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ABSTRACT 

Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disorder 

caused by mutations in the DMD gene, which results in loss of the dystrophin protein 

and cyclic muscle degeneration and regeneration. The main animal models include the 

mdx mouse and golden retriever muscular dystrophy (GRMD) dog.  Dogs with GRMD 

have more severe disease than mice, in keeping with DMD.  Variable disease expression 

in GRMD at the individual and muscle level provides an excellent platform to study the 

pathophysiology of muscular dystrophy beyond the primary effects of dystrophin loss. 

Autophagy and apoptosis have recently been identified as suitable secondary therapeutic 

targets. We sought to explore their role in GRMD pathogenesis through gene and protein 

expression assays and light and transmission electron microscopy.  

Our initial studies focused on expression of an anti-apoptotic protein, APIP, in 

the differentially affected cranial sartorius (CS) and vastus lateralis (VL) muscles. We 

hypothesized that inhibition of apoptosis by APIP would be beneficial but, instead, 

found that VL protein levels tracked with a more severe phenotype. APIP was primarily 

expressed in regenerating fibers and inflammatory cells, perhaps providing an additional 

clue to its role in dystrophic muscle.  Expression in regenerating fibers could be tied to 

anti-apoptotic activity or methionine metabolism.  

  Next, we investigated the role of autophagy, again focusing on the CS and VL. 

We hypothesized that autophagy would be reduced in GRMD muscle and be 

characterized by lower autophagy gene and protein (i.e., LC3B-II) expression and higher 

p62 levels. FOXO3 regulated genes were lower than normal in the GRMD CS, however 
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contrary to our hypothesis, LC3B-II and p62 levels were higher in the dystrophic 

muscle, indicating impaired autophagy which correlated with a more severe phenotype. 

Autophagic structures were found in necrotic myofibers and inflammatory cells, 

suggesting dual roles. Treatment with an NF-κB inhibitor activated autophagy gene 

expression in a muscle-dependent way in treated GRMD dogs, generally in line with an 

improved phenotype.  

In summary, apoptosis and autophagy are important in maintaining muscle 

homeostasis in the GRMD dog. Future studies are required to determine how APIP 

influences muscle regeneration and how autophagy activation can modulate GRMD 

pathogenesis. 
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NOMENCLATURE 

 

DMD Duchenne muscular dystrophy 

GRMD Golden retriever muscular dystrophy 

CS Cranial sartorius 

VL Vastus lateralis 

CT Cranial tibialis 

MHG Medial head of gastrocnemius 

NBD Nemo binding domain peptide 

APIP APAF-1 interacting protein 

UPS Ubiquitin-proteasome system 

LC3B Microtubule-associated proteins 1A/1B light chain 3B 

p62  Sequestosome-1 

MHC Myosin heavy chain 

DGC Dystrophin glycoprotein complex 

APAF1 Apoptotic peptidase activating factor 1 protein 

BCL2 B-cell lymphoma 2 protein 

BAX BCL2 associated X protein 

TTJ Tibiotarsal joint 

TJA Tibiotarsal joint angle 

NF-κB Nuclear factor-κB 

IKK Inhibitor of kappa B kinase complex 
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1. INTRODUCTION 

 

1.1 Background of Duchenne Muscular Dystrophy 

Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disorder 

that occurs due to mutations in the DMD gene in approximately 1:4000 to 1:5000 male 

births [1]. The mutation typically results in the absence of a functional dystrophin 

protein. Dystrophin is a key component of the dystrophin-glycoprotein complex (DGC), 

which is critical for linking the muscle cytoskeleton to the extracellular matrix [2]. When 

dysfunctional, a complex cycle of progressive muscle degeneration leads to eventual 

muscle fibrosis, wheelchair confinement, recumbency, and terminal respiratory and/or 

cardiovascular failure.  Currently, therapies are primarily palliative in nature and often 

include anti-inflammatory medications (e.g., corticosteroids) and physical therapy. 

Corticosteroids, which are now essentially the standard of care for DMD, can only slow 

the destructive cyclical muscle pathology [3].  While gene and cell-based therapies that 

offer a potential cure are being pursued in animal models (e.g., mouse and canine) and 

DMD clinical trials, there is also considerable interest in reducing the so-called 

secondary effects of dystrophin loss. Identification of therapeutics that could lessen 

fibrosis, inflammation, and accumulation of damaged proteins and organelles (e.g., 

autophagy), without the side effects of corticosteroids, remains an important objective in 

DMD research.  
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1.2 Background of Golden Retriever Muscular Dystrophy 

The 2 primary animal models used to perform preclinical trials and investigate 

the pathophysiology of dystrophinopathies are the mouse (mdx) and dog. Our laboratory 

focuses primarily on identifying early clinical biomarkers and performing preclinical 

trials in the canine model of DMD, specifically known as golden retriever muscular 

dystrophy (GRMD) [4]. The genetic defect in the GRMD dog, which leads to the 

absence of dystrophin, is caused by a single nucleotide transition mutation at the 3’ 

consensus splice site of intron 6 [5]. This results in exon 7 being skipped and a reading 

frame shift, which leads to a premature stop codon in exon 8.  Advantages to utilizing 

the GRMD model include its similar phenotype to DMD and patterns of pathology that 

parallel those in DMD.  

Despite the fact that all DMD patients and animal models have mutations in the 

DMD gene, tremendous phenotypic variation exists at 4 levels: species, individual, 

muscle, and fiber type. The cause for this variation can be attributed to several factors 

including the type and location of the mutation within the DMD gene and the potential 

for modifier genes to either improve or worsen the phenotype. The type and location of 

the mutation (most commonly a variably-sized deletion) has classically been associated 

with 2 general forms of dystrophin deficient muscular dystrophy, namely the more 

severe DMD and the milder Becker Muscular Dystrophy (BMD)[6]. In DMD, the 

mutation in the DMD gene results in premature termination of transcription due to a shift 

in the reading frame. Little or no stable, functional protein is produced and the 

classically more severe DMD phenotype occurs. In BMD, the DMD gene mutation 
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maintains the reading frame, allowing production of a truncated, yet functional 

dystrophin protein that effectively joins the DGC to stabilize the muscle cell membrane. 

Anti-sense oligonucleotides are currently being investigated as a mechanism by which 

exon skipping and restoration of the reading frame can be achieved, thereby allowing a 

DMD patient to produce a truncated dystrophin, with associated clinical improvement to 

a BMD-like phenotype.   

Genetic modifiers are important contributors to the phenotypic variation 

identified in DMD. The investigation for these modifiers historically has included 

expression assays (e.g., microarray) and quantitative PCR in both DMD and animal 

dystrophinopathies. As would be expected, genes related to muscle regeneration and 

inflammation have often been upregulated in these studies.  Correlating gene expression 

with 1 or more phenotypic features, suggesting a cause-and-effect relationship, 

strengthens such studies. Another method of identifying genetic modifiers entails a 

genome wide association study (GWAS) that uses single nucleotide polymorphisms 

(SNPs) and linkage disequilibrium to identify blocks of the genome that may be 

associated with phenotype. Recently, latent transforming growth factor beta binding 

protein 4 (LTBP4) and secreted phosphoprotein 1 (SPP1) have been defined as potential 

genetic modifiers in DMD patients with variable disease severity [7-9].  

The phenotypic variation in the GRMD dog provides a unique opportunity to 

investigate the pathophysiology of muscular dystrophy and the role of genetic modifiers. 

Within a litter of GRMD dogs, there can be both mildly and severely affected dogs that 

all have the same DMD gene mutation. Furthermore, GRMD dogs display remarkable 
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phenotypic variation at the muscle level, for example the cranial sartorius (CS) 

undergoes early necrosis and hypertrophy, whereas the vastus lateralis (VL) undergoes 

delayed necrosis and atrophy [10, 11]. Recently, the Jagged1 gene was identified as a 

candidate genetic modifier of GRMD, with overexpression improving the dystrophic dog 

phenotype [12]. The identification and characterization of genetic modifiers will 

continue to provide further insight into DMD pathogenesis, potentially identifying 

therapeutic targets and allowing for better clinical trial stratification. 

 

1.3 The Role of Apoptosis in Skeletal Muscle Homeostasis 

Duchenne muscular dystrophy is a debilitating condition without sufficient 

therapeutic options and an ultimately fatal disease course. The pathophysiology 

associated with DMD, although still debated, can be attributed to myofiber membrane 

instability, accumulation of reactive oxygen species and damaged organelles, 

intracellular Ca+ mishandling, and, finally, muscle cell death with secondary 

inflammation and fibrosis [13, 14]. Potential cures, such as DMD gene therapy, are not 

currently available.  Therefore, it is important to continue the pursuit of novel adjunctive 

therapies that can modulate the phenotype without replacing dystrophin. Given that anti-

inflammatory medications (e.g., corticosteroids) can slow the disease progression, it 

appears the secondary tissue response is of great importance in determining the severity 

of the disease [3]. Investigating the complex role of cell death and survival mechanisms 

is crucial for elucidating the progressive muscle degeneration that occurs beyond the 

primary disease response to the loss of dystrophin.  



 

5 

 

Briefly, apoptosis (i.e., programmed cell death) is an essential physiological 

process required for normal tissue development and cellular homeostasis.  There are 2 

classical ways by which programmed cell death occurs, the extrinsic and intrinsic 

apoptotic pathways.  The extrinsic pathway involves plasma membrane signaling 

through the tumor necrosis factor-receptor family and activation of caspase-8 [15]. The 

intrinsic pathway is triggered to initiate cell death by an imbalance in anti-apoptotic 

(e.g., B-cell lymphoma 2 [BCL2]) and pro-apoptotic (e.g., BCL2-associated X protein 

[BAX]) signals. Once initiated, mitochondrial membrane pore permeability increases 

and the caspase-activating factor cytochrome C is released into the cytoplasm [16]. The 

ensuing cascade of caspases, starting with caspase-9, results in formation of the 

apoptosome through interaction with apoptotic peptidase activating factor 1 (APAF-1) 

[15]. The apoptosome then orchestrates cellular breakdown without the release of 

noxious cellular constituents [16]. Although apoptosis is known to occur in 

dystrophinopathies, the triggering events that lead to muscle-fiber apoptosis are ill-

defined [17].  

Any individual cell is constantly balancing pro-apoptotic (e.g., BAX) and anti-

apoptotic (e.g., BCL2) signals during growth, maintenance, and disease. Inhibition of 

cell death mechanisms at various stages continues to be investigated in dystrophic 

animal models. Studies in the mdx mouse have produced conflicting results.  One 

concluded that increased expression of BCL2 did not improve the phenotype 

significantly [18]. However, 2 recent studies showed that inhibition of the intrinsic 

apoptotic pathway at the mitochondrial pore level did improve the mdx phenotype [19, 
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20]. Therefore, it appears that modulation of the apoptotic pathway could play an 

important role in DMD pathophysiology and further investigation could reveal novel 

therapeutic targets. 

 

1.4 The Role of Autophagy in Skeletal Muscle Homeostasis 

Macroautophagy (hereafter known as autophagy) is a conserved biological 

mechanism found in all eukaryotic cells that involves “self-eating”. Autophagy is an 

essential survival mechanism, which allows for the recycling of cellular building blocks 

by organized degradation of selected proteins and organelles into macromolecules [21]. 

Autophagy is also critical for the quality control of mitochondria, which helps ensure 

that damaged mitochondria do not persist in the cell and contribute to excessive 

oxidative stress [22]. Autophagy is now associated with numerous pathophysiological 

processes, including cancer, neurodegenerative disorders, cardiovascular disease, and 

even normal physiological processes like aging and exercise [23]. This multi-step 

cellular process requires a functional lysosomal system and coordination of over 30 

different proteins [24]. Briefly, the tagged cytoplasmic contents (e.g., damaged proteins 

and organelles) are captured and carefully enclosed into the autophagosome. The 

autophagosome, which contains the cargo collected for recycling, then binds to the 

lysosome forming the autolysosome. The autolysosome degrades the cargo utilizing 

lysosomal hydrolases and subsequently releases the resulting macromolecules for re-use 

by the cell.  
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Dysregulation at any of these steps can affect tissue homeostasis and contribute 

to disease. Post-mitotic cells (e.g., myofibers and neurons) are more susceptible to 

disruptions in autophagy, which can ultimately lead to the accumulation of excessive 

cellular ‘garbage’ (i.e., damaged/toxic proteins and organelles) and cellular senescence 

[25]. Skeletal muscle is a post-mitotic tissue that depends primarily on satellite cells for 

regeneration and tissue repair [26]. Autophagy can be a double-edged sword in skeletal 

muscle, with either too much or too little resulting in muscle atrophy and cell death [27, 

28]. Therefore, the tight regulation of autophagy is critical for maintaining muscle 

homeostasis.  

The variable phenotype found between individual GRMD dogs and muscle types 

(e.g., flexors and extensors) provides a unique opportunity to investigate the role of these 

homeostatic mechanisms in dystrophinopathies. In general, the mdx literature suggests 

that inhibition of apoptosis and activation of autophagy would be beneficial. However, 

prior to therapeutic modulation of apoptosis and autophagy in DMD boys, these 

assumptions should be validated in the GRMD dog. Therefore, we elected to investigate 

the role of these homeostatic mechanisms in GRMD pathogenesis and focused on the CS 

and VL, which are differentially affected.  
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2. APIP EXPRESSION IS ASSOCIATED WITH GRMD PHENOTYPE  

 

2.1 Introduction 

Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder, affecting 

approximately 1:4000 to 1:5000 live male births [1].   DMD is caused by mutations in 

the DMD gene, which results in the absence of the protein dystrophin. Dystrophin is a 

key component of the dystrophin-glycoprotein complex (DGC) and is critical in cell 

signaling and linking the muscle cytoskeleton to the extracellular matrix [2]. Without 

dystrophin, skeletal muscle undergoes progressive cycles of degeneration and 

regeneration with subsequent fibrosis, weakness, and debilitating contractures. This 

complex cycle of muscle damage eventually leads to wheelchair confinement, 

recumbence, and terminal respiratory and/or cardiovascular failure. Despite discovery of 

the causative genetic mutation in DMD ~ 30 years ago, there is no cure for this fatal 

disease, and an urgent demand remains for development of novel therapeutics. 

The 2 primary animal models used to perform preclinical trials and investigate 

the pathophysiology of dystrophinopathies are the mouse (mdx) and dog. Our laboratory 

focuses primarily on identifying early clinical biomarkers and performing preclinical 

trials in the canine model of DMD, specifically known as Golden retriever muscular 

dystrophy (GRMD) [4]. The genetic defect in the GRMD dog, which leads to the 

absence of dystrophin, is caused by a single nucleotide transition mutation at the 3’ 

consensus splice site of intron 6 [5] of the DMD gene. This results in exon 7 being 

skipped and a reading frame shift, with a resulting premature stop codon in exon 8.  
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Because the GRMD phenotype more closely mirrors that of DMD when compared to the 

mdx mouse, mechanistic and preclinical treatment studies may be more likely to 

translate to humans.  

Despite the fact that all DMD patients and animal models have mutations in the 

DMD gene, tremendous phenotypic variation exists at 4 levels: species, individual, 

muscle, and fiber type. The cause for this variation can be attributed to several factors, 

including the type and location of the mutation within the DMD gene and the potential 

for modifier genes to either improve or worsen the phenotype. The type and location of 

the mutation (most commonly a variably-sized deletion) has classically been associated 

with 2 general forms of dystrophin deficient muscular dystrophy, namely the more 

severe DMD and the milder Becker muscular dystrophy (BMD)[6]. The DMD gene 

mutation causes a shift of the reading frame and premature termination of transcription. 

