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ABSTRACT

This dissertation introduces a new method to create adaptive mesh refinement and coars-

ening in compositional reservoir simulation. The methodology targets individual cells for

refinement based on forecasted compositional fronts calculated using streamlines and the

analytical convection-dispersion transport equation. Quadtree decomposition determines

the optimal spatial discretization across the simulation grid using dynamic and static reser-

voir properties. Application of the new approach results in improved computational per-

formance without compromising the accuracy of phase behavior.

Current dynamic gridding implementations have rigid schemes, posing two major limita-

tions: cell refinement size is a pre-determined input value and compositional maps from

the previous time step define the refinement region. This solution leads to suboptimal

modeling due to time-lagging refinement and lack of grid adaptability in heterogeneous

reservoirs and/or fast-moving compositional fronts. The new methodology overcomes

these limitations by combining streamline and particle trajectory to forecast the injection

front location and adapt grid sizes in advance.

Tracking compositional variations starts by calculating fluxes for all cells using the finite-

difference solution. Next, Pollock’s tracing method allows reducing the 3-dimensional

model into a series of 1-dimensional streamlines, while the convection-dispersion equation

forecasts future compositions, shape, and location of injection front along each streamline

trajectory. Finally, quadtree decomposition analyzes the homogeneity of dynamic and/or

static properties (e.g., composition, pressure, permeability, facies) to determine if a vol-

ume can be represented by a single gridblock or if it requires refinement to preserve spatial

details. Grid discretization is dynamic over time, refining cells requiring high-resolution

and/or coarsening those with low variation.
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A mechanistic model with CO2 injection served to evaluate the methodology. The fluid

was modeled with five pseudo-components and the Peng-Robison equation of state with

volume translation to improve volumetric predictions. The new approach reduced the total

number of cells required to model miscible injection by continuously creating adaptive

grids that represent the advancement and shape of the injection front. Results showed a

reduction in computational cost between 30-63% over a static fine grid without compro-

mising the representation of compositional mixing phenomena and production forecast.
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NOMENCLATURE

A Area perpendicular to flow direction

Bw Water formation volume factor

c Volume parameter

~cB,k Vector from the centroid of the cell B to the centroid of the kth face

Ci Mass concentration of component i

CiI Initial molar concentration of component i

CiJ Injected molar concentration of component i

cf Rock compressibility

cv Water viscosibility

cw Water compressibility

f̂i Fugacity of component i in a mixture

fv Vapor molar fraction

g Velocity gradient

h Thickness

k Permeability

Ki Equilibrium ratio of component i (xgi /x
o
i )

K` Longitudinal dispersion coefficient

kr Relative permeability

L Length

M Mobility

Mwi
Molecular weight of component i

n Grid refinement level (quadtree structure)

n Number of moles

~nk Normal of the face

~N Number of moles

Nc Number of components
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Nf Number of connecting faces

Ni Number moles of component i

Np Number of phases

NPe Peclet number

p Pressure

pc Capillary pressure

pci Critical pressure of component i

ppc Pseudo critical pressure

pr Reduced pressure

pwf Bottomhole flowing pressure

q` Molar rate (` = o, g, w)

Q Volumetric flow rate

R Universal gas constant

ro Equivalent Peaceman radius

rw Wellbore radius

S` Saturation (` = o, g, w)

S Well skin (in Peaceman well equation)

si Dimensionless shift parameter of component i

t Time

T Temperature

Tci Critical temperature of component i

TG Geometric transmissibility

Tpc Pseudo critical temperature

Tr Reduced temperature

u Superficial velocity

v Interstitial velocity

Vb Bulk volume

Vci Critical volume of component i
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Vi Partial molar volume of component i

Vm Molar volume

Void Void

Vp Pore volume

Vt Total fluid volume

WI Well index

x Position

x`i Phase molar fraction of component i

zi Overall molar fraction of component i

Z Gas compressibility factor

Greek Symbols

ε Convergence criteria

ζ Viscosity parameter

κij Binary interaction coefficient between components i and j

µ Viscosity

ρ` Mass density (` = o, g, w)

ρm,` Molar density (` = o, g, w)

ρmr Reduced molar density

φ Porosity

ϕ̂i Fugacity coefficient of component i in a mixture

Φ Flow potential

ωi Acentric factor of component i

Subscripts and Superscripts

B Block

Badj Adjacent block

g Gas phase
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h Horizontal

i, j Component

k Iteration

` Phase

n Time level

o Oil phase

p Particle

v Vertical

w Water phase

x X-direction

y Y-direction

z Z-direction

Abbreviations

AMRC Adaptive mesh mefinement and coarsening

CDE Convective-dispersion equation

CFL Courant–Friedrichs–Lewy

EOS Equation of state

IMPES Implicit-pressure and explicit-saturations

IMPESC Implicit-pressure, explicit-saturations, and explicit-compositions

LGR Local grid refinement

PR Peng-Robinson

SRK Soave-Redlich-Kwong

TPFA Two-point flux approximation
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CHAPTER I 

INTRODUCTION

Injection of gas or solvent in oil reservoirs is a technique that has been widely imple-

mented to improve oil recovery (Fletcher 1953; Hall et al. 1957; Babson 1989; Jhaveri

et al. 2014). Depending on the pressure, temperature, and composition of the reservoir

and injected fluids, it is possible to increase recovery as a result of oil swelling, reduction

of the interfacial tension between oil and gas phase, viscosity reduction due to miscibility,

pressure maintenance, and/or oil displacement from the reservoir pores.

Forecasting and studying gas injection processes is usually performed through composi-

tional reservoir simulation. The complex phase behavior created by continuous changes

in fluid composition requires small spatial discretization of the reservoir model. Large

grid cells may result in significant errors in the estimation of production performance

and breakthrough times. Camy and Emanuel (1977) explained grid-size dependency in

compositional models from two effects: numerical dispersion and non-linearity of phase

equilibrium computations.

Numerical dispersion occurs as the conservation derivatives are replaced with finite-difference

approximation. It results in truncation errors that lead to saturation and composition dis-

persion impacting forecasts of production rates and breakthrough times (Fanchi, 1983). On

the other hand, the non-linearity of the flash equation may have a significant impact when

normalizing compositions and pressures over several cells (Camy and Emanuel, 1977).

As compositional simulators are derived assuming thermodynamic equilibrium in each

grid element, regrouping cells and re-normalizing its composition may result in a different

overall phase behavior response.
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The use of small grid blocks reduces the impact of both numerical dispersion and non-

linearity of the phase equilibrium. However, the high computational cost of solving the

flash equilibrium in multi-component systems makes the use of fine grid cells impractical

for reservoir field modeling.

Dynamic mesh refinement provides a solution for preserving spatial details while reducing

the number of cells, thus lowering computational requirements. This technique modifies

grid size based on dynamic reservoir properties, refining areas with high-compositional

and velocity gradients. This is especially valuable when modeling gas injection processes

where some regions exhibit drastic compositional changes (injection front) while others

remain relatively constant (swept and unswept regions).

Several formulations have been proposed for using dynamic grids in reservoir simulation

(Heinemann et al. 1983; Han et al. 1987; Khan et al. 1995; Hornung and Trangenstein

1997; Sammon 2003; Nilsson et al. 2005a; van Batenburg et al. 2011), but key challenges

remain. Current models present rigid schemes with two main limitations: i) refinement

region is estimated from previous timestep solutions; and ii) the splitting size of the cells

is defined based on user-input values. This approach leads to suboptimal application due to

time-lagging results and lack of refinement flexibility. In this research, an Adaptive Mesh

Refinement/Coarsening (AMRC) model is proposed where these two key limitations are

solved.

1.1 Objectives

The main objective of this research is to propose, develop, and test a reservoir simula-

tion model capable of refining and coarsening the grid cells based on static and dynamic

properties to improve computational performance. This is done by combining a finite dif-

ference simulator with streamlines and the convective-dispersive equation to track the gas

injection front and forecast regions that need refinement. The selection of the grid-size for
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the adaptive grid is performed using quadtree decomposition analysis that enables selec-

tion of cell sizes across the reservoir model as a function of any dynamic or static property,

e.g. compositions, pressures, permeability, facies, etc.

To accomplish this goal, we need to develop and implement the following tasks:

• Develop a finite-difference compositional reservoir simulator capable of handling

flux movement between a variable number of cell faces. This is necessary as the

model needs to represent coarse cells connecting with multiple fine cells.

• Implement streamline calculation using Pollock’s tracking algorithm based on the

flux distribution calculated with the finite-difference model.

• Conduct analytical calculation of compositions along 1-dimensional streamlines us-

ing the convection-dispersion equation. Map and interpolate the solutions into a

3-dimensional grid.

• Program quadtree decomposition algorithm analyzing homogeneity of dynamic and

static properties to determine grid-size across the model.

• Evaluate the performance of dynamic gridding compared to fixed fine-grids. Anal-

yses consider forecast accuracy and computational time for multiple gas injection

scenarios.

1.2 Description of the chapters

Chapter I defines the general problem of this research, including relevance, approach, and

objectives to be accomplished.

Chapter II presents a literature review, starting with generalities of compositional reservoir

modeling including mathematical formulations using finite-difference, fluid phase behav-

ior, and analytical solutions. We then consider current dynamic grid refinement models
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and quadtree grid structure and decomposition techniques to assess their applicability and

limitations.

Chapter III shows the mathematical formulation of a 3D fully compositional reservoir sim-

ulator incorporating adaptive gridding. It describes the derivation of the finite-difference

model with its governing and auxiliary equations developed using solved using a implicit-

pressure, explicit-saturations and composition method (IMPESC). We also present the val-

idation of the model compared to a commercial simulator.

Chapter IV presents the adaptive mesh refinement and coarsening (AMRC) algorithm de-

veloped for modeling gas injection processes. It describes the process and equations for

forecasting the injection front, selecting the size of the griblocks, and transferring and up-

dating the properties in the new adaptive grid.

Chapter V shows the typical and extreme applications of the reservoir simulator using

dynamic gridding. It includes homogeneous and heterogeneous cases to analyze the com-

putational performance and test the robustness and stability of the algorithm.

Finally, Chapter VI states the conclusions and recommendations for future research.
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CHAPTER II

BACKGROUND RESEARCH

Numerical simulation is an important tool for predicting, understanding, and optimizing

the performance of oilfield reservoirs. Mathematical models describe flow of oil, gas, and

water through porous media providing a representation of complex physical processes.

This chapter presents a literature review of modeling techniques for compositional reser-

voir simulators, including finite-difference formulations and analytical solutions. Differ-

ent adaptive mesh refinement techniques are analyzed to identify their applicability for

dynamic gridding.

2.1 Modeling compositional reservoirs

2.1.1 Finite-difference reservoir simulation

Fluid transport in porous media is governed by the conservation of mass, momentum, and

energy. These constitutive equations estimate changes in pressure and saturation after per-

turbing the system (sources and sinks). For fluids with substantial mass transfer between

phases, a set of components or pseudo-components describe the fluid behavior assuming

thermodynamic equilibrium. Modeling these compositional reservoirs requires calculat-

ing the mass or molar balance for each component or pseudo-component in the system.

Equilibrium relations obtained from equations of state (EOS) provide the mass interchange

between phases and the fluid properties of each phase.

Along with the governing equations, auxiliary expressions (relative permeabilities, well

productivity/injectivity, capillary pressure between oil and gas phase, and viscosity mod-

els) are used to reduce the number of unknown variables and define the reservoir simu-

lation system. Depending on how equations are formulated, compositional reservoir sim-

ulation methods can be divided into two types: mass balance and volume balance. For
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simplicity of this study, we assumed isothermal flow (constant temperature), no mass ex-

change between the water and the hydrocarbon phase, and no chemical reactions.

Mass balance type

The development of the mass balance formulation starts with a mass (or mole) conser-

vation equation for every hydrocarbon component in the system. Combining the mass

conservation with the flow equation (Darcy’s Law) results in the hydraulic diffusivity for

a single component i in a porous media (Eq. 2.1).

∇ ·

[
kA

Np∑
`=1

(
xi
kr
µ
· ∇Φ

)
`

]
= Vb

∂

∂t
[φNi]− qi (2.1)

where:

A Area perpendicular to flow direction

k Permeability tensor

kr Relative permeability of phase `

Ni Number of moles of component i per unit volume

Np Total number of phases

qi Net molar rate of component i from sources and sinks

t Time

xi Molar composition of phase `

Vb Bulk volume

µ Viscosity of phase `

φ Rock porosity

Φ Potential for phase `

The first approach for compositional modeling using a mass balance formulation was pro-

posed by Fussell and Fussell (1979). The authors developed a model based on Redlich-

Kwong EOS assuming constant flow coefficients (e.g. relative permeabilities, densities,
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viscosities) over a time step (i.e. explicit flow coefficients), while treating all other vari-

ables as unknowns (pressure, liquid molar fraction for hydrocarbon, and phase compo-

sition). The solution was achieved iteratively using a multivariable Newton-Raphson

method.

In 1980, Coats developed a fully-implicit, three-phase model using an EOS for calculating

phase equilibrium and fluid properties. The implicit treatment of transmissibilities, which

included rock and fluid properties as a function of pressure, removed time-step limitations

associated with models using explicit transmissibilities. The implementation of a fully-

implicit method allowed unconditionally stable solutions as all unknowns are solved at the

same time. This admitted larger time steps, but it also required larger processing power

and storage.

Nghiem et al. (1981) proposed a formulation of the pressure equation similar to a black-

oil model, with a symmetric and diagonally dominant matrix. This system of equa-

tions allowed using iterative methods solved as implicit-pressure, explicit-saturations, and

explicit-composition (IMPESC). Nghiem et al.’s formulation provided great computa-

tional performance over fully-implicit methods. However, the use of IMPESC solutions

limited the size of time-steps by the Courant–Friedrichs–Lewy (CFL) condition (Coats,

2003b). As consequence, a maximum time step must be calculated as a necessary condi-

tion for convergence.

Several other authors have proposed variations of the mass balance formulation (Young

and Stephenson 1983; Chien et al. 1985). Although the fundamental derivation remains

the same, selection of independent variables and solution schemes can provide improved

performance.
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Volume balance type

The volume balance formulation is based on the principle that, for each gridblock, the

pore space (Vp, function of pressure) must be filled entirely with the total fluid volume (Vt,

function of pressure and composition). This conservation relation is expressed in Eq. 2.2,

where Ni is the number of moles of component i per unit volume, Nc is the total number

of components, p is the pressure, and t is the time.

(
∂Vt
∂p

)
~N

∂p

∂t
+

Nc∑
i=1

[(
∂Vt
∂Ni

)
p

(
∂Ni

∂t

)]
=
dVp
dp

∂p

∂t
(2.2)

Combining Eq. 2.2 with the molar conservation equation allows linearizing the pressure

solution for each gridblock into a single equation that accounts for dependencies of vol-

ume, pressure, and compositions through an equation of state. The use of auxiliary equa-

tions is used to derive the volume-balance formulation shown in Eq. 2.3.

Vb

Nc∑
i=1

V i∇ ·

[
kA

Np∑
`=1

(
ρmxikr
µ

· ∇Φ

)
`

]
+ Vb

Nc∑
i=1

V iqi =

(
∂Vp
∂p
− ∂Vt

∂p

)
~N

∂p

∂t
(2.3)

where:

A Area perpendicular to flow direction

k Permeability tensor

kr Relative permeability of phase `

Nc Number of components

Np Total number of phases

p Pressure

qi Net molar rate of component i from sources and sinks

t Time

V Volume (Pore -p or Bulk -b)

V i Partial molar volume

xi,` Molar composition of component i in phase `
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µ Viscosity of phase `

Φ Potential for phase `

ρm Molar density of phase `

Acs et al. (1985) introduced the first volume balance formulation for compositional simu-

lation. The authors developed a direct sequential method solved with implicit-pressure,

explicit-saturation and composition (IMPESC). Individual phase composition is deter-

mined from a phase equilibrium analysis using an equation of state. Decoupling the phase

behavior from the flow equation allowed maintaining flexible fluid calculations while solv-

ing the pressure equation directly with great computational advantages.

Watts (1986) used Acs et al. solution scheme and solved the pressure implicitly while

solving the saturation using Spillette et al. (1973) semi-implicit approach. This resulted in

a more stable sequential approach.

IMPESC systems are potentially unstable and computations require small time steps for

reaching convergence. This is limited by the Courant–Friedrichs–Lewy (CFL) condition

arising from the explicit integration of the numerical solution. If the condition is not met,

then it will result in incorrect solutions. The CFL constraint in compositional reservoir

simulation is discussed by Coats 2003b and shown in Eq. 2.4. Chapter III discusses further

the calculation and limitations of the CFL number for compositional reservoir simulators.

CFL = max
[F∆t

Vp

]
(2.4)

where:

F Function of rate and reservoir properties

∆t Time-step

Vp Pore volume
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Mass balance and volume balance formulations are equivalent in their results. Wong

et al. (1990) demonstrated that even though the two models were develop from funda-

mentally different points-of-view, both formulations lead to the same system of equations

constrained by the governing equations of mass and volume balance.

2.1.2 Fluid phase behavior

The number of phases coexisting in equilibrium is determined by a stability analysis. For

a multi-component system with two-phases (oil/gas), equilibrium is reached when the fu-

gacity of each component (f̂i) is equal in the liquid and vapor phase (Eq. 2.5). This

relation neglects the effect of capillary pressure in equilibrium, only valid for bulk fluids

(conventional reservoirs).

f̂i
o

= f̂i
g

(2.5)

An EOS is used to calculate the fugacity of each component in the mixture. This func-

tional relation between state functions accurately represents the dynamics of phase behav-

ior caused by perturbing thermodynamic properties, including pressure, volume, temper-

ature, or composition. In the oil and gas industry, it is more common to use cubic EOS

to predict fluid behavior of petroleum mixtures. These equations were derived from the

theoretical basis of van der Waals (1873), who accounted for non-zero molecular volume

at infinite pressure (b) and attraction and repulsion forces between molecules (a).

More recent modifications resulted in equations with better quantitative predictions. In

1972, Soave proposed a modification of Redlich and Kwong (1949)’s EOS. The authors

suggested replacing the temperature dependent term a for a more general form to calculate

the pressure of a system. The new expression is known as Soave-Redlich-Kwong (SRK)

EOS and is shown in Eq. 2.6.
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p =
RT

Vm − b
− a

Vm(Vm + b)
(2.6)

where:

p Pressure

R Gas constant

T Temperature

Vm Molar volume

In 1976, Peng and Robinson modified the attraction pressure term from the van der Waals

equation to improve the prediction of liquid densities and equilibrium ratios. Eq. 2.7 shows

Peng-Robinson (PR) EOS.

p =
RT

Vm − b
− a

Vm(Vm + b) + b(Vm − b)
(2.7)

Soave-Redlich-Kwong and Peng-Robinson equation of states are the most widely imple-

mented fluid models for compositional reservoir simulation as they accurately predict va-

por/liquid phase equilibrium. Firoozabadi (1988) examined the difference between the

two equations and concluded that both equations predict saturation pressures with small

errors, although the Peng-Robinson EOS performed better by a small margin.

Firoozabadi (1988) also reported that both SRK and PR performed weak in predicting

densities of simple hydrocarbon and reservoir-fluid systems. The SRK EOS generally

underpreditcts liquid densities while PR EOS both overpredicts and underpreditcs liquid

densities. Firoozabadi highlighted the need of introducing an additional parameter from

the translation concept developed by Peneloux et al. (1982). The volume correction is

applied directly to the calculated molar volume as shown in Eq. 2.8.

