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ABSTRACT 

 

LncRNAs are a group of non-coding RNAs containing >200 nucleotides and these 

RNAs have no significant protein coding potential. In the past 10-15 years the role of 

lncRNAs in cancers have been demonstrated, however, their function in tumors and 

potential for drug targeting are not well defined. We studied two lncRNAs, HOXA 

transcript at the distal tip (HOTTIP) and metastasis associated lung adenocarcinoma 

transcript 1 (MALAT1) in pancreatic cancer using the in vitro cell lines and in vivo 

xenograft or transgenic mouse models. Our results demonstrated that both lncRNAs are 

pro-oncogenic in the pancreatic cancer, supported by the observation that knockdown of 

HOTTIP and MALAT1 decreased cell proliferation, migration/invasion and increased 

apoptosis. HOTTIP might exhibit some pro-oncogenic functions, via the regulation of 

HOXA gene clusters in a cis-regulating manner. On the other hand, MALAT1 regulate 

responses of pancreatic cancer cells in part via polycomb repressive complex 2 (PRC2) 

dependent and independent pathways. Our transcriptomic results support the important 

but distinct roles of HOTTIP and MALAT1 in pancreatic cancer and we also show that 

MALAT1 expression can be targeted by small molecule drugs. In the second part of this 

dissertation, we studied several microbiota-derived aryl hydrocarbon receptor (AhR) 

ligands. The AhR is a ligand-activated transcription factor with an evolving role in the 

normal physiological development and diseases. Gut microbiota metabolites are 

important for mediating communication between gut microflora and the host. It has 

recently been shown that the gut microbiota produces several metabolites that are AhR 
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ligands. Microbiota-derived tryptophan metabolites and 1,4-dihydroxy-2-napthoic acid 

(DHNA) and related compounds are reported to be AhR ligands as evidence by their 

induction of cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) and 

other AhR-responsive genes. We hypothesized the microbiota-derived AhR ligands are 

selective AhR modulators (sAhRMs) and their induction responses are compound, gene 

and cell context dependent. We have carried out extensive studies on tryptophan 

metabolites, DHNA and related compounds in both human and mouse colon cancer cell 

lines, and have observed that some of these compounds exhibited partial 

agonist/antagonist activities that are both gene and cell context specific.    
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1. INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Cancer review 

1.1.1 Cancer statistics 

Cancer is a major public health problem worldwide. According to the latest world cancer 

report, an estimated 14.1 million people were newly diagnosed with cancer and 8.2 

million people died from this disease in 2012. These estimates correspond to age-

standardized incidence and mortality rates of 182 and 102 per 100000, respectively. 

There were 32.6 million people diagnosed with cancer in the previous five years, and the 

predicted global burden is expected to be over 20 million new cancer cases by 2025, 

compare to an estimated 14.1 million new cases in 2012 (1).  

 

The most common cancers diagnosed in the world were lung cancer (13%), breast 

cancer (11.9%) and colorectal cancer (9.7%).  If divided by sex, among men, the most 

commonly diagnosed cancer was lung (16.7%), prostate (15%) and colorectal (10%) 

cancer, and among women, cancers of the breast (25.2%), colorectal (9.2%) and lung 

(8.7%) cancers were the most prevalent. The most common causes of cancer deaths were 

the cancer of the lung (19.4%), liver (9.1%) and stomach (8.8%). The cancer prevalence 

estimated for 2012 was 32.6 million in the previous 5 years. More than 60% of cancer 

incidence occurred in developing countries in Africa, Asia and Central and South 

America, and these regions also accounted for 70% of cancer deaths worldwide (1).  
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The American Cancer Society updates cancer statistics in the United States (US) every 

year (2). Cancer is the second most common cause of death in the US, following after 

heart disease and in 2016, an estimated 1,685,210 new cases of cancer will be diagnosed 

and there will be 595,690 estimated deaths. The most abundant tumor types among new 

cases are cancers of the prostate (21%), lung (14%) and colon (8%) in men and breast 

(29%), lung (13%) and colon (8%) in women. The most common causes of cancer 

deaths in the US are cancers of the lung (27%), prostate (8%) and colon (8%) in men, 

and lung (26%), breast (14%) and colon (8%) in women. Overall, the cancer mortality 

rate in this country has declined due to early detection and improved therapy, however, 

the rates from some cancers such as pancreatic cancer remain the same or have even 

increased. The battle against cancer will last for a long time and more research and 

development is required to decrease incidence and improve treatment. 

  

1.1.2 Theory of carcinogenesis 

In 1971, President Nixon signed the National Cancer Act into law and declared the “war 

on cancer”.  More than 45 years have passed by and significant improvements in our 

knowledge on cancer have been achieved, however, the etiologies of this disease and 

identification of early biomarkers of disease have not kept pace. In this section, two 

different theories of carcinogenesis, namely the somatic mutation theory (SMT) and 

tissue organization field theory (TOFT) are discussed. The importance of theories of 

carcinogenesis is best supported by Einstein who once said, “It is the theory which 

decides what we can observe”.  
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The essence of SMT is that cancer originates from a single cell and progress with an 

accumulation of genomic somatic mutations (3). In 1914, Boveri published his 

monograph in Germany, and until 1929, when his monograph concerning the origin of 

malignant tumors, was translated, his theory of somatic mutations drew attention 

worldwide.  An oncogene is a gene whose mutation causes a gain of function leading to 

cancer and a tumor suppressor gene is the gene whose mutation causes a loss of function 

(4). The SMT theory have been supported by  the development of a genetic model for 

colorectal tumorigenesis and in this genetic model, it is proposed that different gene 

mutations drive the progression of colorectal tumorigenesis (5). This model has also 

been used to describe the stepwise development of other cancers (6-8). Later on, the 

driver mutations and passenger mutations were identified, and it was postulated that 

small numbers of driver mutations are key mutations leading to cancer and these mutated 

genes are oncogenes and tumor suppressor genes. The remaining mutations are 

passenger mutations that do not have a causal role in carcinogenesis (9). 

 

Hanahan et al summarized six hallmarks of cancer in 2000 (3) and ten years later two 

emerging hallmarks and two enabling characteristics were added, in order to rationalize 

the complexity of the pathogenesis of human cancer (Figure 1). Those hallmarks helped 

to rationalize the biological traits underlying different cancer types and these two 

publications have been among the most highly cited papers in the cancer research field.  
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Figure 1. Illustration of the hallmarks of cancer. *enabling characteristics. Modified 

from (10).    

 

 

 

1.1.2.1 Sustaining proliferative signaling  

Normal cells strictly control their proliferation by regulating the production and release 

of growth-promoting signals and the normal proliferation is essential for cell 

homeostasis and function. Cancer cells sustain the proliferative signaling via different 

approaches.  They can produce the growth factor by themselves and thereby stimulate 

proliferation by autocrine pathways. Stroma cells also provide difference growth factors 

for enhancing cancer cell growth (11,12). Cancer cells can either increase the expression 

of growth factor receptor on the cell surface or change the conformation of the receptor 
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to enhance growth factors binding which subsequently leads to uncontrolled growth. 

Cancer cells can also sustain proliferation signaling in a growth-factor independent 

pathway, such as activation of additional downstream pathways and disruption of 

negative feedback that attenuates proliferative signaling. For example, the B-RAF proto-

oncogene, serine/threonine kinase (BRAF) is an oncogenic serine/threonine kinase 

which is downstream of RAS-RAF pathway, and an activation mutation of B-RAF 

protein lead to constitutive activation of Raf-mitogen protein (MAP)-kinase pathway 

(13). Phosphatase and tensin homolog (PTEN) was identified as a negative regulator of 

the phosphoinositide 3-kinase (PI3K) pathway by degrading phosphatidylinositol (3,4,5) 

trisphosphate (PIP3). Therefore inactivation of PTEN could promotes PI3K signaling 

which accelerates cell growth (14). 

  

1.1.2.2 Evading growth suppressors 

In addition to sustaining the proliferative signal, cancer cells have evolved to evade 

growth suppressors, mainly through loss of function of tumor suppressor genes. P53 is a 

tumor suppressor and a well-known checkpoint inhibitor necessary for repairing DNA 

damage in the cells (15,16). Almost 40% of cancers possess p53 mutation (17). P53 

senses cellular stress, such as abnormal growth-promoting signals, genome damage such 

as double strand breaks and induces apoptosis or senescence which is necessary prior to 

DNA repair. In this way p53 functions as growth suppressors. Another well-known 

tumor suppressor gene is retinoblastoma (RB), which is a gate-keeper for cell cycle 

progression. RB protein binds and inactivated E2F transcription factors which promote 
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production of S stage cyclins and cyclin-dependent kinases, and inhibition by Rb blocks 

cells entering into the S phase and cell growth (18,19). Loss of function of RB is often 

observed in cancers and the inactivation of RB leads to cancer cells evading growth 

suppression by p53 (20). 

 

1.1.2.3 Resisting cell death 

This hallmark is complicated and controversial. There are several types of cells deaths 

including apoptosis, autophagy, mitotic catastrophe, necrosis, and senescence, which 

have been observed in different cancer types. Cancer death counters the uncontrolled cell 

proliferation of cancer cells, which prevents cancer progression. However, the functions 

of cell death in cancer are bidirectional and can either promote or inhibit cancer growth. 

  

1.1.2.3.1 Apoptosis 

Apoptosis is a natural barrier to cancer formation and is disabled in several cancers. 

Cancer cells have developed different strategies to evade apoptosis. P53, “the guardian 

of the genome” can induce apoptosis in cells with DNA damage by increasing 

expression of phorbol-12-myristate-13-acetate-induced protein 1 (Pmaip1 or also known 

as noxa) and bcl2 binding component 3 (BBC3 or known as Puma), which are pro-

apoptotic proteins involved in the apoptotic pathways (21). Inactivation of p53 results in 

cells that escape from apoptosis. Tumor cells can also prevent cell death by upregulating 

anti-apoptotic factors such as bcl2 and bcl2 like 1 (bcl2l1) also known as bcl-xl). The 

anti-apoptotic factors function by localizing pro-apoptotic proteins in the mitochondrial 
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membrane to inhibit disruption of membrane integrity. The disruption of mitochondrial 

integrity is essential for the release of cytochrome-c and other pro-apoptotic factors into 

the cytoplasm (22). On the other hand, there are some controversial discoveries by the 

pathologist suggesting that evading apoptosis not always be considered a hallmark since 

increased apoptosis is usually observed simultaneously in cancer lesions and increased 

apoptosis in breast cancer (23,24) is associated with a poor clinical outcome. In addition, 

overexpression of anti-apoptotic protein BCL2 is linked to the better overall survival of 

cancer patients, and conversely, caspase3 and other apoptosis-inducing proteins have 

been found to promote tumorigenesis (25). 

 

1.1.2.3.2 Autophagy  

Autophagy is a physiological reaction of the cell in response to cellular stress such as 

hypoxia and insufficient nutrition. During autophagy, cellular structures and organelles 

are broken down and degraded and the catabolic products are then used for biosynthesis 

and energy metabolism to support cellular needs during stressful conditions (26,27). 

Autophagy plays a role in both tumor cell growth and death. For example, autophagy 

suppresses tumor growth in the early stages of tumorigenesis whereas treatment with 

radiation therapy and cytotoxic drugs often induces autophagy, which can protect cancer 

cells, and thereby plays a role in radiation and drug resistance. In addition, tumor 

dormancy can be induced by autophagy, and the growth-arrested tumor can become 

functional upon more favorable and this results in tumor relapses (28-30).  
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1.1.2.3.3 Senescence 

Senescence was first described in 1961 as a state of cells that exit cell cycle and 

senescence is important not only for normal development but also tumorigenesis. 

Activation of senescence typically depends on the induction of P53 or RB pathways. 

Senescence also plays a dual role in tumorigenesis. Oncogene-induced senescence is a 

barrier for tumor progression (31), whereas the senescence-associated secretory 

phenotype (SASP),  the dark side of tumor progression, transforms senescent fibroblasts 

in the tumor microenvironment into pro-inflammatory cells capable of promoting tumor 

progression (32). 

 

1.1.2.3.4 Mitotic catastrophe 

Mitotic catastrophe is an intrinsic oncosuppressive mechanism, which can sense the 

mitotic failure, DNA damage, and cytokinesis failure and drive the defective cells into 

apoptosis or senescence. Therefore, failed mitotic catastrophe promotes the sustained 

proliferation of defective cells and promotes tumor cell growth (33). 

 

1.1.2.3.5 Necrosis  

Necrotic cell death releases pro-inflammatory signals to the surrounding environment 

and recruits inflammatory cells to eliminate necrotic debris. It has been shown that 

necrosis promotes tumor growth by releasing pro-survival inflammatory cells and pro-

proliferation regulatory factors, such as interleukin 1 alpha (IL1A). Dying cells also 

release a number of factors such as high mobility group B1 protein (HMGB1). HMGB1 
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which is a ligand for the receptor for advanced glycation end products (RAGE), and this 

can lead to increased cancer cell growth, motility, invasion, angiogenesis and metastasis 

(34-37). 

 

1.1.2.4 Enabling replicative immortality  

The unlimited replicative potential of cancer cells is associated with telomeres that are 

hexanucleotide repeats in tandem on the ends of every chromosome. After a limited 

number of cell divisions, normal cells undergo senescence and enter the quiescent state. 

Each cell division progressively erodes and shortens the telomeres on the chromosome. 

Complete loss of telomeres leaves the ends of chromosomes unprotected and predisposes 

the DNA to form end-to-end fusions with other chromosomes leading to genomic 

instability and cell death.  In contrast, cancer cells are immortalized by preventing the 

shortening of telomerase by upregulating telomerase (hTERT) enzyme. Cancer cells 

express high levels of telomerase adding telomere repeat segments to the ends of DNA 

after each replicative cycle, supporting the immortality of cancer cells (10,38). 

 

1.1.2.5 Inducing angiogenesis 

Angiogenesis is a term describing the alteration in blood vessel growth associated with 

tumors following hypoxic stress. The formation of blood vessel provides tumor cells 

with nutrients and oxygen and is crucial for tumor growth and progression. Folkman and 

coworkers observed that tumors without vasculature can only grow up to ~4mm, and 

once reaching that size, the nutrients and oxygen provided by the surrounding peripheral 
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blood vessels will not be sufficient to support further tumor growth (39). In cancer cells, 

the angiogenic switch is turned on and the balance of angiogenesis inducers and 

inhibitors shifts into the pro-angiogenesis status. Factors regulating angiogenesis can be 

stimulatory or inhibitory. For example, the overexpression of vascular endothelial 

growth factor (VEGF) and/or fibroblast growth factors (FGF) is observed in many 

cancers compared to normal tissues, whereas the angiogenic inhibitors such as 

thrombospondin-1 or interferon beta are decreased in cancer cells compared to normal 

cells (40,41). 

  

1.1.2.6 Activating invasion and metastasis  

The mortality of cancer patients is usually caused by the metastasis of the primary tumor 

into lymph nodes or other organs. This process is complex and includes activation of 

extracellular proteases and cell to cell adhesion molecules such as cadherins and 

integrins which allow cancer cells the potential to become invasive and metastasis. 

Epithelial-mesenchymal-transition (EMT) converts polarized, immotile epithelial cells to 

migratory mesenchymal cells and has been shown to promote cancer metastasis, drug 

resistance and increased tumor recurrency (42,43). There have been debates with regard 

to the necessity of EMT in metastasis after the appearance of  publications stating that 

EMT is not required for lung and pancreatic cancer metastasis (44,45) and the 

heterogeneity and plasticity of EMT should be taken into consideration (46,47). Cells 

undergoing EMT express low levels of epithelial genes (such as E-cadherin) and 

increased expression of mesenchymal genes (such as vimentin and N-cadherin). Loss of 
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E-cadherin is considered to be a hallmark of EMT (43,48). The crosstalk between the 

neoplastic cells and stromal cells is necessary for invasion and metastasis. Cancer cells 

release stimulatory signals to the surrounding tumor stroma and in response, the cancer-

associated fibroblast located in the stroma secrete chemokines such as C-C motif 

chemokine ligand 5 (CCL5) that stimulate invasive behavior in cancer cells (49,50). 

  

1.1.2.7 Reprogramming energy metabolism 

Besides the deregulated control of cell proliferation, adjustment of energy metabolism is 

also an enabling characteristic of the tumor. Warburg effect is considered as a metabolic 

hallmark for most cancer cells. It was observed that cancer cells convert excessive 

amounts of glucose into lactate even under the aerobic conditions. Although the 

efficiency of adenosine triphosphate (ATP) production by glycolysis is low compared to 

mitochondrial oxidative phosphorylation, cancer cells find ways to maximize energy 

generation, partially by increasing glucose transporters, which in turn upregulates 

glucose import into the cytoplasm (10,34-37). Oncogenes, such as RAS, MYC, and 

mutated tumor suppressors are closely associated with glycolytic fueling (51-53). In 

2016, Thompson and coworkers recently discussed six hallmarks of cancer-associated 

metabolic changes, namely, deregulated uptake of glucose and amino acids, use of 

opportunistic models of nutrient acquisition, use of glycolysis/ tricarboxylic acid (TCA) 

cycle intermediating biosynthesis and NADPH production, increased demand for 

nitrogen, alterations of metabolite-driven gene regulation, and metabolic interactions 
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with the microenvironment. While few tumors display all six hallmarks, most tumors 

display several of them (54). 

1.1.2.8 Evading the immune system 

The immune system is a natural barrier against tumorigenesis. Both innate and adaptive 

immune systems have a substantial role in tumor inhibition. The mice with combined 

deficiencies of natural killer (NK) cells and CD8+ cytotoxic T lymphocytes (CTLs), 

CD4+ Th1 helper T cells exhibit higher tumor incidence compared with mice devoid of 

T cells or NK cells individually (55,56). Colon and ovarian cancer patients with tumors 

heavily infiltrated with CTLs and NK cells exhibit better prognosis than patients 

expressing lower levels of these lymphocytes (57). 

1.1.2.9 Genome instability and mutation 

Genome instability and mutations are the enabling characteristics of cancer which help 

maintain the hallmarks of cancer. There is a proposed model indicating that genes 

driving cells proliferation induce DNA replication stress, which in turn generates 

genomic stability and selects cells for escape from apoptosis (58). Cancer cells also 

increase rates of mutation by increasing the sensitivity of cells to mutagenic agents, 

through breaking down one or more components of the machinery that maintains the 

genomic stability (10). 
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1.1.2.10 Tumor promoting inflammation  

Another enabling characteristic of cancer is inflammation, which plays a crucial role in 

promoting tumorigenesis (59). Inflammation supports the sustained proliferation of 

tumor cells by enriching the tumor microenvironment with growth factors. In addition, 

inflammation can provide tumor cells with proangiogenic factors and matrix 

metalloproteinases which facilitate EMT, tumor invasion and metastasis (60). Moreover, 

the activated inflammatory cells generate reactive oxygen species (ROS) and reactive 

nitrogen intermediates (RNI) that inducing mutations contributing to genome instability 

(61). 

 

In summary, 8 hallmarks and 2 enabling characteristics of cancers were discussed by 

Hanahan and Weinberg (10). Many studies have been carried and ongoing discover more 

hallmarks of cancer. West and the coworkers identified cancer system hallmarks, 

namely, network entropy is increased in cancer compared to the normal phenotype and 

differentiated network entropy is anti-correlated with differential gene expression. In 

addition, cancer cell dormancy is also proposed to be another hallmark. The ability of 

cancer cells to become quiescent may be critical for evolving malignancies with 

implications for understanding cancer initiation, progression and treatment resistance. 

Cancer cell dormancy is a dynamic cells state conferring a fitness advantage to an 

evolving malignancy under stress (62). Alternative splicing changes proteins encoded by 

mRNAs and these proteins may have distinct properties. Over 94% of human genes are 

alternatively spliced (63) and alternative splicing emerges as an essential element in 
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gene regulation in almost every cellular functions and aberrant alternative splicing is 

increasingly linked to cancer. The adenomatous polyposis coli (APC) gene is critical for 

the change of epithelium to the hyperplastic epithelium, which is involved in the 

regulation of cell cycle, apoptosis, cell adhesion and cytoskeletal architecture (64), and 

several alternative splice isoforms of APC have been discovered. One of the APC 

transcripts contains an additional exon termed exon 1A and this exon 1A which 

expressed at 3.5 fold higher levels in colon cancer compared to normal mucosa. The 

inclusion of exon 1A results in less production of protein because exon 1A leads to an 

extra stop codon in exon 2 (65).  

 

DNA mutations, altered epigenetic profiles and deregulated signaling pathways can be 

interwoven among different hallmarks. For example, telomerase is primarily discussed 

under the hallmark “unlimited replication capacity”. It is proposed that telomerase is the 

central regulator of all the hallmarks of cancer (38). The concept of hallmarks is a good 

reference for organizing the vast array of cancer data. However, it is important to 

remember that cancer is a dynamic evolving system and these proposed hallmarks are 

not applicable to all cancer cells (66).  

 

SMT has been the dominant view in cancer research field, however, with the emergence 

of the “omics” era, SMT is facing a crisis, and many scientists have questioned that 

adequacy of SMT and has been highlighted by Baker and coworkers (67), and these 

include non-genotoxic-dependent carcinogenesis and the lack of mutations in some 
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tumors. Some scientists have suggested that TOFT provides a better explanation of these 

observations. The TOFT suggests that the hallmarks of cancers are primarily due to 

altered tissue organization (68). Tumors are more complex and less organized than 

normal tissues and TOFT is centered on the tissue level of biological organization. The 

default state of the cell is proliferation and motility, and the target of carcinogens is 

tissue instead of individual genes and thereby carcinogens disrupt the reciprocal 

interactions among cells and tissues. The TOFT focuses on the reciprocal relations 

among cells and tissues and the key point of TOFT is that tissue/cell becomes 

uncontrolled. The view of  TOFT is that mutations are not necessary for carcinogenesis 

and gene instabilities causing mutations are the byproducts of carcinogenesis and cancer 

can arise in tissues not exposed to carcinogens (67). In contrast, in the SMT model, the 

default state of the cell is quiescence and abnormal proliferation is promoted by 

inactivation of tumor suppressor genes and/or activation of oncogenes. Another premise 

is that cells are in a quiescent state, and motility should also be actively triggered (3). 

Figure 2 illustrates the difference between SMT and TOFT. In the SMT, carcinogens 

lead to mutations in the epithelial cells and this subsequently results in the excessive 

proliferation of epithelial cells. Factors secreted by the growing tumor will alter the 

stroma and altered stroma will, in turn, promote and support tumor progression. On the 

other hand, the TOFT model states that carcinogens will hit stroma and lead to altered 

cell-ECM and cell-cell interactions in the epithelium and in the end result in tumor 

formation in the epithelium (69). 
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Figure 2. Illustrations of SMT and TOFT models. A) In the SMT, carcinogens lead to 

the mutation of epithelial cells. The epithelial cells with advantageous mutations 

propagate and form tumor. The tumor secretes paracrine factors leading to the alteration 

of stroma and the altered stroma in turn support tumor progression. B) In the TOFT 

model, carcinogens affect the stroma and lead to the altered cell-ECM and cell-cell 

interactions in the epithelium, resulting in tumor formation in the epithelium. Modified 

from (69). 

 

 

 

It has been debated whether SMT and TOFT are compatible and if the two theories 

should be combined (68,70-73). SMT is still the dominant cancer theory and hallmarks 

of cancer have been used as a basis for developing new therapies for cancer treatment 

and these include genes /pathways as therapeutic targets. However, the minimal overall 

benefits of targeted therapies suggest that current strategies need to be improved. The 

increasing observations and accumulation of omics data seriously question the validity 

of SMT indicating that SMT cannot be used to explain everything about carcinogenesis, 

but this does not mean that SMT should be abandoned. 
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Both SMT and TOFT are theories, not facts, and the debate and discussion of the two 

theories will be a motivation for further exploration of the origins of cancer with the 

ultimate goal of curing this disease. The war on cancer is still on.  

 

1.1.3 Pancreatic cancer 

In the ten leading cancer types, pancreatic cancer is the fourth-leading cause of death in 

the US for both males and females. Pancreatic cancer is also the 8th among 10 cancer 

types for the estimated development of new cancer cases. It is estimated that 53,070 new 

cases (27,670 men and 25,400 women) will be diagnosed with pancreatic cancer and 

41,780 people (21,450 men and 20,330 women) will die of this disease in 2016 (2). 

Pancreatic cancer is considered as a disease of the elderly since very few cases are 

diagnosed before the age of 40 and the median age of diagnosis is between 60-75 year of 

age (74).  

 

The pancreas, a gland situated behind the stomach and in front of the spine, consists of 

endocrine and exocrine compartments. The endocrine pancreas makes and secretes 

insulin, glucagon, somatostatin and pancreatic polypeptide into the blood, and this 

portion of pancreas accounts for 1-2% of the pancreatic mass. The exocrine pancreas, 

comprising more than 95% of the pancreas, includes acinar and duct cells with 

associated connective tissue, vessels, and nerves. The exocrine pancreas primarily makes 

and secretes digestive enzymes (75).  
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Pancreatic adenocarcinoma (PDAC) accounts for 90% of pancreatic cancer with a five-

year survival rate of 5%. Pancreatic neuroendocrine tumors are less common (1-2%) 

with a much improved 5-year survival rate of 65%. Other cancer types include cystic 

neoplasms (intraductal papillary, mucinous neoplasms, mucinous cystic neoplasms, 

serous cystadenoma, solid-pseudopapillary neoplasms) and acinar carcinoma (74). 

 

1.1.3.1 Pancreatic cancer progression model and stages classification 

A proposed model for pancreatic tumor formation is based on pathology and altered 

gene expression data derived from analysis of human pancreatic tumor specimens 

(76,77). The pervasive lesions, termed as pancreatic intraepithelial neoplastic lesions 

(PanINs) progress through different stages (from PanIN1 to PanIN2 to PanIN3) and the 

difference stages of PanINs harbor distinct nuclear and structural differences (76). The 

normal ductal pancreatic epithelium is a single layer of low columnar epithelium with 

amphophilic cytoplasm, and the characteristics of progressing PanINs are depicted in 

Table 1. Accompanied by the differences in histology changes, the underlying genetic 

changes have also been investigated (Figure 3). In the proposed genetic progression 

model, KRAS mutations are followed by subsequent inactivation of the tumor 

suppressor gene cyclin-dependent kinase inhibitor 2A (CDKN2A) (or INK4A/ARF, 

which encodes p14/Arf and p16/Ink4A), followed by inactivation of p53 (TP53) and 

SMAD4 (78). 
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Table 1. Different stages of PanIN development. 

 

Stages Histology characteristics 

PanIN-1A Columnar, mucin-producing ductal epithelium, elongated 

PanIN-1B Development of papillary architecture 

PanIN-2 Nuclear atypia: nuclear enlargement, partially loss of polarity, crowding 

PanIN-3 Marked cytologic atypia, complete loss of polarity 

 

 

 

The mutant KRAS oncogene is expressed in 90% of PDAC (79,80) and KRAS 

mutations are considered an early event in the progression from normal pancreatic cells 

to invasive carcinoma (81,82) and the mutation is found in 36, 44.5 and 87% of PanIN-

1a,1b, and 2-3 lesions, respectively (81). KRAS is located on chromosome 12 and 

encodes a small GTPase, which can promote cell growth and proliferation. The most 

common KRAS mutation is at codon12 and its mutation affects the GTPase activity by 

blocking it from going into the inactive state. The constitutively activated KRAS 

interacts to GTP and produces uncontrolled growth signals and continuous KRAS 

signaling is essential for tumor initiation, progression and maintenance (83,84). 

 

Another frequently mutated gene is p16/CDKN2A, which is mutated in 82% of PDAC 

(85,86) and the mutation usually, occurs in the early or intermediate grade PanIN.  

P16/CDKN2A is a tumor suppressor gene that prevents cell progression through G1 cell 

cycle checkpoint by preventing phosphorylation of the retinoblastoma protein, which in 

turn affects the downstream inhibition of E2F transcription factor-mediated gene 

expression (87). 

 

 



 

20 

 

 
 

Figure 3. The schematic model of pancreatic tumor progression. 

 

 

 

P53 is the most common somatic mutation found consistently in various human cancers 

and p53 mutations are detected in over 50% of PDACs. P53 modulates the cellular 

response to cytotoxic stress, DNA damage, and/or hypoxia via either cell cycle arrest or 

induction of apoptosis. In the pancreatic cancer progression model, p53 occurs at the 

PanIN3 stage and loss of P53 has been associated with abnormal mitoses and severe 

nuclear abnormalities (88). P53 is considered as a progression factor rather than an 

inductive agent. SMAD4 is another tumor suppressor inactivated in more than 50% of 

pancreatic cancer cases (89) and is associated with poor diagnosis (90,91). SMAD4 is 

downstream of transforming growth factor β (TGFβ) superfamily-induced signals and is 

important for gene transcription and growth arrest.  It was reported that loss of SMAD4 

could accelerate the process of the activated KRAS-induced neoplasms into malignancy 

(92).  

 

 

 



 

21 

 

Table 2. Categories of TNM system (93). 

 

T  N  M 

TX The main tumor cannot be 

assessed 

NX The regional 

lymph nodes 

cannot be 

assessed 

M0 The tumor has 

not spread to 

other parts of the 

body 

T0 No evidence of a primary 

tumor 

N0 The tumor cannot 

be found in the 

nearby lymph 

nodes 

M1 The tumor has 

spread to other 

parts of the body 

Tis Carcinoma in situ N1 Cancer has 

spread to nearby 

lymph nodes 

  

T1 The tumor growth is limited in 

the pancreas and the diameter 

is 2 cm or less  

    

T2 The tumor growth is limited in 

the pancreas and the diameter 

is more than 2 cm  

    

T3 The tumor has grown beyond 

the pancreas but not spread into 

major blood vessels and nerves 

    

T4 The tumor has grown beyond 

the pancreas and spread into 

major blood vessels and nerves 

    

 

 

 

Defining the stages of pancreatic cancer is important for choosing treatment options and 

predicting the efficacy of treatment. The most often used staging system for pancreatic 

cancer is the American Joint Committee on Cancer (AJCC) TNM system, where T 

represents the size of the primary tumor and whether it has grown beyond the pancreas 

and spread into other sites of the body. N indicates the spread of tumor to nearby lymph 

nodes and M delineates the metastasis of tumor to other parts of the body. Table 2 

provides the different categories of T, N, and M respectively. The higher the number, the 
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more severe the condition is. Based on the different categories of individual T, N, M, the 

stages of pancreatic cancer can be determined (Table 3) (93). Besides the TNM system, 

the clinicians often use a simpler staging system, which divides cancers into resectable, 

borderline resectable and unresectable. Resectable tumors often include stage IA, IB and 

IIA, and the entire tumor can be surgically removed. The borderline resectable tumor is 

the one which has just reached the blood vessels and there is a possibility that the entire 

tumor can be removed. Lastly, the unresectable tumors are the ones either locally 

advanced or metastatic, and this category often includes the stage IIB and most III in the 

TNM system). At this stage, the entire tumor is unlikely to be removed by surgery.  

Understanding these two staging systems is important to determine the most suitable 

treatment for pancreatic cancer patients. 

 

 

 

Table 3. Stages of pancreatic cancer using TNM system (93). 

 

Stage Stage grouping Stage description 

0 Tis, N0, M0 The tumor is limited to the top layers of cells in the 

pancreas and has not spread beyond the pancreas. 

IA T1, N0, M0 The tumor is limited in the pancreas and is 2cm across or 

less. The tumor has not spread beyond the pancreas. 

IB T2, N0, M0 The tumor is limited in the pancreas with size larger than 2 

cm across. The tumor has not spread beyond the pancreas. 

IIA T3, N0, M0 The tumor has grown beyond the pancreas but not into 

major blood vessels or nerves. The tumor has spread to 

nearby lymph nodes. 

IIB T1-T3, N1, M0 The tumor has spread to nearby lymph nodes and is either 

confined to the pancreas or growing outside the pancreas. 

III T4, Any N, M0 The tumor has invaded into the major blood vessels or 

nerves but has not metastasized. 

IV Any T, Any N, M1 The tumor has spread to distant organs.  
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1.1.3.2 Experimental models for studying pancreatic cancer 

Research on cancer extensively utilizes different cell culture and in vivo models and for 

pancreatic cancer, this includes xenograft & orthotopic immunodeficient mice and 

several transgenic mouse models.  

 

Cancer cell lines and primary cells in culture are excellent models for mechanistic 

studies (94). The phenotype and genotype of different pancreatic cancer cell lines have 

been thoroughly characterized. There are studies which linked the differential expression 

of specific proteins in the cell lines to the tumor growth, migration and invasion (95,96), 

as well as drug resistance (97). For example, CXCR4 expression was evaluated in 11 

different PDAC cell lines and six of 11 cell lines expressed CXCR4 and among them, 

three cell lines (Aspc1, Capan1, and Hs766T) had high expression of CXCR4 

transcripts. They discovered that CXCR4 expression was higher in cell lines driven from 

metastatic lesions compared to those derived from primary tumors. They concluded that 

CXCR4 receptor is frequently expressed in metastatic pancreatic tumor cells, and 

promote survival and migration/invasion (96). However, there are limitations of using 

cell line for study pancreatic cancer. The long-term culturing of cell lines in the 

laboratory may cause cross-contamination, mycoplasma growth, and outgrowth of 

subtypes, and this may help explain the discrepancy of reports from different labs using 

the same cell lines. Primary cell cultures are also used but not as frequently as cell lines 

because of the short maintenance of primary cells in vitro. Primary cells maintain many 

important markers and functions close to in vivo when compared to cell lines (98,99). 
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Organoids culture is the advanced form of primary cell culture. The organoids are 

entirely made up of pancreatic ductal cells, without the contamination of surrounding 

cell types. The organoids grow within special medium and can be transplanted 

subsequently into mice, where they fully resemble pancreatic cancer. The organoids 

emerge as a good model for studying early stages of tumor progression. The researchers 

can grow cells from normal pancreas and diseased pancreatic tissues in vitro. By 

comparing the organoids from normal pancreas and pancreatic cancers, we gain more 

insight into the molecular pathways correlating with disease progression. In addition, 

organoids can be generated rapidly from tiny needle biopsies from pancreatic cancer 

patients and those patient-derived organoids will be a good platform to investigated new 

therapeutic regimens (100). Xenograft mouse models include heterotopic and orthotopic 

xenograft models (101). Studies with subcutaneous heterotopic mouse models can be 

readily carried out and are low cost, however, the results of various therapeutic regimens 

in the mouse model may not necessarily predict effects on human patients. For example,  

9-AC is drug showing curative potential in human colon cancer xenografts, and 

subsequently in other tumor types (102-104), however, 9-AC only showed a modest 

effect in ovarian cancer and malignant lymphoma, and was not active against lung 

cancer or colon cancer in human trials (105). Orthotopic xenograft mouse models inject 

or implant human cancer cell lines directly into the same organ from which the tumor 

originated. Thus the orthotopic xenograft models may closely resemble the human 

patient’s tumors, however, the immunodeficient mouse models of orthotopic 

implantation do not completely mimic the cancer patient due to differences in the mouse 
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vs human tumor microenvironment, which is an important factor in tumor progression 

and metastasis. Tumor microenvironment or stroma consists of extracellular matrix 

components, cancer-associated fibroblast, vascular and immune cells. Stroma supports 

the tumor growth and promotes metastasis and can also serve as a barrier against drug 

delivery (106). The lack of stroma in the orthotopic mouse model somewhat distracts 

from the relevance of this model for mechanistic and drug efficacy studies. 