Little or no stable, functional protein is produced and the classically more severe DMD 

phenotype occurs. The BMD mutation maintains the reading frame, allowing production 

of a truncated, yet functional dystrophin protein that effectively joins the DGC to 

stabilize the muscle cell membrane. Anti-sense oligonucleotides are currently being 

investigated as a mechanism by which exon skipping and restoration of the reading 

frame can be achieved, thereby allowing a DMD patient to produce a truncated 

dystrophin, with conversion to a milder BMD-like phenotype [29, 30].   

Genetic modifiers are important contributors to the phenotypic variation 

identified in DMD. These modifiers have historically been studied using expression 

assays (e.g., microarray) and quantitative PCR in both DMD and animal 
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dystrophinopathies. As would be expected, genes related to muscle regeneration and 

inflammation have often been up-regulated, while those involved in metabolism have 

been down-regulated [31-33]. Correlating gene expression with 1 or more phenotypic 

features, suggesting a cause-and-effect relationship, strengthens such studies. Another 

method of identifying genetic modifiers entails a genome-wide association study 

(GWAS) that uses single nucleotide polymorphisms (SNPs) and linkage disequilibrium 

to identify blocks of the genome that may be associated with phenotype. Recently, latent 

transforming growth factor beta binding protein 4 (LTBP4) and secreted phosphoprotein 

1 (SPP1) have been defined as potential genetic modifiers in DMD patients with variable 

disease severity [7-9].  

The phenotypic variation in the GRMD dog provides a unique opportunity to 

investigate the pathophysiology of muscular dystrophy and the role of genetic modifiers. 

Within a litter of GRMD dogs, there can be both mildly and severely affected dogs that 

all have the same DMD gene mutation. Furthermore, GRMD dogs display remarkable 

phenotypic variation at the muscle level; for example, the cranial sartorius (CS) 

undergoes early necrosis and hypertrophy, whereas the vastus lateralis (VL) undergoes 

delayed necrosis and atrophy [10, 11]. Recently, the Jagged1 gene was identified as a 

candidate genetic modifier of GRMD, with expression of a particular allele tracked to an 

outcross improving the dystrophic dog phenotype [12]. The identification and 

characterization of genetic modifiers will continue to provide further insight into DMD 

pathogenesis, potentially identifying therapeutic targets and allowing for better clinical 

trial stratification. In a recent GRMD genome-wide association study from our 
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laboratory, several candidate genetic modifiers associated with phenotype were 

identified [34]. Based on these results, we elected to pursue protein expression studies on 

3 candidate genetic modifiers: a) APAF-1 interacting protein (APIP); b) peptidase 

domain containing associated with muscle regeneration 1 (PAMR1); and,  

c) peptidylprolyl isomerase A (PPIA). Preliminary protein expression studies narrowed 

our focus to APIP as a genetic modifier in GRMD. 

APIP has at least 2 unique functions relating to its anti-apoptotic and enzymatic 

activities (e.g., methionine metabolism) that could be relevant to muscle disease. APIP 

inhibits programmed cell death (i.e., apoptosis) through direct interaction with APAF-1, 

an activator of caspase-9 essential for apoptosome formation [35, 36]. In contrast to cell 

necrosis, apoptosis is a tightly regulated process by which cells that threaten or are no 

longer needed can be destroyed without spilling their contents and inducing 

inflammation. In one sense, apoptosis is the more ‘beneficial’ way for cells to die. While 

necrosis is the terminal mechanism of cell death in DMD [37], the intrinsic apoptotic 

pathway is also activated in DMD myofibers  in advance of necrosis [14]. Indeed, the 

fact that APAF-1 is decreased in skeletal muscle of DMD and BMD patients [38] could 

relate to APIP’s interaction to inhibit apoptosome formation.  APIP’s predominant 

expression in regenerating myofibers suggests a potential alternative role in preventing 

myoblast death, similar to the anti-apoptotic factor BCL2 [39, 40]. 

In order to investigate the role of APIP in GRMD pathogenesis and further 

validate our GWAS findings, protein expression was studied in the phenotypically 

distinct CS and VL muscles at 6 months of age, when functional studies tend to correlate 



 

12 

 

[41-43]. Interestingly, APIP protein was differentially expressed in the GRMD versus 

normal VL but not in the GRMD CS. Levels in the dystrophic VL correlated positively 

with a more severe phenotype, perhaps pointing to a causal relationship. APIP 

expression was localized to regenerating myofibers in dystrophic muscle suggesting a 

role in muscle repair. Further investigation is required to elucidate the impact of APIP on 

the regenerative response of dystrophic muscle. 

 

2.2 Materials and Methods  

2.2.1 Animals 

Dogs used in these studies were from a colony at the University of North 

Carolina at Chapel Hill (UNC-CH) that was subsequently moved to Texas A&M 

University (TAMU). They were cared for and assessed according to principles outlined 

in the National Research Council Guide for the Care and Use of Laboratory Animals. 

Natural history studies performed at UNC-CH were approved by the UNC-CH 

Institutional Animal Care and Use Committee (IACUC) through protocol, Natural 

History and Immunological Parameters in the German Shorthaired Pointer Muscular 

Dystrophy (GSHPMD) Dog (09-011).  Animal care and biomarkers used to characterize 

phenotype were covered by the IACUC protocol, Standard Operating Procedures—

Canine X-Linked Muscular Dystrophy (09-351). Persistence of the DMD splice site 

mutation in all GRMD dogs and carriers of our colony was confirmed by performing a 

restriction fragment length polymorphism (RFLP) analysis (Sau96) and sequencing the 

isolated PCR product region of the intron 6-exon 7 splice site as previously described 



 

13 

 

(data not shown) [5, 44].  

Phenotypic data were collected through a natural history study that included 10 

untreated GRMD dogs and 8 age-matched wild type littermates. Samples of the CS and 

VL were collected at 6 months of age by either biopsy or necropsy, snap frozen in 

isopentane cooled by liquid nitrogen, and stored at -80ºC. Phenotypic measurements 

were done at the time of biopsy or necropsy as previously described [41]. We evaluated 

6 objective biomarkers: tibiotarsal joint (TTJ) angle, pelvic angle, TTJ tetanic flexion 

force (N/kg), TTJ tetanic extension force (N/kg), percent eccentric contraction 

decrement, and CS circumference (mm/kg) (Figure 1). 

 

 
Figure 1. Heat map of unsupervised hierarchical clustering of phenotypic markers. Phenotypic 
measures from 6-month-old GRMD and normal dogs were visualized using unsupervised 
hierarchical clustering, where the color green indicates a relatively lower value for each variable 
and red a higher value. Distances (i.e., similarity) were based on the Pearson’s correlation coefficient 
(r). GRMD dogs had smaller tibiotarsal joint (TTJ) angles, TTJ flexion and extension forces, and 
larger eccentric contraction decrements (%), CS circumferences, and pelvic angles. 
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2.2.2 Western Blotting 

Protein lysates for Western blotting were prepared from available archived 

frozen (-80ºC) muscle samples, homogenized in ice cold RIPA lysis buffer (Santa Cruz 

Biotechnologies, #sc-24948A), stabilized with HALT™ Protease & Phosphatase 

inhibitor (Thermo Scientific, #78442) incubated on ice for approximately 45 minutes, 

and then centrifuged at 10,000 g (4°C) for 10 minutes. Pellets were discarded and 

supernatants for each sample were designated as crude total protein lysates. Protein 

lysate concentrations were estimated using the modified-Lowry method provided by the 

DC™ Protein Assay Kit (Bio-Rad, #5000112) [45]. Protein lysates were mixed with 

reducing SDS sample buffer, heated at 96°C for 5 minutes, and ~60 μg/sample were then 

loaded into 12% TGX Stain-Free™ polyacrylamide gels (Bio-Rad, #161-0185) for 

electrophoresis. The samples were run at 200V for 45 minutes in the Mini-Protean® 

Tetra Cell (Bio-Rad, #165-8000) to allow separation of the protein profiles. TGX Stain-

free gels were imaged on the Gel Doc™ EZ System (Bio-Rad, #1708270) for activation 

prior to transfer using the Mini Trans-Blot® system (Bio-Rad, #170-3930). A cooled, wet 

transfer at 100 V for 1 hour with Tris/Glycine/0.05% SDS and 20% methanol was 

performed. Quality transfer of the proteins to a methanol-activated, 0.2-μm (pore size) 

PVDF membrane was verified using the Gel Doc™ EZ System (Bio-Rad, #1708270). 

After excellent protein transfer was verified, the PVDF membrane was washed with 

Tris-buffered saline with tween (0.1% Tween 20)(TBST) for 10 minutes, then blocked 

with TBST containing 5% milk for 1 hour at 20°C. Next, specific PVDF membrane 

pieces were washed for 10 minutes and then incubated for 1 hour at 20°C and ~17 hours 
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at 4°C in blocking buffer containing (1:200) APIP antibody (Thermo Fisher Scientific, 

#PA5-29269) with rocking. The membranes were then washed in triplicate with TBST, 

10 minutes each. Membranes were subsequently probed with goat anti-rabbit HRP 

secondary antibody (Pierce, #31466) diluted at 1:10,000 in blocking buffer for 1 hour at 

20°C. This was followed by triplicate 10-minute washes with TBST. Finally, the 

membranes were incubated with enhanced chemiluminescence substrate SuperSignal® 

West Dura (Thermo Scientific, #37071) for 5 minutes at 20°C and imaged on the Gel 

Doc™ XR+ System (Bio-Rad, #1708195). The cumulative chemiluminescent protocol 

used to collect images resulted in 60 consecutive images starting at 10 seconds and 

ending at 600 seconds. Images were analyzed using Image Lab™ software (Bio-Rad, 

Version 5.2). Protein band density was normalized by correcting for the amount of total 

protein loaded, estimated by measuring total lane density (LD) on the membranes. 

Relative fold change in protein expression was first normalized for protein loading by 

calculating the ratio of individual band density (i.e., APIP) and LD.  

2.2.3 Immunofluorescence 

Muscle samples were stored at -80ºC prior to processing. Serial muscle 

cryosections were cut at 7 μm for immunofluorescence. Slides were thawed, rehydrated 

and permeabilized in physiological buffered saline (PBS) containing 0.2% fish skin 

gelatin (FSG) and 0.1% Triton X-100 for 10 minutes at room temperature (~20°C), 

washed 2 times with PBS, fixed in cold 100% acetone for 10 minutes, washed 3 times 

with PBS (5 minutes each), and then blocked for 1 hour at ~20°C with 5% normal goat 

serum, PBS+0.3% Triton X-100. Primary antibody incubation was overnight (~17 hours) 
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at 4°C with the following antibodies: rabbit polyclonal APIP (Thermo Fisher Scientific, 

#PA5-29269, mouse monoclonal myosin heavy chain (MHC) (fast) (Leica Biosystems, 

#NCL-MHCf), mouse monoclonal MHC (slow) (Leica Biosystems, #NCL-MHCs), and 

mouse monoclonal MHC (developmental) (Leica Biosystems, #NCL-MHCd). Sections 

were then washed 2 times in PBS-FSG-Triton (5 minutes each) and once with PBS-FSG. 

Secondary antibody incubation was for 1 hour at ~20°C with goat anti-rabbit Alexa 

Fluor® 488 (Thermo Fisher, #A11008) and goat anti-mouse Alexa Fluor® 594 (Thermo 

Fisher, #A11005). Sections were washed 2 times with PBS-FSG-Triton, incubated with 

DAPI for 5 minutes at 20°C, and then washed 2 times with PBS-FSG-Triton and one 

time with PBS-FSG (5 minutes each). Sections were treated with Prolong® Gold Anti-

fade reagent (Life Technologies, #P36930) and then coverslipped. Images of the sections 

were viewed on a Nikon Eclipse 80i microscope and collected for analysis with NIS-

Elements Basic Research software (Laboratory Imaging, Version 3.22.14) and 

processing with ImageJ (National Institute of Health, Version 1.48).  

2.2.4 Statistical Analysis 

 Data were imported into a commercial statistical software program (JMP® Pro 

11.1.1.) for analysis.  Median APIP protein expression levels (normalized to LD) were 

compared between normal vs. GRMD dogs at 6 months of age using the Wilcoxon rank-

sum test (p≤0.050). Phenotypic correlations with APIP protein expression were analyzed 

using the conservative (non-parametric) Spearman’s correlation (ρ) test (p≤0.050) 

because of the small sample sizes and the fact that data variation stretched the 

assumptions of the routine ANOVA and Pearson correlation test. The null hypothesis for 
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the Spearman test is that there is no association between the 2 variables (e.g., protein 

expression and phenotypes).  

 

2.3 Results 

2.3.1 APIP Protein Expression and Phenotypic Correlation in GRMD 

 Western blotting was used to establish APIP expression in the CS (n = 7 GRMD 

and 5 normal) and VL (n = 8 GRMD and 5 normal) muscles of 6-month-old GRMD and 

normal dogs. Levels did not differ (p=0.420) between normal and GRMD dogs in the 

hypertrophied CS (Figure 2). APIP expression in the CS of GRMD dogs clustered into 2 

separate groups, above and below the median of the normal CS. When the single normal 

dog (CS) with a relatively higher APIP value was excluded from the analysis, 

differences in expression still did not reach significance (p=0.780).  

 When considering normal and GRMD dogs at 6 months, CS APIP expression 

correlated positively (ρ=0.6909, p=0.019) with TTJ tetanic flexion force. Although the 

CS is a hip flexor and does not directly contribute to TTJ flexion, its size generally 

correlates positively with TTJ flexion and each tracks with a more severe phenotype. In 

this sense, APIP expression may have contributed to a stable, hypertrophied CS 

phenotype but conversely been associated with an overall more severe GRMD 

phenotype. 
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Figure 2. APIP protein expression in normal and GRMD cranial sartorius. APIP protein expression 
did not differ significantly between the normal and GRMD dogs. Boxplots represent the median and 
interquartile range. LD=Lane density. 

 

 In the VL, APIP levels were significantly higher (p=0.038) in the GRMD dogs 

relative to normal (Figure 3). As with the CS, there was notable variation among the 

GRMD dogs. Moreover, when including normal and GRMD dogs, VL APIP expression 

negatively correlated with TTJ angle (ρ= -0.7523, p=0.008). As VL APIP expression 

increased, the TTJ angle decreased, consistent with greater contraction and a more 

severe overall phenotype. Furthermore, even when considering GRMD dogs alone, VL 

APIP expression correlated with TTJ angle (ρ= -0.8469, p=0.016). Lower TTJ angles 

would be expected due to either override of stronger flexors (cranial tibialis) or weaker 

extensors (gastrocnemius). Importantly, while the VL does not contribute to the TTJ 

angle, extensor muscles generally track together. These data would suggest that APIP 

expression has a deleterious effect on extensor muscle strength.  
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Figure 3. APIP protein expression in normal and GRMD vastus lateralis. APIP protein expression 
was significantly higher in the GRMD VL relative to normal dogs (*p<0.050) at 6 months of age. 
Box plots represent the median and interquartile range of APIP expression. LD=Lane density. 
 

2.3.2 APIP Protein Expression Localizes To Regenerative Muscle Fibers in GRMD 

 Utilizing sections double-labeled with myosin heavy chain (MHC) antibodies, 

we demonstrated a mosaic pattern of APIP expression in both normal and GRMD 

muscles, suggesting fiber type specificity (Figure 4).   