Vm = V EOS
m − c (2.8)

11



where:

Vm Measured molar volume

V EOS
m Calculated molar volume

c Volume parameter

The volume parameter c is calculated by matching experimental measurements with vol-

umetric predictions using an EOS. This correction is a permissible transformation that

provides improved densities and molar volumes without violating material balance and/or

altering the phase equilibria calculation.

2.1.3 Analytical compositional models

The convection–dispersion equation (CDE) describes the mass transfer accounting for two

physical processes: diffusion and convection (advection). This is the most-commonly used

model for predicting solute movement in hydrodynamic systems.

In a porous media, CDE yields the conservation of a displacing component as it is injected

into a system. Eq. 2.9 shows the CDE for an isothermal transport along a one-dimensional

reservoir; this equation assumes incompressible rock and fluid, ideal mixing, and single

phase fully miscible. Several authors have studied applications of the CDE for modeling

reservoir performance (Laumbach 1975; Fanchi 1983; Lantz 1971; Fleming and Mansoori

1987), showing a good approximation for miscible displacement in oil reservoirs.

φ
∂Ci

∂t
+ u

∂Ci

∂x
− φK`

∂2Ci

∂x2
= 0 (2.9)

where:

Ci Concentration of component i (M/L3)

K` Longitudinal dispersion coefficient

t Time
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x Position

φ Porosity

u Superficial velocity

Multiple analytical solutions have been developed for solving the CDE using different

initial and boundary conditions (van Genuchten and Alves, 1982), allowing accurate pre-

dictions with minimum computational cost.

2.2 Streamlines in reservoir models

Streamlines are instantaneous lines that are everywhere tangential to a velocity field (Datta-

Gupta and King, 2007). The use of velocity maps, that can be calculated using finite-

difference, allows tracking the streamlines in a reservoir model accounting for the com-

pressibility and heterogeneities of the system (Fig. 2.1).

(a) Horizontal permeability distribution (b) the corresponding streamlines

Fig. 2.1—Heterogeneous reservoir with high contrasts in permeability showing flow paths (streamlines) along regions with high per-
meability.

The main method for tracing streamlines in 3D was proposed by Pollock in 1988. He

developed a simple analytical model based on the time-of-flight concept. Using the flux

distribution, the algorithm determines the exit point of a streamline and the time to exit

assuming a linear approximation of the velocity field along each direction. Pollock’s algo-

rithm assumes cartesian cells; for nonorthogonal corner-point cells is it required to perform
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an isoparametric transformation (Prevost et al., 2001).

Streamlines can be used for visualizing and understanding flow patterns in the reservoir.

Solving the transport equation along streamlines (using numerical or analytical models)

allows estimating fluid movement while providing great computational efficiency, both in

memory and speed.

2.3 Adaptive mesh refinement and coarsening (AMRC)

The use of mesh refinement has been widely used in reservoir simulation to improve phys-

ical description without compromising computational performance. Refinement is done in

regions with high pressure and saturation gradients, such as wells, faults, highly heteroge-

neous areas, and injection fronts. Mesh refinement have been improved by using adaptive

or dynamic grids. This allows continuously modifying the grid spatial discretization on

time to capture dynamic movements, which keeps large cells in regions without much

variation and refining only those exhibiting significant changes.

2.3.1 Adaptive refinement methods

Refinement methods can be grouped into two types depending on the solution approach:

nested grids and local grid refinement. Both can be extended to dynamic grid applications.

Nested grids

The first application of nested grids in fluid dynamics was proposed by Brandt in 1977

who developed a two-grid system for solving boundary-value problems. The technique

uses iterative calculations between a fine and a coarse grid. First the coarse grid is used to

obtain a preliminary solution, then results are interpolated and transferred to the fine grid,

and finally the iteration continues in the fine grid. The process is repeated until desired
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conversion is achieved.

Based on Brandt’s formulation, Biterge and Ertekin (1992) proposed a black-oil model

with static/dynamic gridding. The three-grid system was solved sequentially, finding a

preliminary solution in the first-level grid, then transferring the boundary conditions to a

finer grid, and solving the fine grid only within the boundaries of the refined model (Fig.

2.2). Grid was refined dynamically based on user-defined saturation thresholds.

Fig. 2.2—Nested grids showing three-level refinement with selected areas raised above the coarse mesh to illustrate the overlapping
regions.

Khan et al. (1995) developed an adaptive mesh refinement for a compositional simula-

tor using 7-components micellar/polymer flood. The authors used hierarchical overlying

meshes and refined dynamically based on user-specified ratio. The method was based on

higher-order Godunov scheme previously implemented in reservoir simulators by Edwards

and Christie (1993) and Edwards (1996).

In 2011, van Batenburg et al. developed a semi-implicit compositional simulator with an

adaptive grid method that dynamically determines grid modifications. The solution is ob-

tained first with Newton-Raphson method on a fixed grid, after which the grid is adapted.
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To solve the flow equations on the updated grid, the Newton-Raphson process is continued

with start values taken from interpolated or amalgamated values from the previous grid.

They evaluated the model for simple 1D water-oil displacement, 1D polymer flooding,

2D in-Situ Combustion, and 3D inmiscible Water Alternating Gas (WAG) injection. The

methodology proposed included a trial-and-error process to determine the property to be

tracked and the threshold value that will trigger the refinement. The model allowed for de-

refinement in regions with low variations of compositions to reduce the number of cells at

a given time. Suicmez et al. (2011) later used van Batenburg et al.’s method for multiple

contact miscible gas injection using prior time solution for selecting the refinement region.

Results showed significant improvement in computational performance for miscible injec-

tion modeling.

Local grid refinements

In 1982, von Rosenberg developed a fixed local grid refinements (LGR) by dividing an

original cell into four smaller elements. The coefficient matrix resulting from LGR in-

cluded both fine and coarse cells simultaneously. This led to non-banded system of equa-

tions and more complex matrices compared to conventional structured grids (spared band

matrix). Fig 2.3 shows a 2D local grid refinement system with three size levels of cells.

Fig. 2.3—Local Grid Refinement multi-grid system combining multiple sizes of grid cells. The system of equations is a non-banded
matrix
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Using von Rosenberg’s technique, Heinemann et al. (1983) implemented a dynamic-LGR

in a multiple application reservoir simulator solved using implicit-pressure and explicit-

saturations (IMPES). Dynamic gridding resulted in new cell descriptions on time that re-

quired new systems of equations and dynamic re-numbering of cells. Grid subdivision

was fixed for every cell, splitting as 2x2 or 4x4 sub-blocks. Although the method imposed

severe restriction in cell subdivision and numerous inactive cells, the authors concluded

that the dynamic grid refinement enabled more accurate description of the pressure and

saturation relationships changing in the time and space.

Further studies on LGR were performed by Quandalle (1983) and Quandalle and Besset

(1985) who presented two new schemes, a nine points scheme and a simplified five point

scheme for calculating flow at composite boundaries.

Han et al. (1987) developed three-level dynamic grid refinement solved using IMPES.

This method allowed a step-by-step processing of local subdivision with a three-level suc-

cessive gridding. Water saturation thresholds (specified by the user) defined the dynamic

conditions triggering refinement. Han et al. re-numbered cells using natural-like order

resulting in regular coefficient matrices that provided simpler solution approaches.

Sammon (2003) developed one of the first applications of LGR for compositional simula-

tion. The model uses rectangular amalgamation and proposes refinement and de-refinement

to avoid keeping refined grids beyond the high-gradient regions occurred. It uses condi-

tional directives to define refinement regions which rely on property variation across their

region. The work was expanded later by Christensen et al. (2004) for the thermal modeling

and evaluated for multiple case studies.
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2.3.2 Quadtree structure and data decomposition

Hierarchical data structures are effective ways to represent spatial data or properties. This

techniques organizes the information into tree-like structures characterized by a root value

and subtrees of children. One of the most common tree structures is quadtrees, which can

be used as representation of local grid refinements.

Quadtrees are based on the principle of recursive subdivision of a region into equal-size

quadrants (Samet, 1989). Each node in a quadtree can be decomposed into exactly four

children; this is shown in Fig. 2.4 for a 2D representation with 23 × 23 dimensions, where

3 is the maximum hierarchical level. Octrees are the three-dimensional analog of the

quadtree, decomposing exactly into eight children. Fig. 2.5 shows a 3D octree represen-

tation with 22 × 22 × 22 dimensions, where 2 is the maximum hierarchical level. For the

purpose of this dissertation, we will refer as quadtrees for both 2D and 3D applications.

(a) 2D spatial representation in
block-type system

(b) the corresponding quadtree representation

Fig. 2.4—Quadtree grid structure showing subdivision of cell A into three hierarchical levels. Nodes can be recursively decomposed
into exactly four children as show in the quadtree representation.
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(a) 3D spatial representation in block-
type system

(b) the corresponding octree representation

Fig. 2.5—Octree grid structure showing subdivision of cell A into two hierarchical levels. Nodes can be recursively decomposed into
exactly eight children as show in the octree representation.

The prime motivation for the development of the quadtree is the desire to reduce the space

necessary to store data by aggregating homogeneous blocks or regions (Samet, 1989). This

method is often referred to as quadtree decomposition.

This analysis technique recursively subdivides a space based on a "homogeneity analysis"

and provides great flexibility and speed to the partition and data storage process. Sullivan

and Baker (1994) classified quadtree decomposition methods into two types depending

on the construction process: top-down or bottom-down. In top-down, a judgment is first

made as to whether the entire block can be represented by a single region or whether it

must be divided into four sub-blocks. If the block is divided, then a decision is made for

each sub-block to determine whether it needs further division, and so on. Conversely, a

bottom-down construction begins with the smallest possible block and decides whether to

combine it into larger blocks using a sequential analysis. Fig.2.6 shows a comparison of

these two construction methods. The decision process and homogeneity criteria will be

explained in detailed in Chapter IV.
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(a) Top-down, starting from coarse cells and sub-dividing as needed

(b) Bottom-down, starting from fine cells and combining as needed

Fig. 2.6—Quadtree decomposition procedure (after Sullivan and Baker 1994).

Quadtree decomposition is often used in computer graphics for image and video compres-

sion (Sullivan and Baker 1994; Shusterman and Feder 1994; Gonzalez et al. 2003). In

recent years, attention has been given to the development of hydrodynamic flow models

based on adaptive quadtree grids (Liang and Borthwick 2009; Liang et al. 2007).

2.4 State of the art of adaptive refinement

The use of adaptive mesh refinement in compositional reservoir simulation has allowed

reducing the computational requirements of having a fine spatial discretization across the

entire reservoir model. Dynamic grids have been implemented using the two methods

described in this chapter: nested systems (Biterge and Ertekin 1992; Khan et al. 1995;

Nilsson et al. 2005a; Nilsson et al. 2005b) and local grid refinement (Heinemann et al.

1983; Han et al. 1987; van Batenburg et al. 2011).

Nested-system required iterative methods where information is transferred between grids.

The methodology preserves the original banded coefficient matrix, providing faster solu-
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tions, but it also results in interpolations of properties between coarse and fine grid. On the

other hand, local grid refinement methods solved all equations simultaneously eliminating

the need of basis functions for preserving mass conservation.

Adaptive methods available commercially or published in the literature present rigid schemes

with two main limitations that lead to suboptimal application:

1. Refinement region is estimated from properties of previous time-step, such as sat-

uration, compositions, gradients, etc. This time-lagging criteria results in added

numerical dispersion and/or high re-gridding frequency.

2. The splitting size of the cells is defined based on user-input values, e.g. 2× 2; 4× 4,

etc. resulting in lack of refinement flexibility.

For the development of this study the compositional reservoir simulator is derived using

finite-differences following a volume balance formulation, phase equilibrium calculations

with Peng-Robinson EOS, and dynamic refinement described through local grid refine-

ment. Quadtree decomposition is implemented using a top-down approach incorporating

multiple functions to evaluate the grid homogeneity.
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CHAPTER III

RESERVOIR SIMULATOR

This chapter presents a brief description of the mathematical formulation of a 3D fully

compositional reservoir simulator incorporating adaptive gridding. It describes the gov-

erning equations required for formulating the simulator: conservation of volume and con-

servation of moles. These expressions combined with auxiliary relations (well index,

capillary pressure, relative permeabilities, equation of state, and viscosity model) define

flow in porous media for a multi-component system. Fluid phase behavior and proper-

ties are modeled using a Peng-Robinson cubic equation of state with volume translation.

Equations were discretized using finite differences and solved using a implicit-pressure,

explicit-saturations and composition method (IMPESC). The algorithm was implemented

in MATLAB R©.

3.1 Formulation

The assumptions taken during the development of the numerical reservoir simulator are:

• Isothermal system

• Steady-state during a time step calculation

• Multi-phase (oil, gas, water) and multi-component flow represented with Darcy’s

law

• Instantaneous thermodynamic equilibrium between oil and gas phase

• Water immiscible in the hydrocarbon phase

• Slightly compressible rock

• No chemical reactions or adsorption
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The following sub-sections describe the two governing equations needed for a composi-

tional reservoir simulator and the auxiliary equations required for a volume-balance for-

mulation.

3.1.1 Conservation of volume

The derivation of the reservoir simulator starts with the conservation of volume. It states

that pore space is always completely filled by the total volume of the fluids. Differentiating

the pore volume (Vp) as a function of pressure (p), and the total volume (Vt) as a function

of pressure and number of moles (Ni), this relation results in Eq. 3.1.

(
∂Vt
∂p

)
~N

∂p

∂t
+

Nc∑
i=1

[(
∂Vt
∂Ni

)
p

(
∂Ni

∂t

)]
=
dVp
dp

∂p

∂t
(3.1)

We introduce two concepts to calculate these derivatives:

• Slightly compressible rock formation. This assumption allows establishing a rela-

tion for variation of pore volume with respect to pressure (Eq. 3.1), where V ref
p is

the pore volume at reference pressure and cf is the rock compressibility assumed

constant.

dVp
dp

= V ref
p cf (3.2)

• Partial molar volume (V iB ). Describes the change in total volume as moles of i are

added to the system of block B with constant pressure, temperature, and number of

moles of all components j (Nj 6=i). Appendix A shows the analytical derivation of

the partial molar volume.

V iB =

(
∂Vt
∂Ni

)
p,T,Nj 6=i

(3.3)
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Replacing previous concepts into Eq. 3.1 and re-arranging terms, we have:

Nc∑
i=1

[
V iB

(
∂Ni

∂t

)]
=

[
V ref
p cf −

(
∂Vt
∂p

)
~N

]
∂p

∂t
(3.4)

Differentiating Eq. 3.4 with respect to time (t) using backward discretization yields the

following expression:

Nc∑
i=1

[
V iB

(
Nn+1

iB
−Nn

iB

∆t

)]
=

[
V ref
p cf −

(
∂Vt
∂p

)
~N

](
pn+1
B − pnB

∆t

)
(3.5)

where:

V iB Partial molar volume of component i in the block B

Ni Amount of moles of component i at time levels n and n+ 1

~N Total number of moles

∆t Time difference between levels n and n+ 1

Nc Total number of components

V ref
p Pore volume at reference pressure

cf Rock compressibility

Vt Total volume

p Pressure at time levels n and n+ 1

3.1.2 Conservation of moles

The conservation of moles describes the relationship between the inflow and outflow of

moles in a control volume system in the absence of chemical reactions. For a multi-

component reservoir simulator, this balance is written for every component (i = 1, 2, ..., Nc)

accounting for the different flowing phases (` = 1, 2, ..., Np). For the development of this

work, we considered a maximum of three phases: oil, gas, and water.
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Unlike structured simulators, flow leaving or entering a block B in unstructured finite-

difference models can come from a variable and arbitrary number of faces. The molar

balance of component i is therefore represented by Eq. 3.6.

Nf∑
Badj=1

[
Np∑
`=1

qi,`Badj

]
+

Np∑
`=1

qiinj/prod
=

1

∆t

(
Nn+1

i −Nn
i

)
(3.6)

where:

Np Number of phases

Nf Number of faces connected to block B

∆t Time difference between levels n and n+ 1

Ni Amount of moles of component i at time levels n and n+ 1

qiBadj
Molar rate of component i coming from adjacent cells

qiinj/prod
Molar rate coming from sources or sinks

The molar rate qi can be expressed using Darcy’s equation as shown in Eq. 3.7.

qi =

Np∑
`=1

(
Qρmxi

)
`

=

Np∑
`=1

(
ρmxikrkA

µ∆L
∆Φn+1

)
`

(3.7)

where:

Q Volume flow rate of phase `

ρm Molar density of phase `

xi Molar fraction of component i in phase `

k Absolute permeability

kr Relative permeability of phase `

µ Viscosity of phase `

A Area perpendicular to flow direction

∆L Distance between the center of the gridblock and the center of its neighboring block

∆Φn+1 Difference of flow potentials of phase ` between the adjacent blocks
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Calculation of flow potential and viscosity is explained in subsections 3.1.4 and 3.2.2 re-

spectively.

From Eq. 3.7, we can define flow coefficients for every component between a block B and

its adjacent blocks. Eq. 3.8 shows an example between B and Badj , where ρm and µ are

calculated using arithmetic volume-weighted average, and kr and xi using the upstream

cell property. The geometric transmissibility TG is calculated using harmonic average with

two-point flux approximation (TPFA) method, which will be described in subsection 3.1.3.

ai`,B−Badj
=

Np∑
`=1

(
ρmxikrkA

µ∆L

)
`

=

Np∑
`=1

(
ρmxikr
µ

)
`

TG (3.8)

Considering all neighboring cells (Nf ), the total flow for component i can be written as:

Np∑
`=1

∆ai`∆Φn+1
` =

Nf∑
Badj=1

[
Np∑
`=1

ai`,B−face

(
Φn+1

`,B − Φn+1
`,Badj

)]
(3.9)

Re-writing Eq. 3.6 using the flow coefficients, we have:

Np∑
`=1

(
∆ai∆Φn+1

)
`

+ qiinj/prod
=

1

∆t

(
Nn+1

i −Nn
i

)
(3.10)

3.1.3 Discretization scheme

Two-point flux approximation (TPFA) is used to discretize flow equations between two

connected cells. This is one of the simplest techniques for discretization of elliptical equa-

tions using finite-differences, and it is frequently used in the petroleum industry for reser-

voir simulation.

The technique approximates flux across each face assuming a linear variation of pressure

within each cell. Moog (2013) explains that by imposing flux and potential continuity at
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the center of the interface, we can describe a one-sided or half-transmissibility associated

with a single cell (Eq. 3.11) as displayed in Fig. 3.1.

TGB,k
=
~cB,kk~nkAk

|~cB,k|2
(3.11)

where:

~cB,k Vector from the centroid of the cell B to the centroid of the kth face

Ak Face area

~nk Normal of the face

k Absolute permeability

Fig. 3.1—Schematic of the calculation of half-transmissibility using two-point flux approximation.

The two half-transmissibilities are combined using harmonic average, where total trans-

missibility between cells 1 and 2 is calculated as shown in Eq. 3.12.

TG1−2 =
TG1TG2

TG1 + TG2

(3.12)

For blocks separated by a composite interface, half-transmissibilities are calculated con-

sidering additional nodes. An example of this procedure is illustrated in Fig. 3.2. Flow

calculations coming in and out of gridblock number 3 (highlighted in grey) is a result of

flow between cell 3 and its connecting blocks, that is cells 1, 2, 4, 5, and 6. As cell 3
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has a composite interface on the east side, calculation of half-transmissibilities required

considering additional nodes (depicted in grey circles).

