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ABSTRACT 

 

The genetic basis of three key agronomic traits viz. anthracnose resistance, 

tolerance to salinity and plant height, which affect sorghum grain, forage, and biomass 

production was investigated. Modern genomic tools like high-throughput genotyping, 

sequence-based marker technology and statistical software were used in conjunction 

with field or greenhouse based evaluation of recombinant inbred line (RIL) populations 

to identify the genomic regions and genes controlling these traits. 

A total of 9 quantitative trait loci (QTL) that imparted variable levels of 

resistance to anthracnose, were identified from two different RIL populations. Of these 

QTL, three encoded stable resistance across all environments while two loci were 

environment specific. A brief examination of the candidate genes underlying one of the 

major resistance QTL revealed a block of genes that may play a role in host plant 

resistance. The molecular markers identified in this study serve as a tool for accelerated 

pyramiding of multiple anthracnose resistance loci into an elite sorghum genotype to 

provide effective and durable resistance. The analysis of a RIL population segregating 

for salt tolerance in greenhouse conditions consistently detected a QTL based on the 

percentage of total leaf area that was necrotic or damaged. Markers linked to the trait 

that could potentially be used for marker-assisted introgression of salt tolerance were 

identified. Of the genes observed on surveying the QTL, a cation/H
+ 

antiporter appears 

as a strong potential candidate conditioning salt tolerance to sorghum. The genomic 

locus controlling plant height in sorghum and harboring the dwarfing gene Dw2 was 
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mapped at high resolution using individuals from a RIL population segregating for 

height. The locus was narrowed to ~0.1 Mbp and a candidate histone deacetylase gene 

and the molecular marker linked to this locus were identified. The functional validation 

of the candidate gene using Agrobacterium-mediated transformation was attempted but 

was not successful on account of the recalcitrance of sorghum for in vitro growth and 

transformation.  
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CHAPTER I  

INTRODUCTION  

 

The world today faces challenges of increasing agricultural production and 

maintaining food security as the current world population of 7.2 billion is estimated to 

increase and reach 9.6 billion by 2050 (UN DESA, 2013). This will require world food 

production to rise by 70% and food production in the developing nations to double 

(FAO, 2009). This does not take into account the competing demand for grain for use in 

biofuel (ethanol) production, and this problem will be compounded further by the 

scarcity of natural resources like arable land and irrigation water and changing climate 

patterns. Meeting the increasing requirements of food, feed, fiber and fuel will 

necessitate bridging the gap between yield potential and actual yields of our agricultural 

crops in the face of these challenges. This will only be possible through better crop 

management practices and through genetic enhancement of our existing cultivars. 

Sorghum [Sorghum bicolor (L.) Moench] is a major cereal crop grown around 

the world for food, fodder, fiber and fuel making it the fifth most important cereal crop 

worldwide (FAO, 2013). It serves as a staple food crop for millions of people, 

predominantly in the semi-arid tropics of Africa and Asia (Morris et al., 2013) where its 

grain is ground into flour as well as used for brewing. Stalks and leaves are used as 

cover crop and deferred animal feed as well as for hay and silage. Juicy sugar stems are 

used to make syrup and sugar and the sweet culm is often chewed by sustenance 
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farmers. The presence of directly fermentable sugars in stalks, which can be converted to 

biofuel, has brought sorghum into the list of dedicated bioenergy crops. 

Sorghum is a C4 cereal with certain physiological and agronomic traits that make 

it an ideal crop for addressing the future demands placed on world food production. 

Compared to maize, sorghum is a crop that requires minimum input of nutrients and 

water and displays a wide range of adaptation and tolerance to various biotic and abiotic 

(e.g. high temperature, drought) stresses (Paterson, 2008). Being a C4 crop, sorghum is 

photosynthetically more efficient than rice and can produce 30% more dry matter per 

unit of water than a C3 crop (Shoemaker et al., 2010). Its complex biochemical and 

morphological specialization offers an advantage of enhanced carbon assimilation even 

at high temperatures. These characteristics make sorghum an ideal crop for subsistence 

as well as commercial farming.  

 The main target of temperate-zone commercial sorghum breeding programs has 

been grain yield and harvest index (Van der Weijde et al., 2013). However, since the 

1980s, farmers increased the proportion of sorghum planted on marginal lands and their 

management practices were suboptimal for sorghum. As such, breeders responded in 

kind by developing cultivars with superior resistance to fungal diseases like downey 

mildew (Frederiksen, 1980), grain mold (Reddy et al., 2000), leaf blight, rust, 

anthracnose (Sharma et al., 2012), and insects like shoot fly (Jotwani, 1981; Van den 

Berg et al., 2005), stem borer (Sharma, 1997; Singh and Rana, 1989) and midge (Henzell 

et al., 1996), high and low growth temperatures (Burow et al., 2011; Nguyen et al., 2013; 
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Peacock, 1981; Singh, 1985), drought (Rosenow et al., 1983), poor soil fertility (Leiser 

et al., 2012) and soil salinity (Hassanein and Azab, 1993). 

 During the past several decades, vast amounts of information in genetics, 

genomics, biochemistry, molecular biology, and bioinformatics have been generated for 

sorghum, however there is still a need to bridge the gap that exists between the 

knowledge/tools that have been developed and their application in breeding programs. 

Sorghum scientists now face the challenge of determining how to take advantage of this 

knowledge to make crop improvement more efficient and enhance genetic gain. Thus, 

innovative approaches are being developed for animal and crop species to find the 

optimal breeding strategy to identify superior genotypes and increase the selection gains 

per unit time. The use of marker-based technology in applied plant breeding has 

continued to increase in the public and private sectors. Genome-wide marker coverage 

and associated costs have been the major limiting factors for many applied breeding 

programs until the recent advances in sequence based marker technology. Although 

genotyping is still a major expense, declining costs of high-throughput sequence-based 

marker systems has facilitated large-scale genotyping efforts in applied breeding 

programs, including those in sorghum. Breeders have now been equipped with powerful 

tools like next-generation sequencing technologies and improved 

genotyping/bioinformatics platforms for characterizing the genetic composition of their 

germplasm. It is anticipated that while selection based solely on marker effects will 

eventually displace phenotyping in specific generations, combining marker-based and 
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phenotypic-based selection will remain the norm for the foreseeable future in most 

public sorghum breeding programs. 

 The research detailed here addresses in part the long term goal of the TAMU 

sorghum research team through the use of modern genomic and biotechnological tools to 

elucidate the genetic basis and genes controlling key agronomic traits critical to sorghum 

germplasm improvement. 

Specifically, this research focuses on the following objectives: 

1. Map the genomic region conferring resistance to anthracnose using two mapping 

populations and develop molecular markers for use in marker-assisted breeding. 

2. Elucidate the genetic basis of salt tolerance in sorghum through QTL analysis of 

a recombinant inbred line (RIL) population, and thereby identify molecular 

markers linked to the trait for introgression of salt tolerance into elite lines. 

3. Map at high resolution the genomic locus harboring the dwarfing gene Dw2 in 

sorghum and identify robust molecular markers linked to this locus. 

4. Elucidate the genetic basis for dwarfism in sorghum by map-based cloning of 

Dw2 and confirming the identity of the gene utilizing transgenic technology.  
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CHAPTER II  

IDENTIFICATION OF QUANTITATIVE TRAIT LOCI ASSOCIATED WITH 

ANTHRACNOSE RESISTANCE IN SORGHUM 

 

Introduction 

Sorghum is a major cereal crop grown on nearly 42 million ha worldwide for 

food, fodder, fiber and fuel (http://faostat3.fao.org). Amongst the cereals, sorghum 

displays exceptional tolerance to heat and drought.  However, a number of biotic and 

abiotic stresses are known to reduce sorghum yield potential (Wang et al., 2014b). Biotic 

stresses that impact sorghum production include fungal diseases (e.g., downy mildew, 

grain mold, leaf blight, and anthracnose) and parasitic insects (e.g., aphids, shoot fly, 

stem borer and midge).  

 One of the most severe diseases affecting sorghum grain yield and biomass 

production is anthracnose, with yield losses ranging from 50-70% having been reported 

in susceptible cultivars (Ali et al., 1987; Tesso et al., 2012). This disease is caused by the 

fungal pathogen Colletotrichum sublineolum and affects all above-ground portions of the 

plant. The first incidence of anthracnose in sorghum was reported from Togo, West 

Africa in 1902 (Sutton, 1980), and since then it has been observed in more than 65 

countries across all continents except Antarctica (Colletotrichum sublineolum 

distribution map, 1988). The disease is most prevalent in hot, humid climates with 

frequent rain in both tropical and subtropical regions. The fungus most commonly 

infects leaves causing circular spots or elongated lesions with red, tan or blackish purple 

http://faostat3.fao.org/
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margins and straw-colored centers which turn black during sporulation owing to the 

black colored asexual fruiting bodies, acervuli (Frederiksen and Odvody, 2000; Thakur 

and Mathur, 2000).  The lesions may coalesce in susceptible genotypes resulting in 

senescence thereby restricting photosynthetic capacity. The fungus migrates from the 

lower leaves to infect the stalk, peduncle, and ultimately the grain. It invades the 

vascular tissue and disrupts the translocation of nutrients to the grain, reducing grain 

yield and quality.  

Anthracnose infection begins when conidial spores from the acervuli are carried 

by the splashing action of raindrops or irrigation water (Bergstrom and Nicholson, 1999; 

Crouch and Beirn, 2009), and the spores adhere to the host surface with the aid of an 

extracellular matrix (Sugui et al., 1998). On susceptible genotypes, the conidia will 

germinate and undergo mitotic divisions to produce a germ tube with a globose 

appressorium that attaches itself to the host tissue and forms a penetration peg at the 

base. The fungus then penetrates the host cell through the cuticle by turgor pressure 

developed within the appressorium. To prevent this, the host forms papillae between the 

plasmalemma and host cell wall. The infection peg enlarges into a globose infection 

vesicle giving rise to filamentous primary hyphae which grow intracellularly and further 

colonize the adjacent cells. The secondary hyphae ramify throughout the epidermal, 

mesophyll and vascular tissue to begin the necrotic phase of infection (Crouch and 

Beirn, 2009; Münch et al., 2008; Wharton and Julian, 1996; Wharton et al., 2001). This 

is followed by formation of the acervuli containing setae and conidia bearing 

conidiophores and further spread of infection.  
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Agronomic practices can be used to lessen anthracnose infestation, but the nature 

of the pathogen and the presence of alternate hosts hamper their effectiveness.  Conidial 

spores, the mycelium, sclerotia, microsclerotia, and hyphopodia can overwinter in 

decaying plant material and soil, which serve as a source of primary inoculum. The 

capability of C. sublineolum to survive on crop debris for nearly 18 months (Casela and 

Frederiksen, 1993) and in seed for up to 2.5 years (Crouch and Beirn, 2009) makes 

agronomic practices such as deep plowing of infected crop debris and crop rotation 

ineffective in controlling this disease. C. sublineolum infects most sorghum species and 

the fungal inoculum is capable of overwintering on the invasive weed Johnsongrass 

[Sorghum halepense (L.) Pers.] making the disease more persistent. The use of 

fungicides to control anthracnose can be partly effective (Gwary and Asala, 2006; 

Thomas et al., 1996), but fungicides prove to be uneconomical for most production 

fields while also posing a risk of pesticide residue on forage sorghums.  

Of the control strategies for anthracnose, host plant resistance is widely regarded 

the most effective (Mehta et al., 2005; Rosenow and Frederiksen, 1982). However, the 

hypervariable nature of C. sublineolum makes understanding inheritance of anthracnose 

resistance in sorghum challenging and can impede the development of stable resistance. 

The different isolates (races) of C. sublineolum show varying pathogenicity in diverse 

environments, rendering isolate-specific resistant varieties potentially ineffective across 

locations (Pastor-Corrales, 1979; Reyes et al., 1969).  Furthermore, with the evolution 

and introduction of new races over time and environments, the current arsenal of 

resistance genes may be rendered incompetent (Gorbet, 1987). Hence, a focus of applied 



 

8 

 

breeding programs is to identify multiple genetic resistance sources and then pyramid 

these genes into elite cultivars. Both dominant and recessive source of genetic resistance 

to anthracnose have been reported and resistance loci have been mapped with molecular 

techniques that include RAPDs (Boora et al., 1998; Singh et al., 2006), AFLPs (Perumal 

et al., 2009), SSRs (Klein et al., 2001; Murali Mohan et al., 2010), cDNA-AFLP 

transcript profiling in combination with virus-induced gene silencing (Biruma et al., 

2012), and SNPs (Burrell et al., 2015; Upadhyaya et al., 2013).  

The objective of the present research was to generate linkage maps identifying 

regions of the sorghum genome associated with anthracnose resistance loci that could be 

candidates for pyramiding multiple anthracnose resistance loci into an elite sorghum 

genotype. The ultimate goal is to provide effective and durable resistance against this 

fungal pathogen and to provide critical knowledge to eventually elucidate the molecular 

basis of resistance to this fungal disease.  

 

Materials and methods 

Mapping populations 

Regular screening of sorghum germplasm in field environments across Texas and 

Georgia (USA) has led to the identification of a number of inbreds having a high level of 

resistance to anthracnose (Mehta, 2002). Amongst the various resistant lines identified, 

SC414-12E and SC155-14E displayed good agronomic fitness while possessing different 

genetic loci for anthracnose resistance (Mehta, 2002). To create bi-parental mapping 

populations to map anthracnose resistance loci, SC414-12E and SC155-14E were 
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crossed with the anthracnose susceptible inbred BTx623. The F1 hybrids were selfed to 

create F2 populations that were further advanced to F4:5 recombinant inbred lines (RILs). 

For constructing linkage maps, ~100 F4:5 recombinant inbred lines from each population 

were used and phenotypic evaluation was done in six environments: CS, Texas A&M 

University Research Farm, College Station, TX in 2011, 2012, 2013, 2015; and GA, 

University of Georgia College of Agricultural and Environmental Sciences campus, 

Tifton, GA in 2013 and 2015. The field design was a randomized complete block with 

two replications and each plot consisted of a 5.2 m long single row with 0.8 m row 

spacing. Standard agronomic practices for fertilization, irrigation and insect management 

were followed in both locations. 

Inoculation of Colletotrichum sublineolum and phenotyping 

All C. sublineolum isolates for field inoculations were collected from the Texas 

A&M AgriLife Research farms at Brazos Bottom, Burleson County, TX (supplied by 

L.K. Prom, USDA-ARS, College Station, TX). A mixture of C. sublineolum isolates was 

applied to categorize the response of the segregating populations to anthracnose in all CS 

experimental plots with isolates AMP 119, AMP 123, AMP 129, AMP 132, AMP 134, 

AMP 150, and AMP 159 being used in 2011 while 2012-2015 isolates consisted of FSP 

2, FSP 5, FSP 7, FSP 35, FSP 36, FSP 44, FSP 50, and FSP 53. Inoculant was applied by 

dropping C. sublineolum colonized sorghum grains into the whorl of ~60 day-old 

sorghum plants (Erpelding and Prom, 2006). In CS environments, anthracnose disease 

perpetuation was dependent on seasonal rainfall and humidity. For GA environments, 

the sorghum mapping populations were naturally infected by local anthracnose isolates, 
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and the disease was perpetuated by the normal high humidity and rainfall supplemented 

with overhead sprinkler irrigation. To provide additional disease pressure, borders were 

planted with rows of susceptible genotype BTx623 in all field locations. 

 Anthracnose disease incidence ratings were recorded ~120 days after planting 

which corresponds to the late stages of grain fill to near physiological maturity.  At this 

time, the characteristic symptoms of anthracnose infection were observed on the 

susceptible parent (Crouch and Beirn, 2009). Disease ratings on a visual basis were 

obtained for the whole plot as well as for leaf, stalk, and head of individual plants. A 

rating scale of 1 to 9 was used based on the area of the leaf covered with lesions 

(Thakur, 1995). The rating scale is as follows; 1 = no lesions, 2 = 1-5%, 3 = 6-10%, 4 = 

11-20%, 5 =21-30%, 6 = 31-40%, 7 = 41-50%, 8 = 51-75%, and 9 = > 75% of the area 

covered with lesions. For disease rating of leaves, the foliage of plants was evaluated for 

anthracnose symptoms whereas the stalk rating was based on splitting the peduncle open 

and observing the spread of disease. Anthracnose incidence for panicles was rated by 

observing the infection on seeds and rachis of the panicle. For QTL analysis a whole plot 

reading was taken where each plot was assessed for foliar symptoms of anthracnose. In 

addition to anthracnose ratings, plant height was measured at physiological maturity 

from the ground to the panicle and days to anthesis was recorded when 50% of the plants 

in a plot were at mid-anthesis.  
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Statistical analysis 

 Data were analyzed with SAS version 9.4 (SAS Institute, 2014). Trait means, 

standard deviation, range, best linear unbiased estimators (BLUEs) and best linear 

unbiased predictors (BLUPs) were calculated. Analysis of variance for individual 

environments and combined environments was performed using PROC MIXED, which 

employs restricted maximum likelihood (REML) to estimate the variance components. 

The models used for analysis of individual and combined environments were 

ijjiij GenpY   Re and   ijkkjjkikijk EnvGenGenEnvpEnvY   Re  

respectively, where Y is the trait of interest, μ is the mean effect, Repi is the effect of the 

ith replicate, Genj is the effect of the jth genotype, Envk is the effect of the kth 

environment, Repi (Envk) is the effect of replicates nested within environments, Genj x 

Envk   is the genotype-by-environment interaction and εijk is the error term. All the effects 

were treated as random and broad-sense Heritability (H
2
) on an entry mean basis was 

estimated for individual and combined environments using the formulae 
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  respectively, where σ
2

g is variance 

component for genotype, σ
2

gxe for genotype-by-environment, and σ
2

e for error; r is the 

number of replications; and l is the number of environments. To determine the 

relationship between the traits, the phenotypic correlations were calculated using PROC 

CORR. Correlation between anthracnose ratings of the whole plot (ANP), leaf (ANF), 
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stalk (ANS), and head (ANH) of plants as well as between plant height, days to anthesis 

and anthracnose disease ratings of the whole plot were calculated.  

Genotyping, linkage mapping & QTL mapping 

 Digital Genotyping (DG), a high throughput method of genotyping-by-

sequencing developed for C4 grasses, was employed for genotyping the parental lines 

and the 100 RILs of the two populations (Morishige et al., 2013). Plants were grown in 

Sunshine MVP growing media (Sun Gro Horticulture, Inc.) for 14 days in a greenhouse 

with temperatures varying from 24
0
C (night) to 30

0
C (day), under natural sunlight and 

sodium halide lights. Leaf tissue from 10 to 12 day-old seedlings of each genotype was 

collected and total genomic DNA was extracted using the FastPrep FP120 instrument 

(Bio 101 Savant, Inc.) along with the FastDNA Spin Kit (MP Biomedicals, Inc.) and 

quantified using a Qubit Fluorometer (Invitrogen, Inc.). 500 ng DNA of each line was 

digested with the methylation-sensitive enzyme FseI (New England BioLabs, Inc.) and 

Illumina template library made as described by Burrell et al. (2015). Standard Illumina 

protocols were followed for cluster generation from the template and single-end 

sequencing was carried out on an Illumina GAIIx (Illumina, Inc.). The Illumina 

sequencing data obtained was processed through a number of custom Perl and python 

scripts, and processed Illumina reads from the parental lines were aligned to the sorghum 

reference genome [Sbicolor v.3.1, www.phytozome.jgi.doe.gov, Paterson et al., (2009)]. 

Using BLASTN, polymorphisms between parents were identified and further scored 

through the progeny using custom perl scripts as described (Morishige et al., 2013). A 

http://www.phytozome.net/
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file containing the SNP markers identified in the RILs was generated and used for 

genetic linkage map construction. 

 A genetic linkage map was created for both sorghum RIL populations using 

JoinMap V4.0 (Van Ooijen and Voorrips, 2006). SNP markers were excluded that were 

close to a flanking marker (<10,000 bp) or a neighboring SNP that showed identical 

segregation to a framework marker. Linkage groups were determined using the 

independence test LOD score and groups with a high LOD score (10) were selected for 

mapping. For each linkage group, the genetic distance between markers was calculated 

using Kosambi’s mapping function.  