 

 
Figure 4. APIP immunofluorescence in normal canine skeletal muscle. APIP staining in normal 
canine cranial tibialis muscle at 6 months of age reveals a mosaic pattern indicating fiber type 
specificity for APIP expression. Double immunostaining for APIP (green) and MHC slow (Cyan) or 
fast (red) reveals that APIP is primarily expressed in slow-twitch fibers. Blue is Dapi.  
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Consistent with previous studies showing that anti-apoptotic factors localize 

primarily to regenerating fibers in damaged muscle [18, 39, 40], clusters of GRMD 

APIP-positive myofibers also expressed the developmental MHC isoform. Regenerative 

fibers often stained for both fast- and slow-MHC isoforms, in keeping with fiber type 

switching associated with damaged muscle (Figure 5).  

 

 
Figure 5. Immunofluorescence for APIP and MHC fiber typing in GRMD skeletal muscle. APIP co-
localizes primarily with regenerating myofibers (DEV) in GRMD medial head of the gastrocnemius 
muscle at 6 months of age. The regenerating fibers also stain lightly for the slow- and fast- MHC 
isoforms consistent with fiber-type switching. Blue is Dapi. 
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The proportion of MHC developmental positive fibers was greater in the GRMD 

VL versus CS at 6 months of age (Figure 6), consistent with the western blot data 

showing APIP expression was greater in the GRMD VL.  Notably, APIP was also 

expressed in nearby inflammatory cells in dystrophic muscle and had both cytoplasmic 

and membrane signals, with MHC-developmental co-localization occurring primarily 

with the cytoplasmic signal. (Figure 7). 

 

 
Figure 6. Immunofluorescence for MHC developmental isoform in GRMD CS and VL. Larger 
regenerating myofibers (magenta) in the CS express the developmental isoform of MHC, whereas 
the VL has a greater proportion of small, regenerative fibers.  
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Figure 7. Immunofluorescence for APIP and MHC developmental isoform in GRMD muscle. Top 
Panel: In GRMD cranial tibialis muscle, APIP localizes to inflammatory cells and clusters of small 
myofibers that stain with MHCd (DEV), consistent with regenerating fibers. Bottom Panel: Double 
immunostaining confirms that cytoplasmic APIP and MHCd (DEV) co-localize, further indicating 
that APIP is expressed in regenerating fibers in GRMD muscle. 
 

 
2.4 Discussion 

This study investigated the role of APIP in GRMD pathogenesis.  While not a 

cause of cell death in DMD, apoptosis may precede necrosis [46]. Given APIP’s role in 

inhibiting apoptosis [35, 36], increased levels might be expected to lessen muscle injury.  

Indeed, inhibition of mitochondrial-associated cell death (e.g., apoptosis and necrosis) 
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improved the mdx mouse phenotype [19].  Interestingly, we found differential 

expression of APIP in the GRMD CS and VL muscles, with levels being increased over 

normal in the VL but not the CS. However, as opposed to an apparent beneficial effect 

of inhibiting cell death in the mdx mouse, increased APIP expression in the GRMD VL 

correlated with TTJ extensor muscle weakening and a more severe overall phenotype.   

Consistent with prior studies [47, 48], we found APIP expression was fiber type 

specific, occurring more in slow-twitch, oxidative fibers. Importantly, for sake of our 

studies, the distribution of slow-twitch fibers differs between the CS (~ 51%) and 

superficial VL (~15%) [49]. Therefore, not surprisingly, APIP expression was greater in 

the normal canine CS versus VL. Furthermore, as found with other anti-apoptotic 

proteins, APIP was expressed primarily in regenerating myofibers in GRMD muscle [38, 

39], suggesting an important role in muscle repair, over and above its specific anti-

apoptotic activity.  Independent of its anti-apoptotic activity, APIP is a critical enzyme in 

the methionine salvage pathway [50-52], which recycles 5-methylthioadenosine (MTA) 

produced from the polyamine synthetic process back to methionine. Accumulation of 

methionine salvage pathway intermediates (e.g., MTA) has been implicated in cell death 

and inflammation [51, 53-55]. Interestingly, APIP has also drawn considerable interest 

in 2 recent reports, unrelated to DMD.  In one study, a dysfunctional APIP allele was 

associated with improved survival of individuals with systemic inflammatory response 

syndrome [50]. Conversely, in a GWAS investigating cystic fibrosis, normal functioning 

APIP tracked with more severe lung disease [56]. Our identification of APIP expression 

in inflammatory cells in dystrophic muscle is consistent with these findings. Mechanistic 
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studies, whereby APIP were up- or down-regulated and the pathological and functional 

effects studied, would be necessary to draw a causal association in GRMD. 

In interpreting our data, it is important to distinguish between individual muscle 

and overall phenotype. At 6 months, the GRMD VL is characterized by active necrosis 

and consequently vigorous regeneration [41]. Conversely, after an early bout of necrosis, 

the CS has stabilized and even hypertrophied by this time. In this context, APIP could be 

increasing as a part of a feedback mechanism to protect cells rather than playing an 

active role in the injury. This study of APIP protein expression in GRMD was originally 

motivated by a GWAS and our subsequent discovery of its role in other diseases [52, 56, 

57].  While the GRMD findings reported here further substantiate APIP as a candidate 

modifier gene, we have not yet done further studies necessary to substantiate this 

association. Other limitations of this study include the small sample size and the lack of 

longitudinal protein expression and methionine metabolism data. Future work should 

utilize targeted genome and transcriptome sequencing to determine the presence and role 

of variable APIP alleles and splice-variants in cell death, inflammation and methionine 

metabolism. 

 In conclusion, we have identified muscle-specific differential APIP protein 

expression in GRMD versus normal dogs. While we hypothesized that inhibition of 

apoptosis by APIP would be beneficial, VL levels tracked with a more severe phenotype. 

APIP was primarily expressed in slow-twitch muscle fibers of normal muscle and in 

regenerating fibers and inflammatory cells in dystrophic muscle.  Expression in 
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regenerating fibers could be tied to its anti-apoptotic activity or role in methionine 

metabolism.  

Further investigations are warranted to better define APIP as a candidate 

modifier gene and its role in muscle regeneration. Future work should include 

sequencing of APIP to search for genetic variation that could influence the biochemical 

properties of APIP. Additionally, future in vivo inquiries should evaluate other apoptotic 

markers (e.g., BAX, BCL2) and methionine salvage intermediates (e.g., MTA). In vitro 

experiments should also evaluate the effect of APIP expression modulation (e.g., 

increases or decreases) on dystrophic muscle cell growth and programmed cell death. 
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3. AUTOPHAGY IS DISORDERED IN GOLDEN RETRIEVER MUSCULAR 

DYSTROPHY  

 

3.1 Introduction 

Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder, affecting 

approximately 1:4000 to 1:5000 live male births [1].   DMD is caused by mutations in 

the DMD gene, which results in the absence of the protein dystrophin. Dystrophin is a 

key component of the dystrophin-glycoprotein complex (DGC) and is critical in cell 

signaling and linking the muscle cytoskeleton to the extracellular matrix [2]. Without 

dystrophin, skeletal muscle undergoes progressive cycles of degeneration and 

regeneration with subsequent fibrosis, weakness, and debilitating contractures. This 

complex cycle of muscle damage eventually leads to wheelchair confinement, 

recumbence, and terminal respiratory and/or cardiovascular failure. Currently, therapies 

are primarily palliative in nature and often include anti-inflammatory medications (e.g., 

corticosteroids) and physical therapy. Corticosteroids, which are now essentially the 

standard of care for DMD, can only slow the destructive cyclical muscle pathology [3]. 

Despite discovery of the causative genetic mutation in DMD over 30 years ago, there is 

no cure for this fatal disease, and an urgent demand remains for development of novel 

therapeutics.  

The 2 principal animal models used to explore novel therapeutics and perform 

pre-clinical studies for DMD include mdx mice and golden retriever muscular dystrophy 

(GRMD) dogs [4]. The pathophysiology of GRMD more closely mimics the disease 
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progression of DMD compared to the mildly affected mdx mice. While gene and cell-

based therapies offer a potential cure and are being pursued in animal models (e.g., 

mouse and canine) and DMD clinical trials, there is also considerable interest in 

reducing the so-called secondary effects of dystrophin loss. Identification of therapeutics 

that could lessen fibrosis, inflammation, and accumulation of damaged proteins and 

organelles, without the side effects of corticosteroids, remains an important objective in 

DMD research. Recently, macroautophagy (hereafter known as autophagy) has been 

implicated as a novel therapeutic target in various muscular dystrophies, including DMD 

[27].  

Autophagy is a conserved biological mechanism essential for survival of 

eukaryotic cells that involves organized degradation (“self-eating)” and recycling of 

cellular building blocks into macromolecules [21]. The tagged cytoplasmic contents 

(e.g., damaged proteins and organelles) are captured and carefully enclosed into the 

autophagosome, which then binds to the lysosome forming the autolysosome.  

Lysosomal hydrolases convert the cargo to macromolecules for re-use by the cell. In 

addition to cleaning up cellular “garbage,” autophagy removes damaged mitochondria to 

ensure they do not contribute to excessive oxidative stress [22]. This multi-step cellular 

process requires a functional lysosomal system and coordination of over 30 different 

proteins [24]. Dysregulation at any of these steps can affect tissue homeostasis and 

contribute to disease.  

Post-mitotic cells (e.g., myofibers and neurons) are more susceptible to 

disruptions in autophagy and subsequent accumulation of excessive damaged/toxic 
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proteins and organelles and cellular senescence [25]. Tight regulation of autophagy is 

critical for maintaining homeostasis in skeletal muscle, with either too much or too little 

resulting in muscle atrophy and cell death [27, 28]. Data from primarily mdx mice have 

shown a reduction in autophagic flux, with reduced autophagosomes and increased p62 

accumulation, suggesting that autophagy is dysregulated in dystrophin-deficient skeletal 

muscle [58-64].  Progressive accumulation of damaged proteins and mitochondria would 

logically be injurious and compound the insult to dystrophin deficient muscle cells [58-

64] . The exact cause for this dysregulation is likely multi-factorial, with several 

proposed contributing factors, including Akt activation (inhibits autophagy through 

forkhead box O [FoxO]) and excessive oxidative stress (inhibits autophagy through Src-

kinase) [58, 62, 65-67]. Some insight on underlying pathogenic mechanisms has been 

gained by treatment strategies that have consistently improved the mdx phenotype [58-

60, 62, 63].  

Considering the paucity of literature regarding autophagy in DMD and that the 

GRMD phenotype better mimics that of DMD, we sought to investigate autophagy in 

phenotypically distinct skeletal muscles from age-matched dystrophic and normal dogs. 

A multi-modal approach, including gene and protein expression followed by light and 

transmission electron microscopy, was used. We hypothesized that autophagy would be 

dysregulated in GRMD skeletal muscle and, more specifically, that autophagic activity 

would be reduced, with an associated increase in damaged proteins and organelles. 

Additionally, we hypothesized that dysregulation of autophagy would correlate with 

phenotype of both the individual dog and variably affected muscle. In this report, we 
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demonstrate that autophagy is impaired in the skeletal muscle of GRMD dogs and this 

dysregulation correlates with phenotype and varies between muscle types. In particular, 

disordered autophagy in the GRMD cranial sartorius muscle appears to contribute to the 

classical true hypertrophy seen in this muscle.  

 

3.2 Materials and Methods 

3.2.1 Animals 

Dogs were from a colony at the University of North Carolina at Chapel Hill 

(UNC-CH) that was subsequently moved to Texas A&M University (TAMU).  They 

were cared for and assessed according to principles outlined in the National Research 

Council Guide for the Care and Use of Laboratory Animals. Studies were approved by 

the UNC-CH Institutional Animal Care and Use Committee (IACUC) through protocol, 

Natural History and Immunological Parameters in the German Shorthaired Pointer 

Muscular Dystrophy (GSHPMD) (09-011).  Overall care and biomarkers used to 

characterize phenotype were covered by IACUC protocol, Standard Operating 

Procedures—Canine X-Linked Muscular Dystrophy (09-351). The GRMD dystrophic 

genotype was originally suspected in newborn pups based on elevated serum creatine 

kinase (CK) and confirmed by polymerase chain reaction (PCR), as previously described 

[5]. 

The study included untreated GRMD dogs and age-matched wild type 

littermates. Sample numbers varied between comparisons depending on tissue 

availability. Comparative longevity studies for dogs and humans indicate that the first 
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year of a golden retriever’s life roughly equates to 20 years of a human [68].  In this 

context, a parallel can be drawn between the relatively rapid disease progression seen at 

3-6 months in GRMD and 5-10 years in DMD.  For sake of GRMD preclinical trials, we 

typically establish baseline data, including analysis of muscle biopsies, before beginning 

treatment at 3 months and collect the same outcome data at 6 months. In keeping with 

this approach, muscle samples were collected by biopsy at 3 months of age from the 

cranial sartorius (CS) and vastus lateralis (VL) muscles and at 6 months by biopsy or 

necropsy from the contralateral CS, VL, cranial tibialis (CT), medial head of the 

gastrocnemius (MHG), and diaphragm. These muscles and ages were collected based on 

their clear differential involvement at 3 and 6 months of age [42, 43]. For example, at 3 

months the CS has already undergone a period of necrosis, while the VL remains mildly 

affected.  However, by 6 months of age, the CS has hypertrophied, while the VL shows 

greater necrosis due to its role in weight bearing [11, 43].  Furthermore, for sake of 

functional studies, our previous work has shown that results best correlate at 6 months 

[41]. 