Fig. 3.2—Approximation of flow terms for composite cells with composite interfaces.

3.1.4 Auxiliary equations

In addition to the governing equations, a set of auxiliary expressions are used to define

the reservoir simulation model as described in this sub-section. Equations used include

Peaceman’s well model, capillary pressure, and relative permeability.
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Peaceman’s well model

The well index is represented by Peaceman’s well model (Peaceman 1978, 1983). The

equation was derived to correct the bottomhole flowing pressure accounting for the differ-

ence in dimensions between the wellbore radius and the gridblock. The model introduces

the concept of equivalent radius of a well, the radius at which the steady-state flowing pres-

sure for the actual well is equal to the numerically calculated pressure for the wellblock

(Peaceman, 1978). For a non-square grid with anisotropic distribution of permeabilities,

the equivalent radius of a wellblock ro is calculated with Eq. 3.13.

ro = 0.28

√√
ky
kx

∆x2 +

√
kx
ky

∆y2

4

√
ky
kx

+ 4

√
kx
ky

(3.13)

where:

ro Equivalent radius of a wellblock

kx Absolute permeabilities in x-direction

ky Absolute permeabilities in y-direction

∆x Cell thickness in x-direction

∆y Cell thickness in y-direction

Eq. 3.13 is only valid for vertical wells. Horizontal wells require a modification to account

for cell dimension and permeability on the direction in which the well is penetrated.

The production/injection molar rate of component i in phase ` is calculated with Eq. 3.14.

qi,`inj/prod
= 2πρm`xi,`M`

√
kxkyh

[
ln

(
ro
rw

)
+ S

](
pB − pwf

)
(3.14)

where:

S Well skin
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M Fluid mobility

h Thickness of the gridblock containing the well

pB Pressure of block B

pwf Bottomhole flowing pressure

ro Equivalent radius of a wellblock

rw Wellbore radius

ρm` Molar density of flowing phase

xi,` Molar composition of component i in the flowing phase

Incorporating the concept of well index (WI) that is not dependent on the fluid properties,

we have:

WI = 2π
√
kxkyh

[
ln

(
ro
rw

)
+ S

]
(3.15)

We can re-write Eq. 3.14 as follow:

qi,`inj/prod
= WIρm`xi,`M`

(
pB − pwf

)
(3.16)

The difference between the block pressure and the bottomhole flowing pressure will de-

termine if the well is injecting (pwf > pB) or producing (pB > pwf ).

For production wells, the phase mobility M` is calculated using Eq. 3.17. Fluid properties

(molar density and molar composition) correspond to the one calculated for the gridblock

containing the well at the cell pressure.

M` =
kr`
µ`

(3.17)

where:

kr` Relative permeability of phase ` in the gridblock containing the well

µ` Viscosity of phase ` in the gridblock containing the well
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For injection wells, the mobility requires to reflect the upstream conditions in the well bore

(Schlumberger, 2014). This is done by defining the phase mobility using Eq. 3.18 where

the mobility of the injected phase ` would depend on the total fluid mobility of the grid-

block. Fluid properties (molar density and molar composition) are calculated by perform-

ing a flash calculation at the bottomhole flowing pressure using the injected composition.

Flow of injector wells is therefore a function of the well and the gridblock condition.

M` =
kro
µo

+
krg
µg

+
krw
µw

(3.18)

where:

kr` Relative permeability of phase ` in the gridblock containing the well

µ` Viscosity of phase ` in the gridblock containing the well

kro Relative permeability of oil in the gridblock containing the well

µo Viscosity of oil in the gridblock containing the well

krg Relative permeability of gas in the gridblock containing the well

µg Viscosity of gas in the gridblock containing the well

krw Relative permeability of water in the gridblock containing the well

µw Viscosity of water in the gridblock containing the well

Capillary pressure

The capillary pressure describe the difference of pressure in the interface of two immis-

cible phases, a wetting and a non-wetting phase. In an oil/gas system we assume oil is

the wetting phase (Eq. 3.19), and in an oil/water system, we assume water is the wetting

phase (Eq. 3.20).

pcgo = pg − po (3.19)

pcow = po − pw (3.20)
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With the capillary pressures we can describe the flow potentials between two adjacent

blocks based on the oil pressure. These expressions are required for calculating Eq. 3.10.

∆Φo = ∆pB−Badj
+ ρo∆hB−Badj

(3.21)

∆Φg = ∆pB−Badj
+ ρg∆hB−Badj

+ ∆pcgo (3.22)

∆Φw = ∆pB−Badj
+ ρw∆hB−Badj

−∆pcow (3.23)

where:

ρ Average volume-weighted mass density of the phase (oil, gas, or water)

∆h Difference of height between blocks

∆Φ` Difference of flow potentials of phase ` between adjacent blocks (` =o, g, w)

∆pcgo Difference in capillary pressure between blocks for gas-oil phases

∆pcow Difference in capillary pressure between blocks for oil-water phases

∆pB−Badj
Difference of pressure between adjacent blocks

Relative permeabilities

In a multi-phase system, relative permeabilities describe the dimensionless effective per-

meability of each phase. Two-phase relative permeabilities are often measured in the lab-

oratory and extended to three-phase flow through extrapolating techniques.

For the development of this simulator, we implemented the STONE II model (Stone,

1973). It is a modification of Stone’s previous probabilistic model (Stone, 1970) with

improved predictions in regions with low oil saturation. The model provides two-phase

data when only two phases are flowing and interpolated data for the three-phase flow that

are consistent and continuous functions of the phase saturations (Stone, 1973).
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The model requires two sets of two-phase data: water-oil and gas-oil. Water and gas

relative permeabilities are equal to those measured in two-phase flow, and oil relative

permeability is calculated using Eq. 3.24.

kro = krocw

[(
krow
krocw

+ krw

)(
krog
krocw

+ krg

)
− krw − krg

]
(3.24)

where:

kro Oil relative permeability for a system with oil, gas and water calculated at water

saturation Sw

krocw Oil relative permeability in the presence of connate water only (So = 1− Swc)

krow Oil relative permeability for a system with oil and water only

krrw Water relative permeability at water saturation (So = 1− Sw)

krog Oil relative permeability for a system with oil, gas and connate water

(So = 1− Sg − Swc)

krg Gas relative permeability at gas saturation Sg

3.2 Fluid phase behavior

Fluid behavior is modeled using the 3-parameters cubic Peng-Robinson equation of state

(EOS) developed by Peng and Robinson in 1976. This equation is used in the stability

analysis to determine the number of phases existing in equilibrium at a given time. For

reservoir simulation, we assume instantaneous thermodynamic equilibrium in each grid-

block at any given time.

Peng-Robinson EOS (Eq. 2.7) can be expressed in its cubic form in terms of the com-

pressibility factor Z as shown in Eq. 3.25. This expression is more commonly used for

solving computational problems.
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Z3 − (1−B)Z2 + (A− 3B2 − 2B)Z − (AB −B2 −B3) = 0 (3.25)

Variables A and B are calculated using:

A =
ap

(RT )2
(3.26)

B =
bp

RT
(3.27)

where:

p Pressure

R Gas constant

T Absolute temperature

Z Gas compressibility factor

Terms a and b are calculated with Eq. 3.28 and Eq. 3.29 respectively.

a =
Nc∑
i=1

Nc∑
j

xixj (1− κij) a0.5
i a0.5

j (3.28)

b =
Nc∑
i=1

xibi (3.29)

where:

Nc Number of components

κij Binary interaction coefficient between components i and j

xi, xj Molar compositions of the phase

Parameters ai, aj and bi for each component are calculated using Eq. 3.30 and Eq. 3.37.

Calculation of αi depends on the value of acentric factor ωi. Eq. 3.32 is used for ωi ≤ 0.5

while Eq. 3.33 for ωi > 0.5.
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ai = 0.45724
R2T 2

ci

p2
ci

αi (3.30)

bi = 0.07780
RTci
pci

(3.31)

αi =

[
1 +

(
0.037464 + 1.54226ωi − 0.26992ω2

i

)(
1−

√
T

Tci

)]2

(3.32)

αi =

[
1 +

(
0.037464 + 1.485ωi − 0.1644ω2

i + 0.01667ω3
i

)(
1−

√
T

Tci

)]2

(3.33)

where:

Tci Critical temperature of component i

pci Critical pressure of component i

ωi Acentric factor of component i

Finally, the fugacity of component i in a fluid mixture is calculated using Eq. 3.34.

ln
(
ϕ̂`
i

)
= ln

(
f̂ `
i

xip

)
=

A

2
√

2B

[
2
∑Nc

j=1 xja
0.5
i a0.5

j (1− κij)
α

− bi
b

]
ln

(
Z + 2.414B

Z − 0.414B

)
+
bi
b

(
Z` − 1

)
− ln

(
Z` −B

)
(3.34)

where:

ϕ̂`
i Fugacity of coefficient of component i in phase `

f̂ `
i Fugacity of component i in phase `

3.2.1 Flash equilibrium

In a multiphase system, the number of phases coexisting in equilibrium is determined

by a stability analysis. The equilibrium condition for a two-phase vapor/liquid system is
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given by the iso-fugacity criteria, that is when the fugacity of every component in the fluid

mixture is equal in its vapor and liquid phase. This is analogous to the relation between

chemical potentials reaching equilibrium when the total sum of chemical potentials is zero

as the Gibbs free energy is at its minimum.

f̂ o
i = f̂ g

i for i = 1 to Nc (3.35)

The fugacity of each component can also be defined as a function of pressure (p) and

fugacity coefficient (ϕ̂i).

f̂ o
i = xoi ϕ̂

o
ip (3.36)

f̂ g
i = xgi ϕ̂

g
i p (3.37)

We define the equilibrium ratio, or K-value, for component i as its fraction in the vapor

phase (xgi ) divided by its fraction in the liquid phase (xoi ). We can establish the equilibrium

relationship in terms of K-values as follows.

Ki =
xgi
xoi

=
ϕ̂o
i

ϕ̂g
i

(3.38)

In addition to the iso-fugacity criteria, the flash calculation is defined using two relations:

1. Material balance equation for each component, where fv is the vapor molar fraction.

zi = fvx
g
i + (1− fv)xoi (3.39)

2. Mole fractions of components in each phase must sum to unity.

Nc∑
i=1

(xgi − xoi ) = 0 (3.40)
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Combining the equilibrium ratio from Eq. 3.38 into the component material balance from

Eq. 3.39, we can establish the material balance constraints in each phase (Eq. 3.41).

xoi =
zi

1− fv + fvKi

and xgi =
Kizi

1− fv + fvKi

(3.41)

These two equations are combined using the components’ mole fraction (Eq. 3.40) for

calculating a two-phase flash. This standard method was originally proposed in 1952 by

Rachford and Rice (1952) and is commonly known as the Rachford-Rice equation.

Nc∑
i=1

(xgi − xoi ) =
Nc∑
i=1

zi (Ki − 1)

1− fv + fvKi

= 0 (3.42)

The procedure for solving a liquid/vapor equilibrium was summarized by Firoozabadi

(1999) in the following steps:

1. Calculate an initial estimate of the equilibrium ratio (Ki) for every component using

Wilson’s approximation (Wilson, 1969). It is based on the component’s critical

pressure (pci), critical temperature (Tci), and acentric factor (ωi); and the conditions

of the system for pressure (p) and temperature (T ).

lnKi = ln

(
pci
p

)
+ 5.373 (1 + ωi)

(
1− Tci

T

)
(3.43)

2. Solve Rachford-Rice equation (Eq. 3.42) using Newton’s method to obtain the vapor

molar fraction fv.

Nc∑
i=1

(xgi − xoi ) =
Nc∑
i=1

zi (Ki − 1)

1− fv + fvKi

= 0

3. Calculate molar fraction of each component in the vapor and liquid phase using

Eq. 3.41.
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xoi =
zi

1− fv + fvKi

and xgi =
Kizi

1− fv + fvKi

4. Calculate the fugacity coefficient of each component in the vapor and liquid phase

using Eq. 3.34.

ln
(
ϕ̂`
i

)
=

A

2
√

2B

[
2
∑Nc

j=1 xja
0.5
i a0.5

j (1− κij)
α

− bi
b

]
ln

(
Z + 2.414B

Z − 0.414B

)
+
bi
b

(
Z` − 1

)
− ln

(
Z` −B

)
5. Update K-values for every component in the mixture from iteration k to k + 1.

Kk+1
i = Kk

i

(
ϕ̂g
i

ϕ̂o
i

)
(3.44)

6. Test whether convergence is achieved using ε ≤ 1× 10−14.

εi =
∣∣∣Kk+1

i −Kk
i

∣∣∣ (3.45)

ε = max
[
εi

]
(3.46)

7. If convergence is not satisfied, update K-values with Eq. 3.47 and repeat steps 2-7.

Kk+1
i = Kk

i

(
f̂ o
i

f̂ g
i

)
(3.47)
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3.2.2 Fluid properties

Once the flash equilibrium has been calculated, the information is used to determine the

hydrocarbon fluid properties as shown below.

Hydrocarbon volume

From the flash equilibrium calculations we obtained the molar fractions of each hydrocar-

bon phase (oil and gas) and its corresponding compressibility factors. We can calculate

the molar volume (VmEOS
` ) of phase ` using Eq. 3.48.

Vm
EOS
` =

Z`RT

p
(3.48)

where:

Vm
EOS
` Molar volume of phase ` calculated with an EOS

R Gas constant

T Absolute temperature

p Pressure

Z Gas compressibility constant

Volumes calculated with Peng-Robinson EOS have shown discrepancy when compared to

laboratory experiments. Therefore, it is necessary to perform a correction of volumetric

properties. Correcting these systematic deviations was done using the volume translation

method proposed by Peneloux et al. (1982) and described below.

For a mixture of Nc components, the phase molar volume of phase ` (Vm`) is calculated

using Eq. 3.49. Peneloux et al. (1982) proposed calculating the volume correction term

c using the following expression. Term bi calculated using Eq. 3.37 previously described

in this chapter.
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Vm` = Vm
EOS
` − c` (3.49)

c` =
Nc∑
i=1

(
x`ic

`
i

)
=

Nc∑
i=1

(
x`isibi

)
(3.50)

where:

Nc Number of components

Vm` Measured molar volume

V EOS
` Calculated molar volume

c` Volume parameter

ci Volume corrections of component i

si Dimensionless shift parameter of component i

x`i Molar composition of component i in phase `

The mass density is then calculated using Eq. 3.51.

ρ` = ρm`

Nc∑
i=1

(
x`iMWi

)
(3.51)

where:

ρ` Mass density of phase `

ρm` Molar density of phase `

MWi
Molecular weight of component i

It is important to notice that Peneloux’s volume correction does not affect the phase equi-

librium calculations. Pedersen and Christensen (2006) shows that the fugacity coefficients

of component i in the original and corrected equation are interrelated in through:

ln ϕ̂i,PR = ln ϕ̂i,PRPen
+
cip

RT
(3.52)

40



Given the equilibrium between the vapor and the liquid phase, we have the following

expression where xgi is the mole fraction of component i in the gas phase and xoi is the

molar fraction of component i in the oil phase.

xgi
xoi

=
ln ϕ̂o

i,PR

ln ϕ̂g
i,PR

(3.53)

The equilibrium relation using Peneloux’s correction can be expressed as:

xgi
xoi

=
ϕ̂o
i,PRPen

exp
( cip
RT

)
ϕ̂g
i,PRPen

exp
( cip
RT

) =
ϕ̂o
i,PRPen

ϕ̂g
i,PRPen

(3.54)

Water volume

The water formation volume factor molar is calculated using Eq. 3.69.

Bw =
Bref

w

1 +X + (X2/2)
(3.55)

X = cw(p− pref ) (3.56)

where:

Bw Water formation volume factor

Bref
w Water formation volume factor at reference pressure

p Pressure

pref Reference pressure

cw Water compressibility

Water density (ρw) can be estimated from the water density at standard conditions (ρSCw ).

ρw =
ρSCw
Bw

(3.57)

41



Hydrocarbon viscosity

Using the fluid properties calculated through the phase behavior flash detailed in section

3.2, the viscosity of oil and gas is estimated using the empirical correlation proposed by

Lohrenz et al. (1964). It is based on the residual viscosity concept and the theory of the

corresponding states that yields Eq. 3.58.

µ` = µ∗` +
1

ζ`

[(
0.1023 + 0.023364ρmr` + 0.058533ρm

2
r`
− 0.40758ρm

3
r`

(3.58)

+0.0093324ρm
4
r`

)4 − 0.0001
]

where:

µ` Viscosity of phase `

µ∗` Viscosity of phase ` at atmospheric pressure

ζ` Viscosity parameters of phase `

ρmr` Reduced molar density

Eq. 3.59 - Eq. 3.61 shows the calculation for the phase viscosity at atmospheric pressure

µ∗` , the phase viscosity parameter ζ`, and the reduced molar volume ρmr` .

µ∗` =

∑
x`iµ

∗
i

√
Mwi∑

x`i
√
Mwi

(3.59)

ζ` =
T

1/6
pc`

M
1/2
w` p

2/3
pc`

(3.60)

ρmr` =
ρ`
∑Nc

i=1 x
`
iVci

Mw`

(3.61)

where:

x`i Molar composition of phase `

Mwi
Molecular weight of component i

Mw`
Molecular weight of phase ` at atmospheric pressure
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Vci Critical volume for component i

ρ` Mass Density of phase `

µ∗i Viscosity of component i at low pressure

Phase properties Tpc` (critical temperature), ppc` (critical pressure), and Mw` (molecular

weight) are calculated using a simple mixing rule. The viscosity of component i in the `

phase at low pressure (µ∗i ) is calculated with Eq. 3.65 depending on the reduced tempera-

ture and viscosity parameter for the component.

Tpc` =
Nc∑
i=1

x`iTci (3.62)

ppc` =
Nc∑
i=1

x`ipci (3.63)

Mw`
=

Nc∑
i=1

x`iMwi
(3.64)

µ∗i =



0.00034 (Tri)
0.94

ζi
, if Tri ≤ 1.5

0.0001776 (4.58Tri − 1.67)5/8

ζi
, if Tri > 1.5

(3.65)

where:

Tpc` Pseudo critical temperature of phase `

Tci Critical temperature of component i

pci Critical pressure of component i

ppc` Pseudo critical pressure of phase `

The reduced temperature of component i (Tri) is calculated using Eq. 3.66 and the viscos-

ity parameter of component i (ζi) is calculated with Eq. 3.67.
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Tri =
T

Tci
(3.66)

ζri =
T

1/6
ci

M
1/2
wi p

2/3
ci

(3.67)

Viscosity of water

The viscosity of water is calculated using Eq. 3.68 (Schlumberger, 2014).

µw =
µref
w

1 + Y + (Y 2/2)
(3.68)

Y = −cv(p− pref ) (3.69)

where:

µw Water viscosity

µref
w Water viscosity at reference pressure

p Pressure

pref Reference pressure

cv Water viscosibility

3.3 Numerical approach

To satisfy simultaneously the volume and the molar balance constraints, we combine

Eq. 3.5 and Eq. 3.10.

Nc∑
i=1

[
V iB

Np∑
`=1

(
∆ai∆Φn+1

)
`

+ qiinj/prod

]
=

1

∆t

[
V ref
p cf −

(
∂Vt
∂p

)
T, ~N

] (
pn+1
B − pnB

)
(3.70)
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For simplicity, we use the term VoidB and re-write the combined balance equation. The

derivation of the Void term is described in Appendix B.

