

filter for state and fault estimation of linear stochastic systems with unknown

inputs,” Journal of the Franklin Institute, vol. 349, pp. 2369–2388, 2012.

[57] S. Gillijns and B. D. Moor, “Unbiased minimum-variance input and state es-

timation for linear discrete-time systems,” Automatica, vol. 43, pp. 111–116,

2007.

[58] C.-S. Hsieh, “Extension of unbiased minimum-variance input and state estima-

tion for systems with unknown inputs,” Automatica, vol. 45, pp. 2149–2153,

2009.

[59] A. Krause, A. Singh, and C. Guestrin, “Near-Optimal Sensor Placements in

Gaussian Processes: Theory, Effects Algorithms and Empirical Studies,” Jour-

169

nal of Machine Learning Research, vol. 9, pp. 235 – 284, 2008.

[60] Y. Xu, J. Choi, and S. Oh, “Mobile Sensor Network Navigation using Gaussian

Processes with Truncated Observations,” IEEE Transactions on Robotics, vol.

27(6), pp. 1118–1131, 2011.

[61] N. Stubbs and S. Park, “Optimal Sensor Placement for Mode Shapes via Shan-

non’s Sampling Theorem,” Microcomputers in Civil Engineering, vol. 11, pp.

411–419, 1996.

[62] M. Papadopoulos and E. Garcia, “Sensor Placement Methodologies for Dy-

namic Testing,” AIAA Journal, vol. 36(2), pp. 256–263, 1998.

[63] C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine Learn-

ing. The MIT Press, 2006.

[64] Y. Xu and J. Choi, “Adaptive Sampling for Learning Gaussian Processes Using

Mobile Sensor Networks,” Sensors, vol. 11(3), pp. 3051–3066, 2011.

[65] V. Roy, A. Simonetto, and G. Leus, “Spatio-Temporal Sensor Management

for Environmental Field Estimation,” Signal Processing, vol. 128, pp. 369–381,

2016.

[66] S. Garg and N. Ayanian, “Persistent Monitoring of Stochastic Spatio-temporal

Phenomena with a Small Team of Robots,” in Proceeding of Robotics: Science

and Systems, 2014.

[67] P. Wolf, S. Moura, and M. Kristic, “On optimizing Sensor Placement for

Spatio-Temporal Temperature Estimation in Large Battery Packs,” in 51st

IEEE Conference on Decision and Control, 2012, pp. 973–978.

170

[68] B.Yildirim, C. Chryssostomidis, and G. Karniadakis, “Efficient Sensor Place-

ment for Ocean Measurements Using Low-dimensional Concepts,” Ocean Mod-

eling, vol. 27, pp. 160–173, 2009.

[69] Z. Zhang and X. Y. ang Guang Lin, “POD-Based Constrained Sensor Place-

ment and Field Reconstruction from Noisy Wind Measurements: A Perturba-

tion Study,” Mathematics, vol. 4(2), 26, 2016.

[70] P. Mokhasi and D. Rempfer, “Optimized sensor placement for urban flow mea-

surement,” Physics of Fluids, vol. 16, pp. 1758–1764, 2004.

[71] M. P. Vitus, W. Zhang, A. Abate, J. Hu, and C. J. Tomlin, “On efficient sensor

scheduling for linear dynamical systems,” Automatica, vol. 48, pp. 2482 – 2493,

2012.

[72] S. T. Jawaid and S. L. Smith, “A Complete Algorithm for the Infinite Horizon

Sensor Scheduling Problem,” in Proceedings of American Control Conference,

2014, pp. 437–442.

[73] S. Joshi and S. Boyd, “Sensor Selection via Convex Optimization,” IEEE

Transactions on Signal Processing, vol. 57(2), pp. 451 – 462, February, 2009.

[74] V. Gupta, T. H. Chung, B. Hassibi, and R. M.Murray, “On a Stochastic Sen-

sor Selection Algorithm with Applications in Sensor Scheduling and Sensor

Coverage,” Automatica, vol. 42(2), pp. 251–260, 2006.

[75] D. Yu and S. Chakravorty, “A Randomized Iterative Proper Orthogonal De-

composition Technique with Application to Filtering of PDEs,” in Proceedings

of American Control Conference, 2012, pp. 4363–4368.

[76] ——, “An Iterative Proper Orthogonal Decomposition (I-POD) Technique with

Application to the Filtering of Partial Differential Equations,” Journal of the

171

Astronautical Sciences, vol. 60(3-4), pp. 468–493, 2013.