For all studies, samples were snap frozen in isopentane, cooled by liquid 

nitrogen, and stored at -80ºC for future analysis. A total of 8 objective biomarkers 

(tibiotarsal joint [TTJ] angle; pelvic angle; maximum hip flexion angle; maximum hip 

extension angle; TTJ tetanic flexion force; TTJ tetanic extension force; percent eccentric 

contraction decrement; and, CS circumference) were assessed at the time of biopsy or 

necropsy as previously described [41]. 
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3.2.2 RNA Extraction and Gene Expression 

Total mRNA expression was estimated in skeletal muscles (Table 1) using 

quantitative real-time PCR (qPCR) for the following genes: MAP1LC3B, ATG12, BCN1, 

BNIP3, FBXO32, TRIM63, and HPRT1.  Total cellular ribonucleic acid (RNA) was 

isolated from frozen skeletal muscle samples utilizing TriPure Isolation Reagent (Roche, 

#11667157001) and tissue homogenization. Total RNA samples were DNase treated 

with Ambion Deoxyribonucleic Acid (DNA)-free kit™ (Applied Biosystems, 

#AM1906). RNA concentrations of the individual samples were measured using a 

Nanodrop 2000 spectrophotometer. RNA quality was assessed using a 2100 

BioAnalyzer (Agilent Technologies) and all samples had a RIN>9.  Samples of skeletal 

muscle RNA (100 ng) were reverse transcribed into cDNA using oligo-dT, random 

octamer primers and the SuperScript® II Reverse Transcription Kit (Invitrogen, #18064-

014). Primers were designed using the NCBI Primer-Blast tool to target spanning exons 

for 4 autophagy genes (MAP1LC3B, ATG12, BCN1, and BNIP3), 2 ubiquitin-

proteasome system (UPS) genes (FBXO32, TRIM63) and 1 housekeeping gene 

(HPRT1)(Table 2). PCR primer efficiency was estimated using the LinRegPCR program 

(Version 2015.3) to ensure the primer pair amplification factor was >1.9 [69-71]. The 

qPCR was performed in triplicate reactions with Power SYBR® Green PCR Master Mix 

(Applied Biosystems, #4367659) on an Applied Biosystems 7900HY Fast Real-Time 

PCR System. Relative fold changes in gene expression between normal and GRMD 

muscles were calculated using the comparative C(T) method and the equation 2-∆Ct with 

HPRT1 as the house keeping gene [72].   
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Table 1. Sample sizes for gene expression. 
Muscle Age 

(months) 
Normal 

(n=) 
GRMD 

(n=) 
CS 3 6 10 
VL 3 8 11 
CS 6 6 11 
VL 6 4 10 
CT 6 4 5 

MHG 6 4 5 
Diaphragm 6 3 4 

 
 

Table 2. Primers for qPCR. 
Gene Name Forward Primer Reverse Primer 
MAP1LC3B TTCAAGCAGCGTCGCACCTT GCTGTAAGCGCCTCCTAATGAT 

ATG12 CCCGAACCATTCAAGGACTCA CCCAGAGCTGTTTCCTTTGT 
BCN1 TCAGGAGGAAGCTCAGTATCAGA TGTGCCGAACTGTCCACTGT 
BNIP3 AGCTCCCAGTCTGAGGAAGA TTCCGGCCGACTTGACCAAT 

FBXO32 TGACGTTGCAGCCAAGAAGA CAGTTCCAACAGCCGCACAA 
TRIM63 TGCTCCATGTGCAAGGTGTT TGACTGTTCTCCTTGGTCACT 
HPRT1 AGCTTGCTGGTGAAAAGGAC TTATAGTCAAGGGCATATCC 

  

3.2.3 Western Blotting 

Protein expression of the autophagosome marker LC3B-II and the autophagy 

readout protein p62/SQSTM1 were evaluated in the CS (n=5 normal and 7 GRMD) and 

VL (n=5 normal and n=8 GRMD) of 6-month-old dogs using Western blotting [24]. To 

prepare protein lysates, frozen muscle samples were homogenized in RIPA lysis buffer 

(Santa Cruz Biotechnologies, #sc-24948A) and stabilized with HALT™ Protease & 

Phosphatase inhibitor (Thermo Scientific, #78442). Samples were incubated on ice for 

approximately 45 minutes and then centrifuged at 10,000 g (4°C) for 10 minutes. Pellets 

were discarded and supernatants for each sample were designated as the crude total 

protein lysates. Protein lysate concentrations were estimated using the modified-Lowry 

method provided by the DC™ Protein Assay Kit (Bio-Rad, #5000112) [45]. Protein 
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lysates were mixed with reducing SDS sample buffer, heated at 96°C for 5 minutes, than 

~60 μg/sample were loaded into 12% TGX Stain-Free™ polyacrylamide gels (Bio-Rad, 

#161-0185) for electrophoresis. The samples were run at 200 V for 45 minutes in the 

Mini-Protean® Tetra Cell (Bio-Rad, #165-8000) to allow for adequate separation of the 

protein profiles. To activate the TGX Stain-free gels prior to transfer, they were imaged 

on the Gel Doc™ EZ System (Bio-Rad, #1708270). Protein transfer was performed 

using the Mini Trans-Blot® system (Bio-Rad, #170-3930). A cooled, wet transfer at 

100V for 1 hour with Tris/Glycine/0.05% SDS and 20% methanol was performed. 

Quality transfer of the proteins to a methanol-activated, 0.2-μm (pore size) PVDF 

membrane was verified using the Gel Doc™ EZ System (Bio-Rad, #1708270). After 

excellent protein transfer was verified, the PVDF membrane was cut into 2 pieces (>20 

kDa and <20 kDa), which allowed for simultaneous probing for 2 autophagy-related 

proteins (LC3B and p62) of different molecular weights. The membrane was washed 

with Tris-buffered saline with 0.1% Tween 20 (TBST) for 10 minutes, then blocked with 

TBST containing 5% milk and 1% BSA for 1 hour at 20°C. Next, specific PVDF 

membrane pieces were washed for 10 minutes and then incubated for 1 hour at 20°C and 

~17 hours at 4°C in blocking buffer containing LC3B antibody (Novus Biologicals, 

#NB100-2220) or p62/SQSTM1 antibody (Novus Biologicals, #NBP1-49954) with 

rocking. The membranes were then washed in triplicate with TBST, 10 minutes each. 

Membranes were subsequently probed with goat anti-rabbit HRP secondary antibody 

(Pierce, #31466) diluted at 1:10,000 in blocking buffer for 1 hour at 20°C. This was 

followed by triplicate 10-minute washes with TBST. Finally, the membranes were 
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incubated with enhanced chemiluminescence substrate SuperSignal® West Dura 

(Thermo Scientific, #37071) for 5 minutes at 20°C and imaged on the Gel Doc™ XR+ 

System (Bio-Rad, #1708195). A cumulative chemiluminescent protocol was used to 

collect 60 consecutive images starting at 10 seconds and ending at 600 seconds. The 

images were analyzed using the Image Lab™ software (Bio-Rad, Version 5.2). 

Normalization of band density for the protein of interest was performed by correcting for 

the amount of total protein loaded. This was estimated by measuring the total regional 

lane density identified on the PVDF membranes. Relative fold change in protein 

expression was normalized for protein loading by calculating the ratio of individual band 

density (e.g., LC3B-II, p62) and total lane density (LD).  

3.2.4 Light Microscopy 

Muscle samples were stored at -80ºC prior to processing. Serial muscle 

cryosections were cut at 7 μm and stained with hematoxylin and eosin (H&E) and 

modified-Gomori Trichrome for histopathologic assessment. For immunofluorescence, 

serial cryosections were thawed, rehydrated and permeabilized in physiological buffered 

saline (PBS) containing 0.2% fish skin gelatin (FSG) and 0.1% Triton X-100 for 10 

minutes at room temperature (~20°C) and then washed 2 times with PBS. Sections were 

then fixed in cold 100% acetone for 10 minutes and then washed 3 times with PBS (5 

minutes each). Sections were blocked for 1 hour at ~20°C with 5% normal goat serum, 

PBS+0.3% Triton X-100. Primary antibody incubation was overnight (~17 hours) at 4°C 

with the following antibodies: rabbit monoclonal LC3B (D11) XP® (Cell Signaling, 

#3868), mouse monoclonal myosin heavy chain (fast) (Leica Biosystems, #NCL-MHCf) 
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and mouse monoclonal myosin heavy chain (slow) (Leica Biosystems, #NCL-MHCs). 

Sections were then washed 2 times in PBS-FSG-Triton (5 minutes each) and then once 

with PBS-FSG. Secondary antibody incubation was for 1 hour at ~20°C with the 

following antibodies: goat anti-rabbit Alexa Fluor® 488 (Thermo Fisher, #A11008) and 

goat anti-mouse Alexa Fluor® 594 (Thermo Fisher, #A11005). Sections were washed 2 

times with PBS-FSG-Triton and then incubated with DAPI for 5 minutes at 20°C. 

Sections were washed 2 times with PBS-FSG-Triton and once with PBS-FSG (5 minutes 

each). Prolong® Gold Anti-fade reagent (Life Technologies, #P36930) was placed on the 

sections followed by coverslips. Images of the sections were viewed on a Nikon Eclipse 

80i microscope and collected for analysis with NIS-Elements Basic Research software 

(Laboratory Imaging, Version 3.22.14). Further imaging processing was performed in 

ImageJ (National Institute of Health, Version 1.48).  

3.2.5 Transmission Electron Microscopy 

To define autophagosomes morphologically, CS and VL muscle samples were 

collected at necropsy from 6-month-old GRMD dogs (n=4) and routinely prepared for 

transmission electron microscopy (TEM).  Autophagosomes were defined as vesicular 

compartments with double-limiting membranes containing heterogeneous cytosolic 

materials or mitochondria [73]. Muscle samples were fixed immediately in 3% 

glutaraldehyde + 2% paraformaldehyde buffered with 0.1 M sodium cacodylate (pH 7.4) 

for 1 hour. Individual muscle fascicles were dissected from each muscle sample and 

placed in fresh fixative overnight at 4°C. Muscle fascicles were then removed from the 

fixative and washed with 0.1 M sodium cacodylate solution. Following fixation, tissues 
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were treated with 2% OsO4+1.5% K Ferrocyanide in 0.1 M sodium cacodylate for 5 

hours at room temperature. Next, tissues were washed 3 times with H2O for 5 minutes 

each and then incubated with 2% uranyl acetate (UA) in distilled water for 3 hours. 

Following UA treatment, the tissue was washed overnight in H2O at room temperature 

and 3 times with H2O prior to dehydration. Tissues were dehydrated using a graded 

series of absolute EtOH solutions finishing with absolute acetone and then incubated 

overnight with 1/3 EMbed 812 Resin (EMS, #812) and 2/3 absolute acetone at room 

temperature. Next, samples were incubated with 2/3 Resin and 1/3 absolute acetone at 

room temperature for 8 hours and then overnight in 100% Resin. Finally, tissues were 

placed in molds, embedded in resin and baked at 60ºC for ~72 hours. Thin sections (80 

nm) were placed on formvar-coated mesh grids and copper mesh grids for staining with 

UA and lead citrate. Images were collected from an FEI Transmission Electron 

Microscope in the Image Analysis Laboratory at Texas A&M University and digitally 

captured for analysis. 

3.2.6 Statistical Analysis 

 All values are expressed as means ± 95 % confidence interval. Statistical 

differences in gene and protein expression between different muscles of normal and 

GRMD dogs were analyzed using a one-way ANOVA (p<0.05). Phenotypic correlations 

with gene and protein expression were analyzed with the Spearman’s correlation test 

(p<0.05). We chose this conservative route because of the small sample sizes and the 

fact that data variation stretched the assumptions of the Pearson correlation test. The null 

hypothesis for the Spearman test is that there is no association between the 2 variables 
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(e.g., gene or protein expression and phenotypes). All analyses and graphs were created 

with JMP® Pro 11.1.1. 

 

3.3 Results 

3.3.1 Gene Expression in Muscles of Normal and GRMD Dogs 

A total of 4 autophagy-related genes (MAP1LC3B, ATG12, BCN1, and BNIP3) 

and 2 ubiquitin proteasome system (UPS) genes (FBXO32, TRIM63) were analyzed.  We 

were particularly interested in MAP1LC3B gene expression since it is essential for 

autophagosome biogenesis [74]. Expression was lower in the GRMD versus normal CS 

at both 3 and 6 months of age (Figure 8A) and in the VL at 3 but not 6 months. 

MAP1LC3B levels also trended towards lower levels in the CT, MHG, VL, and 

diaphragm at 6 months.  

The ATG12 gene codes for ATG12, which is a component of the ATG12-ATG5-

ATG16 protein conjugation complex essential for autophagy [75].  ATG12 expression 

was lower in the CS only at 3 months (p=0.036) with a trend at 6 months (Figure 8B). 

Interestingly, ATG12 levels were higher in the GRMD MHG (p=0.033) at 6 months of 

age compared to normal dogs. In further contrast to the GRMD CS at 6 months, the VL 

(p=0.074) and diaphragm (p=0.052) also trended towards being higher compared to 

normal dogs.  
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Figure 8. Autophagy gene expression in the cranial sartorius. A) MAP1LC3B gene expression was 
lower at 3 and 6 months of age in GRMD dogs. B) ATG12 expression was lower in 3-month-old 
GRMD dogs. C) BNIP3 was lower in 6-month-old GRMD dogs. Bar graphs represent mean 
expression +/- 95 % confidence interval. *p<0.050, **p<0.010. 
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BCN1 codes for the Beclin 1 protein, which is novel regulator of autophagy 

induction and involved in autophagosome biogenesis (i.e., initiation and nucleation)[76]. 

While levels in GRMD and normal dogs did not differ for any muscle at either 3 or 6 

months of age, there was a trend towards higher values in GRMD. This difference 

neared significance in the VL at 3 months (p=0.078) and in the MHG at 6 months 

(p=0.073).  

BNIP3 codes for the Bnip3 protein, which is a potent inducer of autophagy and 

critical for selective autophagy of mitochondria and the endoplasmic reticulum [77].  

BNIP3 levels were generally lower in GRMD muscles at both 3 and 6 months of age, 

with the most significant differences being in the 3-month VL (p=0.001) and 6 month 

CS (p=0.015) (Figure 8C).  

We also assessed expression of 2 genes (FBXO32, TRIM63) that code for 

ubiquitin ligases, which directly track with UPS activation and are essential for muscle 

atrophy [78]. Both were significantly lower in the CS at 3 months (FBXO32, p=0.010; 

TRIM63, p=0.001).  In the 6 month samples, TRIM63 was higher in the diaphragm 

(p=0.039), while levels appeared to be normalizing in the CS.  

In summary, gene expression in GRMD muscles at both 3 and 6 months of age 

was generally compatible with down-regulation of autophagy signaling without 

significant activation of the UPS.  Findings from the CS at 6 months were most 

remarkable, with significant down-regulation of both MAP1LC3B and BNIP3. It is not 

surprising that MAP1LC3B, ATG12, and BNIP3 tracked together, because FOXO3 has 
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been shown to be a master regulator of several autophagy-related genes in skeletal 

muscle [67].   

3.3.2 Autophagy Gene Expression Correlates with GRMD Phenotype 

The dystrophinopathies demonstrate dramatic phenotypic variation at several 

levels, including muscle (e.g., CS vs. VL), individual dystrophic humans or dogs, and 

species (e.g., mdx vs GRMD). This phenotypic variation provides a platform to better 

understand pathophysiologic mechanisms and genetic modifiers. In principle, 

meaningful molecular changes should track with phenotype.  With that said, such an 

association does not necessarily prove cause and effect. 

BNIP3 in the CS correlated positively with TTJ tetanic flexion (N/kg) when 

assessing all GRMD and normal dogs, or GRMD dogs alone (Table 3). Even though the 

CS does not act on the TTJ joint, CS circumference and TTJ tetanic force correlate 

directly.  Thus, this correlation provided indirect evidence of a causal association.  With 

a more direct functional comparison, expression of CS MAP1LC3B in all dogs and 

BCN1 in GRMD dogs alone correlated negatively with CS circumference.  Considering 

the critical role Beclin 1 plays in autophagy induction and autophagosome biogenesis, 

identifying a negative correlation with CS circumference suggests that reduced 

autophagy could contribute to CS hypertrophy, which tends to track with a more severe 

GRMD phenotype [43, 76]. 

 BNIP3 VL expression and tetanic TTJ flexion correlated positively at 6 months 

when assessing both GRMD and normal dogs (Spearman ρ=0.6703, p=0.012) or GRMD 
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dogs alone (Table 3). As with the CS, VL BCN1 expression correlated negatively with 

CS circumference, suggesting that the CS finding could be nonspecific. 

 

Table 3. Autophagy gene expression at 6 months of age correlates with phenotype. 
              