Nc∑
i=1

[
V iB

Np∑
`=1

(
∆ai∆Φn+1

)
`

+ qiinj/prod

]
=

1

∆t
VoidB

(
pn+1
B − pnB

)
(3.71)

The volume balance formulation uses an IMPESC approach, lagging in densities, capillary

pressure differentials, flow coefficients, partial molar volume, and Void term. Incorporat-

ing the well flow rate (Eq. 3.76) and the difference of potentials (Eq. 3.21 - 3.22), we can

represent flow between block B and adjacent Badj as:

1

∆t
VoidB

n
(
pn+1
B − pnB

)
=

Nc∑
i=1

{
V

n

iB`

[
(ai`WI)

n (pn+1
B − pn+1

wf

)
+ ∆anio,B−Badj

∆pn+1
B−Badj

+ ∆anio,B−Badj
ρno∆hB−Badj

+ ∆anig,B−Badj
∆pn+1

B−Badj
+ ∆anig,B−Badj

ρng∆hB−Badj

+ ∆aniw,B−Badj
∆pn+1

B−Badj
+ ∆aniw,B−Badj

ρnw∆hB−Badj

+ ∆anig,B−Badj
∆pcngo,B−Badj

−∆aniw,B−Badj
∆pcnow,B−Badj

]}
(3.72)

Re-arranging the previous equation for all unknown from time level n+ 1 on the left hand

size and known variables on the right hand size of the equation, we have Eq. 3.73 describ-

ing the general finite-difference equation for a compositional simulator. There would as

many equations as number of grid blocks in the model.

Anpn+1 = bn (3.73)
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where:

An =

Nf∑
Badj=1

[
Nc∑
i=1

(
V

n

iB

Np∑
`=1

∆ani`,B−Badj

)]
+

Nc∑
i=1

(
V

n

iB

Np∑
`=1

ai`WI

]
− 1

∆t
Void

n
B

bn = − 1

∆t
Void

n
Bp

n
B +

Nc∑
i=1

(
V

n

iB

Np∑
`=1

ai`WI

)
pwf −

Nc∑
i=1

[
V

n

iB

Np∑
`=1

(∆ai
n
` ρ

n
` ∆h)

]

−
Nc∑
i=1

(
V

n

iB
∆anig∆pc

n
go

)
+

Nc∑
i=1

(
V

n

iB
∆aniw∆pcnow

)

3.3.1 Time-stepping

The overall time step is solved using IMPESC method, previously developed by Acs et al.

(1985), where the system of equations is solved similar to a black-oil model with pressures

solved implicitly and compositions and molar densities solved explicitly. This involves

evaluating A and b at the previous iteration k to solve the pressure for the next timestep

pn+1. Because we are lagging some variables (ρ`, ∆pcv`, ∆ai`, V i`, Void) in the devel-

opment of our equations that depend on the pressure solution, we performed a sequential

procedure to correct for this approximation, where A and b are updated in each iteration

and the process is repeated until the convergence criteria is reached.

Because the IMPESC formulation treats inter-block flow rates implicitly in pressure and

explicitly in saturations and compositions, the solution is conditionally stable only when

Eq. 3.74 is met for every component i in every gridblock B. Physically, it means that no

fluid particle can travel farther than a gridblock in a single time-step.

CFLiB =
FiB∆t

VpB
< 1 (3.74)
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For this study, we used the CFL definition as proposed by Coats (2003a,b) and shown

in Eq. 3.74, where FB is a function of rate and reservoir properties and is described in

Eq. 3.75. Qo and Qg are the sum of all oil outflow rates from a block to its neighbors at

reservoir conditions. This equation is calculated for each component in every gridblock.

FiB =

(
Qoρmox

o
i +Qgρmgx

g
i

Soρmox
o
i + Sgρmgx

g
i

)
B

(3.75)

The maximum time step for stable solutions will be constrained by the CFL number of

each component in every cell (max [CFLiB ]), allowing for a maximum CFL of 1.

3.3.2 IMPESC procedure

The steps for IMPESC are summarized below, where k is the iteration number and n is the

result from the previous time step. This procedure is repeated in every time calculation.

1. For k = 0 and ∆t set pk = pn

2. Perform a flash calculation and determine fluid properties at pk

3. Calculate relative permeabilities (function of saturations) and viscosities at pk

4. Calculate flow coefficients, partial molar volumes (V i), and Void term at pk

5. Solve pk+1 from Eq. 3.73

Akpk+1 = bk

6. Solve qk+1
iinj/prod

from Eq. 3.76 using pk+1

qk+1
iinj/prod

=

Np∑
`=1

[
ai`WI (pB − pwf )

]
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7. Calculate the total moles using Eq. 3.10

Nk+1
i = Nn

i +

Np∑
`=1

(
∆ai∆Φn+1

)
`

+ qk+1
iinj/prod

8. Calculate the new fluid composition for every gridblock using Eq. 3.76.

zk+1
i =

Nk+1
i∑Nc

i=1N
k+1
i

(3.76)

9. Calculate the CFLi number for every component in a cell using equations 3.74 and

3.75.

CFLiB =
FiB∆t

VpB

FiB =

(
Qoρmox

o
i +Qgρmgx

g
i

Soρmox
o
i + Sgρmgx

g
i

)
B

10. Calculate the convergence criteria for every gridblock B using εi as displayed in

Eq. 3.77.

εB =

∣∣∣∣pk+1
B − pkB
pkB

∣∣∣∣ (3.77)

11. Test if convergence criteria are achieved with ε, CFL, and if the iteration number k

is less than maximum allowed.

CFL = max
[
CFLB

]
≤ 1 (3.78)

ε = max
[
εB

]
≤ 1x10−3 (3.79)
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12. If the criteria is met, then pn = pk+1 and ∆t is incremented using Eq. 3.81 if per-

mitted by the CFL constraint.

∆t = ∆t+
∆t

2
(3.80)

13. If the criteria is not met but the k < kmax, then update variables for k = k + 1.

Repeat steps 2 to 11 until convergence criterion are satisfied.

pk = pk+1

Nk
i = Nk+1

i

zki = zk+1
i

qkiinj/prod
= qk+1

iinj/prod

14. If the criteria is not met and we reached the maximum number of iterations allowed

(k < kmax), reduce the time step using Eq. 3.81 and repeat the procedure from step

1 using the information at n level. A minimum delta time is defined by the user

(e.g. 1 × 10−5 days), after which ∆t is not further reduced and the simulation is

terminated.

∆t = 0.5∆t (3.81)

Fig. 3.3 shows a simplified flowchart describing the calculations using the IMPESC ap-

proach.
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START

Input: pn, zni , Sn
w

qwell, ∆t, nn
cells

Calculate: pn+1, zn+1
i , Sn+1

w

Update variables:
tn+1 = tn + ∆t

tn+1 ≤ tend

Perform a flash cal-
culation in each cell

Calculate flow coefficients

Solve pressures

Compute Nk+1
i ,

qk+1
iinj/prod

, and zk+1
i

Update variables
k = k + 1

Convereged?
(CFL, ε)

ENDEND

N
N

Y
Y

Fig. 3.3—General flowchart for computing the sequential solution using implicit-pressure and explicit in saturations and compositions.
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3.3.3 Performance improvement

To increase the computational efficiency of the algorithm, the following features were in-

cluded to reduce the total CPU time.

Parallel processing

Using MATLAB’s built-in function for parallel processing, the nested loop calculating the

thermodynamic properties was programmed to use multiple cores. The flash equilibrium

calculation is performed for every cell as a function of known properties from the previ-

ous iteration. The independence between each cell allows dividing the model into smaller

pieces (a defined number of gridcells) to carry out simultaneous calculations.

Restart

The restart option creates a new simulation run based on results from an existing case. The

model is initialized using the variables stored during the original simulation, and continues

the computations as requested in the new input data. With this feature we can change the

well scheduling data, maximum time step, maximum number of iterations, etc.

3.4 Comparative case study

The finite-difference simulator developed in this study using an IMPESC approach was

compared with the commercial simulator ECLIPSE (Schlumberger, 2014) with a fully-

implicit solution. We used a simple homogeneous model of 17.3 acre area representing an

inverted five-spot pattern with a thickness of 90 ft. The model is spatially discretized with

675 cells (15 × 15 × 3), where each cell has a dimension of 50 feet in the x-direction, 67

feet in the y-direction, and 33.33 feet in the z-direction. Fig. 3.4 shows a representation of

the simulation model.
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Fig. 3.4—3D reservoir simulation grid with 675 cells (nx=15, ny=15, and nz=3) used to validate the developed compositional reservoir
simulator.

A production well is located in the corner of the model, producing with constraints of max-

imum gas production (800 MSCF/day) or minimum bottomhole flowing pressure (4,000

psia) for 250 days. This simple mechanistic model allows covering the two basic produc-

tion controls throughout the simulation: maximum rate and minimum bottom-hole flowing

pressure.

3.4.1 Fluid characterization

The fluid represents a 28.1 ◦API oil. The laboratory analysis of the sample was obtained

from the GeoMark RFDbase data base (www.rfdbase.com). It corresponds to the offshore

Gemini field in the Golf of Mexico, block "Mississippi Canyon 291".

The characterization and preparation of the fluid sample for simulation was performed in a

previous study by Nguyen (2009) who evaluated different CO2 injection strategies for the

reservoir. The oil was initially characterized in the laboratory with 12 pseudo-components,

and grouped into five by Nguyen in order to reduce the calculation time in the simulator.

The final grouping and composition is shown in Table 3.23.
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Table 3.23—Original and group fluid composition with 12 and 5 components

ORIGINAL GROUPED

Component zi Component zi
(fraction) (fraction)

CO2 0.0006 CO2 0.0006
N2 0.0020

N2 + C1 0.6002
C1 0.5982
C2 0.0233

C2 − C4 0.0654
C3 0.0222
iC4 0.0048
nC4 0.0151
iC5 0.0072

C5 − C6 0.0403nC5 0.0100
C6 0.0231
C7+ 0.2935 C7+ 0.2935

A calibration process was performed by Nguyen using the differential liberation and con-

stant composition expansion tests showing a good match of the fluid properties before

and after grouping, including the following experiments: oil density, liquid and vapor vis-

cosity, oil relative volumes, gas-oil ratio, and gas compressibility factor. The final set of
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Fig. 3.5—Predicted saturation envelope of the volatile oil used for this study grouped into 5-component. It shows that at reservoir
temperature of 200 ◦F, the fluid has a bubble point pressure of 5,558 psia.
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properties used to characterize the oil are listed in Table 3.24 while Fig. 3.2 shows the

fluid phase behavior. The comparison study was performed at 200 oF. At this temperature,

the bubble point pressure is 5,558 psia.

Water was characterized with a formation volume factor of 1.029 RB/STB at a reference

pressure of 5,750 psia, and a compressibility of 3×10−6 psi−1.

Table 3.24—Fluid properties with 5 pseudo-components

Component Mw
pc Tc Zc

Acentric Volume
(psia) (◦ F) Factor shift

CO2 44.01 1071.3 88.5 0.5379 0.2869 -0.0131
N2 + C1 16.09 667.8 -117.4 0.1916 0.013 -0.1443
C2 − C4 43.37 578.5 132.3 0.2650 0.0257 -0.1382
C5 − C6 78.94 510.1 605.1 0.2321 0.1916 -0.0587
C7+ 265.35 357.9 630.0 0.5134 0.8913 -0.8630

Table 3.25—Binary interaction coefficients

Component CO2 N2 + C1 C2 − C4 C5 − C6 C7+

CO2 0
N2 + C1 0.1 0
C2 − C4 0 0 0
C5 − C6 0 0.018 0 0
C7+ 0 0.041 0 0 0

3.4.2 Rock properties and initial conditions

The reservoir is at constant depth of 12,540 feet having homogeneous properties through-

out the model, with porosity of 0.2, horizontal permeability of 60 mD, and vertical to

horizontal permeability ratio of 0.1. The reservoir was initialized with a pressure of 8,868

psia and temperature of 200 ◦F. At this conditions, the reservoir fluid exits in as single

liquid phase. The synthetic reservoir has an initial water saturation of 0.4.
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A full summary of the rock properties is shown in Table 3.26.

Table 3.26—Rock properties used in the comparative case study

Property Value
Pressure, psia 8,868
Temperature, ◦F 200
Water saturation, fraction 0.4
Top depth, ft 12,540
Porosity, fraction 0.2
Horizontal permeability, mD 60
Permeability ratio (kv/kh) 0.1
Reference pressure, psia 5,868
Rock compressibility, 1/psia 4×10−6

3.4.3 Saturation functions

Three-phase relative permeabilities are calculated using STONE II model as described in

section 3.1.4. The input requires two-phase relative permeabilities for oil-water (Fig. 3.7)

and oil-gas (Fig. 3.6). Oil-water system assumes gas saturation is zero, while oil-gas

system measurements are taken at connate water saturation (Swc = 0.16).
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Fig. 3.6—Relative permeability curves for oil and gas which determines the relative flow when both phases are present.

55



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Water
Oil

Water saturation (%)

R
el

at
iv

e
pe

rm
ea

bi
lit

y

Fig. 3.7—Relative permeability curves for oil and water which determines the relative flow when both phases are present.

3.4.4 Comparison results

Results comparing production response from the simulator developed and a commercial

reservoir simulator Eclipse are displayed in Figs 3.8-3.14, showing a good match between

the two simulators.
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Fig. 3.8—Average reservoir pressure (hydrocarbon-volume weighted) showing a good agreement between the developed simulator and
Eclipse.
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Fig. 3.9—Difference in average reservoir pressure between our IMPESC simulator and Eclipse showing average difference of 0.23%
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Fig. 3.10—Oil production rate showing a good agreement between the newly developed simulator and Eclipse.
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Fig. 3.11—Gas production rate showing a good agreement between the newly developed simulator and Eclipse. Reservoir production
is initially controlled by maximum rate and switched to bottom-hole flowing control at 70 days.
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Fig. 3.12—Water production rate comparing showing a good agreement between the newly developed simulator and Eclipse.
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Fig. 3.13—Difference in cumulative production between our IMPESC simulator and Eclipse showing average difference of 0.4% for
cumulative oil, 1.2% for cumulative gas, and 2.5% for cumulative water.
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Fig. 3.14—Average volume-weighted oil and gas saturation showing a good agreement between the newly developed simulator and
Eclipse.
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CHAPTER IV

ADAPTIVE MESH REFINEMENT ALGORITHM

This chapter presents the adaptive mesh refinement and coarsening (AMRC) algorithm

developed for modeling gas injection processes. It describes the major steps of the proce-

dure: 1) fine-grid calculation; 2) forecast of injection front by combining streamline and

the solute transport equation to identify regions with high compositional gradient; 3) se-

lection of gridblock spatial discretization through analysis of homogeneity with quadtree

decomposition; and 4) update of new grid and transfer of dynamic reservoir properties.

4.1 Overall process

The dynamic gridding technique proposed in this work performs a priori grid discretiza-

tion by predicting the movement of the injection front and then selecting grid sizes based

on forecasted compositions. Fig. 4.1 shows the general workflow for dynamically refin-

ing and coarsening the simulation grid. First, we follow the procedure of a conventional

reservoir simulation, starting with the input data, initializing the variables, and performing

flow calculation. Before moving to the next time step (tn+1), we evaluate if there is a need

to update the grid to properly capture the flow movement.

The process for creating an adaptive grid can be viewed in four major steps:

1. Transfer the dynamic properties to a fine grid and perform a single time-step calcu-

lation.

2. Forecast movement and compositions of the injection front using streamlines and

the analytical solution of the solute transport equation.

3. Select grid refinement levels in each region automatically, using quadtree decompo-

sition to evaluate spatial homogeneity of forecasted compositions.
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4. Update the simulation grid and transfer the dynamic properties.

The succeeding time-steps use this new adaptive grid to perform the flow calculations, un-

til it is necessary to create a new grid.

START

Input: pn, zni , Sn
w

qwell, ∆t, nn
cells

Calculate: pn+1, zn+1
i , Sn+1

w

Update variables:
tn+1 = tn + ∆t

tn+1 ≤ tend
Re-grid
model?

Calculate a time-step
in the fine grid

Forecast location
of injection front

Refine/coarse grid cells

Update grid nn+1
cells and

transfer properties

END

NoYes

No

Yes

Fig. 4.1—General flowchart for adaptive mesh refinement and coarsening. After a time step converges, AMRC determines whether
there is need to create a new grid. The location of the injection front is then forecasted to determine new grid cell sizes (refined or
coarsened). Finally, reservoir properties are transferred to the new grid, improving spatial representation of future calculations.
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The following sections describe the process for forecasting compositions (section 4.2),

refining and/or coarsening the simulation grid (section 4.3), and updating the grid structure

(section 4.4). The process for transferring the dynamic properties from the adaptive to the

fine grid (required to complete step 1) will be described in section 4.4.2. The frequency of

re-meshing, which depends on the dynamic conditions of the reservoir, will be described

in section 4.5.

4.2 Forecast of injection front

Forecasting movement and shapes of compositional fronts starts with the finite-difference

solution obtained using a fine grid model, from which flux distribution is calculated for all

cells following the procedure detailed in Chapter III. Subsequently, fluxes and particle tra-

jectory calculations allow reducing the 3-dimensional model into a series of 1-dimensional

streamlines across the entire reservoir model; the user defines the number of streamlines

to be calculated. The result is a series of curves tangential to the velocity field, repre-

senting an instantaneous "snapshot" of the pressure field at a given time and defining fluid

trajectories from injector to producer. Finally, implementing the analytical solution to the

convection-dispersive equation (CDE) along each streamline allows estimating the com-

positional distributions across the reservoir. This procedure forecasts the location, width,

and shape of the injection front for future calculations.

4.2.1 Tracking of streamlines

Tracking particle trajectory from the injector well to the producer follows the semian-

alytical algorithm proposed by Pollock (1988). This technique generates pathlines and

time-of-flight (or time-of-travel) using velocities obtained from finite-difference calcula-

tions. The main assumption of this model is that each directional velocity varies linearly

within a cell in its own coordinate direction. The main advantage of this linear interpola-

tion is the ability to integrate the three principal velocity components to obtain analytical
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expressions that describe the flow trajectory. The result is a continuous velocity vector

along each individual grid cell that satisfy the conservation of mass equation everywhere

within the cell (Pollock, 1988).

For a single gridcell, the total interstitial velocity is calculated by dividing the volumetric

flow rate across the face by its cross-sectional area and the cell porosity. Linear inter-

polation is used to express the interstitial velocity along any position on the x-direction,

as shown in Eq. 4.1 and Eq. 4.2. For illustration purposes, Fig. 4.2 shows a simple 2D

schematic of the analytical calculations in a single gridblock.

vx = vx,0 + gx(x− x0) (4.1)

gx =
vx,∆x − vx,0

∆x
(4.2)

where:

gx Interstitial velocity gradient in the x-direction

vx Interstitial velocity the x-direction

vx,0 Interstitial velocity at x = x0

vx,∆x Interstitial velocity at x = ∆x

x Position in the x-direction

x0 Origin in the x-direction

∆x Cell dimension in the x-direction

The rate of change of velocity of a particle p as it moves through a three-dimensional cell

is defined using Eq. 4.3.