  

1.1.3.2.1 Genetic modified mouse models for pancreatic cancer 

Genetically modified mouse models (GEMMs) have been widely used for studies 

various cancers because of the high degree conservation in genes between the mouse and 

human.  In addition, the mouse genome has been fully sequenced and the genome is 

relative easy to be manipulated. Mouse models can help us understand the genetic 

alterations in cancer cells behave during tumor formation and progression. Moreover, 

understanding the interactions of environmental factors with the genome, and finally the 

study of GEMMs can help develop strategies for detecting cancers at early stages and 

thereby improve the outcomes of various therapies (107).  

 

The first GEMMs for cancer were generated by overexpressing viral and cellular 

oncogenes in specific tissues. The first GEMM for breast cancer is generated by 

replacing large portions of  the Myc gene promoter with a hormonally inducible mouse 

mammary tumor virus promoter which leads to mammary tumor formation in the 

pregnant mice (108). Another GEMM generated in the same year using plasmids 
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containing the SV40 early region genes and a metallothionein fusion gene which were 

injected into mouse eggs, and a high percentage of the offsprings developed the brain 

tumors (109). An autosomal dominant mutation, multiple intestinal neoplasia (Min), is a 

nonsense mutation in the murine Apc gene. The C57BL/6L Apc min strain is a widely 

used mouse model for spontaneous intestinal adenomas. C57BL/6L Apc min 

heterozygous mice fed a 15% fat diet generally develop more than 30 adenomas 

throughout the small and large intestinal tract and subsequently die of anemia or 

obstruction at approximately four months of age (110). The transgenic adenocarcinoma 

of the mouse prostate (TRAMP) model is widely used mouse model for studying 

prostate cancer and Male TRAMP mouse spontaneously develop prostate cancer after 

the puberty. In TRAMP mice the expression of oncoprotein, SV40T antigen (TAg) is 

transcriptionally controlled by the rat probasin promoter and the specific probasin 

promoter ensures the TAg is only expressed in prostate epithelial cells (111,112). 

 

Conditional gene expression in the mouse allows for the expression of a gene in a time 

and space-dependent manner and the most common strategy used is the Cre-loxP 

system. Cre is a recombinase mediating DNA recombination between two loxP sites and 

its expression can be driven by promoter of genes that express in certain types of cells. 

The loxP sequences are introduced into the specific gene locus in the mouse. The loxP 

mice can be crossed with transgenic mice expressing Cre recombinase to generate tissue-

specific conditional knockout mice. One advantage of the Cre-loxP mouse model is to 

prevent the embryo lethality induced by total knockout or knockdown a specific gene in 
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all tissues. For example, Brca1 knockout (KO) mice die during embryonic development, 

however when Brca1 is conditionally knocked out only in mammary gland epithelial 

cells, they are viable but develop mammary tumors (113). The Cre-loxP system can also 

be used to conditional activate an oncogene by using lox-stop-lox sequence. For 

example, when the loxP-stop-loxP-krasG12D is introduced into the endogenous kras 

locus, oncogenic kras only expressed upon the Cre-mediated removal of STOP sequence 

(107,114).  

 

Table 4 summarizes the current mouse models for PDAC and those models have been 

widely used in the study of pancreatic cancers. Active mutated KRAS is detected in over 

90% of PDAC and early research on generating PDAC mouse models focused on the 

manipulation of KRAS (115). The first model faithfully reproducing PDAC observed in 

humans was developed in 2003, and expresses KRASG12D which is activated by the 

Pdx1-Cre or Pft1a/P48-Cre (116). Pdx1 is homeodomain protein and both exocrine and 

endocrine cells of pancreas develop from Pdx1 expressing progenitor cells and the 

PDX1 expression persists postnatally in the exocrine component of the pancreas (117). 

PFT1A/P48 is expressed later than PDX1 and is essential to commit cells to pancreatic 

fate (118). The Pdx1-Cre; LSL-KRASG12D and Ptf1a-Cre; LSL-KRASG12D mice 

develop the PanIN lesions that are indistinguishable from those in human patients (116). 

Addition mutations in tumor suppressors can be applied to accelerate the progression of 

those PanIN lesions to invasive PDAC. P53 knockout mice  are viable indicating that 

P53 is dispensable for mouse embryonic development (119). The LSL-KRASG12D 
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mice develop invasive PDAC after 35-70 weeks, and when crossed with homozygous 

p53 knockout alleles, the mice develop PDAC between 11 and 25 weeks of age (median 

survival 15 weeks), and when crossed with heterozygous p53 knockout alleles, the mice 

develop PDAC more rapidly with a median survival of 7.9 weeks (83). In addition to 

P53 knockout mouse models, the knockin mouse models of p53 R172H and R270H have 

been generated by different groups. There is evidence showing that accumulation of P53 

mutants R172H and R270H increases the incidence of metastasis of osteosarcomas and 

epithelial carcinomas (120,121), whereas p53 knockout mice rarely develop metastases. 

For example, the cooperation of P53R172H and KRASG12D promotes chromosomal 

instability and induces widely metastatic PDAC in mice (122).  

 

There are also other mouse models generated on the basis of the KRAS derived mouse 

model. A novel immunocompetent mouse model with robust stroma has been generated 

to serve as a valuable tool for preclinical evaluation of new therapies (123). This mouse 

model recapitulates the tumor stroma and immune microenvironment, moreover, a 

bioluminescent mouse model can be used to monitor the proliferation of early stages of 

pancreatic cancer. The MITO-Luc mouse expresses luciferase in active proliferating 

cells and proliferation events can be visualized non-invasively in mice by 

bioluminescence imaging. The MITO-Luc mouse crossed with Pdx1-Cre; LSL-

KRASG12D (KC) and Pdx1-Cre; LSL-KRASG12D, TRP53R172H/+ (KPC). The 

results obtained with these mice show that abnormal proliferation events take place in 

the early stages of pancreatic carcinogenesis prior to tumor formation (124). 
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Table 4. Genetic engineered models for pancreatic cancer. 

 

Mouse model Survival (median) References 

KRasLSLG12D/+; Ink4a/Arflox/lox; Pdx1-Cre 2 months (125) 

KRasLSLG12D/+; Ink4a/Arf-/-; Pdx1-Cre 18.3 weeks (126) 

KRasLSLG12D/+; Trp53lox/lox; Pdx1-Cre 6.2 weeks (126) 

KRasLSLG12D/+; Ink4a/Arf-/-; Trp53lox/lox; Pdx1-Cre 7.2 weeks (126) 

KRasLSLG12D/+; Trp53R172H/+; Pdx1-Cre 5 months (122) 

KRasLSLG12D/+; Smad4lox/lox; Pdx1-Cre 13.1 weeks (127,128) 

KRasLSLG12D/+; Ink4a/Arflox/lox; Smad4lox/lox; Pdx1-Cre 7.4 weeks (127) 

KRasLSLG12D/+; Ink4a/Arflox/lox; Smad4lox/lox; Ptf1a-Cre 8.8 weeks (127) 

KRasLSLG12D/+; Tgfbr2lox/lox; Ptf1a-Cre 59 days (129) 

KRasLSLG12V/+; Elastase-tTA/tetO-Cre >12m (130) 

KRasLSLG12V/+; Trp53+/-; Elastase-tTA/tetO-Cre 6m (130) 

KRasLSLG12D/+; Elastase-TGFa; Ptf1a-Cre 7m (131) 

KRasLSLG12D/+; Smad4lox/lox; Ptf1a-Cre 15.7 weeks (92,127) 

KRasLSLG12D/+; Trp53R270H/+; Pdx1-Cre 168 days (132) 

KRasLSLG12D/+; Trp53R270H/+; Brca2Tr/+; Pdx1-Cre 143 days (132) 

KRasLSLG12D/+; Trp53R270H/+; Brca2Tr/lox; Pdx1-Cre 84 days (132) 

KRasLSLG12D/+; Pdx1-Cre NA (132) 

KRasLSLG12D/+; Brca2Tr/+; Pdx1-Cre NA (132) 

KRasLSLG12D/+; Brca2Tr/lox; Pdx1-Cre NA (132) 

KRasLSLG12D/+; Brca2lox/lox; Pdx1-Cre 300 days (133) 

Lkb1lox/lox; Pdx1-Cre 68 days (134) 

KRasLSLG12D/+; Lkb1lox/+; Pdx1-Cre 141 days (134) 

KRasLSLG12D/+; p21+/-; Pdx1-Cre 75 days (134) 

KRasLSLG12D/+; Notch1lox/lox; Ptf1a-Cre 336 days (135) 

KRasLSLG12D/+; Notch2lox/lox; Ptf1a-Cre 521 days (135) 

KRasLSLG12V/+; Trp53lox/lox; Elastase-tTA/tetO-Cre NA (136) 

KRasLSLG12V/+; Ink4a/Arflox/lox; Elastase-tTA/tetO-Cre ~8m (136) 

KRasLSLG12D/+; Usp9xlox/+; Pdx1-Cre NA (137) 

KRasLSLG12D/+; Trp53lox/lox; Brca1lox/lox; Pdx1-Cre 40 days (138) 

KRasLSLG12D/+; Rblox/lox; Pdx1-Cre 10 weeks (139) 

KRasLSLG12D/+; Ptf1a-Cre NA (116) 

KRasLSLG12D/+; MUC1.Tg; Ptf1a-Cre NA (140) 

iKRasLSLG12D/+; Trp53lox/+; Ptf1a-Cre 15 weeks (83) 

iKRasLSLG12D/+; Trp53lox/lox; Ptf1a-Cre 7.9 weeks (83) 
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1.1.3.3 Biomarkers for pancreatic cancer 

Most pancreatic cancers (96%) originate in the exocrine cells with no obvious signs of 

tumor initiation and this makes it difficult for early detection of this disease.  

Identification of early biomarker that will predict future cancers will be invaluable for 

the early diagnosis, prognosis, and development of effect therapies (141,142). Because 

of the asymptomatic nature of pancreatic caners in the early stages, less than 20% of 

PDAC patients are diagnosed with localized resectable cancer that is amenable to 

therapy and surgical resection. 

 

A significant amount of research on identification of non-invasive and highly sensitive 

and specific biomarkers in blood, urine, stool, saliva or pancreatic juice has been carried 

out. Some potential biomarkers include altered gene, protein expression, and DNA 

methylation patterns. Carbohydrate antigen 19-9 (CA19-9) is a well-established FDA-

approved biomarkers and early detection of CA19-9 is a prognostic marker for survival 

after resection surgery (143,144). However, CA19-9 is not a particularly sensitive 

biomarker for diagnosis of early pancreatic cancer (145), and one limitation of CA19-9 

is that it may be elevated in nonmalignant conditions such as pancreatitis and acute 

cholangitis. Christer and coworker identified a 25-serum biomarker signature, 

composing of different cytokines and complement proteins (C1, C3, C5, CD40, eotaxin, 

GM-CSF, IgM, IL-11, IL-12, IL-16, IL-1a, 1L-1ra, IL-2, IL-3, IL-4, IL-7, Integrin a-10, 

MCP-1, MCP-3, Mucin-1, properdin, TGFB1 and TNF-A, TNF-B, and VEGF). They 

screened 148 patients with pancreatic cancer, chronic pancreatitis, autoimmune 
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pancreatitis (AIP) and healthy people. Using this 25-serum biomarker, they can 

differentiate pancreatic cancer patients from people who are healthy or have benign 

pancreatic diseases with a high diagnostic potential (AUC of 0.88)(146). Victoria and 

coworkers have also identified a unique panel of cytokines that can be used along with 

CA19-9 to enhance the ability to distinguish between pancreatic cancer and benign 

pancreatic disease (147). 

 

Non-coding RNAs (ncRNAs) have been shown to play a role in pancreatic cancer 

progression and abnormal level of ncRNAs in serum have been observed in PC patients 

(148,149). For example, salivary miR-3679-5p and miR-940 are reliable biomarkers for 

distinguishing resectable pancreatic cancer patients from health control and patients with 

benign pancreatic diseases with sensitivity and specificity of 70% (150). Long 

noncoding RNAs also have the potential to be non-invasive biomarkers. For example, 

the expression of HOTTIP-005 and RP11-567G11 and their fragments in the plasma is 

significantly higher in patients with PC compared to healthy people (p<0.0001) (151). 

  

Pancreatic cancer often metastasizes to liver, lung and skeletal system, indicating that 

pancreatic tumor cells are able to circulate to distant organs. Circulating tumors cells 

(CTCs) are cells that detached from the original tumor site and enter the blood 

circulation either through passive shedding of tumor cells (152) or active transport 

involving the epithelial-to-mesenchymal transition (153). There is evidence that the 

presence of CTCs correlates with a poor survival rate in pancreatic cancer patients 
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(154,155). In a study in Tokyo, the median survival times (MSTs) of CTC-positive 

patients were 110.5 days compare to 375.8 days for the CTC-negative patients 

(p<0.001), and when they limited the analysis only for the stage-IVb patients, the MSTs 

of the CTC-positive and negative patients were 52.5 and 308.3 days (p<0.01), 

respectively (155). 

  

Changes in epigenetics can also be used as a biomarker for detecting pancreatic cancer.  

Many studies suggest that cancer-specific DNA methylation patterns can be detected in 

circulating tumor cells in body fluids and biopsies or in free-floating DNA (156,157).  

Joko et al showed a high frequency (97%) of methylation of BNC1 and ADAMTS1 in 

CTCs from patients with invasive pancreatic cancers, and the methylation on beads 

(MOB) technology can be used with serum from pancreatic cancer patients to detect 

methylation changes with high sensitivity and specificity. Kiesiel and coworkers 

examined six methylation biomarkers and KRAS mutation in the pancreatic juice from 

61 PC patients, 22 chronic pancreatitis patients, and 19 healthy people. CD1D is the 

most discriminant marker for detection of the PC versus normal pancreas or chronic 

pancreatitis (AUC value for PC compared to the normal pancreas or chronic pancreatitis 

is 0.92), suggesting that methylated CD1D is a sensitive and specific biomarker for PC 

(158). 

 

Exosomes are extracellular vesicles produced during endosomes formation and are 

sources of circulating DNA (159). Glypican-1 (GPC1), a membrane-anchored protein, is 
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overexpressed in a variety type of cancers such as glioma, breast and pancreatic cancer 

(160-162). Melo and the coworkers isolated the exosomes from the serum of PC patients 

and healthy controls. The levels of GPC1 positive exosomes in PC patients are 

significantly higher that levels healthy patients and those with benign pancreatic disease. 

GPC1 positive exosomes showed 100% sensitivity and specificity in each stage of PC 

(Carcinoma in situ, stage I and stages II-IV). In addition, GPC1 positive exosomes can 

also predict inform the metastatic tumor burden of PC patients. An average of 58.5% of 

GPC1 positive exosomes were observed in the PC patients with distant metastasis, and 

this was significantly higher in patients with restricted metastasis in lymph nodes 

(~50.5%) and with no metastases (~39.9%) (162).  

 

Biomarkers can also help to predict the optimal therapy for PC patients. Actinin 4 

(ACTN4) is an actin-binding protein, closely associated with cancer invasion and 

metastasis (163) and is overexpressed in pancreatic cancer patients (164). Clinical trials 

have compared chemotherapy alone and chemoradiotherapy (CRT) for treating locally 

advanced pancreatic cancer (LAPC) treatment and the increase in ACTN4 copy number 

can be used as a biomarker for CRT for treating LAPC. Patients with an increased copy 

number of ACTN4 had a worse prognosis of overall survival than patients with a lower 

(normal) copy number (165). Another example is that patients with advanced pancreatic 

cancer exhibiting a normal baseline of serum albumin (≥ 3.4 g/dL) have increased 

benefit from treatment with bevacizumab compared to those with decreased levels of 

serum albumin (< 3.4 g/dL) (166). Biomarkers can also be used for evaluating the 
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therapeutic efficacy of drugs, for examples, the HER3 expression is a predictive 

biomarker for pertuzumab efficacy in HER3-low expressing pancreatic cancer (167). 

Another challenge is to identify biomarkers in high-risk patients. PC-594, a novel 

circulating 36-carbon long-chain polyunsaturated fatty acid, is significantly reduced in 

the serum of pancreatic cancer patients at different stages (168,169). Because of the lack 

of stage effect, it is possible that the PC-594 levels may be decreased prior to the 

development of PC and it was concluded that decreased PC-594 may be a significant 

prognostic marker for PC (169). 

  

Biomarkers are continually being identified, however, future studies are needed to 

validate whether newly discovered biomarkers can be used for early detection of 

pancreatic cancer. It is likely that a combination of different biomarkers may be a useful 

approach for increasing the sensitivity and specific of biomarkers for PC. Using the 

combination of MMP7 and CA19-9 expression in the plasma of 92 PC patients and 31 

patients with chronic pancreatitis gave a predictive value of 100% on discriminating 

between patients with carcinoma (high in MMP7 and CA19-9) and those with benign 

pancreatic disease (low in MMP7 and CA19-9) (170). 

 

As discussed above, current research has been successful for identifying pancreatic 

cancer biomarkers, but there is still a lack of validation for the expression pattern of 

genes/proteins biomarkers can be used for designing clinical trials. The combination of 

newly discovered biomarkers along with CA19-9 has shown some success in increasing 
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sensitivity and specificity, but this combination also required validation with improved 

technology and deeper understanding of the molecular mechanisms of pancreatic cancer 

development.  

 

1.1.3.4 Therapy for pancreatic cancer 

Cancer therapies have evolved and improved and this is due, in part to progress in 

understanding the biology of this complex disease. There are different types of therapy 

for treating pancreatic cancer, including surgical management, chemotherapy, radiation 

therapy and targeted therapies. The types of treatment used for treating this disease will 

depend on the stage, critical gene biomarkers, and tumor classification. However, for 

those PC patients that are inoperable, the overall success of current therapies is low and 

the 5-year survival rate is 5%.  

 

Chemotherapy and radiation therapy are still the primary treatments for advanced 

pancreatic cancer.  Surgery is usually considered when the tumor is still in the pancreas 

and does not extend far beyond the pancreas. The primary goal of pancreatic cancer 

surgery is to completely remove of the tumor and clear the regional lymph nodes 

(171,172). Systemic chemotherapy, radiation therapy or combinations 

(chemoradiotherapy) have been applied after surgical resection (adjuvant therapy) or 

before (neoadjuvant therapy) in the effort to reduce mortality rates (173). Surgical 

removal of the tumor followed by six months of gemcitabine treatment increased the 

median patient survival to 22.8 months with a one-year survival rate of 70% (174). 
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In contrast to cytotoxic chemotherapy or radiation therapy which target all rapidly 

dividing cells, targeted therapy interacts with key factors/pathways that are differentially 

expressed in cancer cells compared to normal cells. In this way, targeted therapies 

minimize the side effects encountered with systemic cytotoxic chemotherapies. 

Overexpression of vascular endothelial growth factor (VEGF) has been correlated with 

increased rates of PC recurrence and metastasis (175,176). Bevacizumab is a humanized 

anti-VEGF monoclonal antibody which has been extensively studied as an anti-

angiogenic agent for treating pancreatic cancer patients. In a phase III trial of patients 

with metastatic pancreatic cancer, the addition of bevacizumab to bevacizumab 

gemcitabine and erlotinib is well tolerated and improves the progression-free survival 

but not overall survival (177). A recent meta-analysis of targeted therapies for treating 

advanced pancreatic cancer examined the effectiveness of anti-EGFR, anti-angiogenesis, 

anti-PSA, FTASE inhibitor, anti-IGFR1, anti-apoptosis, anti-MEK, immunotherapy, 

anti-PI3K, c-KIT inhibitor therapies and showed that there was no overall survival 

benefit from these targeted therapies (178). The clinical trials examined in this study 

were primarily those using conventional agents and this may have masked the efficacy 

of targeted therapies. Therefore, there is a need not only to identify predictive factors 

that will allow for selection of patients that will benefit from targeted therapies, but also 

to develop new and more effective treatment for pancreatic cancer patients. 
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1.2 Long non-coding RNAs 

In 1970, Francis Crick proposed the developed central dogma of molecular biology, 

which describes the flow of genes into proteins: DNA to RNA to protein (179). 

However, the human genome project showed that there are only <25,000 protein-coding 

genes in our genome and this only accounts for two percent of the total DNA (180,181). 

The majority of gene transcripts are not translated into protein (182). Initially, those 

RNAs with no protein-coding potential were called the “dark matter of human genome”, 

or junk RNA. During the last 10-20 years, the importance of non-coding RNAs 

(ncRNAs) has been emerging and it is now believed that ncRNAs strongly contribute to 

the diverse structure and function of eukaryotic organisms. (182,183). 

 

Based on their size, ncRNAs can be classified into small, medium and long noncoding 

RNAs (184). The size of small ncRNAs is 18-31 nucleotides (nt), and these include 

small interfering RNAs (siRNAs), microRNAs (miRNAs), medium ncRNAs contain 

~31 to 200 nt, including transfer RNA (tRNA), small nuclear (snRNAs) and small 

nucleolar RNAs (snoRNAs). The third category is long non-coding RNAs (lncRNAs) 

which have a sequence length > 200 nt. The pie chart represents the major categories of 

the 16,592 non-coding RNAs (185) (Figure 4). Based on their function, ncRNAs can 

also be divided into housekeeping ncRNAs (ribosomal, transfer, snRNAs), regulatory 

ncRNAs (miRNAs, siRNAs and lncRNAs), promoter-associated RNAs (PARs) and 

enhancer RNAs (eRNAs) (186-188). 
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LncRNAs are the largest group in the ncRNA family. LncRNAs are highly 

heterogeneous and complex and it is estimated that >80% of the transcribed mammalian 

genome is associated with the generation of lncRNAs (189,190). 

 

 

 

 
Figure 4. The classification of ncRNA categories. Modified from (184). 

 

 

 

Initially lncRNAs were classified based on their relationship to the corresponding 

mRNAs or localization and direction with respect to a specific mRNA/RNA and this  

can be sense, antisense, intergenic, intronic and bidirectional (191). Sense lncRNAs are 

transcribed from the sense strand of protein-coding genes and may partially overlap with 

the protein-coding gene or cover the entire sequence. For example, cold-assisted intronic 

noncoding RNA (COLDAIR) is transcribed from an intron of flowering locus C (FLC) 

protein (192). Antisense lncRNAs, in contrast, are transcribed from the antisense strand 

of protein-coding genes. Based on the GENCODE, antisense lncRNAs can overlap with 
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an exon of sense gene, transcript from the intron of a sense gene but do not have exon-

exon overlap with this sense gene, or cover the entire sequence of a sense gene through 

an intron (193). LncRNAs transcribed from intergenic regions are named intergenic 

lncRNAs, while, those transcribed from introns of protein-coding genes are named as 

intronic lncRNAs. Bidirectional lncRNAs are oriented head to head with a protein-

coding gene within 1kb. In 2016, Sanbonmatsu and coworkers proposed to classify 

lncRNAs based on their structure. According to the secondary structure, lncRNAs can be 

categorized into three different types, highly structured RNAs with subdomains and 

complex structural motifs; loosely structured RNAs with multiple stem-loops, but 

lacking hierarchical domain structure and complex motifs; unstructured, disordered 

RNAs, which lack secondary structure (194). Based on the effects on the DNA 

sequences, lncRNAs can also be classified into cis-lncRNAs, and trans-lncRNAs. Cis-

lncRNAs regulate the expression of genes in close genomic proximity and an example is 

the HOXA transcript at the distal tip (HOTTIP) which regulates HOXA gene cluster 

genes via interaction with histone modification complexes (195). Trans-lncRNAs target 

distant gene loci; for example, HOX transcript antisense RNA (HOTAIR) is transcribed 

from the HOXC gene but can affect target genes at the more distal HOXD gene locus. 

(196). 

 

1.2.1 Molecular mechanisms of lncRNAs 

LncRNAs have important regulatory roles at the transcriptional, translational and 

epigenetic level, however, the molecular mechanisms through which lncRNAs act are 
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still poorly understood. Based on the molecular mechanisms of action, lncRNAs can be 

classified into several categories 1) signal: respond to diverse stimuli, 2) decoy: bind and 

titrate away a protein target, 3) guide: bind proteins and then direct the complex to 

specific targets to affect gene transcription, and post-transcriptional pathways, 4) effect: 

form RNA dimers with mRNA sequences to block transcription-associated sites, 

regulate the stability, cleavage, and translation of protein-coding genes, 5) scaffold: 

serve as platforms for different proteins to form ribonucleoprotein complexes (197). The 

classification is not fixed and sometimes a lncRNA can function via different 

mechanisms in different cells and tissues. Regulatory mechanisms of lncRNAs are 

summarized below. 

 

1.2.1.1 Transcription regulation mediated by lncRNAs 

Many lncRNAs affect transcription, for instance, lncRNA-p21 is a p53 target and 

negatively regulates p53 downstream genes through the physical interactions with 

heterogeneous nuclear ribonucleoprotein K (hnRNAP-K). This interaction is required for 

genomic localization of hnRNAP-K at the repressed gene sites and regulation of p53 

mediated apoptosis (198). Another p53 induced lncRNA, p21 associated ncRNA DNA 

damage activated (PANDA) is derived from the CDK1A promoter and it function as a 

decoy for nuclear transcription factor-Y alpha (NF-YA) to limit expression of pro-

apoptotic genes leading to  cell-cycle arrest (199). 
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1.2.1.2 Regulation of mRNA processing 

According to central dogma, DNA is transcribed into premature mRNA, which is 

subsequently  spliced into different mature isoforms (200). Serine/arginine (SR) splicing 

factors regulate alternative splicing in the nucleus. Metastasis associated lung 

adenocarcinoma transcript 1 (MALAT1) is an lncRNA that interacts with SR proteins 

and affects the location of splicing factors in nuclear speckle domains. In addition, 

MALAT1 regulates the phosphorylation of SR proteins, suggesting that MALAT1 can 

regulate alternative splicing by modulating splicing factors (201).  Besides regulating the 

mRNA splicing, lncRNAs can also directly affect mRNA editing (202). 

  

1.2.1.3 Post-transcriptional or translational regulation  

The last stop for center dogma flow is mRNA to protein. After mRNA is transported into 

the cytoplasm, lncRNAs can regulate protein expression by affecting translation 

efficiency or regulating mRNA stability.  

 

Some lncRNAs are transported into the cytoplasm and many studies have shown that 

lncRNAs modulate mRNA translation into protein and also mRNA stability. One 

example of a lncRNA that affects translation efficiency is GAS5, which binds to cMyc 

mRNA and this interaction enhances the binding of eukaryotic translation initiation 

factor-4E (elF4E) with cMyc mRNA (203). Many lncRNAs have been shown to bind to 

3’ UTR of mRNA and regulate mRNA stability. PCNA Antisense RNA 1 (PCNA-AS1), 
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a lncRNA antisense to PCNA mRNA, is upregulated in hepatocellular carcinoma and 

affects PCNA mRNA stability by RNA hybridization (204). 

 

Besides those categorized general function of lncRNAs, there are several emerging 

function of lncRNAs and their molecular mechanisms of action. 

  

1.2.1.4 LncRNAs in epigenetics 

Transcription of some lncRNAs resides within promoters of protein-coding genes and 

this can lead to deposition of methylation markers and recruitment of repressor 

complexes (205). One example is the lncRNA IRT1 which resides within the promoter 

region of gene IME1, a master regulator of meiosis. IRT1 transcription recruits the Set2 

histone methyltransferase and the Set3 histone deacetylase complex to form repressive 

chromatin at the IME1 promoter. By inhibiting Ime1, IRT1 plays an essential role in the 

mating-type control of gametogenesis in yeast (206). 

 

LncRNAs can also recruit histone-modifying enzymes in cis or trans configuration. X-

inactive specific transcript (Xist), one of the first lncRNAs to be identified, is located on 

the Xist inactivation center (XIC) of the genome (207), and interacts with the polycomb 

repressive complex 2 (PRC2) to target the X chromosome and is responsible for the 

epigenetic regulation of H3K27 trimethylation (208). HOTAIR, is expressed within the 

HOXC gene cluster and represses transcription of HOXD genes in trans by regulating 

PRC2 recruitment. The 5’ end of HOTAIR binds to enhancer of zeste 2 polycomb 
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repressive complex 2 subunit (EZH2) and mediates its recruitment to HOXD cluster 

(209).  

 

LncRNAs also serve as scaffolds for recruiting multiple histone modification complexes.  

For example, the 3’ end of HOTAIR binds to the lysine-specific demethylase 1 (LSD1) 

component of REST/CoREST complex, which has H3K4 demethylation activity. 

Through interacting with both PRC2 and REST/CoREST complexes, HOTAIR can 

coordinate H3K27 methylation and H3K4 demethylation at targeted loci within the 

genome (210). In contrast, another HOX- associated lncRNA, HOTTIP regulates 

activation of HOXA genes via recruiting a member of myeloid/lymphoid or mixed-

lineage leukemia 1 (MLL1) through an interaction with WD repeat domain 5 (WDR5) 

(211). These lncRNAs play important epigenetic roles in gene activation or repression 

by coordinating recruitment and binding of chromatin modifying complexes to specific 

regulatory regions. 

   

1.2.1.5 Enhancer-like activity of lncRNAs 

Analysis of a new set of GENCODE annotated lncRNAs demonstrated enhancer-like 

mechanisms of lncRNAs and knockdown of enhancer-like lncRNAs decreased 

expression of neighboring protein-coding genes. A class of lncRNAs, ncRNA-activating 

(ncRNA-a), can activate their neighboring genes. NcRNA-a interacts with Mediator, a 

transcriptional co-activator complex, which induces chromatin looping between the 
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ncRNA-a loci and target promoters and kinases activity toward histone H3 serine 10, a 

histone modification that is known to be associated with transcriptional activation (212). 

  

1.2.1.6 LncRNA-miRNA interaction 

There have also been extensive studies on the interactions between lncRNAs and 

miRNAs. LncRNAs have been identified as competing endogenous RNAs by interacting 

with miRNAs. TUG1 (taurine upregulated gene1)  is a lncRNA that serves as a miR26a 

sponge in human glioma cells (213). HOTAIR controls the expression of Rab22a by 

sponging mir373 in ovarian cancer (214). MiR1 was shown to bind both MALAT1 and 

cell division cycle 42 (cdc42) and MALAT1 induced migration and invasion of breast 

cancer cells, partially due to completely binding to miR1 (215). LncRNAs can also 

function via derived miRNA.  H19 is a lncRNA that regulates intestinal epithelial barrier 

function via the H19-encode miR675 (216). Moreover, miRNAs can also negatively 

regulate lncRNA expression by direct binding to lncRNAs. It was reported that miR-21 

negatively regulates growth arrest specific 5 (GAS5) in breast cancer cells in a way 

similar to miRNA-mediated silencing of mRNAs (217). Reciprocal regulation is also 

observed between lncRNA urothelial carcinoma-associated 1 (UCA1) and miR145 in 

bladder cancer cells. UCA1 represses miR145 expression and suppression of miR145 

results in upregulation of UCA1. The binding site for miR145 within exon 2 and exon 3 

of UCA1 contributed to the reciprocal negative regulation (218). 
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1.2.1.7 Discovery of micropeptides 

Anderson et al discovered in 2015 that a small micropeptide of 46 amino acids is 

encoded from a lncRNA, and it impacts calcium uptake into sarcoplasmic reticulum 

(SR) (219). However, the discovery of micropeptides encoded by putative lncRNAs 

raised another question about lncRNA definition and classification: Should those RNAs 

encoding micropeptides be called lncRNA or it should belong to a new category? 

 

1.2.2 LncRNAs in diseases 

In the past decade, the biological role of lncRNAs in human disease, especially cancer 

has been extensively investigated. The first disease-related lncRNA identified is 

LncRNA BC200 which is specifically expressed in brain cells and may be involved in 

Alzheimer disease (220). The importance of lncRNAs have been observed in various 

diseases, such as neuropsychiatric disorder (221), coronary disease (222,223), 

autoimmune disease (224-227) and also cancer (228,229). 

  

1.2.2.1 LncRNAs in cancer 

Many studies have shown that lncRNAs play an important functional role in 

carcinogenesis,   cancer metastasis and invasion (230), either as an oncogene or a tumor 

suppressor-like gene (231,232). Expression levels of several lncRNAs are closely 

associated with overall survival rates of cancer patients.  
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H19 is one of the first identified lncRNAs (233) and expressed in fetal tissues but not in 

adult tissues. However, the H19 expression has been shown to be upregulated in various 

cancer types, including glioma (234,235), gastric (236,237), esophageal, colorectal 

(238), breast (239), bladder (240), hepatocarcinoma (241), pancreatic (242), prostate 

(243), and nasopharyngeal cancers (244). Although it is certain that H19 plays a crucial 

role in the cancer development, the underlying molecular mechanism is still not fully 

understood. There are several reported mechanisms, for example, H19 functions via 

antagonism of miRNA let7 or miR874 (242,245) or H19-derived miR675 (235). 

LncRNAs are also associated with drug resistance in cancer. One example is that UCA1 

upregulation activated Wnt signaling and in turn increased cisplatin resistance of bladder 

cancer cells (246). 

 

1.2.2.2 LncRNAs as biomarkers and therapeutic targets 

LncRNAs not only regulate cellular function but they also serve as diagnostic and 

prognostic markers (247) and expression levels of specific lncRNAs are closely 

associated with overall survival rates of cancer patients and are prognostic factors for 

several tumor types (151,248-251). Serghiou and coworkers carried out a systemic 

review and meta-analysis of lncRNAs as predictors of survival in cancer patients. They 

identified 111 studies including 127 datasets, and 96% of the studies showed a 

significant association of lncRNA expression with prognosis. HOTAIR is currently the 

most extensively studied lncRNA, and a recent meta-analysis of 19 cancer sites showed 

that high level of HOTAIR expression in cancer patients is correlated with poor survival  
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(252). Therapies targeting lncRNAs are still in the preclinical stages, however, scientists 

from the Cold Spring Harbor laboratory showed that by targeting lncRNA MALAT1 

with an antisense oligonucleotide (ASO) the metastatic activity of aggressive primary 

breast tumors can be reduced (253). Although the ASO approach gave promising results, 

there are some limitations, such as the complicated secondary structure of lncRNAs 

which make them difficult to be targeted in the cells. 

  

Another method to directly target lncRNA is through clustered regularly interspaced 

short palindromic repeats (CRISPR) system. The current method for gene ablations is 

primarily by transfection of a siRNA targeting a specific mRNA in the cytoplasm. 

However, most lncRNAs reside in the nucleus and this is a challenge for the RNAi 

method. The CRISPR system is an adaptive defense mechanism against foreign viruses 

in the bacteria. A short fragment of virus is inserted into the cas operon and then 

transcribed in conjunction with a ncRNA to guide the nuclease protein Cas9 to cleave 

the foreign viral DNA (254). CRISPR/CAS9 technology has been recognized as a 

successful tool to engineer the genome in different species (255-257). The 

CRISPR/CAS9 system can also target lncRNAs in human cells (258) and mouse one-

cell embryos (259). For example, it was reported  that CRISPR sufficiently deletes a 

large imprinted lncRNA RNA imprinted and accumulated in nucleus (Rian) in mice 

using CRISPR/CAS9 co-injection of one-cell embryos (259), suggesting that this 

technique is a promising approach for targeting lncRNAs. 
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1.2.2.3 LncRNAs in pancreatic cancer 

My research has focused in the lncRNAs HOTTIP and MALAT1 and their functions in 

pancreatic cancer and table 5 summarizes the expression and function of total 20 

lncRNAs that have been identified in pancreatic cancers, and many of these have the 

potential to be therapeutic targets, diagnostic or prognostic biomarkers.  

 

 

 

Table 5. The lncRNAs studied which are expressed and functional in the pancreatic 

cancer. 