[77] ——, “A Randomized Proper Orthogonal Decomposition Technique,” in Pro-

ceedings of American Control Conference, 2015, pp. 1137–1142.

[78] ——, “A Computationally Optimal Randomized Proper Orthogonal Decom-

position Technique,” in Proceedings of American Control Conference, 2016, pp.

3310 – 3315.

[79] ——, “An Autoregressive (AR) Model Based Stochastic Unknown Input Real-

ization and Filtering Technique,” in Proceedings of American Control Confer-

ence, 2015, pp. 1499–1504.

[80] ——, “A stochastic unknown input realization and filtering technique,” Auto-

matica, vol. 63, pp. 26–33, 2016.

[81] R. Pinnau, Model Order Reduction: Theory, Research Aspects And Applica-

tions, Chapter 5. Springer, 2008.

[82] S. Lall, P. Krysl, and J. E. Marsden, “Structure-preserving Model Reduction

for Mechanical Systems,” Physica D, vol. 184(1-4), pp. 30–318, 2003.

[83] L. Sirovich, “Turbulence and the Dynamics of Coherent Structures. Part 1:

Coherent Structures,” Quarterly of Applied Mathematics, vol. 45(3), pp. 561–

571, 1987.

[84] B. Moore, “Principal Component Analysis in Linear Systems: Controllabil-

ity, Observability, and Model Reduction,” IEEE Transactions on Automatic

Control, vol. 26(1), pp. 17–32, 1981.

[85] S. Lall, J. Marsden, and S. Glavaski, “Empirical Model Reduction of Con-

trolled Nonlinear Systems,” in Proceeding of the IFAC World Congress, Vol.

F, International Federation of Automatic Control, 1999, pp. 473 – 478.

172

[86] T. Soderstrom, “Perturbation Results for Singular Values,” Department of

Information Technology at Uppsala University, Tech. Rep., 1999.

[87] B. Friedlander and B. Porat, “First-Order Perturbation Analysis of Singular

Vectors in Singular Value Decomposition,” IEEE Transactions on Signal Pro-

cessing, vol. 56, Issue 7, pp. 3044–3049, 2008.

[88] T. Kato, Perturbation Theory for Linear Operators. New York: Springer-

Verlag, 1995.

[89] M. Ilak and C. W. Rowley, “Modeling of transitional channel flow using bal-

anced proper orthogonal decomposition,” Physics of Fluids, vol. 20, 2008.

[90] W. E. Roth, “On direct product matrices,” Bulletin of the American Mathe-

matical Society, vol. 40, pp. 461–468, 1934.

[91] V. Faber and T. Manteuffel, “Necessary and Sufficient Conditions for the Exis-

tence of a Conjugate Gradient Method,” SIAM Journal on Numerical Analysis,

vol. 21, pp. 352–362, 1984.

[92] E. Wong and B. Hajek, Stochastic Processes in Engineering Systems. New

York: Springer-Verlag, 1985.

[93] M. West and J. Harrison, Bayesian Forecasting and Dynamic Models. New

York: Springer-Verlag, 1989.

[94] B. Friedlander and B. Porat, “The modified Yule-Walker method of ARMA

spectral estimation,” IEEE Transactions on Aerospace and Electronic Systems,

vol. AES-20, no. 2, pp. 158–173, 1984.

[95] J.-N. Juang, Applied System Identification. Englewood Cliffs, NJ: Prentice

Hall, 1994.

[96] N. Cressie, Statistics for Spatial Data. Wiley, 1991.

173

[97] X. Li, A. Scaglione, and T.-H. Chang, “Optimal sensor placement for hybrid

state estimation in smart grid,” in IEEE International Conference on Acoustic,

Speech and Signal Processing, 2013, pp. 5253–5257.

[98] V. Gupta, M. Sharma, and N. Thakur, “Optimization Criteria for Optimal

Placement of Piezoelectric Sensors and Actuators on a Smart Structure: A

Technical Review,” Journal of Intelligent Material Systems and Structures,

vol. 21, pp. 1227 – 1243, 2010.

[99] P. Mokhasi and D. Rempfer, “Optimized sensor placement for urban flow mea-

surement,” Physics of Fluids, vol. 16(5), pp. 1758–1764, 2004.