(
dvx
dt

)
p

=

(
dvx
dx

)(
dx

dt

)
p

(4.3)
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Fig. 4.2—Streamline representation in 2D showing the analytical calculation from entry point to exit (from Batycky et al. 1997)

By definition we have:

(
dx

dt

)
p

= vxp (4.4)

And by differentiating the interstitial velocity vx (Eq. 4.1) with respect to x we obtain:

dvx
dx

= gx (4.5)

Substituting Eq. 4.4 and Eq. 4.5 into Eq. 4.3 yields

(
dvx
dt

)
p

= gxvxp (4.6)

Finally, by integrating Eq. 4.6 and incorporating the definition of particle velocity (vxp)

from Eq. 4.4, we can obtain the time required for a particle to reach the exit face along the

x-direction.

∆tx =
1

gx
ln

[
vx,0 + gx(xe − x0)

vx,0 + gx(xi − x0)

]
(4.7)
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where:

xe Exit particle position

xi Inlet particle position

An analogous derivation is performed for y- and z-direction:

∆ty =
1

gy
ln

[
vy0 + gy(ye − y0)

vy0 + gy(yi − y0)

]
(4.8)

∆tz =
1

gz
ln

[
vz0 + gz(ze − z0)

vz0 + gz(zi − z0)

]
(4.9)

Equations 4.7-4.9 determine the time required for a particle to exit the cell in each of the

three-dimensions. The correct exit face would be the one requiring the minimum value

of ∆t as shown in Eq. 4.10. For example, if ∆tx is the less than ∆ty and ∆tz, then the

particle will leave the cell across face x2.

∆tm = min [∆tx,∆ty,∆tz] (4.10)

Using the minimum time, we can calculate the exact location of the streamlines using the

following expressions.

xe =
1

gx
[vxi exp (gx∆tm)− vx0] + x0 (4.11)

ye =
1

gy
[vyi exp (gy∆tm)− vy0] + y0 (4.12)

ze =
1

gz
[vzi exp (gz∆tm)− vz0] + z0 (4.13)

The procedure outlined here is for tracing streamlines in a single cell. Tracking the entire

trajectory is a sequential process. We start in the cell containing the injector well and we
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move cell-by-cell in the simulation grid following the equations described previously. The

calculations ends when the streamline reaches a producer well or a stagnation region as

shown in Fig. 4.3. To cover the entire reservoir model, we trace several streamlines from

different initial points in the cell containing the well. The number of streamlines is defined

by the user and will depend on the flow characteristics of the model.

(a) Pressure distribution (b) the corresponding streamlines

Fig. 4.3—Sequential process for tracing the streamline trajectory from injector to producer wells.

For this work, when two hydrocarbon phases are expected, two sets of streamlines are

calculated corresponding to each of the flowing phases (oil and gas). The flux between

cells B and Badj is calculated using the following expressions.

Qo,B−Badj
=

kupsro TG
µo

(
Φo,B − Φo,Badj

)
(4.14)

Qg,B−Badj
=

kupsrg TG

µg

(
Φg,B − Φg,Badj

)
(4.15)
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where:

kupsr Upstream relative permeability of oil (o) or gas (g) phase

QB−Badj
Volumetric rate of oil (o) or gas (g) phase between cells B and Badj

TG Geometric transmissibility between cells B and Badj (Eq. 3.11)

µ Average viscosity of oil (o) or gas (g) phase

Φ Flow potentials of oil (o) or gas (g) phase

Phase streamlines do not necessarily follow the trajectory of the total flux. Kumar et al.

(2009) explained that streamlines based on total flux may fail in capturing the reservoir

dynamics, including flow of a dominant phase, appearance and disappearance of phases,

and movement of injected components. This is particularly important in cases with gas

injection in reservoir below the bubble point pressure, where the injected component is

transported in both the liquid and vapor phase at different rates.

Fig. 4.4—Streamlines for the oil and gas phase showing different trajectory.

The steps to trace a single streamline for a specific phase can be summarized as follow:

1. Compute the phase velocities from the flux distribution obtained using the finite-

difference model.
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2. Begin tracing the streamline in the face of a cell containing the injector well.

3. Calculate the time-of-flight in each direction using Eq. 4.7-4.9.

4. Estimate the exit face of a particle by selecting the minimum time-of-flight ∆tm

(Eq. 4.10).

5. Using ∆tm, determine the streamline coordinates using Eq. 4.11-4.13.

6. With the exit face, locate the new cell to be traced, e.g. if the particle exits the face

in the y-direction, then it will enter cell [i, j + 1, k].

7. Repeat steps until the particle reaches a sink.

4.2.2 Analytical forecast of compositions

The convection-dispersion equation (CDE) for a 1-dimensional system enables forecasting

the compositional distribution along each streamline (spanning the entire reservoir model)

in future time steps. This equation describes the concentration of a displacing compo-

nent as a function of distance and time and provides valuable information on the position,

width, and shape of the injection front at different times.

The analytical derivation to the CDE starts with the conservation of a displacing com-

ponent for an isothermal miscible displacement process in a homogeneous permeable

medium. Lake (1989) describes the equation using its dimensionless form assuming in-

compressible rock and fluid and ideal mixing.

K`
∂2Ci

∂x2
− v∂Ci

∂x
− ∂Ci

∂t
= 0 (4.16)

where:

Ci Mass concentration of component i

K` Longitudinal dispersion coefficient
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t Time

x Length

v Interstitial velocity (v = u/φ)

φ Porosity

In dimensionless terms, Eq. 4.16 becomes:

1

NPe

∂2CDi

∂x2
D

− ∂CDi

∂xD
− ∂CDi

∂tD
= 0 (4.17)

Using the following dimensionless variables:

CDi
=

Ci − CiI

CiJ − CiI

(4.18)

XD =
x

L
(4.19)

tD =

∫ t

0

u

φL
dt (4.20)

where:

CDi
Dimensionless concentration

CiI Initial mass composition

CiJ Injected mass composition

L Total length

φ Porosity

In this form, we also incorporate the Peclet number (NPe), representing the ratio of con-

vective to dispersive transport shown in Eq. 4.21. The dispersivity coefficient K` is a

property of the media and its estimation is described later in this chapter.
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NPe =
convection
dispersion

=
uL

φK`

(4.21)

Defining the system using the following initial and boundary conditions.

Boundary conditions

CDi
(xD =∞, tD) = 0, tD ≥ 0 (4.22)

CDi
(xD = −∞, tD) = 1, tD ≥ 0 (4.23)

Initial condition

CDi
(xD, 0) = 0, xD ≥ 0 (4.24)

The final analytical solution is derived by Ogata and Banks (1961) using the Laplace trans-

form. Eq. 4.25 shows the final solution in its dimensionless form. This equation can pro-

vide fast and accurate forecast describing the movement of a component in a miscible at

time.

CDi
=

1

2
erfc

xD − tD
2

√
tD
NPe

+

exDNPe

2
erfc

xD + tD

2

√
tD
NPe


 (4.25)

Eq. 4.25 is solved in a sequential process following a similar approach as the one used for

tracing streamlines. We begin the process by computing the relative time-of-flight of each

cell considering the forecast time. Starting in the injector well, we compute the distribution

of compositions in the corresponding cell using the injected mass concentration (CiJ ) and

the initial cell concentration (CiI). Using the CDE, we then determine the concentration

that will be exiting that cell, and subsequently, entering the next one. The "exit" concen-

tration will be the entry point for calculating the CDE in the succeeding cell. The process

is repeated cell-by-cell until the concentration along the entire streamline has been calcu-
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lated. For a desired time t, the methodology forecasts the compositional variation along

each streamline as shown in Fig. 4.5.
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Fig. 4.5—Distribution of composition along one streamline using the convection-dispersion equation allowing to identify three different
regions: swept (CDi ' 1), mixed front (0 < CDi < 1), and unswept (CDi ' 0).

(a) Compositions forecast
using the CDE

(b) Mapping compositions
to a 3D grid system

(c) Interpolation to fill properties
of the reservoir model

Fig. 4.6—Procedure for combining streamlines and the solute transport equation to predict movement of the injection front at a specific
time.
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Calculation of compositions is performed for every streamline in the model, as shown in

Fig. 4.6-a. Then, the forecasted 1D compositions are mapped into the 3D grid system

(Fig. 4.6-b) and interpolated between plotted regions to properly cover the entire reservoir

model (Fig. 4.6-c). This solution is used to determine the level of grid refinement required

for the upcoming time-step calculations.

4.2.3 Calibration of dispersivity coefficient

The dispersivity coefficient is a property of the media and defines the shape and width

of the injection front. When advection dominates the transport process, we have a sharp

front described with high Peclet numbers. On the other hand, low Peclet numbers produce

spread fronts (Fig 4.7).
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Fig. 4.7—Effect of Peclet number (NPe ) in the forecast of injection fronts, showing sharp fronts with large NPe and spread fronts with
low NPe .

To calculate the value of dispersivity (K`) that represents the finite-difference flow, we

perform the following calibration process.
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1. Set a calibration period ∆t = t2 − t1 at the start of the simulation, where the length

of ∆t is defined by the user.

2. At t1, perform a finite-difference calculation to estimate the pressure and flux distri-

bution in the system. These values are stored for future use as FD1.

3. Calculate the trajectory of streamlines using the finite-difference solution obtained

at t1 (FD1).

4. Using the finite-difference solution FD1 and an initial guess value for Kl, we fore-

cast the distribution of compositions along the streamline for time t2. The forecasted

compositions are stored for future comparisons as SL1.

5. Continue the finite-difference calculations until reaching target time t2. This may

involve multiple time steps as required by the convergence criteria and CFL limit.

6. At t2, perform a finite-difference calculation to estimate the pressure and flux distri-

bution (FD2).

7. Map along the initial streamlines the compositions obtained using the finite differ-

ence solution at time t2 (FD2); values are stored as SL2.

8. Calculate the difference between the compositions of the two sets of streamlines

(SL1 and SL2) using the minimum mean square error.

Error =
∑[

(SL1 − SL2)2
]

(4.26)

9. Minimize the error by evaluating the dispersivity parameter Kl when calculating the

compositions in SL1 (Step 4). Minimization of the error is done using the Golden

Section Search algorithm (Gerald and Wheatley, 1984).
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4.3 Select grid refinement

Quadtree spatial discretization is the basis for selecting the size of grid-blocks in the

model. Quadtree is a tree-like data structure that allows organizing information using a

root value and subtrees of children. Each parent cell can be recursively subdivided into

four (in 2D), or eight (in 3D), children as shown in Fig 2.4 and Fig 2.5. The prime motiva-

tion for using quadtrees is the ability to reduce space required to store data by aggregating

homogeneous blocks through quadtree decomposition (Samet, 1989). This method pro-

vides great flexibility and speed to the partition and data storage process with promising

applications in adaptive mesh refinement algorithms.

4.3.1 Quadtree decomposition

Quadtree decomposition determines the final level of refinement in each simulation region

by evaluating dynamic and static properties of the reservoir (e.g., composition, pressure,

permeability, facies). This analysis technique recursively subdivides a space based on

a "homogeneity analyses." For this implementation, we use a top-down construction as

described in Chapter II, where we first evaluates whether a single block can represent a

region or if dividing it into sub-blocks or children is needed.

Although there is no technical limit on the number of children that a cell can be split, for

practical applications the user specifies the maximum level of refinement that will be al-

lowed in the model (nmax). This is an important consideration for IMPESC solutions, as

the time-step is limited by the volumetric flow passing through a cell, therefore, the use of

very small cell would restrict the model to very small time-steps.

The algorithm depicted in Fig. 4.8 begins by evaluating the use of the coarsest cell di-

mension allowed in the model (2n × 2n × 2n with n = nmax as the maximum level of

refinement).
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n
nch

csplit

=
=
=

refinement level
number of children
number of cells flagged
for refinement

START

n = nmax

nch =
nx,max

2n
× ny,max

2n
× nz,max

2n

Sub-divide grid into nch

blocks of 2n × 2n × 2n

For
child = 1 to nch

Is child
homogeneous?

Merge(child)
= TRUE

Merge(child)
= FALSE

csplit = nch-Sum[Merge]

csplit > 0

n = n − 1

nch = csplit(2x2x2)

END

Continue

Y

N

Y

N

Fig. 4.8—Flowchart for quadtree decomposition showing the sequential calculation of a top-down approach.
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For each proposed child or sub cell, it extracts all its dynamic and static properties and tests

their values for homogeneity using a combination of one or more coarsening functions.

If the proposed child cell meets the homogeneity test, then it assigns logical functions

"TRUE" specifying that the cell will not require further splitting; consequently, merging

the child. If it fails the test, then it assigns "FALSE" to split the cell. All cells classified

as "FALSE" will repeat the homogeneity analysis for subsequent refinement levels (with

nnew = nold− 1) until the cell does not require further splitting. In addition, cells contain-

ing production or injection wells are discretized using fine blocks for better representation

of high velocity regions.

(a) Step 1: Fine resolution im-
age (8× 8)

(b) Step 2: Analyses for cells 4×
4

(c) Step 3: Analyses for cells 2×
2

(d) Step 4: Final adaptive mesh
refinement grid

Fig. 4.9—Quadtree decomposition process for a top-down construction with 3-levels, showing the reduction in number of cells from
64 to 31 while preserving spatial details.

76



To illustrate the proposed methodology, Fig. 4.9 shows an example of quadtree decom-

position of a 2D grid with front-like properties. Initially, the fine grid (sub-figure Step 1)

has 64 cells arranged in an 8× 8 structure (2n × 2n, where n = 3). Following a top-down

construction, the first step is evaluating whether the grid can be represented by sub-cells

(child) merging 4 × 4 cells (sub-figure Step 2); all sub cells passing the homogeneity test

are merged; in this case, only the top-right corner. Cells failing the test are evaluated to be

represented by children merging 2 × 2 cells (sub-figure Step 3); if the homogeneity test

passes, cells would be merged. We repeat the process until the grid reaches the finest level

of refinement (sub-figure Step 4).

4.3.2 Coarsening functions

Selection of the coarsening functions is a problem-specific analyses based on the process

characteristics and the reservoir description. Using quadtree decomposition, we have the

flexibility to combine multiple static and dynamic properties to represent the dominant

flow mechanisms.

This works presents two simple homogeneity functions based on the fluid molar compo-

sition (zi) and the permeability distribution (k). The homogeneity test determines if there

is sufficient variations on these properties when evaluating each sub-grid or child. Large

variation suggests a discontinuity of the property (e.g. an injection front) that would re-

quire fine spatial discretization.

The homogeneity tolerance is a critical factor to obtain accuracy and computational gains

when using adaptive mesh refinement models. Tight criteria would result in very fine grids

that may not provide significant computational improvement. On the other hand, loose cri-

teria can affect the accuracy of the solution. Current applications of adaptive gridding take

a holistic approach for selecting homogeneity tolerances. We suggest performing sensi-

77



tivity analysis to select a threshold value that can effectively represent the process under

study.

Although we only discuss the coarsening functions used in this study (composition and

permeability), similar applications are readily extendable for other type of property analy-

ses and statistical parameters (e.g. variance, standard deviation).

Compositions

Injection of gas into the reservoir results in continuous changes in the compositional dis-

tribution across the model. Tracking composition of the injected fluid in the displacing

and displaced phase is key to select a grid resolution that reduces numerical dispersion.

zmax
i − zmin

i < tolerancez (4.27)

Permeability

For highly heterogeneous reservoirs, the use of quadtree decomposition and homogene-

ity analysis allows reducing the size of the model by merging cells based on the static

properties of the reservoir, such as the permeability, rock facies, presence of fractures,

etc. The use of unstructured grid geometry provides the flexibility to reduce the number

of cells while preserving key geologic features, like channels, sealing layers, and fractures.

The local grid refinement based on the static properties can be done as a pre-processing

step or dynamically in the simulation run. In this research, we evaluated the use of the

following test for restricting merging cells based on their value of horizontal permeability.

kmin
h > kmax

h × tolerancek (4.28)
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4.4 Create new grid

The result of the quadtree decomposition is a set of logical functions describing the spatial

discretization of the simulation model. The fundamental unstructured nature of adaptive

gridding requires monitoring parent-children relationships while defining new faces and

connections in the simulator. Creating a new grid involves re-ordering the cell in the model

and transferring the dynamic and static properties. Every time a new grid is created, we

destroy previous adaptive grids to reduce data storage that can compromise computational

performance.

4.4.1 Cell re-ordering

Because of the dynamic nature of adaptive grids, the cell re-ordering process has to be

repeated every time a new adaptive grid is created. Indices for each cell in the model are

assigned following the same top-down approach used in the quadtree decomposition. We

first number the coarsest cells using a natural-like order. We then move to the next level of

refinement and continue numbering cells. We continue the process for all every refinement

levels until all cells have been numbered. The final grid is a smaller model that requires

fewer cells to solve the problem, thus providing an improved computational performance.

The unstructured discretization of the simulation model results in a more complicated sys-

tem compared to a conventional structured grid. In a conventional grid, each cell has a

fixed number of connecting faces (six for a 3-dimensional model). This results in a coef-

ficient matrix that also has a fixed number of elements in a sparse and banded structure as

it is shown in Fig. 4.10. On the other hand, in an adaptive grid, a cell may be connected

to a variable number of faces depending on the level of refinement of each cell. This leads

to a more complicated system of equations and a more complicated matrix structure that

contain scatter elements as shown in Fig. 4.11.
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The order in which cells are numbered has a significant impact in the computational per-

formance of the algorithm. The more regular the matrix is, the easiest it is to solve it.

Further studies are required to understand the impact of the cell ordering scheme to im-

prove further the computational performance of the adaptive method.

(a) Structured grid (64× 64) (b) Corresponding coefficient matrix

Fig. 4.10—Sparsity of structured grid showing a banded coefficient matrix.

(a) Adaptive grid (31× 31) (b) Corresponding coefficient matrix

Fig. 4.11—Sparsity of adaptive unstructured grid showing a non-banded coefficient matrix.
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4.4.2 Transfer of properties

While creating a new adaptive grid, it is necessary to transfer the static and dynamic prop-

erties in two different occasions:

• From adaptive grid to fine grid. This information is used to calculate the flux distri-

bution for a single time-step prior to forecasting the compositional front.

• From fine grid to adaptive grid. Once the new grid has been created and numbered,

the fine-grid solution is transferred to the new adaptive grid to continue the simula-

tion run.

Due the explicit nature of the flow calculations, we only need to transfer two dynamic

properties: pressure and number of moles. Once the dynamic properties are calculated for

the new grid, a flash calculation would determine the phase behavior and fluid properties

for every cell.

Dynamic properties: from adaptive to fine

The flow solution obtained in the adaptive grid is transferred to a fine-grid. The number

of moles in an coarse cell is distributed in the fine model using a pore volume-weighted

average. For a single fine cell (Eq. 4.29).

nfine
i =

ncoarse
i V fine

p

V coarse
p

(4.29)

where:

ni Number of moles of component i

Vp Pore volume

On the other hand, pressures in the fine cell take the value of their corresponding coarse

parent cell as shown in Fig.4.12.
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Fig. 4.12—Transfer of pressure from an adaptive grid to a fine grid.

Dynamic properties: from fine to adaptive

When the new adaptive grid is created, the fine-level solution obtained with finite differ-

ence is transferred to the adaptive grid. Moles of each component are transferred to the

coarse cell by simply adding the moles of the fine cells that it encompasses (Eq. 4.30).

ncoarse
i =

N∑
i=1

(
nfine
i

)
(4.30)

Pressures of the coarse are calculated using a pore volume weighted-average calculated

using Eq. 4.31 and illustrated in Fig.4.13.

pcoarse =

N∑
i=1

(
pV fine

p

)
N∑
i=1

(
V fine
p

) (4.31)

where:

p Pressure

Vp Pore volume
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Fig. 4.13—Transfer of pressure from a fine grid to an adaptive grid.