Genotype 
 

Muscle Variable 
by 

Variable 
Spearman 

ρ 
Prob 
>|ρ| 

Normal & GRMD CS CS Circumference (MM/KG) MAP1LC3B -0.7206 0.002 
Normal & GRMD CS TTJ Tetanic Flexion (N/KG) MAP1LC3B 0.6618 0.005 
Normal & GRMD CS Pelvic Angle (o) MAP1LC3B -0.6361 0.011 
Normal & GRMD CS TTJ Angle (o) MAP1LC3B 0.5093 0.044 
Normal & GRMD CS TTJ Tetanic Flexion (N/KG) BNIP3 0.7647 0.001 
Normal & GRMD CS TTJ Tetanic Extension (N/KG) BNIP3 0.7118 0.002 
Normal & GRMD CS TTJ Angle (o) BNIP3 0.6159 0.011 

GRMD CS CS Circumference (MM/KG) BCN1 -0.6848 0.029 
GRMD CS TTJ Tetanic Flexion (N/KG) BNIP3 0.7455 0.013 
GRMD CS Hip Flexion Angle (o) FBXO32 0.6862 0.041 
GRMD CS TTJ Tetanic Extension (N/KG) TRIM63 -0.8424 0.002 
GRMD CS Pelvic Angle (o) TRIM63 0.7841 0.007 
GRMD VL CS Circumference (MM/KG) BCN1 -0.8167 0.007 
GRMD VL TTJ Tetanic Flexion (N/KG) BNIP3 0.7167 0.030 
GRMD VL TTJ Tetanic Flexion (N/KG) FBXO32 0.7143 0.046 
GRMD VL TTJ Tetanic Extension (N/KG) FBXO32 0.7143 0.046 

Normal & GRMD MHG TTJ Tetanic Flexion (N/KG) BCN1 -0.8 0.010 
Normal & GRMD MHG TTJ Tetanic Flexion (N/KG) ATG12 -0.7833 0.012 
Normal & GRMD MHG TTJ Angle (o) ATG12 -0.7596 0.018 
Normal & GRMD MHG CS Circumference (MM/KG) ATG12 0.6667 0.049 

GRMD MHG Hip Extension Angle (o) BCN1 -1 <0.001 
GRMD MHG Pelvic Angle (o) FBXO32 0.9747 0.005 
GRMD MHG TTJ Tetanic Extension (N/KG) MAP1LC3B -0.9 0.037 
GRMD MHG TTJ Tetanic Extension (N/KG) FBXO32 -0.9 0.037 
GRMD MHG CS Circumference (MM/KG) TRIM63 0.9 0.037 
GRMD MHG Hip Flexion Angle (o) MAP1LC3B 0.9 0.037 
GRMD MHG Hip Flexion Angle (o) FBXO32 0.9 0.037 

 
 

  The CT contributes to TTJ flexion so correlations here could be particularly 

meaningful. MAP1LC3B expression in GRMD dogs considered alone correlated 

negatively with TTJ tetanic flexion force (Spearman ρ=-0.9, p=0.037), consistent with 

autophagy having a degradative role. Otherwise, BNIP3 expression correlated positively 

with maximum hip extension angle of both the grouped GRMD and normal dogs 
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(Spearman ρ=0.8667, p=0.002) and GRMD dogs alone (Spearman ρ=0.9, p=0.037).  A 

degradative effect on hip flexors analogous to that seen in the CT could, in principle, 

expand hip extension.  However, as discussed above, CS MAP1LC3B and BCNI 

expression correlated negatively with CS circumference, suggesting that down-

regulation of autophagy genes might actually contribute to CS hypertrophy. 

The MGH contributes to TTJ extension; therefore, correlations are likely to be 

meaningful. To this effect, MAP1LC3B and FBXO32 in GRMD dogs alone correlated 

negatively with TTJ tetanic extension force (Table 3).  Increased autophagy would 

potentially enhance muscle degradation, thus accounting for the negative correlation.  

The functional relationship between ATG12 and TTJ angle could have a similar 

explanation.  Increased degradation and associated weakening of the MGH would allow 

TTJ flexors to predominate and lessen the angle. Other correlations between MHG gene 

expression and TTJ flexion and CS circumference are likely not consequential, given 

that the MGH does not play a role in either test.  

In summary, of the genes studied, MAP1LC3B appeared to have the most 

consequential role in GRMD disease expression.  As discussed earlier, levels were lower 

in the GRMD CS at 3 and, to a lesser extent, 6 months of age.  Lower MAP1LC3B at 3 

months would logically have greater consequential effects on functional data at 6 

months, when persistently lower values correlated with CS circumference.  This suggests 

that reduced CS autophagy could contribute to the classical true hypertrophy seen in this 

muscle [11, 43].  Gene expression was only studied in the CT and MGH muscles at age 

6 months, at which time there was only a trend towards lower GRMD expression.  
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Assuming a similar age effect to that seen in the CS, MAP1LC3B would be expected to 

be even more down-regulated in these muscles at 3 months.  Thus, just as with the CS, 

the negative correlation between MAP1LC3B levels and TTJ tetanic flexion force would 

be in keeping with a role for reduced autophagy in the functional hypertrophy seen in 

TTJ flexors at age 6 months [42].  A similar negative correlation was seen between 

MAP1LC3B expression and TTJ tetanic extension force at age 6 months.  As opposed to 

hypertrophy seen in TTJ flexors at 6 months, TTJ extensors such as the MGH are 

atrophied and weaker [42, 43]. This points to the complexity and diversity of the 

regulatory systems among different muscles. Activation or inhibition of autophagy may 

be beneficial in one muscle and deleterious in another.  

3.3.3 Autophagy Protein Expression in Muscles of Normal and GRMD Dogs 

Gene expression does not necessarily track with protein levels and activity. To 

better establish overall autophagic activity, we used Western blotting to assess the 

established autophagosome marker LC3B-II and the autophagy readout protein 

p62/SQSTM1 [24].  LC3B-II levels in the GRMD CS were increased over normal, with 

a mean fold change of 9.03 (p=0.014) (Figure 9), indicating accumulation of 

autophagosomes in a range of potential cells (satellite cells, myocytes, fibroblasts, 

immune cells, adipocytes and blood vessels) due to either increased flux, decreased 

clearance, or an overwhelmed autophagic system.   

We then assessed expression of p62, a readout protein relatively specific for 

autophagic activity.  If autophagic flux were increased in the dystrophic CS, p62 levels 

should be lower.  Interestingly, 3 distinct p62 bands were identified in the CS samples. 
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These different bands could represent different isoforms, off target antibody binding or 

post-translation modifications of p62. Levels of the intermediate 60 kDa band were 

significantly higher in GRMD dogs (Fold Change = 5.25, p=0.004) (Figure 9), 

consistent with decreased autophagic flux.  

 

 
Figure 9. Western blots for LC3B and p62 in the CS of 6-month-old normal and GRMD. LC3B-II 
and p62 were significantly higher in the GRMD CS at 6 months of age relative to normal dogs. Bar 
graphs represent mean +/- 95% confidence interval. *p<0.05. 

 

With normal balanced autophagy, increased LCB-II activity should track with 

decreased p62 expression.  The lack of such a balance suggests that autophagy may be 

dysregulated in the GRMD CS muscle.  As discussed earlier, the CS undergoes early 

necrosis and then stabilizes and may even hypertrophy. We next repeated these studies 
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in the VL, which has a more delayed onset of active necrosis and is typically atrophied at 

6 months. Mean LC3B-II expression was higher in the VL of GRMD versus normal 

dogs (Fold Change = 2.35) but the difference was not significant (p=0.140) (Figure 10).  

However, p62 was significantly increased in the GRMD VL relative to normal dogs 

(Fold Change = 4.7, p=0.042) (Figure 10). Taken together, these findings suggest that 

autophagic activity is decreased in the GRMD VL at age 6 months. 

 

 
Figure 10. Western blots for LC3B and p62 in the VL of 6-month-old normal and GRMD dogs. 
LC3B-II was not significantly higher in the GRMD VL relative to normal. However, p62 was 
significantly higher in GRMD VL. Bar graphs represent the mean +/- 95% confidence interval. 
*p<0.050. 
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3.3.4 Autophagy Protein Expression Correlates with Phenotype in GRMD  

Protein expression data were correlated with functional test results to infer 

potential clinical significance. Starting with the CS, LC3B-II and p62 activity correlated 

positively with CS circumference, drawing an association between impaired 

autophagosome clearance and hypertrophy. Impaired autophagic activity could 

contribute to the disordered repair response that allows muscle hypertrophy to occur.  

Turning to GRMD dogs considered alone, p62 levels in the CS correlated positively with 

pelvic angle and negatively with TTJ tetanic extension (Table 4). Higher pelvic angles 

imply reduced range of motion associated with imbalanced strength due to selective 

flexor hypertrophy and extensor weakness.  Using TTJ extension as a surrogate for 

effects in extensor muscles as a whole, the opposite negative correlation with TTJ 

extension would be expected.  

In considering the VL of grouped GRMD and normal dogs, we again expected to 

see a differential effect between TTJ extensor and flexor tetanic force.  Instead, p62 

levels correlated negatively with both values (Table 4). Decreased autophagic activity 

implied by higher p62 values could more broadly impair the regenerative response of 

dystrophic muscle over and above its effect on muscle degradation. Expression levels of 

p62 also correlated negatively with pelvic angle but positively with TTJ angle, in 

keeping with reduced range of motion in the pelvis and an opposite effect on the TTJ 

angle. The association between p62 expression and these angles likely reflects relative 

inefficiency in clearing cellular debris and damaged organelles during muscle repair.  
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Depending on the muscle involved and timing of disease, impaired autophagic activity 

could have either deleterious or beneficial effects. 

 

Table 4. Autophagy protein expression at 6 months of age correlates with phenotype. 

Genotype  
  

Muscle Variable 
by 

Variable 
Spearman 

ρ 
Prob>|
ρ| 

Normal & GRMD CS TTJ Tetanic Flexion (N/KG) LC3B-II -0.827 0.002 
Normal & GRMD CS CS Circumference (MM/KG) LC3B-II 0.772 0.005 

Normal & GRMD CS Eccentric Contraction 
Decrement (%) LC3B-II 0.618 0.043 

Normal & GRMD CS TTJ Tetanic Extension (N/KG) p62 -0.954 <0.001 
Normal & GRMD CS CS Circumference (MM/KG) p62 0.890 <0.001 
Normal & GRMD CS Pelvic Angle (o) p62 0.814 0.004 
Normal & GRMD CS TTJ Angle (o) p62 -0.762 0.006 
Normal & GRMD CS TTJ Tetanic Flexion (N/KG) p62 -0.736 0.010 

Normal & GRMD CS Eccentric Contraction 
Decrement (%) p62 0.727 0.011 

GRMD CS Pelvic Angle (o) p62 0.985 <0.001 
GRMD CS TTJ Tetanic Extension (N/KG) p62 -0.942 0.005 

Normal & GRMD VL TTJ Tetanic Flexion (N/KG) p62 -0.727 0.011 
Normal & GRMD VL Pelvic Angle (o) p62 0.734 0.016 

Normal & GRMD VL Eccentric Contraction 
Decrement (%) p62 0.690 0.019 

Normal & GRMD VL TTJ Tetanic Extension (N/KG) p62 -0.681 0.021 
Normal & GRMD VL TTJ Angle (o) p62 -0.642 0.033 

 

 
3.3.5 Spatial Expression of LC3B in Canine Skeletal Muscle 

Our Western blot data indicate that muscles from 6-month-old GRMD dogs have 

increased LC3B-II and p62 protein levels. Measurement of static levels of these proteins 

in skeletal muscle does not allow definition of where the material is accumulating, nor 

whether there is truly increased autophagic activity or decreased autophagic flux and 

pathway dysregulation. So as to better make this distinction, we used light and TEM to 

localize LC3B-positive autophagic structures in the differentially affected cranial CS and 

VL muscles of 6-month-old GRMD dogs.  
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Figure 11. H&E muscle section of the CS and VL at age 6 months in normal and GRMD dogs. Note 
the phenotypic variation characterized by the hypertrophied muscle fibers in the GRMD CS and the 
atrophied fibers in the GRMD VL. 
 

Classical small group muscle necrosis and regeneration typical of dystrophin–

deficient muscle was seen on H&E sections (Figure 11).  Myofibers in the CS were 

hypertrophied, while those of the VL were atrophied.  Occasional myofibers in each 

section of both muscles exhibited abundant punctate LC3B positive (~1 um) foci, 

consistent with autophagic vacuoles (Figure 12).  These vacuoles were primarily seen in 

hypertrophied, hypercontracted (e.g., hyaline) fibers and degenerative muscle cells 

invaded with macrophages but also occurred in inflammatory cells within the interstitial 

space.   
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Figure 12. LC3B immunofluorescence in the 6-month-old GRMD CS. Top Panel: Light microscopy 
immunofluorescence for LC3B in the GRMD CS revealed punctate signals in degenerative muscle 
fibers and invading inflammatory cells (red arrow). Normal IgG served as the negative control and 
supported the LC3B antibody specificity (white arrows). Bottom Panel: Serial sectioning and 
staining with H&E and modified Gomori trichrome of the GRMD CS at age 6 months revealed that 
the LC3B positive cells were characteristically degenerative fibers (asterisks) with peripheral 
staining (red arrows).  
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Interestingly, LC3B positive foci were seen in occasional myofibers of normal 

VL muscle but not the normal CS (Figure 13), perhaps related to the fiber type (i.e., 

slow- vs. fast-twitch) makeup of the muscle [79]. The CS and VL are mixed muscles, so 

fiber type would not be expected to play a major role in the differential pattern of 

autophagic vacuole distribution. However, we typically sample the periphery of the VL 

muscle away from the bone, where there is a higher percent of fast-twitch fibers [49]. 

 
 

 
Figure 13. LC3B immunofluorescence in normal CS, VL and GRMD VL.  Punctate LC3B staining 
is more prominent in the normal VL than the normal CS at age 6 months. LC3B staining is localized 
to rare, specific myofibers (red arrows) in the GRMD VL. Note the absence of punctate staining in 
the IgG negative control (white arrows). 
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We pursued the possibility that fiber type was playing a role by investigating the 

myosin heavy chain (MHC) fiber type of the LC3B-positive myofibers.  LC3B-positive 

fibers present in the dystrophic CS (Figure 14) and VL (Figure 15) and normal VL 

muscles were consistently positive for fast-twitch MHC antibody, in keeping with prior 

studies showing that fast fibers have greater autophagic activity [79].  

  

 
Figure 14. Immunofluorescence staining for LC3B and MHC fiber-typing in GRMD CS.MHC fiber-
typing in the CS of 6-month-old GRMD dogs revealed proportionally more slow-twitch fibers 
compared to normal. Double immunostaining for LC3B and MHC fiber-typing revealed LC3B 
puncta were predominately in fast-twitch fibers. 
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Figure 15. Immunofluorescence staining for LC3B and MHC fiber-typing in GRMD VL. LC3B 
staining in the GRMD VL at age 6 months is concentrated to degenerative fibers (white arrows) and 
cells in the interstitial spaces. The LC3B positive fibers are predominately fast-twitch based on 
MHC fiber typing and the IgG staining serves as the negative control. 
 
 
 

The proportion of slow-twitch muscle fibers was increased in GRMD muscle, 

consistent with the slow-fiber predominance reported previously in DMD and GRMD.  

Many of the fibers stained for both slow- and fast-MHC markers, reflecting the muscle’s 

attempt at regeneration and necessary fiber type switching (Figure 16) [80, 81].  
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Figure 16. MHC fiber-typing in the CS and VL of normal and GRMD dogs. MHC fiber-typing in 
GRMD muscles at age 6 months revealed proportionally more slow-twitch fibers in the CS and 
fewer fast-twitch fibers in the VL, compared to normal.  