 BLUEs of anthracnose disease ratings, plant height, and days-to-anthesis for each 

RIL in each environment and BLUPs combined from all environments were used for 

QTL analysis. Single-marker analysis, interval mapping (IM) and composite interval 

mapping (CIM) were performed using WinQTL Cartographer V2.5 (Wang et al., 2012), 

and inclusive composite interval mapping (ICIM) was done in IciMapping V4.1 (Wang 

et al., 2016a). The CIM analysis was performed using standard stepwise regression 

model 6 with default settings, 1000 permutations to determine the LOD significance 

threshold, and a walk speed of 1.0 cM. Other parameters such as genomic positions, 

effects of significant QTL, and the phenotypic variation explained (PVE) were also 

calculated. For each significant QTL, the position of the peak marker and the flanking 

markers of the QTL interval (1-LOD interval window) were determined, and the 

annotated genes (sorghum genome, v.3.1) within the QTL 1-LOD interval were 

surveyed for a potential role in plant disease resistance.  
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Genome sequencing of SC414-12E and SC155-14E 

 Genomic DNA for Illumina-based sequencing was extracted from leaf tissue of 

growth chamber-grown 14-day-old seedlings of SC414-12E and SC155-14E as detailed 

above for RIL genotyping. DNA library preparation was conducted by the Texas A&M 

AgriLife Genomics and Bioinformatics Service, followed by 100 bp paired-end 

sequencing in one lane on a HiSeq2000 (Illumina). Paired-end reads obtained by 

sequencing were uploaded to the CLC Genomics Workbench version 8.5.1 (CLC bio, 

Inc.) and duplicate reads were removed using the Remove Duplicate Mapped Reads 

feature. The remaining reads were trimmed and mapped to the BTx623 reference 

genome (Sbicolor v.3.1, www.phytozome.jgi.doe.gov, Paterson et al., 2009) using the 

Trim Sequences and Map Reads to Reference features, respectively. For read mapping, 

an alignment of at least 75% of length with more than 90% similarity was required. The 

mismatch cost was set to 2, and insertion and deletion costs were set to 3 and nonspecific 

read matches were mapped randomly. Variants were detected using the CLC Bio Fixed 

Ploidy Variant Detection feature with required variant probability set to 90%, 

neighborhood radius set to 5, minimum neighborhood quality set to 15 and minimum 

central quality of variant set to 20. The minimum coverage and count for a variant call 

were set to 15 and 3, respectively, and the variant had to be present in both forward and 

reverse reads. The annotated sorghum genome (v.3.1) downloaded from Phytozome v 

11.0 was used to find coding variants in SC414-12E and SC155-14E compared to 

BTx623. 

 

http://www.phytozome.net/
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Results and discussion 

Analysis of phenotypic data 

Anthracnose disease incidence 

 To better understand the genetic basis of anthracnose resistance in sorghum, we 

evaluated two RIL populations from a cross of the elite sorghum inbred BTx623 that is 

susceptible to anthracnose with two anthracnose resistant adapted lines SC414-12E and 

SC155-14E. The sources of germplasm were selected not only due to their reported 

resistance to anthracnose (Mehta et al., 2005), but also because these improved 

‘converted’ tropical accessions have been selected for agronomic fitness by sorghum 

improvement programs in the US. Thus, the genes or genomic regions of these resistant 

parents that harbor anthracnose resistance can be more readily utilized by breeding 

programs than sources of resistance that reside in genomes of more exotic (unadapted) 

germplasm. 

 In every environment, the mean anthracnose incidence of the RIL mapping 

populations was intermediate to their respective parents (Tables 1 and 2).  The average 

disease incidence rating of susceptible (BTx623) and resistant (SC414-12E) parents 

varied among the environments, ranging from 4 to 8.8 and 1.25 to 3.5, respectively 

(Table 1). The second resistant parental genotype, SC155-14E, was highly resistant in all 

environments tested with an average disease incidence score of 1 (Table 2). The 

resistance classifications of these sorghum genotypes are in general agreement with 

previous studies (Mehta et al., 2005; Rooney et al., 2002).  In the BTx623 × SC414-12E 

RIL population, the average anthracnose scores ranged from a low of 1.24 in the dry 
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environment of 2011-CS to 4.99 in 2013-GA where disease pressure was severe (Table 

1). In the BTx623 × SC155-14E population, the average disease resistance rating for the 

RILs was consistently lower but the entries per se had a wider range of disease incidence 

ranging from highly susceptible (rating of 9) to highly resistant (rating of 1) (Table 2).  

The exception to these trends was the 2011-CS environment (ratings of 1-6), where the 

spread and development of disease were limited due to very dry conditions. 

 Transgressive segregation for anthracnose incidence was observed in both RIL 

populations; of particular interest were RILs displaying greater resistance than parent 

SC414-12E. This transgressive segregation may indicate that minor alleles for resistance 

are harbored in both BTx623 and SC414-12E and thus, favorable trait loci may be 

present in the susceptible parent (Young, 1996). Indeed, as is discussed later, minor QTL 

for resistance were located in this population, and the allele contributing resistance at 

one of these loci was derived from BTx623. Transgressive segregation was also 

observed in the population derived from resistant parent SC155-14E, but only for RILs 

that were slightly more susceptible than BTx623; no RIL was more resistant than 

SC155-14E, which was nearly disease free in the chosen environments (see Table 2). 

 Heritability estimates attributed a substantial portion of the phenotypic variation 

of anthracnose incidence to genetic effects. The broad sense heritability (H
2
) estimates 

for anthracnose resistance were moderate to high, ranging from 0.36 to 0.86 in the 

BTx623 × SC414-12E population and from 0.73 to 0.94 for the BTx623 × SC155-14E 

population (Tables 1 and 2). These results are comparable to those reported previously 
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Table 1. Phenotypic trait values for parental inbreds BTx623 and SC414-12E and the derived 96 F4:5 RILs evaluated in six 

environments and averaged across all environments. Values represent means with standard deviations (SD) shown in 

parentheses. Ranges for phenotypic values of the F4:5 RILs along with broad sense heritability of each trait are shown. 

Environment† Trait 
 

Mean  (SD) 
 

Range Heritability 

  
BTx623 SC414-12E RILs 

  
2011-CS Anthracnose NA

‡
 NA 1.24 (0.63) 1-5 0.36 

2012-CS Anthracnose 7.00 (0.00)
 a
 2.00 (0.82)

 b
 4.73 (1.80) 1-8 0.86 

2013-CS Anthracnose 7.75 (1.26)
 a
 1.25 (0.50)

 b
 3.43 (2.38) 1-9 0.79 

2013-GA Anthracnose 8.50 (0.58)
 a
 2.67 (0.58)

 b
 4.99 (2.52) 1-9 0.70 

2015-CS Anthracnose 6.50 (0.84)
 a
 3.50 (1.05)

 b
 4.65 (1.08) 1-7 0.69 

2015-GA Anthracnose 6.00 (1.10)
 a
 2.83 (1.60)

 b
 3.30 (1.87) 1-9 0.84 

Combined Anthracnose      7.00 (4.10)      2.60 (1.30) 3.72 (2.24) 1-9 0.82 

2011-CS Height NA NA 47.26 (8.07) 32-90 0.84 

2012-CS Height 47.75 (2.22)
 a
 40.50 (6.35)

 a
 49.66 (9.84) 31-74 0.90 

2013-CS Height 53.00 (3.56)
 a
 45.50 (3.00)

 b
 53.64 (8.74) 33-90 0.94 

2013-GA Height NA NA NA NA NA 

2015-CS Height 52.50 (2.59)
 a
 42.00 (2.10)

 b
 48.47 (8.10) 24-68 0.93 

2015-GA Height 55.33 (3.72)
 a
 47.33 (3.27)

 b
 50.46 (10.23) 24-80 0.90 

Combined Height 52.50  (3.94) 44.00  (4.40) 49.90 (9.28) 24-90 0.93 

2011-CS Days to anthesis NA NA 69.58 (3.96) 60-81 0.85 

2012-CS Days to anthesis 73.00 (2.00)
 a
 70.00 (0.00)

 b
 70.04 (3.78) 60-84 0.71 

2013-CS Days to anthesis 81.75 (1.50)
 a
 84.25 (2.87)

 a
 83.77 (4.14) 64-93 0.70 

2013-GA Days to anthesis NA NA NA NA NA 

2015-CS Days to anthesis 76.83 (2.93)
 a
 81.50 (4.81)

 a
 77.62 (5.74) 56-89 0.64 

2015-GA Days to anthesis NA NA NA NA NA 

Combined Days to anthesis 77.14 (4.07) 79.00 (6.90) 75.25 (7.37) 56-93 0.82 
† 
Defined as a combination of year and location; CS, College Station; GA, Georgia. 

‡ 
Data not available. 

  Means followed by different alphabets 
a 
and 

b 
indicate significant differences of trait mean value between the two parents as calculated by Tukey's test.
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Table 2. Phenotypic trait values for parental inbreds BTx623 and SC155-14E and the derived 100 F4:5 RILs evaluated in six 

environments and averaged across all environments. Values represent means with standard deviations (SD) shown in 

parentheses. Ranges for phenotypic values of the F4:5 RILs along with broad sense heritability of each trait are shown. 

Environment† Trait 
 

Mean  (SD) 
 

Range Heritability 

  
BTx623 SC155-14E RILs 

  
2011-CS Anthracnose NA

‡
 NA 1.35 (0.78) 1-6 0.73 

2012-CS Anthracnose 7.00 (0.63) 
a
 1.00 (0.00)

 b
 2.68 (2.31) 1-8 0.94 

2013-CS Anthracnose 8.50 (0.53)
 a
 1.00 (0.00)

 b
 3.30 (2.84) 1-9 0.88 

2013-GA Anthracnose 8.88 (0.35)
 a
 1.00 (0.00)

 b
 2.91 (2.74) 1-9 0.90 

2015-CS Anthracnose 7.50 (0.58)
 a
 1.00 (0.00)

 b
 2.11 (1.63) 1-8 0.84 

2015-GA Anthracnose 4.00 (2.16) NA 2.03 (1.70) 1-8 0.90 

Combined Anthracnose 7.57 (1.79) 1.00 (0.00) 2.39 (2.20) 1-9 0.90 

2011-CS Height NA NA 44.80 (6.88) 30-75 0.78 

2012-CS Height 50.83 (2.71)
 a
 38.25 (3.86)

 b
 49.85 (9.15) 31-75 0.87 

2013-CS Height 49.88 (2.90)
 a
 36.25 (0.96)

 b
 47.81 (8.38) 29-69 0.85 

2013-GA Height NA NA NA NA NA 

2015-CS Height 55.75 (6.50)
 a
 46.75 (9.18)

 a
 50.28 (6.04) 36-62 0.79 

2015-GA Height 55.50  (4.73) NA 52.06 (9.50) 28-76 0.81 

Combined Height 52.23  (4.57) 40.42  (7.06) 48.96 (8.45) 28-76 0.90 

2011-CS Days to anthesis NA NA 69.02 (4.25) 59-77 0.89 

2012-CS Days to anthesis 72.00 (2.19)
 a
 74.00 (0.00)

 a
 71.18 (3.57) 60-82 0.79 

2013-CS Days to anthesis 70.50 (1.41)
 a
 71.50 (1.00)

 a
 70.12 (4.16) 60-85 0.82 

2013-GA Days to anthesis NA NA NA NA NA 

2015-CS Days to anthesis 72.25 (2.36)
 a
 75.00 (1.15)

 a
 74.57 (5.64) 56-92 0.82 

2015-GA Days to anthesis NA NA NA NA NA 

Combined Days to anthesis 71.39 (1.97) 73.50  (1.73) 71.24 (4.93) 56-92 0.89 
 † 

Defined as a combination of year and location; CS, College Station; GA, Georgia. 
 ‡ 

Data not available. 

  Means followed by different alphabets 
a 
and 

b 
indicate significant differences of trait mean value between the two parents as calculated by Tukey's test.
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by Burrell et al. (2015). Based on these heritability estimates, selection for anthracnose 

resistance would likely result in significant genetic gains through the introgression of 

resistance from SC155-14E and SC414-12E into elite cultivars. It should be noted that 

the resistance present in SC155-14E is inherited as a recessive trait while resistance in 

SC414-12E is inherited as a dominant trait (Mehta et al., 2005). Despite the higher 

heritability estimates, introgression of a recessively inherited trait is more problematic in 

hybrid crops (including sorghum) as the trait must be introgressed into both parental 

lines that comprise the F1 hybrid. Therefore, marker-assisted backcrossing will be of 

particular value in accelerating the introgression of this recessively inherited trait from 

SC155-14E into both male and female parental lines. 

 In both RIL populations, the analyses of variance for anthracnose in each 

environment, as well as the combined analysis across environments indicated significant 

phenotypic variation (P < 0.001 and P < 0.05) among the RILs. Additionally, the 

combined analysis of phenotypic data from all environments detected significant (P < 

0.001) environmental effects and genotype-by-environment (G×E) interactions (Table 

3). The different nature of the anthracnose reaction by specific genotypes in the various 

environments depends in part upon the races of C. sublineolum that are present in a 

given geographical location and to those environmental factors (e.g., humidity, rainfall) 

that influence the asexual reproduction and spread of the inoculum. Significant 

differences (P < 0.001 and P < 0.01) observed among the replicates for the 2013-CS 

environment in both populations suggested that the disease pressure varied amongst 

blocks in this environment. This block effect likely resulted from the unequal application 
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Table 3. Mean squares of ANOVA of anthracnose disease rating for the two RIL mapping populations in the six environments 

and combined across all environments. 

BTx623 × SC414-12E    Mean squares   

Environment† Genotype (G) Replication Error Environment (E) Replication(E)
‡
 G x E 

2011-CS 0.49* 0.08 0.31 
   

2012-CS     5.70*** 0.08 0.8 
   

2013-CS     8.91***       53.69 *** 1.87 
   

2013-GA     9.85*** 0.02 2.93 
   

2015-CS     1.80*** 0.34 0.56 
   

2015-GA     6.03*** 2.32 0.97    

Combined   16.31*** 
 

1.24 380.50*** 9.42*** 3.28*** 

BTx623 × SC155-14E    Mean squares   

Environment† Genotype (G) Replication Error Environment (E) Replication(E)
‡
 G x E 

2011-CS   0.96*** 0.41 0.26 
   

2012-CS 10.06*** 1.62 0.60 
   

2013-CS 13.61***    24.94 ** 1.65 
   

2013-GA 13.73*** 0.26 1.40 
   

2015-CS   4.60*** 0.05 0.72 
   

2015-GA  5.14*** 0.53 0.53    

Combined 31.29*** 
 

0.85 95.72*** 4.63*** 3.23*** 

  *, ** and *** are significant at the 0.05, 0.01 and 0.001 probability level, respectively. 
   † 

Defined as a combination of year and location; CS, College Station; GA, Georgia. 
‡ 

Effect was nested within environment (E). 
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of inoculum due to a limited amount of inoculum remaining near the end of the 

inoculation process. The variation in disease incidence due to environmental and G×E 

effects was anticipated and thus, as many environments as possible were chosen for this 

study (along with different sources of resistance) to identify as many trait loci as 

possible for the eventual development of stable resistance to anthracnose (Rooney et al., 

2002). 

No significant correlations between anthracnose resistance and either plant height 

or days to anthesis were observed in the present populations (Table 4), which is unlike 

the results of Upadhyaya et al. (2013) who reported plant height and days to anthesis 

were negatively correlated with anthracnose severity. As plant height and days to 

anthesis are critical determinants of breeding value in sorghum, the lack of an 

association between anthracnose resistance in SC414-12E and SC155-14E indicates that 

utilization of these sources of anthracnose resistance will not be complicated by a 

negative association with plant height or flowering time. Similar to a previous report 

(Marley and Ajayi, 2002), a significant correlation between anthracnose ratings of the 

whole plot (ANP), leaf (ANF), stalk (ANS), and head (ANH) was observed in 2012-CS, 

2013-CS, and 2013-GA (Table 5). Hence, the whole plot rating was considered to be a 

good predictive indicator of disease severity, and no further assessment of disease on 

stalks or heads was required in subsequent environments. This is noteworthy since 

scoring structures of individual plants (such as the stalks or heads) can be time-

consuming, and is less amenable to rapid, high-throughput plant phenotyping by UAVs 

that are being presently utilized in many crop improvement programs including 
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Table 4. Pearson’s correlation coefficients for height, days to anthesis and anthracnose of 

the two RIL mapping populations. 

BTx623 × SC414-12E 

Height Days to anthesis Anthracnose 

Height - 0.29*** -0.02 

Days to anthesis - 0.06 

Anthracnose - 

BTx623 × SC155-14E 

Height Days to anthesis Anthracnose 

Height - 0.13* 0.03 

Days to anthesis - -0.09 

Anthracnose - 

* and *** are significant at the 0.05 and 0.001 probability level, respectively.

Table 5. Pearson’s correlation coefficients for anthracnose related traits of the two RIL 

mapping populations. 

BTx623 × SC414-12E 

ANP ANF ANS ANH 

ANP - 0.84*** 0.44*** 0.80*** 

ANF - 0.39*** 0.89*** 

ANS - 0.77*** 

ANH - 

BTx623 × SC155-14E 

ANP ANF ANS ANH 

ANP - 0.92*** 0.73*** 0.69*** 

ANF - 0.61*** 0.64*** 

ANS - 0.79*** 

ANH - 

*** Significant at the 0.001 probability level. 

ANP, anthracnose whole plot rating; ANF, anthracnose foliar rating; ANS, anthracnose stalk rating; ANH, 

anthracnose head rating. 
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sorghum. This will be of particular value in distant field locations where the use of a 

UAV to phenotype for anthracnose incidence could eventually be less costly and time-

consuming. 

Plant height and days to anthesis 

While characterizing the genetics of anthracnose resistance in two sorghum RIL 

populations was the primary focus of this study, plant height and days to anthesis were 

analyzed to confirm consistency of the population both phenotypically and genetically.  

For most environments, mean values for the RIL populations were intermediate to the 

two parents of each population (Tables 1 and 2). As is commonly observed in 

populations derived from converted tropical sorghum accessions, transgressive 

segregation for plant height and days to anthesis was observed in RIL entries from both 

populations (Young, 1996).  The relatively high heritability estimates for plant height 

(0.78-0.94) and days to anthesis (0.64-0.89) were expected as they are in agreement with 

previous reports for these traits in sorghum (Srinivas et al., 2009; Sukumaran et al., 

2016; Zou et al., 2012).  

Linkage maps 

Digital genotyping of the BTx623 × SC414-12E and the BTx623 × SC155-14E 

populations was performed on an Illumina GAIIx. The unique sequences derived from 

the parents of each population were aligned to the BTx623 reference genome using 

BLASTN. The use of the methylation-sensitive enzyme FseI reduced the representation 

of repetitive and pericentromeric heterochromatic regions allowing mostly unmethylated 

(gene-rich) regions to be sequenced. On aligning the reads of SC414-12E to the BTx623 
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reference genome, a total of 1420 single nucleotide polymorphism (SNP) markers were 

identified that were subsequently scored through the RILs. Of the 1420 SNPs, 425 SNPs 

were discarded for being redundant or having substantial missing data.  The final linkage 

map contained a total of 857 unique SNPs spanning a length of 1732.6 cM that mapped 

to 12 linkage groups representing the 10 chromosomes of sorghum (Table 6). Two 

separate linkage groups spanned both chromosomes 3 and 6 in the final map. On 

average, one marker was present at 2 cM intervals across the linkage map.  

 For the BTx623 × SC155-14E population, 2061 SNPs were detected, of which 

1105 were discarded for being redundant or having substantial missing data and 956 

highly informative SNPs were mapped across 10 chromosomes covering a total map 

length of 1226.8 cM (Table 6). Markers on chromosome 6 mapped to two different 

linkage groups, resulting in a total of 11 linkage groups. The map was denser than that 

obtained for the BTx623 × SC414-12E RIL population with an average marker coverage 

of one marker per 1.2 cM. 

 With the high-quality sequenced genome of BTx623 being available (Sbicolor 

v.3.1, www.phytozome.jgi.doe.gov, Paterson et al., 2009), it was possible to ascertain 

how well each linkage map covered the sorghum genome. In general, all chromosomes 

were well covered by SNPs, although the gene-poor pericentromeric regions were under-

represented with SNPs, which is expected based on the use of methylation-sensitive 

enzymes in Illumina template preparation (Morishige et al., 2013). This was observed 

for chromosomes 3 and 6 for the BTx623 × SC414-12E population and chromosome 6 

for the BTx623 × SC155-12E population where the linkage groups could not be merged 

http://www.phytozome.net/


 

25 

 

Table 6. Linkage map marker coverage across the ten sorghum chromosomes generated for F4:5 RIL mapping populations 

BTx623 × SC414-12E and BTx623 × SC155-14E. 

BTx623 × SC414-12E 
           

Chromosome 1 2 3 4 5 6 7 8 9 10 Total 

Chromosome Length (cM) 199.7 149.3 125.5 207.1 170.5 119.7 199.2 194.3 197.6 169.7 1732.6 

Number of Markers 131 109 107 92 71 61 66 57 76 87 857 

Marker density
† 
(cM) 1.52 1.37 1.17 2.25 2.40 1.96 3.02 3.41 2.60 1.95 2.02 

Largest interval
‡ 
(cM) 9.72 8.78 5.92 11.05 14.60 8.51 20.5 22.4 13.31 19.26 

 
Largest interval

‡ 
(Mbp) 19.80 33.99 29.17 19.80 36.28 41.98 32.12 26.12 33.95 32.80 

 
BTx623 × SC155-14E 

           
Chromosome 1 2 3 4 5 6 7 8 9 10 Total 

Chromosome Length (cM) 183.2 163.7 129.1 137.8 114.8 101.7 103.3 113.5 71.2 108.2 1226.8 

Number of Markers 166 114 131 109 82 96 67 60 42 89 956 

Marker density
† 
(cM) 1.10 1.44 0.99 1.26 1.40 1.06 1.54 1.89 1.70 1.22 1.28 

Largest interval
‡ 
(cM) 4.32 5.21 4.83 7.89 8.01 5.75 5.83 8.63 9.21 5.82  

Largest interval
‡ 
(Mbp) 25.04 34.21 29.55 23.77 31.12 28.73 35.08 31.68 20.47 25.46  

 † 
Defined as the distance between adjacent markers, measured in cM. 

 ‡ 
Defined as the largest distance observed between adjacent markers in cM and million base pairs (Mbp). 
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due to low marker coverage around the centromere. The largest physical gaps between 

markers, which were found in the pericentromeric heterochromatic regions of the 

chromosome were ~42 Mbp and ~35 Mbp in the BTx623 × SC414-12E and BTx623 × 

SC155-12E populations, respectively. 