[100] K. K. Chen and C. W. Rowely, “Fluid flow control applications of h2 optimal

actuator and sensor placement,” in Proceedings of American Control Confer-

ence, 2014, pp. 4044 – 4049.

[101] P. U. Sik, C. J. Weon, Y. Wan-Suk, L. M. Hyung, S. Kwon, L. J. Myung,

L. M. Choel, and H. S. Hyun, “Optimal Placement of Sensors and Actua-

tors using Measures of Modal Controllability and Observability in a Balanced

Coordinate,” KSME International Journal, vol. 17(1), pp. 11 –22, 2003.

[102] A. Barbagallo, D. Sipp, and P. Schmid, “Input-output measures for model

reduction and closed-loop control: Application to global modes,” Journal of

Fluid Mechanics, vol. 685, pp. 23–53, 2011.

[103] V. Gupta, T. Chung, B. Hassibi, and R. M. Murray, “Sensor Scheduling Al-

gorithms Requiring Limited Computation,” in Proceeding of IEEE ICASSP,

2004, pp. 17–21.

[104] B. Sinopoli and etc, “Kalman Filtering with Intermittent Observations ,” IEEE

transactions on Automatic Control, vol. 49(9), pp. 1453–1464, 2004.

174

[105] Z. Sunberg, S. Chakravorty, and R. S. Erwin, “Information Space Receding

Horizon Control ,” IEEE transactions on cybernetics, vol. 43(6), pp. 2255–

2260, 2013.

[106] E. P. Cameron Browne and D. Whitehouse, “A Survey of Monte Carlo Tree

Search Methods,” IEEE transactions on Computational Intelligence and AI IN

Games, vol. 4(1), pp. 1– 49, 2012.

[107] S. Gelly, L. Kocsis, M. Schoenauer, M. Sebag, D. Silver, C. Szepesvari, and

O. Teytaud, “The grand challenge of computer Go: Monte Carlo tree search

and extensions,” Communications of the ACM, vol. 55(3), pp. 106 – 113, 2012.

[108] A.M.King, U. Desai, and R.E.Skelton, “A generalized approach to q-markov

covariance equivalent realizations for discrete systems,” Automatica, vol. 24,

no. 4, pp. 507–515, 1988.

175

APPENDIX A

KALMAN FILTER (KF)

Consider the system:

xk = Akxk−1 +Bkuk + wk,

zk = Ckxk + vk, (A.1)

where wk ∼ N(0, Qk), vk ∼ N(0, Rk).

Kalman Filter uses a series of measurements observed to estimate the states of the

system. There are two steps involved in the Kalman Filter: prediction and update.

In a prediction step, Kalman Filter produces an estimate of the mean and covari-

ance of the states at the current time step. The prediction step is:

x̂k|k−1 = Akx̂k−1|k−1 +Bkuk, (A.2)

Pk|k−1 = AkPk−1|k−1A
′
k +Qk, (A.3)

where x̂k|k−1 and Pk|k−1 are known as the prior state estimate and error covariance

at time step k.

Given the measurements at time step k, Kalman Filter improves the estimates

in the update step, and the posterior mean and error covariance are estimated as

176

follows:

ỹk = zk − Ckx̂k|k−1, (A.4)

Sk = CkPk|k−1C
′
k +Rk, (A.5)

Kk = Pk|k−1C
′
kS
−1
k , (A.6)

x̂k|k = x̂k|k−1 +Kkỹk, (A.7)

Pk|k = (I −KkCk)Pk|k−1. (A.8)

177

APPENDIX B

EIGENSYSTEM REALIZATION ALGORITHM (ERA)

Consider the system:

xk+1 = Axk +Buk,

yk = Cxk +Duk, (B.1)

where A ∈ <N×N , B ∈ <N×p, C ∈ <q×N .

The Markov parameters are denoted as:

Y0 = D, Y1 = CB, Y2 = CAB, · · · , Yk = CAk−1B, (B.2)

and can be computated from impule-response simulatons or experiments.

A Hankel matrix is constructed using the Markov parameters as:

H0 =



Y1 Y2 · · · Yβ

Y2 Y3 · · · Y1+β

...
...

...
...

Yα Y1+α · · · Yα+β−1


, (B.3)

where α ≥ N , β ≥ N .

ERA solves the singular value decomposition,

H0 = RΣS ′, (B.4)

178

where

Σ =

ΣN 0

0 0

 , (B.5)

with ΣN = diag{σ1, · · · , σN} are ordered as σ1 ≥ σ2 ≥ σN ≥ 0. Let RN , SN be the

matrices formed by the first N columns of R and S respectively, and hence,

H0 = RNΣNS
′
N , (B.6)

where R′NRN = IN = S ′NSN .