Static properties

Static properties are only required to be transferred from the fine grid to the adaptive one.

For volumetric properties, such as the porosity, the effective value of a coarse cell is simply

the pore volume weighted average as shown in Eq. 4.32.

φcoarse =

N∑
i=1

(
φfineV fine

b

)
N∑
i=1

(
V fine
b

) (4.32)

where:

φ Porosity

Vp Pore volume

For intrinsic properties, such as the permeability, transferring from a fine cell into a coarse

one presents significant challenges. There are many techniques that have been developed

to represent the flow of a fine grid using coarser cells (King and Mansfield 1999, Durlofsky

2003). For this work, we have implemented a simple upscaling technique to estimate

the vertical and horizontal permeability of a coarse cell. Permeabilities are calculated

with arithmetic average for the horizontal direction and harmonic average for the vertical
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direction as shown in Eq. 4.33 and Eq. 4.34 respectively. It is important to consider that

the calculation of average permeabilities in this work require further investigation in order

to improve upscaling techniques.

kcoarseh =

N∑
i=1

(khi
hi)

N∑
i=1

(hi)

(4.33)

kcoarsev =

N∑
i=1

(
hfine

)
N∑
i=1

(
hfine

kfinev

) (4.34)

where:

kh Horizontal permeability

kv Vertical permeability

h Cell height

4.5 Re-gridding frequency

One key factor to consider is the computational expense associated with updating the grid.

Creating an adaptive grid in each time step has proved to be impractical, and it provides

only limited computational advantages over using a static fine grid model. Using the

streamline time-of-flight concept along with the CDE enables us to calculate the time it

would take the injection front to move a specified distance. To implement this procedure,

the user defines the maximum movement of the injection front allowed before requiring

a new grid. This approach reduces the computational requirement related to continuously

updating the simulation grid while accounting for changes in flow velocity throughout the

simulation run.
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CHAPTER V

RESULTS AND ANALYSIS OF SIMULATION CASES

This chapter presents the study of multiple simulation cases aimed to evaluate the per-

formance of the new adaptive mesh refinement algorithm. The analyses include different

models undergoing continuous CO2 injection in a quarter of a 5-spot pattern. First, 2-

dimensional models assess the feasibility of the dynamic technique by considering homo-

geneous and heterogeneous reservoirs producing above the bubble point pressure. Then,

3-dimensional models test the versatility of the methodology by examining complex pro-

duction scenarios, including the injection of CO2 in reservoirs with pressures below the

bubble point.

For all cases, a fine grid model (best representation of simulation forecast) served as base

of comparison against the adaptive mesh refinement and coarsening algorithm. The accu-

racy of the solution is evaluated using oil production, gas injection, and average reservoir

pressure at the breakthrough time. The computational performance is assessed by com-

paring the time required to run an adaptive model with reference to a static fine one.

Results show improved computational performance using adaptive grids while having sim-

ilar forecasts for production and pressure compared to fine models. The studies were car-

ried out in a personal computer with Intel Xeon with 10 CPU processor @ 3.70 GHz, 3701

Mhz, 32 GB memory, and Windows 7 64-bits PC. The running time was calculated using a

high-resolution counter that records the tick counts before and after executing the program

and the tick frequency (ticks/sec).
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5.1 2D simulations

The performance of the adaptive mesh refinement method is first explored by evaluating

the algorithm using 2-dimensional models for a homogeneous and a heterogeneous reser-

voir. Both cases simulate the injection of CO2 in an inverted 5-spot well configuration,

commonly used for enhanced oil recovery processes. Due the symmetric features of the

injection arrangement, we only modeled 1/4th of the pattern. We used the fluid properties

listed in Table 3.24 (Chapter III, section 3.4) that represent a 28.1 ◦API oil described with

five pseudo-components. The in-situ fluid has a miscibility pressure of 5,558 psia at 200
◦F when injecting CO2 into the system, as determined numerically using a first-contact

miscibility experiment.

5.1.1 Homogeneous model

The homogeneous reservoir model represents a 5-spot pattern with an areal extension of

60 acres. Only 15 acres are modeled, corresponding to a 1/4th of the pattern as displayed

in the grey area of Fig. 5.1.

Fig. 5.1—5-spot injection pattern showing in grey the area selected for modeling in the 2D homogeneous model.
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The 2D fine grid has a maximum of 6,400 cells (nx,max=80, ny,max=80, and nz,max=1)

as shown in Fig. 5.2, where each gridcell measures 10 ft by 10 ft by 70 ft. Cells can be

grouped using three hierarchical levels in the horizontal direction (23 × 23 = 8 × 8) for

a maximum cell dimension of 80 ft by 80 ft by 70 ft. Fig. 5.2 summarizes the grid input

parameters.

Fig. 5.2—2D model used to evaluate the homogeneous reservoir with an areal extension of 15 acres and thickness of 70 ft. Fine cells
can be grouped into coarser cells up to a maximum of 8× 8× 1.

Table 5.1—Input grid parameters used in the 2D homogeneous model

Property Value
Length, ft 800
Width, ft 800
Thickness, ft 70
Grid size in x-direction (finest), ft 10
Grid size in y-direction (finest), ft 10
Grid size in x-direction (coarsest), ft 80
Grid size in y-direction (coarsest), ft 80
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Reservoir properties

The structure of the reservoir has a constant depth of 12,540 feet. Initial pressure is 6,500

psia, constant reservoir temperature is 200 ◦F, and no in-situ water. The rock has a porosity

of 20% and isotropic horizontal permeability of 120 mD. Table 5.2 shows a summary of

the reservoir properties used to evaluate the homogeneous model.

Table 5.2—Rock properties and initial conditions used in the 2D homogeneous simulation model

Property Value
Pressure, psia 6,500
Temperature, ◦F 200
Top depth, ft 12,540
Porosity, fraction 0.2
Horizontal permeability, mD 120
Reference pressure, psia 5,868
Rock compressibility, 1/psia 4×10−6

Operating conditions

The simulation model has two active wells, a producer and an injector, located in opposite

corners of the arrangement as shown in Fig. 5.2. Both wells have a wellbore radius of 0.3

feet and no skin. The producer well was set at a constant bottomhole flowing pressure of

6,000 psia, maintaining the system above the minimum miscibility pressure. The injector

well injects CO2 at constant bottomhole flowing pressure of 7,000 psia. Table 5.3 lists the

operating conditions used in the model.

Table 5.3—Operating conditions used in the 2D homogeneous model

Property Value
Producer bottomhole flowing pressure, psia 6,000
Injector bottomhole flowing pressure, psia 7,000
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Triggering conditions

The homogeneity criteria tracks compositional variations of CO2 in the model, set to a

maximum of 1% difference in CO2 composition among children cells. The re-gridding

frequency was set for a maximum of 60 ft of advancement of the front (length of three

grid blocks).

zmax
CO2
− zmin

CO2
< 0.01 (5.1)

Performance comparison

Figs. 5.3 and 5.4 show the distribution of CO2 composition and pressure in the reservoir

at different times (30, 150, 350, 600, 800, and 1,500 days). During the adaptive mesh

refinement process, cells were dynamically discretized to capture the location of the gas

injection front. This resulted in fine cells along the injection front but coarser cells in

regions far from the front. This example shows the potential of the adaptive technique

as 26 grid realizations allowed reducing the total number of cells from 6,400 to models

ranging from 292 to 2,608 depending on the location of the front. Reduction in the number

of cells in the model results in the adaptive model running 1.4 times faster compared to the

fine grid. This represents a 30% improvement in the CPU time compared to the fine model

as calculated using Eq. 5.2. Table 5.4 presents a summary of the CPU ratio and reduction

percentage for the 2D homogeneous case.

%CPUreduction = 100

(
CPUfine − CPUadaptive

CPUfine

)
(5.2)

Table 5.4—Comparison of computational performance for the homogeneous 2D model

Grid Number of cells CPU execution ratio % CPU reduction(fine/ adaptive)
Fine 6,400 – –
Adaptive 292-2,608 1.41 30

89



Figs. 5.5 and 5.6 show the results of oil production and gas injection rate. Three cases

are displayed in the figures: 1) fine grid (80 × 80 × 1 with 6,400 cells), coarse grid

(40 × 40 × ×1 with 1,600 cells), and an adaptive grid (variable number of cells rang-

ing from 292 to 2,608). Results show a 3.02% difference in cumulative oil production

between the fine and the adaptive grid after 1,500 days of production and injection model-

ing (breakthrough time). On the other hand, using a coarser grid (40× 40××1) resulted

in 9.01% difference in the cumulative oil production. Similarly, cumulative gas injection

showed 3.048% difference using the adaptive grid while the coarse grid showed 10.97%

error.

The produced gas-oil (GOR) also shows a good match between the fine and the adaptive

model (Fig. 5.7). On the contrary, the GOR in the coarse model begins deviating from the

fine model at approximately 1,000 days. This is evidence of an early breakthrough, a con-

sequence of the higher injection rates observed in Fig. 5.6. A similar response is observed

in the average reservoir pressure (Fig. 5.8). The adaptive model shows a similar behavior

compared to the fine grid, while the coarse model deviates after the CO2 breakthrough.

Table 5.5 summaries the production and pressure errors as compared to the fine solution

at breakthrough time (1,500 days).

Table 5.5—Errors at breakthrough time (1,500 days) of the adaptive and coarse grid compared to the fine model in a homogeneous 2D
model

Grid % Error in cumulative % Error in cumulative % Error in pressure
oil production (STB) gas injection (Mscf) (psia)

Coarse 9.01 10.97 0.0534
Adaptive 3.02 3.048 0.0075
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(a) At 30 days (292 cells) (b) At 150 days (1,108 cells)

(c) At 350 days (1,510 cells) (d) At 600 days (1,858 cells)

(e) At 800 days (2,095 cells) (f) At 1,500 days (2,488 cells)

Fig. 5.3—Top-view of composition distribution at 30, 150, 350, 600, 800, and 1,500 days of simulation using an adaptive grid in the
2D homogeneous model.
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(a) At 30 days (292 cells) (b) At 150 days (1,108 cells)

(c) At 350 days (1,510 cells) (d) At 600 days (1,858 cells)

(e) At 800 days (2,095 cells) (f) At 1,500 days (2488 cells)

Fig. 5.4—Top-view of reservoir pressure distribution at 30, 150, 350, 600, 800, and 1,500 days of simulation using an adaptive grid in
the 2D homogeneous model.
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Fig. 5.5—Oil production rate after 1,500 days for a 2D homogeneous reservoir modeled using three grid descriptions: fine (80×80×1),
coarse (40× 40× 1), and adaptive.
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Fig. 5.6—Gas injection rate after 1,500 days for a 2D homogeneous reservoir modeled using three grid descriptions: fine (80×80×1),
coarse (40× 40× 1), and adaptive.
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Fig. 5.7—Produced gas-oil ratio after 1,500 days for a 2D homogeneous reservoir modeled using three grid descriptions: fine (80 ×
80× 1), coarse (40× 40× 1), and adaptive.
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Fig. 5.8—Average reservoir pressure after 1,500 days for a 2D homogeneous reservoir modeled using three grid descriptions: fine
(80× 80× 1), coarse (40× 40× 1), and adaptive.
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5.1.2 Heterogeneous reservoir

The heterogeneous reservoir model is represented by layer 17 of the Tenth SPE Compara-

tive Solution Project (Christie and Blunt, 2001). The original objective of the benchmark

study was to compare performance and upscaling techniques from different simulators.

For this work, the reservoir properties of the case study are used to evaluate the effect of

heterogeneities in the application of adaptive mesh refinement using quadtree decomposi-

tion.

The geological description of the comparative study is based on the Brent Group sequence

in the North Sea. The selected layer 17 represents the Tarbert formation, a complex envi-

ronment characterized by a prograding near shore deposition showing large variations in

the distribution of porosity and permeability.

The simulation model is a 1/4th of a 5-spot pattern with 7.35 acres as shown in Fig. 5.9.

It is discretized using a maximum of 1,600 cells (nx,max=40, ny,max=40, and nz,max=1),

where each gridcell measures 20 ft by 10 ft by 50 ft. Coarsening of cells is done with a

maximum merging of 4× 4× 1 fine cells (Fig. 5.9). Table. 5.6 summarizes the grid input

parameters.

Fig. 5.9—5-spot injection pattern showing in grey the area selected for modeling in the 2D heterogeneous model.
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Fig. 5.10—2D model used to evaluate the heterogeneous reservoir with an areal extension of 7.35 acres and thickness of 50 ft. Fine
cells can be grouped into coarser cells up to a maximum of 4× 4× 1.

Table 5.6—Input grid parameters used in the 2D heterogeneous model

Property Value
Length, ft 800
Width, ft 400
Thickness, ft 50
Grid size in x-direction (finest), ft 20
Grid size in y-direction (finest), ft 10
Grid size in x-direction (coarsest), ft 80
Grid size in y-direction (coarsest), ft 40

Reservoir properties

Similar to the homogeneous case, the structure has a constant depth of 12,540 feet. It has

an initial pressure of 7,000 psia, initial temperature of 200 ◦F and no in-situ water. The

selected reservoir sector has an average (geometric) horizontal permeability of 81.22 mD,

ranging from 0.57 to 8,392 mD; and an average porosity of 25.3%. Fig. 5.11 shows the

porosity and permeability distribution while Table 5.7 summarizes average rock and ini-

tial conditions.
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Fig. 5.11—Rock properties for layer 17 (used in this study) of the SPE Tenth Comparative Solution Project.

Table 5.7—Rock properties and initial conditions used in the 2D heterogeneous model (SPE Tenth Comparative Solution Project)

Property Value
Pressure, psia 7,000
Temperature, ◦F 200
Top depth, ft 12,540
Porosity, fraction 0.253
Horizontal permeability, mD 81.22
Reference pressure, psia 5,868
Rock compressibility, 1/psia 4×10−6

Operating conditions

Production and injection wells have the same specifications as those used in the homoge-

neous case, with wellbore radius of 0.3 feet and no skin. They are located in opposite side

of the simulation model as shown in Fig. 5.9. Wells are controlled by fixed bototmhole

flowing pressure, with 5,500 psia for the producer and 7,500 psia for the injector.

Table 5.8—Operating conditions used in the 2D heterogeneous model

Property Value
Producer bottomhole flowing pressure, psia 5,500
Injector bottomhole flowing pressure, psia 7,500
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Triggering criteria

In addition to the homogeneity criteria used in the homogeneous model, this case also in-

corporated a constraint to limit coarsening of cells that have high contrast in permeability.

The re-gridding frequency was set for a maximum of 30 ft of advancement of the front

(length of three grid blocks in the y-direction).

zmax
CO2
− zmin

CO2
< 0.01 (5.3)

kmin
h > kmax

h × 0.3 (5.4)

Performance comparison

Unlike the homogeneous reservoir, where the injection front shows a smooth displace-

ment, in highly heterogeneous systems the injection front is not symmetrical and follows

the path of least resistance as illustrated by the streamlines in Fig. 5.12. Flow trajectory

in heterogeneous reservoirs may be exhibit significant changes along the simulation run

depending on fluid compressibility and operating conditions.

(a) At 500 days (b) At 1,500 days

Fig. 5.12—Streamlines at 500 and 1,500 days of simulation for the heterogeneous case study showing changes in the flow trajectory
along the simulation run.

Figs. 5.13 and 5.14 show the advancement of the displacing fluid using adaptive mesh re-

finement at six different times (300, 500, 700, 1,000, 1,200, and 1,500 days). The dynamic

algorithm adapts to the forecasted location and shape of the compositional front, account-
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ing also for permeability contrast between cells, thus reducing dispersion and inaccurate

reservoir behavior predictions. The simulation using the adaptive method resulted in 23

different grids realizations, varying from 967 to 1,258 cells. Reduction in the number of

cells compared to the static fine grid (constant 1,600 cells) yielded a 30% improvement in

the CPU time compared to the fine model as listed in Table 5.9.

Table 5.9—Comparison of computational performance for the heterogeneous 2D model

Grid Number of cells CPU execution ratio % CPU reduction(fine/ adaptive)
Fine 1,600 – –
Adaptive 967-1,258 1.42 29.7

Figs. 5.15 to 5.18 show oil production rate, gas injection rate, pressure forecast and pro-

duced gas-oil ratio. Four cases are displayed in the figures: fine grid (40×40×1 with 1,600

cells), adaptive using composition criteria, adaptive using composition and permeability

criteria, and adaptive using only permeability as criteria. Results show that incorporating

permeability resulted in less than 0.72% difference in cumulative oil production between

the fine and the adaptive grid at the breakthrough time (1,400 days) while using only the

compositional criteria resulted in a difference of 11.25%. Pressure response did not show

a significant variation prior to the breakthrough when it began to deviate due the early

breakthrough. Errors are summarized in Table 5.10.

Table 5.10—Errors at breakthrough time (1,400 days) of the adaptive and coarse grid compared to the fine model in in the 2D hetero-
geneous model

Grid % Error in cumulative % Error in cumulative % Error in
oil production (STB) gas injection (Mscf) pressure (psia)

Adaptive
11.25 11.91 0.33

(comp)
Adaptive

0.72 0.70 0.07
(comp + perm)
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(a) At 300 days (b) At 500 days

(c) At 700 days (d) At 1,000 days

(e) At 1,200 days (f) At 1,500 days

Fig. 5.13—Top-view of composition distribution at 300, 500, 700, 1,000, 1,200, and 1,500 days of simulation using an adaptive grid in
the 2D heterogeneous model.
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(a) At 300 days (b) At 500 days

(c) At 700 days (d) At 1,000 days

(e) At 1,200 days (f) At 1,500 days

Fig. 5.14—Top-view of pressure distribution at 300, 500, 700, 1,000, 1,200, and 1,500 days of simulation using an adaptive grid in the
2D heterogeneous model.
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Fig. 5.15—Oil production rate after 1,500 days for the SPE 10 Case Study using three grid descriptions: fine (40× 40× 1), adaptive
using composition criteria, and adaptive using composition and permeability criteria.
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Fig. 5.16—Gas injection rate after 1,500 days for the SPE 10 Case Study using three grid descriptions: fine (40 × 40 × 1), adaptive
using composition criteria, and adaptive using composition and permeability criteria.
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Fig. 5.17—Produced gas-oil ratio after 1,500 days for the SPE 10 Case Study using three grid descriptions: fine (40×40×1), adaptive
using composition criteria, and adaptive using composition and permeability criteria.
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Fig. 5.18—Average reservoir pressure (volume-weighted) after 1,500 days for the SPE 10 Case Study using three grid descriptions:
fine (40× 40× 1), adaptive using composition criteria, and adaptive using composition and permeability criteria.
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5.2 3D simulations

The flexibility of the adaptive mesh refinement algorithm is evaluated in 3-dimensions by

assessing the behavior of a homogeneous reservoir under different operating conditions.

All cases represent the 1/4th of a 5-spot pattern described in section 5.1.1 and illustrated

in Fig. 5.1. The reservoir has a porosity of 20%, isotropic horizontal permeability of 120

mD, and vertical to horizontal permeability ratio of 0.1. Table 5.11 shows a summary of

the reservoir properties used to evaluate the 3D models.