Quantitative trait loci for anthracnose incidence, plant height, and days to anthesis 

In total, 13 QTL in the BTx623 × SC414-12E RIL population and 16 QTL in the 

BTx623 × SC155-14E RIL population were detected for the three agronomic traits 

analyzed (Tables 7, 8, 9, 10). The threshold LOD score for a significant QTL was 

calculated as 3.3 for all traits and QTL in Tables 7 and 8 were significant in at least 3 

environments for anthracnose and plant height, and two environments for days to 

maturity. Less consistent QTL, and those detected in fewer environments, are shown in 

Tables 9 and 10. 

While linkage analysis of plant height was not a focus of this study, it did afford 

us the opportunity to assess the utility of these mapping populations and associated 

linkage maps to accurately locate regions of the sorghum genome that harbor important 

agronomic trait loci. QTL for height, one each on chromosomes 1, 7, and 9 were 

observed in the BTx623 × SC414-12E population (Table 7). The QTL on chromosome 1 

(61.28-67.92 Mbp, LOD scores ranging from 3.39-7.54) accounted for 7 to 14% of the 

phenotypic variation. The QTL on chromosome 7 (8.72-57.49 Mbp, LOD scores ranging 

from 6.79-13.09), accounted for 20 to 35% of the PVE and was located nearly 3Mb 

away from the known Dw3 gene. This QTL has been previously identified by Li et al. 

(2015) as qHT7.1 and found to be in repulsion linkage with the Dw3 locus.  The QTL on 
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chromosome 9 (52.82-58.14 Mbp, LOD scores ranging from 6.17-12.95) mapped to the 

position of the known height locus Dw1 at ~57 Mb (Brown et al., 2008; Morris et al., 

2013). BTx623 is recessive for the dw1 locus whereas SC414-12E is dominant and 

hence expected to segregate in this population.  A negative additive effect and 

phenotypic variation of 13 to 29% was attributed to this QTL.  For the BTx623 × 

SC155-14E population (Table 8), a QTL for height was detected on chromosome 6 

(LOD 4.88-9.54, PVE 14-27%) and was identified at a position between 41.92-44.83 

Mbp, which corresponds to the known location of the Dw2 locus (Brown et al., 2008; Li 

et al., 2015; Morris et al., 2013). BTx623 is dominant Dw2 and SC155-14E recessive 

dw2, and thus segregation for this locus was expected in the RIL population. The quality 

and accuracy of the two linkage maps were thus assessed through the co-localization of 

QTL for plant height with known locations of dwarfing (dw) genes in the sorghum 

genome. 
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Table 7. Quantitative trait loci (QTL) detected for anthracnose disease incidence, plant height and days to anthesis in the F4:5 RIL 

population of BTx623 × SC414-12E. QTL were predicted based on best linear unbiased estimators (BLUEs) for each 

environment. 
Environment† Trait Chromosome Peak Confidence Left Marker Right Marker LOD§ PVE Additive 

   Position interval‡    (%) effect¶ 

   (cM) (cM)      

2013-GA Anthracnose 2 106.40 105.70-106.80 chr02_67.62 chr02_68.22 5.31 17 -0.93 

2015-CS Anthracnose 2 100.70 99.00-101.20 chr02_65.45 chr02_66.10 4.00 7 -0.27 

2015-GA Anthracnose 2 126.60 121.80-129.80 chr02_72.79 chr02_75.54 5.04 11 -0.61 

Combined Anthracnose 2 121.60 119.60-128.20 chr02_71.42 chr02_75.54 4.69 9 -0.28 

2013-GA Anthracnose 4 118.90 118.00-122.40 chr04_54.20 chr04_56.01 3.59 10 0.72 

2015-GA Anthracnose 4 112.20 102.90-116.20 chr04_53.28 chr04_54.10 5.53 14 0.81 

Combined Anthracnose 4 112.20 100.00-119.50 chr04_51.71 chr04_55.75 3.31 6 0.27 

2012-CS Anthracnose 5 108.20 108.20-120.20 chr05_64.02 chr05_66.05 8.74 25 0.90 

2013-CS Anthracnose 5 117.20 116.60-118.10 chr05_64.69 chr05_65.26 14.35 39 1.41 

2015-CS Anthracnose 5 119.90 116.60-124.80 chr05_64.69 chr05_66.98 12.41 31 0.55 

Combined Anthracnose 5 117.20 116.90-118.10 chr05_64.69 chr05_65.26 8.62 20 0.45 

2012-CS Height 1 116.40 115.60-123.10 chr01_64.44 chr01_67.92 7.54 14 3.67 

2013-CS Height 1 116.40 115.60-124.90 chr01_64.44 chr01_67.92 5.12 10 2.74 

2015-CS Height 1 104.80 99.50-110.20 chr01_61.28 chr01_64.09 3.39 7 2.12 

2015-GA Height 1 104.80 99.50-108.10 chr01_61.28 chr01_64.09 3.72 8 2.79 

Combined Height 1 118.40 116.00-123.10 chr01_64.87 chr01_67.92 7.93 13 2.72 

2011-CS Height 7 98.20 93.50-104.30 chr07_46.11 chr07_56.52 6.79 20 3.78 

2012-CS Height 7 93.00 91.80-93.20 chr07_08.72 chr07_46.11 11.00 24 5.75 

2013-CS Height 7 102.20 102.20-105.70 chr07_56.46 chr07_57.49 10.86 27 5.05 

2015-CS Height 7 102.20 102.20-105.30 chr07_56.46 chr07_57.49 10.62 31 4.91 

2015-GA Height 7 102.20 102.20-106.00 chr07_56.46 chr07_57.49 9.47 26 5.54 
 

 

 

 



 

29 

 

 

Table 7. Continued 
Environment† Trait Chromosome Peak Confidence Left Marker Right Marker LOD§ PVE Additive 

   Position interval‡    (%) effect¶ 

   (cM) (cM)      

Combined Height 7 102.2 101.80-105.30 chr07_55.34 chr07_57.49 13.09 35 4.67 

2011-CS Height 9 144.5 143.30-146.40 chr09_52.82 chr09_54.14 6.17 18 -3.8 

2012-CS Height 9 166.3 164.60-176.40 chr09_56.11 chr09_58.14 8.52 13 -4.51 

2013-CS Height 9 166.3 161.80-168.40 chr09_56.11 chr09_56.75 12.95 29 -5.35 

2015-CS Height 9 161.9 158.60-167.70 chr09_55.96 chr09_56.75 8.71 23 -4.37 

2015-GA Height 9 166.3 160.00-167.70 chr09_56.08 chr09_56.75 8.37 21 -5.06 

Combined Height 9 166.3 164.20-175.70 chr09_56.11 chr09_58.14 8.09 12 -3.28 

2011-CS Days to anthesis 9 186.9 185.50-189.00 chr09_57.42 chr09_58.36 6.35 17 -1.6 

2012-CS Days to anthesis 9 186.9 185.50-189.00 chr09_57.42 chr09_58.36 4.75 14 -1.24 
† Defined as a combination of year and location; CS, College Station; GA, Georgia. 

‡ Interval containing the peak marker +1 LOD. 
§ LOD, logarithm of odds. 
¶ Positive values indicate contribution of BTx623 allele in increasing trait value, negative values indicate contribution of BTx623 allele in decreasing trait value or  

  contribution of SC414-12E allele in increasing trait value. 
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Table 8. Quantitative trait loci (QTL) detected for anthracnose disease incidence, plant height and days to anthesis in the F4:5 RIL 

population of BTx623 × SC155-14E. QTL were predicted based on best linear unbiased estimators (BLUEs) for each 

environment. 
Environment† Trait Chromosome Peak Confidence Left Marker Right Marker LOD

§
 PVE Additive 

   Position interval
‡
    (%) effect

¶
 

   (cM) (cM)      

2012-CS Anthracnose 4 83.7 80.80-90.30 chr04_53.95 chr04_57.22 3.71 5 0.58 

2013-GA Anthracnose 4 92.2 91.60-93.30 chr04_57.23 chr04_57.74 6.24 16 1.10 

2015-CS Anthracnose 4 98.2 97.20-99.20 chr04_59.44 chr04_60.68 4.14 9 0.54 

2015-GA Anthracnose 4 98.2 95.70-99.20 chr04_58.61 chr04_60.68 3.71 9 0.51 

Combined Anthracnose 4 86.1 84.70-87.40 chr04_54.90 chr04_56.87 4.30 7 0.41 

2011-CS Anthracnose 9 0.9 0.20-2.00 chr09_00.74 chr09_01.28 5.80 19 0.31 

2012-CS Anthracnose 9 0.9 0.00-2.10 chr09_00.74 chr09_01.28 21.55 42 1.55 

2013-CS Anthracnose 9 1.6 0.00-1.70 chr09_00.74 chr09_01.28 27.65 62 2.16 

2013-GA Anthracnose 9 0.9 0.00-2.10 chr09_00.74 chr09_01.28 8.43 24 1.31 

2015-CS Anthracnose 9 0.9 0.40-4.80 chr09_00.74 chr09_01.59 8.85 23 0.74 

2015-GA Anthracnose 9 0.9 0.60-2.60 chr09_00.74 chr09_01.34 9.55 26 0.83 

Combined Anthracnose 9 0.9 0.60-1.80 chr09_00.74 chr09_01.28 17.37 40 0.97 

2012-CS Height 6 19.1 17.50-21.20 chr06_42.65 chr06_44.83 8.28 24 4.43 

2013-CS Height 6 18.3 15.88-20.10 chr06_42.53 chr06_44.83 4.88 14 2.91 

2015-CS Height 6 17.7 17.20-19.80 chr06_42.64 chr06_42.83 7.90 22 2.60 

2015-GA Height 6 17.5 16.10-20.60 chr06_42.53 chr06_44.83 6.36 19 4.11 

Combined Height 6 18.6 13.30-18.90 chr06_41.92 chr06_42.83 9.54 27 3.01 

2011-CS Days to anthesis 3 122.9 122.00-125.20 chr03_72.51 chr03_72.90 4.34 11 1.42 

2012-CS Days to anthesis 3 99.5 98.20-108.90 chr03_62.17 chr03_66.58 3.44 8 0.95 

2013-CS Days to anthesis 3 101.7 101.10-108.50 chr03_62.17 chr03_66.58 4.45 10 1.23 

2015-CS Days to anthesis 3 101.7 100.70-104.10 chr03_62.17 chr03_65.21 3.66 10 1.73 

Combined Days to anthesis 3 101.7 100.90-102.30 chr03_62.17 chr03_63.67 6.32 13 1.19 
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Table 8. Continued 
Environment† Trait Chromosome Peak Confidence Left Marker Right Marker LOD

§
 PVE Additive 

   Position interval
‡
    (%) effect

¶
 

   (cM) (cM)      

2011-CS Days to anthesis 4 28.3 27.90-28.60 chr04_04.30 chr04_04.99 5.48 13 -1.51 

2012-CS Days to anthesis 4 28.3 27.90-28.90 chr04_04.30 chr04_04.99 6.87 17 -1.38 

2013-CS Days to anthesis 4 27.6 26.40-28.60 chr04_04.23 chr04_04.99 5.83 13 -1.44 

Combined Days to anthesis 4 28.3 27.70-28.60 chr04_04.30 chr04_04.99 6.2 13 -1.18 
† Defined as a combination of year and location; CS, College Station; GA, Georgia. 

‡ Interval containing the peak marker +1 LOD. 
§ LOD, logarithm of odds. 
¶ Positive values indicate contribution of BTx623 allele in increasing trait value, negative values indicate contribution of BTx623 allele in decreasing trait value or  

  contribution of SC155-14E allele in increasing trait value. 
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Table 9. Less consistent Quantitative trait loci (QTL) detected for anthracnose disease incidence, plant height and days to 

anthesis in the F4:5 RIL population of BTx623 × SC414-12E. QTL were predicted based on best linear unbiased estimators 

(BLUEs) for each environment. 
Environment† Trait Chromosome Peak Confidence Left Marker Right Marker LOD

§
 PVE Additive 

   Position interval
‡
    (%) effect

¶
 

   (cM) (cM)      

2015-GA Anthracnose 1 123.70 117.70-126.00 chr01_64.87 chr01_70.08 4.27 10 0.55 

Combined Anthracnose 1 100.40 94.50-103.40 chr01_61.28 chr01_62.91 3.98 7 0.24 

2013-CS Anthracnose 9 151.70 151.30-153.00 chr09_54.98 chr09_55.47 3.60 5 0.53 

2015-CS Anthracnose 9 162.90 157.20-167.70 chr09_55.47 chr09_56.75 6.64 14 0.40 

2015-CS Height 3 57.70 54.40-58.50 chr03_14.12 chr03_16.37 4.07 8 2.65 

2012-CS Days to anthesis 2 100.20 97.40-103.80 chr02_64.14 chr02_67.62 3.48 9 1.01 

Combined Days to anthesis 2 100.20 99.30-100.60 chr02_64.14 chr02_66.10 4.77 13 0.89 

2011-CS Days to anthesis 7 14.70 09.70-20.10 chr07_01.01 chr07_01.64 3.60 9 1.11 

2011-CS Days to anthesis 9 134.90 134.50-140.50 chr09_51.67 chr09_53.17 6.01 15 -1.57 
† 
Defined as a combination of year and location; CS, College Station; GA, Georgia.

 

‡
 Interval containing the peak marker +1 LOD. 

§ 
LOD, logarithm of odds. 

¶ 
Positive values indicate contribution of BTx623 allele in increasing trait value, negative values indicate contribution of BTx623 allele in decreasing    

  trait value or contribution of SC414-12E allele in increasing trait value. 
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Table 10. Less consistent Quantitative trait loci (QTL) detected for anthracnose disease incidence, plant height and days to 

anthesis in the F4:5 RIL population of BTx623 × SC155-14E. QTL were predicted based on best linear unbiased estimators 

(BLUEs) for each environment. 
Environment† Trait Chromosome Peak  Confidence Left  Right  LOD

§
 PVE   Additive  

   Position  interval
‡
  Marker Marker  (%) effect

¶
 

   (cM) (cM)      

2013-GA Anthracnose 1 52 50.80-56.60 chr01_13.07 chr01_14.40 3.78 8 -0.78 

2012-CS Anthracnose 8 61.6 61.20-64.00 chr08_54.57 chr08_55.85 4.44 6  0.61 

2015-CS Height 1 30.9 28.30-33.50 chr01_09.02 chr01_11.20 4.04 10 1.84 

2015-CS Height 1 175.9 175.40-177.10 chr01_79.04 chr01_79.51 3.82 8 1.67 

Combined Height 1 175.9 175.10-177.70 chr01_79.04 chr01_79.54 4.35 10 1.88 

2012-CS Height 2 97.8 96.00-99.20 chr02_65.04 chr02_65.72 4.73 12 -2.95 

2011-CS Height 3 42 38.30-42.70 chr03_07.42 chr03_07.78 3.36 10  2.31 

2011-CS Height 3 99.5 98.40-99.80 chr03_62.38 chr03_63.17 4.05 11 -2.23 

2013-CS Height 8 65.6 64.90-66.90 chr08_55.85 chr08_56.41 3.46 10 -2.40 

2015-GA Height 8 74.1 74.10-78.00 chr08_56.92 chr08_58.27 4.61 12 -3.08 

Combined Height 8 74.1 74.00-77.60 chr08_56.92 chr08_58.27 4.36 10 -1.83 

2012-CS Height 10 3.9 2.70-6.50 chr10_00.72 chr10_01.49 3.94 10   2.83 

2013-CS Days to anthesis 4 79.2 77.90-81.00 chr04_53.09 chr04_54.23 4.31 9 -1.19 

2013-CS Days to anthesis 10 61.0 59.80-63.30 chr10_48.93 chr10_52.28 3.77 8  1.16 
† 
Defined as a combination of year and location; CS, College Station; GA, Georgia.

 

‡
 Interval containing the peak marker +1 LOD. 

§ 
LOD, logarithm of odds. 

¶ 
Positive values indicate contribution of BTx623 allele in increasing trait value, negative values indicate contribution of BTx623 allele in decreasing  

  trait value or contribution of SC155-14E allele in increasing trait value.
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 In the BTx623 × SC414-12E population a QTL for days to anthesis with negative 

additive effect was located on chromosome 9 (57.42-58.36 Mbp) in two of the four 

environments (Table 7). This QTL co-localized with the known QTL, qFT9.1 (~46-

74.61 Mbp) and SbFL9.1 (~58 Mbp) reported by Sukumaran et al. (2016) and Higgins et 

al. (2014), respectively. The LOD score and PVE values for this QTL ranged from 4.75 

to 6.35 and 14 to 17%, respectively. For the BTx623 × SC155-14E population, two QTL 

for days to anthesis were recorded (Table 6). The QTL on chromosome 4 (4.23-4.99 

Mbp, LOD scores ranging from 5.48-6.87), with a negative additive effect explained 13 

to 17% phenotypic variation, and the QTL on chromosome 3 (62.17-72.9 Mbp, LOD 

scores ranging from 3.44-6.32) accounted for 8 to 13% phenotypic variation. The QTL 

for days to anthesis identified in previous studies on chromosome 3 at ~1.7 Mbp (El 

Mannai et al., 2012; Srinivas et al., 2009) did not co-localize with the flowering time 

locus in the present investigation. Both of these QTL found on chromosomes 3 and 4 are 

unique to this study and hence they may be considered as novel loci regulating flowering 

time in sorghum 

Genetic studies have identified numerous resistant sources for anthracnose in 

sorghum (Marley and Ajayi, 2002; Mehta et al., 2005; Sharma et al., 2012; Singh, 2014), 

and two unique sources identified included converted lines SC414-12E and SC155-14E. 

The present QTL analyses of RIL populations derived from these resistance sources 

revealed a total of 9 unique QTL for anthracnose resistance, including 5 and 4 trait loci 

harbored by the genomes of SC414-12E and SC155-14E, respectively. 
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 In the BTx623 × SC414-12E population, a QTL for anthracnose resistance on 

chromosome 2 was identified in three of the six environments tested (Table 7). This 

QTL (65.45-75.54 Mbp, LOD scores ranging from 4.00-5.31), explained 7 to 17% of the 

phenotypic variation and had a negative additive effect, implying the role of susceptible 

parent BTx623 in contributing a portion of the anthracnose resistance observed in the 

SC414-12E RIL population. This was supported by the observation that in some 

environments SC414-12E was moderately resistant (higher phenotypic ratings), and 

specific RILs had greater resistance than SC414-12E. Environment-specific QTL for 

anthracnose were detected on chromosomes 4 and 5. The QTL on chromosome 4 (51.71-

56.01 Mbp, LOD scores ranging from 3.31-5.53), accounting for 6 to 14% of the 

phenotypic variation, was detected in the GA environments. Although this location-

specific QTL was also detected in the same position in other environments (2013-CS and 

2015-CS), the LOD score (1.83-2.28) was below the level to declare it significant in 

these other environments (data not shown). The QTL on chromosome 5 (64.02-66.98 

Mbp, LOD scores ranging from 8.74-14.35) explained 25 to 39% of the phenotypic 

variance and was only detected in CS environments and the combined analysis, but not 

in GA environments. In 2011-CS this QTL was detected at the same position but with a 

lower LOD score of 2.8 (data not shown). As anthracnose susceptibility phenotype is 

influenced by plant genetics, the environment (rainfall, humidity), and disease 

pathotypes, it was not surprising that disease reactions differed across environments. In 

this study, a mixture of 7 to 8 known pathotype isolates was used for manual inoculation 

of disease in the CS environments whereas natural infestation with indigenous 
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pathotypes was used for disease pressure in all GA environments. In addition, overhead 

sprinkler irrigation was used to enhance the disease pressure in the GA environments 

while no supplemental overhead irrigation was employed in the CS environments. These 

different environmental and pathotype pressures allowed for the identification of 

environment-specific resistance loci along with loci conditioning resistance across 

environments. Identifying both classes of resistance QTL (environment-specific and 

general) will be critical to breeding for stable resistance across multiple environments 

especially if a majority of the breeding and selection is focused at a single location. 

 The high-quality genome sequence of sorghum facilitated a comparison of the 

physical location of anthracnose resistance loci identified in the present study with 

published QTL to identify novel and overlapping resistance loci. Various studies have 

identified the distal end of sorghum chromosome 5 as harboring various QTL for disease 

resistance. Recently, a greenhouse study of a PI 609251 x SC112-14 RIL population by 

Cuevas et al. (2014) reported an anthracnose resistance loci on chromosome 5 (63.68-

65.66 Mbp) that overlapped with a resistance trait locus from the present study (64.02-

66.98 Mbp). However, the source of resistance reported by Cuevas et al., (2014) was 

from an unrelated sorghum accession SC112-14, (working group zerazera) that is not in 

the same sorghum working group as SC414-12E (working group caudatum-kafir).  Thus, 

it is inconclusive if the same chromosome 5 QTL for anthracnose resistance was 

identified in the two studies despite their overlapping genomic locations. Perumal et al. 

(2009) and Burrell et al. (2015) utilized resistant genotype SC748-5 to map an 

anthracnose resistance QTL to chromosome 5, but these QTL at ~70 Mbp  were ~5 Mbp 
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away from the chromosome 5 QTL identified in SC414-12E in this study. Also the 

segregation of F2:3 progeny derived from a cross between SC748-5 and SC414-12E 

indicates the presence of different sources of resistance in these genotypes (Mehta et al., 

2005). Thus, it is conceivable that the same locus was not identified in the present study. 