 

Name  Biological function  Molecular function References 

Oncogenic 

HOTAIR Promoted cancer cell growth and 

migration, HOTAIR silencing 

enhanced radio-sensitivity, 

reduced proliferation, increased 

apoptosis after radiation 

HOTAIR silencing 

increased the expression 

of Wnt inhibitory factor-

1. HOTAIR mediated 

gene expression is both 

PRC-2 dependent and 

independent 

(260,261) 

NUTF2P3

-001 

Promoted tumorigenesis  Depressed miR-

3923/KRAS pathway 

(262) 

MALAT1 Correlated with tumor 

development and unfavorable 

prognosis, promoted cell growth, 

migration and invasion 

Activated autophagy, 

enhanced stem cell-like 

phenotypes 

(263-267) 

LOC3896

41 

Promoted cancer progression, 

increased cell invasion 

Regulated E-cadherin in 

a TNFRSFIOA-related 

manner 

(268) 

PVT1 Increased expression associated 

with poor prognosis in PC 

patients, overexpression decreased 

sensitivity to gemcitabine 

Unknown (269,270) 

HOTTIP Enhanced cell proliferation, 

survival and migration 

Regulated several HOX 

genes 

(271,272) 

HULC Biomarker  Unknown (273) 
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Table 5. Continued. 

 

Name  Biological function  Molecular function References 

Oncogenic 

H19 Therapeutic target, promoted 

metastasis 

Depressed let7 

suppression on its target 

HMGA2 mediated EMT 

(242,274) 

ccdc26 Responsible for cell growth and 

apoptosis 

Partly by regulating the 

PCNA and Bcl2 

expression 

(149) 

LINC0067

3 

Maintained cell homeostasis Created a miR-1231 

binding site and 

interferes with PTPN11 

degradation 

(275) 

LincRNA-

ROR 

Promoted invasion, metastasis and 

tumor growth 

Activated ZEB1 

pathway 

(276) 

AFAP1-

AS1 

Overexpression promoted cell 

proliferation, migration and 

invasion 

Unknown (277) 

Linc00675 Suppression decreased EMT 

process 

 (278) 

lncRNA 

af339813 

Knockdown of this lncRNA 

reduced cell proliferation and 

promoted apoptosis 

Unknown (279) 

Tumor suppressive 

LOC2851

94 

Low expression correlated with 

poor overall survival  

Unknown 

 

 

(280) 

GAS5 Decreased in cancer, 

overexpression inhibited cell 

proliferation 

Gas5 inhibition induced 

decrease in G0/G1 phase 

and an increase in S 

phase, negatively 

regulated CDK6 

(281) 

 

 

 

ENST000

00480739 

Downregulated expression 

contributed to tumor metastasis 

and progression 

Regulated HIF-1alpha (282) 

lncRNA-

ATB  

Low expression indicated poor 

survival  

Unknown (283) 

BC008363 High expression correlated with 

better survival 

 (284) 

MEG3 Knockdown of MEG3 attenuated 

cytotoxicity induced by fen fibrate,  

Overexpression induced cell death   

Increased p53 

expression 

(285) 
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1.2.2.3.1 Expression 

The lncRNA expression in PC tissues compared to normal tissue have been investigated 

and in 2014, Li and coworker identified 1881 upregulated lncRNAs and 2269 

downregulated lncRNAs in PC tissues compared to adjacent normal tissues from 30 PC 

patients with the fold change of 4.0 and p-value of less than 0.01 (284). In 2015, Wang 

and coworkers screened 7419 lncRNAs in the 144 PC specimens (tumor and paired 

adjacent normal tissues) and four chronic pancreatitis samples. Thirty three lncRNAs 

were differentially expressed in PC compared to normal tissues (7 upregulated and 26 

downregulated, respectively) with the fold change >3 (151). Depending on the sample 

size and statistical analysis, there is some variability in lncRNAs expressed in PC 

compared to normal tissues, however, there is no doubt that there is differential 

expression of lncRNAs in PC.  

  

1.2.2.3.2 Prognostic significance 

LncRNAs have potential to be biomarkers for diagnosis and prognosis of cancer and 

most studies still detect the lncRNAs in the PC tissues either using RT-PCR or 

microarray. For example, HULC expression in tumor and non-tumor tissues from 304 

PC patients demonstrated that higher expression of HULC is significantly correlated 

with increased tumor size, invasion and metastasis. Multivariate analysis suggested that 

HULC expression is an independent predictor of overall survival with p-value =0.032 

(273). In addition, construction and analysis of dysregulated lncRNA-associated 

competing endogenous RNA network help to identify novel lncRNA biomarkers for 
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early diagnosis. Furthermore, instead of using one single lncRNA, a 7-lncRNA signature 

(termed lncRisk-7) was developed as a novel diagnosis of PDAC [108]. Currently, there 

are no reports about dysregulated lncRNAs in circulation in PC patients and further 

studies are need to examine whether those differentially expressed in the PC tissues are 

stable in circulation. 

  

1.2.2.3.3 Function 

LncRNAs regulate tumorigenesis and tumor development and exhibit oncogene or tumor 

suppressor-like activities. They are involved in PC cell growth, apoptosis, cell cycle 

progression and cell motility. Coiled-coil domain containing 26 (CCDC26) is a lncRNA 

overexpressed in the PC tissues and decreased expression significantly promoted growth 

arrest and apoptosis. Expression of CCDC26 is positively correlated with proliferating 

cell nuclear antigen (PCNA) and the anti-apoptotic gene Bcl2 (149). GAS5 expression is 

significantly decreased in the PC tissue and  overexpression of GAS5 inhibited PC cell 

proliferation, while GAS5 inhibition induced a significant decrease in G0/G1 phase and 

an increase in S phase via negatively regulating CDK6 (cyclin-dependent kinase 6) 

expression (281). Maternally expressed gene 3 (MEG3) is a tumor suppressor lncRNA 

expressed in a range of human cancers. It was shown that fenofibrate inhibited PC tumor 

cell proliferation via upregulating MEG3 expression and subsequently increasing the 

p53 expression and overexpression of MEG3 in the pancreatic cancer cells increased p53 

expression and induced cell death (285). In addition to the regulation of cancer cell 

growth and death, lncRNAs also affect tumor cell migration and invasion. LOC389641 
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is a novel lncRNAs which is upregulated in the PC tissues and  LOC389641 knockdown 

inhibited PC cell migration and decreased expression of this lncRNA upregulated the E-

cadherin expression possibly via affecting the LOC389641 neighboring gene, 

TNFRSF10A(268). 

  

Although lncRNAs are important for pancreatic cancer growth, migration/invasion, 

however, the underlying mechanisms of these functions are still not well understood. 

LncRNAs can inhibit miRNAs expression and miR-mediated repression of target genes. 

H19 is overexpressed in PC tissues and knockdown of H19 in the cancer cells inhibited 

the epithelial-mesenchymal transition (EMT). The possible mechanism may involve 

antagonism of miRNA let-7 and derepressed the let-7 targeted high-mobility group A 

protein 2 (HMGA2) gene. It was shown that HMGA2 is involved in EMT maintenance 

via regulation of E-cadherin gene (286). Another important mechanism for lncRNA 

function is the interaction with histone modifying complex. For example, the lncRNA 

HOTAIR is associated with poor prognosis of different types of cancer, such as breast, 

liver, colon, cervical and nasopharyngeal cancer. Increased expression of HOTAIR in 

breast cancer cells induced the shifting of polycomb repressive complex 2 (PRC2) and 

alteration of histone H3 lysine 27 (H3K27) methylation (209). Our laboratory showed 

that HOTAIR is pro-oncogenic and a negative prognostic factor for pancreatic cancer. 

Knockdown of HOTAIR in different pancreatic cancer cells decreased cell proliferation, 

migration/invasion, and a similar effect was observed in a xenograft study. Our study of 

HOTAIR in pancreatic cancer cells also suggested that the mechanisms of HOTAIR 
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function in PC cells is different from previously reported in breast cancer cells (209). We 

showed that only GDF15 was co-regulated by HOTAIR and EZH2 (PRC2) in pancreatic 

cancer cells, suggesting that HOTAIR-mediated suppression of genes in pancreatic 

cancer is both PRC2-dependent and independent, and the PRC2-independent pathways 

of HOTAIR function are currently under investigation (261). 

 

1.3 Microbiota-derived aryl hydrocarbon receptor ligands 

1.3.1 Gut microbiota metabolites 

The gut microbiota is emerging as a “new organ” in the human body. It contains 100 

times more genes than the host and can be regulated by exogenous and endogenous 

signals, and the absence of microbiota can affect all aspects of host physiology. Over the 

past decade, our understanding of gut microbiota has increased exponentially due to new 

technologies that have helped generate a genetic and metabolic profile of the microbial 

community and their impacts on the host. 

 

In the gut, there is a high density and diversity of bacteria and the data on gut microbiota 

is mainly acquired from fecal samples and mucosal biopsies. The abundance and 

composition in the small intestine is significantly different from the colon (287). The 

diverse bacteria in the gut perform a myriad of  functions, including the transformation 

of substances in the gut and production of antimicrobial substances to stimulate the 

immune system (288). For example, short-chain fatty acids (SCFA),  conjugated linoleic 

acid (CLA) and gamma-amino butyric acid produced by bacteria are beneficial in the 
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treatment of several diseases, such as cancer, obesity, and cardiovascular disease (289-

292).  

 

Gut microbiota-derived metabolites can also serve as biomarkers and therapeutic targets 

for different diseases. Crohn’s disease (CD) is an inflammatory bowel disease (IBD) and 

it has been reported that specific gut microbiota metabolites can be used to differentiate 

between healthy and CD patients (293). 

 

 

 

 
 

Figure 5. An illustration of the structure of the intestinal tract and the microbiota 

residing in the gut. The gut microbiota metabolites can affect gut epithelium, 

intraepithelial lymphocytes, and intestinal lymphoid follicles.  

 

 

 

Gut microbiota provides the host with nutrients and protects against infection and the 

balance of pro- and anti-inflammatory pathways is important for maintaining gut 
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immune homeostasis. The composition of the commensal microbial community plays an 

important role in maintaining homeostasis (Figure 5). Butyrate, a short-chain fatty acid 

(SCFA), produced by commensal microbiota during carbohydrate fermentation, 

facilitates the extrathymic generation of Treg cells, and another SCFA, propionate 

potentiates the de novo generation of Treg cells, which play a key role in limiting the 

inflammatory responses in the intestine. Thus by regulating Treg cells, butyrate and 

propionate affect the balance between pro- and anti-inflammatory pathways in the gut 

(294) . In addition to the beneficial effects of SCFAs, protein fermentation also produces 

harmful metabolites, such as ammonia, phenols, and hydrogen sulfide which can result 

in a “leaking gut”,  inflammation, and cancer (295). In contrast, ingestion of dietary 

plant-based foods appear to inhibit gut inflammatory related diseases  (296). It has been 

shown that microbial transformation of dietary phenolic compounds has important 

implications in the chemoprevention of colorectal cancer (297). Polyphenolic 

metabolites, such as 3-(3,4-hydroxyphenol)-propionic acid (PS) and 3,4-

dihydroxyphenolacetic acid (ES) which are metabolites of chlorogenic acid/caffeic acid 

and quercetin, respectively, upregulate glutathione S-transferase T2 (GSTT2) and 

downregulate cyclooxygenase (COX2) in the human adenoma cells LT97and this may 

contribute to the chemopreventive potential of polyphenolic metabolites in the gut (298). 

Gut microbiota is also functional via different axis, such as gut-liver axis, gut-brain axis, 

and the gut-brain-skin axis and the microbiota-mediate defects on the gut can clearly 

affect distal organs/tissues (299). 
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Development of microbial metabolites as biomarkers may also be useful in 

distinguishing between health/disease states or closely related disease conditions. In 

addition, microbiota metabolites can help develop algorithms to predict personalized 

responses to dietary and pharmaceutical interventions (300,301). Community and 

system-level interactive optimization (CASINO) is a specialized computational platform 

that is developed to quantify the gut microbiota metabolites and pair this data with 

dietary intake characteristics and patterns. For example, CASINO was used in a clinical 

experiment in which 45 overweight and obese individuals were maintained on a 

restricted diet for 6 weeks. Using Casino, they were able to predict a decrease in 

carbohydrate and increase in amino acid consumption by analysis of the microbiota 

metabolites (299). Moreover, microbial production of beneficial metabolites can also be 

increased, either by increasing the abundance of native species or engineering 

microbiota to produce higher levels of beneficial bacteria. As microbiota metabolites 

interact locally with host receptors to elicit diverse functions, it is possible that 

metabolites mimicking drugs might be  novel therapies for treating different diseases 

(302). 

  

1.3.2 Aryl hydrocarbon receptor 

The aryl hydrocarbon receptor (AhR) is an evolutionarily old transcription factor and 

studies on the structure and function of the AhR were initiated in the 1970s. Early 

studies of the AhR mainly focused on the aryl hydrocarbon hydroxylase activity (AHH) 

induced by the toxic industrial byproduct 2,3,7,8-tetrachlorodibenzo-p-doxin (TCDD) 
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(303), and AhR was first identified as the TCDD receptor (304). Previous studies 

suggested that AhR is a key mediator of drug metabolism and also regulates the toxic 

effects induced by exposure to polychlorinated dibenzo-p-dioxin (PCDD), biphenyls 

(PCBs), dibenzofurans (PCDFs), polycyclic aromatic hydrocarbons (PAHs) and related 

compounds (305,306). 

  

Ligand activation of the AhR induces expression of CYP1A/CYP1B and several phase II 

drug metabolizing enzymes and the AhR also plays an important role in the regulation of 

cellular process, such as apoptosis, proliferation, cell growth and differentiation (307). 

The AhR is required from several well characterized toxic responses induced by TCDD 

including chloracne, immune deficiency, thymic atrophy, liver porphyria and a wasting 

syndrome (308-314). In the last decade, AhR research focused on identifying 

physiological endogenous ligands and the roles and mechanisms of action of the AhR in 

normal development (315). 

  

The AhR protein was first characterized in 1976 (303) and cloned by several 

groups(316-319). The AhR is a multi-domain protein, consisting of the basic helix-loop-

helix (bHLH) domain, two PAS domain (PAS-A & PAS-B) and a transactivation 

domain (TAD) (Figure 6). The bHLH domain is required for the DNA binding and also 

contains a nuclear localization signal (NLS) necessary for transport of the AhR into the 

nucleus for DNA binding. PAS stands for Per-Arnt-Sim domains (period circadian 
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protein-aryl hydrocarbon receptor nuclear translocator-single minded protein). The C-

terminal of PAS-B domain is required for ligand binding (320,321). 

 

 

  

 
 

Figure 6. Schematic structure of the AhR. 

 

 

 

In the absence of ligands activation, AhR remains in the cytoplasm and form a complex 

with two Hsp90 (heat-shock protein 90) molecules, an AIP protein (AhR-interacting 

protein, also known as ARA9), an XAP2 protein (hepatitis B Virus X-associated 

protein2) and the p23 co-chaperon (Hsp23). AIP interacts with AhR and Hsp90 through 

its tetratricopeptide repeat (TRP domains). Mutations in the TRP domains will disrupt 

the binding of AhR to AIP, leading to the AhR destabilization and degradation 

(322,323). Ligand binding to the AhR induces a conformational change in the receptor 

and exposes the nuclear localization signal. Within the nucleus, AhR dissociates itself 

from Hsp90 and forms a heterodimer with ARNT, and the resulting heterodimer 

regulates transcription of many genes, including phase I, phase II drug metabolites, and 

phase III transporter gene (Figure 7) (324). Ligand specificity and selection may be 

determined not only by the PAS-B domain itself but also by other parts of AhR and its 

interacting protein partners. It was proposed that the ligand binding pocket and access 
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channels leading to the pocket play equally important roles in discrimination between 

endogenous AhR ligand and xenobiotics such as TCDD (325). While the majority of 

studies on AhR report the ligand-dependent AhR activation, there have been several 

reports showing a ligand-independent AhR pathway (326-329). For example, Maayah 

and coworkers reported that Sunitinib, a tyrosine kinase inhibitor, induced CYP1A1 

expression level in an AhR-dependent manner, even though Sunitinib does not directly 

bind to and induce transformation of cytosolic AhR (330). 

 

 

 

 
Figure 7. AhR signaling pathway. 

 

 

 

Post-translational modification is the primary mechanism for regulating intracellular 

AhR levels and AhR transactivation. Upon export form the nucleus, the AhR is 

ubiquitinated and subsequently degraded in a proteasome-dependent manner. The AhR 
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is also regulated through a negative feedback loop, by upregulating a transcriptional 

repressor known as the aryl hydrocarbon receptor repressor (AHRR). AHRR is also a 

bHLH–PAS protein and has high sequence similarity to AhR. It suppresses AhR activity 

by competitively binding ARNT (331). 

 

1.3.2.1 AhR ligands 

At first, the most well characterized classes of AhR ligands were environmental 

contaminants including PAHs and HAHs. However, subsequent studies have identified 

natural and endogenous AhR ligands, including both biochemical and synthetic food 

products, phytochemicals and microbial metabolites. Figure 8 illustrates structures of 

selected representative AhR ligands from different sources and some possibly 

endogenous AhR ligands. In 1998, Chang et al observed that CYP1A1 deficient cells 

exhibited a higher level of baseline AhR activity than the wild-type cells and CYP1A1 

specifically decreased the AhR activity in hepatoma cells (332). In addition, there were 

several studies showing that ectopic expression of CYP1A1, CYP1A2 or CYP1B1 

decreased the AhR activity (333), indicating that some endogenous AhR ligands are 

CYP1A1 substrates and AhR-mediated CYP1A1 expression in turn negatively regulates 

AhR activity.  
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Figure 8. Selected exogenous and endogenous AhR ligands. A. classical AhR ligands; 

B, Plant-derived AhR ligands; C. synthetic pharmaceutical AhR ligands; D. Microbiota 

derived AhR ligands. 
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Figure 8. Continued. 
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1.3.2.1.1 Plant-derived AhR ligands 

Plant-derived phytochemicals were among the first identified potential natural AhR 

ligands. Plant-derived indirubin and indigo are high potency AhR ligands (334) and 

indole-3-carbinol conjugates and derivatives are found in cruciferous vegetables and also 

exhibit high AhR binding affinity (335-341). However, there is some controversy 

regarding the possible role of these compounds as endogenous AhR ligands since levels 

of indigo and indirubin in humans are in the picomolar range which is not sufficient for 

activating the AhR (334,342). Nevertheless, the importance of indirubin and indigos 

cannot be dismissed since their local concentrations may be sufficiently high at some 

sites to exhibit AhR agonist activities. Another indole metabolite, 3-indoxyl sulfate is 

also a potent AhR ligand and plays a key role in the human disease progression. Indole 

can be metabolized into indoxyl sulfate (I3S) in the liver, and is secreted by the kidney 

via the proximal tubules. Indoxyl sulfate usually accumulates in the body of patients 

with kidney disease because of the failed renal function. Examination of 139 patients 

with chronic kidney disease (CKD) showed that high levels of serum indoxyl sulfate 

predicted the overall and cardiovascular mortality at p-value of 0.001 and 0.012, 

respectively (343). It is suggested that constitutively activation of AhR by I3S may 

contribute to toxicity observed in the patients with CKD (344). In addition, it has been 

shown that quercetin, apigenin, and kaempferol present in certain foods mediate 

agonist/antagonist synergistic effect of AhR activity in different cell types (345) and the 

dietary flavonoid naringenin induces the generation of Treg cells by AhR-mediated 

pathway (346). 
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1.3.2.1.2 Endogenous AhR ligands 

1.3.2.1.2.1 Heme-derived molecules 

In 1993, Kapitulnik and coworkers showed that rats defective in UDP-

glucuronosyltransferase exhibited elevated CYP1A1 levels. UGT is a key enzyme for 

degrading heme-containing proteins to give bilirubin (347), and subsequently it was 

found that bilirubin induced CYP1A1 in an AhR dependent manner (348). Another 

heme-degradation product, biliverdin also activated the AhR (349). 

 

 

 

 
 

Figure 9. The schematic illustration of major pathways of tryptophan metabolism. 

 

 

 

1.3.2.1.2.2 Arachidonic acid metabolites 

Arachidonic acid derivatives have also been postulated to be AhR ligands. 12R-hydroxy-

5Z,8Z, 10E, 14Z-eicosatetraenoic acid (12(R)-HETE) and prostaglandin-endoperoxide 
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synthase 2 (PGG2) have been identified as potent AhR agonists (350-352), and another 

arachidonic acid metabolite, Lipoxin 4A, which does not have any ring structures also 

induced CYP1A1 and CYP1A2-dpenendent activity (353). 

  

1.3.2.1.2.3 Tryptophan metabolites 

Tryptophan metabolites are considered to be among the leading candidates for 

designation as endogenous AhR ligands. Kynurenine pathway is the primary route of 

tryptophan metabolism (Figure 9). Kynurenine (Kyn) has been shown to regulate 

glioblastoma cell growth and migration in AhR-dependent manner. Glioblastoma cells 

constitutively generate Kyn and Kyn suppresses anti-tumor immune response and 

promotes tumor cell survival through the AhR (354). Kynurenine is further metabolized 

to kynurenic acid and xanthurenic acid which are also function as AhR ligands 

(355,356). The IDO/tryptophan-2,3-dioxygenase-independent formation of tryptamine 

also results in the formation of AhR ligands. The most proximal metabolite, tryptamine 

is a potent AhR activator (356) and also a precursor of downstream metabolites, such as 

indole acetic acid and indole-3- aldehyde that are also AhR ligands (356,357). The 

serotonin pathway may be directly or indirectly related with AhR activation since the 

proximal metabolite, 5-hydroxy tryptophan itself is a weak agonist (358). Upregulation 

of CYP1A1 enzymes could cause the depletion of tryptophan stores and reduce the 

production of endogenous AhR ligands for other pathways. There are also studies 

showing that the tryptophan photometabolite (FICZ) is also an endogenous AhR ligands 

(359). FICZ has a high binding affinity for the AhR and can induced AhR-mediated 
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genes at nanomolar concentrations (359-366). FICZ has also been shown to regulate 

different physiological processes. FICZ either promotes or inhibits inflammatory 

responses in a tissue-specific manner; FICZ induced inflammatory responses in human 

skin cells exposed to UV (367) while it was shown to reduce pulmonary eosinophilia 

and inhibit Th2 expression and differentiation via repressing GATA-3 and STAT6 

expression (368). In addition, FICZ exhibits therapeutic potential and it was reported 

that the addition of FICZ enhanced retinoic acid (RA)-induced leukemia cell 

differentiation, and RA is the current standard clinical drug for treatment of acute 

promyelocytic leukemia (APL) (369). FICZ also affects intestinal homeostasis via 

regulation of intestinal epithelial cells (IEC) development. FICZ administration was 

shown that FICZ inhibits  intestinal organoid development in vitro and reduce IECs in 

mice through increasing  expression of Lgr5, Math1, Indian Hedgehog, and inhibiting 

Lgr4 (370). 

  

In 2002, Song et al isolated an endogenous AhR ligand from porcine lung extracts and 

this ligand was identified as 2-(1’H-indole-3’carbonyl)-thiazole-4-carboxylic acid 

methyl ester (ITE) which is expressed in species from early vertebrates to humans (371). 

ITE was later shown to be a tryptophan metabolite however the pathway of formation is 

still not clear.  The immunosuppressive capacity of ITE has been demonstrated in 

several studies, suggesting the potential application of ITE for the treatment of human 

immune diseases. ITE inhibited the development of type II-collagen induced arthritis in 

mice by suppressing the delayed hypersensitivity(372) and efficiently suppressed 
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experimental autoimmune encephalomyelitis in mice, by enhancing Treg activity and 

reducing Th17 cell function and this has subsequently been shown to be an AhR-

dependent response (373). Similar, in mice with induced experimental autoimmune 

uveoretinitis (EAU) ITE efficiently inhibited EAU development, reduced subpopulations 

of Th1 and Th17 cells and secreted cytokines (IFN-gamma, and IL17).  In addition, ITE 

may be used clinically as anti scarring agent since it was shown that ITE inhibited 

myofibroblast differentiation by blocking the TGFβ1 signaling pathway (374). 

 

1.3.2.2 The function of AhR 

It has been established through studies on AhR-null mice that the AhR has multiple 

physiological functions (375-381). In addition to the role of the AhR in normal 

development, this receptor is a component of various pathological and physiological 

disorders, including autoimmune disease (382), inflammation (383,384), cardiovascular 

disease (385) and cancer. 

 

The AhR is expressed in various tumors with different prognostic significance; increased 

expression of AhR is associated with the development of medulloblastoma (386),  while 

decreased expression of AhR is observed in the pituitary adenomas (387). The AhR and 

its ligands play a dual role in cancer development and AhR ligands exhibit both tumor-

specific promotion and inhibitory functions. TCDD and 3, 3-diinodolymethane inhibited 

breast cancer cell growth and invasion (388), while n-butyl benzyl phthalate and dibutyl 

phthalate ligands increased the proliferation and invasiveness of breast cancer cells 
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(389). Our laboratory has reported that different AhR ligands, including 6-alkyl-1,3,8-

trichlorodibenzofuran (6-MCDF), 8-alkyl-1,3,8-trichlorodibenzofuran (8-MCDF), diin-

dolylmethane (DIM) and tetraCB inhibited ER-positive and ER-negative breast cancer 

cell proliferation and tumor growth. (338,390,391). These selective AhR modulators 

(SAhRMs) target the AhR for the treatment of hormone-dependent and hormone-

independent tumors (336,337,392). The AhR is expressed widely in many histotypes of 

ovarian cancer tissues, and ITE, an endogenous AhR ligand suppresses ovarian cancer 

cell proliferation and migration (393). Our laboratory has also studied the ligand-

independent function of AhR, for example, the AhR exhibits growth inhibitory effects in 

MCF-7 breast cancer cells, but growth-promoting effects were observed in 

hepatocarcinoma cells even though the AhR protects against carcinogen-induced liver 

cancer in vivo (394,395). Recently, we showed that AhR active pharmaceuticals such as 

omeprazole decreased breast and pancreatic cancer cell invasion and metastasis 

(396,397). Recent reviews (398) clearly show that the AhR is an important new drug 

target for treating cancers and development of new AhR agonists or antagonists is 

ongoing. 

  

1.3.2.2.1 The AhR in immunity 

The first paper suggesting the involvement of AhR in the immunity was published by 

Clark and coworkers in 1981 and they observed that TCDD administration markedly 

inhibited the generation of cytotoxic T cells in response to alloantigenic challenge (399). 

In recent years, the role of AhR in immune response has been extensively studied that 
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intrinsic AhR expression in various immune cells has been linked to allergy, 

autoimmunity, and mucosal immunity. Immune function disturbances have been 

observed in AhR -/- mice. Moreover, the  conditional AhR knockout mice help uncover 

the tissue-specific function of AhR on immunity, such as gut, skin, and lung (400). 

 

 

 

 
 

Figure 10. The schematic illustration of differentiation of hematopoietic stem cells into 

different immune cells and blood cells. 

 

  

 

The hematopoietic stem cells (HTCs) can differentiate into myeloid stem cells (MSCs), 

which further differentiate into basophil, eosinophil, neutrophil, monocytes (further into 

macrophage, dendritic cells) and others. On the other hand, HTCs can also differentiate 

into lymphoid stem cells (LSCs), which further into B cells and T cells and innate 

lymphoid cells (ILCs).  Naive T cells can be further differentiated into T helper (Th) cell 
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and T cytotoxic (Tc) cells. Th cells include Th1, Th2, Th17 and regulatory T (Treg) 

cells. ILCs include ILC1, ILC2, and ILC3 (Figure 10). 

 

AhR is expressed in many hematopoietic cell types, and  the presence of  dioxin 

response element (DREs) (Cis-acting) is observed in the promoters of many genes 

involved in the immune cell differentiation, suggesting the potential involvement of AhR 

mediated effects in the immune system (401). AhR activation may regulate the 

hematopoietic and immune systems in a cell-specific manner (402). In addition, the AhR 

in other non-hematopoietic cells types such as endothelial, epithelial and stromal cells 

should also be considered since these cells can also be affected by immune stimulation 

and in turn influence immune responses (403). The AhR integrates both innate and 

adaptive immunities via various mechanisms. Both exogenous and endogenous AhR 

ligands can effectively affect host metabolism and immunity (404). Alteration in the gut 

microbiota through dietary or environmental contaminants intervention also disturbs 

intestinal homeostasis, and contributes to pathology (405). Different factors can influent  

the outcome of the AhR-dependent responses and these include   the specific cell types 

where the AhR expressed, the types of AhR ligand and the presence of cofactors such as 

coactivators (406). Three similar factors were proposed to determine the AhR function in 

the lymphocytes, namely, the amount of AhR in any given cell, the abundance  and 

potency of AhR ligands within a specific tissue or cells and the microenvironment of the 

AhR expressing cells (407).  It was reported that activation of the AhR by different AhR 

ligands might cause different outcomes. For example, in the encephalomyelitis (EAE) 
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murine model, TCDD promoted immune suppression, while endogenous ligands such as 

FICZ promoted Th17 cell response and exacerbated the pathology of EAE (408). It is 

possible that the mode of application of a ligand rather than its nature may contribute to 

the outcome, with the support of results from systemic or local administration of FICZ. 

Systematic administration of FICZ might affect multiple tissues and cell types and lead 

to a strong reduction of the concurrently induced immune responses (409). In contrast, 

local injection of FICZ worsened the pathology of EAE, possibly by specifically 

targeting and promoting Th17 cells (382). 

  

1.3.2.2.1.1 AhR in adaptive immune cells 

The AhR influences adaptive immune responses by regulating both T cells and antigen- 

presenting cells (410). An adaptive immune response is triggered via activation, 

differentiation, and clonal expansion of the lymphoid lineage cells, T and B 

lymphocytes. Depending on the signal received, the T cells proceed to differentiate 

along transcription factor-specific pathways that give distinct T cell subsets. These 

lineage-specific transcription factors include T-bet for Th1, GATA3 for Th2 cells, 

retinoid-related orphan receptor gamma t (RORγt) for Th17 cells, and Foxp3 for Treg 

cells. Activation of AhR may directly/indirectly modulate the commitment of these T 

cell subsets. Several important immune cells involved in adaptive immune response are 

discussed below. 
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1.3.2.2.1.1.1 Th1 and Th2 cells   

Th1 cells are a subset of T cells producing IFN-γ and inducing macrophage-driven 

inflammation, whereas Th2 cells secrete interleukin (IL)-4 and drive eosinophilic 

inflammation. The expression of AhR is not detected in mice Th1 and Th2 cells during 

differentiation, however, treatment with AhR agonists shifted the Th1/Th2 balance to 

Th1 expansion by GATA binding protein 3 (GATA3) inhibition (411). The shift of 

Th1/Th2 balance helped to ameliorate allergy (411) and allergic asthma (368) in mouse 

models.  

 

1.3.2.2.1.1.2 Th17 and Treg cells   

The AhR is pivotal in the differentiation and functions of the CD4+ effector cells - Th17 

and Treg which play essential roles in the autoimmunity (412,413). The AhR is highly 

expressed in both human and mouse Th17 cells and defective differentiation of these T 

cells subsets was observed in the AhR deficient mice (382,408,413). The AhR induces 

the production of interleukin (IL) 17 and IL22 in Th17 cells , which are play a role in 

intestinal mucosal immune cell regulation (42).  Treatment of wild-type mice with FICZ 

increased production of IL17 and IL22 in Th17 cells and this enhanced 

encephalomyelitis (EAE) in a mouse model for this response (382).  

 

Activation of the AhR promotes the differentiation of Treg cells.  For example, the 

activation of AhR by TCDD induces CD4+FOXP3+ Treg cell differentiation in vitro and 

in vivo (408,413) and several endogenous AhR ligands such as Kyn, DIM and 



 

73 

 

naringenin promote differentiation of Treg cells (414-416). Treg cells from AhR 

deficient mice express lower levels of IL10 (417,418) and elevated IFN-γ which is 

normally inhibited by IL10 (419,420). The Treg cell expansion induced by TCDD 

suppressed the EAE and the suppressive effect was abolished by administration of an 

AhR antagonist (408).  

 

1.3.2.2.1.1.3 B cells   

The function of AhR in the B cell differentiation and its activity is not well understood. 

TCDD administration suppresses the production of IgM in a transformed mouse B cell 

line and decreases the number of IgM-secreting plasma cells and delays the 

differentiation of B cells by inhibition of the activator protein (AP)-1 in mice (421). 

Activation of AhR by ITE suppresses the differentiation of B cells into Ig-secreting 

plasma cells and the production of IgM, IgE and IgG1 (421). 

 

1.3.2.2.1.2 AhR in innate immune cells 

1.3.2.2.1.2.1 Neutrophils  

Neutrophils are the most abundant leukocytes mediating inflammatory responses to 

various infections. There have been discrepancies with regard to the effect of AhR on 

neutrophils and this may be due to different AhR ligands and their application.  TCDD 

administration increased the number of neutrophils accumulated in the lung upon 

influenza virus infection in mice and increased inflammation (422). In contrast, 

neutrophils numbers were not increased in the TCDD treated animals in response to 
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Streptococcus pneumonia infection (423), and there were decreased numbers of 

neutrophils in the cornea of herpesvirus simplex-infected mice treated with TCDD (424). 

  

1.3.2.2.1.2.2 Natural killer (NK) cells  

The NK cells are a diverse population of lymphocytes involved in both innate and 

adaptive immunity. The AhR is expressed in NK cells and the modulatory effect of AhR 

on NK maturation and function is still in doubt. IDO and kyn suppressed  NK cells 

undergoing activation, but not resting cells (425). 

  

1.3.2.2.1.2.3 Mast cell   

Mast cells may also be involved in the role of AhR in chronic inflammation and 

autoimmunity. FICZ treatment boosted the degranulation of Mast cells and produced 

ROS, IL-6 and IL17 (426). In addition, AhR was expressed to present in three rat mast 

cell lines and Kyn treatment enhanced the production of IL6 in RBL2H3 cells (427). 

  

1.3.2.2.1.2.4 Platelets   

Platelets are found in large number in blood and involved in clotting. At the sites of 

vascular injury, the AhR plays a critical role in the physiologic response that platelets 

undergo during vascular injury (428) when platelets are recruited and their interactions 

with  collagen, triggers formation of hemostatic plug (429). Treatment with TCDD or 

omeprazole results in platelet priming, as demonstrated by increased platelet aggregation 

and this response is inhibited by the AhR antagonist, CH-223191 (430). 



 

75 

 

  

1.3.2.2.1.2.5 Dendritic cells (DCs)  

DCs are the group of immune cells that bridge the innate and adaptive immunities and 

also play an important role in autoimmune inflammation. TCDD induced differentiation 

of bone marrow derived immature DCs to mature DCs (431), and the AhR mediates the 

induction of indoleamine 2, 3-dioxygenase (IDO) in DCs and IDO converts tryptophan 

into Kyn and other metabolites. Kyn and IL10 production was decreased in AhR-

deficient DCs challenged with lipopolysaccharides (LPS) or CpG oligodeoxynucleotides 

(CpG). In a coculture system of stimulated AhR-deficient DC and naive T cells, 

differentiation of naïve T cells into Treg cells and the immune response was inhibited 

(432). Similarly, ITE treatment induced tolerogenic DCs that support FoxP3+ Treg 

differentiation (373). VAF347 is a low molecular weight compound that inhibits allergic 

lung inflammation and VAF347 blocks the DC-mediated generation of proinflammatory 

Th cells. VAF347 inhibits IL6, CD86 and Human Leukocyte Antigen - antigen D 

Related (HLA-DR) expression in DCs which are required for Th cell generation. AhR 

knockdown ablates the inhibitory effect of VAF347 and AhR deficient mice are resistant 

to VAF347-induced inhibition of  allergic lung inflammation in vivo, suggesting that 

AhR is important for the effects of  VAF347 (433). 