 

54 

 

3.3.6 Ultrastructural Analysis of GRMD Skeletal Muscle 

To further characterize the nature and morphologic distribution of LC3B positive 

foci (i.e., autophagic vacuoles), we conducted ultrastructural studies, focusing on thick 

sections with hyaline fibers and fiber degeneration. Indeed, we identified classic double 

membrane-bound autophagosomes containing debris in degenerating fibers (Figure 

17A) but rarely in normal appearing fibers. Furthermore, we identified autophagic 

vacuoles, residual bodies, and myelin figures in degenerating myofibers (Figure 17B), a 

single neuromuscular junction (Figure 17C), and local inflammatory cells (Figure 17D, 

Figure 17E).  These structures were present in the cytoplasm near the sarcolemma of 

myofibers, consistent with the LC3B immunofluorescence staining pattern.  

Macrophages, both within the extracellular space (Figure 17D) and necrotic myofibers 

(Figure 17E), contained vacuolated structures typical of lysosomes, phagosomes and 

autophagic vacuoles, as previously reported (69). Taken together, the residual bodies, 

myelin figures, and autophagic vacuoles in degenerative fibers and inflammatory cells 

likely contributed to the LC3B signal identified by western blot and 

immunofluorescence[82].  These structures would be expected in degenerative muscle 

and could be consistent with impaired autophagy, although they do not, in themselves, 

reflect a disordered or inappropriate autophagic response.  



 

55 

 

 
Figure 17. TEM images of 6-month-old GRMD CS and VL. A) Autophagic vacuole containing cargo 
identified in a GRMD VL myofiber. B) Myelin figures and residual bodies in a GRMD CS myofiber. 
C) GRMD CS neuromuscular junction containing residual bodies.  D) Phagosomes in a macrophage 
located outside a necrotic myofiber. E) Autophagic vacuoles and phagosomes in a necrotic myofiber 
invaded with inflammatory cells. 
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In summary, the minimal evidence of LC3B-positive structures with 

immunofluorescence and absence of autophagosomes on ultrastructural assessment 

matched our gene expression results suggesting down-regulation of autophagy. 

Similarly, the increase in both LC3B-II and p62 protein was in keeping with either 

compromised autophagic activity or an overwhelmed autophagic system. 

 

3.4 Discussion 

Disordered autophagy has been incriminated in the pathogenesis of a number of 

diseases [23].  Studies in the dystrophinopathies have mostly focused on the mdx mouse, 

in which autophagy is generally felt to be down-regulated but varies somewhat among 

muscles. For example, autophagy was normal in the diaphragm but impaired in the 

tibialis anterior [61]. Overall, inadequate removal of damaged proteins and organelles is 

thought to contribute to a more severe mdx phenotype.  Supporting this notion, therapies 

directed at enhancing autophagy have been beneficial [58-64]. 

Importantly, there is a fine line between true cell death by autophagy and the 

failed attempts of autophagy to ‘save’ the cell, ultimately leading to necrosis or 

apoptosis [83]. More than likely, dysregulated autophagy contributes to the cell’s 

ultimate fate by failing to clean up the accumulating damaged organelles and proteins. 

Another unique mechanism of autophagic cell death, involving extracellular ATP (i.e., 

damage-associated molecular pattern), heat-shock protein and the purinergic receptor 

P2X ligand-gated ion channel 7 (P2RX7), has been proposed in the mdx mouse [64]. In 

this context, the dystrophic muscle could take a ‘double hit’ potentially beginning with 
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inherent dysregulated autophagy and compounded by membrane fragility caused by the 

absence of dystrophin.  

In contrast to the mdx mouse, autophagy and UPS gene expression were 

comparable in most GRMD and normal muscles. However, as with a number of our 

other studies [11, 43], the GRMD CS muscle had a distinctive pattern. Levels of the 

FOXO3 regulated genes, MAP1LC3B, ATG12, and BNIP3, were lower than normal, 

especially at 3 months of age, when the CS is still recovering from early necrosis [43].  

Interestingly, at 6 months of age, when the CS has stabilized and uniquely 

hypertrophied, autophagy gene expression remained lower than normal.  Importantly, 

levels at this age correlated negatively with the degree of hypertrophy, pointing to a 

potential causal association. This association between autophagy and CS hypertrophy 

could be tied to Akt/mTOR activation, which serves as the master regulator of 

autophagy and is involved in muscle regeneration and hypertrophy in the mdx mouse 

and GRMD dog [11, 84, 85].  

Beyond our studies of autophagy gene expression, we studied LC3B-II and p62 

protein expression to better characterize autophagic flux [24].  Based on the mdx 

literature and our GRMD gene expression findings, we hypothesized that autophagy is 

lower in GRMD muscle, as evidenced by decreased levels of LC3B-II and increased p62 

[58].  Surprisingly, LC3B-II levels in the GRMD CS were increased over normal, 

suggesting increased flux, decreased clearance (e.g., lysosome dysfunction), or an 

overwhelmed autophagic system.  Levels of the p62 protein, which is relatively specific 

for autophagic activity, were also higher in GRMD dogs, consistent with decreased 
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autophagic flux.  To better understand the functional consequences of dysregulated 

autophagy, we correlated protein expression and phenotypic data.  Most notably, p62 

tracked positively with GRMD CS circumference, drawing an association between 

impaired autophagosome clearance and inappropriate muscle hypertrophy.  

Importantly, gene and protein expression data do not allow definition of involved 

cells.  While autophagy may be impaired in dystrophic muscle cells, it may also be 

activated in invading inflammatory cells, creating a mixed signal. Moreover, lipids, 

lipofuscin and residual bodies seen on ultrastructural analysis can give an LC3 signal 

[82]. We utilized light and ultrastructural microscopy to better understand the spatial 

component of autophagy in GRMD muscle. Consistent with other studies, autophagy 

varied between muscle types, being higher in fast-twitch fibers.  In this context, the shift 

from fast- to slow-twitch muscle fibers in dystrophic muscle could contribute to apparent 

autophagy dysregulation.  Beyond the fiber type specificity, LC3B positive puncta were 

seen in degenerating myofibers and inflammatory cells involved in the clean-up process. 

As discussed earlier, considering autophagy’s role in cell survival, basal dysfunction 

could predispose myofibers to the “double hit” of membrane fragility caused by 

dystrophin’s absence.  Our ultrastructural findings were nonspecific and more consistent 

with necrosis (e.g., damaged sarcolemma, swollen mitochondria and sarcoplasmic 

reticulum); however, the presence of autophagic vacuoles, residual bodies, and myelin 

figures could be clues to support cell death by autophagy [64] or impaired 

autophagosome clearance (e.g., lysosome dysfunction) [62, 86]. This would be further 
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compounded by continuing cellular stress [87] and the role that autophagy plays with the 

monocyte-macrophage system in the cleanup process [88-90].  

Our serial gene expression studies at different ages provided insight on changes 

associated with autophagy gene regulation as the disease progressed. Additionally, by 

correlating gene and protein expression levels with phenotypic findings, we were able to 

infer certain disease associations (e.g., CS hypertrophy).  Importantly, these GRMD data 

are static measurements of autophagic activity. An autophagy flux assay, utilizing drugs 

like chloroquine, would be required to assess the movement of material through the 

autophagic pathway. Further limitations include our failure, thus far, to analyze 

autophagy related signaling proteins (e.g., Akt, p-Akt, mTOR, Beclin-1), small sample 

sizes inherent to large animal studies, and the lack of normal canine muscle for 

transmission electron microscopy. 

In conclusion, our data suggest that autophagy is impaired in at least certain 

muscles of GRMD dogs.  Basal autophagy dysregulation could place the fragile 

dystrophic myofiber at added risk, which would be further compounded by defective 

cleanup of cell debris. The differential involvement of the GRMD CS emphasizes that 

therapeutic modulation of autophagy must be carefully considered and could require 

specific targeting.   Our microscopic findings point to the shortcomings of interpreting 

gene and protein expression data alone, which do not allow definition of cells of origin. 

LC3B positive puncta seemed to cluster together, and where typically identified in 

degenerating myofibers and invading inflammatory cells, resulting in a mixed signal. 

These findings highlight the importance of utilizing a multi-modal approach to verify the 
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cellular sources of autophagic activity in skeletal muscle. Further investigation is 

required to determine if autophagy induction would be beneficial in GRMD. 

Our findings in GRMD support previous reports that indicate loss of dystrophin 

results in a dysfunctional lysosome system [62, 86]. Without functional lysosomes, 

autophagy cannot effectively ‘clean-up’ and recycle damaged organelles and proteins, 

resulting in ultimate failure of autophagy activation. Therefore, future investigations 

should include evaluation of lysosome biogenesis regulation (e.g., transcription factor 

EB [TFEB]) and protein expression (e.g., lysosomal-associated membrane protein-1 

[LAMP-1]) in GRMD skeletal muscle.  
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4. NBD PEPTIDE THERAPY MODIFIES AUTOPHAGY IN GOLDEN RETRIEVER 

MUSCULAR DYSTROPHY 

 

4.1 Introduction 

Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder caused by 

mutations in the DMD gene that results in the absence of the dystrophin protein [91-93]. 

Dystrophin is essential for linking the muscle cytoskeleton to the extracellular matrix 

[2]. Without dystrophin, skeletal muscle undergoes progressive cycles of degeneration 

and regeneration, with consequent weakness, debilitating contractures and terminal 

respiratory and/or cardiovascular failure. Currently, treatments are palliative, consisting 

of corticosteroids and physical therapy [3]. Corticosteroids cause deleterious side-

effects, prompting development of alternative pharmacologic strategies. Animal models, 

particularly the mdx mouse and golden retriever muscular dystrophy (GRMD) dog, play 

a key role in testing these treatments [94]. 

Corticosteroids act, in part, by blocking NF-κB signaling, which otherwise 

contributes to inflammation in dystrophin-deficient muscle [95].  A number of other 

treatments have been employed to inhibit NF-κB signaling [96]. One particular 

compound, the Nemo binding domain (NBD) peptide, blocks NF-κB by inhibiting 

assembly of the inhibitor of kappa B kinase (IKK) complex (i.e., IKKα and IKKβ) [97].  

Mdx mice treated with NBD peptide improved muscle function and pathology [98-100]. 

A follow up study of GRMD dogs also showed NBD benefit [101]. 
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Recently, macroautophagy (hereafter known as autophagy) has been investigated 

as a novel therapeutic target in DMD [27, 58, 61, 64, 102, 103]. Similar to NF-κB 

signaling, autophagy is a conserved biological mechanism essential for eukaryotic cell 

survival and homeostasis. Post-mitotic cells (e.g., myofibers and neurons) are more 

susceptible to disruptions in autophagy. Furthermore, data from mdx mice have shown 

that altered autophagic flux contributes to disease pathogenesis [58-64]. Autophagy and 

NF-κB pathways regulate each other in a context-dependent manner, with the potential 

for both inhibition and induction [104-108]. However, little is known about the crosstalk 

between these 2 processes in dystrophic muscle.   

We sought to address this void by studying autophagy gene and protein 

expression in skeletal muscle of GRMD dogs previously treated with NBD [101].  While 

autophagy gene expression was increased in a muscle-dependent way in treated versus 

untreated GRMD dogs, protein levels did not differ consistently. Autophagy modulation 

with NBD treatment correlated with improved GRMD phenotype, but this effect also 

varied among muscles. Further investigation is required to determine the role NF- κB 

inhibition in modulating autophagy in skeletal muscle. 

 

4.2 Materials and Methods 

4.2.1 Animals 

Dogs were cared for and assessed according to principles outlined in the National 

Research Council Guide for the Care and Use of Laboratory Animals. Dogs used in 

these studies were from a colony at the University of North Carolina at Chapel Hill 
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(UNC-CH) that was subsequently moved to Texas A&M University (TAMU). NBD 

studies performed at UNC-CH were approved by the UNC-CH Institutional Animal Care 

and Use Committee (IACUC) through protocol: NF-kB Inhibition Therapy for 

Duchenne Muscular Dystrophy (10-060).  Control data were from natural history studies 

approved through IACUC protocol  entitled, “Natural History and Immunological 

Parameters in the German Shorthaired Pointer Muscular Dystrophy (GSHPMD)” (09-

011).  Overall animal care and biomarkers used to characterize phenotype were covered 

by IACUC protocol entitled, “Standard Operating Procedures—Canine X-Linked 

Muscular Dystrophy” (09-351). The GRMD genotype was originally suspected in 

newborn pups based on elevation of serum creatine kinase (CK) and confirmed by 

polymerase chain reaction (PCR), as previously described [5]. 

The experimental design and results of the GRMD study have been described 

[101]. Briefly, dogs were treated intravenously 3 times weekly from ages 2 to 6 months 

[101].  Functional data and histopathologic lesion scores from the cranial sartorius (CS), 

vastus lateralis (VL), and diaphragm muscles were compared in 6-month-old NBD- 

treated and natural history controls (Table 5).  These muscles were chosen because of 

their differential involvement in GRMD [43]. Muscle samples removed at biopsy or 

necropsy were snap frozen in isopentane, cooled by liquid nitrogen, and stored at -80ºC 

for future analysis. A total of 8 objective phenotypic biomarkers were collected at the 

time of biopsy or necropsy and included: pelvic angle; tibiotarsal joint (TTJ) angle; 

maximum hip flexion angle; maximum hip extension angle; TTJ tetanic flexion force; 
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TTJ tetanic extension force; percent eccentric contraction decrement; and, CS 

circumference [41]. 

4.2.2 RNA Extraction and Gene Expression 

Total cellular ribonucleic acid (RNA) was isolated from frozen skeletal muscle 

samples utilizing TriPure Isolation Reagent (Roche, #11667157001) and tissue 

homogenization. RNA samples were DNase treated with Ambion Deoxyribonucleic 

Acid (DNA)-free kit™ (Applied Biosystems, #AM Total cellular ribonucleic acid (RNA 

1906). RNA concentrations of the individual samples were measured using a Nanodrop 

2000 spectrophotometer. RNA quality was assessed using a 2100 BioAnalyzer (Agilent 

Technologies) and all samples had a RIN > 9.  Samples of skeletal muscle RNA (100 ng) 

were reverse transcribed into cDNA using oligo-dT, random octamer primers and the 

SuperScript® II Reverse Transcription Kit (Invitrogen, #18064-014). Primers were 

designed using the NCBI Primer-Blast tool to target spanning exons for 4 autophagy 

genes (MAP1LC3B, ATG12, BCN1, and BNIP3), 2 ubiquitin proteasome system (UPS) 

genes (FBXO32, TRIM63), and 1 housekeeping gene (HPRT1) (Table 6). PCR primer 

efficiency was estimated using the LinRegPCR program (Version 2015.3) to ensure the 

primer pair amplification factor was >1.9 [69-71]. The qPCR was performed in triplicate 

reactions with Power SYBR® Green PCR Master Mix (Applied Biosystems, #4367659) 

on an Applied Biosystems 7900HY Fast Real-Time PCR System. Relative fold changes 

in gene expression between normal and GRMD muscles were calculated using the 

comparative C(T) method and the equation 2-∆Ct with HPRT1 as the house-keeping gene 

[72].  
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Table 5. Sample sizes for gene expression. 
Muscle Normal 

(n=) 
GRMD 

(n=) 
GRMD+NBD 

(n=) 
CS 6 10 6 
VL 4 10 6 

Diaphragm 3 4 6 
 
 
Table 6. Primers for qPCR. 