In the BTx623 × SC155-14E population, two QTL for anthracnose resistance 

were detected on chromosomes 4 and 9 (Table 8). The QTL on chromosome 9 (0.74-

1.28 Mbp) was consistently found in all six environments and displayed the highest 

LOD score (27.65), the greatest additive genetic effect (2.16), and the highest PVE 

(62%) of all trait loci detected in the present study. This major anthracnose QTL is 

located at a different position than the two resistance-conferring loci Cs1A and Cs2A 

identified by Biruma et al. (2012), and represents an obvious target for marker-assisted 

introgression for stable anthracnose resistance across different environments. The QTL 

on chromosome 4 (53.95-60.68 Mbp, LOD scores ranging from 3.71-6.24) which 

accounted for 5 to 16% of the phenotypic variation, was found to overlap with the 

chromosome 4 QTL found in the BTx623 × SC414-12E population. 

Identification of candidate genes underlying anthracnose QTL 

Scanning the annotated reference sorghum genome (v.3.1) revealed 131 genes of 

known function, located within a 1-LOD interval of the anthracnose QTL found on 

chromosome 5 (~2.95 Mbp interval) in the BTx623 × SC414-12E population. Of these, 

~36 genes were annotated as possibly being associated with plant disease resistance 

based on the present sorghum genome annotation. Genes within this QTL interval that 

may condition anthracnose resistance included the NB-ARC class of genes, 
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pathogenesis-related genes, genes involved in the synthesis and regulation of flavonoids, 

the hypersensitive response, cell death, cuticle development, and chitin and toxin 

catabolic processes. Therefore, an effective strategy for marker-assisted introgression 

may simply involve introgressing the distal end of chromosome 5 from resistant 

genotypes into more susceptible lines unless it is demonstrated that many resistance 

genes are linked in repulsion phase. In that event, further efforts are required to break up 

the linkage blocks harboring both resistant and susceptible genes for foliar disease 

resistance on chromosome 5. 

 For the anthracnose QTL found on chromosome 9 (~0.85 Mbp) in the BTx623 × 

SC155-14E population, the interval contained 72 annotated genes of which nearly 27 

were annotated as having a biological role in disease resistance. Candidate genes within 

this QTL included those involved in programmed cell death, sesquiterpene biosynthesis, 

response to wounding, protein ubiquitination, xenobiotic stress response, oxidative stress 

response, flavonol biosynthesis, NB-ARC genes and chitinase biosynthesis.  

 To extend the investigation of candidate genes underlying the anthracnose 

resistance QTL, the genomes of resistant parental genotypes SC414-12E and SC155-14E 

were resequenced.  Following removal of duplicate reads and read trimming, ~335.27 M 

paired-end sequences of inbred SC414-12E were generated and aligned to the BTx623 

reference genome. Similarly, 249.99 M paired-end sequence reads were generated by 

resequencing the genome of resistant parent SC155-14E. Resequencing of the genomes 

of SC414-12E and SC155-14E led to the identification of ~1.65 M and 1.95 M sequence 

variants between BTx623 and SC414-12E and SC155-14E, respectively (data not 
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shown). The availability of sequence data that includes sequence polymorphisms 

between the susceptible and resistant parents afforded the opportunity to conduct a 

preliminary examination of sequence differences in potential candidate genes in the 

parental genotypes.  The summation of sequence polymorphisms located within 

anthracnose QTL candidate genic regions is shown in Tables 11 and 12.  In general, 

numerous nonsynonymous SNPs in candidate genes were observed as were SNPs in 

upstream regions that may harbor regulatory sequences.  Additionally, sequence changes 

leading to insertion or/and deletion of amino acids, shift of the open reading frame, and 

premature termination of a protein due to a frameshift or introduction of a stop codon 

were observed. Some of these changes were in conserved protein domains (data not 

shown). 

Candidate genes underlying the resistance trait locus on chromosome 9 were 

surveyed because this trait locus conferred resistance in all environments tested and also 

explained the greatest percentage of the resistant phenotype of any QTL detected. Four 

genes within the chromosome 9 trait locus belong to the NB-LRR gene family. Amino 

acid changes (ranging from 10-41 nonsynonymous substitutions) were detected in these 

genes, with Sobic.009G012900 having an amino acid substitution in the LRR domain. 

Many proteases and protease inhibitors (PIs) are associated with pathogen virulence and 

plant defense. Pathogens release proteases to digest host tissues, to counter which the 

host plant accumulates PIs. These PR plant proteins are known to have defensive 

capabilities against proteolytic enzymes produced by insects, fungi and bacteria during 

pathogenesis (Lorito et al., 1994; Turra and Lorito, 2011). Eight serine protease inhibitor 
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Table 11. Annotated sorghum genes with a role in plant disease resistance, under the 1 LOD interval of a major anthracnose QTL 

on sorghum chromosome 5. Mutations and amino acid changes in genes and coding DNA sequences (CDS) of parents BTx623 and 

SC414-12E were identified using resequencing data. Annotation file containing Arabidopsis and rice orthologs was downloaded 

from Joint Genome Institute’s Genome Portal (http://phytozome.jgi.doe.gov). 

Gene 
Total mutations 

in 
Amino 

acid 

changes 

Arabidopsis/ 

Rice 

ortholog 

Annotated Function Biological process Reference 

 Gene CDS    

Sobic.005G167400 

 

42 

 

33 

 

9 

 

AT3G07040 

 

 

NB-ARC domain-containing disease resistance 

protein 
 

 

defense response, plant-type 

hypersensitive response 
 

 

(van Ooijen et al., 

2008) 
 

Sobic.005G167500 

 

0 

 
 

0 

 
 

0 

 
 

AT1G59620 

 
 

Disease resistance protein (CC-NBS-LRR class) 

family 
 

defense response 

 
 

(Tan et al., 2007) 

 
 

Sobic.005G167600 

 
 

9 

 
 

9 

 
 

8 

 
 

AT1G58410 

 
 

Disease resistance protein (CC-NBS-LRR class) 

family 
 

defense response, apoptosis 

 
 

(Mace et al., 2014) 

 

Sobic.005G167650 

 

3 

 

3 

 

0 

 

AT3G46730 

 

NB-ARC domain-containing disease resistance 

protein 

defense response, apoptosis 

  

Sobic.005G168500 
 

15 
 

2 
 

0 
 

AT3G54560 
 

histone H2A 11 
 

defense response to bacterium 
 

(Ding and Wang, 

2015) 

 
Sobic.005G168600 

 

 

4 

 

 

4 

 

 

1 

 

 

AT5G28840 

 

 

GDP-D-mannose 3\',5\'-epimerase 

 

 

L-ascorbic acid biosynthetic 

process 

 

(Taqi et al., 2011) 

 

 
Sobic.005G168700 

 

 

3 

 

 

1 

 

 

0 

 

 

AT1G04220 

 

 

3-ketoacyl-CoA synthase 2 

 

 

response to osmotic 

stress, response to wounding 

 
 

Sobic.005G169000 0 0 0 AT1G19440 3-ketoacyl-CoA synthase 4 cuticle development (Lee et al., 2009) 

 

Sobic.005G169200 

 

 

3 

 

 

3 

 

 

0 

 

 

AT3G04720 

 

 

pathogenesis-related 4 

 

 

defense response to fungus 

 

 

(Van Loon et al., 

2006) 

Sobic.005G169300 3 3 0 AT3G04720 pathogenesis-related 4 defense response to fungus 
 

Sobic.005G169400 0 0 0 AT3G04720 pathogenesis-related 4 defense response to fungus 
 

 

Sobic.005G172400 

 

 

27 

 

 

1 

 

 

0 

 

 

AT3G23400 

 

 

Plastid-lipid associated protein PAP / fibrillin 

family protein 

 

defense response to bacterium 

 

 

(Singh and 

McNellis, 2011) 
 

Sobic.005G172900 

 

 

34 

 

 

5 

 

 

0 

 

 

AT4G01070 

 

 

UDP-Glycosyltransferase superfamily protein 

 

 

flavonoid biosynthetic process 

 

 

(Le Roy et al., 

2016) 

Sobic.005G173200 14 6 0 AT4G01070 UDP-Glycosyltransferase superfamily protein flavonoid biosynthetic process 
 

http://phytozome.jgi.doe.gov/
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Table 11. Continued 

Gene 
Total mutations 

in 
Amino 

acid 

changes 

Arabidopsis/ 

Rice 

ortholog 

Annotated Function Biological process Reference 

 Gene CDS    

Sobic.005G175000 0 0 0 AT5G41210 glutathione S-transferase THETA 1 toxin catabolic process (Shahrtash, 2013) 

Sobic.005G175200 2 0 0 AT1G65790 receptor kinase 1 defense response 

 

(Pastuglia et al., 

2002) 

Sobic.005G175500 218 218 0 AT4G05200 

 

cysteine-rich RLK (RECEPTOR-like protein 

kinase) 25 

defense response (Chen et al., 2003) 

Sobic.005G175600 7 4 0 AT4G23180 

 

cysteine-rich RLK (RECEPTOR-like protein 

kinase) 10 

defense response  

Sobic.005G176300 27 27 10 AT3G50950 

 

HOPZ-ACTIVATED RESISTANCE 1 
 

defense response (Peele, 2015) 

 

Sobic.005G176500 
 

 

12 
 

 

3 
 

 

0 
 

 

Os09g11790 
 

 

DEFL14 - Defensin and Defensin-like DEFL 
family, expressed 

 

defense response 
 

 

(Stotz et al., 2009) 
 

 

Sobic.005G177100 
 

 

4 
 

2 
 

2 
 

AT5G24090 
 

chitinase A 
 

 

response to wounding,  chitin 
catabolic process 

 

 

(Punja and Zhang, 
1993) 

 

Sobic.005G177400 

 

2 

 

1 

 

0 

 

AT5G24090 

 

chitinase A 

 

response to wounding,  chitin 
catabolic process 

 

 

Sobic.005G177500 

 

4 

 

1 

 

1 

 

AT5G24090 

 

chitinase A 

 

response to wounding,  chitin 
catabolic process 

 

 

Sobic.005G177600 

 

1 

 

1 

 

0 

 

AT5G24090 

 

chitinase A 

 

response to wounding,  chitin 
catabolic process 

 

 

Sobic.005G179400 
 

49 
 

35 
 

18 
 

AT3G56860 
 

UBP1-associated protein 2A 
 

cell death, defense response 
 

(Kim et al., 2008) 
 

Sobic.005G181700 
 

53 
 

32 
 

12 
 

AT3G14470 
 

 

NB-ARC domain-containing disease resistance 
protein 

defense response 
  

 

 

 

https://www.arabidopsis.org/servlets/TairObject?type=keyword&id=5542
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Table 11. Continued 

Gene 
Total mutations 

in 
Amino 

acid 

changes 

Arabidopsis/ 

Rice  

ortholog 

Annotated Function Biological process Reference 

 Gene CDS    

Sobic.005G181800 21 16 4 AT3G46730 

 

NB-ARC domain-containing disease resistance 

protein 

 

defense response 

 

 

 

Sobic.005G182100 

 

 

 

 

5 

 

 

 

 

5 

 

 

 

 

4 

 

 

 

 

AT3G07040 

 

 

 

 

NB-ARC domain-containing disease resistance 

protein 

 

 

 

defense response, plant-type 

hypersensitive  

response 

 

 

Sobic.005G182200 

 

6 

 

6 

 

0 

 

AT3G07040 

 

 
NB-ARC domain-containing disease resistance 

protein 
 

defense response, plant-type 

hypersensitive response 
 

Sobic.005G182800 21 21 2 AT3G46710 

 

NB-ARC domain-containing disease resistance 
protein 

 

defense response  

Sobic.005G182900 

 

87 

 

81 

 

9 

 

AT3G07040 

 

 
NB-ARC domain-containing disease resistance 

protein 

 

 
defense response, plant-type 

hypersensitive response 

 

 

Sobic.005G183000 191 190 10 AT1G58807 

 

Disease resistance protein (CC-NBS-LRR class) 

family 

defense response  

Sobic.005G183300 112 93 19 AT1G53350 

 

Disease resistance protein (CC-NBS-LRR class) 

family 

defense response  

Sobic.005G183400 64 64 11 AT3G14470 

 

NB-ARC domain-containing disease resistance 

protein 

defense response  

Sobic.005G183500 

 

261 

 

25 

 

4 

 

AT3G46530 

 

 

NB-ARC domain-containing disease resistance 

protein 
 

 

defense response, plant-type 

hypersensitive response 
 

 

Sobic.005G183700 
 

22 
 

22 
 

2 
 

AT5G48930 
 

 

hydroxycinnamoyl-CoA shikimate/quinate  
hydroxycinnamoyl transferase 

 

regulation of flavonoid 

biosynthetic process 

 

(Miedes et al., 

2015) 

  

 

 

https://www.arabidopsis.org/servlets/TairObject?type=keyword&id=5542
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Table 12. Annotated sorghum genes with a role in plant disease resistance, under the 1 LOD interval of a major anthracnose QTL 

on sorghum chromosome 9. Mutations and amino acid changes in genes and coding DNA sequences (CDS) of parents BTx623 and 

SC155-14E were identified using resequencing data. Annotation file containing Arabidopsis orthologs was downloaded from 

Joint Genome Institute’s Genome Portal (http://phytozome.jgi.doe.gov).  

Gene 
Total mutations 

in 
Amino 

acid 

changes 

Arabidopsis/ 

Rice 

ortholog 

Annotated Function Biological process Reference 

 Gene CDS    

Sobic.009G008800 32 27 1 AT4G35350 xylem cysteine peptidase 1 

 

programmed cell death , 

proteolysis 

 

(Pogány et al., 

2015) 

Sobic.009G009000 14 14 1 AT5G23960 terpene synthase 21 sesquiterpene biosynthetic process 

 

 

(Singh and 
Sharma, 2015) 

 

Sobic.009G009200 
 

156 
 

153 
 

6 
 

AT5G23960 
 

terpene synthase 21 
 

sesquiterpene biosynthetic process 
 

 

Sobic.009G009300 33 33 0 AT5G23960 terpene synthase 21 sesquiterpene biosynthetic process  

 

Sobic.009G009400 
 

 

1 
 

1 
 

0 
 

AT2G38870 
 

Serine protease inhibitor, potato inhibitor I-type 
family protein 

 

defense response to 
fungus, response to wounding 

 

 

(Turra and Lorito, 
2011) 

 

Sobic.009G009500 

 

33 

 

3 

 

1 

 

AT2G38870 

 

Serine protease inhibitor, potato inhibitor I-type 

family protein 

 
defense response to 

fungus, response to wounding 

 

 
(Lorito et al., 

1994) 

 

Sobic.009G009600 

 

30 

 

30 

 

1 

 

AT5G43580 

 

Serine protease inhibitor, potato inhibitor I-type 

family protein 

 

defense response to 

fungus, response to wounding 
 

 

Sobic.009G009700 
 

0 
 

0 
 

0 
 

AT2G38870 
 

Serine protease inhibitor, potato inhibitor I-type 
family protein 

 

defense response to 
fungus, response to wounding 

 

 

Sobic.009G009800 

 

0 

 

0 

 

0 

 

AT2G38870 

 

Serine protease inhibitor, potato inhibitor I-type 

family protein 

 
defense response to 

fungus, response to wounding 

 

 

 

 

 

 

http://phytozome.jgi.doe.gov/
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Table 12. Continued 

Gene 
Total mutations 

in 
Amino 

acid 

changes 

Arabidopsis/ 

Rice 

ortholog 

Annotated Function Biological process Reference 

 Gene CDS    

Sobic.009G009900 

 

1 

 

1 

 

0 

 

AT2G38870 

 

Serine protease inhibitor, potato inhibitor I-type 

family protein 

 

defense response to 

fungus, response to wounding 
 

 

 

Sobic.009G010000 

 

0 

 

0 

 

0 

 

AT2G38870 

 

Serine protease inhibitor, potato inhibitor I-type 

family protein 

defense response to 

fungus, response to wounding 

 

 

Sobic.009G010150 

 

13 

 

13 

 

0 

 

AT2G38870 

 

Serine protease inhibitor, potato inhibitor I-type 

family protein 

 
defense response to 

fungus, response to wounding 
 

 

Sobic.009G010400 51 4 0 AT2G39720 RING-H2 finger C2A protein ubiquitination 

 

(Trujillo and 
Shirasu, 2010) 

 

Sobic.009G010900 

 

3 

 

3 

 

1 

 

AT2G37660 

 

 
NAD(P)-binding Rossmann-fold superfamily  

protein 

 

defense response to bacterium 

 

 
(Dehury et al., 

2014) 

 

Sobic.009G011000 0 0 0 AT1G07530 SCARECROW-like 14 xenobiotic stress response (Fode et al., 2008) 

Sobic.009G011200 22 5 2 AT2G37650 GRAS family transcription factor xenobiotic stress response  

Sobic.009G011300 2 1 1 AT2G37650 GRAS family transcription factor xenobiotic stress response  

Sobic.009G012100 31 11 1 AT3G12500 basic chitinase defense response to fungus 

 

(Punja and Zhang, 

1993) 

Sobic.009G012900 

 

15 

 

15 

 

10 

 

AT2G34930 

 

 

disease resistance family protein / LRR family 

protein 
 

 

disease resistance, defense 

response to fungus 
 

(Shanmugam, 
2005) 

 

Sobic.009G013000 64 56 32 AT3G14470 

 

NB-ARC domain-containing disease resistance 

protein 

apoptosis, defense response 

 

(Biruma et al., 

2012) 

 

 

 

 

 

https://www.arabidopsis.org/servlets/TairObject?type=keyword&id=14972
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Table 12. Continued 

Gene 
Total mutations 

in 
Amino 

acid 

changes 

Arabidopsis/ 

Rice 

ortholog 

Annotated Function Biological process Reference 

 Gene CDS    

Sobic.009G013100 66 54 41 AT3G14470 

 

NB-ARC domain-containing disease resistance 

protein 

apoptosis, defense response  

Sobic.009G013300 65 49 41 AT3G14470 

 

NB-ARC domain-containing disease resistance 

protein 

apoptosis, defense response  

Sobic.009G013400 15 15 1 AT2G28900 outer plastid envelope protein 16-1 response to wounding 

 

(Pollmann et al., 

2007) 

Sobic.009G013900 62 45 2 AT2G28840 XB3 ortholog 1 in Arabidopsis thaliana ligase activity 

 

(Wang et al., 
2006b) 

Sobic.009G016300 6 6 1 AT5G59820 C2H2-type zinc finger family protein 

 

response to oxidative 
stress, response to wounding 

(Sun et al., 2010) 

Sobic.009G016600 6 0 0 AT3G46130 myb domain protein 48 

 

flavonol biosynthesis,response to 
salicylic acid 

(Park et al., 2008) 

Sobic.009G016700 

 

2 

 

2 

 

0 

 

AT1G13440 

 

glyceraldehyde-3-phosphate dehydrogenase C2 

 

 

defense response to bacterium, 

response to 

oxidative stress 

(Henry et al., 

2015) 
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genes from Sobic.009G009400 to Sobic.009G010150 of the potato inhibitor I-type 

family were observed, and genes Sobic.009G009500 and Sobic.009G009600 had a 

single amino acid change. Genes Sobic.009G011000, Sobic.009G011200 and 

Sobic.009G011300 are SCARECROW-like 14 transcription factor orthologs, which are 

known to affect the transcription of stress responsive genes and involved in the 

detoxification of xenobiotics (Fode et al., 2008; Ramel et al., 2012). Two amino acid 

changes in Sobic.009G011200 and one in Sobic.009G011300 were observed. Studies 

have reported production of antimicrobial compounds as a mechanism of anthracnose 

resistance (Lo et al., 1999). Phytoalexins are toxic host metabolites produced in response 

to pathogen invasion or stress (Smith, 1996). Previous research (Snyder and Nicholson, 

1990; Tenkouano et al., 1993) in sorghum has shown accumulation of reddish-brown 

flavonoid compounds at the site of fungal infection, and the pigments included 3-

deoxyanthocyanidin flavonoids like luteolinidin, 5-methoxyluteolinidin, apigeninidin 

and a caffeic acid ester of arabinosyl 5-O-apigeninidin. Sobic.009G016600 is annotated 

as a putative transcription factor (MYB48) that functions to regulate flavonol 

biosynthesis. Sobic.009G009000, Sobic.009G009200 and Sobic.009G009300 are 

terpene synthase orthologs known to produce sesquiterpenes in Arabidopsis. As part of a 

plant defense mechanism, in some plant species, sesquiterpenes are produced to act as 

phytoalexins (Singh and Sharma, 2015). 

 In summary, this study provides much-needed information on regions of the 

sorghum genome that condition resistance to the fungal disease anthracnose. The 

location of trait loci that condition resistance across environments or resistance in a 
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specific environment will permit the use of marker-assisted introgression of resistance 

into elite cultivars with the aim of developing durable resistance to this critical disease. 

Finally, the brief survey conducted here of candidate genes underlying a major resistance 

QTL reveals that this genomic region encodes a wealth of genes that may play a role in 

host plant resistance, but also clearly demonstrates that identifying the resistance gene 

(or linked genes) underlying this trait locus will require linkage map refinement and 

validation of candidate genes, which is far beyond the scope of this study but this 

material will serve as a future resource to understand the molecular mechanisms 

conditioning anthracnose resistance in specific sorghum cultivars. 
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CHAPTER III 

IDENTIFICATION OF QUANTITATIVE TRAIT LOCI CONDITIONING SALT 

TOLERANCE IN SORGHUM  

 

Introduction 

 Soil salinity is one of the most severe abiotic stresses limiting the productivity of 

agricultural crops worldwide. Apart from natural causes of soil salinity (weathering of 

rocks, rising water tables, and wind/rain-mediated deposition of oceanic salts), irrigation 

and inappropriate land management are other major factors that increase soil salinity. 