  

1.3.2.2.1.2.6 Innate lymphoid cells (ILCs)  

ILCs are required for the formation of intestinal lymphoid follicles. They are important 

for tissue homeostasis in both innate and adaptive immune responses. AhR is involved in 
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the development of intestinal lymphoid follicles and can be activated by dietary AhR-

active phytochemicals (434). ILCs can be classified into group 1, 2 and 3 ILCs based on 

the expression of effector cytokines and the key transcriptional factors that direct their 

differentiation (435). ILCs are strikingly similar to Th cells, particularly Th1, Th2 and 

Th17 cells with respect to their effector cytokines and functions.  Group 1 ILCs  produce 

IFN-r; group 2 ILCS produce type 2 cytokines and are dependent on GATA3 and RORα 

and group 3 ILCs consists of lymphoid tissue inducer, natural cytotoxicity triggering 

receptor (NCR)+ ILC3, and NCR- ILC3 (403). All three types of ILC3 produce IL17 

and/or IL22 and are dependent on RORγt, and the AhR affects the homeostasis of the 

ILC subsets (436-438). Without the AhR, group 3 ILCs exhibit increased apoptosis 

(439). And defect in the group 3 ILCs were also observed in AhR-/- mice, and when 

challenged with toxoplasma gondii, the AhR-/- mice lost more weight than wild type 

mice (437).  

 

1.3.2.2.1.3 AhR in barrier organs 

The AhR is highly expressed in barrier organs, including skin, lung, and gut. The 

mucosal surfaces of these barrier organs are in direct contact with environmental 

pollutants as well as harmful pathogens, and the AhR functions  to protect against 

physical and immunological challenge to barrier organs (403). 
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1.3.2.2.1.3.1 Skin 

Skin is one of primary defense organs (440). AhR plays a critical role in skin 

homeostasis and barrier function by inducing keratinocyte (KC) terminal differentiation 

and subsequently, the formation of multiple epidermal strata in the skin (441,442). AhR 

activation promotes terminal differentiation in the cultured human KC skin cells 

(443,444) and an in a three-dimensional (3D) epithelial organotypic culture system 

(445). Coal tar which contains AhR active PAHs has been shown to be beneficial for the 

treatment of atopic dermatitis. It was reported that coal tar can active AhR in an 

organotypic culture system and promote epidermal differentiation, and AhR knockdown 

abolished this effect (446). Similarly, FICZ treatment reduced the inflammation in skin 

lesions from psoriasis patients and AhR antagonists worsened the inflammation (447). 

On the other hand, constitutive aberrant expression of AhR was observed to cause 

inflammatory skin lesions (448). After physical damage, the skin initiates a robust 

inflammatory response, followed by new tissue formation and remodeling to prevent 

further effects on deeper body organs (440). Absence of AhR inhibits migration rates of 

primary endothelial cells and fibroblasts during the wound healing, indicating the AhR 

might play a role in this process. Moreover, the AhR promotes wound healing by 

increasing the production of TGFβ by fibroblasts, which in turn accelerates KC cell 

migration and promotes wound healing (449).  
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1.3.2.2.1.3.2 Lung  

The AhR is abundantly expressed in the lung with expression levels similar to that 

observed in liver (450). Lung airways are lined with several subsets of cells, including 

basal stem cells, ciliated cells, brush cells and goblet cells (451). The lung epithelial 

cells, as well as  the immune cells infiltrating the lung, control the inflammatory 

responses in the lung (452). Mucins are glycoproteins produced by epithelial tissues and 

are key components of the mucosa. Lung epithelial cells promote the mucin production 

upon exposure to external toxicants or pathogens, and the AhR may participate in the 

formation of the mucin barrier of the lung under the influence of the endogenous ligands. 

Mast cells also participate in the lung allergic responses, and the AhR deficient mast 

cells poorly respond to allergen stimulation due to dysregulated calcium signaling and 

mitochondrial function (453). The AhR activation by FICZ can promote or inhibit mast 

cell degranulation (426). Mitchell and coworkers compared the consequences of 

transient and sustained AhR activation and proposed that timing is critically important 

(454). A single administration of FICZ results in increased mast cell degranulation 

whereas repeated administration of this ligand leads to suppression of the process with 

asthma lung dysfunction. 

  

1.3.2.2.1.3.3 Gut  

The gastrointestinal tract has the largest mucosal surface of the human body and the gut 

content is separated from the host inner body by a mucus layer secreted by goblet cells 

and a single layer of intestinal epithelial cells (IECs). Interspersed among the IECs are 
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the intraepithelial lymphocytes. Underneath the epithelial is the lamina propria (LP) 

which contains a variety of immune cells, including B cells, T cells, macrophages, DCs, 

and innate lymphoid cells (ILCs) (451). The AhR is critical for maintaining both IEL 

and ILC populations in the gut (434,439,455-457) and is a critical gene for maintaining 

gut health.  

 

1.3.2.2.2 AhR in gut health 

The role of AhR in gut health is also closely related to the production of AhR- active gut 

microbiota metabolites and their role in the regulation of the intestinal mucosal immune 

system.  The intestinal mucosal immune system comprises a well-organized and intricate 

network of the intestinal epithelium, innate and adaptive immune cells. Tryptophan and 

its metabolites are among the most important AhR-active microbiota-derived metabolites 

which are detected in the urine or feces. Trp metabolites have an important role in gut 

immune homeostasis. IL22 is a member of the family of IL-10 related cytokines and has 

an important role in protecting the epithelial cell barrier in the gut. Mice deficient in 

IL22 are highly susceptible to intestinal infection by bacteria pathogens (458). IL22 can 

be produced by Th17 cells, and subsequent studies showed that a subset of innate 

lymphoid cells also produce IL22 (459). There is a significant reduction of ILC22 cells 

in AhR knockout mice resulting in decreased secretion of IL22 and inadequate 

protection against bacterial infection (456,460). It has been shown that Trp metabolites 

regulate IL22 expression via AhR dependent pathway. Dietary tryptophan is metabolized 
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into indole-3-aldehyde, which subsequently activates the AhR pathway and enhances 

production of IL22 by NKp46+ ILCs (404).  

 

Inflammatory bowel disease (IBD) is relatively common and involves chronic 

inflammation of the digestive tract, and includes ulcerative colitis and Crohn’s disease. 

There is increasing evidence that activation of the AhR protects against colitis in mice 

and humans (461-463). Dextran sulfate sodium (DSS)-induced colitis model is widely 

used for studying colitis because of the simplicity of the model and similarities with 

human colitis (464). Treatment with TCDD or FICZ protects mice from dextran sulfate 

sodium (DSS)-induced colitis (465,466). Several mechanisms have been proposed to 

explain the protective effects of activation of the AhR on colitis. AhR could activate 

intestinal innate lymphoid cells to release IL22 (439) or promote the functions of ILCs 

intestinal intraepithelial lymphocytes (IELs) (455). It was shown that AhR deficiency or 

lack of AhR ligands compromised the maintenance of IELs resulting in increased 

vulnerability to epithelial damage (455). In addition, Il-7 was recently added to the list of 

factors involved in attenuation of colitis by AhR activation. FICZ downregulated the 

epithelial cell-derived IL-7 expression in DSS-treated mice. And it has been proposed 

that AhR activation blocks the epithelial IL-7 expression, which  subsequently affects 

the phenotype and function of IELs (467). Caspase recruitment domain family member 9 

(CARD9) is a susceptible gene for IBD, which accelerates recovery from colitis by 

promoting IL-22 production. The microbiota from CARD9 knockout mice failed to 

metabolize tryptophan into AhR ligands, and decreased levels of AhR ligands are also 
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observed in microbiota from IBD patients, particularly in those with CARD9 risk alleles. 

It has been suggested that CARD9 regulates colitis by changing tryptophan metabolism 

into AhR ligands (468). FICZ, a potent endogenous AhR ligand,  downregulates 

epithelial-derived IL7 expression and ameliorate DSS-induced colitis, suggesting that 

AhR active compounds might be new and promising therapies for the treatment of IBD 

patients (469). In patients with Crohn’s disease, reduced AhR expression levels were 

observed in the intestinal T cells and natural killer (NK) cells (466). Fibrostrictures 

(FAS) are a major complication of Crohn’s disease and activation of fibroblasts and 

excessive collagen deposition are crucial for development of FAS. FICZ inhibits 

activation of MAPK activation and collagen induction, suggesting that the AhR is a 

negative regulator of profibrotic signals in the gut (470). 

  

Colorectal cancer (CRC) is the third cause of cancer associated death in the US (2), and 

AhR is involved in colorectal cancer development. In the normal intestine, the AhR is 

primarily localized in the stroma -containing immune cells in the lamina propria and 

lymphoid follicles. In the tumor tissue, AhR expression is elevated and detected in both 

stromal and tumor cells. A media supplemented with AhR ligands suppressed colorectal 

cancer cell growth. It was concluded that the AhR suppresses tumor growth via two 

distinct pathways: in normal tissue, the AhR is associated with tumor prevention by 

regulating gut immunity, while in the tumor cells, it is involved in growth suppression 

(471). Increased risk for CRC has been associated with chronic intestinal inflammation 

as  observed in  patients with IBD (472). AhR deficient mice develop cecal tumors at the 
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age of 30- 40 weeks with severe inflammation and the blockage of interleukin 1β 

signaling attenuates the cecal tumorigenesis in AhR deficient mice (473). The APCmin/+  

mouse model has been extensively used in studies on colon cancer and those mice 

expressing mutations in adenomas polyposis coli (APC) gene spontaneously develop 

intestinal tumors (110). The APCmin/+ mice had a tumor incidence of ~50% at age of 14 

weeks and reached 100% at 25 weeks while in the Apcmin/+; AhR+/- mice tumor 

progression is accelerated and ~50%incidence was observed of ages of 9-10 weeks and 

these mice were also more susceptible to cecal tumorigenesis. Moreover, APCmin/+ mice 

treated with indole-3-carbinol (I3C) exhibited few tumors, supporting the use of AhR 

agonists such as I3C for the treatment of patients with CRC (474). The effect of the AhR 

on the CRC has also been studied in the colon cancer cell lines. It was shown that FICZ 

inhibited prliferation of LoVo colon cancer cells by promoting G1 cell cycle arrest, 

associated with downregulation of cyclin D1 and upregulation of P27 expression. In 

addition, the effect of FICZ was abolished by cotreatment with AhR antagonist (475). 

Treatment with another endogenous AhR agonist, indole-3-carbinal (I3C) induced 

CYP1A1 mRNA expression and a dose-dependent decrease of cell viability and 

increased apoptosis in several colon cancer cell lines. Moreover, knockdown of the AhR 

significantly attenuated the chemotherapeutic effects of I3C with regard to proliferation 

and apoptosis (476). 

  

In summary, the AhR has been shown to be a multi-player in gut health and endogenous 

AhR-ligands have potential for improving treatments of gut-associated diseases.  
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2. THE LONG NON-CODING RNA HOTTIP ENHANCES PANCREATIC 

CANCER CELL PROLIFERATION, SURVIVAL AND MIGRATION* 

 

2.1 Introduction 

Long non-coding RNAs (lncRNAs) are defined as transcripts containing >200 

nucleotides and are typically transcribed by RNA polymerase II (477). Although the 

existence of lncRNAs has been known for several decades, it is only in the last ten years 

that the multiple functions of the lncRNA components of the noncoding genome have 

been determined. LncRNAs play important roles in maintaining cellular homeostasis 

during cell/tissue development and they are also critical factors in pathophysiology 

including cancer (197,477-481). The molecular modes of action of lncRNAs are highly 

variable and include their functions as molecular scaffolds for stabilizing protein-protein 

and protein-DNA interactions; they can also act as decoys and guides that facilitate both 

proximal and distal macromolecular interactions which are usually on a genome 

template (197,272,478). 

 

LncRNAs have been investigated in tumors and cancer cells derived from multiple sites, 

and there is strong evidence that their overexpression or underexpression can influence 

cancer cell growth, survival and migration/invasion (209,210,482). HOX transcript 

                                                 

*  Reprinted with permission from “The long non-coding RNA HOTTIP enhances 

pancreatic cancer cell proliferation, survival and migration” by Cheng Y, Jutooru I, 

Chadalapaka G, Corton JC, Safe S. Oncotarget. 2015; 6(13):10840-52. 
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antisense RNA (HOTAIR) is a 2.2 kb lncRNA in the mammalian HOXC locus that 

serves as sequence-specific scaffold for at least two histone modification complexes, 

namely polycomb repressive complex (PRC2) and the LSD1/CoREST/REST complex 

(209,210,482). In tumors and cancer cells, HOTAIR interactions with these histone 

modification complexes modulate expression of tumor type-dependent gene sets, and 

knockdown or overexpression studies show that HOTAIR is an important pro-oncogenic 

factor that plays a role in cancer cell proliferation, survival and migration/invasion 

(209,210,261,483-486). HOTAIR is also a tumor-specific negative prognostic factor for 

the survival of cancer patients and can be detected in serum (485).   

 

HOXA transcript at the distal tip (HOTTIP) is another HOX-associated lncRNA 

transcribed from the 5' tip of the HOXA locus, and HOTTIP is associated with the PRC2 

and WDR5/MLL1 chromatin modifying complexes and directly binds WDR5 (211). 

HOTTIP primarily coordinates expression of genes associated the HOXA locus in 

fibroblasts (211), and a recent paper showed a close association between HOTTIP and 

HOXA13 in hepatocellular carcinomas (HCCs) (487). For example, both HOTTIP and 

HOXA13 are upregulated in HCCs and are associated with metastasis and decreased 

patient survival (487); moreover, individual knockdown of HOTTIP or HOXA13 by 

RNA interference (RNAi) in HCC cell lines results in downregulation of HOXA13 and 

HOTTIP, respectively. Moreover, RNAi studies showed that knockdown of HOTTIP 

and HOXA13 decreased cell proliferation but did not affect apoptosis in HCC cells 

(487). 
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Previous studies in this laboratory showed that knockdown of HOTAIR in pancreatic 

cancer cells decreased proliferation, induced apoptosis, and inhibited invasion, and this 

was associated with changes in expression of genes associated with these pathways 

(261). We have now investigated the role of HOTTIP in pancreatic cancer cells and have 

observed pro-oncogenic functions similar to that reported for HOTAIR, even though 

both lncRNAs elicit their effects by regulating expression of different sets of genes by 

different pathways. 

 

2.2 Materials and methods 

2.2.1 Cell lines, reagents, and antibodies 

Panc28 cells were a generous gift from Dr. Paul Chiao (University of Texas MD 

Anderson Cancer Center, Houston, TX), and the L3.6pL cell line was kindly provided by 

I. J. Fidler (University of Texas MD Anderson Cancer Center). Panc1, ASPC1, BxPC3, 

MiaPaCa2 cells were obtained from the American Type Culture Collection (Manassas, 

VA) and HPDE cells were provided by Dr. Ming Sound Tsao (Ontario Cancer Institute, 

Toronto, Canada). Panc1, L3.6pL, Panc28 and MiaPaCa2 cells were maintained in 

Dulbecco's modified Eagle medium (DMEM)-Ham's F-12 nutrient mixture (Sigma-

Aldrich, St. Louis, MO) with phenol red supplemented with 0.22% sodium bicarbonate, 

5% fetal bovine serum (FBS), and 10 ml/liter 100X antibiotic/antimycotic solution 

(Sigma-Aldrich). BxPC3 cells were maintained in RPMI-1640 medium (Sigma-Aldrich, 

St. Louis, MO) with phenol red supplemented with 0.15% sodium bicarbonate, 0.24 
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HEPES, 0.011% sodium pyruvate, 0.45% glucose, 10% FBS and 10 ml/liter 100X 

antibiotic/antimycotic solution (Sigma-Aldrich). Cells were grown in 150-cm2 culture 

plates in an air-CO2 (95:5) atmosphere at 37C and passaged approximately every 3 to 5 

days. Cleaved PARP (D214) antibodies were purchased from Cell Signaling Technology 

(Danvers, MA). -Actin (A1978) was from Sigma-Aldrich; GDF15 (sc-377195) was 

from Santa Cruz Technology (Dallas, Texas) and Aurora A antibody (A300-071A) was 

from Bethyl Laboratories Inc. (Montgomery, TX).  Chemiluminescence reagents 

(Immobilon Western) for Western blot imaging were purchased from Millipore 

(Billerica, MA).  Lipofectamine 2000 was purchased from Invitrogen (Carlsbad, CA).  

 

2.2.2 RNA interference and plasmid transfection 

Small interfering RNAs (siRNAs) for HOTTIP, MLL, WDR5, AURKA, and a non-

specific control (Ctrl) were purchased from Sigma-Aldrich.  The siRNA complexes used 

in this study are listed in Appendix B-1. Panc1 and L3.6pL cells were seeded (1x105 per 

well) in 6-well plates in DMEM-Ham's F-12 medium supplemented with 2.5% charcoal-

stripped FBS without antibiotic and left to attach for 1 day. Knockdown by RNA 

interference (RNAi) with siCtrl as a control was performed using Lipofectamine 2000 

transfection reagent as per the manufacturer's instructions.  Full length HOTTIP in 

pcDNA3.1+ was kindly provided by Dr. Howard Y. Chang (Stanford University, 

Stanford, CA) (211). Panc28 cells were seeded (1x105 per well) in 6-well plates n 

DMEM-Ham's F-12 medium supplemented with 2.5% charcoal-stripped FBS without 

antibiotic and left to attach for 1 day. PcDNA3.1-HOTTIP along with pcDNA3.1+ 
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plasmid as a control was performed using Lipofectamine 2000 transfection reagent as 

per the manufacturer's instructions.  

 

2.2.3 Real time-PCR 

Total RNA was isolated using the mirVana miRNA isolation kit (Ambion, Austin, TX) 

according to the manufacturer's protocol. RNA was eluted with 100 l of RNase-free 

water and stored at -80C.  Real-time (RT)-PCR was carried out using iTaq Universal 

SYBR Green One-step Kit (BioRad). The primers used are listed in Appendix B-2. The 

housekeeping TATA-binding protein (TBP) mRNA was use as a control for comparing 

relative expression of RNAs. 

 

2.2.4 Western blot analysis 

Pancreatic cancer cells were seeded in 6-well plates using 2.5% DMEM-Ham's F-12 

medium, and after 24 hr, western blot analysis of whole-cell lysates was performed 

essentially as described previously (261).   

 

2.2.5 Xenograft study 

Female athymic nude mice, 4 to 6 weeks old, were purchased from Harlan Laboratories 

(Houston, TX). L3.6pL cells in culture were transfected with 100 nM siHOTTIP or siCT 

using Lipofectamine 2000. After 48 hr, cells were collected and 1x106 cells in matrigel 

(1:1 ratio) were injected into either side of the flank area of female nude mice (Harlan). 

Tumor volumes were measured (0.5 x length x width2) throughout the study and after 10 
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days, the mice were sacrificed and tumor weights were determined. Tumor volumes and 

weights were determined in mice from the siHOTTIP (5 mice) or siCT (5 mice) groups, 

and siHOTTIP levels were determined by real time PCR. Research involving animal 

experimentation was reviewed and approved by the Texas A&M University Institutional 

Animal Care and Use Committee.   

 

2.2.6 Cell proliferation, death, and cycle analysis 

Panc1 and L3.6pL cells were seeded in 12-well plates and permitted to attach for 24 hr, 

and then cells were transfected with 100 nM siRNA control or different siRNAs using 

Lipofectamine 2000 (Invitrogen, Grand Island, NY). Cells were trypsinized and counted 

at the indicated times using a Coulter Z1 cell counter (Beckman Coulter, Fullerton, CA). 

For cell cycle analysis, cells were stained with propidium iodide solution (50 g/ml) and 

were analyzed by a FACSCalibur flow cytometer 24 hr after transfection.  Apoptosis 

was detected using a fluorescein isothiocyanate (FITC) Annexin V staining kit (Life 

Technologies, Grand Island, NY) followed by fluorescence-activated cell sorter (FACS) 

analysis according to the manufacturer's protocol.   

 

2.2.7 Transwell migration and scratch assays 

Panc1 and L3.6pL cells were first transfected with siRNA for 24 hr, then added to the 

upper chamber of a transwell chamber in duplicate and allowed to migrate into the lower 

chamber containing Hams F12 media with 20% FBS by incubating for 24 hr at 5% CO2 

at 37C. Cells migrating to the outer side of the upper chamber were fixed, stained and 
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counted, and cell migration was also determined using a scratch assay. For the scratch 

assay, cells were first seed in 6-well plate for 24 hr, and then a scratch through the 

central axis of the plate was gently made using a sterile pipette tip. Cells were 

transfected with siHOTTIP or siCTL, media was changed after 6 hr, and migration of the 

cells into the scratch was observed after 48, 72 and 96 hr. Three replicates were obtained 

for each time point.  

 

2.2.8 Microarray analysis 

Total RNA was extracted from Panc1 cells by using a mirVanaTM miRNA Isolation 

Labeling Kit (Ambion Inc.). The total RNA was quantified by using a Nanodrop ND-

1000 spectrophotometer (NanoDrop Technology). The total RNA samples with adequate 

RNA quality index (>7) were used for microarray analysis; 700 ng of total RNA was 

used for labeling and hybridization on HumanHT-12 v4 expression beadchip (Illumina, 

Inc.) according to the manufacturer's protocols. After the beadchips were scanned with a 

BeadArray Reader (Illumina), the microarray data were normalized using the quantile 

normalization method in the Linear Models for Microarray Data (LIMMA) package in 

the R language (http://www.r-project.org). BRB-ArrayTools were primarily used for 

statistical analysis of gene expression data, and the Student’s t test was applied to 

identify the genes significantly different between 2 groups when compared. 

Differentially expressed genes were identified using >1.5 or 2 fold change cut off. Gene 

ontology enrichment analysis was carried out using David Functional Annotation 

Resources 6.7 (http://david.abcc.ncifcrf.gov/). Data for gene expression study of 

http://www.r-project.org/
http://david.abcc.ncifcrf.gov/


 

90 

 

pancreatic ductal adenocarcinoma were downloaded from Gene Expression Omnibus 

(GEO, NCBI) (http://www.ncbi.nlm.nih.gov/geoprofiles/).   

 

2.2.9 Comparison of gene expression changes from lncRNA knockdown to a gene 

expression database 

A rank-based nonparametric analysis strategy called the Running Fisher’s algorithm and 

implemented within the NextBio database (http://www.nextbio.com/) environment was 

used to identify gene expression comparisons (biosets) which have statistically 

significant positive or negative correlation to the genes regulated by siHOTTIP. The 

Running Fisher’s algorithm computes statistical significance of similarity between 

ranked fold-change values of two gene lists using a Fisher's exact test (488). After 

exporting the analysis, the list of correlated biosets were filtered to identify those that 

examined gene expression changes in pancreatic cancers.   

 

2.2.10 Statistical analysis 

Statistical significance of differences between the treatment groups was determined by 

an analysis of variance and/or Student's t test, and levels of probability were noted. At 

least 3 repeated experiments were determined for each data points and results are 

expressed as means  SD. 

 

 

http://www.ncbi.nlm.nih.gov/geoprofiles/
http://www.nextbio.com/
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Figure 11. Effects of HOTTIP in pancreatic cell proliferation and cell cycle. (A) 

HOTTIP expression relative to the housekeeping gene TATA-binding protein (TBP) was 

determined by real time PCR as described in the Materials and Methods. HOTTIP 

knockdown by RNAi knockdown in Panc28, MiaPaCa2, Panc1, BxPC3 and L3.6pL 

cells inhibited cell growth (B), whereas HOTTIP overexpression in Panc28 cells 

promoted cell proliferation (C). (D) The effect of siHOTTIP (knockdown) on cell cycle 

progression in Panc1 cells was determined by FACS analysis as described in the 

Materials and Methods. Results (A-D) are expressed as means  SD for 3 replicates. 

Cells transfected with a non-specific oligonucleotide (siCtrl) were used as controls and 

significant (p<0.05) changes are indicated (*). 
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Figure 12. Effects of HOTTIP in pancreatic cell apoptosis, migration and tumor growth. 

(A) Panc1 cells were transfected with siHOTTIP and after 48 hr, and the increase in 

Annexin V staining and induction of PARP cleavage were determined by fluorescence 

and Western blots analysis respectively. (B) HOTTIP knockdown reduced cell migration 

as determined by the Boyden chamber and scratch assay as discussed in the Materials 

and Methods. (C) HOTTIP was silenced in L3.6pL cells which were then used in the 

athymic nude mice as xenografts.  Tumor volumes were determined for up to 10 days, 

and tumor weights were measured after the animals were sacrificed at Day 10.  Cells 

transfected with a non-specific oligonucleotide (siCtrl) were used as controls, and five 

mice were used in each treatment group. Significant (p<0.05) changes are indicated (*). 
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2.3 Results 

2.3.1 HOTTIP:  functional studies as determined by knockdown and 

overexpression 

Figure 11A illustrates the expression of HOTTIP in five pancreatic cancer cell lines in 

which high expression is observed in Panc1, L3.6pL and MiaPaCa2 cells and lower (> 2-

fold) expression in Panc28 and BxPC3 cells. HPDE cells are non-transformed 

immortalized pancreatic epithelial cells and only minimal expression of HOTTIP was 

observed. Knockdown of HOTTIP by RNAi significantly decreased proliferation of 

Panc1, L3.6pL, Panc28, BxPC3 and MiaPaCa2 cells (Figure 11B) and overexpression of 

HOTTIP increased proliferation of Panc28 cells (Figure 11C), and the growth promoting 

effects of HOTTIP were similar to those previously reported for HOTAIR in pancreatic 

cancer cells (261). Knockdown of HOTTIP in Panc1 cells slightly decreased the 

percentage of cells in S phase and increased the percentage of cells in G2/M phase 

compared to Panc1 cells transfected with the scrambled siRNA (Figure 11D). 

Knockdown of HOTTIP by RNAi induced Annexin V staining and enhanced PARP 

cleavage in Panc1 cells (Figure 12A), demonstrating that HOTTIP plays a role in 

pancreatic cancer cell survival. Moreover, results of Boyden chamber and scratch assays 

(Figure 12B) show that knockdown of HOTTIP significantly decreased Panc1 cell 

migration and these results were similar to those previously observed in comparable 

experiments with HOTAIR in pancreatic cancer cells (261). Moreover, like HOTAIR, 

knockdown of HOTTIP in L3.6pL cells which were used in a xenograft model in 

athymic nude mice decreased tumor growth and tumor weights (Figure 12C) compared 
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to tumors in cells expressing HOTTIP (transfected with a non-specific oligonucleotide).  

Thus, HOTTIP plays a pro-oncogenic role in pancreatic cancer cells. 

 

 

 

 
Figure 13. Gene regulation by HOTTIP and compared to HOTAIR in pancreatic cell 

line. (A) Panc1 cells were transfected with siHOTTIP or siCtrl and gene expression was 

analyzed using HumanHT-12 v4 expression beadchip (Illumina Inc.) array, and (B) the 

effects of siHOTTIP on different pathways were determined by gene ontology 

enrichment analysis. (C) Overlap of common genes was observed after treatment of 

Panc1 cells with siHOTTIP or siHOTAIR. (D) Panc1 cells were transfected with 

siHOTTIP and GDF15 mRNA, and protein levels were determined compared to the 

effects of siHOTAIR. Results for GDF15 mRNA are means  SD for 3 replicated 

determinations, and significant (p<0.05) change is indicated (*). Cells were also 

transfected with siHOTTIP or siHOTAIR and GDF15 protein was analyzed by Western 

blots. 
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2.3.2 Regulation of gene expression by HOTTIP determined by knockdown and 

analysis by beadchip arrays 

Regulation of gene expression by HOTTIP was investigated by comparing Panc1 cells 

transfected with scrambled siRNA with those that were transfected with siHOTTIP in 

Panc1 cells followed by analysis of gene expression using an Illumina Human V.3 HT12 

beadchip array (261). Transfection of cells with siHOTTIP resulted in increased 

expression of 514 (HOTTIP-repressed genes) and decreased expression of 757 genes 

(HOTTIP-enhanced genes) (Figure 13A). Gene ontology enrichment analysis 

demonstrated that HOTTIP-regulated genes could be classified into several categories 

(Figure 13B), including those associated with the functions of HOTTIP in cell growth, 

survival and migration (Figures 11 and 12). Figure 13C illustrates that among the 1271 

genes regulated by HOTTIP and 1006 genes regulated by HOTAIR (261), there were 

only 109 genes (< 5%) commonly regulated by both lncRNAs. Among the 109 

commonly regulated genes, 87 genes were decreased and 22 were increased after 

transfecting cells with siHOTTIP or siHOTAIR; however, with a cut-off of 2-fold the 

number of common genes regulated by both lncRNAs was only 13 (decreased) and 2 

(increased). Growth differentiation factor 15 (GDF15) is an example of the differences 

between HOTTIP- and HOTAIR-regulated genes; in Panc1 cells knockdown of 

HOTAIR induced expression of GDF15, whereas siHOTTIP decreased expression of 

both GDF15 mRNA and protein (Figure 13D), and induction of GDF15 protein after 

HOTAIR knockdown was consistent with previous studies (261). 
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Since HOTTIP associates with the PRC2 and WDR5/MLL1 chromatin-modifying 

complexes (211), we compared the overlap in genes regulated by HOTTIP or these 

complexes after transfection of Panc1 cells with siHOTTIP, siMLL1 and siEZH2 

followed by microarray analysis of changes in gene expression (Figure 14A). The results 

suggest that both MLL1 and HOTTIP or EZH2 and HOTTIP coregulate expression of 

547 and 209 genes, respectively, and we further investigated genes commonly regulated 

by MLL1 and HOTTIP. Results in Figure 14B confirm that for several genes that 

contribute to enhanced carcinogenesis including AURKA, AHNAK, GDF15, SGK1 and 

CD44 (489-494), knockdown of HOTTIP resulted in decreased expression of these 

genes.  Since AURKA (Aurora-A kinase) plays an important multifunctional role in 

pancreatic cancer (491-493), we further investigated the function and regulation of 

AURKA in pancreatic cancer cells. Results in Figure 14B show that knockdown of 

AURKA decreased Panc1 cell growth, and this was accompanied by a dramatic decrease 

in the percentage of cells in G0/G1 and an increase in cells in S and G2/M phase.  

Transfection of Panc1 cells with siAURKA also induced Annexin V staining and PARP 

cleavage (Figure 14C) and inhibited Panc1 cell migration in a scratch assay (Figure 

14D). Transfection of Panc1 cells with siHOTTIP and siAURKA induced similar 

functional changes and this included inhibition of cell growth, induction of apoptosis, 

and decreased migration. However, the effects of siHOTTIP and siAURKA on cell cycle 

progression were different. We also observed that transfection of Panc1 cells with 

siHOTTIP and siMLL1 decreased expression of AURKA protein; however, transfection 

of cells with oligonucleotides that knockdown WDR5 (siWDR5) increased AURKA 
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protein levels in Panc1 cells (Figure 14D). This indicates that the effects of 

HOTTIP/MLL1 on enhanced AURKA gene expression are independent of WDR5, and 

the coregulation of genes by HOTTIP and other MLL1-associated chromatin-modifying 

complexes is currently being investigated. 

 

 

 

 
 

Figure 14. Interaction between HOTTIP, WDR5 and MLL1 on gene expression in 

Panc1 cells. (A) Cells were transfected with siHOTTIP, siMLL, siEZH2 or siCtrl, and 

analyzed by microarrays for changes in gene expression.  Regulation of the same genes 

is illustrated in the Venn diagram.  Panc1 cells were transfected with siHOTTIP or siCtrl 

and genes coregulated by HOTTIP or MLL1 were analyzed by real time PCR. (B) Panc1 

cells were transfected with siAURKA or siCtrl, and effects on cell growth and cell cycle 

progression were determined as mentioned in the Materials and Methods. (C) Effects of 

Annexin V staining and PARP cleavage and (D) cell migration in a scratch assay were 

determined as Materials and Methods. (E) Panc1 cells were transfected with siHOTTIP, 

siMLL1 and siWDR5 or siCtrl and analyzed by Western blots as outlined in the 

Materials and Methods. Results are expressed as means  SD for 3 replicated 

determinations, and significant (p<0.05) change is indicated (*). 
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Figure 14. Continued.  

 

 

 

We also compared the inverse expression of genes in Panc1 cells transfected with 

siHOTTIP with those overexpressed in pancreatic tumors compared to paired adjacent 

normal tissue (GSE16515) and observed 39 genes that were inversely regulated 

(Appendix B-3). Figure 15A summarizes the effects of siHOTTIP on expression of 4 

genes upregulated in tumors (GSE16515) and decreased after knockdown of HOTTIP in 

Panc1 cells. Examination of gene expression comparisons from GSE16515 (pancreatic 

tumor vs. paired adjacent normal tissue and unpaired normal pancreatic tissue) (Figure 

15B), GSE15471 (tumor vs. adjacent normal tissue) (Figure 15C), and GSE3654 (tumor 
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vs. normal pancreatic tissue) (Figure 15D) showed that 39, 44, 49 and 16 genes 

upregulated in tumors were downregulated in Panc1 cells transfected with siHOTTiP. In 

contrast, only a few (0-6 genes in the data sets) inversely related genes were 

downregulated in tumors and increased in Panc1 cells transfected with siHOTTIP and 

these were not included in the comparison with siHOTAIR results. Results in Figures 

15B, 15C and 15D show the number of common genes regulated in the four human 

tumor data sets and decreased in Panc1 cells after transfection with siHOTTIP or 

siHOTAIR (261) and the overlap of the common siHOTTIP/siHOTAIR genes. We 

observed a range of 0-2 overlapping genes in the four data sets. These results further 

emphasize that although both HOTTIP and HOTAIR have similar functions in 

pancreatic cancer, they regulate very different sets of genes. 

 

 

 

 
 

Figure 15. Inverse correlation of genes decreased by siHOTTIP and siHOTAIR and 

increased in pancreatic tumors. (A) Panc1 cells were transfected with siHOTTIP, and 

expression of 9 selected genes upregulated in pancreatic tumors (GSE16515) was 

determined by real time PCR as outlined in the Materials and Methods. Overlap of 

expression of common genes induced in human tumors in GSE1655 (B), GSE15471 (C) 

and GSE3654 (D) data sets and decreased in Panc1 cells transfected with siHOTTIP or 

siHOTAIR (261). 
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Figure 15. Continued. 

 

 

 

2.3.3 HOTTIP regulation of specific HOX genes 

Previous studies in foreskin fibroblasts show that HOTTIP knockdown decreases 

expression of 5' HOXA genes, particularly HOXA13 (211) and in liver cancer cells and 

tumors, there was a parallel expression of HOTTIP and HOXA13 and siHOTTIP 

decreased HOXA13 mRNA levels (487). HOXA13 is more highly expressed than 

HOTTIP by over 2 orders of magnitude in all of the pancreatic cancer cell lines (Figure 

16A); however, despite these differences in the magnitude of expression, there was a 

correlation between expression of HOTTIP and HOXA13 in most of these cell lines. 