Then the system realization for ERA is:

Â = Σ
−1/2
N R′NH1SNΣ

−1/2
N ,

B̂ = first p columns of Σ
1/2
N S ′N ,

Ĉ = first q rows of RNΣ
1/2
N , (B.7)

where

H1 =



Y2 Y3 · · · Y1+β

Y3 Y4 · · · Y2+β

...
...

...
...

Y1+α Y2+α · · · Yα+β


, (B.8)

179

APPENDIX C

OPTIMAL TWO-STAGE KALMAN FILTER (OTSKF)

Consider the system:

xk+1 = Akxk + Ekdk + wxk ,

yk = Hkxk + ηk, (C.1)

where xk ∈ <n is the state vector, yk ∈ <m the observation vector, dk ∈ <p the

unknown inputs. The process noise wk and the measurement noise ηk are zero-mean

uncorrelated white noise sequences with covariances Qk, Rk respectively.

Assume the dynamics of dk is:

dk+1 = dk + wdk, (C.2)

where wdk is a zero-mean white noise sequence with covariances Qd
k, and assume

E{wk(wdl)′} = Qxd
k δkl.

Treating xk and dk as the augmented state, an augmented state Kalman filter can

be used to produce the optimal state estimate, or two parallel reduced-order filter

can be used.

xk|k = x̄k|k + Vkdk|k, (C.3)

P x
k|k = P x̄

k|k + VkP
d
k|kV

′
k , (C.4)

180

where x̄k|k is given by:

x̄k|k−1 = Ak−1x̄k−1|k−1 + ūk−1, (C.5)

x̄k|k = x̄k|k−1 +K x̄
k (yk −Hkx̄k|k−1), (C.6)

P x̄
k|k−1 = Ak−1P

x̄
k−1|k−1A

′
k−1 + Q̄k−1, (C.7)

K x̄
k = P x̄

k|k−1H
′
k(HkP

x̄
k|k−1H

′
k +Rk)

−1, (C.8)

P x̄
k|k = (I −K x̄

kHk)P
x̄
k|k−1. (C.9)

dk|k is given by

dk|k−1 = dk−1|k−1, (C.10)

dk|k = dk|k−1 +Kd
k(yk −Hkx̄k|k−1 − Skdk|k−1), (C.11)

P d
k|k−1 = P d

k−1|k−1 +Qd
k−1, (C.12)

Kd
k = P d

k|k−1S
′
k(HkP

x̄
k|k−1H

′
k +Rk + SkP

d
k|k−1S

′
k)
−1, (C.13)

P d
k|k = (I −Kd

kSk)P
d
k|k−1, (C.14)

with coupling equations

ūk = (Ūk+1 − Uk+1)dk|k, (C.15)

Q̄k = Qk −Qxd
k Ū

′
k+1 − Uk+1(Qxd

k − Ūk+1Q
d
k)
′, (C.16)

Ūk = Ak−1Vk−1 + Ek−1, (C.17)

Sk = HkUk, (C.18)

Uk = Ūk + (Qxd
k−1 − ŪkQd

k−1)(P d
k|k−1)−1, (C.19)

Vk = Uk −K x̄
kSk. (C.20)

181

APPENDIX D

UNBIASED MINIMUM-VARIANCE FILTER (UMV)

Consider the system:

xk+1 = Akxk + Ekdk + wxk ,

yk = Hkxk + ηk, (D.1)

where xk ∈ <n is the state vector, yk ∈ <m the observation vector, dk ∈ <p the

unknown inputs. The process noise wk and the measurement noise ηk are zero-mean

uncorrelated white noise sequences with covariances Qk, Rk respectively. Assme rank

(Ek) = p, rank (Hk) = m(≥ p),

The observer matching condition needs to be satisfied is:

rank (HkEk−1) = p. (D.2)

The unbiased minimum-variance filter is given as follows.

xk|k = xk|k−1 + Lk(yk −Hkxk|k−1), (D.3)

Lk = Kk + (I −KkHk)Ek−1(E ′k−1H
′
kC
−1
k HkEk−1)−1E ′k−1H

′
kC
−1
k , (D.4)

P x
k|k = (I − LkHk)P

x
k|k−1(I − LkHk)