More than 6% of the world’s total landmass (i.e. 800 million hectares) is affected by 

salinity (www.fao.org), and nearly half of the total area of irrigated soils that contribute 

roughly one-third of global food production is affected by salinization.  

 Salinity stress affects crop growth and yield mainly by immediate osmotic effects 

or longer-term ion toxicity. Increase of salt concentration in soil decreases the water 

potential of soil water, which limits the uptake of water resulting in cellular dehydration. 

The ionic effect within the plant manifests itself over a period of time by passive 

accumulation of salt ions in plant cells thereby affecting photosynthetic, physiological 

and biochemical processes. The resulting phenotypes of salinity stress are manifested as 

premature senescence, chlorosis and necrosis of leaves. With salinization, agricultural 

profitability is adversely affected, and sustained production often requires increased 

inputs including increased planting densities, increased irrigation and fertilizer 

applications.  
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 Remediation of saline soils has been implemented with some success, but only 

with substantial investment in resources. Removal of excess salts from the soil can be 

achieved through the application of low-ionic strength irrigation waters, but the 

availability of irrigation water for leaching is often a luxury, especially for arid and 

semi-arid regions. Soil amendments in the form of chemicals and fertilizers can also be 

used for reclamation of salt affected soils, but most of the methods of managing salt-

affected soils are resource intensive and expensive. Therefore, sustainable agricultural 

production on saline soils will require the development and deployment of salt tolerant 

crops used in conjunction with management practices that minimize the salinization of 

soils.  

 Different crop species and crop cultivars can exhibit different levels of tolerance 

to salinity. In a review of published research on salt tolerance available from 1950-1975, 

(Maas and Hoffman, 1977) nearly 60 crops were classified based on their tolerance to 

salinity while (Munns and Tester, 2008) reported salt tolerance of cereals based on shoot 

dry matter accumulation of plants grown in a medium containing NaCl.  Based on shoot 

dry matter accumulation, barley (Hordeum vulgare) was considered the most salt-

tolerant, bread wheat (Triticum aestivum) moderately tolerant, and rice (Oryza sativa) 

was considered the least tolerant cereal. Salinity tolerance based on grain yield indicates 

that sorghum (Sorghum bicolor) is moderately tolerant to salt, but more salt tolerant than 

maize (Zea mays). Sorghum is also tolerant to heat and drought (Gong et al., 2005), and 

is a major cereal crop serving as a staple food predominantly in the arid and semi-arid 

regions of Africa and Asia. Identifying salt-tolerant sorghum genotypes and breeding for 
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enhanced salt tolerance could make sorghum an attractive crop for marginal agricultural 

lands that can experience severe abiotic stress including saline soils. 

 Crop improvement programs have attempted to develop salt-tolerant genotypes 

using traditional breeding and transgenic methods. Conventional breeding techniques 

have led to an improvement in salt tolerance of crops including barley, rice, maize, pearl 

millet (Pennisetum glaucum), alfalfa (Medicago sativa) and various forage grasses. By 

comparison, the commercial release of salt tolerant varieties is limited likely owing to 

the agronomic performance of saline tolerance genotypes in non-saline soils or to a 

limited market for salt-tolerant cultivars. Nevertheless, salt-tolerant cultivars have been 

commercialized for alfalfa and forage grasses (Dobrenz et al., 1983; Dobrenz, 1999), 

tomato (Rush and Epstein, 1981), soybean(Owen et al., 1994), rice (Mishra et al., 2003; 

Sankar et al., 2011; Singh et al., 2004), and wheat (Hollington, 1998; Munns et al., 

2006).  

 In sorghum, genetic variation for salt tolerance in seedling and adult plants has 

been reported amongst cultivars, but little progress has been reported in breeding 

sorghum for salt tolerance (Krishnamurthy et al., 2007; Maiti et al., 1994). Various 

physiological and growth parameters have been used to screen sorghum germplasm for 

salt tolerance including seed germination, shoot growth, root growth, and biomass 

accumulation. Field trials of sorghum for grain production under saline conditions are 

limited, and further field-based studies are critical to translate the results obtained in 

laboratories and greenhouses to the agronomic conditions in which sorghum production 

normally occurs. 
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 The transgenic approach to develop salt-tolerant plants has mainly focused on 

manipulating the expression of single genes involved in various mechanisms of salt 

tolerance. Overexpression of vacuolar and plasma membrane located ion transport 

proteins such as Na
+
/H

+
 antiporters conferred a level of salt tolerance in Arabidopsis, 

rice, wheat, tobacco, tomato, and alfalfa (Bao et al., 2009; Shi et al., 2003; Verma et al., 

2007; Wu et al., 2004; Xue et al., 2004; Zhang et al., 2008; Zhang and Blumwald, 2001) 

. When salinity (NaCl treatment) was induced in growth chambers or glasshouses, 

transgenic lines displayed a level of salt tolerance based on biomass production, grain 

yield, germination rate, and/or root growth. Similar improvement in salt tolerance has 

also been observed in plants engineered for overproduction of different antioxidants, 

osmoprotectants, transcription factors, and heat-shock proteins. However, the 

commercial implementation of these promising transgenic approaches is hindered due to 

the lack of societal acceptance of genetically modified crops, especially for crops grown 

for grain production. 

 To elucidate the genetic basis of salt tolerance, various studies have identified 

quantitative trait loci (QTL) associated with tolerance. In tomato (Lycopersicon 

esculentum), a number of genomic regions affecting salt tolerance were identified 

(Foolad et al., 1998; Foolad, 1999; Foolad, 2004; Monforte et al., 1997), and a limited 

number of major QTL and several minor effect QTL controlled salt tolerance at each 

stage of tomato development. Studies on barley have also identified QTL conferring 

tolerance during germination and seedling development (Ellis et al., 1997; Mano and 

Takeda, 1997). Several of these QTL mapping efforts have culminated in the 
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identification of the genes underlying salt tolerance including sodium and potassium 

selective transporters in wheat (Ma et al., 2007; Xu et al., 2012) and rice (Bonilla et al., 

2002; Flowers et al., 2000; Koyama et al., 2001). The SKC1 locus in rice was mapped 

and the SKC1 gene identified as a member of HKT-type transporter functioning as a 

sodium selective transporter (Ren et al., 2005). In sorghum, studies mapping loci 

conditioning salt tolerance are very limited. Wang et al. (2014a)  identified six major 

QTL for salt tolerance in sorghum seedlings. However, since salt tolerance in seedlings 

may not be an indicator of tolerance during latter stages including grain filling (Ashraf 

and McNeilly, 1988; Foolad, 1999; Jones and Qualset, 1984), QTL mapping in non-

juvenile vegetative and reproductive tissues are required to identify a suite of stage-

specific and stage-independent resistance loci.  

 The objective of this study was to initiate a detailed genetic analysis of salt 

tolerance in sorghum by mapping trait loci conditioning a recombinant inbred line (RIL) 

population that segregates for salt tolerance. The research also aims to identify molecular 

markers tightly linked to the trait, to be used for marker-assisted introgression of salt 

tolerance into more susceptible sorghum cultivars. 

 

Materials and methods 

Plant growth and phenotyping 

 The initial germplasm and mapping population required for this research was 

developed by MMR Genetics (LLC), which has screened and developed a number of 

inbred lines having differential response in salinized soils. The mapping population 
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consists of 130 F4:5 RILs derived (single-seed descent) from a cross between inbreds 

MMR338 and MMR31. MMR338 is characterized as a relatively salt-tolerant inbred 

whereas MMR31 is salt-sensitive (F.R. Miller, personal communication).  

To phenotype for salt tolerance, a growth facility designed by Zia Tec (LLC) was 

utilized, which allowed for phenotyping under controlled environmental conditions 

including light, temperature and salinity levels.  Salinity tolerance of sorghum was 

assessed in the vegetative stage after ~10 weeks of growth.  Preliminary comparison 

with inbreds MMR381 and MMR31 indicated that the salt-tolerance phenotypes 

obtained in Zia Tec’s growth facilities correlated well with field-based observations 

obtained by MMR Genetics (F.R. Miller, personal communication). To phenotype the 

RIL mapping population, plants were grown in Ray Leach Cone-tainers™ (SC-10 Super 

Cell, Stuwe & Sons, Inc) containing Sunshine VP potting mixture (Sun Gro 

Horticulture) and maintained at 28°C (day) and 21°C (night). 400-watt metal halide 

bulbs provided a day length of 12 hours. The Cone-tainers were placed in a rack, which 

was then placed in a large reservoir containing Peters Professional 10-30-20 nutrient 

solution diluted to a concentration of 150 ppm. The experiment was spatially designed 

using the biometrics software DiGGer (Coombes, 2009), which generated an 

experimental design consisting of 8 sites. Each site consisted of 8 trays with each tray 

comprised of 5 x 5 array of Cone-tainers. Once the fifth leaf emerged, the nutrient 

solution was supplemented with NaCl to a final concentration of 150 mM for a duration 

of 8 weeks. The nutrient solution was circulated on a daily basis and water was added 

twice a week to adjust the total volume, and electrical conductivity of the solution was 
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measured and stock NaCl added if needed. The nutrient/salt solution was replaced on a 

monthly basis.   

To quantify the degree of salt tolerance of plants, digital images of the youngest 

fully emerged leaf and the next youngest leaf from each plant were obtained.  Salt 

tolerance was based on the percentage of total leaf area that was necrotic or damaged, 

using the Assess 2.0 image analysis software (www.apsnet.org).  Across the 8 sites, each 

RIL was phenotyped a minimum of 10 times while the parental inbreds (MMR338 and 

MMR31) were screened 64 times. 

Statistical analysis 

 Data analysis was done using Genstat16.1 (Payne et al., 2011).  Spatial analysis 

was conducted using REML mixed model to test the significance of fixed effects and 

estimate the variance components Fixed effects were tested considering Genotype, Site, 

Genotype X Site, Site X Tray, Tray X Row and Tray X Column as fixed effects and 

residual as random. Individual genotypic values and variance components were 

estimated using Genotype, Site, Genotype X Site and residuals as random effects and 

Site X Tray X row and Site X Tray X column as fixed effects. To determine the 

relationship between the traits, the phenotypic correlations were calculated using PROC 

CORR in SAS version 9.4. Correlations were calculated between percent leaf damage at 

leaf number 1 (PLD1), percent leaf damage at leaf number 2 (PLD2), and average value 

of PLD1 and PLD2 (PLD_AV).  
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Genotyping, linkage mapping & QTL analysis 

 A sequencing-based method developed for sorghum was employed for 

genotyping the parental inbreds and RIL population. The Illumina template library was 

prepared using the methyl-sensitive restriction enzyme FseI and sequencing was done on 

the HiSeq2000 (Illumina). For library preparation, DNA was extracted from 14-day-old 

seedlings using the FastDNA Spin Kit (MP Biomedicals) and Illumina template was 

prepared as previously detailed in Chapter II. Standard Illumina protocols were followed 

for cluster generation from the template and single-end sequencing reads were obtained. 

Base calling was done using Illumina’s Real Time Analysis (RTA) software and, the 

sequence text files were generated using GERALD in Illumina’s CASAVA v1.7 

software package. The sequencing data obtained was processed through a number of 

custom Perl and python scripts, and processed Illumina reads from the parental lines 

were aligned to the sorghum reference genome (Sbicolor v.3.1, www.phytozome.net, 

Paterson et al., 2009). Using BLASTN, polymorphisms between the parents were 

identified and further scored through the progeny as described in Chapter II. A file 

containing the SNP markers identified in the RILs was generated and used for genetic 

linkage map construction. 

 A genetic map was created for the RIL populations using JoinMap V4.0 (Van 

Ooijen and Voorrips, 2006). The SNP markers, which were close to each other (<10,000 

bp) or showed identical segregation among progeny, were excluded since they did not 

improve map resolution. The linkage groups were determined using the independence 

test LOD score and groups with a LOD score of at least 10 were selected for mapping. 

http://www.phytozome.net/
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For each linkage group, the genetic distance between markers was calculated using 

Kosambi’s mapping function.  

 For QTL analysis, BLUP estimates of salt tolerance for leaf PLD1 were obtained 

for each spatial site along with BLUP estimates for phenotypes averaged across the 8 

spatial sites. The data was subjected to single-marker analysis, interval mapping (IM), 

and composite interval mapping (CIM) using the software WinQTL Cartographer V2.5 

(Wang et al., 2006a; Wang et al., 2012). For the CIM analysis, a standard stepwise 

regression model 6 with default settings, a walk speed of 1.0 cM and 1000 permutations 

to determine the LOD significance threshold were applied. The genomic position of the 

significant QTL, effects of significant QTL, and the phenotypic variation explained 

(PVE) were calculated. For the significant QTL detected, the position of the peak marker 

and the flanking markers of the QTL interval (1-LOD interval window) were 

determined. The QTL interval was scanned in the annotated sorghum genome (v.3.1) for 

identifying potential candidate genes underlying the salt tolerance QTL. 

 

Results and discussion 

Analysis of phenotypic data 

 A summary of the statistical analysis of phenotypic data of RILs and parental 

inbreds MMR31 and MMR338 is presented in Table 13. In agreement with field-based 

classification of MMR31 as salt sensitive and MMR338 as salt tolerant, salt-induced 

damage of leaf 1 and 2 (PLD1 and PLD2) of inbred MMR31 was significantly higher 

than that of MMR338. The percentage of leaf damage for MMR338 ranged from 3.84% 
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to 14.64% for leaf 1 and 1.42% to 8.12% for leaf 2. By comparison, leaf damage of 

inbred MMR31 ranged from 55.23% to 88.33% for leaf 1 and 35.97% to 76.14% for leaf 

2. Trait mean values for the RIL population were intermediate to the two parental 

inbreds with salt-induced damage ranging from 23.64% to 33.84% and 10.90% to 

23.76% for PLD1 and PLD2, respectively. Transgressive segregation for salt-induced 

leaf damage was observed with select RILs that showed no apparent leaf necrosis and 

RILs with complete necrosis. This transgressive segregation in salt-induced damage 

amongst the RILs indicates that genes/alleles conferring salt tolerance may reside in both 

parental inbreds. Of particular interest were the RILs that showed no apparent damage 

from the salt treatment and did not appear stunted or quiescent in response to the stress.  

The apparent salt-tolerant RILs may represent germplasm that can be utilized by 

sorghum improvement programs to introgress salt tolerance into elite inbreds. However, 

further field-based evaluation of select salt-tolerant RILs in salinized soils are necessary 

to determine the utility of this germplasm in efforts to breed salt tolerant sorghum 

hybrids. 
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Table 13. Phenotypic trait values for parental inbreds MMR338 and MMR31 and the 

derived 130 F4:5 RILs evaluated at 8 sites. Values represent means with standard deviations 

(SD) shown in parentheses. Ranges for phenotypic values of the F4:5 RILs are shown. 

Site
†
 Trait 

 
Mean  (SD) 

 
Range 

  
MMR338 MMR31 RILs 

 
1 PLD1 4.69 (5.05)

 a
 69.60 (26.18)

 b
 26.65 (29.18) 0-100 

2 PLD1 3.84 (3.72)
 a
 64.13 (22.25)

 b
 28.28 (27.53) 0.49-100 

3 PLD1 4.90 (3.34)
 a
 65.49 (15.83)

 b
 31.57 (27.62) 1.92-100 

4 PLD1 6.65 (4.44)
 a
 60.54 (19.97)

 b
 31.82 (30.11) 0.35-100 

5 PLD1 9.96 (7.39)
 a
 61.85 (23.93)

 b
 23.97 (25.93) 0.34-98.75 

6 PLD1 5.96 (8.11)
 a
 55.23 (23.06)

 b
 23.64 (25.88) 0.01-100 

7 PLD1 9.63 (5.14)
 a
 73.28 (18.05)

 b
 30.69 (28.22) 1.23-100 

8 PLD1  14.64 (3.99)
 a
 88.33 (15.74)

 b
 33.84 (27.85) 0.68-100 

      
1 PLD2 1.42 (1.38)

 a
 55.87 (31.63)

 b
 15.01 (25.05) 0.01-100 

2 PLD2 2.41 (2.08)
 a
 45.77 (23.44)

 b
 11.05 (20.28) 0.01-100 

3 PLD2 5.91 (3.63)
 a
 35.97 (11.53)

 b
 16.07 (20.50) 0.43-100 

4 PLD2 5.88 (4.56)
 a
 44.21 (22.52)

 b
 23.76 (29.39) 0.10-100 

5 PLD2 4.50 (3.42)
 a
 47.99 (32.16)

 b
 10.90 (19.76) 0.01 -89.94 

6 PLD2 2.46 (2.87)
 a
 41.81 (24.60)

 b
 11.12 (20.01) 0.01-100 

7 PLD2 6.64 (4.41) 
a
 58.41 (28.53)

 b
 15.14 (24.24) 0.15-100 

8 PLD2 8.12 (9.25) 
a
 76.14 (21.34)

 b
 15.17 (23.75) 0.03-100 

† 
Each site was comprised of 8 trays with each tray having 5 rows and 5 columns.

 

  Means followed by different alphabets 
a 
and 

b 
indicate significant differences of the trait mean value  

  between the two parents as calculated by Tukey's test.
 

  PLD1, percent of leaf damage at leaf number 1; PLD2, percent of leaf damage at leaf number 2. 
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Table 14. Wald test for PLD1, PLD2 and PLD_AV for the RIL mapping population 

combined across all sites. 

  Wald-statistic 

Trait Genotype Genotype x Site Tray Tray x Row Tray x Column 

PLD1 16284.25*** 973.08 15.61* 37.74    53.85** 

PLD2   4127.02*** 1011.72 6.19 43.87 21.65 

PLD_AV 10227.08*** 965.68 9.82 44.43 30.52 

  *, **, *** Significant at the 0.05, 0.01 and 0.001 probability level, respectively. 

PLD1, percent of leaf damage at leaf number 1; PLD2, percent of leaf damage at leaf number 2; PLD_AV, 

average value of PLD1 and PLD2. 
 

 

 

Wald test indicated significant genotypic variation (P < 0.001) among sites for all 

traits, significant variation for Tray (P < 0.05) and Tray x Column (P < 0.01) for trait 

PLD1 and non-significance of Genotype X Site interaction was also observed (Table 

14). This variation can be largely attributed to variation in the micro-environment (e.g., 

air movement, temperature) that existed in the Zia Tec growth facilities. These sources 

of variation were anticipated based on previous studies in this growth facility, and were 

accounted for using the spatial design generated by DiGGer software. 
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Table 15. Pearson’s correlation coefficients for PLD1, PLD2 and PLD_AV as measured at 

8 sites and averaged across all sites. 

Site Trait PLD1 PLD2 PLD_AV 

1 PLD1 
 

0.88*** 0.97*** 

2 PLD1 
 

0.76*** 0.96*** 

3 PLD1 
 

0.87*** 0.98*** 

4 PLD1 
 

0.76*** 0.94*** 

5 PLD1 
 

0.88*** 0.98*** 

6 PLD1 
 

0.89*** 0.98*** 

7 PLD1 
 

0.84*** 0.96*** 

8 PLD1 
 

0.81*** 0.96*** 

Average  PLD1 
 

0.82*** 0.96*** 

of all sites     

     

1 PLD2   0.97*** 

2 PLD2   0.92*** 

3 PLD2   0.96*** 

4 PLD2   0.94*** 

5 PLD2   0.96*** 

6 PLD2   0.96*** 

7 PLD2   0.95*** 

8 PLD2   0.94*** 

Average  PLD2   0.95*** 

of all sites     

*** Significant at the 0.001 probability level. 

PLD1, percent of leaf damage at leaf number 1; PLD2, percent of leaf damage at leaf number 2; PLD_AV, 

average value of PLD1 and PLD2. 
 

  



 

61 

 

 Pearson correlation coefficients calculated between percent leaf damage at leaf 1 

(PLD1), percent leaf damage at leaf 2 (PLD2), and average value of PLD1 and PLD2 

indicated a significant (P < 0.001) positive correlation between these phenotypic 

determinations (Table 15). The strong positive correlation between PLD1 and newly 

emerging leaves indicates that the estimates of damage are consistent regardless of 

which of these immature leaves were phenotyped.  Based on this correlation of salt 

damage between the leaves phenotyped, PLD1 was considered a good predictive 

indicator of salt tolerance and hence used for QTL analysis.  

Linkage map 

 On aligning the reads of parental inbreds MMR31 and MMR338 to the reference 

genome of BTx623, a total of 3,096 single nucleotide polymorphism (SNP) markers 

were identified that were subsequently scored through the RILs. Of these, 579 SNPs 

were discarded for having substantial missing data.  The final linkage map for QTL 

mapping contained 1083 unique SNPs spanning a length of 1250.56 cM that mapped to 

10 linkage groups representing the 10 chromosomes of sorghum (Table 16).  On 

average, one marker was present at 1 cM intervals across the linkage map. Except for the 

pericentromeric heterochromatic regions, which had the largest gaps between markers, 

the SNPs were well distributed across all chromosomes. This was anticipated as the 

Illumina template was prepared using a methylation-sensitive enzyme to reduce the 

representation of gene-poor heterochromatic regions. 
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Table 16. Linkage map marker coverage across the ten sorghum chromosomes generated for F4:5 MMR338×MMR31 RIL 

mapping population. 