However, in Panc1 cells transfected with siHOTTIP, there was only a slight decrease in 
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HOXA13 expression, whereas siHOTTIP decreased HOXA13 in SNU-499 liver cancer 

cells (Figure 16B) and this was consistent with previous studies in liver cancer cell lines 

(487). It has previously been reported that some HOX genes are overexpressed in 

pancreatic tumors and they include HOXA10, HOXB7 and HOXB2 (495-499), and 

transfection of Panc1 cells with siHOTTIP slightly decreased expression of HOXB7 but 

significantly decreased HOXA10 (>80%) and HOXB2 (>60%). Transfection with 

siHOTTIP also decreased mRNA levels of HOXA11 (>75%), HOXA9 (>80%) and 

HOXA1 (>60%), whereas siHOTTIP decreased expression of HOXB7 by <25% (Figure 

16C). Thus, HOTTIP regulates expression of several HOX genes in pancreatic cancer 

cells but in contrast to liver cancer cells, HOTTIP does not regulate expression of 

HOXA13. A recent study showed that HOXA10 expression in pancreatic cancer cells 

was associated with regulation of matrix metalloproteinase 3 (MMP-3) (496) and in 

Panc1 cells transfected with siHOTTIP, we also observed decreased expression of 

HOXA10 and MMP-3 (Figures 16C and 16D). We also observed that SMAD3, a 

negative prognostic factor for pancreatic cancer patients and gene that promotes 

epithelial-mesenchymal transition (500) was also decreased after HOTTIP knockdown 

(Figure 16D). It has also been reported that HOXA11 regulates MMP-2 expression (501) 

and transfection with siHOTTIP also decreased both HOXA11 and MMP-2 (Figures 

16C and 16D), suggesting that HOTTIP regulation of HOXA10 and HOXA11 and their 

downstream genes contribute to the oncogenic role of HOTTIP in pancreatic cancer cell 

migration/invasion.  
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Figure 16. Coregulation of HOTTIP and HOX genes in pancreatic cancer cell lines. (A) 

The relative expression of HOTTIP and HOXA13 compared to TBP mRNA in several 

pancreatic cancer cell lines was determined by real time PCR.  (B) Panc1 and SNU499 

cells were transfected with siHOTTIP and expression of HOXA13 was determined by 

real time PCR as outlined in the Materials and Methods.  Panc1 cells were transfected 

with siHOTTIP and expression of several HOX mRNAs (C) and MMP/AURKA and 

SMAD3 mRNA (D) were determined by real time PCR as outlined in the Materials and 

Methods. Results are expressed as means  SD for 3 replicated determinations, and 

significant (p<0.05) change is indicated (*). 
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Figure 16. Continued. 

 

 

 

2.4 Discussion 

Rinn and coworkers have identified 231 non-coding RNAs associated with human HOX 

gene loci and these RNAs are spatially expressed and sequence-specific (482). HOTAIR 

was the first HOX-associated lncRNA that was characterized and was initially identified 

as a scaffold RNA associated with the chromatin-modifying PRC2 complex and the 

H3K27me3 histone mark which is associated with gene suppression.  Subsequent studies 

showed that HOTAIR directly interacted with both the PRC2 and LSD1/REST/coREST 

repressor complexes (209,210,482), and in multiple tumor and cancer cell lines, 

HOTAIR-regulated gene expression enhances tumorigenesis (209,210,261,483-486). 

HOTAIRm2, Mistral, HOTTIP and more recently linc-HOXA1 are other HOX-

associated lncRNAs that have been investigated (209,210,482,502-504) and linc-

HOXA1 represses expression of HOXA1 in combination with the cofactor PURB (504). 

 

The pro-oncogenic functions and negative prognostic significance of HOTAIR have 

been reported for several cancers including pancreatic cancer, whereas with the 
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exception of one paper on HOTTIP in liver tumors and cells (487), the expression and 

functions of other HOX-associated lncRNAs in cancer cell lines have not been 

extensively investigated. In liver cancer cell lines and tumors, HOTTIP is closely 

associated with expression of HOXA13 and knockdown of HOTTIP decreases 

expression of HOXA13 (487). In the present study, we investigated the expression and 

function of HOTTIP in pancreatic cancer cells and compared the results to that observed 

in previous studies on HOTAIR in pancreatic cancer cells (261). Results of knockdown 

and overexpression studies show that HOTTIP has functions comparable to that 

described for HOTAIR and plays a role in pancreatic cancer cell proliferation, survival 

and migration/invasion (Figures 11 and 12). However, a comparison of the genes 

regulated by HOTTIP and HOTAIR in Panc1 cells after knockdown by RNA 

interference showed that there was minimal gene overlap (Figure 13C), even though the 

pro-oncogenic functions of HOTTIP and HOTAIR are comparable. We also examined 

the overlap of genes overexpressed in publically available pancreatic tumor data sets and 

genes downregulated in Panc1 cells transfected with siHOTTIP (Figure 15). Among the 

human data sets (GSE16515, GSE15471 and GSE 3654), the number of overexpressed 

genes in tumors and genes downregulated by siHOTTIP that were in common varied 

among the data sets (16-49 genes in common) and similar variability (48-113 genes in 

common) was observed with genes downregulated by siHOTAIR in Panc1 cells (261). 

Some of these differences in the number of common genes may be due to the sensitivity 

and composition of the different arrays that were used in these studies. However, the 

most striking observation was the minimal overlap between the genes regulated by 
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HOTTIP vs. HOTAIR, further confirming the independent pro-oncogenic functions and 

gene regulation by these two lncRNAs in pancreatic cancer. 

 

Since HOTTIP interacts with both the PRC2 and MLL1/WDR5 chromatin-modifying 

complexes (211), we also investigated by RNAi and microarrays, the overlap of genes 

coregulated by HOTTIP and MLL1/WDR5 (siHOTTIP/siMLL1) and by HOTTIP and 

PRC2 (siHOTTIP/siEZH2) (Figure 14A). Although both HOTTIP and MLL1 

coregulated several genes in common, it was apparent that <40% of all HOTTIP-

regulated genes were coregulated by HOTTIP and the two complexes. Moreover, among 

several genes that were decreased in Panc1 cells after transfection with siHOTTIP (Fig. 

4B), we observed that AURKA was coregulated by HOTTIP and MLL1 but not 

HOTTIP and WDR5 (Figure 14E) which has been reported to bind directly to HOTTIP 

(211). Interestingly, knockdown of WDR5 increased AURKA protein levels, whereas 

siHOTTIP and siMLL1 decreased AURKA protein (Figure 14E). These results suggest 

regulation of gene expression by HOTTIP in pancreatic cancer cells involves interaction 

with complexes in addition to PRC2 and MLL1/WDR5, and this includes MLL1 

complexes independent of WDR5.  These interactions are currently being investigated. 

 

Our results also showed that HOTTIP regulated expression of multiple HOX genes in 

pancreatic cancer cell cells (Figure 16C) but, in contrast to results in liver cancer cell 

lines (487), HOTTIP did not regulate expression of HOXA13 (Figure 16B). Previous 

studies indicated that HOXA10 and HOXA11 regulate expression of MMP-3 and MMP-
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2, respectively (496,501), and both MMPs contribute to migration/invasion of pancreatic 

cancer cells (496,505-507). Figures 16C and 16D show that siHOTTIP decreased both 

HOXA10 and HOXA11 and this was paralleled by decreased expression of MMP-3 and 

MMP-2, demonstrating that HOTTIP regulates specific HOX genes that play a role in 

the migration/invasion of pancreatic cancer cells. Thus, HOTTIP functions in pancreatic 

cancer cells are due, in part, to regulation of some HOX genes but not HOXA13 as 

previously observed in liver cancer cells (487). In addition, the HOX gene targets in 

HOTTIP in pancreatic cancer cells are different from those regulated by HOTTIP in 

primary human fibroblasts (482). Results of our study demonstrate a novel pro-

oncogenic role for HOTTIP in pancreatic cancer cells, and we are currently investigating 

HOTTIP expression in tumors and both the HOX-dependent and -independent pro-

oncogenic functions of HOTTIP in pancreatic and other cancer cell lines. Current studies 

are focused on the regulation of HOTTIP expression and the discovery of agents that 

target this lncRNA. 
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3. ROLE OF METASTASIS-ASSOCIATED LUNG ADENOCARCINOMA 

TRANSCRIPT 1 (MALAT1) IN PANCREATIC CANCER* 

 

3.1 Introduction 

Results of high throughput sequencing technologies show that less than 2% of the human 

genome encodes for proteins, whereas up to 75% of the genome transcribes non-coding 

RNAs (ncRNAs) which are highly variable in length, function and regulation (508). 

MicroRNAs (miRNAs) are 21-23 bp in length and there is now extensive evidence 

showing that miRNAs play important roles in maintaining cellular homeostasis and in 

diseases such as cancer through their sequence-specific regulation (primarily repression) 

of genes (509,510). There is also evidence that long ncRNAs (lncRNAs) greater than 

200 bp play an equally important role in normal cell functions and disease, and 

estimations from the Encyclopedia of DNA Element Project Consortium indicates that 

the human genome contains up to 16,000 genes encoding 28,000 lncRNA transcripts 

(508,511).   

 

Metastasis-Associated-in-Lung-Adenocarcinoma-Transcript-1 (MALAT1) is a lncRNA 

that is overexpressed in multiple cancer cell lines and tumors, and initial studies show 

                                                 

*  Reprint from “Role of metastasis-associated lung adenocarcinoma transcript-1 

(MALAT-1) in pancreatic cancer” by Cheng Y, Imanirad P, Jutooru I, Hedrick E, Jin 

UH, et al. Carcinogenesis (In review) 2016 
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that MALAT1 expression in early stage non-small cell lung cancer patients predicted 

patient survival and metastasis (512). The expression and prognostic value of MALAT1 

has now been extensively investigated in multiple tumor types. The results demonstrate 

that high tumor expression of MALAT1 is a negative prognostic factor for lung, liver, 

pancreatic, melanoma, cervical, colorectal, gastric, multiple myeloma, clear cell, renal 

cell, glioma and adrenocortical cancer patients (262-264,266,512-521). The negative 

prognosis associated with overexpression of MALAT1 in tumors correlates with the 

functions of MALAT1 in cancer cells. For example, results of knockdown studies in 

lung cancer cells indicate that loss of MALAT1 decreased migration/wound healing and 

injection of MALAT1-deficient A549 lung cancer cells in mice resulted in significantly 

decreased formation of lung nodules. In mice bearing A549 cells as xenografts, injection 

of MALAT1 antisense oligonucleotides significantly decreased tumor growth (521).   

 

The mechanisms associated with the pro-oncogenic functions of MALAT1 involve 

multiple pathways and genes. Initial studies reported that MALAT1 stably localizes to 

nuclear speckles and interacts with pre-mRNA splicing factors (SR proteins) to modulate 

gene expression in some cells (e.g. HeLa cells) (201,522-524). However, in MALAT1 

knockout mice, the formation of nuclear speckles and pre-mRNA splicing were 

unaffected (525-527), suggesting that pro-oncogenic function of MALAT1 may be 

independent of nuclear speckles. MALAT1 exhibits multiple pro-oncogenic functions in 

cancer cells and plays a role in cell proliferation, survival, epithelial to mesenchymal 

transition (EMT), migration and metastasis through diverse mechanisms which include 
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acting as a decoy sponge and direct or indirect interactions with DNA, RNA and protein 

(528-536). Recent studies show that MALAT1 is a negative prognostic factor for 

pancreatic cancer (263,264) and our preliminary results also demonstrate that the pro-

oncogenic functions of MALAT1 in pancreatic cancer are similar to those observed in 

other tumors. Results of microarray and knockdown studies also suggest a role for 

MALAT1 as a scaffold for chromatin modifying complexes. Although loss of MALAT1 

decreased pancreatic tumor growth and metastasis in a mouse orthotopic model 

(262,267), the loss of MALAT1 in highly aggressive p53L/L; LSL-KrasG12DL/+; 

p48Cre+/- and the p53L/+ heterozygotes has minimal effects on mouse survival and 

tumor pathology. 

   

3.2 Materials and methods 

3.2.1 Cell lines, reagents, and antibodies 

Panc28 cells were a generous gift from Dr. Paul Chiao (University of Texas MD 

Anderson Cancer Center, Houston, TX), and the L3.6pL cell line was kindly provided by 

I. J. Fidler (University of Texas MD Anderson Cancer Center). Panc1, ASPC1, BxPC3, 

MiaPaCa2 cells were obtained from the American Type Culture Collection (Manassas, 

VA) and HPDE cells were provided by Dr. Ming Sound Tsao (Ontario Cancer Institute, 

Toronto, Canada). Panc1, L3.6pL, Panc28 and MiaPaCa2 cells were maintained in 

Dulbecco's modified Eagle medium (DMEM) (GenDEPOT, Barker, TX, USA) 

supplemented with 10% fetal bovine serum (FBS).  BxPC3 and ASPC1 cells were 

maintained in RPMI-1640 medium (GenDEPOT, Barker, TX, USA) supplemented with 
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10% FBS.  Cells were grown in 150-cm2 culture plates in an air-CO2 (95:5) atmosphere 

at 37C and passaged approximately every 3 to 5 days.  Cleaved PARP (D214), cleaved 

caspase-7 (Asp198) (D6H1), cleaved caspase-9 (Asp330) (D2D4), and GAPDH 

antibodies were purchased from Cell Signaling Technology (Danvers, MA). Sp3 and 

Sp4 antibodies were purchased from Santa Cruz Biotech (Santa Cruz, CA, USA) and a 

Sp1 antibody was purchased from Abcam (Cambridge, MA, USA). -Actin (A1978) 

antibody was obtained from Sigma-Aldrich. 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT); glutathione was purchased from ThermoFisher 

Scientific (Waltham, MA, USA). Chemiluminescence reagents (Immobilon Western) for 

Western blot imaging were purchased from Millipore (Billerica, MA). Lipofecatmine 

2000 was purchased from Invitrogen (Carlsbad, CA). 

 

 

 

Table 6. List of siRNAs. 

 

Name Sequence 

SiGL2 Sigma CGUACGCGGAAUACUUCGA 

SiMALAT1#1 Sigma SASI_Hs02_00377093 

SiMALAT1#2 Ambion cat#4390771 

SiAPAF1 Sigma SASI_Hs02_00331274  

SiEZH2 Sigma SASI_Hs01_00147882 

SiLSD1 Sigma SASI_Hs01_00213078  

SiMLL-1 Sigma SASI_Hs01_00090459 

SiNDRG1 Sigma SASI_Hs01_00034470 

SiSP1 Sigma  SASI_Hs02_00333289 

SiSP3 Sigma  SASI_Hs01_00211941 

SiSP4 Sigma  SASI_Hs01_00114420 
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3.2.2 RNA interference 

Pancreatic cancer cells were seeded (1x105 per well) in 6-well plates in DMEM medium 

supplemented with 2.5% FBS and left to attach for 1 day. Knockdown by RNA 

interference (RNAi) with siCtrl as a control was performed using lipofectamine 2000 

transfection reagent as per the manufacturer's instructions. The siRNAs were listed in 

Table 6. 

 

3.2.3 Real time-PCR 

Total RNA was isolated using Zymo Quick RNA MiniPrep Kit (Zymo Research, Irvine, 

CA) according to the manufacturer's protocol. RNA was eluted with 35 l of RNase-free 

water and stored at -80C. Real-time (RT)-PCR was carried out using iTaq Universal 

SYBR Green One-step Kit (Bio-Rad, Hercules, CA). The following primers were used 

(Tables 7 and 8).   

 

 

 

Table 7. Human primers used for real Time-PCR. 

 

Gene 

Name 

Forward Primer Reverse Primer  

NRAS GCACCATAGGTACATCATCCG GCTTCCTCTGTGTATTTGCCA 

PCNA AAGAGAGTGGAGTGGCTTTTG TGTCGATAAAGAGGAGGAAGC 

SPRY2 GAAGTGTGGTCACTCCAGCA TTGCACATCGCAGAAAGAAG 

SMAD3 CGGCAGTAGATGACATGAGG TCAACACCAAGTGCATCACC 

APAF1 CCTCTCATTTGCTGATGTCG TCACTGCAGATTTTCACCAGA 
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Table 8. Mouse primers used for real Time-PCR. 

 

Gene 

Name 

Forward Primer Reverse Primer  

PCNA GGAGACAGTGGAGTGGCTTT TGGATAAAGAAGAGGAGGCG 

MALAT

1 

TGAAAAAGGAAATGAGGAGAA

AAG 

CTTCACAAAACCTCCCTTTAC

AAT 

GAPDH TTGATGGCAACAATCTCCAC CGTCCCGTAGACAAAATGGT 

 

 

 

3.2.4 Western blot analysis 

Seventy-two hours after siRNA transfection, cells were collected using high-salt buffer 

(50 mM HEPES, 0.5 mol/l NaCl, 1.5 mM MgCl2, 1 mM EGTA, 10% glycerol, and 1% 

Triton-X-100) and 10 l/ml Protease Inhibitor Cocktail (Sigma-Aldrich). Protein lysates 

were incubated for 5 min at 95C before electrophoresis and then separated on 10% 

SDS-polyacrylamide gel electrophoresis 120 V for 2 to 3 hr. Proteins were transferred 

onto polyvinylidene difluoride membranes by wet electroblotting in a buffer containing 

25 mM Tris, 192 mM glycine, and 20% methanol for 1.5 hours at 900 mA. Membranes 

were then blocked for 30 min with specific antibodies. Detection of specific proteins was 

performed using Chemiluminescence and then exposed to Kodak image station 4000 

mm Pro (Carestream Health, Rochester, NY).   

 

3.2.5 Cell proliferation assays 

Cell counting: Pancreatic cancer cells were seeded in 12-well plates, and 72 hrs after 

siRNA transfection, cells were trypsinized and counted using a Coulter Z1 cell counter 

(Beckman Coulter, Fullerton, CA). MTT assay: Pancreatic cells were seed into a 96-well 
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plate and 72 hours after siRNA transfection, medium was removed, and MTT solution 

diluted in PBS was added to cell cultures.  After 2 hours incubation, the medium was 

aspirated and washed with PBS. Dimethyl sulfoxide (DMSO) was added and incubate at 

37 for 10 mins and absorbance was measured at 570 nM.   

 

3.2.6 Apoptosis and cell cycle analysis assays 

For cell cycle analysis, 48 hours after transfection, cells were stained with propidium 

iodide solution (50 g/ml) and were analyzed by fluorescence-activated cell sorter 

(FACS). Apoptosis was detected using Alexa Fluor 488 Annexin V/Dead Cell apoptosis 

kit followed by FACS analysis according to the manufacturer's protocol.   

 

3.2.7 Migration and invasion assays 

Transwell migration/invasion: Pancreatic cancer cells were first transfected with siRNAs 

for 48 hours, then added to the upper chamber of a transwell chamber (with or without 

matrigel) in duplicate and allowed to migrate/invade into the lower chamber containing 

DMEM media with 20% FBS by incubating for 24 hr. Cells migrating/invading to the 

outer side of the upper chamber were fixed, stained and counted. Scratch assay: Cells 

were first seed in 6-well plates for 24 hours, and then a scratch through the central axis 

of the plate was gently made using a sterile pipette tip. Cells were transfected with 

siRNAs, and media was changed after 6 hr.  Migration of the cells into the scratch was 

observed after 24, 48, and 72 hr. Ibidi assay: Pancreatic cancer cells were first 

transfected with siRNAs for 24 hours, then seeded in the silicone cell culture inserts 
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(Ibidi, Martinsried, Germany) which are attached to culture plates.  Inserts were removed 

with tweezers and cells were rinsed with PBS and new medium was added into the cell 

after 24 hrs. The movement of cells to the middle gap was observed.   

 

3.2.8 Microarray analysis 

Total RNA was isolated using Zymo Quick RNA MiniPrep Kit (Zymo Research, Irvine, 

CA) according to the manufacturer's protocol.  RNA was eluted with 35 l of RNase-

free water and stored at -80C. The total RNA was quantified by using a NanoDrop ND-

1000 spectrophotometer (NanoDrop Technology). The total RNA samples with adequate 

RNA quality index (>7) were used for microarray analysis; 700 ng of total RNA was 

used for labeling and hybridization on Human HT-12 v4 expression beadchip (Illumina, 

Inc.) according to the manufacturer's protocols. After the beadchips were scanned with a 

BeadArray Reader (Illumina), the microarray data were normalized using the quantile 

normalization method in the Linear Models for Microarray Data (LIMMA) package in 

the R language (http://www.r-project.org). BRB-Array Tools were primarily used for 

statistical analysis of gene expression data, and the Student’s t test was applied to 

identify the genes significantly different between 2 groups when compared. Function 

and pathway analysis of differentially regulated genes was determined using Ingenuity 

Pathway Analysis (IPA) database (Invitrogen, Carlsbad, CA).   

 

3.2.9 RNA sequencing analysis 

Total RNA was isolated using Zymo Quick RNA MiniPrep Kit (Zymo Research, Irvine, 

http://www.r-project.org/
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CA) according to the manufacturer's protocol. RNA was eluted with 35 l of RNase-free 

water and stored at -80C. The total RNA was quantified by using a Nanodrop ND-1000 

spectrophotometer (NanoDrop Technology). RNA sequencing was carried out in the 

genomics and bioinformatics service at Texas A&M University and the sequencing 

results were analyzed using sequencing-pipeline developed by the lab of Dr. Robert 

Chapkin at Texas A&M University. Functional and pathway analysis of differentially 

regulated genes was determined using Ingenuity Pathway Analysis (IPA) database 

(Invitrogen, Carlsbad, CA).   

 

3.2.10 Animal pathology 

A total of 17 mice were euthanized with carbon dioxide (CO2). Of these, one was 

genotype p53L/L LSL-KrasG12D L/+ P48Cre +/-; two were genotype Malat1 -/- p53L/L 

LSL-KrasG12D L/+ P48Cre +/-; nine were genotype p53L/+ LSL-KrasG12D L/+ 

P48Cre+/-; three were genotype Malat1+/- p53L/+ LSL-KrasG12D L/+ P48Cre+/-; and 

two were genotype Malat1-/- p53L/+ LSL-KrasG12D L/+ P48Cre+/-. The following 

tissues were harvested from all these mice and fixed in 10% neutral buffered formalin: 

heart, lungs, diaphragm, pancreas, liver, kidney, spleen, stomach, small intestine, large 

intestine, testis/ovaries and brain. Fixed tissues were processed for routine histology and 

paraffin embedded. Histological sections were stained with hematoxylin and eosin, and 

examined by a board certified pathologist (ARH).   
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3.2.11 Production of Malat1 KO mice 

Malat1 knockout mice were generated using a gene-trapping technique (537). Mice 

(strain C57BL/6) were cloned from an ES cell line (IST14461G11; Texas A&M Institute 

for Genomic Medicine, TIGM). The ES cell clone contained a retroviral insertion in the 

Malat1 gene identified from the TIGM gene trap database, and was microinjected into 

C57BL/6 host blastocysts to generate germline chimeras using standard procedures 

(538). The retroviral OmniBank Vector 74 contained a splice acceptor sequence (SA) 

followed by a 5' selectable marker neomycin resistance genes, for identification of 

successful gene trap events followed by a polyadenylation signal (pA). Insertion of the 

retroviral vector into the Malat1 gene led to the splicing of the endogenous upstream 

exons into this cassette to produce a fusion transcript and terminate expression of the 

RNA downstream. Chimeric males were bred to C57BL/6 females for germline 

transmission of the mutant Malat1 allele.  Ablation of Malat1 expression in homozygous 

mice was confirmed by RT-PCR.   

 

3.2.12 Statistical analysis 

Statistical significance of differences between the treatment groups was determined by 

an analysis of variance and/or Student's t test, and levels of probability were noted. At 

least 3 repeated experiments were determined for each data points and results are 

expressed as means  SD.   
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3.3 Results 

3.3.1 Expression and pro-oncogenic functions of MALAT1 in pancreatic cancer 

cells 

Previous studies showed that MALAT1 is overexpressed in pancreatic cancer cell lines 

and tumors compared to non-transformed pancreatic cells/tissue (266,267) and results of 

knockdown studies by RNA interference confirmed the pro-oncogenic activity of 

MALAT1. We also observed high expression of MALAT1 in pancreatic cancer cells 

(Appendix A-1); knockdown of MALAT1 (siMALAT1) in Panc1 and MiaPaCa2 cells 

decreased cell proliferation and induced G2/M arrest (Figures 17A and 17B) and 

induced apoptosis as indicated by increased Annexin V staining and expression of 

cleaved PARP (Figure 17C). Moreover, knockdown of MALAT1 also decreased cell 

migration and invasion in scratch and Boyden chamber assays (Figures 17D and 17E), 

and decreased migration was also observed in ibidi and Boyden chamber assays 

(Appendix A-1). These results confirm that MALAT1 plays a role in pancreatic cancer 

cell proliferation, survival and migration/invasion. 
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Figure 17. Effects of MALAT1 in pancreatic cell proliferation, cell cycle, apoptosis, 

migration and invasion. (A) MALAT1 knockdown by RNAi in Panc1, MiaPaCa2 

inhibited cell growth. (B) The effect of siMALAT1 (knockdown) on cell cycle 

progression in Panc1 and MiaPaCa2 cells was determined by FACS analysis. (C) The 

apoptotic cells were quantified using FACS analysis and induction of PARP cleavage 

was determined by western blot analysis. MALAT1 knockdown reduced cell migration 

(D) and cell invasion (E) as determined by scratch assay and Boyden chamber assay, 

respectively.  Significant (p<0.05) changes are indicated (*). 
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Figure 17. Continued. 
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3.3.2 Analysis of MALAT1 regulated gene expression in Panc1 cells 

Knockdown of MALAT1 by RNAi in Panc1 cells resulted in the induction of 352 and 

repression of 611 genes (Figure 18A). Further analysis of these genes by Ingenuity 

Pathway Analysis demonstrated that MALAT1-regulated genes are involved in multiple 

functions (Figure 18B). Not surprising, many of the MALAT1-regulated genes were 

associated with cell growth and proliferation, cell death and survival, and cell movement 

(motility, migration and invasion) and these correlated with functional responses 

observed after MALAT1 knockdown (Figure 17). Figure 18C summarizes analysis of 

the overall changes in gene expression after MALAT1 knockdown using causal 

Ingenuity Pathway Analysis which is a quantitative approach that integrates both 

changes in gene expression and pathways to predict biologic function. The low p values 

and activation scores (> 2.0 or < -2.0) obtained from causal IPA strongly predicted that 

loss of MALAT1 was associated with decreased cell movement and proliferation and 

increased cell death, and this analysis correlated with results of functional studies 

(Figure 17). Previous studies in this laboratory showed that like MALAT1, the lncRNAs 

HOTAIR and HOTTIP also regulate cell proliferation, survival and movement in Panc1 

pancreatic cancer cells (261,272), and Figure 19A shows the overlap of total changes in 

gene expression observed for MALAT1, HOTTAIR and HOTTIP.  Based on the total 

number of genes regulated by MALAT1 (963), HOTAIR (1628) and HOTTIP (1125), 

the common genes coregulated by MALAT1/HOTTIP and MALAT1/HOTAIR were 

only 8.5 and 16.1%, respectively, suggesting that the common pro-oncogenic responses 

regulated by the three lncRNAs are primarily due to different sets of genes.   
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Figure 18. Gene regulation by MALAT1. (A) Panc1 cells were transfected with 

siMALAT1 or siCtrl and gene expression was analyzed using Human HT-12 v4 

expression beadchip (Illumina, Inc.) array. (B) The effects of siMALAT1 on different 

function categories and the predicted activation state of cell proliferation, death and 

movement after MALAT1 knockdown were determined by IPA. 
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Figure 19. Comparison of regulated genes by HOTAIR, HOTTIP and MALAT1 in 

Panc1 cells. Panc1 cells were transfected with siHOTTIP, siHOTAIR or siMALAT1, 

and changes in gene expression were determined using Human HT-12 V4 expression 

bead chip arrays. The overlap of total genes (A), proliferation inhibition (B), cell death 

(C) and inhibition of migration/invasion (D) genes coregulated by HOTTIP/HOTAIR, 

HOTTIP/MALAT1 and HOTAIR/MALAT1 was determined by IPA. 
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Venn diagram analysis of the overlap in gene expression associated with cell 

proliferation, cell death and migration/invasion by MALAT1, HOTAIR and HOTTIP 

(Figures 19B-D) shows that there was minimal gene overlap (<10%), demonstrating that 

the lncRNA-regulation of these responses was primarily due to different sets of genes. 

 

 

 

 
Figure 20. Interaction between MALAT1 and EZH2 on gene expression in Panc1 cells. 

(A) Cells were transfected with siMALAT1 or siCtrl.  Genes regulated by MALAT1 

were analyzed by real time PCR and the expression of apoptosis associated proteins was 

analyzed by western blot. (B) Panc1 cells were transfected with siMALAT1, 

siMALAT1+siAPAF1 or siCtrl, and effects on cell growth and migration were 

determined. (C) Panc1 cells were transfected with siMALAT1, siEZH2, siLSD1, 

siMLL1 or siCtrl, analyzed by microarrays for changes in gene expression. (D) Cells 

were transfected with siMALAT1, siEZH2, or siCtrl, and the mRNA and protein 

expression of NDRG1 were determined by real time PCR and western blot. (E) Panc1 

cells were transfected with siMALAT1, siMALAT1+siNDRG1 or siCtrl and effects on 

cell growth and migration were determined.  Significant (p<0.05) changes are indicated 

(*) or (**). 
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Figure 20. Continued. 

 

 

 

Figure 20A illustrates induction and repression of representative genes observed in the 

arrays after MALAT1 knockdown in Panc1 cells as determined by real time PCR. One 
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of these genes, apoptotic protease activating factor 1 (APAF1), is a key protein 

component of the apoptosome, and knockdown of MALAT1 induced expression of 

APAF1 protein and activation (cleavage) of caspases 7 and 9 and PARP in Panc1 cells 

(Figure 20A). This suggests that the pro-apoptotic activity observed after MALAT1 

knockdown was due, in part, to induction of APAF1. Figure 20B shows that in Panc1 

cells transfected with siMALAT1, there was a decrease in cell migration and number 

which could be partially reversed by knocking down APAF-1 (induced by siMALAT1), 

suggesting that APAF-1 may also play a role in Panc1 cell growth and migration. 

 

We also used RNAi coupled with analysis of array data to investigate the overlap of 

MALAT1 with EZH2-, LSD1- and MLL-1-regulated genes to identify genes coregulated 

by PRC2, REST/coREST and MLL-1 chromatin modifying complexes, respectively.  

There was overlap of genes coregulated by MALAT1 and EZH2, LSD1 and MLL-1 with 

the highest gene overlap observed with EZH2 (a component of the PRC2 complex) in 

which 107 common genes were upregulated after Panc1 cells were transfected with 

siMALAT1 and siEZH2 (Figure 20C). One of these coregulated genes was N-myc 

downregulated gene-1 (NDRG1) which exhibits tumor suppressor-like activity in 

pancreatic cancer (539-541). Knockdown of MALAT1 or EZH2 by RNAi in Panc1 cells 

induced expression of NDRG1 mRNA as determined by real time PCR (Figure 20D), 

thus confirming the array results and these same treatments also increased NDRG1 

protein. The functional role of MALAT1-dependent suppression of NDRG1 was further 

investigated in Panc1 cells transfected with siMALAT1 which decreased cell 
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proliferation and migration (Figure 20E) and this was partially reversed by 

cotransfection with siNDRG1. Thus, NDRG1 suppression by MALAT1 also plays a role 

in the pro-oncogenic functions of this lncRNA associated with cell proliferation and 

migration. 

 

 

 

   
 

Figure 21. Regulation of MALAT1 by Specific proteins and ROS inducers. (A) The 

structure of CDDO-Me and CF3DODA-Me. Panc1 cells were treated with different 

concentrations of CDDO-Me or in combination of GSH, CF3DODA-Me or in 

combination with GSH, and the changes of different proteins (B) and MALAT1 

expression (C) were determined by western blot and real time PCR, respectively. (D) 

Panc1 cells were transfected with siSp1/3/4 or siCtrl, and the MALAT1 RNA expression 

was determined by real time PCR.  Significant (p<0.05) changes are indicated (*) or 

(**). 
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Figure 21. Continued. 

 

 

 

The transcription factors Sp1, Sp3 and Sp4 are overexpressed in pancreatic cancer cells 

and like MALAT1, knockdown of Sp1, Sp3 and Sp4 or Sp1/Sp3/Sp4 (combined) results 

in decreased cell growth, induces apoptosis, and decreases migration (542-546). A recent 

report showed that MALAT1 is an Sp1-regulated gene (518) and we therefore 

determined if ROS-inducing anticancer agents that downregulate Sp1, Sp3 and Sp4 in 

pancreatic and other cancer cell lines also decrease MALAT1 expression. Treatment of 

Panc1 cells with two triterpenoid ROS inducers, methyl-2-cyano-3,12-dioxooleana-1,9-

dien-28-oate (CDDO-Me, bardoxolone-methyl) and methyl-2-trifluoromethyl-3,11-
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dioxo-18-olean-1,12-dien-30-oate (CF3DODA-Me) (Figure 21A), decreased expression 

of Sp1, Sp3 and Sp4, and these effects were reversed in Panc1 cells cotreated with the 

antioxidant glutathione (GSH) (Figure 21B). These results are consistent with previous 

reports on ROS inducers that downregulate Sp proteins in pancreatic and other cancer 

cell lines. Treatment of PANC1 cells with the two triterpenoids alone also decreased 

MALAT1 expression and cotreatment with GSH also attenuated this response (Figure 

21C). Moreover, silencing Sp1, Sp3 and Sp4 combined (siSp1/3/4) also decreased 

MALAT1 expression (Figure 21D), confirming that MALAT1 is a Sp-regulated gene.   

 

MALAT1-/- mice have previously been reported (525-527) and were also generated in 

our laboratory using a gene trapping technique (537), and results in Figure 22A show 

that real time PCR analysis did not detect MALAT1 expression in multiple tissues of 

MALAT1-/- mice. Using founder mice provided by the DePinho laboratory (83,125), we 

generated p53L/L; LSLKrasG12DL/+; p48Cre+/- (p53L/L/KrasG12D) and p53L/+; 

LSL-KrasG12DL/+; p48Cre+/- (p53L/+/KrasG12D) mice which are p53 homo- and 

heterozygous, respectively. We observed high expression of Sp1, Sp3 and Sp4 in 

pancreatic tumors from these mice (Figure 22B). These transgenic mice rapidly develop 

tumors and typically present with adverse symptoms prior to tumor-induced lethality. 

Results in Figures 22C and 22D show that p53 heterozygous mice live longer than the 

corresponding p53-/- mice; moreover in these two mouse models, the loss of one or two 

MALAT1 alleles does not significantly affect the time to death, although the results 

suggest that the loss of MALAT1 in the p53-/+ mice results in an increased (not 



 

129 

 

significant) lifespan. RNAseq was used to determine differences in pancreatic cancer 

gene expression in Ras overexpressing/p53+/- mice  MALAT1 expression and we 

observed that >1000 genes were differentially expressed.  A comparison of the Panc1 

gene analysis (Figure 18) vs. the in vivo indicates that 50 genes were commonly altered 

after loss of MALAT1 (Appendix B-4) and this included NDRG1. Most experimental 

mice presented with a high grade ductular adenocarcinoma (DAC) (Figure 22E), 

independent of their phenotype which was composed of infiltrative and unencapsulated 

neoplasms arranged in variably sized ducts separated by abundant fibrovascular stroma. 

Neoplastic cells were cuboidal, with moderate amounts of eosinophilic cytoplasm and 

round nuclei. Anisocytosis and aniskaryosis were marked with high mitotic activity. 

There were multifocal areas of necrosis within the neoplasm and in some cases the 

neoplasm infiltrated adjacent lymph nodes, the muscularis of the stomach and small 

intestine and rarely the diaphragm. Implantation and metastasis to the liver and lungs 

were seen in 4 and one mouse in the p53L/+ LSL-KrasG12D L/+ P48Cre +/- genotype, 

respectively. One mouse had hepatic and another had renal implantation, and two mice 

presented pulmonary metastasis in the Malat1+/- p53L/+ LSL-KrasG12D L/+ P48Cre 

+/- genotype group. In 4 mice in 3 different groups, the DAC had transformed into a 

carcinosarcoma, characterized by malignancy also involving the epithelial as well as the 

mesenchymal tissue. In two mice within the p53L/+ LSL-KrasG12D L/+ P48Cre +/- 

genotype an early and well differentiated DAC was observed; however, one of these 

mice also exhibited a primitive neoplasm within the lateral aspect of the head, and 

compressing the brain. Besides the neoplasm, in 6 mice there were multifocal areas of 
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hepatic necrosis, with 2 mice having grossly apparent icterus and hemoglobin casts 

within the kidneys, indicating hemolysis. This histological finding was not seen in any of 

Malat1 +/- (or -/-) p53L/+ LSL-KrasG12D L/+ P48Cre +/- genotype groups. Thus, the 

loss of MALAT1 has minimal effect on pancreatic tumors in transgenic mice where 

there is activation of Kras and a loss of p53 or activation of Ras in the pancreas, and this 

contrasts a recent report showing that loss of MALAT-1 in BxPC3 pancreatic cancer 

cells resulted in decreased tumor growth and metastasis in an orthotopic mouse model 

(262).     