′ + LkRkL
′
k, (D.5)

182

where

xk|k−1 = Ak−1xk−1|k−1, (D.6)

P x
k|k−1 = Ak−1P

x
k−1|k−1A

′
k−1 +Qk−1, (D.7)

Kk = P x
k|k−1H

′
kC
−1
k , (D.8)

Ck = HkP
x
k|k−1H

′
k +Rk. (D.9)

183

APPENDIX E

COMPARISON OF Q-MARKOV COVARIANCE EQUIVALENT REALIZATION

(Q-MARKOV COVER) AND ERA

A q-Markov covariance equivalent realization (q-Markov COVER) [108] is a state

realization which matches exactly a finite portion of the impulse response sequence

(Markov parameters) and the output autocorrelation sequence of a linear system.

In this section, first, we review the general approach to construct all minimal stable

q-Markov COVERs, and then we compare the q-Markov COVERs with the ERA.

E.1 Problem Statement

Given a stable linear discrete time system,

x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k) +Du(k), (E.1)

where x(k) ∈ <N , y(k) ∈ <no , u(k) ∈ <ni are the state, output vector, and input

vector respectively. Denote the impulse response sequence as:

{hi}∞0 = {h0, h1, h2, · · · }, (E.2)

Perturb the system with zero mean unit covariance white noise process, and

denote the output autocorrelation sequence as:

{ri}∞0 = {r0, r1, r2, · · · }, (E.3)

184

where ri = limk→∞Ey(k + i)y(k)′, and (.)′ denotes the transpose of (.).

A q-Markov COVER of the system generating the data sequence {hi}∞0 and {ri}∞0

is a stable state space realization:

x̂(k + 1) = Âx(k) + B̂u(k),

ŷ(k) = Ĉx̂(k) + D̂u(k), (E.4)

with Markov parameters

ĥ0 = D̂, ĥi = ĈÂi−1B̂, i = 1, 2, · · · , (E.5)

and covariance parameters

r̂i = ĈÂiX̂Ĉ ′ + ĥiD̂
′, i = 0, 1, 2, · · · . (E.6)

such that:

ĥi = hi, i = 0, 1, 2, · · · , q,

r̂i = ri, i = 0, 1, 2, · · · , q − 1. (E.7)

Here, the state covariance matrix is

X̂ = lim
k→∞

Ex̂(k)x̂(k)′, (E.8)

and satisfies the Liapunov equation:

X̂ = ÂX̂Â′ + B̂B̂′, X̂ > 0. (E.9)

185

The realization problem is that given the finite data sequence {hi}q0 and {ri}q−1
0 ,

find all minimal stable q-Markov COVERs. The model reduction problem is that

given a full order model {A,B,C,D,X} with dimension N , find all minimal stable

COVERs of reduced dimension.

E.2 Review of the q-Markov COVER Algorithm

Consider the sytem (E.1), it can be seen that:



y(k)

y(k + 1)

...

y(k + q − 1)


︸ ︷︷ ︸

Yq(k)

=



C

CA

...

CAq−1


︸ ︷︷ ︸

Oq

x(k) +



h0 0 · · · 0 0

h1 h0 · · · 0 0

...
... · · · ...

...

hq−1 hq−2 · · · h1 h0


︸ ︷︷ ︸

H1



u(k)

u(k + 1)

...

uk+q−1


︸ ︷︷ ︸

Uq(k)

,

(E.10)

Perturb the system (E.1) with zero mean, unit covariance white noise, then the

output autocorrelation matrix:

Rq = lim
k→

EYq(k)Yq(k)′ =



r0 r′1 · · · r′q−1

r1 r0 · · · r′q−2

...
... · · · ...

rq−1 rq−2 · · · r0


, (E.11)

and from (E.10),

Rq = OqXO
′
q +H1H

′
1. (E.12)

186

Therefore, define the first data matrix:

Dq = OqXO
′
q = Rq −H1H

′
1. (E.13)

Similarly, denote

H̄1 =



h1 h0 0 · · · 0 0

h2 h1 h0 · · · 0 0

...
...

... · · · ...
...

hq hq−1 hq−2 · · · h1 h0


, (E.14)

then

Yq(k + 1) = OqAx(k) + H̄1Uq+1(k). (E.15)

Hence,

Rq = OqAXA
′O′q + H̄1H̄

′
1, (E.16)

and define the second data matrix:

D̄q = OqAXA
′O′q = Rq − H̄1H̄

′
1. (E.17)

The q-Markov COVER algorithm has the following steps.