MMR338 × MMR31 
           

Chromosome 1 2 3 4 5 6 7 8 9 10 Total 

Chromosome Length (cM) 154.84 143.05 170.77 79.07 111.69 105 137.96 107.01 115.74 125.43 1250.56 

Number of Markers 175 133 158 68 66 92 95 79 93 124 1083 

Marker density† (cM) 0.88 1.08 1.08 1.16 1.69 1.14 1.45 1.35 1.24 1.01 1.15 

Largest interval‡ (cM) 6.01 5.62 10.14 10.17 7.27 8.42 5.44 7.87 4.46 6.83 
 

Largest interval‡ (Mbp) 14.78 31.16 29.16 3.84 26.09 27.75 22.22 16.99 24.08 21.86 
 

† 
Defined as the distance between adjacent markers, measured in cM. 

‡ 
Defined as the largest distance observed between adjacent markers in cM and million base pairs (Mbp). 
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Quantitative trait loci and candidate genes for salt tolerance 

 As calculated by the permutation test, the threshold score for declaring a QTL 

significant was 2.5. A statistically significant QTL was consistently observed on 

chromosome 7 in all the sites tested (Table 17). This QTL located between 58.29 and 

59.84 Mbp  (59.51-61.06 Mbp v.3.1) had a LOD score ranging from 5.1 to 5.3 and 

explained 12.2 to 12.8% of the phenotypic variation. The negative additive effect 

observed implies the presence of alleles in the MMR338 parent, which contribute to salt 

tolerance by decreasing the percent leaf damage. Markers chr7_58.29 and chr7_59.84, 

linked to the trait and delimiting the +1LOD interval were identified as left and right 

markers to be used for marker-assisted introgression of salt tolerance into more 

susceptible sorghum cultivars.  

 While only 1 QTL was above the threshold value for significance in the present 

mapping study, at least 6 QTL were within 1.2 LOD score of the threshold LOD score 

established by permutation analysis. These include QTL on chromosome 5 (65.6-84.0 

cM), chromosome 6 (81.1-89.1 cM), chromosome 8 (75.7-81.4 cM), chromosome 9 

(61.3-66.5 cM and 89.1-110.2 cM), and chromosome 10 (96.8-103.6 cM). The LOD 

score for these QTL ranged from 1.3 to 1.9 and the additive values had a range of -0.2 to 

0.2.  This lack of power of the present QTL analysis is likely due to the variation that 

existed in the micro-environmental conditions in which the phenotypes were obtained 

along with the inherent morphological variation that existed amongst the RILs. The 

analysis of variance clearly indicated that a significant portion of the observed 

phenotypic variance could be explained by spatial effects and despite our effort to 
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account for these differences, it is likely that the lack of uniformity in the growth 

environment and our ability to account for this source of variance precluded the power 

of this QTL analysis. In addition, significant morphological variation amongst the RILs 

existed for traits including leaf architecture, leaf size, and plant height (data not shown). 

These differences could hinder our ability to accurately assess the extent of salt damage, 

especially when the plant structure (leaves) being phenotyped varied markedly in 

morphology. The parental inbreds of this population were chosen based on salt tolerance 

rather than uniformity of growth or leaf architecture, and future efforts to map salt 

tolerance using these parental lines may require selection during the development of 

RILs for morphological uniformity. Alternatively, creating a backcross mapping 

population rather than using RILs may alleviate a significant amount of the 

morphological variation that confounded the ability to accurately and precisely 

phenotype salt damage and map trait loci. 

 A preliminary survey of the annotated genes within a one-LOD interval spanning 

the chromosome 7 salt tolerance trait loci was conducted to identify potential candidate 

genes underlying the QTL.  Scanning the annotated reference sorghum genome (v.3.1) 

revealed 147 genes of known function, located within a 1-LOD interval of the QTL 

(~1.55 Mbp interval) and of these genes, ~45 candidates with a potential role in different 

mechanisms of salt tolerance were identified (Table 18). This includes genes involved in 

signal transduction, ion transport, lipid catabolism, oxidation-reduction process, cell wall 

modification, calcium ion binding, response to salt stress, flavonoid biosynthesis, wax  
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Table 17. Quantitative trait loci (QTL) detected for salt tolerance in the F4:5 RIL population of MMR338 × MMR31. QTL were 

predicted based on best linear unbiased predictors (BLUPs) of PLD1 for 8 sites and the average values of PLD1 across 8 sites. 

Phenotypic variation explained (PVE) and additive genetic effects are shown for each significant QTL in each environment. 
Site

†
 Trait Chromosome Peak Confidence Left Marker Right Marker LOD

§
 PVE Additive 

   Position interval
‡
    (%) effect

¶
 

   (cM) (cM)      

1 PLD1 7 114.5 109.0-117.3 chr7_58.29 chr7_59.84 5.2 12.8 -10.10 

2 PLD1 7 114.5 108.9-117.3 chr7_58.29 chr7_59.84 5.1 12.6 -9.70 

3 PLD1 7 114.3 109.0-117.3 chr7_58.29 chr7_59.84 5.2 12.8 -10.00 

4 PLD1 7 114.6 109.0-117.3 chr7_58.29 chr7_59.84 5.2 12.8 -10.10 

5 PLD1 7 114.3 109.0-117.3 chr7_58.29 chr7_59.84 5.2 12.3 -9.90 

6 PLD1 7 114.5 109.0-117.3 chr7_58.29 chr7_59.84 5.1 12.7 -9.90 

7 PLD1 7 114.3 108.9-117.3 chr7_58.29 chr7_59.84 5.1 12.2 -9.50 

8 PLD1 7 114.5 109.0-117.3 chr7_58.29 chr7_59.84 5.3 12.6 -9.70 

Average PLD1 7 114.6 109.0-117.3 chr7_58.29 chr7_59.84 5.2 12.8 -9.60 
† 

Each site comprised of 8 trays with each tray having 5 rows and 5 columns. 
‡
 Interval containing the peak marker +1 LOD. 

§ 
LOD, logarithm of odds. 

¶ 
Negative values indicate contribution of MMR31 allele in increasing trait value. 

  PLD1, percent of leaf damage at leaf number 1.
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Table 18. Annotated sorghum genes with a potential role in salinity tolerance, under the 1 LOD interval of the QTL on sorghum 

chromosome 7. Annotation file containing Arabidopsis orthologs was downloaded from Joint Genome Institute’s Genome Portal 

(http://phytozome.jgi.doe.gov). 

Gene Arabidopsis Annotated Function Biological process Reference 

 
ortholog 

   

Sobic.007G160600 AT1G12680 phosphoenolpyruvate carboxylase-related kinase 2 intracellular signal transduction (Monreal et al., 2013) 

Sobic.007G160700 AT5G65380 MATE efflux family protein antiporter/transporter activity (Nimmy et al., 2015) 

Sobic.007G160900 AT1G52190 Major facilitator superfamily protein low-affinity nitrate transport (Henderson et al., 2014) 

Sobic.007G161500 AT2G05620 proton gradient regulation 5 electron carrier activity (Shahid et al., 2016) 

Sobic.007G162200 AT5G33370 GDSL-like Lipase/Acylhydrolase superfamily protein lipid catabolic process (Naranjo et al., 2006) 

Sobic.007G162300 AT4G28730 Glutaredoxin family protein cell redox homeostasis, (Gong et al., 2005) 

Sobic.007G162400 AT4G25750 ABC-2 type transporter family protein transmembrane transport (Li et al., 2011) 

 

Sobic.007G163200 
 

 

AT4G28720 
 

 

Flavin-binding monooxygenase family protein 
 

 

auxin biosynthesis, oxidation-reduction 
 

(Cheol Park et al., 2013) 

Sobic.007G163700 AT2G36930 zinc finger (C2H2 type) family protein nucleic acid binidng (Ma et al., 2016) 

Sobic.007G163800 AT2G36910 ATP binding cassette subfamily B1 transmembrane transport 
 

Sobic.007G164000 AT5G60790 ABC transporter family protein transmembrane transport 
 

Sobic.007G164101 AT3G28880 Ankyrin repeat family protein 
 

(Sakamoto et al., 2008) 

Sobic.007G164300 AT4G34870 rotamase cyclophilin 5 signal transduction (Ruan et al., 2011) 

Sobic.007G164400 AT3G54700 phosphate transporter 1;7 phosphate ion transport (Cubero et al., 2009) 

Sobic.007G165500 AT4G00350 MATE efflux family protein antiporter/transporter activity 
 

Sobic.007G165600 AT1G63770 Peptidase M1 family protein proteolysis, response to cadmium ion (Zhou et al., 2011) 

Sobic.007G165701 AT5G23950 Calcium-dependent lipid-binding (CaLB domain) family protein 
 

(De Silva et al., 2011) 

 

Sobic.007G166000 
 

 

AT5G22890 
 

 

C2H2 and C2HC zinc fingers superfamily protein 
 

 

nucleic acid binding 
 

 

(Mukhopadhyay et al., 2004) 

Sobic.007G166200 AT5G58330 lactate/malate dehydrogenase family protein oxidation-reduction process (Wang et al., 2016b) 

Sobic.007G166300 AT5G58330 lactate/malate dehydrogenase family protein oxidation-reduction process 
 

Sobic.007G166500 AT3G55500 expansin A16 plant-type cell wall modification (Chen et al., 2016) 

Sobic.007G166600 AT2G28190 copper/zinc superoxide dismutase 2 cellular response to salt stress (Jing et al., 2015) 
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Table 18. Continued

Gene Arabidopsis Annotated Function Biological process Reference 

 ortholog    

Sobic.007G167000 AT3G03430 Calcium-binding EF-hand family protein calcium ion binding (Liu and Zhu, 1998) 

Sobic.007G167100 AT5G03560 Tetratricopeptide repeat (TPR)-like superfamily protein cation symporter activity (Rosado et al., 2006) 

Sobic.007G167400 

 

AT2G36690 

 

2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase 

superfamily protein 

 
biosynthetic process, oxidation-reduction 

 

 
(Colebrook et al., 2014) 

 

Sobic.007G167500 AT3G45750 Nucleotidyltransferase family protein transferase activity (Yu et al., 2016) 

Sobic.007G167800 AT3G23940 dehydratase family response to salt stress (Zhang et al., 2015) 

Sobic.007G168000 AT1G19670 chlorophyllase 1 chlorophyll catabolic process (Ambede et al., 2012) 

Sobic.007G168300 AT3G11540 Tetratricopeptide repeat (TPR)-like superfamily protein cation symporter activity  

Sobic.007G168800 AT5G41220 glutathione S-transferase THETA 3  response to toxic substance (Sharma et al., 2014) 

Sobic.007G169000 

 

AT3G44380 

 

Late embryogenesis abundant (LEA) hydroxyproline-rich  

glycoprotein family 

response to desiccation 

 

 

(Tabaei‐Aghdaei et al., 

2000) 

Sobic.007G169100 AT5G03880 Thioredoxin family protein cell redox homeostasis (Zhang et al., 2011) 

Sobic.007G169200 AT5G04170 Calcium-binding EF-hand family protein calcium ion binding  

Sobic.007G169900 AT4G33790 Jojoba acyl CoA reductase-related male sterility protein wax biosynthetic process (Wang et al., 2016c) 

Sobic.007G170100 AT5G22500 fatty acid reductase 1 response to salt stress  

Sobic.007G170400 AT5G13930 Chalcone and stilbene synthase family protein flavonoid biosynthesis (Lijuan et al., 2015) 

Sobic.007G170500 AT4G35160 O-methyltransferase family protein melatonin biosynthesis (Liang et al., 2015) 

Sobic.007G170700 AT5G22500 fatty acid reductase 1 response to salt stress  

Sobic.007G170800 AT5G22500 fatty acid reductase 1 response to salt stress  

Sobic.007G171000 AT3G52880 monodehydroascorbate reductase 1 hydrogen peroxide catabolism (Kavitha et al., 2010) 

Sobic.007G171950 AT3G48330 protein-l-isoaspartate methyltransferase 1  response to salt stress (Oge et al., 2008) 

Sobic.007G174600 

 

AT5G53460 

 

NADH-dependent glutamate synthase 1 

 

L-glutamate biosynthesis 

 

 

(Dluzniewska et al., 

2007) 

Sobic.007G175800 AT1G79400 cation/H+ exchanger 2 cation transport (Sze et al., 2004) 

Sobic.007G176000 AT5G38030 MATE efflux family protein antiporter/transporter activity  

Sobic.007G176100 AT5G38030 MATE efflux family protein antiporter/transporter activity  

https://www.arabidopsis.org/servlets/TairObject?type=keyword&id=3379
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biosynthesis, and hydrogen peroxide catabolism among others. The most prominent 

candidate gene closest to the peak Sobic.007G175800, encodes a cation/H
+ 

antiporter.

 Plants have developed three main mechanisms towards salinity stress, which 

include osmotic stress tolerance, Na+ exclusion and tolerance of accumulated Na+ in the 

tissue. The exclusion mechanism entails reducing the ionic stress on plants by preventing 

the accumulation of toxic concentrations of Na
+ 

in leaves (Pardo et al., 2006) whereas 

the tolerance mechanism involves compartmentalization of Na
+ 

into particular cell types 

and organelles of the shoot to avoid toxic build up within the cytoplasm. Exclusion of 

salt ions into the apoplast is mediated through a number of plasma membrane located ion 

channels like Na
+
/H

+
 antiporters whereas vacuolar Na

+
 compartmentalization is 

conferred by tonoplast Na
+
/H

+
 antiporters such as those belonging to the Na

+
/H

+
 

exchanger family in Arabidopsis (Carillo et al., 2011). The exclusion and 

compartmentalization of ions involves up and down regulation of genes expressing 

various ion channels and transporters (Apse et al., 1999; Davenport et al., 2005). The 

QTL detected here harbors genes encoding various transporters such as MATE efflux 

family protein, PGR5, ABC transporter family protein, phosphate transporter 1;7, TPR-

like superfamily protein, and cation/H+ exchanger 2, which play an important role in 

regulating ion balance.  In addition to genes encoding ion transporters, genes implicated 

with a role in oxidation-reduction process and antioxidant production were present 

within the trait locus, which included glutaredoxin family protein, flavin-binding 

monooxygenase family protein, lactate/malate dehydrogenase family protein, 

copper/zinc superoxide dismutase 2, glutathione S-transferase THETA 3, thioredoxin 
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family protein, chalcone and stilbene synthase family protein and 

monodehydroascorbate reductase 1. Plants affected by salinity stress are at a high risk of 

oxidative damage due to formation of free radicals and require mechanisms to maintain 

redox homeostasis (Gong et al., 2005), and each of above mentioned genes may play a 

role in these mechanisms. Nevertheless, despite the wealth of potential candidates with 

this region of the genome, further fine mapping studies with greater power and precision 

are necessary to eventually identify the salt-tolerance gene underlying this chromosome 

7 QTL.  

 This study was successful in elucidating the genetic basis of salt tolerance in 

sorghum through QTL analysis of a recombinant inbred line (RIL) population and the 

subsequent examination of candidate genes within the limits of this salt-tolerance trait 

loci. The research also identified molecular markers linked to the trait, to be used for 

marker-assisted introgression of salt tolerance into more susceptible sorghum cultivars. 

Furthermore, the QTL identified is replete with genes known to have a role in different 

mechanisms of salt tolerance. However, identification of the salt tolerance gene(s) from 

the candidates will require additional fine mapping efforts in conjunction with analyses 

of expression studies, mutagenesis, cDNA library analysis, and plant transformation.  
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CHAPTER IV 

HIGH RESOLUTION MAPPING Dw2 DWARFISM LOCUS IN SORGHUM  

 

Introduction 

 Sorghum accessions in the world collection range in plant height from 1-to-4 

meters (Quinby and Karper, 1953), with the tall accessions preferred for subsistence 

agriculture where sorghum stover can be used for livestock grazing or as a building 

material.  In temperate-zone production agriculture, tall varieties with higher biomass are 

suitable as forage and more recently for cellulosic-based biofuel production (Salas 

Fernandez et al., 2009). By contrast, tall plants are undesirable for mechanized 

(combine) grain harvesting and more susceptible to lodging, thus a major effort was 

initiated in the 1940s to breed sorghum in the United States for dwarfism (Quinby, 

1974). In conjunction with this, Quinby and colleagues (Ayyangar et al., 1937; Karper, 

1932; Sieglinger, 1932) initiated efforts to identify the number of genes controlling 

dwarfism while plant physiologists labored to understand the physiological parameters 

controlling this trait.  This pioneering genetic work initiated by Quinby and colleagues 

has been carried forth to the present day by sorghum researchers that investigate gene 

regulation of key agronomic traits including dwarfism (Childs et al., 1997; Multani et al., 

2003; Murphy et al., 2014; Murphy et al., 2011). 

 Investigations have described the diverse biochemical and molecular regulation 

of plant height in different species. Gibberellic acid is a plant hormone known to 

stimulate stem elongation by promoting cell division and elongation (Metraux, 1987), 
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and mutations in the gibberellin biosynthetic pathway have resulted in dwarf phenotypes 

which respond to external GA application with stem elongation. This has been observed 

in dwarf mutants of maize (Zea mays L.), rice (Oryza sativa L.) and pea (Pisum sativum 

L.) (Phinney, 1984). However, mutations in the signal transduction pathway can block 

the utilization of GA leading to GA-insensitive dwarf phenotypes as reported in wheat 

(Triticum aestivum L.), rye (Secale cereale L.), maize and rice (Milach and Federizzi, 

2001). Brassinosteroids (BR) are another family of hormones that affect plant height by 

promoting cell elongation. Dwarf phenotypes have been observed in tomato (Solanum 

lycopersicum L.), Arabidopsis and pea mutants defective in BR biosynthesis and 

signaling pathway (Salas Fernandez et al., 2009). A number of studies have indicated 

that type-B phytochrome acts by altering GA biosynthesis or by modifying the response 

to GA (Lopez-Juez et al., 1995; Weller et al., 1994). Overexpression of phytochrome A 

and phytochrome B genes has been shown to cause dwarfness in tomato, tobacco 

(Nicotiana tabacum L.) and Arabidopsis plants (Milach and Federizzi, 2001). Finally, 

down regulation of histone deacetylase, a transcriptional regulator in plants, has shown 

to affect various developmental functions and plant height in Arabidopsis (Tian and 

Chen, 2001).  

 Several dwarfing genes in crop species have been identified and studied so far, 

and several are critical to crop improvement programs as dwarfism genes can have a 

positive pleiotropic effect on grain yield. The dwarfing genes Rht1 and Rht2 of wheat 

(Börner et al., 1997; Konzak, 1987) and sd1 of rice (Cho et al., 1994) have been 

substantially used throughout the world in developing semi-dwarf varieties. One of the 
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first dwarfing genes to be cloned was gai of Arabidopsis thaliana (Peng et al., 1994), 

which encodes a mutant protein (GA signal transduction component) that causes 

reduction in GA response and thereby a dwarf phenotype. In rice a semi-dwarf gene, sd-

1 encoding gibberellin 20-oxidase, a key enzyme of the gibberellin biosynthesis pathway 

was isolated by positional cloning (Monna et al., 2002). 

 In sorghum four independent loci Dw1, Dw2, Dw3 and Dw4 have been 

characterized to affect plant height by primarily influencing stem internode length 

(Quinby and Karper, 1953). Tallness is partially dominant to shortness (Hadley, 1957) 

and five height classes are recognized (0-4 dwarf phenotypes) that refer to the number of 

dwarfism loci (Dw1-Dw4) that are homozygous recessive. Usually three of the Dw loci 

(termed “3-dwarf”) are homozygous recessive to temperate zone commercial grain 

hybrids whereas dual purpose (grain and forage) are often 2-dwarfs. Of the four 

dwarfing loci in sorghum, Dw3 located on chromosome 7 has been identified as 

encoding a P-glycoprotein auxin efflux carrier orthologous to PGP1 in Arabidopsis 

(Multani et al., 2003). The mutant allele dw3 has been used in sorghum grain hybrids, 

but the recessive allele is unstable and reverts back to the dominant (tall) allele with a 

frequency of 0.1-0.5%. This reversion at the Dw3 locus is often evident in production 

fields by the presence of “tall mutations” in otherwise uniformly short fields of sorghum. 

In addition, decreased sorghum grain yields through reduced shoot biomass and grain 

size have been associated with the recessive dw3 allele (George-Jaeggli et al., 2011). 

The Dw1 locus has been proposed to be on chromosome 9 where a major height gene 

Sb.Ht9.1 has also been reported (Brown et al., 2008; Pereira and Lee, 1995). The Dw4 
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locus has so far not been mapped conclusively to a chromosome, but the gene is 

proposed to be linked with a bloom locus in sorghum (Madhusudhana and Patil, 2013). 

Recent association mapping studies have suggested the potential physical position of 

Dw4 at ~6.6 Mbp on chromosome 6 (Morris et al., 2013). 

 The Dw2 dwarfism locus was reported by Quinby and Karper (1945) to be linked 

to the maturity locus, Ma1, and both of these loci are critical to sorghum’s adaptation to 

temperate-zone agriculture (Lin et al., 1995).  Utilizing both AFLP and SSR genetic 

markers, Dw2 was previously mapped (Klein et al., 2008; Lin et al., 1995) to the distal 

end of chromosome 6, delimited by the AFLP markers Xtxa2124 (42.57 Mb) and 

Xtxa3407 (44.46 Mb). Recent association mapping studies have resolved the location of 

the Dw2 locus to ~100kb around 42.2Mb of chromosome 6 (Morris et al., 2013). While 

examination of the Dw2 locus based on the mapping efforts of Klein et al., (2008) 

revealed ~53 genes. While several of these genes including cytochrome P540, alpha 

amylase, and histone deacetylase represent viable candidates for encoding Dw2, 

however, identification of the gene underlying the Dw2 locus has not been 

experimentally verified. 