Gene Name Forward Primer Reverse Primer 
MAP1LC3B TTCAAGCAGCGTCGCACCTT GCTGTAAGCGCCTCCTAATGAT 
ATG12 CCCGAACCATTCAAGGACTCA CCCAGAGCTGTTTCCTTTGT 
BCN1 TCAGGAGGAAGCTCAGTATCAGA TGTGCCGAACTGTCCACTGT 
BNIP3 AGCTCCCAGTCTGAGGAAGA TTCCGGCCGACTTGACCAAT 
FBXO32 TGACGTTGCAGCCAAGAAGA CAGTTCCAACAGCCGCACAA 
TRIM63 TGCTCCATGTGCAAGGTGTT TGACTGTTCTCCTTGGTCACT 
HPRT1 AGCTTGCTGGTGAAAAGGAC TTATAGTCAAGGGCATATCC 

 

4.2.3 Western Blotting 

Protein expression of the autophagosome marker LC3B-II and the autophagy 

readout protein p62/SQSTM1 were evaluated in the same skeletal muscles, if available, 

using Western blotting [24]. Because of the number of samples, separate gels were run 

for the CS and VL (n=7 GRMD and 6 GRMD+NBD). All diaphragm samples (n=3 

normal, 4 GRMD and 6 GRMD+NBD) were run in a single gel.  

To prepare protein lysates, frozen muscle samples were homogenized in RIPA 

lysis buffer (Santa Cruz Biotechnologies, #sc-24948A) and stabilized with HALT™ 

protease and phosphatase inhibitor (Thermo Scientific, #78442). Samples were 

incubated on ice for approximately 45 minutes and then centrifuged at 10,000 g (4°C) 

for 10 minutes. Pellets were discarded and supernatants for each sample were designated 

as the crude total protein lysates. Protein lysate concentrations were estimated using the 

modified-Lowry method provided by the DC™ Protein Assay Kit (Bio-Rad, #5000112) 
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[45]. Protein lysates were mixed with reducing SDS sample buffer, heated at 96°C for 5 

minutes, than ~60 μg/sample were loaded into 12% TGX Stain-Free™ polyacrylamide 

gels (Bio-Rad, #161-0185) for electrophoresis. The samples were run at 200 V for 45 

minutes in the Mini-Protean® Tetra Cell (Bio-Rad, #165-8000) to allow for adequate 

separation of the protein profiles. To activate the TGX Stain-free gels prior to transfer, 

they were imaged on the Gel Doc™ EZ System (Bio-Rad, #1708270). Protein transfer 

was performed using the Mini Trans-Blot® system (Bio-Rad, #170-3930). A cooled, wet 

transfer at 100 V for 1 hour with Tris/Glycine/0.05% SDS and 20% methanol was 

performed. Quality transfer of the proteins to a methanol activated, 0.2-μm (pore size) 

PVDF membrane was verified using the Gel Doc™ EZ System (Bio-Rad, #1708270). 

After excellent protein transfer was verified, the PVDF membrane was cut into 2 pieces 

(>20 kDa and <20 kDa), which allowed for simultaneous probing for 2 autophagy-

related proteins (LC3B and p62) of different molecular weights. The membrane was 

washed with Tris-buffered saline with tween (0.1% Tween 20)(TBST) for 10 minutes, 

then blocked with TBST containing 5% milk and 1% BSA for 1 hour at 20°C. Next, 

specific PVDF membrane pieces were washed for 10 minutes and then incubated for 1 

hour at 20°C and ~17 hours at 4°C in blocking buffer containing LC3B antibody (Novus 

Biologicals, #NB100-2220) or p62/SQSTM1 antibody (Novus Biologicals, #NBP1-

49954) with rocking. The membranes were then washed in triplicate with TBST, 10 

minutes each. Membranes were subsequently probed with goat anti-rabbit HRP 

secondary antibody (Pierce, #31466) diluted at 1:10,000 in blocking buffer for 1 hour at 

20°C. This was followed by triplicate 10-minute washes with TBST. Finally, the 



 

67 

 

membranes were incubated with enhanced chemiluminescence substrate SuperSignal® 

West Dura (Thermo Scientific, #37071) for 5 minutes at 20°C and imaged on the Gel 

Doc™ XR+ System (Bio-Rad, #1708195). A cumulative chemiluminescent protocol was 

used to collect 60 consecutive images starting at 10 seconds and ending at 600 seconds. 

The images were analyzed using the Image Lab™ software (Bio-Rad, Version 5.2). 

Normalization of band density for the protein of interest was performed by correcting for 

the amount of total protein loaded. This was estimated by measuring the total regional 

lane density identified on the PVDF membranes. Relative fold change in protein 

expression was normalized for protein loading by calculating the ratio of individual band 

density (e.g., LC3B-II, p62) and total lane density (LD).  

4.2.4 Statistical Analysis 

 All values are expressed as means ± 95 % confidence interval. Statistical 

differences in gene and protein expression between muscles of normal, GRMD and NBD 

treated GRMD dogs were analyzed using a 1-way ANOVA. If a significant difference 

(p≤0.050) in means was identified among all 3 groups, paired comparisons were made 

with Student’s t test (p≤0.050; no post hoc adjustments of p values were performed). 

Phenotypic correlations with gene and protein expression were analyzed with the 

Spearman’s correlation test (p ≤ 0.050). All analyses and graphs were created with JMP® 

Pro 11.1.1. 

  



 

68 

 

4.3 Results 

4.3.1 Gene Expression in Muscles of GRMD Dogs Treated with NBD  

Expression levels of the different autophagy genes differed from one another and 

among muscles in the treated and control dogs.  

MAP1LC3B levels were significantly different among normal, GRMD and NBD 

treated GRMD dogs (p = 0.002). Based on comparisons between groups, MAP1LC3B 

was lower in the GRMD CS relative to normal (p < 0.001) and higher after NBD 

treatment (p = 0.018) (Figure 18A). A similar pattern in the VL and diaphragm did not 

reach significance.  

BNIP3 levels in both the CS (p < 0.001) and VL (p = 0.002) were significantly 

different among normal, GRMD, and NBD-treated GRMD dogs. BNIP3 levels in the CS 

were lower in GRMD (p = 0.070) relative to normal and higher after NBD treatment 

compared to both normal (p < 0.001) and GRMD dogs (p < 0.001) (Figure 18B). BNIP3 

levels in GRMD VL were not different relative to normal (p = 0.360) but were higher 

after NBD treatment compared to normal (p = 0.020) and GRMD dogs (p < 0.001). A 

similar trend in the NBD-treated GRMD diaphragm was not significant.  

BCN1 levels were significantly different among all groups in the CS (p < 0.001) 

and trended in the VL (p = 0.070). BCN1 levels in GRMD CS were not different relative 

to normal but were higher after NBD treatment compared to normal (p < 0.001) and 

GRMD dogs (p < 0.001)(Figure 18C). Levels did not differ in the diaphragm. 

ATG12 gene levels were significantly different among all groups in the VL (p = 0.041) 

but not in the CS (p = 0.052). ATG12 levels in the VL were not different to normal but 
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were higher after NBD treatment compared to normal dogs (p = 0.013). Levels in the 

diaphragm did not differ among groups.  

 

 
Figure 18. Autophagy gene expression in the CS of normal, GRMD, and NBD-treated GRMD dogs. 
A) MAP1LC3B gene expression was lower in GRMD and higher with NBD treatment. B) BNIP3 
expression was higher in the GRMD CS with NBD treatment. C) BCN1 expression was higher in the 
GRMD CS with NBD treatment. Bar graphs represent mean expression +/- 95 % confidence 
interval. *p<0.050, **p<0.010, ***p<0.001.  
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The differential response of autophagy genes among muscles of NBD-treated 

GRMD dogs highlights the complexity of skeletal muscle homeostatic systems. The CS 

had a distinctive pattern, with values being lower in GRMD versus normal dogs and 

increasing with NBD treatment. We have previously shown that the GRMD CS 

undergoes early necrosis and hypertrophies by age 6 months of age [43]. Higher 

autophagy gene expression in treated CS of GRMD dogs implies that NBD-induced 

autophagy could facilitate clearance of damaged cellular debris. Lower levels in some 

muscles might simply reflect more delayed injury and regeneration.  With this said, 

autophagy genes did not consistently track with one another.  As an example, BNIP3 

levels were increased while those for BCN1 were decreased in the VL of NBD treated 

GRMD dogs. These conflicting signals suggest dysregulation of the autophagy system.  

Expression levels of the UPS genes, FBXO32 and TRIM63, did not differ 

between normal and GRMD dogs, indicating a lack of UPS activation in dystrophic 

muscle consistent with prior studies [109].  With NBD treatment, levels for both genes 

were lower in the GRMD CS and VL, but the difference did not reach significance, 

likely due to a single outlier dog. Levels did not differ in the diaphragm, further 

emphasizing variation among muscles. 
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Table 7. Autophagy and UPS gene expression correlates with NBD treatment in GRMD dogs. 
Muscle Variable by Variable Spearman ρ Prob >|ρ| 

CS Pelvic Angle (o) TRIM63 0.8654 < 0.001 
CS Hip Flexion Angle (o) BCN1 -0.7826 < 0.001 
CS TTJ Tetanic Extension (N/KG) TRIM63 -0.7929 < 0.001 
CS TTJ Tetanic Extension (N/KG) BNIP3 0.7529 0.001 
CS TTJ Tetanic Extension (N/KG) ATG12 0.7235 0.002 
CS Hip Flexion Angle (o) TRIM63 0.7234 0.002 
CS Pelvic Angle (o) BNIP3 -0.7002 0.003 
CS TTJ Angle (o) ATG12 0.6534 0.006 
CS Hip Flexion Angle (o) FBXO32 0.6858 0.007 
CS Pelvic Angle (o) BCN1 -0.6233 0.010 
CS Pelvic Angle (o) FBXO32 0.6307 0.016 
CS Pelvic Angle (o) MAP1LC3B -0.5746 0.020 
CS Pelvic Angle (o) ATG12 -0.5672 0.022 
CS Hip Flexion Angle (o) BNIP3 -0.5483 0.028 
CS Hip Flexion Angle (o) MAP1LC3B -0.5203 0.039 
CS TTJ Angle (o) TRIM63 -0.5323 0.041 
VL Pelvic Angle (o) BNIP3 -0.6984 0.004 
VL Pelvic Angle (o) MAP1LC3B -0.5996 0.018 
VL TTJ Tetanic Extension (N/KG) BNIP3 0.5786 0.024 
VL Hip Flexion Angle (o) BNIP3 -0.573 0.026 
VL TTJ Tetanic Flexion (N/KG) FBXO32 0.5879 0.035 

 

 
To better understand NBD’s therapeutic effects, we correlated gene expression 

and phenotypic tests.  Phenotypic markers generally showed improvement with higher 

expression of MAP1LC3B, ATG12, BCN1, and BNIP3 and lower expression of FBXO32 

and TRIM62 (Table 7). This inverse relationship in autophagy and UPS gene expression 

may result from crosstalk between these 2 catabolic systems necessary for maintaining 

homeostasis [110-112]. Although gene expression might not reflect ongoing autophagic 

flux and proteasome activity, these findings provide interesting insight into NF-κB’s role 
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in regulating muscle homeostatic systems and generally support a beneficial role for 

autophagy activation and UPS inhibition. 

4.3.2 Autophagy Protein Expression in GRMD Dogs Treated with NBD 

Expression of the autophagy proteins LC3B-II and p62 was studied in the same 

cohort described above. Based on our gene expression assays, we hypothesized that 

autophagic activity would be increased in NBD treated dogs. However, when a single 

outlier with a 3-fold increase in LC3B-II was excluded, LC3B-II activity was actually 

lower in the CS of NBD treated GRMD dogs (Fold Change = -1.43, p = 0.023) (Figure 

19A).  This could reflect either increased autophagosome clearance or reduced 

autophagosome formation. 

To better distinguish the underlying mechanism, we studied the autophagy 

readout protein p62.  There was a trend towards lower values in treated versus control 

GRMD dogs (Fold Change = -2.1, p = 0.110) (Figure 19B). Lower p62 could be 

associated with increased autophagic flux.  When interpreted with the tendency towards 

lower LC3B-II activity, this suggests that NBD induced autophagic activity, in line with 

our gene expression results. 
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Figure 19. Western blots of LC3B and p62 in the CS of NBD-treated and control GRMD dogs. A) 
LC3B-II levels were lower with NBD treatment when a single outlier (+) was removed. B) p62 levels 
tended to be lower with NBD treatment. Bar graphs represent mean +/- 95% confidence interval. 
 

 In contrast, we found no significant difference in protein expression of LC3B-II 

(Fold Change = -1.43, p = 0.390; Figure 20A) and p62 (Fold Change = -1.25, p = 0.670; 

Figure 20B) in the VL of treated versus control GRMD dogs. As with the CS, 

expression levels varied remarkably among dogs. When the same outlier with increased 

LC3B-II VL expression was removed, LC3B-II levels were lower in NBD treated versus 

control GRMD dogs (Fold Change = -2.3, p = 0.049).  Similarly, a single NBD-treated 

GRMD dog had a 2.8-fold higher p62 value relative to untreated GRMD dogs, while the 

other 5 dogs had relatively lower p62 expression. When this dog was excluded, the fold 



 

74 

 

change between the groups neared significance (Fold Change = -2.63, p = 0.058), in 

keeping with the pattern seen in the CS.  

 

 
Figure 20. Western blots of LC3B and p62 in the VL of NBD-treated and control GRMD dogs. A-B) 
LC3B-II differed and p62 values approached significance when a single outlier (+ or *) was 
removed. Bar graphs represent the mean +/- 95% confidence interval. 
  

Interestingly, we identified a significant ~32-fold difference in LC3B-II 

(p=0.006; Figure 21A) and a tendency towards higher (Fold Change = 10.0, p = 0.075; 

Figure 21B) p62 levels in the GRMD versus normal diaphragm. Concomitant increases 

in LC3B-II and p62 suggest that autophagic activity is impaired in the GRMD 

diaphragm at age 6 months. While values in NBD-treated and control GRMD dogs did 

not differ (p = 0.660; Figure 21A), there was a different pattern among treated dogs. 
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Two NBD-treated dogs had higher LC3B-II values, while the other 4 had lower levels 

relative to controls. On the other hand, p62 levels were increased (Fold Change = 3.3, p 

= 0.017; Figure 21B) in NBD-treated versus control GRMD dogs. Further increases of 

LC3B-II and p62 in NBD-treated GRMD diaphragm could exacerbate autophagic 

dysregulation, in contrast to apparent induction of autophagy in the CS and VL. This 

again points to differential effects of NBD treatment among GRMD muscles.   

 

 
Figure 21. Western blots for LC3B and p62 in diaphragm of normal, GRMD, and NBD-treated 
dogs. A) LC3B-II is higher in GRMD versus normal dogs. B) p62 expression is higher in NBD 
treated versus control GRMD dogs. Bar graphs include mean +/- 95% confidence interval. 
 

We next correlated phenotypic results with protein expression levels in the CS 

and VL of the combined control and NBD treated GRMD dogs. Although there were no 

significant correlations for LC3B-II expression, there was a tendency towards a positive 
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relationship (ρ = 0.552, p = 0.063) with CS circumference, in keeping with a role for 

autophagy in CS repair. Several significant correlations were identified for p62 

expression in the CS and VL of GRMD dogs. Interestingly, CS p62 levels correlated 

positively with pelvic (ρ = 0.609, p = 0.035) and hip flexion (ρ = 0.607, p = 0.036) 

angles. Higher pelvic and hip flexion angles imply reduced range of motion. NBD 

treatment significantly decreased these angles [101]. Therefore, the apparent increase in 

autophagic activity associated with NBD treatment could be facilitating the repair 

response in the CS.  Furthermore, VL p62 levels correlated negatively with TTJ tetanic 

extension (ρ = -0.601, p = 0.039). NBD treatment significantly increased TTJ tetanic 

extension levels in GRMD dogs [101]. Assuming that findings from the VL and TTJ 

extensors track together, increased autophagic activity implied by lower p62 values 

apparently aids in regeneration of dystrophic muscle. Furthermore, these changes 

complement the gene expression findings associating autophagy activation with NBD 

treatment in GRMD dogs. Further investigation is required to determine the exact role of 

NBD therapy in autophagy homeostasis. 