First, generate a full rank factorization of the first data matrix:

Dq = PΛP ′,Λ > 0,

rank(Dq) = rank(P) = rank(Λ) = l, (E.18)

187

where P ∈ <noq×l, and Λ ∈ <l×l.

Partition P into blocks, and define two new matrices

P =



P0

P1

...

Pq−1


, F =


P1

...

Pq−1

 , P̄ =

F
G

 , (E.19)

where G is an no × l matrix to be determined such that

D̄q = P̄ΛP̄ ′. (E.20)

All the matrices G can be expressed as:

G = G1 +G2V ∗G3,

G1 = d̄′q(F
+)′Λ−1(I − (I+

F F)× ((I − F+F)Λ−1(I − F+F))+Λ−1),

G2 = (D̄qq − d̄′qD̄+
q−1d̄q)

1/2U,

G3 = W ∗((I − F+F)Λ−1(I − F+F))+/2Λ−1, (E.21)

where (.)+/2 is the Moore-Penrose inverse of (.)1/2,

D̄q =

D̄q−1 d̄q

d̄′q D̄qq

 , (E.22)

U is a column unitary matrix defines the range space of (D̄qq − d̄qD̄+
q−1d̄q), W is a

column unitary matrix defines the null space of F , and V is an arbitrary column

unitary matrix.

188

Special Case 1. If Λ = I, then the final expression for G is :

G = d̄′q(F
+)′ + (D̄qq − d̄′qD̄+

q−1d̄q)
1/2UV ′W ′(I − F+F). (E.23)

A q-Markov COVER is:

Aq = P+P̄ , Bq = P+Mq = P+



h1

h2

...

hq


, Cq = P0, Dq = h0, X̂ = Λ, (E.24)

with dimension nx = rank(Dq).

E.3 Comparison with ERA

Now, reconsider the data matrices Dq, D̄q in the q-Markov COVER. If define the

Hankel matrices constructed in ERA as:

Hq =



h1 h2 · · · htss−1

h2 h3 · · · htss
...

... · · · ...

hq hq+1 · · · hq+tss−1


, Hq+1 =



h2 h3 · · · htss

h3 h4 · · · htss+1

...
... · · · ...

hq+1 hq+2 · · · hq+tss


(E.25)

where tss is a finite constant such that ‖Atss‖ ≈ 0. Then the following results hold.

Proposition 1 The first and second data matrices in q-Markov COVER are related

to the Hankel matrices constructed in ERA: Dq = HqH
′
q, D̄q = Hq+1H

′
q+1.

Proposition 2 The system (Ab, Bb, Cb, Db) constructed using ERA is a special case

of the q-Markov COVER.

189

The difference is q-Markov COVER algorithm collects the first q − 1 output auto-

correlations {ri}q−1
0 . To preserve the same information, ERA needs to collect more

Markov parameters, i.e., ERA needs to collect {hi}tss+q0 .

E.3.1 Proof of Proposition 1

We prove the above results in two ways. First, by definition:

Dq = OqXO
′
q. (E.26)

Consider the state x(k) with white noise perturbation:

x(k) =
∞∑
i=1

Ai−1Bu(k − i), (E.27)

as k →∞, suppose there exists a constant tss, such that

xk =

(
B AB · · · AtssB

)
︸ ︷︷ ︸

Xb



uk−1

uk−2

...

uk−tss−1


︸ ︷︷ ︸

Uk

(E.28)

Then

X = lim
k→∞

E(xkx
′
k) = XbE(UkU

′
k)X

′
b = XbX

′
b. (E.29)

Hence,

Dq = (O′qXb)(O
′
qXb)

′ = HqH
′
q. (E.30)

190

Similarily, by definition, D̄q:

D̄q = OqAXA
′O′q =



CA

CA2

...

CAq


XbE(UkU

′
k)X

′
bA
′O′q = Hq+1H

′
q+1. (E.31)

Note that Hq contains first qno rows of the full Hankel matrix constructed using

ERA/BPOD.

The second way is to expand Rq and H1.

Rq = lim
k→∞

EYq(k)Yq(k)′. (E.32)

The output y(k) is:

y(k) =
tss∑
i=0

hiu(k − i) = CXbUk +Du(k). (E.33)

Therefore,

Yq(k) =



y(k)

y(k + 1)

...

y(k + q − 1)


=



CXbUk

CXbUk+1

...