 The objective of the present research was to map at high resolution the sorghum 

dwarfing gene Dw2 to permit the identification of candidate genes. The research aims to 

fine map the Dw2 gene using residual heterozygous lines from an F2 population and to 

confirm the identity of the gene utilizing transgenic technology.  
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Materials and methods 

High resolution mapping of the Dw2 locus 

 The parents of this mapping population were BTx3197 (dw1Dw2dw3dw4) and 

BTx616 (dw1dw2dw3dw4) (Miller et al., 1999; Quinby, 1974). An F2 mapping 

population from a cross of BTx3197 and BTx616 was created by F.R. Miller (Professor 

Emeritus, Texas A&M University), and this F2 population was utilized by Klein et al. 

(2008) to delimit the Dw2 locus to an ~1 Mbp region of sorghum chromosome 6.  To 

further resolve the Dw2 locus, F2 plants with residual heterozygosity within the limits of 

the Dw2 locus were identified by genotyping the entire F2 mapping population (202 

individuals) with SSR markers flanking (and within) the Dw2 locus. Those F2 

individuals heterozygous for the Dw2 locus-delimiting SSR markers were selected for 

further selfing to potentially generate additional recombinant events within the locus. 

This process of selfing, genotyping, and phenotyping plants with residual heterozygosity 

was repeated for all F3 plants that were still heterozygous for the Dw2 locus-delimiting 

markers, and additional recombinant (crossover) events within the locus were identified. 

This process was repeated until all individuals within the mapping population were 

homozygous at the Dw2 locus (i.e. no further crossover events were possible), and thus 

no further refinement of the locus was possible with this mapping population. 

Genotyping and phenotyping 

 The SSR markers required for genotyping were identified by analyzing the 

sequence spanning the Dw2 locus with the simple sequence repeat identification tool, 

SSRIT (http://archive.gramene.org/db/markers/ssrtool). Potential SSRs covering the 

http://archive.gramene.org/db/markers/ssrtool
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Dw2 locus were chosen and primers designed (Primer3 v.0.4.0) for PCR amplification 

(Table 19). DNA was extracted from seedling leaf tissue using the FastDNA Spin Kit 

(MP Biomedicals) and PCR was performed using DNA template, 5X Green GoTaq
®

 

Reaction Buffer, 5U/μl GoTaq
®

 DNA Polymerase, 25mM MgCl2, 2.5mM dNTPs, 2.5 

pmol forward and reverse primers and water to volume. Depending on the annealing 

temperatures of the primers, either a single annealing temperature of 55
o
C was used or a 

touchdown protocol was used. The two PCR cycling parameters were as follows: STS-

55, initial denaturation at 95
o
C for 2 min, followed by 25 cycles of 95

o
C for 45 s, 55

o
C 

for 45 s, and 72
o
C for 1 min, and a final synthesis step at 72

o
C for 20 min; or TD-65, 

initial denaturation at 95
o
C for 2 min, followed by 11 cycles of 95

o
C for 45 s, 65

o
C for 

45 s, and 72
o
C for 45 s, 20 cycles of 95

o
C for 45 s, 58

o
C for 45 s, and 72

o
C for 30 s and 

a final synthesis step at 72
o
C for 30 min. The parents of the mapping population were 

screened for polymorphism through size variation on a 3130xl Genetic Analyzer 

(Applied Biosystems), and alleles called with GeneMapper Software v4.0 (Applied 

Biosystems). Those SSRs exhibiting different allele sizes between BTx3197 and 

BTx616 were used to screen the selected progeny as detailed above.  

 Phenotypic data for height was collected from the plants grown in a greenhouse 

or the field after physiological maturity. For greenhouse phenotyping, plants were grown 

in Sunshine MVP soil (Sun Gro Horticulture) with a temperature range of 24°C (night) 

to 30°C (day). A day length of 12 hours was provided using sodium halide lights and 

natural sunlight.  
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Table 19. Primer sequences for amplifying simple sequence repeat (SSR) markers covering the Dw2 locus. Maker names, genomic 

positions, type and number of repeats along with predicted size of the amplification product and the annealing temperatures of 

primers are shown.  

Marker Marker Type of SSR(s)† Sequence of forward primer (5'to3') Sequence of reverse primer (5' to 3') Product Size
‡
 Annealing 

name Position 
   

BTx3197/ temperature 

     
BTx616 OC 

txp434 42653043 (TCG)8 CGAGGTCCAGGAGTACACG CGGCCTCCATGAGGAGTAAT 155/147 55 

txi56
§
 - INDEL AGGACAAGGTGGAGTTCACG ATGTCAGCATGTGCAGTTGG 219/214 55 

txp741 42690137 (CCT)8 TCTCGATCTGCTCCTCCTTG GGCAGCTTGCTTGTGCTATAA 292/290 55 

txp742 42691036 (AGC)5 ACTTTTTCGCGTCCATTGTT GGTTTATTGACGCCTTGCTC 228/227 55 

txp743 42717697 (CCGC)6 + (CG)5 GTACGAGAGATGGCGTCCTT ACACGTTGTCTGCGTCTGC 385/378 65 

txp737 42722260 (CAA)13 GCTCATCTGACACAGCCTTTC TAGCGTACCCCAACTTGCTT 172/190 55 

txp738 42778077 (CCG)5 CAACTCGATGCAGAGTGTCC GAGCAGCGAAAATCCAAGTC 190/184 55 

txp739 42800383 (AC)12 CTGCACTGCATCCCTTTCTT CACATGAGTCTTGCCGATTC 247/243 55 

txp547 42807635 (AAT)12 GAGAGAGAGCGCGATGAGAC ATCCATCGCAAACCGATAAA 203/190 55 

txp690 42824911 (CGG)9 CAATGATTCCGAACCAGGAT AACCACACTAGCCCCTTCCT 170/165 55 

txp691 42840525 (GC)10 CCAACCTTAGCCAAATCGAG CACCCACTCGAAAGCTTCAT 179/407 55 

txp535 43208978 (AT)7 TTGAAATTTATTGCATCCTAA AAAGAACTCTGATAAATACTTCC 117/120 55 

txp559 43634595 (TCC)7 TAAGCAAGTCGTCACCCGTCA GGCATGGCATACCCGAACA 360/357 55 

† 
Number of repeats; a '+' indicates the SSRs are separated by more than five bases. 

‡ 
Amplification product size of genotypes BTx3197 and BTx616. 

§ Insertion/deletion (INDEL) marker. 
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 For field analyses, plants were grown at the Texas A&M University Research 

Farm in College Station, TX (USA).Plants were grown in a randomized complete block 

design with two replications. Plots consisted of a single 5.2 m long row with row spacing 

of 0.8 m. Production practices standard for sorghum fertilization, irrigation and pest 

management were employed. Total plant height and other parameters including height of 

the first, second, and third internodes below the peduncle (IN-1, IN-2, IN-3), base to first 

node below the peduncle, peduncle length and panicle length were measured. The 

phenotypic data was then subjected to one way analysis of variance to compare the 

means of parents and progeny and differentiate them into two height classes.  

Candidate gene identification and functional validation 

 

 Following refinement of the Dw2 locus using residual heterozygous individuals, 

the annotated genes within the fine-mapped region were surveyed 

(http://www.phytozome.net), and all genes of known or suspected biological function in 

controlling height were regarded as potential candidate gene. For verification of the 

function of a candidate gene, two approaches were considered; complementation of a 

recessive dw2 cultivar with the dominant Dw2 gene, or down-regulation of the 

expression of the candidate gene (gene silencing) in a dominant Dw2 cultivar using RNA 

interference (RNAi).  

Construct design for gene silencing 

 For Dw2 gene silencing, a construct encoding a hairpin RNA (hpRNA) 

consisting of an inverted repeat separated by a spacer intron was prepared. Total RNA 

was extracted from the leaves of 35-day-old seedlings of sorghum genotype RTx430 

http://www.phytozome.net/
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(Dw2) using the miRNeasy Mini Kit (QIAGEN). From the total RNA, first-strand cDNA 

was synthesized with the SuperScript
®
 III First-Strand Synthesis System for RT-PCR 

(Invitrogen). For generating the inverted repeats, ~300 bp cDNA fragment from the 

candidate gene was amplified by two separate PCR reactions that added restriction sites 

to the ends of the PCR product. The primer sets 1 and 2 (Table 20) incorporated the 

restriction sites XbaI, HindIII and XhoI, KpnI, respectively flanking the PCR product. 

The standard PCR cycling protocol detailed above (55
o
C annealing temperature) was 

used for PCR amplification and PCR products were purified using the QIAquick PCR 

Purification Kit (QIAGEN). Purified PCR products were then cloned into a pCR
®

II-

TOPO
®
 TA vector using the TA Cloning

®
 Kit (Invitrogen) to form two silencing 

constructs; SIL-1 (restriction sites XbaI and HindIII) and SIL-2 (restriction sites XhoI 

and KpnI). The constructs were then transformed into One Shot
®
 TOP10F' Chemically 

Competent E. coli cells and transformants analyzed. Transformants were grown in LB 

medium and plasmid DNA was extracted using the Zyppy™ Plasmid Miniprep Kit 

(ZYMO RESEARCH). Recombinant pCR
®

II plasmids were screened by DNA 

sequencing employing the BigDye
®
 Terminator v3.1 Cycle Sequencing Kit (Applied 

Biosystems) along with M13 forward and reverse primers. Inserts with the correct 

sequence (e.g., absence of PCR-induced sequencing errors) were sequentially subcloned 

into the pKANNIBAL vector (Figure 1) in sense and antisense orientation, flanking an 

intron sequence of the vector. To subclone into pKANNIBAL, SIL-1 and pKANNIBAL 

were digested with XbaI and HindIII followed by gel extraction, purification and finally  
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Table 20. Primer sequences for amplifying and sequencing DNA in silencing and over-

expression experiments. 

  Primer Sequence (5'-3') 

 Silencing 

Primer Set 1 TCTAGAGAGTTTGCGGTCCATACAGC 

  AAGCTTTCACAATCACTTTGACCTGCT  

    

Primer Set 2 CTCGAGGAGTTTGCGGTCCATACAGC 

  GGTACCTCACAATCACTTTGACCTGCT 

    

Primer Set 4 TTATTAACTTCTAAATGGATTGAC 

  GGCGGTAAGGATCTGAGCTA 

    

Primer Set 5 CGCACAATCCCACTATCCTT 

  CTTCGTCTTACACATCACTTGTCA 

    

M13 Forward  GTAAAACGACGGCCAG 

M13 Reverse CAGGAAACAGCTATGAC 

 Primer Sequence (5'-3') 

 Over-expression 

Primer Set 3 AGATCT AGCG ATGCTGGAGAAAGAC 

  GAGCTCCAGATTAGCGTGCGC 

    

Primer Set 6 GACATTGATGTCCATCATGG 

  GCAAGTGAATTAACCAGATA 

  ATTTGAACAGTAAGACCTATC 

    

Primer Set 7 GCAGCATCTATTCATATGCTCTAAC 

  TTTAGCCCTGCCTTCATACG 

  TGCTTAACGTAATTCAACAGA 

    

T3 ATTAACCCTCACTAAAGGGA 

T7 TAATACGACTCACTATAGGG 
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ligation of the digested SIL-1 insert (~300 bp) with vector pKANNIBAL using T4 DNA 

ligase (Promega). 

 This construct was then transformed into competent cells and transformants were 

analyzed and sequenced as described above. Upon identification of clones containing the 

pKANNIBAL vector and SIL-1 insert without mutations, the above process was 

repeated with restriction enzymes XhoI and KpnI to incorporate the SIL-2 insert into 

pKANNIBAL_SIL-1. Transformants bearing the construct pKANNIBAL_SIL-1_SIL-2 

(Figure 2), were then sequenced with primer sets 4 and 5 (Table 20) to confirm the 

correct clone. Finally, the fragment from pKANNIBAL_SIL-1_SIL-2, containing the 

CaMV35S promoter, OCS terminator and the hpRNA was excised using NotI and 

further subcloned into a binary vector, pART27 (Figure 3) by digestion and ligation. The 

new construct pART27_ SIL-1_SIL-2 (Figure 4) thus formed, was used for 

Agrobacterium-mediated transformation of the genotype RTx430 (Dw2).  

Construct design for gene complementation 

 For gene complementation, the coding DNA sequence (CDS) of the candidate 

gene was PCR amplified from cDNA. Primer set 3 (see Table 20) that added restriction 

sites BglII, and SacI, at the ends of the CDS was used for amplification. The PCR cycle 

TD-65 was performed using cDNA template, 5X Q5 Reaction Buffer, 0.02 U/μl Q5 

High-Fidelity DNA Polymerase, 2.5mM dNTPs, 10 pmol target-specific primers, and 

water to volume. The PCR product was loaded on a 0.7% agarose gel containing 0.2M 

guanosine and run using 1x TBE buffer. The target CDS fragment was excised from the 

gel using QIAquick Gel Extraction Kit (QIAGEN) and purified. A single 3’adenosine 
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Figure 1. Map of the pKANNIBAL construct with CaMV35S promoter, pdk gene intron, and 

OCS terminator.  
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Figure 2. Map of the pKANNIBAL_SIL-1_SIL-2 construct with CaMV35S promoter, OCS 

terminator, inverted repeats Hdac-Trigger-A and Hdac-Trigger-B separated by the spacer pdk 

intron. 
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    Figure 3. Map of the pART27 construct with nptII plant selection gene. 
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Figure 4. Map of the pART27_SIL-1_SIL-2 construct with NotI fragment digested from 

pKANNIBAL_SIL-1_SIL-2 construct. 
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residue was added by incubating the PCR fragment with 1mM dATP and GoTaq Flexi 

DNA Polymerase in 5X GoTaq Reaction Buffer and 25mM MgCl2  at 70 
o
C for 15-30 

mins. The A-tailed fragment was then cloned into a pCR™4-TOPO
®

 TA vector using 

the TOPO
®
 TA Cloning

®
 Kit (Invitrogen). Transformation of competent cells, plasmid 

DNA extraction and inserts sequenced with primer set 6 (Table 20) and T3/ T7 primers, 

and the clones containing the target insert were subcloned into a pCAMBIA-based 

vector. For subcloning into the pCAMBIA-based vector, clones were digested with BglII 

and SacI, and the vector pCAM-Ubi-GUS (Figure 5) was digested with BamHI and SacI. 

The digestion reactions were run on an agarose gel and the digested fragments were gel 

extracted as detailed above, and the purified insert was ligated to vector pCAM-Ubi-

GUS using T4 DNA ligase (Promega). This construct was then transformed into One 

Shot
®
 TOP10F' chemically competent E. coli cells and transformants were analyzed and 

sequenced with primer sets 6 and 7 (Table 20) as described earlier. This new construct, 

termed pCAM_OE (Figure 6), harbored the entire CDS of the target gene plus a maize 

ubiquitin promoter and NOS terminator, and this construct was used for Agrobacterium-

mediated transformation of the sorghum genotype P898012 (dw2/dw2). All the primers 

used for amplifying and sequencing DNA fragments of the designed constructs are 

shown in Table 20. 
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Figure 5. Map of the pCAM-Ubi-GUS construct with ubiquitin promoter, ubiquitin intron, GUS 

gene and NOS terminator. 
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Figure 6. Map of the pCAM_OE construct with hptII plant selection gene. GUS gene of the 

pCAM-Ubi-GUS construct is replaced by the histone deacetylase CDS. 



 

88 

 

Agrobacterium-mediated transformation  

 The binary vector constructs, pART27_SIL-1_SIL-2 (for silencing) and 

pCAM_OE (for over-expression) were mobilized by electroporation into Agrobacterium 

tumefaciens strain NTL4 harboring the disarmed Chry5 Ti plasmid designated 

pTiKPSF2 (Palanichelvam et al., 2000). Genotypes P898012 (dw2/dw2) and RTx430 

(Dw2/Dw2) were grown under greenhouse conditions and in field plots in College 

Station, TX. Before flowering the panicles were covered with pollination bags, and 

immature seeds were harvested within 12-15 days of flowering. Seeds were sterilized by 

soaking in 70% ethanol for 1 minute, followed by a rinse with sterilized water, and 

soaked in 30% commercial bleach while shaking for 20 mins at 200 rpm. Seeds were 

then rinsed three times with sterilized water and placed in an open petri plate to air dry. 

Immature embryos, 1-1.5 mm in length were excised aseptically under a microscope and 

placed with their scutellum side up on a stack of 4 sterile Whatman filter papers 

saturated with 4.2 ml M11 media in a petri plate (100 x 15 mm) and incubated overnight 

in the dark at 28
o
C.  

 The preparation of Agrobacterium using appropriate antibiotics followed by 

induction with acetosyringone was done in accordance with the method described by 

Howe et al. (2006).  The inoculum was kept on ice until ready for use. The excised 

embryos were moved to a sterile 1.5 ml tube containing the M11 medium. Excess 

medium was removed, leaving just enough to cover the embryos, and the tubes were 

incubated in a controlled water bath at 43
o
C for 3 min followed by cooling at 25

o
C 

(Gurel et al., 2009). The embryos were then washed 3 times with modified PHI-T co-
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culture medium (mPHI-T) (Howe et al., 2006) supplemented with 40 mg/l 

acetosyringone and 200 mg/l L-Cysteine, and infected with 1 ml of pre-induced 

Agrobacterium culture for 10 min (after which the bacterial culture was removed). The 

embryos were placed with scutellum side up on a stack of 4 sterile Whatman filter 

papers saturated with 4.2 ml of mPHI-T medium in a 100 x 25 mm Petri plate. The 

embryos were co-cultured in the dark at 25
o
C for 5-6 days, after which they were moved 

to resting medium DBC3 (Wu et al., 2014) for 7-10 days at 28
o
C in the dark. On the 14

th
 

day from infection, the growing coleoptiles of the embryos were removed and the 

embryos were moved to selection medium DBC3 supplemented with appropriate 

antibiotics for selection (30 mg/L geneticin for RTx430 embryos and 20mg/L 

hygromycin for P898012 embryos) and cultured for 2 weeks at 28
o
C in the dark.  The 

embryos were transferred to fresh selection medium every 2-3 weeks for a total period of 

6-9 weeks. The surviving calli were transferred to pre-regeneration medium containing 

antibiotics for selection in tall plates for 1 week under light at 28
o
C, and then to 

regeneration medium with the antibiotic concentration reduced to half under the same 

conditions until shoots regenerated. Developing shoots were moved to jars containing 

rooting medium with full strength antibiotics for selection. Shoots with well-developed 

roots were transferred to Sunshine LP5 soil medium for hardening on bench top under 

room light. The composition of media used in this study are presented in Table 21. Since 

immature embryo explants of P898012 produce substantial amount of phenolic 

compounds, 10g/l polyvinylpolypyrrolidone (PVPP) was added to all media during 

transformation of this genotype. 
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Table 21. Media formulations for transformation of sorghum.  

Media Medium formulation 

M11 MS salts 4.3 g/l; sucrose 30 g/l; myo-inositol 100mg/l; M11 

vitamin stock 1 ml/l; 2,4-D 2 mg/l; KH2PO4  1.03 g/l; asparagine 

900 mg/l; proline 2 g/l; pH 5.7 

 

mPHI-T MS salts 2.16 g/l; NPT stock 1 ml/l; sucrose 20 g/l; myo-inositol 

100mg/l; casein hydrolysate 1 g/l; 2,4-D 2 mg/l; glucose 10 g/l; 

MES 500 mg/l; proline 2 g/l; acetosyringone 40 mg/l; L-Cysteine 

200 mg/l; pH 5.2 

 

DBC3 MS salts 4.3 g/l; myo-inositol 250 mg/l; casein hydrolysate 1.0 g/l; 

thiamine HCL 1.0 mg/l; 2,4-D 1.0 mg/l; maltose 30 g/l; proline 

0.69 g/l; cupric sulfate 1.22 mg/l; BAP 0.5 mg/l, phytagel 3.5 g/l, 

pH 5.8; carbenicillin 200 mg/l; cefotaxime 100 mg/l 

 

Pre-regeneration MS salts 4.3 g/l; myo-inositol 100 mg/l; modified B5 vitamin stock 

10 ml/l; sucrose 30 g/l; kinetin 0.25 mg/l; phytagel 2 g/l ; pH 5.7; 

carbenicillin 200 mg/l; cefotaxime 100 mg/l; IAA 0.5 mg/l 

  

Regeneration MS salts 4.3 g/l; myo-inositol 100 mg/l; modified B5 vitamin stock 

10 ml/l; sucrose 30 g/l; kinetin 0.5 mg/l; phytagel 2 g/l ; pH 5.7; 

carbenicillin 200 mg/l; cefotaxime 100 mg/l; IAA 1 mg/l 

  

Rooting MS salts 2.15 g/l; myo-inositol 100 mg/l; modified B5 vitamin 

stock 10 ml/l; sucrose 20 g/l; NAA 0.5mg/l; IBA 0.5 mg/l; 

phytagel 2 g/l; pH 5.7 

 

M11 vitamin stock 

 

Nicotinic acid 13 mg/10 ml; thiamine HCl 10 mg/10 ml; 

pyridoxine HCl 10 mg/10 ml; 

 

NPT stock 

 

Nicotinic acid 5 mg/10 ml; thiamine HCl 10 mg/10 ml; 

pyridoxine HCl 5 mg/10 ml; 

 

Modified B5  

vitamin stock 

Nicotinic acid 1 mg/l; thiamine HCl 10 mg/l; pyridoxine HCl 1 

mg/l; glycine 7.7 mg/l; niacinamide 1.3 mg/l 
    MS salts are as described by Murashige and Skoog (1962). 
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Results and discussion 

Analysis of phenotypic data and refinement of Dw2 locus 

 The results of field-based phenotyping of internode length and plant height is 

presented in Table 22. The mean values of the parent BTx3197 (dw1Dw2dw3dw4) for 

all measurements recorded of internode length were significantly greater than for 

BTx616 (dw1dw2dw3dw4). The height (from base of plant to tip of panicle) of BTx3197 

ranged from 74.5-105.5 cm while the height of BTx616 ranged from 40.7-59.0 cm. The 

dwarfing genes Dw1, Dw2, Dw3 and Dw4 have been characterized as brachytic, 

primarily affecting plant height by influencing stem internode length. The lack of a 

significant effect of recessive dw2 on peduncle and panicle length in part explains why 

sorghum breeders utilize this dwarfing gene in breeding grain hybrids. The lack of a 

strong positive relationship of the recessive dw2 allele and panicle length are reflected in 

the correlation coefficient values for these traits (Table 23). Finally, a one way analysis 

of variance indicated significant differences (P < 0.001) in the parental genotypes for 

plant height, and the genotypes were classified into two height groups, which is 

consistent with BTx3197 and BTx616 differing at only dwarfing locus dw2.   