Table 5.11—Rock properties and initial conditions used in the 3D homogeneous simulation model

Property Value
Temperature, ◦F 200
Top depth, ft 12,540
Porosity, fraction 0.2
Horizontal permeability, mD 120
Permeability ratio (kv/kh) 0.1
Reference pressure, psia 5,868
Rock compressibility, 1/psia 4×10−6

Triggering conditions

The homogeneity criteria was defined based on the compositional variation of CO2 in the

model, allowing for a maximum variation of 1% in the sub-cells analyses.

zmax
CO2
− zmin

CO2
< 0.01 (5.5)

The time frequency to create a new adaptive grid was set to allow for a maximum displace-

ment of the injection front corresponding to the distance of three gridblocks. For cases

with two phases (oil and gas) flowing simultaneously, the evaluation of the displacement

front is done in each phase independently, considering the most rapid phase for limiting

the re-gridding frequency.
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Cases evaluated and operating conditions

Three difference production scenarios were evaluated using the 3D models to test the al-

gorithm using more complex reservoir conditions. We examined the following cases:

1. Reservoir pressure above miscibility.

2. Reservoir pressure below miscibility.

• Reservoir initialized in single-phase with the producer’s bottomhole flowing

pressure below the bubble point.

• Reservoir initialized in two-phases.

First, we explored the methodology in a homogeneous model producing and injecting

above the bubble point and the minimum miscibility pressure. For this case, the reservoir

conditions will remain in single-phase throughout the entire simulation run.

We then evaluated the performance of the adaptive technique when modeling reservoirs

producing below the bubble point pressure. The two cases analyzed present unique chal-

lenges to the methodology. In the first case, the reservoir is initialized in a single-phase

but falls below the saturation point as production begins in the model. Tracing the flow

trajectory then starts in the injector well in a single-phase region, but eventually reaches

a two-phase region as it reaches the producer well. The second case is initialized in two-

phases, resulting in transport of CO2 in both the liquid and gas phase.

All the reservoir models evaluated had two active wells, a producer and an injector, located

in opposite corners of the model. Both wells have a radius of 0.3 feet and no skin. The

specific production constraints for each case are listed in the following sub-sections.
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5.2.1 Single-phase homogeneous model

The reservoir is represented by a 3D model with a maximum of 12,800 cells (nx,max=40,

ny,max=40, and nz,max=8), where each gridcell measures 20 ft by 20 ft by 8.75 ft. Cells

can be grouped using two hierarchical levels for a maximum cell dimension of 80 ft by 80

ft by 35 ft (Fig. 5.19). Table 5.12 summarizes the grid input parameters.

Fig. 5.19—3D model used to evaluate the single-phase homogeneous reservoir with an areal extension of 15 acres and thickness of 70
ft. Fine cells can be grouped into coarser cells up to a maximum of 4× 4× 4.

Table 5.12—Input grid parameters used in the 3D single-phase and homogeneous simulation model

Property Value
Length, ft 800
Width, ft 800
Thickness, ft 70
Grid size in x-direction (finest), ft 20
Grid size in y-direction (finest), ft 20
Grid size in z-direction (finest), ft 8.75
Grid size in x-direction (coarsest), ft 80
Grid size in y-direction (coarsest), ft 80
Grid size in z-direction (coarsest), ft 35
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The reservoir was initialized with a constant pressure of 6,500 psia and initial temperature

of 200 ◦F. The producer well was set at a constant bottomhole flowing pressure of 6,000

psia, maintaining the entire system above the minimum miscibility pressure. The injector

well was set at constant bottomhole flowing pressure of 7,000 psia. Table 5.13 lists the

initial and operating conditions of the case.

Table 5.13—Initial and operating conditions in the 3D single-phase homogeneous model

Property Value
Initial pressure, psia 6,500
Producer bottomhole flowing pressure, psia 6,000
Injector bottomhole flowing pressure, psia 7,000

Performance comparison

Figs. 5.20 and 5.21 show the spatial discretization at different times in the simulation study

(60, 120, 400, 600, 800 and 1,200 days). Cells are refined in the three dimensions based

on the distribution of compositions at a given time, resulting in fine gridding along the

injection front but coarser cells anywhere else in the model. The total number of cells was

significantly reduced, from 12,800 cells required for a static fine grid to 18 different grids

varying from 746 to 6,318 cells. As a result, the adaptive grid was 2.74 times faster than

the static grid, representing 63.4% reduction in CPU. Table 5.14 presents a summary of

the CPU ratio and reduction percentage for this case.

Table 5.14—Comparison of computational performance for a 3D single-phase homogeneous model

Grid Number of cells CPU execution ratio % CPU reduction(fine/ adaptive)
Fine 12,800 – –
Adaptive 746-6,318 2.74 63.4
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Figs. 5.22 and 5.23 display the results from oil production and gas injection rate. Plots il-

lustrate three cases: 1) fine grid (40×40×8 with 12,800 cells), coarse grid (20×40×4 with

1,600 cells), and an adaptive grid (variable number of cells ranging from 746 to 6,318).

Results show only a 3.6% difference in cumulative oil production between the fine and the

adaptive grid after 1,200 days of production and injection modeling (breakthrough time).

On the other hand, using a coarser grid resulted in 10.7% difference in the cumulative oil

production. Similarly, the gas injection rate using the adaptive model showed 3.71% error

compared to the fine model, while the coarse grid resulted in 13.09% difference.

The over-prediction of oil rate and gas injection rate resulted in an early forecast for gas

breakthrough time in the coarse grid. This is observed in the produced gas-oil ratio in

Fig. 5.24, where it is possible to see that the coarse grid starts to increments at approxi-

mately 800 days while the fine and adaptive continue relatively constant until 1,200 days.

Pressure response showed less sensitivity to grid-size before breakthrough, but it shows

large deviations after that point as shown in Fig. 5.45. Table 5.15 summarizes the produc-

tion and pressure errors.

Table 5.15—Errors at breakthrough time (1,200 days) of adaptive and coarse grids compared to a fine 3D single-phase homogeneous
model

Grid % Error in cumulative % Error in cumulative % Error in pressure
oil production (STB) gas injection (Mscf) (psia)

Coarse 10.69 13.09 0.68
Adaptive 3.64 3.71 0.07
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(a) At 60 days (1,600 cells) (b) At 120 days (2,104 cells)

(c) At 400 days (3,980 cells) (d) At 600 days (4,904 cells)

(e) At 800 days (5,898 cells) (f) At 1,200 days (6,276 cells)

Fig. 5.20—Composition distribution at 60, 120, 400, 600, 800, and 1,200 days of simulation using an adaptive grid for 3D single-phase
homogeneous model.
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(a) At 60 days (1600 cells) (b) At 120 days (2104 cells)

(c) At 400 days (3980 cells) (d) At 600 days (4904 cells)

(e) At 800 days (5898 cells) (f) At 1200 days (6276 cells)

Fig. 5.21—Pressure distribution at 60, 120, 400, 600, 800, and 1,200 days using an adaptive grid for the 3D single-phase homogeneous
model.
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Fig. 5.22—Oil production rate after 1,600 days for a 3D single-phase homogeneous reservoir modeled using three grid descriptions:
fine (40× 40× 8), coarse (20× 20× 4), and adaptive.
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Fig. 5.23—Gas injection rate after 1,600 days for a 3D single-phase homogeneous reservoir modeled using three grid descriptions: fine
(40× 40× 8), coarse (20× 20× 4), and adaptive.

111



0 200 400 600 800 1,000 1,200 1,400 1,600
0

2

4

6

Time (days)

G
as

-O
il

R
at

io
(M

sc
f/s

tb
)

Fine(40× 40× 8)
Coarse(20× 20× 4)
Adaptive

Fig. 5.24—Produced gas-oil ratio after 1,600 days for a 3D single-phase homogeneous reservoir modeled using three grid descriptions:
fine (40× 40× 8), coarse (20× 20× 4), and adaptive.
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Fig. 5.25—Average reservoir pressure after 1,600 days for a 3D single-phase homogeneous reservoir modeled using three grid descrip-
tions: fine (40× 40× 8), coarse (20× 20× 4), and adaptive.
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5.2.2 Two-phase homogeneous model

The reservoir model is represented by a 3D simulation grid discretized with a maximum

of 4,608 cells (nx,max=24, ny,max=24, and nz,max=8), where each gridcell measures 33.3

ft by 33.3 ft by 8.75 ft. Cells can be grouped using two hierarchical levels for a maximum

cell dimension of 133.3 ft by 133.3 ft by 35 ft as shown in Fig. 5.26. Table 5.12 summa-

rizes the grid input parameters.

Fig. 5.26—3D model used to evaluate the two-phase homogeneous reservoir with an areal extension of 15 acres and thickness of 70 ft.
Fine cells can be grouped into coarser cells up to a maximum of 4× 4× 4.

Table 5.16—Input grid parameters used in the 3D two-phase and homogeneous simulation model

Property Value
Length, ft 800
Width, ft 800
Thickness, ft 70
Grid size in x-direction (finest), ft 33.3
Grid size in y-direction (finest), ft 33.3
Grid size in z-direction (finest), ft 8.75
Grid size in x-direction (coarsest), ft 133.3
Grid size in y-direction (coarsest), ft 133.3
Grid size in z-direction (coarsest), ft 35
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Two cases are evaluated considering two-phase flow. In Case 1, the reservoir is initialized

in single-phase with a constant pressure of 5,600 psia and no gas saturation. The producer

well was set to produce at a constant bottomhole flowing pressure of 5,000 psia, below

the bubble point pressure, while the injector well was set at 6,000 psia. In Case 2, the

reservoir was initialized in two-phases with a constant pressure of 5,000 psia and a gas

saturation of 7.5%. The producer bottomhole flowing pressure was set at 4,500 psia while

the injector was set at 5,500 psia. A summary of the initial and operating conditions is

listed in Table 5.17.

Table 5.17—Initial and operating conditions in the 3D two-phase and homogeneous simulation model

Property Value Value
(Case 1) (Case 2)

Initial pressure, psia 5,600 5,000
Initial gas saturation, fraction 0.0 0.075
Producer bottomhole flowing pressure, psia 5,000 4,500
Injector bottomhole flowing pressure, psia 6,000 5,500

Performance comparison of Case 1: Initial pressure above bubble point

This case show the appearance and disappearance of the gas phase throughout the simula-

tion study. The reservoir is found initially in single-phase, but as we begin producing from

the well, the region near the wellbore falls below the bubble point pressure causing the

gas to break out of solution. Continuing production results in the two-phase region pro-

gressively expanding towards the injector well. On the opposite side of the model, CO2

injections creates a liquid single-phase front moving towards the low pressure region (i.e.

producer well). As CO2 continuously interact with the in-situ oil, the system reaches a

single-phase state as shown in 5.27.
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Fig. 5.27—Average field gas saturation showing the reservoir initialized in liquid single-phase. Gas saturation increases as pressure
falls below the bubble point near the producer well, but re-dissolves as CO2 contacts and mixes with the in-situ oil.

Figs. 5.28 and 5.29 show the grid discretization in the adaptive model as the injection front

advances towards the producers for 100, 160, 200, 250, 340, and 440 days. The algorithm

required 20 different grid realizations with number of cells varying from 520 to 3,194. The

reduction in cells in the model resulted in executing the adaptive model 2.57 times faster

compared to a static fine grid (modeled with 4,608 cells). This represents a reduction in

CPU time of 61.1% (Table 5.18).

Table 5.18—Comparison of computational performance for a 3D two-phase homogeneous model initialized above the bubble point

Grid Number of cells CPU execution ratio % CPU reduction(fine/ adaptive)
Fine 4,608 – –
Adaptive 520 - 3,194 2.57 61.1
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(a) At 100 days (1,892 cells) (b) At 160 days (2,074 cells)

(c) At 200 days (2,494 cells) (d) At 250 days (2,494 cells)

(e) At 340 days (2,634 cells) (f) At 440 days (2,886 cells)

Fig. 5.28—Composition distribution at 100, 160, 200, 250, 340, and 440 days of simulation using an adaptive grid for 3D two-phase
homogeneous model initialized above the bubble point.
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(a) At 100 days (1,094 cells) (b) At 160 days (1,668 cells)

(c) At 200 days (2,410 cells) (d) At 250 days (2,690 cells)

(e) At 340 days (2,858 cells) (f) At 440 days (3,012 cells)

Fig. 5.29—Pressure distribution at 100, 160, 200, 250, 340, and 440 days of simulation using an adaptive grid for 3D two-phase
homogeneous model initialized above the bubble point.
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Fig. 5.21 to Fig. 5.21 display the results from oil production, gas injection rate, average

pressure, and produced gas-oil ratio. Plots illustrate three cases: 1) fine grid (24× 24× 8

with 4,608 cells), coarse grid (12 × 12 × 4 with 576 cells), and an adaptive grid (vari-

able number of cells ranging from 520 to 3,194). Results show a 2.70% difference in

cumulative oil production between the fine and the adaptive grid after 550 days of produc-

tion and injection modeling (breakthrough time). On the other hand, using a coarser grid

(12 × 12 × 4) resulted in 12.42% difference in the cumulative oil production. Table 5.19

shows a summary of the production and pressure errors.

Table 5.19—Errors at breakthrough time (550 days) of the adaptive and coarse grid compared to the fine model in a 3D two-phase
homogeneous model initialized above the bubble point

Grid % Error in cumulative % Error in cumulative % Error in pressure
oil production (STB) gas injection (Mscf) (psia)

Coarse 12.42 15.03 0.87
Adaptive 2.70 2.95 0.20
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Fig. 5.30—Oil production rate after 700 days for a 3D two-phase homogeneous reservoir initialized above the bubble point and modeled
using three grid descriptions: fine (24× 24× 8), coarse (12× 12× 4), and adaptive.

118



0 100 200 300 400 500 600 700
2,000

4,000

6,000

8,000

Time (days)

G
as

In
je

ct
io

n
R

at
e

(M
sc

f/d
ay

) Fine(40× 40× 8)
Coarse(20× 20× 4)
Adaptive

Fig. 5.31—Gas injection rate after 700 days for a 3D two-phase homogeneous reservoir initialized above the bubble point and modeled
using three grid descriptions: fine (24× 24× 8), coarse (12× 12× 4), and adaptive.
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Fig. 5.32—Produced gas-oil ratio (GOR) after 700 days for a 3D two-phase homogeneous reservoir initialized above the bubble point
and modeled using three grid descriptions: fine (24× 24× 8), coarse (12× 12× 4), and adaptive.
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Fig. 5.33—Average reservoir pressure after 700 days for a 3D two-phase homogeneous reservoir initialized above the bubble point and
modeled using three grid descriptions: fine (24× 24× 8), coarse (12× 12× 4), and adaptive.

Large changes in phase composition creates additional challenges for the methodology,

where the streamline and analytical calculation of compositions need to consider appear-

ance and disappearance of phases. For this case, it is required to calculate the streamlines

in each phase. This is illustrated in Figs. 5.34 and 5.35 corresponding to the gas phase

velocity for the longest and shortest streamline in the model. As the gas re-dissolves,

the gas-phase streamline only cover the section of the model closest to the producer well,

where pressure is the lowest and there is no CO2 yet. Fig. 5.36 displays the CO2 compo-

sition in the gas phase showing the volatilized CO2 region.
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Fig. 5.34—Velocity in the gas phase for the longest streamline in the model at three different times, after 0.2, 0.3, and 0.4 pore volumes
injected.
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Fig. 5.35—Velocity in the gas phase for the shortest streamline in the model at three different times, after 0.2, 0.3, and 0.4 pore volumes
injected.
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(a) At 0.2 PV injected (158 days) (b) At 0.3 PV injected (273 days)

(c) At 0.4 PV injected (314 days)

Fig. 5.36—CO2 composition in the gas phase showing the re-dissolution of the gas phase at three different times (158, 273, and 314
days).

On the other hand, the velocity of streamlines for the oil phase remains relatively constant

throughout the injection period, exhibiting the highest speed near the injector and producer

well as shown in Figs. 5.37 and 5.38 . Fig. 5.39 displays the CO2 composition in the oil

phase at 0.3 pore volume injected, at breakthrough, and after breakthrough.
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Fig. 5.37—Velocity in the oil phase for the longest streamline in the model at three different times, after 0.3 pore volumes injected, at
breakthrough, and after breakthrough.

0 200 400 600 800 1,000 1,200

0

1

2

3

Streamline length (ft)

St
re

am
lin

e
ve

lo
ci

ty
(f

t/d
ay

) 0.3 PV injected (273 days)
At breakthrough (550 days)
After breakthrough (650 days)

Fig. 5.38—Velocity in the oil phase for the shortest streamline in the model at three different times, after 0.3 pore volumes injected, at
breakthrough, and after breakthrough.
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(a) At 0.3 PV injected (273 days) (b) At breakthrough (550 days)

(c) After breakthrough (650 days)

Fig. 5.39—CO2 composition in the oil phase showing the re-dissolution of the gas phase.

The overall CO2 composition along the streamline can be observed in Figs. 5.40 for dif-

ferent times of the simulation: 0.2 and 0.3 pore volume injected, at breakthrough, and after

the breakthrough. The illustration shows the progression of streamline trajectories and the

corresponding overall composition of the injected component.
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(a) At 158 days (at 0.2 PV injected) (b) At 273 days (at 0.3 PV injected)

(c) At 550 days (at breakthrough) (d) At 650 days (after breakthrough)

Fig. 5.40—Overall CO2 composition distribution along the streamlines at 158, 273, 550, and 650 days of simulation.
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Performance comparison of Case 2: Initial pressure below bubble point

In this case, the reservoir is initialized in two-phases, exhibiting an initial gas saturation in

the model. As CO2 is injected above the minimum miscibility pressure (single-phase), the

displacement front results in re-dissolution of the gas phase at approximately 500 days.

Similar to the previous case, we require to trace the streamlines and the solute transport

equation in both the liquid and the gas phase. This is an important consideration to test

the methodology as the relative movement of the gas-to-oil phase results in CO2 being

transported at different rates. For this case, the Peclet number varies from to 50-100 in

the middle of the model to approximately 10,000 near the wells where the velocity is the

highest. The calculated dispersivity coefficient ranges between 0.001 and 0.0001 during

the simulation.

Results of adaptive grid refinement are illustrated in Figs. 5.41 and 5.42 for 50, 100, 180,

250, 340, and 440 days. Cells are refined on time based on the distribution of composi-

tions, resulting in fine cells along the injection front but coarser cells anywhere else in the

model. The total number of cells was significantly reduced, from 12,800 cells required for

a fixed-fine grid, to having 17 different grids varying from 520 to 3,222 cells. Reduction

in the number of cells in the model resulted in the adaptive grid being 2.3 times faster than

the fine grid, representing a reduction in CPU time of 56.57%.

Table 5.20—Comparison of computational performance for a 3D two-phase homogeneous model initialized below the bubble point

Grid Number of cells CPU execution ratio % CPU reduction(fine/ adaptive)
Fine 4,608 – –
Adaptive 520 - 3,222 2.3 56.57
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(a) At 50 days (1094 cells) (b) At 100 days (1668 cells)

(c) At 180 days (2410 cells) (d) At 250 days (2690 cells)

(e) At 340 days (2858 cells) (f) At 440 days (3012 cells)

Fig. 5.41—Composition distribution at 50, 100, 180, 250, 340, and 440 days of simulation using an adaptive grid for 3D two-phase
homogeneous model initialized below the bubble point.
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(a) At 50 days (1094 cells) (b) At 100 days (1668 cells)

(c) At 180 days (2410 cells) (d) At 250 days (2690 cells)

(e) At 340 days (2858 cells) (f) At 440 days (3012 cells)

Fig. 5.42—Pressure distribution at 50, 100, 180, 250, 340, and 440 days of simulation using an adaptive grid for 3D two-phase
homogeneous model initialized below the bubble point.
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Fig. 5.43 to Fig. 5.21 display the results from oil production, gas injection rate, average

pressure, and produced gas-oil ratio. Plots illustrate three cases: 1) fine grid (24× 24× 8

with 4,608 cells), coarse grid (12 × 12 × 4 with 576 cells), and an adaptive grid (vari-

able number of cells ranging from 520 to 3,222). Results show a 2.59% difference in

cumulative oil production between the fine and the adaptive grid after 550 days of produc-

tion and injection modeling (breakthrough time). On the other hand, using a coarser grid

(12 × 12 × 4) resulted in 6.48% difference in the cumulative oil production. Table 5.21

shows a summary of the production and pressure errors.