CXbUk+q−1


︸ ︷︷ ︸

T1

+



Du(k)

Du(k + 1)

...

Du(k + q − 1)


︸ ︷︷ ︸

T2

, (E.34)

191

Notice that

Uku(k)′ =



u(k − 1)

u(k − 2)

...

u(k − tss − 1)


u(k)′ = 0. (E.35)

Therefore, it can be proved that T1T
′
2 = T ′2T1 = 0.

T2T
′
2 =



D2

D2

· · ·

D2


(E.36)

So

T1T
′
1 =


CXbUkU

′
kX
′
bC
′ CXbUkU

′
k+1X

′
bC
′ · · · CXbUkU

′
k+q−1X

′
bC
′

...
... · · · ...

CXbU
′
k+q−1U

′
kX
′
bC
′ CXbU

′
k+q−1U

′
k+1X

′
bC
′ · · · CXbU

′
k+q−1U

′
k+q−1X

′
bC
′


(E.37)

Expectation of the diagonal terms are the same

E(CXbUkU
′
kX
′
bC
′) = · · · = E(CXbUk+q−1U

′
k+q−1X

′
bC
′) = CXbX

′
bC
′

=

(
h1 h2 · · · htss

)


h′1

h′2
...

h′tss


=

tss∑
i=1

hih
′
i. (E.38)

192

Therefore,

Dq = Rq −H1H
′
1 = lim

k→∞
EYq(k)Yq(k)′ −H1H

′
1

= E(T1T
′
1 + T2T

′
2)−H1H

′
1 =


∑tss

i=1 hih
′
i + h0h

′
0 − h0h

′
0 · · · · · ·

 , (E.39)

If expand all the terms, it can be proved that Dq = HqH
′
q.

E.3.2 Proof of Proposition 2

Suppose the SVD of the Hankel matrix Hq is:

Hq = UqΣqV
′
q . (E.40)

Then

Dq = HqH
′
q = UqΣ

2
qU
′
q = PΛP ′ (E.41)

Consider a special case when Λ = Σq.

Dq = UqΣ
1/2
q︸ ︷︷ ︸

P

Σq︸︷︷︸
Λ

Σ1/2
q U ′q︸ ︷︷ ︸
P ′

. (E.42)

Therefore,

P = UqΣ
1/2
q → Cq = the first no rows of UqΣ

1/2
q = Cb (E.43)

Consider Bq = P+Mq = Σ
−1/2
q U ′qOqB

193

In ERA:

Hq = UqΣ
1/2
q︸ ︷︷ ︸

Pα

Σ1/2
q V ′q︸ ︷︷ ︸
Qβ

, (E.44)

(
B AB · · · AtssB

)
= Qβ = (Pα)+Hq

= Σ−1/2
q U ′q



CB CAB · · · CAtssB

CAB CA2B · · · CAtss+1B

...
... · · · ...

CAq−1B CAqB · · · CAq+tss−1B


, (E.45)

where ERA ROM Bb are the first ni columns of Qβ:

Bb = Σ−1/2
q U ′q



CB

CAB

...

CAq−1B


= Σ−1/2

q U ′qMq = P+Mq = Bq. (E.46)

Now if we choose P̄ :

P̄ = Hq+1VqΣ
−1/2
q , (E.47)

Then

Aq = P+P̄ = Σ−1/2
q U ′qHq+1VqΣ

−1/2
q = Ab. (E.48)

We only need to verify P̄ is one of the solution given in the q-Markov general

194

form, and we verify

1) P̄ ,Λ are SVD of D̄q,

P̄ΛP̄ ′ = Hq+1VqΣ
−1/2
q ΣqΣ

−1/2
q V ′qH

′
q+1 = Hq+1H

′
q+1 = D̄q (E.49)

2) P̄ = PA ,

Hq+1 = PαAQβ → P̄ = Hq+1(Q+
β) = PαA = PA. (E.50)

3)X̂ = Σq satisfy X̂ = AqX̂A
′
q +BqB

′
q.

The consistent with the Liapunov equation is proved in the paper [108].

Summary

The ERA is one special case of q-Markov COVER, where the controllability

matrix and ovservability matrix are balanced, and in order to construct the same re-

alization as ERA, we should choose Λ = Σq, P̄ = Hq+1V
′
qΣ
−1/2
q in q-Markov COVER

algorithm.

195