 

 

 

 
Figure 22. MALAT1 function in the transgenic mouse model of pancreatic cancer. (A) 

Fold-change in Malat1 gene expression in knockout mice as compared to the wild type. 

(B) Sp1, Sp3, Sp4 and c-Myc expression in homozygous floxed p53/KrasGD12 mice. (C) 

Survival of homozygous floxed p53L/L: KrasGD12: p48Cre+/- mice expression 

MALAT1 (+) or with loss of MALAT1 (-/+). (D) Survival of heterozygous floxed 

p53L/+: KrasGD12: p48Cre+/- mice expression Malat1 (+) or with loss of Malat1 (-/+).  

(E) Histology analysis of tumor samples from different strains of mice. Significant 

(p<0.05) changes are indicated (*) or (**). 
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Figure 22. Continued.   
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3.4 Discussion 

MALAT1 expression in many tumors is a negative prognostic factor for patients, and 

results obtained in this study and previous reports confirm that MALAT1 is a pro-

oncogenic factor for pancreatic cancer (Figure 17). We have previously reported that the 

lncRNAs HOTAIR and HOTTIP regulate expression of genes associated with pancreatic 

cancer cell proliferation, survival and migration (261,272). A comparison of genes 

regulated by MALAT1 and HOTTIP and HOTAIR in Panc1 cells indicates <6% overlap 

in coregulated genes, and similar results were observed after comparing specific gene 

sets associated with proliferation, survival and migration (Figures 19B-19D). APAF1 is 

an example of a gene regulated (suppressed) by MALAT1 and not HOTAIR or 

HOTTIP, and APAF1 induction after MALAT1 knockdown plays an important role in 

activating apoptosis and other pathways in Panc1 cells (Figure 20B). Interestingly, 

although MALAT1, HOTAIR and HOTTIP exhibit similar functional pro-oncogenic 

activities in pancreatic cancer cells (Figure 17), the targeted (RNAi) loss of any one of 

these lncRNAs cannot be rescued by the other two lncRNAs and this supports the array 

data showing their regulation of different sets of genes, and we are currently 

investigating the functions of key genes differentially regulated by MALAT1, HOTTIP 

and HOTAIR.   

 

Several genetic mouse models of pancreatic cancer have been developed (547) and in 

this study, we used mice with p53 mutations and overexpression of activated Kras in the 

pancreas since they rapidly develop pancreatic tumors that resemble human PDAC (83). 
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However, p53 heterozygotes survive longer than homozygous mice and the loss of 

MALAT1 only slightly extends the survival of the latter (not statistically significant) but 

not the former mice (Figures 22C and 22D). Thus, the loss of MALAT1 in the transgenic 

mice driven by Kras expression and p53 deletion (-/- or +/-) had minimal impact on this 

aggressive tumor model, whereas the loss of MALAT1 in an orthotopic and xenograft 

mouse models of pancreatic cancer decreased tumor growth and invasion (262,523). 

Since Ras activation is observed in most pancreatic tumors, it is unlikely that drugs 

targeting MALAT1 alone would be effective. Liby and coworkers (548) reported that 

treatment of a similar transgenic mouse model [LSL-KrasG12D/+; LSL-Trp53R127H/+; 

Pdx-1-Cre (KPC)] with CDDO-Me (15 mg/kg body weight) increased survival from 

20.5  0.9 (control) to 24.2  2.7 weeks. Moreover, they also reported that CDDO-Me 

induced ROS in pancreatic cancer cells (548). This was consistent with studies in this 

laboratory showing that CDDO-Me induced ROS and ROS-dependent downregulation 

of Sp1, Sp3 and Sp4 and pro-oncogenic Sp-regulated genes (544) and has been observed 

with other ROS-inducing anticancer agents in pancreatic cancer cells (543,545). Results 

illustrated in Figure 21 show that the ROS-inducing triterpenoids CDDO-Me and 

CF3DODA-Me induce ROS-dependent downregulation of Sp1, Sp3 and Sp4 in Panc1 

cells (Figure 21B) and also MALAT1 (Figure 21C), which is a Sp-regulated gene 

(Figure 21D). High levels of Sp1, Sp3 and Sp4 protein and MALAT1 are expressed in 

transgenic mice (Figure 22B); however, the effectiveness of CDDO-Me in extending the 

life of these mice (548) is due not only to decreased MALAT1 expression but also 

several pro-oncogenic Sp-regulated genes including bcl-2, survivin, epidermal growth 
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factor receptor, other receptor tyrosine kinases and p65 (NFB) (542-546). Current 

studies are focused on using genetic mouse models for pancreatic cancer in which both 

MALAT1 and Sp transcription factors can be deleted (tissue-specific) or specifically 

targeted to confirm this important role of these genes in tumor development and growth 

and thereby demonstrate the utility of ROS-inducing anticancer agents such as 

CF3DODA-Me and CDDO-Me for treating this disease. 
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4. ARYL HYDROCARBON RECEPTOR ACTIVITY OF TRYPTOPHAN 

METABOLITES IN YOUND ADULT MOUSE COLONOCYTES* 

 

4.1 Introduction 

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that was 

initially identified as the intracellular protein that bound the environmental toxicant 

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), related halogenated aromatics, and 

polynuclear aromatic hydrocarbons (303,549,550). The role of the AhR in mediating the 

biochemical and toxic responses induced by TCDD and related compounds has been 

confirmed in AhR knockout (AhR-/-) mice which are resistant to the effects of TCDD 

(381,400,550,551). Ligand-dependent activation of the AhR results in formation of a 

nuclear complex with the AhR nuclear translocator (Arnt) protein which binds cis-

xenobiotic response elements (XREs) in the Cyp1a1 and other target gene promoters 

(303,552,553). However, several non-classical pathways have been discovered and these 

include AhR interactions with other nuclear partners, binding to non-consensus cis-

promoter elements and also responses that are associated with the extranuclear AhR 

(554-563).  

 

                                                 

*  Reprinted with permission of the American Society for Pharmacology and 

Experimental Therapeutics from “Aryl hydrocarbon receptor activity of tryptophan 

metabolites in young adult mouse colonocytes” by Cheng Y, Jin UH, Allred CD, 

Jayaraman A, Chapkin RS, et al. Drug Metab Dispos 2015;43(10):1536-43. All rights 

reserved. 
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Since the initial discovery that the AhR binds toxic polychlorinated and polynuclear 

aromatic hydrocarbons, it has subsequently been shown that the AhR also binds 

structurally and functionally diverse ligands including health-promoting phytochemicals 

such indole-3-carbinol, flavonoids and extracts from fruits and vegetables, and a 

growing list of pharmaceuticals including omeprazole and other benzimidazoles 

(339,371,564-568). In addition, structurally diverse “endogenous” biochemicals have 

been identified as AhR ligands, and there is evidence that the tryptophan photoproduct 

6-formylindolo[3,2-b]carbazole (FICZ) and kynurenine may function as endogenous 

ligands for the AhR (354,361,364,371,568). The development of AhR-/- and tissue 

specific AhR knockout mice has been instrumental in showing that this receptor plays an 

essential role in various tissues and is a critical regulator of inflammation, autoimmune 

and immune responses and is a potential drug target for treating multiple diseases 

including cancer (398,569-572). For example, there is extensive evidence that the AhR 

and its agonists including AhR-active cruciferous vegetables play a protective in mouse 

models of intestinal cancer and inflammation (434,455,456,466,474,573-576).  

 

Several studies have reported that the gut microbiota produces metabolites including 

AhR-active compounds that could potentially modulate AhR-mediated intestinal 

resiliency and responses to inflammatory stimuli (404,577-580). Research in our 

laboratories has previously investigated the AhR activities of the tryptophan metabolites 

indole, indole-3-acetate, tryptamine and 3-indoxyl sulfate, using CYP1A1 induction as a 

prototypical AhR-dependent response in human CaCo2 colon cancer cells (581). In this 
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report, we determined the AhR activity of tryptophan metabolites in a non-transformed 

young adult mouse coloncyte (YAMC) cell line (582) and there were significant 

differences between YAMC vs CaCo2 cells with respect to the gene-specific AhR 

agonist and antagonist activities of tryptophan metabolites. 

 

4.2 Materials and methods 

4.2.1 Cell Lines, antibodies, and reagents 

The YAMC cell line was initially generated from the Immorto mouse (583) and has been 

previously used in our studies (584-586). Cells were maintained in RPMI 1640 medium 

with 5% fetal bovine serum, 5 units/ml mouse interferon- (IF005) (EMD Millipore, 

Massachusetts), 1% ITS "-" minus (Insulin, Transferrin, Selenium) (41-400-045) (Life 

Technologies, Grand Island, NY ) at 33C (permissive conditions). In preparation for 

experiments, cells were transferred to 37C (nonpermissive conditions). AhR antibody 

(BML-SA210) was purchased by Enzo (Enzo Life Sciences Inc., Farmingdale, NY). The 

MTT assay for metabolic activity of the tryptophan metabolites was determined using 

the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay 

essentially as described (581) (Appendix A-2). -ACTIN (A1978) was purchased from 

Sigma-Aldrich (St. Louis, MO), and Cyp1a1 antibody was kindly provided by Dr. Paul 

Thomas (Rutgers University). Indole (>99%), indole-3-acetate (98%), indole-3-aldehyde 

(97%), and tryptamine (99%) were purchased from Sigma-Aldrich and TCDD (99%) 

was synthesized in our laboratory. CH223191 (Cat.No.3858) was purchased from Tocris 
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Bioscience (Bristol, United Kingdom). GelRed Nucleic Acid Stain (RGB-4103) was 

purchased from Phenix (Phenix Research Products, Candler, NC). 

 

4.2.2 Chromatin immunoprecipitation assay 

The chromatin immunoprecipitation (ChIP) assay was performed using the ChIP-IT 

Express Magnetic Chromatin Immunoprecipitation kit (Active Motif, Carlsbad, CA) 

according to the manufacturer’s protocol. YAMC cells (1.2×107 cells) were treated with 

TCDD and/or compounds for 2 or 24 hr. The cells were then fixed with 1% 

formaldehyde, and the cross-linking reaction was stopped by addition of 0.125 M 

glycine. After washing with phosphate-buffered saline (PBS), cells were scraped and 

pelleted. The collected cells were hypotonically lysed, and nuclei were collected and 

then sonicated to the desired chromatin length (200-1500 bp). The sonicated chromatin 

was immunoprecipitated with normal rabbit IgG or AhR antibodies and protein A-

conjugated magnetic beads at 4C for overnight. After the magnetic beads were 

extensively washed, protein-DNA crosslinks were reversed and eluted. DNA was 

prepared by proteinase K digestion followed by polymerase chain reaction (PCR) 

amplification. The Cyp1a1 primers were 5'-AGG CTC TTC TCA CGC AAC TC-3' 

(sense) and 5'-CGG GTG CAG AGC TAT CTA AGT-3' (antisense); we then amplified 

a 207-bp region of mouse Cyp1a1 promoter, which contained the AhR-binding 

sequences. The PCR products were analyzed on a 2% agarose gel in the presence of 

GelRed Nucleic Acid Stain. 
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4.2.3 Quantitative real-time PCR 

Total RNA was isolated using Zymo Quick RNA MiniPrep Kit (Zymo Research, Irvine, 

CA) according to the manufacturer's protocol. RNA was eluted with 35 l of RNase-free 

water and stored at -80C. Real-time (RT)-PCR was carried out using iTaq Universal 

SYBR Green One-step Kit (Bio-Rad, Hercules, CA). The following primers were used 

(Table 9). 

 

 

 

Table 9. Primers used in quantitative real-time PCR. 

 

Name Forward Primer Reverse Primer 

TBP GAACAATCCAGACTAGCAGCA GGGAACTTCACATCACAGCTC 

Cyp1a1 CTGAAGTGGTTCTGAGCGG TCCACTCCATCTTCCGACTT 

Cyp1b1 GGATATCAGCCACGACGAAT ATTATCTGGGCAAAGCAACG 

TiParp GCCAGACTGTGTAGTACAGCC GGGTTCCAGTTCCCAATCTTTT 

Ahrr ACATACGCCGGTAGGAAGAGA GGTCCAGCTCTGTATTGAGGC 

 

 

 

4.2.4 Western blot analysis 

Cells (1×105) were plated in six-well plates in RPMI media containing 2.5% FBS for 16 

hr and then treated with different concentrations of the compounds for 24 hr. Cells were 

collected using high-salt buffer (50 mM HEPES, 0.5 mol/l NaCl, 1.5 mM MgCl2, 1 mM 

EGTA, 10% glycerol, and 1% Triton-X-100) and 10 l/ml Protease Inhibitor Cocktail 

(Sigma-Aldrich). Protein lysates were incubated for 5 min at 95C before electrophoresis 

and then separated on 10% SDS-polyacrylamide gel electrophoresis 120 V for 2 to 3 hr. 

Proteins were transferred onto polyvinylidene difluoride membranes by wet 

electroblotting in a buffer containing 25 mM Tris, 192 mM glycine, and 20% methanol 
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for 1.5 hr at 180 mA. Membranes were then blocked for 30 min with specific antibodies. 

Detection of specific proteins was performed using Chemiluminescence and then 

exposed to Kodak image station 4000 mm Pro (Carestream Health, Rochester, NY) 

 

4.2.5 Statistical analysis  

Statistical significance of differences between the treatment groups was determined by 

an analysis of variance and/or Student's t test, and levels of probability were noted. At 

least 3 repeated experiments were determined for each data point, and results are 

expressed as means  SD. 

 

4.3 Results 

YAMC cells were treated with different concentrations of tryptamine (10-100 M), 

indole (50-500 M), indole-3-acetate (50-500 M) and indole-3-aldehyde (50-500 M) 

and induction of Cyp1a1 mRNA was determined (Figure 23A). Tryptamine and indole-

3-acetate significantly induced Cyp1a1 mRNA levels (>10 fold) at concentrations of 50 

and 500 M respectively whereas indole and indole-3-aldehyde were inactive. In 

contrast 0.01-10 nM TCDD, the most potent AhR agonist induced a >600-fold increase 

in Cyp1a1 mRNA levels with maximal induction by 10 nM TCDD (Figure 23B) as 

previously observed in CaCo2 cells (581). Induction of Cyp1a1 mRNA by the 

tryptophan metabolites (Figure 23C) and TCDD was inhibited after cotreatment with the 

AhR antagonist CH223191 (CH) (Figure 23D). In the inhibition experiment we observed 

some induction of Cyp1a1 by indole and indole-3-aldehyde alone (Figure 23C) and over 
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several experiments low level induction responses by these compounds were variable (0-

4 fold) but <1% of that observed for TCDD. 

 

 

 

 
Figure 23. Tryptophan metabolites and TCDD as inducers of Cyp1a1 in YAMC cells. 

YAMC cells were treated for 24 hr with tryptophan metabolites (A), TCDD (B), 

tryptophan metabolites plus CH (C), and TCDD plus CH (D). Expression of Cyp1a1 

mRNA was determined by real time PCR. Results are expressed as means  SE for three 

replicate determinations and significant (p<0.05) induction (*) (A and B) or inhibition by 

CH (**) (C and D) is indicated. 
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Figure 24. Tryptophan metabolites as AhR antagonists. YAMC cells were treated with 

tryptophan metabolites, TCDD and their combination, and effects on Cyp1a1 mRNA (A) 

and CYP1A1/AhR proteins (B) were determined by real time PCR and Western blot 

analysis. (C) YAMC cells were treated with 10 nM TCDD, 50 M tryptamine, and their 

combination for 2 and 24 hr and real time PCR was used to determine interactions of the 

AhR with the Cyp1a1 promoter (containing XRE) in a ChIP assay. (D) YAMC cells 

were treated with DMSO or 10 nM for 24 hr and also cotreated with 50 M tryptamine 

after 18, 20, 22 and 23 hr, and Cyp1a1 mRNA was determined by real time PCR. 

Results (A and D) are expressed as means  SE (3 replicates) and significant (p<0.05), 

inhibition is indicated (**). 
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Figure 24. Continued. 

 

 

 

Previous studies in CaCo2 cells showed that indole was an AhR antagonist (581) and we 

further investigated the inhibitory effect of the tryptophan metabolites on induction of 

Cyp1a1 by TCDD (Figure 24A). All four compounds exhibited AhR antagonist activity, 

and both tryptamine and indole-3-aldehyde decreased induction of Cyp1a1 mRNA by 

TCDD by >75% which was more effective than observed for CH (Figure 23D). Western 

blot analysis (Figure 24B) showed that TCDD but not the tryptophan metabolites 

decreased AhR protein expression and in combination experiments AhR levels 
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resembled that observed for TCDD alone. TCDD induced CYP1A1 protein in YAMC 

cells, whereas minimal induction was observed for the tryptophan metabolites and in 

combination experiments indole-3-acetate appeared to be the most effective inhibitor of 

TCDD-induced CYP1A1 protein. Unfortunately, CYP1A1 protein levels in YAMC cells 

were low and results of TCDD+tryptophan metabolites studies were difficult to interpret. 

We also examined the effects of TCDD, tryptamine and their combination on 

recruitment of the AhR to the Cyp1a1 XRE in a ChIP assay. After treatment for 2 hr, 

TCDD alone or in combination with tryptamine induced AhR interactions with the 

Cyp1a1 promoter, whereas minimal effects were observed in YAMC cells treated with 

tryptamine alone (Figure 24C). These results contrasted to those observed in CaCo2 cells 

where indole, the most effective AhR antagonist, blocked TCDD-induced AhR 

interactions with the Cyp1a1 promoter (581). Analysis of these interactions were also 

investigated after treatment for 24 hr; significant AhR recruitment to the Cyp1a1 

promoter was observed after treatment with tryptamine alone and a comparison of the 

results of 2 and 24 hr treatments suggested that the tryptamine-induced AhR recruitment 

was a relatively slow process. In contrast, after treatment with TCDD for 24 hr, the AhR 

binding to the Cyp1a1 promoter was decreased and this was consistent with the observed 

TCDD-induced degradation of the AhR protein (Figure 24B). Despite the inhibition of 

TCDD-induced Cyp1a1 mRNA levels by tryptamine treatment for 24 hr (Figure 24A), 

AhR binding to the Cyp1a1 promoter in the combined treatment group was essentially 

additive (Figure 24C). Therefore, it is possible that the inhibition of TCDD-induced 

Cyp1a1 by tryptamine is post-transcriptional and AhR-independent. YAMC cells were 
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treated with TCDD alone for 24 hr and cotreated with tryptamine after 18, 20, 22 and 23 

hr after addition of TCDD. The results showed that there was a time-dependent decrease 

in induced Cyp1a1 mRNA (Figure 24D), suggesting that some of the inhibitory effects 

of tryptamine were post-transcriptional and may be due to destabilization of Cyp1a1 

mRNA. 

 

The tryptophan metabolites exhibited structure-dependent AhR agonist/antagonist 

activities with respect to induction of Cyp1a1 in YAMC cells and this pattern of activity 

was investigated with other Ah-responsive genes (582,587-589). Results in Figure 25A 

show that TCDD but not indole-3-aldehyde induced Cyp1b1 expression in YAMC cells 

and in combination studies indole-3-aldehyde partially inhibited TCDD-induced Cyp1b1 

expression. Indole was a partial agonist for induction of Cyp1b1 but did not inhibit 

TCDD-induced Cyp1b1 mRNA levels (Figure 25B). Indole-3-acetate (Figure 25C) and 

tryptamine (Figure 25D) induced Cyp1b1 mRNA levels similar to that of TCDD and did 

not inhibit induction by TCDD, indicating that both compounds were full AhR agonists 

for induction of Cyp1b1. 

 

A similar approach was used in examine the AhR agonist/antagonist activities of the 

tryptophan metabolites with respect to regulation of Ahrr and TiParp gene expression. 

Indole-3-aldehyde minimally induced Ahrr (<2-fold) at the highest concentration (500 

M); TCDD induced Ahrr (<7- fold) and in combination indole-3-aldehyde was a weak 

AhR antagonist (Figure 26A). Indole (Figure 26B), indole-3-acetate (Figure 26C), and 
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tryptamine (Figure 26D) were partial agonists and induced Ahrr, and only tryptamine 

exhibited partial AhR antagonist activity. Indole-3-aldehyde, indole and indole-3-acetate 

(Figures 27A-27C) did not induce TiParp or inhibit induction of TiParp by TCDD, 

whereas tryptamine (Figure 27D) exhibited partial agonist/antagonist activity. Thus, the 

effects of the tryptophan metabolites as AhR agonist and antagonists were highly gene 

specific in YAMC cells and these differences are summarized in Table 10. 

 

 

 

 

Figure 25. Induction of Cyp1b1. YAMC cells were treated with TCDD (alone), indole-

3-aldehyde (A), indole (B), indole-3-acetate (C), and tryptamine (D) alone and in 

combination with TCDD for 24 hr, and Cyp1b1 was determined by real time PCR. 

Results are expressed as means  SE (3 replicates) and significant (p<0.05) induction (*) 

or inhibition (**) of TCDD-induced Cyp1b1 is indicated. 



 

147 

 

 
 

Figure 26. Induction of Ahrr. YAMC cells were treated with TCDD (alone), indole-3-

aldehyde (A), indole (B), indole-3-acetate (C), and tryptamine (D) alone and in 

combination with TCDD for 24 hr, and Cyp1b1 was determined by real time PCR. 

Results are expressed as means  SE (3 replicates) and significant (p<0.05) induction (*) 

or inhibition (**) of TCDD-induced Ahrr is indicated. 
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Figure 27. Induction of TiParp. YAMC cells were treated with TCDD (alone), indole-3-

aldehyde (A), indole (B), indole-3-acetate (C), and tryptamine (D) alone and in 

combination with TCDD for 24 hr, and TiParp was determined by real time PCR. 

Results are expressed as means  SE (3 replicates) and significant (p<0.05) induction (*) 

or inhibition (**) of TCDD-induced TiParp is indicated. 
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Table 10. Effects of the tryptophan metabolites as AhR agonists and antagonists are 

highly gene specific in YAMC cells. 

 

 
* Weak agonist activity and somewhat variable. 

 

 

 

4.4 Discussion 

The AhR is expressed in the GI tract, and studies in animal models demonstrate that this 

receptor and its ligands play an important role in gut health and response to stressors and 

disease (434,455,456,466,474,573-576). Loss of the AhR results in formation of colon 

tumors at the cecum and this is accompanied by increased expression of -catenin in the 

small intestine, whereas wild-type AhR+/+ mice do not develop tumors or overexpress -

catenin (474). Apcmin/+ mice which express a mutation in the Apc tumor suppressor gene 

were crossed with AhR+/- (heterozygote) mice and the resulting Apcmin/+/AhR+/- mice 

animals were more susceptible to cecal tumorigenesis (474). However, AhR-active 

botanical compound such as indole-3-carbinol and diindolylmethane (from cruciferous 

vegetables) significantly suppressed intestinal tumorigenesis in Apcmin/+ and Apcmin/+ 
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AhR+/- mice (474). Gut ILC22 cells and postnatal lymphoid tissue-inducer-like (LTi) 

subsets express the AhR which is essential for many of their functions. For example, the 

loss of the AhR results in decreased expression of ILC22 and decreased protection 

against bacterial infections (456). The AhR agonist TCDD has been shown to induce 

Notch1 which is differentially required for the development of various ILC22 and LTi 

cell sub-types. The important functions of the AhR in maintaining intestinal function and 

health and protection against bacterial infections has been described in several reports 

showing that the AhR and its ligands also protect against intestinal damage/inflammation 

in experimental models of colitis and Crohn’s disease (466,573-575). The severity of the 

effects of 2,4-trinitrobenzene sulfonic acid-induced colitis (resembles Crohn’s disease) 

in mice was significantly decreased by treatment with the AhR agonists FICZ (456) and 

TCDD (576) and this was accompanied by suppression of several markers of 

inflammation. The severity of dextran sodium sulfate-induced colitis in mice was also 

decreased by the AhR agonists -naphthoflavone (575), TCDD (576) and FICZ (456), 

and in the latter study, the AhR antagonist 2-methyl-2H-pyrazole-3-carboxylic acid 

enhanced the severity of the colitis (456).  

 

Previously, we investigated the tryptophan metabolites in CaCo2 human colon cancer 

cells and demonstrated their ligand-dependent AhR agonist and antagonist activities 

based primarily on modulation of CYP1A1 gene expression (581). We also observed 

similar responses in non-transformed YAMC cells where the most active AhR agonists 

for induction of Cyp1a1 were tryptamine and indole-3-acetate; however, the fold 
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induction by both compounds was <3% of that observed for TCDD. In contrast, both 

tryptamine and indole-3-aldehyde were potent inhibitors of TCDD-induced Cyp1a1 in 

YAMC cells, whereas tryptamine was primarily a full AhR agonist in CaCo2 cells using 

CYP1A1 mRNA as an endpoint, demonstrating the importance of cell context.  

 

We also investigated the AhR activity of the four tryptophan metabolites using three 

additional Ah-responsive genes, namely, Ahrr, Cyp1b1 and TiParp, and the results 

indicated that the AhR agonist and antagonist activities were both compound- and gene-

specific (Table 10). For example, tryptamine was a weak AhR agonist and partial 

antagonist for Cyp1a1 mRNA expression; however, examination of the ligand-

dependent recruitment of the AhR complex to the Cyp1a1 promoter (Fig. 2C) did not 

readily explain a mechanism for the activity of tryptamine as an AhR agonist (Fig. 2A). 

In a separate experiment, we observed that treatment of YAMC cells with TCDD alone 

for 24 hr maximally induced Cyp1a1 mRNA which could then be significantly 

decreased by addition of tryptamine 18, 20 or 22 hr after treatment with TCDD, 

suggesting that some of the inhibitory effects of tryptamine on induced Cyp1a1 mRNA 

may be post-transcriptional. In contrast, tryptamine and TCDD induced similar levels of 

Cyp1b1 mRNA and tryptamine did not affect TCDD-induced Cyp1b1, indicating that 

tryptamine was a full AhR agonist for this response. The cell context- and gene-specific 

AhR agonist and antagonist activities of the tryptophan metabolites are not unique and 

have been observed for other AhR ligands including 6-methyl-1,3,8-trichlorobenzofuran, 

flavonoids and pharmaceuticals (567,590-594). We also observed that the AhR 
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antagonist CH inhibited Cyp1a1 induction by TCDD and the tryptophan metabolites, 

indicating that CH inhibited induction of Cyp1a1 by a diverse spectrum of AhR ligands 

as previously reported (595). Ongoing studies show that CH also antagonized induction 

of Cyp1b1 by TCDD and the tryptophan metabolites; however, CH did not antagonize 

induction of Ahrr or TiParp by TCDD and tryptophan metabolites (data not shown) and 

this is currently being investigated.  

 

In summary, our results show that for a limited set of Ah-responsive genes the AhR 

agonist and antagonist activities of the tryptophan metabolites are gene-specific in non-

transformed YAMC cells and different from that previously observed in CaCo2 cancer 

cells (581). Differences in the AhR agonist and antagonist activities of the tryptophan 

metabolites are due not only to the transformed vs. non-transformed phenotype of 

CaCo2 and YAMC cells but also to their different human vs. mouse origins. These 

results suggest that indole-3-aldehyde, indole, indole-3-acetate and tryptamine are 

selective AhR modulators (398,596) based on the results observed in this study. 

Although indole-3-aldehyde exhibited minimal AhR agonist activity, a recent report 

indicated that AhR-dependent induction of interleukin-22 by indole-3-aldehyde plays a 

key role in microbiota-mediated protection from fungal infection and colitis (404); 

however, indole-3-aldehyde did not induce interleukin 22 in YAMC cells (data not 

shown). Current studies are evaluating the contributions of AhR-active tryptophan 

metabolites in YAMC and other mouse- and human-derived cell lines to identify in vitro 

models that mimic in vivo effects of these compounds and identify relevant endpoints 
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such as interleukin 22 induction that will predict the effects of AhR-active microbiota 

metabolites on gut health.   
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5. MICROBIAL-DERIVED 1,4-DIHYDROXY-2-NAPHTHOIC ACID AND 

RELATED COMPOUNDS AS ARYL HYDROCARBON RECEPTOR 

AGONISTS/ANTAGONISTS: STRUCTURE-ACTIVITY RELATIONSHIPS 

AND RECEPTOR MODELING * 

 

5.1 Introduction 

Bifidobacteria are prominent in the gastrointestinal tract, and these bacteria and their 

metabolites have been associated with promotion of good health and are used as 

probiotic agents (597,598). For example, bifidobacteria alone or in combination with 

other bacterial species (e.g. Lactobacillus) result in decreased inflammation associated 

with Crohn's disease and ulcerative colitis (599-602). It was reported that cell-free 

filtrate from the bifidobacteria Propionibacterium freudenreichii stimulates 

bifodobacterial growth and this is attributed primarily to two microbial metabolites, 

namely 2-amino-3-carboxy-1,4-naphthoquinone (minor) and 1,4-dihydroxy-2-naphthoic 

acid (1,4-DHNA) (major) (603,604). 1,4-DHNA is an intermediate in the biosynthesis of 

menaquinone (vitamin K2) (605), and 1,4-DHNA has also been identified in lactic acid-

producing bacterial Lactobacillus casei LP1 and in Korea traditional rice wine 

(606,607). Subsequent studies showed that 1,4-DHNA inhibits dextran sodium sulfate-

induced colitis in mice and also decreases induced inflammation and colitis in 

                                                 

* Reprinted with permission from “Microbial-derived 1,4-dihydroxy-2-naphthoic acid 

and related compounds as aryl hydrocarbon receptor agonists/antagonists: structure-

activity relationships and receptor modeling” by Cheng Y, Jin UH, Davidson LA, 

Chapkin RS, Jayaraman A, et al. Toxicol Sci (Accepted). 
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interleukin 10-deficient mice by suppressing macrophage-derived pro-inflammatory 

cytokines (608,609). These results suggest that 1,4-DHNA contributes to the health-

promoting effects of bifidobacteria. It was also reported that 1,4-DHNA inhibits growth 

of Helicobacter pylori and induces apoptosis in human keratinocytes, indicating a 

potential application for treating psoriasis (610-612). 

 

Several studies show that the aryl hydrocarbon receptor (AhR) and its receptor agonists 

also play a role as inhibitors of colitis and development of colorectal cancer in rodent 

models (466,574-576). In vitro studies in human Caco2 colon cancer cells showed that 

1,4-DHNA induces CYP1A1 gene expression, a marker of Ah responsiveness, and 

similar results were observed in the small intestine of wild-type but not AhR knockout 

mice (578). 1,4-DHNA also inhibits DSS-induced colitis and this response is attenuated 

after cotreatment with 1,4-DHNA plus CH-223191, an AhR antagonist (578). Thus, the 

health-promoting effects of 1,4-DHNA in the gut are due, in part, to its activity as an 

AhR agonist. 

 

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a prototypical and highly potent AhR 

agonist and environmental toxicant, and several halogenated aromatic industrial 

compounds and by-products and polynuclear aromatic hydrocarbons also act through the 

AhR (613). In addition, other classes of AhR ligands include endogenous biochemicals 

such as indolo-2,3[b]-carbazole, kynurenine and microbiota-derived tryptophan 

metabolites, health promoting phytochemicals, and pharmaceuticals (562,563,581,614). 
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The structure-dependent effects of TCDD and related halogenated aromatics have been 

extensively investigated; however, less is known about other structural classes of AhR 

ligands. Therefore, in this study we further elucidated the structure-activity relationships 

(SARs) of 1,4-DHNA and related naphthalene analogs as AhR ligands and demonstrates 

the important roles of both the hydroxyl- and carboxyl substituents and their location in 

the naphthalene ring. Moreover, since the structures of TCDD and 1,4-DHNA are 

different, we have also used computational modeling approaches to investigate 

differences in their interactions with the AhR.  

 

5.2 Materials and methods 

5.2.1 Cell lines, antibodies, and reagents 

The young adult mouse colonic (YAMC) cell line was initially generated from the 

Immorto mouse (583) and has been previously used in our studies (584,585). Cells were 

maintained in RPMI 1640 medium with 5% fetal bovine serum, 5 units/ml mouse 

interferon- (IF005) (EMD Millipore, Massachusetts), 1% ITS "-" minus (insulin, 

transferrin, selenium) (41-400-045) (Life Technologies, Grand Island, NY) at 33C 

(permissive conditions). In preparation for experiments, cells were transferred to 37C 

(nonpermissive conditions). Caco2 human colon cancer cell line was obtained from the 

American Type Culture Collection (ATCC, Manassas, VA). Caco2 cells were 

maintained in Dulbecco's modified Eagle's medium (DMEM) nutrient mixture 

supplemented with 20% fetal bovine serum (FBS), 10 ml/L 100X MEM non-essential 

amino acid solution (Gibco), and 10 ml/L 100X antibiotic/antimycotic solution (Sigma-
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Aldrich). Caco2 cells were maintained at 37C in the presence of 5% CO2, and the 

solvent (dimethyl sulfoxide, DMSO) used in the experiments was ≤ 0.2%. Mouse AhR 

antibody (BML-SA210) was purchased by Enzo (Enzo Life Sciences Inc., Farmingdale, 

NY). -Actin (A1978) was purchased from Sigma-Aldrich (St. Louis, MO), and mouse 

CYP1A1 antibody was kindly provided by the late Dr. Paul Thomas (Rutgers University) 

and Dr. B. Moorthy (Baylor College of Medicine, Houston). Human CYP1A1, AHR, 

and GAPDH antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, 

CA). 1,4-Dihydroxy-2-naphthoic acid (1,4-DHNA), 3,5-dihydroxy-2-naphthoic acid 

(3,5-DHNA), 3,7-dihydroxy-2-naphthoic acid (3,7-DHNA), 1,4-dimethoxy-2-naphthoic 

acid (1,4-DMNA), 1-naphthoic acid (1-NA), 2-naphthoic acid (2-NA), 1-naphthol (1-

NOH), and 2-naphthol (2-NOH) used in this study were purchased from Sigma-Aldrich 

(St. Louis, MO). 1-Hydroxy-2-naphthoic acid (1-HNA) was purchased from Alfa Aesar 

(Ward Hill, MA, USA) and 4-hydroxy-2-naphthoic acid (4-HNA) was purchased from 

Chem Scene (www.chemscene.com). 

 

5.2.2 Chromatin immunoprecipitation assay 

The chromatin immunoprecipitation (ChIP) assay was performed using the ChIP-IT 

Express Magnetic Chromatin Immunoprecipitation kit (Active Motif, Carlsbad, CA) 

according to the manufacturer’s protocol. YAMC cells (1.2x107 cells) were treated with 

TCDD and/or compounds for 2 or 24 hr. Caco2 cells (5x106 cells) were treated with 

TCDD and/or compounds for 2 hr. The cells were then fixed with 1% formaldehyde, and 

the fixation was stopped by 0.125 M glycine. After washing with phosphate-buffered 
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saline (PBS), cells were scraped and pelleted. The cell pellets were hypotonically lysed 

to release nuclei and then sonicated to the desired chromatin length (200-1500 bp). The 

sonicated chromatin was immunoprecipitated with normal rabbit IgG or AhR antibodies 

and protein A-conjugated magnetic beads at 4C for overnight. After the magnetic beads 

were extensively washed, protein-DNA crosslinks were reversed and eluted. DNA was 

prepared by proteinase K digestion followed by polymerase chain reaction (PCR) 

amplification. The mouse Cyp1a1 primers were 5'-CAG GAG AGC TGG CCC TTT A-

3' (sense) and 5'-TAA GCC TGC TC ATC CTG TG-3' (antisense), and subsequently 

amplified by targeting a 215-bp region of mouse Cyp1a1 promoter, which contained the 

AhR-binding sequences. The human CYP1A1 primers were 5'-TCA GGG CTG GGG 

TCG CAG CGC TTC T-3' (sense) and 5'-GCT ACA GCC TAC CAG GAC TCG GCA 

G-3' (antisense) which amplified a 112-bp region of the human Cyp1A1 promoter which 

containing the AhR binding sequences. PCR products were resolved on a 2% agarose gel 

in the presence of ETBR. 