 In summary, NBD therapy in GRMD dogs increased autophagy gene expression 

in a muscle-dependent manner with additional changes in autophagy protein expression. 

Changes in the CS, in particular, correlated with certain phenotypic makers, consistent 

with a beneficial effect of autophagy. In contrast, effects in the diaphragm suggested that 

NBD could be further exacerbating autophagy dysregulation, highlighting variable 

treatment effects among muscles.  
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4.4 Discussion 

In light of the absence of curative therapies for DMD, drugs aimed at 

ameliorating secondary effects (e.g., corticosteroids for inflammation) are often used. 

Drugs targeting autophagy could, in principle, promote clearance of cellular debris. Our 

findings suggest that NF-κB inhibition with the NBD peptide differentially modulates 

autophagy and UPS gene expression in GRMD skeletal muscle. The CS had a distinctive 

pattern, with values being lower in GRMD versus normal dogs and increasing with NBD 

treatment. We have previously shown that the GRMD CS undergoes early necrosis and 

hypertrophies by 6 months of age [43]. Higher CS gene expression implies that NBD-

induced autophagy could facilitate clearance of damaged cellular debris. On the other 

hand, UPS gene levels tended to be lower in NBD-treated versus control GRMD dogs, 

consistent with reduced UPS activity and protein degradation. Such a reciprocal 

relationship is in keeping with the dual roles that autophagy and the UPS have in 

breaking down cellular components [113] and points to the complexity of these 

homeostatic systems in regulating Nf-κB activity. 

Despite the changes in autophagy and UPS gene expression with NBD treatment, 

protein levels did not show consistent differences. This is not necessarily surprising, in 

that gene and protein expression do not necessarily track with one another [114].  Our 

ability to demonstrate differences was further complicated by wide variation in protein 

levels among NBD-treated dogs. Part of the variable response could be due to NBD 

peptide neutralization. As described in the original report, several GRMD dogs 

demonstrated hypersensitivity reactions to NBD [101], which could have blunted peptide 
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function.  In line with this interpretation, careful analysis indicated that LC3B-II and p62 

levels did decrease in some dogs, supporting increased autophagic activity. Furthermore, 

this decrease was primarily present in the NBD treated GRMD CS and VL, and was 

associated with clinical improvement. In contrast, NBD treatment led to significant 

increases in diaphragm p62, indicating that autophagy dysregulation may have been 

exacerbated.  

Recent evidence indicates that distinct cell-type and context-specific roles for 

p62 can mediate NF-κB activity and inflammation [115]. Furthermore, an intrinsic 

regulatory loop that utilizes a NF-κB-p62-mitophagy pathway to restrain inflammation 

and favor repair has been described in macrophages [115]. Although NF-κB is 

classically considered the primary transcriptional activator of inflammatory genes, it also 

has anti-inflammatory properties [116, 117]. Therefore, in some cases, excessive 

inhibition of NF-κB could result in more inflammation and may explain the differential 

response between the CS, VL and diaphragm. Similarly, autophagic activity must be 

carefully regulated to maintain homeostasis, with for instance, either excessive or 

reduced autophagy ultimately resulting in muscle atrophy [102].  Therefore, treatments 

that modulate autophagy must be gauged to ensure that balance is restored.  

Further studies are required to determine the interactions between autophagy 

regulation and NF-κB activation in dystrophic skeletal muscle. Utilizing normal and 

dystrophic canine skeletal muscle cell cultures to determine the effect of NF-κB 

modulation on basal and induced autophagy should be pursued. 
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5. CONCLUSION 

 

5.1 Skeletal Muscle Homeostasis in GRMD  

Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disorder 

caused by mutations in the DMD gene that results in absence of the dystrophin protein 

and cyclic muscle degeneration and regeneration. The 2 principal animal models used to 

explore novel therapeutics for DMD include mdx mice and golden retriever muscular 

dystrophy (GRMD) dogs [4]. Dogs with GRMD have a relatively severe phenotype that 

more closely mimics DMD compared to the mildly affected mdx mouse. Despite being 

caused by a single genetic mutation, GRMD displays dramatic phenotypic variation. For 

example, a litter of GRMD dogs can include both mildly and severely affected dogs that 

all have the same DMD gene mutation. This variability extends to the level of dystrophic 

muscles, with for instance, the cranial sartorius (CS) undergoing early necrosis and 

hypertrophy, while the vastus lateralis (VL) has a more delayed disease onset and 

atrophies [10, 11]. This phenotypic variation strongly suggests the influence of genetic 

modifiers that could serve as therapeutic targets. 

Skeletal muscle homeostasis requires a delicate balance between protein 

synthesis and degradation (e.g., autophagy) and cell survival/programmed cell death 

(e.g., apoptosis). Autophagy and mitochondrial associated programmed cell death 

pathways, like apoptosis, have recently been identified as suitable secondary therapeutic 

targets for DMD. However, the role of these pathways in skeletal muscle homeostasis 

and variable disease progression in the dystrophinopathies remains to be elucidated. To 
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begin to address this gap in knowledge, we set out to learn more about the role of 

autophagy and apoptosis in GRMD pathogenesis. 

 

5.2 Role of Apoptosis in GRMD Pathogenesis 

First, we focused on the anti-apoptotic protein APIP, which was identified using 

a GWAS and our subsequent discovery of its role in other diseases [52, 56, 57].  APIP 

has at least 2 unique functions relating to its anti-apoptotic and enzymatic activities that 

could be relevant to muscle disease. APIP inhibits programmed cell death (i.e., 

apoptosis) through direct interaction with APAF-1, an activator of caspase-9 essential 

for apoptosome formation [35, 36]. In contrast to cell necrosis, apoptosis is tightly 

regulated process by which cells that are no longer needed can be destroyed without 

spilling their contents and inducing inflammation. In one sense, apoptosis is the more 

‘beneficial’ way for cells to die. While necrosis is the terminal mechanism of cell death 

in DMD [37], the intrinsic apoptotic pathway is also activated in dystrophic myofibers in 

advance of necrosis [14].  

Although we hypothesized that inhibition of apoptosis by APIP would be 

beneficial, VL levels tracked with a more severe phenotype (Figure 22). Furthermore, 

APIP was primarily expressed in slow-twitch muscle fibers of normal muscle and in 

regenerating fibers and inflammatory cells in dystrophic muscle.  Expression in 

regenerating fibers could be tied to its anti-apoptotic activity or enzymatic role in 

methionine metabolism. The GRMD findings reported here support APIP as a candidate 

modifier gene, but we have not yet done further studies necessary to substantiate this 
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association. Sequencing of APIP might reveal novel structural characteristics that 

influence the biochemical functions of APIP, including its anti-apoptotic and enzymatic 

activity. Furthermore, evaluating the in vitro effects of APIP expression modulation on 

muscle cell growth and programmed cell death may help distinguish which function (i.e., 

anti-apoptotic &/or methionine salvage) of APIP is important in dystrophic muscle. 

These experiments are warranted to better define APIP as a candidate gene involved in 

the pathophysiology of dystrophic muscle and its novel role in muscle regeneration in 

response to damage. 

 

 
Figure 22. Schematic of the role APIP protein expression in GRMD pathogenesis. 
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5.3 Role of Autophagy in GRMD Pathogenesis 

Next, we focused on the role of autophagy in GRMD pathogenesis. Autophagy is 

a conserved biological mechanism essential for survival of eukaryotic cells that involves 

organized degradation (“self-eating)” and recycling of cellular building blocks into 

macromolecules [21]. Tight regulation of autophagy is critical for maintaining 

homeostasis in skeletal muscle, with either too much or too little resulting in muscle 

atrophy and cell death [27, 28]. Based on the mdx literature, we hypothesized that 

autophagy would be lower in GRMD muscle, as evidenced by lower autophagy gene 

expression, lower levels of LC3B-II, and higher p62 levels [58]. Considering that the 

GRMD phenotype better mimics that of DMD, we sought to investigate autophagy in 

phenotypically distinct skeletal muscles from age-matched dystrophic and normal dogs. 

Of the autophagy genes studied, MAP1LC3B appeared to have the most consequential 

role in GRMD disease expression.  Levels were lower in the GRMD CS at both 3 and 6 

months of age correlated with CS circumference.  This suggests that reduced CS 

autophagy could contribute to the classical true hypertrophy seen in this muscle.   

To better establish overall autophagic activity, we also used Western blotting to 

assess the established autophagosome marker LC3B-II and the autophagy readout 

protein p62/SQSTM1.  Contrary to our hypothesis, LC3B-II levels in the GRMD CS 

were higher than normal, indicating accumulation of autophagosomes from either 

increased flux, decreased clearance (e.g., lysosome dysfunction), or an overwhelmed 

autophagic system (Figure 23).  We then assessed expression of p62, a readout protein 

relatively specific for autophagic activity.  If autophagic flux were increased in the 
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dystrophic CS, p62 levels should be lower. Levels of p62 were significantly higher in 

GRMD dogs, consistent with decreased autophagic flux and correlated with a more 

severe phenotype. With normal balanced autophagy, increased LCB-II activity should 

track with decreased p62 expression. Taken together, our data suggest that autophagy is 

uniquely impaired in the CS and potentially other muscles of GRMD dogs.  

Importantly, measurement of static levels of autophagic proteins in skeletal 

muscle does not allow definition of where the material is accumulating, nor whether 

there is truly increased autophagic activity or decreased autophagic flux and pathway 

dysregulation. So as to better make spatial distinction, we used light and transmission 

electron microscopy to localize LC3B positive autophagic structures in the differentially 

affected cranial CS and VL muscles of 6-month-old GRMD dogs. The few LC3B 

positive structures seen with immunofluorescence were typically in degenerating fast-

twitch myofibers and invading inflammatory cells, resulting in a mixed LC3B signal 

indicative of muscle damage. Focal autophagic activity in degenerating myofibers could 

represent failed efforts (e.g., lysosome dysfunction) to save the cell or even a role in 

autophagic cell death (Figure 23). In contrast, activity in inflammatory cells may 

represent the necessary response to clean up dying muscle cells. Absence of LC3B and 

autophagosomes in non-degenerative myofibers generally matched our gene expression 

results, suggesting down-regulation of autophagy. These morphologic studies also 

highlighted the importance of utilizing a multi-modal approach to verify the cellular 

sources of autophagic activity in skeletal muscle.  



 

84 

 

Finally, these morphologic findings clarified our protein expression results, 

which indicated that autophagy is impaired in GRMD, as evidenced by higher LC3B-II 

and p62 levels.  Autophagy likely has dual roles in dystrophic muscle, including the 

removal of damaged organelles and proteins, while also being involved in the 

inflammatory cell response to muscle injury. Furthermore, the role of autophagy varies 

among GRMD muscles. For example, the CS hypertrophies and stabilizes in face of 

impaired autophagy, while the VL atrophies. Basal autophagy dysregulation could place 

the fragile dystrophic myofiber at an added risk, which would be further compounded by 

defective cleanup of cell debris. The differential involvement of the GRMD CS 

emphasizes that therapeutic modulation of autophagy must be carefully considered and 

could require specific targeting.   

 

 
Figure 23. Schematic of the role of autophagy in GRMD pathogenesis. 
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Finally, we investigated the effect of NF-κB inhibition on impaired autophagy 

found in GRMD muscle. In light of the absence of curative therapies for DMD, 

treatment is often directed at ameliorating secondary effects (i.e., corticosteroids for 

inflammation). Drugs that inhibit NF-κB signaling have been studied extensively in a 

range of diseases, including DMD [96]. In particular, the Nemo binding domain (NBD) 

peptide blocks NF-κB by inhibiting assembly of the inhibitor of kappa B kinase (IKK) 

complex (i.e., IKKα and IKKβ) [97]. Mdx mice [98-100] and GRMD dogs [101] have 

shown improvement with NBD treatment.  Interestingly, autophagy and NF-κB 

pathways regulate each other in a context-dependent manner, with the potential for both 

inhibition and induction [104-108]. However, little is known about the crosstalk between 

these 2 processes in dystrophic muscle.  

We sought to address this void by studying autophagy gene and protein and UPS 

gene expression and in skeletal muscle of GRMD dogs previously treated with NBD 

[101]. Gene modulation in NBD treated dogs generally tracked with an improved 

GRMD phenotype, but this effect varied among muscles. The CS had a distinctive 

pattern, with gene levels being lower in GRMD versus normal dogs and increasing with 

NBD treatment. Higher CS gene expression implies that NBD-induced autophagy could 

facilitate clearance of damaged cellular debris. On the other hand, UPS gene levels 

tended to be lower in NBD-treated versus control GRMD dogs, consistent with reduced 

UPS activity and protein degradation. Such a reciprocal relationship is in keeping with 

the dual roles that autophagy and the UPS have in breaking down cellular components 
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[113] and points to the complexity of these homeostatic systems in regulating Nf-κB 

activity.  

In summary, NBD therapy in GRMD dogs increased autophagy gene expression 

in a muscle-dependent manner with additional changes in autophagy protein expression. 

Changes in the CS, in particular, correlated with certain phenotypic makers, consistent 

with a beneficial effect of autophagy. In contrast, effects in the diaphragm suggested that 

NBD could be further exacerbating autophagy dysregulation, highlighting variable 

treatment effects among muscles. Therefore, treatments that modulate autophagy must 

be gauged to ensure that balance is restored. Further studies are required to determine the 

interactions between autophagy regulation and NF-κB in dystrophic skeletal muscle.  

 

5.4 Summary 

 In conclusion, our investigation into the role of apoptosis and autophagy in 

GRMD pathogenesis has revealed several important discoveries. First, we hypothesized 

that protein expression of the anti-apoptotic protein APIP would be associated with an 

improved GRMD phenotype, supporting inhibition of apoptosis as a novel therapeutic 

target in DMD. However, we discovered that higher APIP expression was associated 

with a more severe GRMD phenotype, and furthermore, appears to be involved in the 

regenerative response of damaged dystrophic muscle. Second, we hypothesized that 

reduced autophagy would be associated with a more severe GRMD phenotype, 

supporting activation of autophagy as a novel therapeutic target in DMD. While our 

discoveries generally support this hypothesis, the variable response to impaired 
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autophagy in GRMD muscles (e.g., CS [hypertrophy] vs. VL [atrophy]) draws attention 

to the potential risks of autophagy modulation in DMD. Third, we hypothesized that 

treatment of GRMD dogs with NBD peptide, a novel NF-κB inhibitor, would activate 

autophagy and be associated with an improved GRMD phenotype. We discovered that 

NBD peptide therapy induced autophagy gene expression, with variable effects between 

individuals and muscles, some beneficial and others deleterious. Our work further 

highlights the importance of utilizing the GRMD dog in development and validation of 

novel therapeutics designed for DMD boys. It is clear that these homeostatic 

mechanisms are important in GRMD pathogenesis, but further studies are required to 

determine if apoptosis inhibition and autophagy activation will be beneficial in 

dystrophinopathies. 
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