 With an aim to map the Dw2 locus at higher resolution, SSR and INDEL markers 

(Table 19) spanning the locus as delimited by Klein et al. (2008) were examined to 

identify additional recombinant events. The Dw2 locus reported by Klein et al. (2008) 

was resolved to ~1 Mbp of chromosome 6, and was flanked by SSR markers Txp434 

(position 42.65 Mbp) and Txp559 (position 43.63 Mbp). Of the original 202 F2 progeny 

from the cross of BTx3197 and BTx616, 12 were determined to be heterozygous for 
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genetic markers flanking the region and thus, were useful for additional Dw2 locus 

resolution.  A total of 16 SSR sequences within the locus were identified, and of these 12 

(75%) were determined to be polymorphic and informative (Table 24).  In combination 

with F2 progeny showing residual heterozygosity, these new markers identified 

additional crossover events within the locus, which effectively reduced the size of the 

locus by 0.8 Mbp.  Ultimately, 6 of the 12 (50%) F2 progeny with residual 

heterozygosity showed recombinant events within the dw2 locus, and the refined locus 

spans 0.1 Mbp and 11 genes (see Table 25 and discussion below). Given the estimated 

local recombination rate of 150 kb/cM within the Dw2 locus, to resolve the locus to a 

similar extent by increasing the original mapping population size would have required an 

estimated 92 additional F2 individuals (Dinka et al., 2007).  Thus, using F2 individuals 

with residual heterozygosity was an effective strategy for increasing the resolution of the 

Dw2 locus without the additional time and labor associated with increasing the original 

mapping population size. The use of progeny with residual heterozygosity has been 

shown to be an effective locus refinement strategy, as observed for the flowering time 

loci FT1 and FT2 in soybean (Watanabe et al., 2011; Yamanaka et al., 2005), 

semidwarfism (Tong et al., 2016) and grain length loci (Shao et al., 2010) in rice.  
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Table 22. Phenotypic mean values for height of different parts of plants of parental inbreds BTx3197 and BTx616. Values 

represent means with standard deviations (SD) shown in parentheses.   

Height BTx3197 BTx616 

IN-1 11.86 (2.47) 
a
  3.83 (1.02) 

b
 

IN-2   7.63 (2.29)
 a
   2.32 (0.42)

 b
 

IN-3   7.33 (2.41)
 a
   2.26 (0.53)

 b
 

Base to IN-1 49.93 (7.39)
 a
 14.93 (1.81)

 b
 

Peduncle+Panicle 41.63 (5.57)
 a
 36.43 (5.74)

 a
 

Total 91.57 (9.28)
 a
 51.36 (5.06)

 b
 

Range 74.50-105.50 40.7-59.0 
IN-1, IN-2, IN-3 are first, second and third internodes below the peduncle. 

Means followed by different alphabets 
a 
and 

b 
indicate significant differences of the trait mean value between the two parents as calculated by Tukey's 

test. 

 

 

 

 

Table 23. Pearson’s correlation coefficients for height of different parts of plants of parental inbreds and progeny. 

 IN-1 IN-2 IN-3 Base to IN-1 Peduncle+Panicle Total 

IN-1 1 0.74*** 0.64*** 0.86*** 0.29*** 0.82*** 

IN-2  1 0.85*** 0.89*** 0.48*** 0.90*** 

IN-3   1 0.83*** 0.58*** 0.88*** 

Base to IN-1    1 0.37*** 0.95*** 

Peduncle+Panicle     1 0.63*** 

Total      1 

*** Significant at the 0.001 probability level. 

IN-1, IN-2, IN-3 are first, second and third internodes below the peduncle. 
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Table 24. Genotype scores of parents BTx3197 and BTx616 and the derived progenies for SSR markers covering the Dw2 locus. 

The scores 1 and 3 indicate alleles contributed by BTx3197 and BTx616, respectively. Phenotypic data and height group of 

parents and progenies are shown. 

Genotype Marker name Average Average Height 

 txp txi txp txp txp txp txp txp txp txp txp txp txp Total Base to IN-1 group§ 

 
434 56 741 742 743 737 738 739 547 690 691 535 559 Ht† (cm) Ht‡ (cm) 

 

BTx3197 1 1 1 1 1 1 1 1 1 1 1 1 1 91.57 49.93 Tall (Dw2) 

BTx616 3 3 3 3 3 3 3 3 3 3 3 3 3 51.36 14.93 Short (dw2) 

5468-18-02-04_A02 3 3 3 3 3 3 3 3 3 3 1 - - 56.41 22.80 Short (dw2) 

5468-18-02-04_E05 3 3 3 3 3 3 3 3 3 3 1 - 1 55.07 20.60 Short (dw2) 

5468-18-02-04_F04 3 3 3 3 3 3 3 3 3 3 1 - 1 58.37 21.70 Short (dw2) 

5468-18-02-04_H06 3 3 3 3 3 3 3 3 3 3 1 - 1 56.95 21.30 Short (dw2) 

5471-02-06-03-A9 1 3 3 3 3 3 3 3 3 3 - - 3 56.68 21.55 Short (dw2) 

5471-02-06-03-D7 1 3 3 3 3 3 3 3 3 3 - - 3 57.72 21.60 Short (dw2) 

5471-09-B6 - 1 3 3 3 3 3 3 3 3 3 - - 52.92 21.60 Short (dw2) 

5471-02-04-05-07_F11 3 3 3 3 3 1 1 1 1 1 1 - - 77.00 41.20 Tall (Dw2) 

5471-02-04-05-07_B09 3 3 3 3 3 1 1 1 1 1 1 - - 77.90 41.30 Tall (Dw2) 

5484-20-07-08-03_H11 1 1 1 1 1 1 1 1 1 3 3 - 3 73.70 34.75 Tall (Dw2) 

5484-20-07-08-03_C07 1 1 1 1 1 1 1 1 1 3 3 - 3 78.90 39.70 Tall (Dw2) 

5471-02-13-_G04 3 1 1 1 1 1 1 1 1 1 1 - 1 88.14 46.41 Tall (Dw2) 

† 
Defined as average height measured from ground to the top of panicle.

 

‡
 Defined as average height measured from ground to the topmost node below peduncle. 

§ 
Height groups short and tall are defined on the basis of one-way analysis of variance of mean height of genotypes. 

  Crossover events between markers are shown in box.
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Candidate gene identification and validation 

 The refined locus of Dw2 is delimited by SSR markers Txp743 and Txp690 and 

spanned 0.1 Mbp (SBi-06 42.71-42.82 Mbp). Examining the annotated reference 

sorghum genome (v.3.0) revealed 11 genes of known function located within the fine 

mapped Dw2 locus (Table 25).  Annotated genes within the Dw2 locus included a 1,4-

alpha-glucan-branching enzyme (Sobic.006G066800), PPR repeat containing protein 

(Sobic.006G067000), putative F-box domain proteins (Sobic.006G0067150, 

Sobic.006G0067300), Serine/Threonine protein phosphatase family proteins 

(Sobic.006G066900, Sobic.006G067400, Sobic.006G067500), histone deacetylase 

(Sobic.006G067600), ACG kinase  (Sobic.006G067700), and ribosomal inactivating 

protein (Sobic.006G067100).  Examining the proposed function of each of these 

annotated genes provided a good indication of the most likely candidate for the Dw2 

dwarfism gene.  While several of these annotated genes could be involved in dwarfism, 

Sobic.006G067600, which encodes a protein histone deacetylase, was regarded as the 

strongest candidate. Histone deacetylases (HDACs) are known to play an essential role 

in eukaryotic gene regulation via transcriptional gene silencing, and present studies 

indicate that HDACs play a key role in regulating plant growth. Down-regulation of 

histone deacetylase in plants has been shown to regulate growth-related processes 

including plant height in Arabidopsis (Tian and Chen, 2001), reduced peduncle 

elongation, and altered morphology of leaves and stem in rice (Hu et al., 2009; Jang et 

al., 2003). The remaining 10 genes within the Dw2 locus had a series of cellular 

functions that potentially could be involved in dwarfism, but none were considered as 
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likely candidates compared to the HDAC encoded by Sobic.006G067600.  Excluding 

HDAC, the annotated function of genes in the Dw2 locus included the following: 1,4-

alpha-glucan-branching enzyme that has hydrolase activity and is involved in the starch 

biosynthetic process;  PPR domain containing proteins, which are a large family of 

RNA-binding proteins primarily involved in gene expression in plant organelles; 

ribosomal-inactivating proteins (RiPs), which are catalytic toxins produced by some 

plants and bacteria; F-box domain proteins that form one of the largest multigene 

superfamilies and control many important biological functions including mediating 

ubiquitination of proteins, signal transduction and cell cycle regulation; serine/threonine 

protein phosphatase family proteins that are known to play a role in stress signaling 

pathways; ACG kinase that is involved in protein phosphorylation and intracellular 

signal transduction; and 60S acidic ribosomal protein that is a structural component of 

ribosome with a function in translational elongation.  

 Despite the known function of HDACs in plant growth processes, validation of 

the identity of the Dw2 candidate gene was necessary.  Two approaches were chosen for 

functional validation; RNAi-mediated gene silencing of candidate gene Sobic. 

006G067600 in a wild-type (Dw2) sorghum genotype, and over-expression of the 

candidate gene in a dwarf (dw2) sorghum genotype. To overexpress the wild-type allele, 

cDNA was prepared from RNA of BTx3197 (Dw2) at a stage of plant development 

where internode elongation was apparent (~30 days post germination). A full-length 

cDNA of 1293 nucleotides comprising the HDAC gene was synthesized and the 

accuracy of the clone was confirmed to assure no mutations were introduced during 
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Table 25. Annotated sorghum genes within the fine mapped Dw2 locus. Genomic positions of the genes and markers are shown.  

Annotation file containing Rice orthologs was downloaded from Joint Genome Institute’s Genome Portal (Sorghum bicolor v1.0, 

http://phytozome.jgi.doe.gov). 

Gene/Marker 

start (bp) 

Gene/Marker  

end (bp) 

Gene  

name 

Marker 

name 

Rice 

 ortholog 

Annotated  

function 

42707963 42717710 Sobic.006G066800 Txp743
†
 LOC_Os02g32660 1,4-alpha-glucan-branching enzyme 

42718980 42722791 Sobic.006G066900 Txp737
†
  LOC_Os04g33470 Ser/Thr protein phosphatase family protein 

42723881 42725688 Sobic.006G067000  LOC_Os03g11690 PPR repeat containing protein 

42753303 42756717 Sobic.006G067100  LOC_Os02g05590 ribosome inactivating protein 

42758806 42759413 Sobic.006G067150  LOC_Os06g49530 OsFBX206 - F-box domain containing protein 

42769007 42770832 Sobic.006G067300  LOC_Os03g46510 OsFBX103 - F-box domain containing protein 

42774078 42778987 Sobic.006G067400 Txp738
†
 LOC_Os04g33470 Ser/Thr protein phosphatase family protein 

42781244 42785442 Sobic.006G067500  LOC_Os04g33470 Ser/Thr protein phosphatase family protein 

42785485 42802516 Sobic.006G067600 Txp739
†
 LOC_Os04g33480 histone deacetylase 

42803037 42807520 Sobic.006G067700  LOC_Os12g29580 AGC_PVPK_like_kin82y.19  

   Txp547    

   Txp690    

42823157 42825066 Sobic.006G067800   LOC_Os02g32760 60S acidic ribosomal protein 
†
 SSR markers located within the genes. 
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cDNA preparation. Following the series of cloning events as detailed in the methods 

section, pCAM_OE, which contained a maize ubiquitin promoter, NOS terminator and 

hptII plant selection gene (encoding hygromycin resistance) and the entire HDAC CDS 

was used for complementation of the recessive dw2 allele of the genotype P898012. For 

silencing the HDAC gene, a 300 bp fragment of the coding region was targeted using a 

self-complementary single-stranded hpRNA consisting of an inverted repeat and 

separated by a spacer intron. This region of Sobic. 006G067600 was chosen based on its 

low sequence similarity to other genic sequences thereby reducing the possibility of 

cross-silencing of non-target genes. On sequencing the RNAi construct, a single base 

change (GA) was observed in the ~300 bp gene insert. However, the single base 

change should not affect the formation of the hairpin and thus, should not preclude 

RNAi.  Following a series of cloning events, the derived construct pART27_SIL-1_SIL-

2 (Figure 2) was used for RNAi-mediated gene silencing of candidate gene Sobic. 

006G067600 in sorghum genotype RTx430 (Dw2).  

 Sorghum genotypes RTx430 (Dw2) and P898012 (dw2) were chosen for RNAi-

meditated gene silencing and complementation of the dw2 allele because of their known 

allelic state at the Dw2 locus and their suitability for agrobacterium-mediated 

transformation (Do and Zhang, 2015).  

Genotype P898012 posed unique tissue regeneration challenges due to the high 

tannin (phenolics) of this sorghum line.  Phenolics exuded by immature embryos of 

P898012 negatively impacted callus tissue growth and differentiation during the resting 

phase and plant regeneration from callus (Gao et al., 2005; Zhao et al., 2000). In 
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addition, phenolics are toxic to Agrobacterium cells (Nguyen et al., 2007), and each of 

these factors prevented successful transformation of genotype P898012. While ~2,350 

embryos were infected with Agrobacterium for transformation, none of them survived 

beyond the plantlet pre-regeneration stage. The use of PVPP in all media to bind 

phenolics met with limited success and did not drastically improve the rate of survival of 

the growing calli. Towards the end of this investigation, it was determined that infecting 

the embryos with Agrobacterium on the same day of embryo excision without pre-

culture on M11 medium resulted in less injury of the embryos and thus, reduced 

phenolic synthesis. While this modification limited callus formation, it may facilitate the 

successful recovery of T1 plants allowing for complementation of the HDAC gene in 

genotype P898012. 

 For the genotype RTx430, ~2,750 embryos were used for transformation, of 

which ~800 embryos were lost to bacterial or fungal infections during different stages of 

the process. A number of remaining embryos formed calli and underwent selection in the 

presence of hygromycin. Based on the ability to grow on media containing the selectable 

marker, ~27 putative transgenic calli regenerated into plants and formed roots. 

Following transplanting to potting mixture, the acclimatization process of the 

environmentally-sensitive T1 plantlets was done within the laboratory by maintaining 

the plantlets under high humidities and low light intensities. Despite the effort to reduce 

the shock of transplanting T1 plantlets, none of the plantlets survived the acclimatization 

process.  Examination of the T1 plantlets revealed that their failure to form new roots 

after transferring to soil is a probable reason for plant death during hardening.  
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 Based on the inability of the aforementioned investigation to validate the identity 

of the Dw2 gene, additional studies were recently initiated, but will not reach fruition 

prior to the completion of this dissertation.  Nevertheless, a collaboration was 

established with a crop transformation laboratory at the University of Nebraska-Lincoln 

(Thomas and Wendy Clemente) that has a very high success rate of sorghum 

transformation and plant regeneration.  Constructs for complementation and RNAi-

mediated gene silencing of Dw2 candidate gene HDAC are in the process of being used 

to generate T1 plants of genotypes RTx430 and P898014. It is my assertion that these 

studies will provide conclusive evidence to determine if the correct Dw2 candidate gene 

has been identified. 

 This study was successful in improving the resolution of the Dw2 locus using a 

strategy that involved further characterization of individuals with residual heterozygosity 

across the dwarfism locus.  Without increasing the original F2 population size, the Dw2 

locus of ~1 Mbp was refined to a 0.1 Mbp of chromosome SBi-06 by discovering 

additional recombinant events (i.e. crossovers) that occurred in F2 plants that were still 

segregating for markers spanning the locus.  The resulting Dw2 locus encoded a limited 

number (11) of annotated genes with the best candidate being a histone deacetylase, a 

family of genes known to play a key role in regulating plant growth. The two validation 

approaches, gene complementation and RNAi-mediated gene silencing, were conducted, 

but the lack of success of Agrobacterium-mediated sorghum transformation precluded 

the ability to confirm the identity of Dw2 as a member of the histone deacetylase gene 

family. The recalcitrance of sorghum for in vitro growth makes transformation 
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challenging, and success in sorghum transformation by teams at Texas A&M University 

will require acquiring expertise from laboratories that routinely transform this crop. 
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CHAPTER V 

CONCLUSION 

 

With a primary focus on improving grain sorghum germplasm, molecular genetic 

analyses were conducted on key agronomic traits that included anthracnose resistance, 

tolerance to salinity, and plant dwarfism. To elucidate those regions of the sorghum 

genome conditioning anthracnose resistance, two RIL populations from a cross of 

anthracnose-susceptible inbred BTx623 with two anthracnose resistant sorghum 

genotypes SC414-12E and SC155-14E were evaluated in multiple environments. Inbred 

SC414-12E displayed a moderate level of resistance across all locations while inbred 

SC155-14E had a high level of stable resistance in all environments tested. QTL analysis 

revealed a total of 9 trait loci for anthracnose resistance with three of these disease 

resistance loci (one in SC414-12E and two in SC155-14E) consistently detected across 

all environments. In addition these mapping efforts revealed environment-specific QTL, 

which likely arise from the different pathogen pressures that exist. One disease 

resistance locus was detected with BTx623 contributing the resistance allele implying a 

role of susceptible parent BTx623 in anthracnose resistance amongst the RILs. A 

preliminary investigation of the anthracnose resistance trait loci revealed a series of 

annotated genes with a role in disease resistance. Many of these genes have sequence 

variation in the coding regions, but further studies are necessary to identify causative 

genes and functional mutations conferring anthracnose resistance. Nevertheless, this 
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study provides the necessary information to introgress or pyramid anthracnose resistance 

QTL into elite cultivars through a marker-assisted backcrossing strategy. 

A greenhouse study to elucidate the genomic region conditioning salt tolerance in 

sorghum identified one QTL conditioning salt tolerance in a RIL population created 

from a cross of sorghum inbreds MMR338 and MMR31. By quantifying the extent of 

leaf damage in plants exposed to saline growth conditions, it was determined that inbred 

MMR338 displayed ~80 to 95% less leaf damage than MMR31, and MMR338 was 

contributing the resistance allele for the one QTL detected. In addition, the RIL 

population showed transgressive segregation for salt tolerance, which suggests that both 

sorghum inbreds harbor genes that confer salt tolerance in the RILs. Despite efforts to 

statistically account for the spatial variation that existed in the microenvironment across 

the greenhouse, it is apparent that growth conditions varied markedly and likely was 

responsible for the low power of this mapping study.  A brief examination of the 

annotated genes spanning the one significant QTL revealed a number of genes with a 

role in different mechanisms of salt tolerance, with the most prominent being a gene 

encoding a cation/H
+ 

antiporter. However, to identify the salt tolerance genes, studies are 

necessary in which growth conditions are closely monitored and adjusted to increase the 

accuracy and power to identify salt tolerance trait loci.  

The dwarfing gene Dw2 was fine-mapped using a strategy that involved further 

characterization of individuals with residual heterozygosity across the genomic region 

encoding Dw2. Without increasing the original F2 population size, the Dw2 locus of ~1 

Mbp was refined to a 0.1 Mbp region of chromosome SBi-06 by discovering additional 
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recombinant events (i.e. crossovers) that occurred in F2 plants that were not fixed for 

markers spanning the locus.  The resulting Dw2 locus encoded a limited number (11) of 

annotated genes with the best candidate being a histone deacetylase, a family of genes 

known to play a key role in regulating plant growth. The two approaches (gene 

complementation and RNAi-mediated gene silencing) were conducted for gene 

validation, but the lack of success of Agrobacterium-mediated sorghum transformation 

precluded the ability to confirm the identity of Dw2 as a member of the histone 

deacetylase gene family.  Nevertheless, the histone deacetylase gene that resides in the 

refined Dw2 trait locus represents a strong candidate for controlling dwarfism in 

sorghum, and further refinement of sorghum transformation will eventually permit a 

determination of the identity of the Dw2 gene. For sorghum to become a model genetic 

system used in identifying key agronomic genes, plant transformation must become 

routine for researchers even if transformation is limited to a few select sorghum 

genotypes. 
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