 

5.2.3 Quantitative real-time PCR 

Total RNA was isolated using Zymo Quick RNA MiniPrep Kit (Zymo Research, Irvine, 

CA) according to the manufacturer's protocol.  RNA was eluted with RNase-free water 

and stored at -80C. Real-time (RT)-PCR was carried out using iTaq Universal SYBR 

Green One-step Kit (Bio-Rad, Hercules, CA). The primers were listed in Tables 11 and 

12. 
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Table 11. Mouse primers list. 

 

Name Forward Primer Reverse Primer 

TBP GAACAATCCAGACTAGCAGCA GGGAACTTCACATCACAGCTC 

Cyp1a1 ATCCAAGGCAGAATACGGTG TCCACTCCATCTTCCGACTT 

Cyp1b1 GGATATCAGCCACGACGAAT ATTATCTGGGCAAAGCAACG 

 

 

 

Table 12. Human primers list. 

 

Name Forward Primer Reverse Primer 

TBP GATCAGAACAACAGCCTGCC TTCTGAATAGGCTGTGGGGT 

CYP1A1 GACCACAACCACCAAGAAC AGCGAAGAATAGGGATGAAG 

CYP1B1 CACTGACATCTTCGGCG ACCTGATCCAATTCTGCCTG 

 

 

5.2.4 Western blot analysis 

Cells were treated with different concentrations of the compounds for 18 hr and then 

collected using high-salt buffer (50 mM HEPES, 0.5 mol/l NaCl, 1.5 mM MgCl2, 1 mM 

EGTA, 10% glycerol, and 1% Triton-X-100) and 10 l/ml Protease Inhibitor Cocktail 

(Sigma-Aldrich, St. Louis, MO). Protein lysates were incubated for 5 min at 95C before 

electrophoresis and then separated on 10% SDS-polyacrylamide gel electrophoresis 120 

V for 2 to 3 hr. Proteins were transferred onto polyvinylidene difluoride membranes by 

wet electroblotting in a buffer containing 25 mM Tris, 192 mM glycine, and 20% 

methanol for 1.5 hr at 180 mA.  Membranes were then blocked for 30 min with specific 

antibodies.  Detection of specific proteins was performed using Chemiluminescence and 

then exposed to Kodak image station 4000 mm Pro (Carestream Health, Rochester, NY). 
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5.2.5 Gel retardation 

Gel retardation experiments were performed using guinea pig hepatic cytosol according 

to a previously published standard protocol (615).   

 

5.2.6 Generation of AhR-deficient YAMC cells 

Two AhR CRISPR guide RNAs, in a Cas9 vector which also expresses GFP, were 

purchased from GenScript (Piscataway, NJ). Sequences of the guide RNAs were 

CGGTCTCTGTGTCGCTTAGA and GAACACAGAGTTAGACCGCC. YAMC cells 

were cotransfected with both plasmids and 48 hr later, cells were FACS sorted to collect 

the 5% highest GFP expressing cells into individual wells of a 96-well plate. Clonal cells 

were grown into larger cultures and tested for knock-out of AhR protein.   

 

5.2.7 Statistical analysis 

Statistical significance of differences between the treatment groups was determined by 

an analysis of variance and/or Student's t test, and levels of probability were noted.  At 

least 3 repeated experiments were determined for each data point, and results are 

expressed as means  SD. 

 

5.2.8 Computational homology modeling of AhR   

Residues 241 through 400 (sequence HGQNKKGKDG-ALLPPQLALF-AIATPLQPPS-

ILEIRTKNFI-FRTKHKLDFT-PIGCDAKGQL-ILGYTEVELC-TRGSGYQFIH-

AADMLHCAES-HIRMIKTGES-GMTVFRLFAK-HSRWRWVQSN-ARLIYRNGRP-
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DYIIATQRPL-TDEEGREHLQ-KRSTSLPFMF) of the mouse AhR were investigated 

through homology modeling.  The homology model of the AhR was derived using I-

TASSER (616). All binding site residues characterized by mutagenesis studies and 

known to be critical or influence TCDD binding (617-619), which were also investigated 

in a previous study (620), are included in our model. The homology model was built 

using the crystal structure of the hypoxia-inducible factor-2:AhR nuclear translocator 

complex (PDB ID: PZP4 (621), chain B) as an initial template.  The N- and C- terminal 

ends of the modeled protein were acetylated and amidated to avoid any artifacts which 

could occur due to the artificial placement of positively and negatively charged groups at 

the backbone termini of the truncated ends of the modeled systems under investigation.   

 

5.2.9 Generation of docking poses 

TCDD and 1,4-DHNA were independently positioned into the binding sites of AhR 

using AutoDock Vina (622). The structures for both TCDD and 1,4-DHNA were 

obtained from the ZINC database (623). The search space used was 20 Å x 24 Å x 20 Å 

so as to include in the binding pocket AhR residues involved in TCDD binding 

according to mutagenesis studies (617-619). During the initial AutoDock Vina (622) 

docking, the side-chains of residues identified as binding pocket for TCDD binding to 

AhR according to mutagenesis studies (617-619) were treated as flexible. The produced 

complex conformations of TCDD and 1,4-DHNA in complex with AhR with the lowest 

binding free energy according to AutoDock Vina (622) were used as initial structures for 

docking simulation runs performed in CHARMM (624). Six separate docking simulation 
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protocols were introduced independently to investigate the binding of TCDD and 1,4-

DHNA to AhR. In summary, during the docking simulations each ligand independently 

was constrained using harmonic or quartic potential energy functions to the docked 

binding site through the MMFP module of CHARMM [42]; a quartic potential energy 

function was used so as to avoid bias toward the initial positioning of the molecules 

performed by Autodock Vina (622). In each 20 independent runs comprising 200 of 

short 2 ps simulations were performed. In each step, prior to the short MD simulation 

run, the ligands were independently rotated about a randomly generated axis and 

posterior to the short MD simulation run, the complex conformation was minimized and 

was saved for evaluation. This procedure resulted in the generation of 4,000 binding 

conformations for each ligand in complex with AhR per protocol. Additional 

information on the protocols used in the docking simulation runs are provided in the 

Supplemental Materials and Methods (Appendix C). As an initial screening, from each 

docking simulation protocol, out of the 4,000 complex structures produced, we extracted 

the 3 complex structures with the lowest interaction energy for further analysis. This 

translated to 18 docking conformations of TCDD in complex with AhR and 18 docking 

conformations of 1,4-DHNA in complex with AhR were extracted in total.  

 

5.2.10 Molecular dynamics simulations of selected TCDD:AhR and 1,4-DHNA:AhR 

complexes  

In order to refine the ligand:receptor structures, optimize intermolecular interactions, 

determine the structural stability of the selected binding modes, and assess the most 
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energetically favored binding modes of the TCDD:AhR and 1,4-DHNA:AhR complexes, 

we performed 36 independent MD simulation runs of which the initial structures 

corresponded to the 18 selected TCDD:AhR docking conformations, and the 18 selected 

1,4-DHNA: AhR docking conformations. All MD simulations of the 36 systems under 

investigation were performed in explicit solvent using CHARMM (624) and 

CHARMM36 topology and parameters (625) with periodic boundary conditions.  

Additional information on the MD simulations is provided in the Supplemental Materials 

and Methods (Appendix C).  

 

5.2.11 MM GBSA association free energy calculations 

To identify the most energetically favorable conformation of TCDD and 1,4-DHNA in 

complex with AhR, we calculated the association free energy of the 18 complexes per 

ligand over the 10 ns production runs using the Molecular Mechanics Generalized Born 

Surface Area (MM GBSA approximation (626-628), by extracting snapshots from the 

simulations every 20 ps. Additional information on the MM GBSA calculations is 

provided in the Supplemental Materials and Methods (Appendix C).  

 

5.2.12 Selection and analysis of the binding modes with lowest association free 

energy   

The simulations of the TCDD:AhR and 1,4-DHNA:AhR binding modes with the most 

favorable MM GBSA association free energies were selected as the ones representing 

the most likely naturally occurring binding conformations of the two ligands in complex 
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with AhR; the selection was performed similarly to the studies as previously described 

(629-632). The selected simulations of both the TCDD:AhR and 1,4-DHNA:AhR 

binding modes were extended for an additional 20 ns, for a total production run of 30 ns 

each. To determine the stability of the ligands in the AhR binding pockets, the entire 

complexes were structurally aligned by the backbone atoms of the pocket residues and 

the RMSD of the ligand heavy atoms was calculated with respect to the average 

conformation over the entire 10 ns production run duration using VMD (633,634). To 

determine the key interactions occurring in the lowest association free energy binding 

modes, the average per AhR residue interaction free energies between the AhR protein 

and each ligand of the structures with the lowest MM GBSA binding free energies were 

calculated for the entire 30 ns production runs (626,635,636). Additional information on 

the per AhR residue interaction free energy calculations is provided in the Supplemental 

Materials and Methods (Appendix C).  

 

5.3 Results 

5.3.1 Induction of Cyp1a1 and Cyp1b1 in mouse YAMC cells by TCDD and 

naphthalene compounds 

Both TCDD and 1,4-DHNA induce Cyp1a1 and inhibit DSS-induced colitis; however, 

1,4-DHNA is approximately three orders of magnitude lower in potency (575,576,578). 

In contrast to the well-known structure-activity relationships for dioxin-like compounds, 

the contributions of the hydroxyl and carboxylic acid substituents and their positions on 

the naphthalene ring has not previously been reported. In this study, we used YAMC 
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cells as a model for investigating the Ah-responsiveness of naphthalene derivatives on 

normal colon, and also human Caco2 colon cancer cells which are frequently used as an 

in vitro model for colonic responses and 1,4-DHNA induced AhR-dependent Cyp1a1 

gene expression in this cell line has previously been reported (578). The substituted 

naphthalene derivatives used in this study included 1,4-DHNA, 3,5- and 3,7-DHNA, 1,4-

dimethoxy-2-naphthoic acid (DMNA), 1-hydroxy-2-naphthoic acid (1-HNA), 4-HNA, 

2-naphthoic acid (2-NA), 1-NA, 2-naphthol (2-NOH), and 1-NOH (Appendix A-3). The 

effects of these compounds on YAMC and Caco2 cell viability are summarized in 

Appendix A-4. In YAMC cells, 1,4-DHNA was the most cytotoxic of the substituted 

naphthalenes, and only 500 and 1000 M 1- and 2-NOH were more cytotoxic than 

DHNA. Cyp1a1 induction is widely used as a marker of Ah-responsiveness, and 5-50 

M DHNA induced a concentration-dependent increase in Cyp1a1 mRNA levels (Figure 

28A). TCDD (10 nM) induced approximately a 600-fold increase in Cyp1a1 mRNA 

levels, and the maximal induction by 1,4-DHNA (50 M) was approximately 450-fold. 

In contrast, 3,5- and 3,7-DHNA exhibited minimal activity as Cyp1a1 inducers (15- to 

40-fold lower induction than TCDD) (Figures 28B and 28C), and even lower inducibility 

was observed for 1,4-DMNA (Figure 28D). Thus, maximal activity was observed for the 

1,4-dihydroxy substitution and methylation of these hydroxyl groups resulted in loss of 

activity. Both 1-HNA and 4-HNA contain a single hydroxyl substituent and these 

compounds induced Cyp1a1 mRNA (1-HNA > 4-HNA) (Figures 28E and 28F), whereas 

1- and 2-NA (containing no hydroxyl groups) exhibited low to non-detectable induction 

(Figures 28G and 28H). 1- and 2-NOH maximally induced a 43- and 50-fold 
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enhancement of Cyp1a1 mRNA compared to the approximately 600-fold induction 

response observed for TCDD (Figures 28I and 28J), indicating that loss of the 2-

carboxyl substituent resulted in decreased activity. 1,4-Dihydroxynaphthalene is 

unstable in solution and is oxidized to the 1,4-quinone; however, induction of Cyp1a1 by 

this compound was also observed (Appendix A-5). Western blot analysis showed that 

TCDD induced CYP1A1 protein in YAMC cells with only minimal changes in protein 

levels by 1,4-DHNA, 1- and 4-HNA; however, TCDD, 1,4-DHNA, 1- and 4-HNA, 1- 

and 2- NOH decreased expression of the AhR protein (Figure 28K). TCDD, 1,4-DHNA, 

1- and 4-HNA, 1- and 2-NOH treatment downregulated AhR expression and minimal 

effects were observed for the other analogs. Thus, the induction response (CYP1A1) for 

1,4-DHNA and related compounds was maximal for 1,4-DHNA, and the loss of one or 

both hydroxyl or carboxyl groups decreased potency.   

 

 

 

  
 

Figure 28. Induction of Cyp1a1 in mouse YAMC cells. YAMC cells were treated with 

different concentrations of 1,4-DHNA (A), 3,5-DHNA (B), 3,7-DHNA (C), 1,4-DMNA 

(D), 1-HNA (E), 4-HNA (F), 1-NA (G), 2-NA (H), 1-NOH (I) and 2-NOH (J) for 18 hr, 

and Cyp1a1 mRNA levels were determined (in triplicate) by real time PCR as outlined 

in the Materials and Methods. (K) Western blot analysis. YAMC cells were treated with 

a single concentration of the naphthalene compounds for 24 hr, and whole cell lysates 

were then analyzed by western blots. TCDD (10 nM) was used a positive control.  

Significant (p<0.05) induction is indicated (*). 
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Figure 28. Continued. 

 

 

 

Basal levels of Cyp1b1 mRNA in YAMC cells were higher than observed for Cyp1a1, 

and 10 nM TCDD induced a 10-fold increase in Cyp1b1 mRNA in this cell line and 50 

M DHNA induced a similar fold induction response (Figure 29A). 3,5- and 3,7-DHNA, 

1,4-DMNA, 1- and 4-HNA induced Cyp1b1 mRNA (Figures 29B-29F), and with the 

exception of 3,7-DHNA, the maximal induction response for the naphthalene derivatives 

was similar to that observed for TCDD. Both naphthoic acids (1-NA and 2-NA) 

exhibited minimal induction of Cyp1b1 mRNA (Figures 29G and 29H), whereas 1- and 
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2-NOH induced Cyp1b1 levels > 50% of that observed for TCDD (Figures 29I and 29J). 

Thus, the fold induction of Cyp1b1 by TCDD was much lower than observed for Cyp1a1 

in YAMC cells and although the SARs for the naphthalene compounds were similar for 

both responses, their fold induction responses compared to TCDD were significantly 

higher for Cyp1b1 compared to Cyp1a1. The most striking difference in compound-

induced gene expression was observed for 1,4-DMNA which did not induce Cyp1a1 but 

induced levels of Cyp1b1 mRNA >80% of the level observed for 10 nM TCDD (Figure 

29D). 

 

 

 

 
 

Figure 29. Induction of Cyp1b1 in mouse YAMC cells. YAMC cells were treated with 

different concentrations of 1,4-DHNA (A), 3,5-DHNA (B), 3,7-DHNA (C), 1,4-DMNA 

(D), 1-HNA (E), 4-HNA (F), 1-NA (G), 2-NA (H), 1-NOH (I) and 2-NOH (J) for 18 hr 

and Cyp1b1 mRNA levels were determined (in triplicate) by real time PCR as outlined 

in the Materials and Methods.  Significant (p<0.05) induction is indicated (*). 
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Figure 29. Continued.  

 

 

 

5.3.2 Induction of CYP1A1 and CYP1B1 in human Caco2 cells by TCDD and 

naphthalene compounds 

The SARs for 1,4-DHNA and structurally-related analogs were also carried out in 

human Caco2 cells, a colon cancer cell line used extensively as a model for investigating 

colonic effects of various drugs and dietary factors (627,637). 1,4-DHNA (Figure 30A) 

but not 3,5-DHNA, 3,7-DHNA or 1,4-DMNA (Figures 30B-30D) induced CYP1A1 
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mRNA levels >50% of that observed for TCDD (140-fold induction). In contrast, both 1-

HNA and 4-HNA maximally induced CYP1A1 mRNA (Figures 30E and 30F); 1- and 2-

NA (Figures 30G and 30H) were relatively inactive, and both 1- and 2-NOH (Figures 

30I and 30J) induced <15% of the maximal response observed for TCDD. 1,4-

Dihydroxynaphthalene also induced CYP1A1 in Caco2 cells (Appendix A-6). Western 

blot analysis showed that TCDD and 1,4-DHNA induced CYP1A1 protein, and both the 

1- and 4-HNA compounds also induced these responses and all 4 compounds decreased 

AhR protein levels. TCDD, 1,4-DHNA, 1- and 4-HNA induced AhR downregulation 

and these results were different than their effects on the AhR in YAMC cells (Figure 

28).   

 

 

 

 
 

Figure 30. Induction of CYP1A1 in human Caco2 cells. Caco2 cells were treated with 

different concentrations of 1,4-DHNA (A), 3,5-DHNA (B), 3,7-DHNA (C), 1,4-DMNA 

(D), 1-HNA (E), 4-HNA (F), 1-NA (G), 2-NA (H), 1-NOH (I) and 2-NOH (J) for 18 hr, 

and CYP1A1 mRNA levels were determined (in triplicate) by real time PCR as outlined 

in the Materials and Methods. (K) Western blot analysis. Caco2 cells were treated with 

the various compounds for 24 hr, and whole cell lysates were then analyzed by western 

blots. TCDD (10 nM) was used a positive control. Significant (p<0.05) induction is 

indicated (*). 
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Figure 30. Continued. 

 

 

 

In Caco2 cells, TCDD induced a 31-fold induction of CYP1B1 compared to controls 

(Figure 31A), and only minimal to non-detectable induction was observed for 3,5-

DHNA, 3,7-DHNA or 1,4-DMNA (Figures 31B-31D), whereas maximal induction 

responses were observed for 1- and 2- HNA (Figures 31E and 31F). Minimal induction 

was observed for 1- and 2-NA (Figures 31G and 31H), whereas both 1-NOH and 2-NOH 

induced CYP1B1 (50% of TCDD-induced response) (Figures 31I and 31J) (2-NOH > 1-



 

172 

 

NOH). Appendix A-7 compares the induction of CYP1A1/CYP1B1 in YAMC and Caco2 

cells after treatment for 6 or 18 hr. Induction responses for CYP1A1 (YAMC and Caco2) 

and CYP1B1 (Caco2) were significantly higher at the latter time point and this is 

consistent with previous studies on induction of CYP1A1 mRNA in this cell line (638). 

In contrast, comparable compound-dependent induction of Cyp1b1 mRNA levels was 

observed YAMC cells after treatment for 6 and 18 hr. The SARs for induction of 

CYP1A1 by 1,4-DHNA and related compounds (compared to TCDD) were similar in 

Caco2  and YAMC cells; however, both 1- and 4-HNA induction responses were lower 

in YAMC vs. Caco2 cells, suggestive of species differences in the AhR and/or cell-

specific differences in metabolism of these compounds. In contrast, SARs for induction 

of Cyp1b1/CYP1B1 were highly variable and cell context-dependent for the naphthalene 

compounds. 

 

 

 

 

Figure 31. Induction of CYP1B1 in human Caco2 cells. Caco2 cells were treated with 

different concentrations of 1,4-DHNA (A), 3,5-DHNA (B), 3,7-DHNA (C), 1,4-DMNA 

(D), 1-HNA (E), 4-HNA (F), 1-NA (G), 2-NA (H), 1-NOH (I) and 2-NOH (J) for 18 hr, 

and CYP1B1 mRNA levels were determined (in triplicate) by real time PCR as outlined 

in the Materials and Methods. Significant (p<0.05) induction is indicated (*).  
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Figure 31. Continued. 

 

 

 

5.3.3 Effects of naphthalene compounds as AhR antagonists and in transformation 

of guinea pig cytosol and AhR DRE localization in ChIP assays 

In order to confirm the application of YAMC cells for investigating the Ah-

responsiveness of compounds (563), we used the CRISPR/Cas9 technology to generate 

AhR knockout cells and expression of AhR in one of these cell lines used in this study is 

illustrated in Figure 32A. Treatment of the knockout cells with TCDD, 1,4-DHNA and 
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related compounds did not induce Cyp1a1 (Figure 32B) or Cyp1b1 (Figure 32C), 

confirming the AhR-dependence of the induction response in wild-type YAMC cells 

(Figures 28 and 29). We also investigated the potential AhR antagonist activities of 1,4-

DHNA and related compounds in mouse YAMC and human Caco2 cells by determining 

their inhibition of TCDD-induced Cyp1a1 gene expression (Figure 32D). In YAMC 

cells, all compounds, with the exception of 1,4- and 3,7-DHNA, inhibited TCDD-

induced Cyp1a1 mRNA expression at one or more of the higher concentrations. 

However, AhR antagonist activity for these substituted naphthalenes was observed at 

concentrations that induced some level of cytotoxicity (Appendix A-4). The only 

compound that did not act as an AhR antagonist (3,7-DHNA) was not cytotoxic. In 

contrast, with the exception of 1- and 2-NOH, this series of substituted naphthalenes 

exhibited minimal cytotoxicity in Caco2 cells (Appendix A-5), suggesting that this cell 

line may be more suitable for determining AhR antagonist activity. The results (Figure 

32E) show that 1,4-DHNA (20-100 M) significantly inhibited TCDD-induced CYP1A1 

gene expression in Caco2 cells, providing an explanation for the reduced reduction 

response at higher 1,4-DHNA concentrations (Figure 30A). Non-cytotoxic 

concentrations of both 1- and 2-NOH (e.g. 250 M) also exhibited AhR antagonist 

activity with 1-NOH being highly active (>80% inhibition).  
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Figure 32. 1,4-DHNA and related compounds do not activate AhR-deficient YAMC 

cells and their partial AhR antagonist activity. (A) AhR knockout YAMC cells.  The 

AhR was knocked out (ko) in YAMC cells using CRISPR/Cas9, and expression of the 

AhR in wild type (wt) and ko cells was determined by western blots as outlined in the 

Materials and Methods.  ko-YAMC cells were treated with 10 nM TCDD, 10 M 1,4-

DHNA, 500 M 3,5-DHNA, 3,7-DHNA, 1,4-DMNA, and 1-HNA, 4-HNA, 1-NA, 2-

NA, and 250 M 1-NOH and 2-NOH for 18 hr and analyzed for expression of Cyp1a1 

(B) and Cyp1b1 (C) mRNA (in triplicate) by real time PCR.  YAMC (D) and Caco2 (E) 

cells were treated with 10 nM TCDD alone and in combination with the 

hydroxyl/naphthoic acids for 18 hr, and Cyp1a1/CYP1A1 mRNA levels were determined 

(in triplicate) by real time PCR. Significant (p<0.05) antagonist activity is indicated (*). 

In the YAMC knockout cells, 3,5-DHNA, 1,4-DMNA and 1-NA slightly induced 

(<50%) Cyp1a1 mRNA levels. 
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Figure 32. Continued. 

 

 

 

Figures 33A and 33B summarize the effects of 1,4-DHNA and related compounds on 

transformation of hepatic cytosol (guinea pig) to its DNA binding form in a gel mobility 

shift assay. 1,4-DHNA (10 and 100 M) and 100 M 3,5-DHNA and 1- and 4-HNA, 1- 

and 2-NOH alone significantly stimulated AhR transformation/DNA binding of guinea 

pig hepatic cytosol, whereas AhR transformation/DNA binding was not observed for 

3,7-DHNA, 1,4-DMNA, 1- and 2-NA. In combination studies with TCDD, only 1- and 

2-NOH inhibited TCDD-induced transformation and this correlated with the AhR 

antagonist activity observed in the transaction assays (Figures 32D and 32E). As a 

positive control, we show that the AhR antagonist CH229131 did not stimulate AhR 

transformation/DNA binding of guinea pig cytosol but inhibited TCDD-induced 

transformation/DNA binding. These AhR transformation/DNA binding assays 

confirmed that 1,4-DHNA, 1- and 4-HNA which induced CYP1A1 and CYP1B1 also 

induced AhR transformation. The results obtained for 3,5-DHNA were somewhat 
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surprising based on the lack of CYP1A1 induction; however, this compound induced 

Cyp1b1 in YAMC cells (Figure 29). The effects of 1- and 2-NOH (100 M) alone and in 

combination with TCDD show that both compounds alone induced transformation/DNA 

binding but also inhibited TCDD-induced transformation/DNA binding to an extent 

similar to that observed for the well-characterized AhR antagonist CH229131. These 

data further confirm the partial AhR agonist/antagonist activities observed for 1- and 2-

NA for induction of Cyp1a1 in colon cells.   

 

 

 

 
 

Figure 33. Effects of 1,4-DHNA and related compounds on transformation and DNA 

binding of guinea pig cytosol and ChIP analysis of the Cyp1a1 promoter. (A) 

Transformation and DNA binding of guinea pig hepatic cytosolis AhR.  DMSO (solvent 

control), 10 M CH229131, 10 and 100 M 1,4-DHNA, and 100 M concentrations of 

the remaining compounds alone and in combination with TCDD were incubated with 

guinea pig cytosol and analyzed by gel mobility shift assays as outlined in the Materials 

and Methods. (B) A representative gel showing the ligand-induced transformed AhR-

DRE complex is illustrated in this panel. (C) ChIP assay. YAMC and Caco2 cells were 

treated with various compounds and analysis of recruitment of pol II and the AhR to the 

Cyp1a1/CYP1A1 promoters was determined in a ChIP assay as outlined in the Materials 

and Methods. 
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Figure 33. Continued. 

 

 

 

We also examined the effects of TCDD, 1,4-DHNA and 1-NOH alone and in 

combination with TCDD in a ChIP assay. Treatment with TCDD for 2 hr resulted in the 

recruitment of the AhR and pol II to the DRE region of the CYP1A1 promoter in Caco2 

and YAMC cells (Figure 33C). Similar effects were observed for 1-NA and 1,4-DHNA 

in YAMC and for 1-NOH (but not 1,4-DHNA) in Caco2 cells. Surprisingly, results 

observed in cells treated with 1-NOH plus TCDD for 2 hr appeared to be additive with 

respect to AhR interactions with the Cyp1a1 promoter. These unexpected ligand-induced 

effects after treatment for 2 hr were further investigated in YAMC cells after treatment 
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for 24 hr. TCDD and to a lesser extent 1-NOH recruited the AhR and pol II to the 

Cyp1a1 promoter, and in the combination treatment (1-NOH plus TCDD), the 1-NOH 

compound decreased the effects of TCDD on AhR and pol II recruitment. 1-NOH alone 

which induced minimal expression of Cyp1a1 mRNA (Figure 28I) recruited relatively 

high levels of the AhR to the Cyp1a1 promoter. Currently, we are further investigating 

both the time- and compound-dependent recruitment of the AhR, pol II and other nuclear 

cofactors, including coactivators and corepressors, to the DRE region of the Cyp1a1 and 

other Ah-responsive genes. 

 

5.3.4 Modeling of TCDD and 1,4-DHNA interactions with the AhR in order to 

identifying the most energetically favored binding conformations   

We introduced the MM GBSA approximation and identified the TCDD:AhR and 1,4-

DHNA:AhR binding modes which acquire the lowest MM GBSA association free 

energy across all 18 simulated TCDD:AhR and 1,4-DHNA:AhR binding modes, 

respectively. The average association free energies of the simulated TCDD:AhR and 1,4-

DHNA:AhR binding modes are tabulated in Appendix B5 and B6, respectively. The 

simulations encompassing the most energetically favored binding conformations of 

TCDD:AhR and 1,4-DHNA:AhR according to MM GBSA were both derived from the 

docking protocols using quartic potential energy functions and are the most likely to 

correspond to the naturally occurring binding conformations.  
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5.3.4.1 Structural stability of binding modes  

The stability of lowest association free energy binding modes of TCDD and 1,4-DHNA 

in complex with AhR was confirmed through RMSD calculations over the 10 ns 

simulation production runs. The RMSD of the heavy atoms of TCDD in complex with 

AhR is 1.0  0.4 Å with respect to the average structure of TCDD in complex with AhR, 

and the RMSD of heavy atoms of 1,4-DHNA in complex with AHR is 0.6  0.3 Å with 

respect to the average structure of 1,4 in complex with AhR. 

 

5.3.4.2 Interactions between TCDD and AhR   

The average per-residue interaction free energy between AhR residues and TCDD are 

decomposed into polar and non-polar contributions, and selected interactions are 

presented in Figure 34. Residues contributing the most interaction free energies are 

presented in Figure 35A. In the TCDD:AhR binding mode, the medial oxygen atom of 

TCDD forms a hydrogen bond with the NE group of Gln377, indicated with a black 

dotted line in Figure 35A. As predicted by previous studies (617-619), the TCDD 

binding pocket of AhR is highly hydrophobic, and the binding of TCDD in AhR is 

primarily stabilized by non-polar interactions (Figure 35A). Residues Phe289, Cys327, 

Met342, Ile319, Phe345, and Leu347 form hydrophobic walls around the left side of the 

ligand, in the perspective of Figure 35A. The aromatic rings residues Phe289, Phe345, 

and, less frequently, Phe318 form - interactions with the aromatic rings of TCDD. 

Van der Waals interactions are also formed between TCDD and the side-chain atoms of 

residues Thr283, His285, Pro291, Cys294, Leu302, Leu309, Ile319, Cys327, Ser330, 
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Met342, Leu347, Ser359, Ala361, and Ala375 as well as the backbone atoms of residues 

Gly315 and Tyr316 due to their close proximity to the bound TCDD molecule. 

 

 

 

 
 

Figure 34. Average interaction free energies (kcal/mol) decomposed into polar (red or 

orange) and non-polar (blue or purple) contributions for AhR interacting residues in 

complex with TCDD (first bar per residue) and in complex with DHNA (second bar per 

residue). The sum of polar and non-polar contributions corresponds to the total average 

interaction free energy per AHR residue. Only residues with at less than -0.5 kcal/mol 

average interaction free energy are presented. Results were calculated using the 

ensemble of snapshots extracted from simulation trajectories of the most energetically 

favored binding conformations. The average and standard deviation values for the polar 

and non-polar components of the interaction free energies were calculated over four 

“measurements”, where the first, second, third, and fourth measurement corresponds to 

the individual average interaction free energy components of the first, second, third, and 

fourth 2.5 ns segment of the 10 ns MD simulation production run. 
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Figure 35. Molecular graphics images of TCDD (panel A) and 1,4-DHNA (panel B) in 

complex with AhR, which correspond to snapshots extracted from the most energetically 

favored binding conformations. The ligand molecules are shown in licorice 

representation in both panels. Interacting AHR protein residues are shown in thin 

licorice representation, and the entire AHR protein is shown in transparent, gray new 

cartoon representation. Hydrogen bonds are indicated using black dotted lines. Q377 

forms hydrogen bonds with both TCDD and 1,4-DHNA. 

 

 

 

5.3.4.3 Interactions between 1,4-DHNA and AhR 

As with the TCDD:AhR complex, the average per residue interaction free energy 

between AhR residues and 1,4-DHNA are decomposed into polar and non-polar 

contributions, and selected interactions are presented in Figure 34. Residues with the 

largest associated interaction free energy contributions are presented in Figure 35B. The 

hydroxyl group of 1,4-DHNA farthest from its carboxylic acid group forms a hydrogen 

bond with the NE group of Gln377; the hydroxyl group of 1,4-DHNA closest to its 

carboxylic acid group forms a hydrogen bond with the NE group of Arg312, and the 

oxygen atoms of the carboxylic acid group of 1,4-DHNA forms hydrogen bonds with the 

backbone amino groups of Tyr316 and Gln317 as well as a low interacting salt-bridge 

with the NH group of Arg312. These hydrogen bonds are indicated using black dotted 

lines in Figure 35B. Hydrophobic residues Phe281, Phe289, Pro291, Cys294, Leu302, 
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Leu309, Phe318, Ile319, Phe345, and Leu347 predominantly form the 1,4-DHNA 

binding pocket of AhR (Figure 35B). The aromatic rings of residues Phe318 and, 

occasionally, Phe289 participate in - interactions with the aromatic rings of 1,4-

DHNA. Due to their close proximity, strong van der Waals interactions are formed 

between 1,4-DHNA and the side-chains of residues Phe281, Thr283, Pro291, Cys294, 

Leu302, Leu309, Ile319, Phe345, and Leu347 as well as the backbone atoms of Gly315 

and Tyr316.  

 

5.4 Discussion 

TCDD and structurally-related halogenated aromatic compounds have been 

characterized as widespread and persistent environmental contaminants, and risk 

assessment of dioxin-like compounds have been developed and are based on well-known 

structure-activity relationships (562,613). In contrast, SARs for other structural classes 

of AhR ligands including pharmaceuticals, microbiota-derived compounds such as 1,4-

DHNA, endogenous AhR ligands, and food-derived compounds have not been 

determined and despite some insights on their intake and levels of exposure, it is difficult 

to predict their potencies and also their interactions with "dioxin-like" compounds. 

 

Among PAHs, naphthalene is not an AhR ligand (639) and therefore the 1- and 4-

hydroxyl and carboxylic acid groups are responsible for the activity of 1,4-DHNA which 

induces near maximal expression (compared to 10 nM TCDD) of Cyp1a1 and Cyp1b1 in 

YAMC and Caco2 cells. The loss of both hydroxyl groups to give 2-NA (or 1-NA) or 
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replacement with methoxyl substituent (1,4-DMNA) resulted in significant loss of 

Cyp1a1/Cyp1b1 inducibility in both cell lines. Both 3,5- and 3,7-DHNA exhibited 

minimal activity as Cyp1a1 inducers in both cell lines; however, in YAMC but not 

Caco2 cells, these compounds induced Cyp1b1 expression, indicating that the 

requirement of the dihydroxy groups was both gene- and cell context-specific to the cell 

context of YAMC and Caco2 cell lines. Differences in structure-activity relationships for 

induction of CYP1B1 may also be species-dependent and due not only to differences 

between the human and mouse AhR but also in expression of cofactors. Hydroxy 

naphthoic acids are bacterial metabolites of PAHs, and previous studies on their 

developmental toxicity in medaka fish embryos show that 1-HNA was not only the most 

toxic compound but also induced Cyp1a1 expression in medaka and mouse Hepa1c1c7 

liver cancer cell lines (628). We also observed that both 1- and 4-HNA induced 

Cyp1a1/Cyp1b1 in YAMC and Caco2 cells and with the exception of relative low 

induction of Cyp1a1 in YAMC cells, their maximal induction responses were 

comparable to 1,4-DHNA and TCDD but 5-20 fold less potent than the former 

compounds. We further confirmed the role of the AhR in mediating compound-induced 

Cyp1a1 and Cyp1b1 using AhR knockout YAMC cells obtained using the CRISPR/Cas9 

technology (Figure 32). It was interesting to note that compounds such as 3,5-DHNA, 

3,7-DHNA and 1,4-DMNA that exhibited minimal to non-detectable induction of 

Cyp1a1 were effective inducers of Cyp1b1 (>50% of the response induced by 10 nM 

TCDD). The differential induction of two AhR-responsive genes in the same cell line is 
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typical of selective AhR modulators and due, in part, to gene/promoter histone and 

chromatin differences and is currently being investigated. 

 

1,4-Dihydroxynaphthalene is readily oxidized to the quinone; however, our results show 

that although this dihydroxy/quinone mixture is cytotoxic, we also observed induction of 

CYP1A1 in Caco2 and YAMC cells (Appendix A-6). Thus, the loss of the carboxyl 

group from 1,4-DHNA to give 1,4-dihydroxynaphthalene decreases but does not 

abrogate AhR activity of this compound. 1- and 2-NOH are biomarkers of human 

exposure to PAH and smoking (640-644), and both compounds exhibited weak 

induction of Cyp1a1/CYP1A1 (YAMC and Caco2) and CYP1B1 (Caco2) mRNA; 

however, Cyp1b1 was induced to >50% of the maximal TCDD-induced response in 

YAMC cells. Both 1- and 2-NOH inhibited TCDD-induced Cyp1a1 gene expression in 

YAMC and Caco2 cells (Figures 32D and 32E), and their AhR antagonist activity was 

also observed in the gel mobility shift assay (Figure 33A), suggesting that 1- and 2-NOH 

represent a new class of partial AhR antagonists. We also observed some inconsistencies 

in the effects of 1-NOH in ChIP assays in YAMC and Caco2 cells (Figure 33C) with 

respect to recruitment of the AhR to the DRE region of the Cyp1a1 promoter, and this is 

currently being investigated. 

   

The most energetically favored binding mode of TCDD in complex with AhR according 

to our computational studies is in strong accordance with previous experimental and 

computational studies examining TCDD binding to AhR. Recent experiments suggest 
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that residues Phe318, Ile319, and Ala375 are key to ligand selectivity (645). Other 

mutagenesis studies revealed that substitutions in residues Thr283, His285, Phe289, 

Pro291, Leu302, Leu309, Cys327, Phe345, and Leu347 result in a reduction in TCDD 

binding (562,617,618). Finally, both computational methods and further mutagenesis 

studies performed on Gln377 support the contention that the polar side chain atoms of 

Gln377 form hydrogen bonds with the medial oxygen of TCDD (619). The excellent 

agreement of our work in comparison to previous studies support the validity of the 

computational protocol introduced here, and suggest that the in silico identified binding 

modes most likely represent the naturally occurring binding modes of TCDD and 1,4-

DHNA with residues in the AhR ligand binding pocket. 

 

The presence of more polar groups which include the negatively charged carboxylic 

group in 1,4-DHNA compared to TCDD contributes in general to stronger polar 

interactions between 1,4-DHNA and AhR compared to TCDD and AhR. While in the 

TCDD:AhR complex, only one hydrogen bond is formed with the NE group of Gln377 

and the medial oxygen of TCDD, 1,4-DHNA forms a hydrogen bond with the NE group 

of Gln377, the NE group of Arg312, and the backbone amino groups of Tyr316 and 

Gln317. Additionally, the negatively charged group of 1,4-DHNA forms a low 

interacting salt-bridge with the NH group of Arg312.  The binding of both TCDD and 

1,4-DHNA in AhR is also stabilized by non-polar interactions. Both the aromatic rings of 

TCDD and 1,4-DHNA form - interactions with the aromatic rings of Phe289 and 

Phe318. Both TCDD and 1,4-DHNA also form strong van der Waals interactions with 
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the side-chains of residues Phe281, Thr283, Pro291, Cys294, Leu302, Leu309, Ile319, 

Phe345, and Leu347 are critical for TCDD binding (618,646). These similarities are 

largely due to TCDD and 1,4-DHNA sharing the same binding site and both ligands 

containing aromatic rings. Owing to the smaller size of DHNA, and thus a lesser amount 

of possible van der Waals interaction and π-π interaction sites, interactions between 1,4-

DHNA and the side-chains of residues  His285, Cys327, Ser330, Met342, Ser359, 

Ala361, and Ala375 are weaker compared to the TCDD:AhR complex. Thus, the 

modeling studies show that both 1,4-DHNA and TCDD interact within the same binding 

pocket of the AhR but 1,4-DHNA binds with lower affinity. This observation is 

consistent with similar efficacies of 1,4-DHNA and TCDD for induction of Cyp1a1 but 

differences in their potencies. To further understand the differences between both 1,4-

DHNA and TCDD in comparison to a minimally active compound, 3,7-DHNA, we 

performed a preliminary study of the latter in complex with AhR using a similar strategy 

to the one used in the study of TCDD and 1,4-DHNA, with the only difference that the 

simulation entailing the binding mode with the lowest association free energy was not 

extended for an additional 20 ns. In comparison with both 1,4-DHNA and TCDD, 3,7-

DHNA forms weaker interactions with Thr283, Pro291, Cys294, Leu302, Leu309, and 

Phe318. Alanine mutagenesis experiments suggest that Thr283, Leu302, Leu309 and 

Phe318 are critical to TCDD binding (618,646), and Phe318 has been shown to be an 

“agonist/antagonist switch”(645). 
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In summary, this study confirms that 1,4-DHNA is a relatively potent AhR agonist in 

both YAMC and Caco2 cells; however, the potential impact of endogenous 1,4-DHNA 

alone or in combination with other AhR agonists/antagonists on gut health is unknown 

and in the future, we hope to more accurately quantitate these compounds and determine 

their combined effects. Structure activity studies show that both the hydroxyl and 

carboxyl groups and their positions on the naphthalene ring are important for AhR 

activity. Both TCDD and 1,4-DHNA are ligands for the AhR and predominantly form 

strong interactions with the same AhR residues. More polar interactions occur in the 

AhR:1,4-DHNA complex in comparison to the AhR:TCDD complex due, in part, to 

differences in overall charge and substituent interactions with various amino acid side-

chains. Our results demonstrate that for some of the hydroxyl naphthoic acid analogs, 

there are differences in their activation of Cyp1a1 vs. Cyp1b1 in the same cell line and 

also differences in the mouse (YAMC) vs. human (Caco2) colon-derived cells. 

However, 1,4-DHNA induced >70% of the response observed for 10 nM TCDD for 

Cyp1a1 and Cyp1b1 in both the mouse and human cell lines. This suggests possible 

efficacy for 1,4-DHNA in humans as an AhR agonist that is protective in the gut; 

however, this will require more definitive proof from dietary studies and manipulation of 

gut microorganisms. 
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6. SUMMARY 

 

Cancer is a severe lethal disease and leading cause of death and numerous studies have 

been carried out to determine the origin and progression of cancer, in the hope of finding 

prevention strategies or cures. Although my dissertation consists of two different topics, 

they all convergent into one final goal, namely, promoting human health and curing 

cancer. 

 

In the first part, we examined the role of lncRNAs in pancreatic cancer development and 

proved that lncRNAs, previously considered as the dark matter of the genome, actually 

play an important role in cancer development. Due to the complicated structure of 

lncRNAs and differences across species, the study of lncRNAs is challenging. Pancreatic 

cancer is the fourth leading cause of cancer associated death in the United States with the 

lowest five-year survival rate of 5% and effective early detection and treatment are 

essential to treat this lethal disease. Our laboratory was the first to show that HOTTIP, a 

recently identified novel lncRNA (211), is a pro-oncogenic lncRNA in pancreatic 

cancer. Our studies showed that decreased HOTTIP expression by RNAi inhibited 

pancreatic cancer cell growth/migration and induced apoptosis. Chang et al showed that 

HOTTIP binds to WDR5 and recruited MLL1 and the complex regulated  H3K4 

trimethylation and the HOXA gene cluster expression (211). We proposed that HOTTIP 

functions in pancreatic cancer cells via regulating an array of HOXA genes. Several 

HOXA genes play a role in the pancreatic cancer development; for example, HOXA10 
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promotes pancreatic cancer cell migration via regulation of TGFβ pathway (647). In the 

human fibroblast cell, HOTTIP regulates HOXA genes in a distance-dependent manner, 

and HOXA13 is the most significantly regulated while HOXA1 is minimally affected 

(211). However, in the Panc1 cells, HOXA13 mRNA levels were not significantly 

decreased after knocking down of HOTTIP. Another group showed that HOTTIP 

promotes pancreatic cancer progression, in part via HOTTIP-HOXA13 axis (271), as 

proposed in other cancer studies (648). They used two different pancreatic cancer cell 

lines, and this might be the reason for differences between their studies and ours. There 

is no doubt that HOTTIP plays a role in the progression of different cancers, however, 

the mechanisms of the role of cell/tissue-context still need to be further investigated. 

 

Another lncRNA we studied is MALAT1. MALAT1 also plays an important role in the 

pancreatic cancer progression and knockdown of MALAT1 by RNAi decreased cell 

proliferation, migration/invasion, and induced apoptosis. Several mechanisms have 

previously been proposed for the function of MALAT1, namely, regulation of alternative 

splicing (201), recruitment of SF2/ASF (649), interaction with miRNA (519,650), 

interactions with histone modification complexes (519). In our studies, microarray data 

indicated the MALAT1 regulates downstream genes via EZH2-dependent and 

independent pathways. We showed that MALAT1 or EZH2 knockdown increased the 

expression of NDRG1 and knockdown of NDRG1 partially compensates the effects of 

MALAT1 knockdown. MALAT1 also regulated other essential genes via EZH2-

independent pathways. Apoptotic peptidase activating factor 1 (APAF1) is an important 
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component of the apoptosome. Decreased expression of MALAT1 induced APAF1 

expression and downstream caspase activation and eventually apoptosis. MALAT1 

xenograft study showed that decreased MALAT1 expression decreased the tumor size 

and volume in the xenograft model (262), however, our transgenic mouse study 

indicated that MALAT1 is dispensable in the KRAS-p53 pancreatic cancer mouse 

model. The results from our animal studies did not rule out the importance of MALAT1 

in the pancreatic cancer development. Since we only harvested the tumor samples 

immediately before the mice died of cancer, there were no significant differences 

between the tumor samples in MALAT1 knockout and wide-type MALAT1 in the 

transgenic mouse model. Harvesting tumor sample at an early stage or use of other 

transgenic mouse models which developed PanIN instead of full development of PDAC 

might help clarify the MALAT1 functions in the development of pancreatic cancer, 

especially at early stages of the diseases.   

 

In the second part of the dissertation, we extensively studied the AhR activity of 

different microbiota metabolites. The gut microbiome used to be “a forgotten organ” of 

the human body but it has recently has drawn a lot of attention. The microbiota 

metabolites are the mediator between human system and gut microbiome. The 

microbiome and its metabolites are important for human health, however, the underlying 

molecular mechanisms have only been partially determined.  The AhR is an evolutional 

transcription factor and the initial studies focused on AhR-mediated induction of drug 

metabolizing enzymes and the metabolism of xenobiotics, particularly the environmental 
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contaminants, such as PAHs AhR research has been significantly expanded with the 

discovery of endogenous functions of the AhR. In our projects, we investigated the 

indole, indole-3-acetate, indole-3-aldehyde, tryptamine of tryptophan metabolites as well 

as DHNA and related compounds. Tryptophan metabolites are considered to be the 

largest group of metabolites produced by gut microbiota. Our lab previously tested those 

typical tryptophan metabolites in human Caco2 cells (651), and late on we tested those 

metabolites in a normal mouse colonocytes cell lines. The results reflected that 

tryptophan metabolites are selected AhR modulators, and the AhR induction is cell type 

and gene specific. Recently, we extensively examined the AhR activity of dihydroxy-2-

naphthoic acid (DHNA) and its analogs. DHNA was shown to attenuate colonic 

inflammation via balancing intestinal bacterial flora and suppressing lymphocyte 

infiltration (608). Another study in 2013 also demonstrated the anti-inflammatory role of 

DHNA in colitis and the proposed mechanism is the DHNA effect on intestinal 

macrophages, leading to the decreased proinflammatory cytokine production. 

Subsequently, the researcher identified DHNA as an AhR activator. They showed that 

DHNA activated AhR pathway in Caco2 cell line and also in the mouse intestine (609). 

Our extensive studies on the AhR activities of different microbiota metabolites facilitate 

the understanding the molecular mechanisms of those metabolites.  In future, we will 

further dig into the inflammation-related gene regulation by those metabolites via AhR 

pathway. The proposed in the vivo study would help expand our understanding of the 

role of AhR ligands in the inflammation process.  
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In summary, we explored the function of two lncRNAs and their possible mechanisms in 

pancreatic cancer development. The application of lncRNAs research into a clinical trial 

is still on its early and premature stage, our study of the molecular mechanism of those 

lncRNAs would help promote the usage of lncRNAs in future cancer treatment.  In 

addition, we also checked the AhR activity of microbiota metabolites. AhR, as another 

promising drug targets, has been studied in various cancer and the other diseases. Our 

hope is to find a connection between the important microbiota metabolites and the AhR 

pathway. Our study has shown the AhR activity of those microbiota metabolites and our 

future studies will be focused on the crosstalk between those AhR activity induced by 

microbiota metabolites and immune response in vivo.  
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APPENDIX A 

 FIGURES 

 

 
 

A-1. (A) The relative expression of MALAT1 in pancreatic cancer cell lines was 

determined by real time RT-PCR. MALAT1 knockdown reduced cell migration (B) and 

cell invasion (C) as determined by Boyden chamber assay (B) and Ibidi assay (C), 

respectively.   
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A-1. Continued. 

 

 

 

 
 

A-2. Cells were treated with different concentrations of the tryptophan metabolites for 

24 hr and assayed for metabolic activity using the MTT assay.  Significantly (p<0.05) 

decreased activity is indicated (*). 
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A-3. Structures, names and acronyms of the hydroxyl/carboxy naphthalene analogs used 

in this study.  
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A-4. Cytotoxicity in YAMC cells. The effects of 1,4-DHNA and related compounds on 

cell viability were carried out as outlined in the Materials and Methods of Section V. 
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A-5. Cytotoxicity in Caco2 cells. The effects of 1,4-DHNA and related compounds on 

cell viability were carried out as outlined in the Materials and Methods of Section V. 
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A-6. 1,4-Dihydroxynaphthalene as an AhR agonist/antagonist. YAMC (A) or Caco2 (B) 

cells were treated with 1,4-dihydroxynaphthalene alone or in combination with 10 nM 

TCDD and Cyp1a1/CYP1A1 mRNA levels were determined by real time PCR. 
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A-7. Comparative induction after 6 and 18 hr. Cells were treated with TCDD and 

maximal inducing concentrations of the naphthoic acid derivatives and 

CYP1A1/CYP1B1 mRNA levels were determined by real time PCR as outlined in the 

Materials and Methods. 
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APPENDIX B 

 TABLES 

 

B-1. The siRNA complexes used in this study. 

  

Name  Sequence 

siGL2 CGU ACG CGG AAU ACU UCG A 

siHOTTIP GCACAGAGAUAAUGGCAAAUU  

siMLL SASI_Hs01_00090459  

siWDR5#1 SASI_Hs01_00046875  

siWDR5#2 SASI_Hs01_00046876  

siAURKA#1 SASI_Hs01_00241476  

siAURKA#2 SASI_Hs01_00241477  

 
 

 

B-2. Primers used for real time-PCR. 

 

Name Forward Primer Reverse Primer 

TBP TGCACAGGAGCCAAGAGTGA

A 

CACATCACAGCTCCCCACCA 

AHNAK CTGAAGTGGTTCTGAGCGG TCCACTCCATCTTCCGACTT 

HOXA1

3 

GGATATCAGCCACGACGAAT ATTATCTGGGCAAAGCAACG 

HOXA1

1 

TGCCAAGTTGTACTTACTACG

TC 

GTTGGAGGAGTAGGAGTATGTC

A 

HOXB7 CGAGTTCCTTCAACATGCACT TTTGCGGTCAGTTCCTGAGC 

HOXA9 CTGTCCCACGCTTGACACTC CTCCGCCGCTCTCATTCTC 

HOXA1

0 

TGGCTCACGGCAAAGAGTG GCTGCGGCTAATCTCTAGGC 

SMAD3 TGGACGCAGGTTCTCCAAAC CCGGCTCGCAGTAGGTAAC 

MMP3 GAGCTAAGTAAAGCCAGTGG

A 

GATATTTCTGAACAAGGTTCATC

GT 

HOTTIP CCTAAAGCCACGCTTCTTTG TGCAGGCTGGAGATCCTAGT 

SGK1 GCGCTAACGTCTTTTCTGTCT TGCTTCATGAAAGCGATGAG 

GDF15 CTCCAGATTCCGAGAGTTGC CACTTCTGGTGAGTATCC 

MMP2 CCCACTGCGGTTTTCTCGAAT CAAAGGGGTATCCATCGCCAT 

CD44 TGCTACCAGAGACCAAGACA CCCATGTGAGTGTCCATCTG 

AURKA GTCAAGTCCCCTGTCGGTT AGTGAGACCCTCTAGCTGT 
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B-2. Continued. 

 

Name Forward Primer Reverse Primer 

HOXA1 

 

TCCTGGAATACCCCATACTTAG

C 

GCACGACTGGAAAGTTGTAATC

C 

IGF2BP

3 

ATTTACAGTGGGAGGTGCTG GCAGTTTCCGAGTCAGTGTT 

TM4SF1 TGGTTCTTTTCTGGCATCGT AGAAAGCATCGCACATCGTT 

PAK2 GCCAAAGAATTATTACAGCATC

C 

TGCTTCTTTAGCTGCCATGA 

 

 

 

B-3. Common genes overexpressed in pancreatic tumors (GSE16515) and 

downregulated in Panc1 cells transfected with siHOTTIP. 

 

Gene Entrez 

Gene 

ID 

Gene Description GSE16515 

Pancreatic tumor _vs_ 

paired adjacent 

normal pancreatic 

tissue (Study: 

Pancreatic tumor 

compared to normal 

pancreatic tissue) 

HOTT

IP 

regulat

ed 

gene 

list 

TM4SF1 4071 transmembrane 4 L six family 

member 1 

4.19 -5.21 

SMS 6611 spermine synthase 2.1 -4.8 

IGF2BP3 10643 insulin-like growth factor 2 

mRNA binding protein 3 

8.48 -4.38 

NCEH1 57552 neutral cholesterol ester 

hydrolase 1 

2.45 -4.06 

UBASH3

B 

84959 ubiquitin associated and SH3 

domain containing B 

2.37 -4.02 

PLAU 5328 plasminogen activator, 

urokinase 

6.39 -3.69 

NT5E 4907 5'-nucleotidase, ecto (CD73) 2.94 -3.65 

PAK2 5062 p21 protein (Cdc42/Rac)-

activated kinase 2 

2.22 -3.62 

AURKA 6790 aurora kinase A 2.52 -3.56 

LDLR 3949 low density lipoprotein receptor 2.38 -3.43 

F2RL1 2150 coagulation factor II (thrombin) 

receptor-like 1 

2.29 -3.38 
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B-3. Continued. 

 

Gene Entrez

Gene 

ID 

Gene Description GSE16515 

Pancreatic tumor _vs_ 

paired adjacent 

normal pancreatic 

tissue (Study: 

Pancreatic tumor 

compared to normal 

pancreatic tissue) 

HOTT

IP 

regulat

ed 

gene 

list 

SLC44A

1 

23446 solute carrier family 44, member 

1 

2.32 -3.34 

DORA2B 136 adenosine A2b receptor 3.45 -3.2 

PNMA2 10687 paraneoplastic Ma antigen 2 2.02 -2.88 

ALDOC 230 aldolase C, fructose-

bisphosphate 

2.27 -2.67 

ERO1L 30001 ERO1-like (S. cerevisiae) 3.87 -2.52 

ITGB1 3688 integrin, beta 1 (fibronectin 

receptor, beta polypeptide, 

antigen CD29 includes MDF2, 

MSK12) 

2.11 -2.49 

YWHAZ 7534 tyrosine 3-

monooxygenase/tryptophan 5-

monooxygenase activation 

protein, zeta polypeptide 

2.37 -2.42 

RAB31 11031 RAB31, member RAS oncogene 

family 

3.39 -2.4 

PALLD 23022 palladin, cytoskeletal associated 

protein 

3.09 -2.39 

ELF4 2000 E74-like factor 4 (ets domain 

transcription factor) 

2.63 -2.38 

KIF11 3832 kinesin family member 11 3.12 -2.36 

DPY19L

1 

23333 dpy-19-like 1 (C. elegans) 2.69 -2.35 

SEMA4B 10509 sema domain, immunoglobulin 

domain (Ig), transmembrane 

domain (TM) and short 

cytoplasmic domain, 

(semaphorin) 4B 

2.48 -2.32 

PHLDA1 22822 pleckstrin homology-like 

domain, family A, member 1 

2.45 -2.32 

CD97 976 CD97 molecule 2.32 -2.31 
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B-3. Continued. 

 

Gene Entrez

Gene 

ID 

Gene Description GSE16515 

Pancreatic tumor _vs_ 

paired adjacent 

normal pancreatic 

tissue (Study: 

Pancreatic tumor 

compared to normal 

pancreatic tissue) 

HOTT

IP 

regulat

ed 

gene 

list 

SLC16A

3 

9123 solute carrier family 16, member 

3 (monocarboxylic acid 

transporter 4) 

8.25 -2.29 

ECT2 1894 epithelial cell transforming 

sequence 2 oncogene 

5.83 -2.28 

TMEM18

9 

38752

1 

transmembrane protein 189 2.05 -2.28 

CALML4 91860 calmodulin-like 4 2.74 -2.24 

SDC1 6382 syndecan 1 6.28 -2.18 

ITGB5 3693 integrin, beta 5 2.34 -2.12 

CCNB1 891 cyclin B1 4.14 -2.09 

SLC6A1

0P 

38675

7 

solute carrier family 6 

(neurotransmitter transporter, 

creatine), member 10, 

pseudogene 

2.64 -2.09 

NUAK1 9891 NUAK family, SNF1-like 

kinase, 1 

2.74 -2.04 

CLIC1 1192 chloride intracellular channel 1 2.7 -2.04 

ENO2 2026 enolase 2 (gamma, neuronal) 3.91 -2.01 

MALL 7851 mal, T-cell differentiation 

protein-like 

6.77 -2 

KIF2C 11004 kinesin family member 2C 2.65 -2 
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B-4. The comparison of differentially expressed gene in Panc1 cells and Malat1 

transgenic mouse tumors.   

Mouse 1251 genes differentially expressed (p<0.05, fold >1.5) 

Panc1 890 genes differentially expressed (p<0.05, fold >1.5) 

Common genes 50 

  

Symbol Exp Fold Change(mouse) Exp Fold Change(human) 

WISP2 -8.886 -1.653 

TBX2 -7.193 -3.774 

CPXM1 -6.869 -1.858 

OLFM1 -6.733 -1.861 

BCAS1 -6.492 -1.531 

MDK -5.778 -2.014 

S1PR3 -4.863 -1.652 

IGFBP5 -4.319 -2.924 

TFF1 -4.250 -16.009 

MYLIP -4.073 -1.508 

TSPAN6 -4.024 -1.903 

FOXA1 -3.961 -6.948 

PPM1H -3.867 -1.786 

FAM46A -3.863 -3.324 

TBC1D9 -3.717 -1.849 

TACSTD2 -3.599 -13.771 

ASS1 -3.285 -1.573 

INHBB -3.225 -1.646 

LHFPL2 -3.173 -1.523 

TSKU -3.122 -4.661 

NOTCH3 -3.117 -2.204 

FAM174B -3.022 -2.162 

STAT1 -2.992 -1.514 

LYN -2.910 -1.530 

UNC93B1 -2.897 -1.537 

SLC7A2 -2.821 -3.742 

PARP14 -2.759 -1.786 

CEBPA -2.744 -1.613 

DKK3 -2.669 -2.378 

ALDH1A3 -2.528 -1.624 

SERPINA3 -2.508 -4.231 

MAL2 -2.465 -4.240 

PMEPA1 -2.448 -1.502 

TAGLN -2.432 -1.843 

GPD1L -2.223 -2.938 
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B-4. Continued. 

 

Symbol Exp Fold Change(mouse) Exp Fold Change(human) 

NCBP2 -2.210 -1.570 

MYD88 -2.149 -1.572 

TMEM64 -2.143 -3.618 

RIOK3 2.143 1.573 

PSPH 2.190 1.723 

VPS37B 2.269 1.560 

LMNA 2.473 1.836 

PTBP2 2.509 1.583 

NDRG1 2.883 2.662 

SLC16A3 3.034 1.642 

PHGDH 3.183 1.543 

HIST1H1C 3.238 1.707 

BAG2 3.335 1.860 

CENPM 3.388 1.556 

 

 

 

B-5. TCDD binding modes and their corresponding association free energies in complex 

with AhR. 

 

TCDD Binding Mode Association Free Energy (kcal/mol) 

05h1 -42.50 ± 1.03 

05h2 -44.84 ± 1.84 

05h3 -46.53 ± 1.14 

05q1 -47.88 ± 1.74 

05q2 -49.69 ± 0.67 

05q3 -43.08 ± 0.29 

15h1 -48.04 ± 0.52 

15h2 -47.10 ± 0.64 

15h3 -45.55 ± 2.03 

15q1 -46.58 ± 0.41 

15q2 -47.13 ± 0.91 

15q3 -47.34 ± 0.69 

25h1 -45.78 ± 0.66 

25h2 -46.27 ± 0.21 

25h3 -44.90 ± 0.37 

35h1 -48.20 ± 0.81 

35h2 -46.63 ± 1.56 

35h3 -46.24 ± 0.53 



 

299 

 

 

B-6. 1,4-DHNA binding modes and their corresponding association free energies in 

complex with AhR. 

 

1,4 DHNA Binding Mode Association Free Energy (kcal/mol) 

05h1 -41.13 ± 0.44 

05h2 -34.06 ± 2.35 

05h3 -27.94 ± 1.05 

05q1 -31.69 ± 0.39 

05q2 -40.20 ± 2.27 

05q3 -43.84 ± 0.39 

15h1 -43.07 ± 1.22 

15h2 -28.30 ± 0.99 

15h3 -37.95 ± 3.83 

15q1 -34.20 ± 3.30 

15q2 -47.59 ± 0.56 

15q3 -29.12 ± 2.08 

25h1 -32.84 ± 1.15 

25h2 -40.40 ± 1.27 

25h3 -31.30 ± 1.54 

35h1 -41.63 ± 0.30 

35h2 -32.55 ± 2.18 

35h3 -33.44 ± 2.06 
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APPENDIX C 

 SUPPLEMENTAL MATERIALS AND METHODS 

 

C-1. Generation of docking poses 

In all protocols, the MMFP module of CHARMM, version c39b2 (624), was used to 

constrain the ligands to the experimentally defined binding site. In four of the docking 

protocols, a harmonic potential of 10.0 kcal/(mol Å2) was applied to the center of mass 

of the ligands to disallow structural deviations in the center of mass greater than either 

0.5, 1.5, 2.5, or 3.5 Å from the initially determined center of mass determined by 

AutoDock Vina (622). In the remaining two docking protocols, a quartic spherical 

boundary potential was applied to the center of mass of the ligands, with the following 

form E(r) = a × r- roffset( )
2
× r- roffset( )

2
- p( ) , where E(r) is the potential, a is the amplitude 

of the potential, r is the difference between the ligands’ initial and new center of mass 

after each rotation, roffset is a defined offset distance in the ligands’ center of mass, and p 

is a parameter. With the quartic spherical boundary potential, an energetic well is created 

away from the initial position of the ligands, which may enhance the sampling of the 

binding modes. Here, a was set to 25.0 kcal/(mol Å2), p was set to 1, and roffset was set to 

either 0.5 or 1.5 Å. The molecules were parameterized using CGENFF (652). 

 

In each of the six docking simulation protocols, twenty docking molecular dynamics 

(MD) simulation runs were performed in implicit solvent (653) using CHARMM (624). 

To preserve the non-binding conformation of AhR during the docking simulations, a 
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harmonic constraint of 1.0 kcal/(mol*Å2) was applied to AhR residues, excluding 

residues with backbone atoms within 8.5 Å of TCDD in its initial placement. These 

residues were freed from constraints as to facilitate the docking procedure and allow 

flexibility in the docking site. Every two picoseconds, a rotation of 120 degrees was 

attempted on the docked ligand around a randomized axis with the final two picosecond 

structure minimized under fifty steps of steepest descent and saved for further analysis. 

The rotations aimed at allowing the ligands to explore different poses within the binding 

sites. Two-hundred steps of two picosecond MD runs were performed in each of the 

twenty docking MD simulation runs. Thus, four thousand snapshots of each ligand in the 

binding site of AhR per protocol were produced. As an initial screening, from each 

docking simulation protocol, out of the four thousand complex structures produced, we 

extracted the three complex structures with the lowest interaction energy for further 

analysis. As a result, 18 docking conformations of TCDD in complex with AhR and 18 

docking conformations of 1,4-DHNA in complex with AhR. 

 

The extracted binding modes were named based on which protocol they originated from. 

For example, binding mode 05h1 is the mode with the lowest interaction energy from the 

protocol using a harmonic potential allowing a deviation of 0.5 Å in the ligand’s center 

of mass. Likewise, binding mode 15q2 is the mode with the second lowest interaction 

energy from the protocol using a quartic potential with an roffset of 1.5 Å.  
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C-2. Molecular dynamics simulations of selected TCDD:AhR and 1,4-DHNA:AhR 

complexes  

Each complex was solvated in a 105 Å truncated octahedral explicit water box. 

Potassium chloride ions were introduced to each water box resulting in an ion 

concentration of 0.15 M. The charge of the systems was neutralized by adding additional 

potassium and chloride ions as needed. The ions were initially placed using 2,000 steps 

of Monte Carlo simulations (654,655). Subsequently, 50 steps of steepest descent 

minimization followed by 50 steps of Adopted Basis Newton-Raphson minimization 

was performed on the solvent molecules. An additional 50 steps of steepest descent 

minimization and 50 steps of Adopted Basis Newton-Raphson minimization were 

performed in each system with heavy atoms of both ligands and all AhR backbone atoms 

constrained under 1.0 kcal/(mol*Å2) harmonic constraints and AhR heavy side-chain 

atoms under 0.1 kcal/(mol*Å2) harmonic constraints.   

 

The systems were equilibrated in five consecutive stages, of 0.2 ns duration each. The 

total duration of equilibration was equal in the first of the five stages, the heavy atoms of 

the ligand, backbone atoms of the protein, and heavy side-chain atoms of the protein 

were constrained with a 5.0 kcal/(mol*Å2), 5.0 kcal/(mol*Å2), and 0.5 kcal/(mol*Å2) 

harmonic force, respectively. In the subsequent four stages, the harmonic constraints on 

the ligand heavy atoms, protein backbone atoms, and protein heavy side-chain atoms, 

respectively, were reduced to 4.0 kcal/(mol*Å2), 4.0 kcal/(mol*Å2), and 0.4 

kcal/(mol*Å2) in the second stage, 3.0 kcal/(mol*Å2), 3.0 kcal/(mol*Å2), and 0.3 
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kcal/(mol*Å2) in the third stage, 2.0 kcal/(mol*Å2), 2.0 kcal/(mol*Å2), and 0.2 

kcal/(mol*Å2) in the fourth stage, and finally 1.0 kcal/(mol*Å2), 1.0 kcal/(mol*Å2), and 

0.1 kcal/(mol*Å2) in the fifth stage. These constraints were then released for the 

production stage of the simulations.  

 

In the production stage, each complex was simulated for 10 ns with frames extracted 

every 20 ps. The temperature for all simulations was set at 300 K using the Hoover 

thermostat, and the pressure for all simulations was set at 1.0 atm. The simulations were 

executed using the Leap-frog Verlet algorithm of CHARMM, version c39b2 (624). Light 

(0.1 kcal/(mol*Å2)) harmonic constraints were introduced to the backbone atoms of AhR 

residues 241 through 264 in order to preserve the structure in that domain with respect to 

the rest of the receptor. After the MD simulation runs reached 10 ns, the trajectories 

were stripped of all solvent atoms and the 10 ns simulation snapshots of each complex 

were analyzed for their energetic favorability as described below. Simulation snapshots 

were extracted every 20 ps, and thus 500 snapshots were analyzed per system. 

 

MM GBSA association free energy calculations. According to the MM GBSA 

approximation, the association free energy, ΔG, is determined by subtracting the total 

free energy of the free protein, GP, and the free ligand, GL, from the total free energy of 

the complex, GPL, as shown in the equation below (630,635,656):   

G = GPL - GP - GL Eq. 1 

The individual free energies were estimated using the following equation (657). 
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G = EBonded +EElec +EGB +EvdW +g ×SASA Eq. 2 

Where EBonded, EElec, EGB, EvdW, and SASA are the bonded energy, electrostatic 

interaction energy, generalized-Born energy, van der Waals energy, and solvent-

accessible surface area of the system, respectively.  The polar contribution to the total 

MM GBSA association free energy is represented by the sum of electrostatic interaction 

energy and generalized-Born energy terms.  The nonpolar contribution to the total MM 

GBSA association free energy is represented by the sum of the van der Waals energy and 

solvent-accessible surface area terms.  

 

In this calculation, we used the one-trajectory approximation (658,659), as in refs. 

(629,630,635,656), in which the free state of the ligand and receptor protein have the 

same conformation as in the bound state and entropy contribution from the ligand and 

protein are assumed to be negligible.  Entropy contributions from the solvent are taken 

into account implicitly (660).  The generalized Born with a simple switching (GBSW) 

model was introduced to calculate the polar and non-polar solvation free energies (653). 

The non-polar surface tension coefficient used for these calculations was set to the 

default value of 0.03 kcal/(mol Å2).   

 

The association free energies of each set of conformations for both TCDD and 1,4-

DHNA were averaged over four segments. The 10 ns production runs were divided into 

four equal segments of 2.5 ns. The average association free energies of each segment, for 

the entire 2.5 ns trajectory, were taken to be the measurement for the 2.5 ns interval. The 
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average association free energies and standard deviation values, reported in Appendix B-

5 for TCDD binding modes and Appendix B-6 for 1,4-DHNA binding modes, were 

calculated using the four measurements for each binding mode. 

 

C-3. Per AhR residue interaction free energy calculations 

The production runs were also divided into four, 2.5 ns segments for the per residue 

interaction free energy calculations. For each 2.5 ns segment, the per AhR residue 

interaction free energy between a residue R and L (ligand) was calculated using the 

following equation (626,635,636). 

DGRL
inte =

1

f
Eij

Elec +Eij
GB( ) + Eij

vdW +g D SASAi( )
iÎR,L
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The polar, Van der Waals (vdW), and non-polar solvation interaction free energy 

between a residue R and L are represented by the first, second, and third components of 

equation above respectively. For our study, R corresponds to a given residue in the AhR 

protein, and L corresponds to either ligand, TCDD or 1,4-DHNA, in the binding pocket 

of AhR. The sum of the per residue interaction free energies across the 2.5 ns segment is 

averaged over f (=125), the number of snapshots used in the calculation. The average per 

AhR residue interaction free energies and their standard deviations, presented in Figure 

8, between R and L were calculated using the per residue interaction free energy values 

of the four 2.5 ns segments. 
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The polar component of the total interaction free energy, consisting of electrostatic 

interaction Eij
Elec( )and generalized-Born Eij

GB( )  energy contributions between residues R 

and L, represents the interaction between residues R and L and the interaction between 

residue R and the solvent polarization potential induced by L.  The non-polar component, 

consisting of the van der Waals interactions Eij
vdW( ) between the two residues and the 

change in the non-polar solvation free energy due to binding (g ×DSASAi ), represents 

the non-polar interactions with the surrounding solvent and cavity contributions. 

 

The solvation terms were determined using the GBSW generalized-Born model (653). 

These calculations were performed using a non-polar surface tension coefficient, , of 

0.03 kcal/(mol*Å2). Atoms surrounding residues R and L affect the generalized-Born 

energy contribution Eij
GB( )  and solvent accessible surface area (SASAi) terms (661). For 

the Eij
GB( )  term, all atoms were included, and the charges of atoms outside the groups RL, 

L, and R were set to zero. The SASAi term corresponds to the difference in solvent 

accessible surface areas of the bound and unbound states of residues R and L. 