Table 5.21—Errors at breakthrough time (550 days) of the adaptive and coarse grid compared to the fine model in a 3D two-phase
homogeneous model initialized below the bubble point

Grid % Error in cumulative % Error in cumulative % Error in pressure
oil production (STB) gas injection (Mscf) (psia)

Coarse 6.48 12.71 0.53
Adaptive 2.59 2.87 0.49
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Fig. 5.43—Oil production rate after 700 days of simulation for a 3D two-phase homogeneous reservoir initialized below the bubble
point and modeled using three grid descriptions: fine (24× 24× 8), coarse (12× 12× 4), and adaptive.
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Fig. 5.44—Gas injection rate after 700 days for a 3D two-phase homogeneous reservoir initialized below the bubble point and modeled
using three grid descriptions: fine (24× 24× 8), coarse (12× 12× 4), and adaptive.
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Fig. 5.45—Average reservoir pressure after 700 days for a 3D two-phase homogeneous reservoir initialized below the bubble point and
modeled using three grid descriptions: fine (24× 24× 8), coarse (12× 12× 4), and adaptive.
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Fig. 5.46—Produced gas-oil ratio (GOR) after 700 days for a 3D two-phase homogeneous reservoir initialized below the bubble point
and modeled using three grid descriptions: fine (24× 24× 8), coarse (12× 12× 4), and adaptive.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

The proposed methodology shows that combining reservoir simulation, streamline, and

the solute transport equation provides an improved method for adaptive mesh refinement,

accurately forecasting the location of the injection front. Results from this study also allow

drawing the following conclusions:

1. Using the convective-dispersive equation enables forecasting the injection front lo-

cation, shape, and width in single- and two-phase reservoirs. This allows identifying

and anticipating the refinement region and times where: fine spatial discretization

is needed to reduce numerical dispersion effects or, coarsening can be implemented

solution without sacrificing accuracy with substantial execution time reductions.

2. Merging and splitting cells is dynamically implemented by designing multiple ho-

mogeneity tests with Quadtree decomposition. These physics based rules allow great

flexibility for problem-specific solutions, combining static (e.g., permeabilities, fa-

cies) and dynamic reservoir properties (e.g., fluid composition, phase stability tests)

as required, improving the accuracy of reservoir performance in adaptive grid re-

finement cases.

3. Benchmark comparisons of reservoir performance indicators such as: rates, satura-

tions, and pressures, and relative CPU indicate that the adaptive mesh refinement

and coarsening method developed in this work can be successfully applied to multi-

phase, compositional, heterogeneous, and 3-dimensional models.

4. The methodology implemented reduced the computational cost in the cases evalu-

ated up to 63% with respect to a refined base grid. Oil and gas production rates

differed by a maximum of 3.71% compared to the bench mark fine grid.
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The proposed recommendations and future work related to this project are:

1. Generate and run scenarios that will result in more complex injection fronts by spec-

ifying one or more of the following cases:

• Use of multiple injection and production wells.

• Run cases where diffusion controls the process (NPe < 10).

• Establish larger pressure differentials from injector to producer wells.

• Use production schedules requiring sudden injection/production pressures or

rates.

• Use different solvent (gas injection)/oil characteristic such that numerical dis-

persion is more pronounced. This would require higher API oils and CO2 or

N2 injection streams.

2. Develop dimensionless refinement/coarsening functions to establish a systematic

methodology for determining the tolerance criteria. These functions may involve

compositional gradients combined with time of flight and velocity gradients.

3. Use smaller and larger reservoir test cases with different base grids to generalize /

determine the relative improvement in CPU time.

4. Explore the implementation of advanced permeability upscaling techniques and multi-

scale simulation to properly incorporate multiple levels of geologic description into

a single reservoir model. This approach would allow maintaining key flow features

that impact the overall reservoir response.

5. Investigate the impact of cell re-ordering scheme and matrix solvers in the compu-

tational performance of the adaptive mesh refinement. The current work did not

evaluate the computational performance of solvers or preconditioning techniques

specific for unstructured grids. Some techniques that may be applicable are Reverse

Cuthill-McKee (RCMK) and Minimum Degree Fill (MDF).
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6. Evaluate the use of higher-order finite difference methods to reduce numerical dis-

persion and grid orientation effects. The use of higher-order solutions is particularly

important when using unstructured grids as first-order approximation result in addi-

tional numerical dispersion. A suggested method was proposed by Datta-Gupta et

al. (1991) in their work named “High-resolution monotonic schemes for reservoir

fluid flow simulation” and published in In Situ, Journal Volume: 15:3. The au-

thors focused on reservoir fluid flow problems for convection-dominated flow. This

methodology can be implemented by introducing a limited antidiffusive flux that

remains third-order accuracy in space and time, proving advantageous to improve

accuracy of IMPES problems where pressure is solved implicitly but compositions

and saturations are calculated explicitly.

134



REFERENCES

Acs, G., Doleschall, S., and Farkas, E. 1985. General purpose compositional model. Soci-
ety of Petroleum Engineers Journal 25(04):543–553.

Babson, E. C. 1989. A review of gas injection projects in california. SPE 18769 presented
at the SPE California Regional Meeting, 5-7 April, Bakersfield, California.

van Batenburg, D. W., Bosch, M., Boerrigter, P. M., De Zwart, A., and Vink, J. C.
2011. Application of dynamic gridding techniques to IOR/EOR-processes. SPE 141711
presented at SPE Reservoir Simulation Symposium, 21-23 February, The Woodlands,
Texas,.

Batycky, R., Blunt, M., and Thiele, M. 1997. A 3D field-scale streamline-based reservoir
simulator. SPE Reservoir Engineering 12(04):246–254.

Biterge, M. B., and Ertekin, T. 1992. Development and testing of a static/dynamic local
grid-refinement technique. Journal of Petroleum Technology 44(04):487–495.

Brandt, A. 1977. Multi-level adaptive solutions to boundary-value problems. Mathematics
of Computation 31(138):333–390.

Camy, J. P., and Emanuel, A. S. 1977. Effect of grid size in the compositional simulation
of CO2 injection. SPE 6894 presented at the SPE Annual Fall Technical Conference and
Exhibition, 9-12 October, Denver, Colorado.

Chien, M., Lee, S., and Chen, W. 1985. A new fully implicit compositional simulator. SPE
13385 presented at the SPE Reservoir Simulation Symposium, 10-13 February, Dallas,
Texas.

Christensen, J., Darche, G., Dechelette, B., Ma, H., and Sammon, P. 2004. Applications of
dynamic gridding to thermal simulations. SPE 86969 presented at the SPE International
Thermal Operations and Heavy Oil Symposium and Western Regional Meeting, 16-18
March, Bakersfield, California.

Christie, M., and Blunt, M. 2001. Tenth SPE comparative solution project: A compar-
ison of upscaling techniques. SPE Reservoir Simulation Symposium, 11-14 February,
Houston, Texas.

Coats, K. H. 1980. An equation of state compositional model. Society of Petroleum Engi-
neers Journal 20(05):363–376.

Coats, K. H. 2003a. IMPES stability: Selection of stable timesteps. Society of Petroleum
Engineers Journal 8(02):181 – 187.

135



Coats, K. H. 2003b. IMPES stability: The CFL limit. Society of Petroleum Engineers
Journal 8(03):291–297.

Datta-Gupta, A., and King, M. 2007. Streamline simulation: theory and practice. Text-
book Series, Society of Petroleum Engineers. Richardson, Texas.

Durlofsky, L. J. 2003. Upscaling of geocellular models for reservoir flow simulation:
a review of recent progress. Paper presented at 7th International Forum on Reservoir
Simulation, June 23-27, Buhl/Baden-Baden, Germany.

Edwards, M. 1996. A higher-order godunov scheme coupled with dynamic local grid re-
finement for flow in a porous medium. Computer Methods in Applied Mechanics and
Engineering 131(3-4):287–308.

Edwards, M., and Christie, M. A. 1993. Dynamically adaptive godunov schemes with
renormalization in reservoir simulation. SPE 25268 presented at the SPE Symposium
on Reservoir Simulation, 28 February-3 March, New Orleans, Louisiana.

Fanchi, J. R. 1983. Multidimensional numerical dispersion. Society of Petroleum Engi-
neers Journal 23(01):143–151.

Firoozabadi, A. 1988. Reservoir-fluid phase behavior and volumetric prediction with equa-
tions of state. Journal of Petroleum Technology 40(04):397 – 406.

Firoozabadi, A. 1999. Thermodynamics of hydrocarbon reservoirs. McGraw-Hill Educa-
tion.

Fleming, P., and Mansoori, J. 1987. An accurate numerical technique for solution of
convection-diffusion equations without numerical dispersion. SPE Reservoir Engineer-
ing 2(03):373–386.

Fletcher, P. E. 1953. A Review of gas-injection projects in West Texas. American Petroleum
Institute. New York, New York.

Fussell, L., and Fussell, D. 1979. An iterative technique for compositional reservoir mod-
els. Society of Petroleum Engineers Journal 19(04):211–220.

van Genuchten, M., and Alves, W. J. 1982. Analytical Solutions of the One-Dimensional
Convective-Dispersive Solute Transport Equation. U.S. Department of Agriculture,
Technical Bulletin. Number 1661.

Gerald, C., and Wheatley, P. 1984. Applied numerical analysis. World student series.
Addison-Wesley Pub. Co.

Gonzalez, R. C., Woods, R. E., and Eddins, S. L. 2003. Digital Image Processing Using
MATLAB. Pearson Prentice Hall.

136



Hall, H. N., Merliss, F. E., and Ewing, S. P. 1957. A review of improved gas-drive pro-
cesses. American Petroleum Institute. New York, New York.

Han, D. K., Han, D., Yan, C. Z., and Peng, L. T. 1987. A more flexible approach of
dynamic local grid refinement for reservoir modeling. SPE Symposium on Reservoir
Simulation, 1-4 February, San Antonio, Texas.

Heinemann, Z. E., Gerken, G., and von Hantelmann, G. 1983. Using local grid refinement
in a multiple-application reservoir simulator. SPE 12255 presented at SPE Reservoir
Simulation Symposium, 15-18 November, San Francisco, California.

Hornung, R. D., and Trangenstein, J. A. 1997. Adaptive mesh refinement and multilevel
iteration for flow in porous media. Journal of Computational Physics 136(02):522–545.

Jhaveri, B. S., Brodie, J. A., Zhang, P., and Daae, V. 2014. Review of BP’s global gas
injection projects. SPE 171780 presented at the Abu Dhabi International Petroleum Ex-
hibition and Conference, 10-13 November, Abu Dhabi, UAE.

Khan, S. A., Trangenstein, J. A., Horning, R. D., Holing, K., and Schilling, B. E. R. 1995.
Application of adaptive mesh-refinement with a new higher-order method in simulation
of a North Sea micellar/polymer flood. SPE 29145 presented at SPE Reservoir Simula-
tion Symposium, 12-15 February, San Antonio, Texas.

King, M., and Mansfield, M. 1999. Flow simulation of geologic models. SPE Reservoir
Evaluation Engineering 2(04):351 – 367.

Kumar, S., Datta-Gupta, A., and Jimenez, E. 2009. Understanding reservoir mecha-
nisms using phase and component streamline tracing and visualization. SPE 124252
presented at SPE Annual Technical Conference and Exhibition, 4-7 October, New Or-
leans, Louisiana.

Lake, L. W. 1989. Enhanced oil recovery. Prentice Hall; 1st edition. Englewood Cliffs,
New Jersey.

Lantz, R. B. 1971. Quantitative evaluation of numerical diffusion (truncation error). Soci-
ety of Petroleum Engineers Journal 11(03):315–320.

Laumbach, D. D. 1975. A high-accuracy finite-difference technique for treating the
convection-diffusion equation. Society of Petroleum Engineers Journal 15(06):517–
531.

Liang, Q., and Borthwick, A. 2009. Adaptive quadtree simulation of shallow flows with
wet–dry fronts over complex topography. Computers Fluids 38(2):221–234.

Liang, Q., Zang, J., Borthwick, A., and Taylor, P. H. 2007. Shallow flow simulation on
dynamically adaptive cut cell quadtree grids. Computers Fluids 53(12):1777–1799.

137



Lohrenz, J., Bray, B. G., and Clark, C. R. 1964. Calculating viscosities of reservoir fluids
from their compositions. Journal of Petroleum Science and Engineering 16(10):1171–
1176.

Michelsen, M. L., and Mollerup, J. M. 2007. Thermodynamic models: fundamentals &
computational aspects. Tie-Line Publications. Holte, Denmark.

Moog, G. 2013. Advanced discretization methods for flow simulation using unstructured
grids. Ph.D. dissertation; Stanford University. Palo Alto, California.

Nghiem, L., Fong, D., and Aziz, K. 1981. Compositional modeling with an equation of
state. Society of Petroleum Engineers Journal 21(06):687–698.

Nguyen, Q. M. R. 2009.; Performance of EOR-CO2 miscible process using a conceptual
model. Master’s thesis; Texas A&M University. College Station, Texas.

Nilsson, J., Gerritsen, M. G., and Younis, R. 2005a. An adaptive, high-resolution sim-
ulation for steam-injection processes. SPE 93881 presented at SPE Western Regional
Meeting, 30 March-1 April, Irvine, California.

Nilsson, J., Gerritsen, M. G., and Younis, R. 2005b. A novel adaptive anisotropic grid
framework for efficient reservoir simulation. SPE 93243 presented at SPE Reservoir
Simulation Symposium, 31 January-2 Feburary, The Woodlands, Texas.

Ogata, A., and Banks, R. 1961. A solution of the differential equation of longitudinal
dispersion in porous media. United States Geological Surbey Professional Paper 411-
A. Washington, D.C.

Peaceman, D. W. 1978. Interpretation of well-block pressures in numerical reservoir sim-
ulation. Society of Petroleum Engineers Journal 18(03):183–194.

Peaceman, D. W. 1983. Interpretation of well-block pressures in numerical reservoir sim-
ulation with nonsquare grid blocks and anisotropic permeability. Society of Petroleum
Engineers Journal 23(03):531–543.

Pedersen, K. S., and Christensen, P. L. 2006. Phase behavior of petroleum reservoir fluids.
CRC/Taylor & Francis. Boca Raton, Florida.

Peneloux, A., Rauzy, E., and Fréze, R. 1982. A consistent correction for Redlich-Kwong-
Soave volumes. Fluid Phase Equilibria 8(01):7–23.

Peng, D. Y., and Robinson, D. B. 1976. A new two-constant equation of state. Industrial
Engineering Chemistry Fundamentals 15(01):59–64.

Pollock, D. W. 1988. Semianalytical computation of path lines for finite-difference mod-
els. Ground Water 26(06):743.

138



Prevost, M., Edwards, M. G., and Blunt, M. J. 2001. Streamline tracing on curvilinear
structured and unstructured grids. SPE 66347 presented at the SPE Reservoir Simulation
Symposium, 11-14 February, Houston, Texas.

Quandalle, P. 1983. The use of flexible gridding for improved reservoir modeling. SPE
12239 presented at the SPE Reservoir Simulation Symposium, 15-18 November, San
Francisco, California.

Quandalle, P., and Besset, P. 1985. Reduction of grid effects due to local sub-gridding in
simulations using a composite grid. SPE 13527 presented at the SPE Reservoir Simula-
tion Symposium, 10-13 February, Dallas, Texas.

Rachford, H. H., and Rice, J. D. 1952. Procedure for use of electronic digital computers in
calculating flash vaporization hydrocarbon equilibrium. Journal of Petroleum Technol-
ogy 04(10):19–3.

Redlich, O., and Kwong, J. N. S. 1949. On the thermodynamics of solutions. V. An equa-
tion of state. Fugacities of gaseous solutions. Chemical Reviews 44(01):233–244.

von Rosenberg, D. U. 1982. Local mesh refinement for finite difference methods. SPE
10974 presented at SPE Annual Technical Conference and Exhibition, 26-29 September,
New Orleans, Louisiana,.

Samet, H. 1989. Applications of spatial data structures: computer graphics, image pro-
cessing and gis. Addison-Wesley Pub. Boston, Massachusetts.

Sammon, P. H. 2003. Dynamic grid refinement and amalgamation for compositional sim-
ulation. SPE 79683 presented at SPE Reservoir Simulation Symposium, 3-5 February,
Houston, Texas.

Schlumberger 2014. ECLIPSE Technical description and reference manual. Schlum-
berger. Abingdon, United Kingdom.

Shusterman, E., and Feder, M. 1994. Image compression via improved quadtree decom-
position algorithms. IEEE Transactions on Image Processing 3(02):207–215.

Soave, G. 1972. Equilibrium constants from a modified Redlich-Kwong equation of state.
Chemical Engineering Science 27(06):1197–1203.

Spillette, A. G., Hillestad, J. G., and Stone, H. L. 1973. A high-stability sequential solution
approach to reservoir simulation. SPE 4542 presented at SPE Annual Fall Meeting, Sept.
30-Oct. 3, Las Vegas, Nevada.

Stone, H. 1970. Probability model for estimating three-phase relative permeability. Jour-
nal of Petroleum Technology 22(02):214 – 218.

139



Stone, H. 1973. Estimation of three-phase relative permeability and residual oil data. Jour-
nal of Canadian Petroleum Technology 12(04):53–61.

Suicmez, V. S., van Batenburg, D. W., Matsuura, T., Bosch, M., and Boersma, D. M.
2011. Dynamic local grid refinement for multiple contact miscible gas injection. SPE
15017 presented at International Petroleum Technology Conference, 15-17 November,
Bangkok, Thailand.

Sullivan, G., and Baker, R. L. 1994. Efficient quadtree coding of images and videos. IEEE
Transactions on Image Processing 3(03):327–331.

van der Waals, J. D. 1873. Over de continuiteit van den gas - en vloeistoftoestand (on the
continuity of the gas and liquid state). Ph.D. dissertation; Leiden University. Leiden,
The Netherlands.

Watts, J. W. 1986. A compositional formulation of the pressure and saturation equations.
SPE Reservoir Engineering (03):243–252.

Wilson, G. M. 1969. A modified Redlich-Kwong equation of state, application to general
physical data calculation. Paper No. 15C presented at the 1969 AIChE 65th National
Meeting, Cleveland, Ohio, March 4-7, 1969.

Wong, T. W., Firoozabadi, A., and Aziz, K. 1990. Relationship of the volume-balance
method of compositional simulation to the Newton-Raphson method. SPE Reservoir
Engineering 5(03):415–422.

Young, L. C., and Stephenson, R. E. 1983. A generalized compositional approach for
reservoir simulation. Society of Petroleum Engineers Journal 23(05):727–742.

140



APPENDIX A

DERIVATION OF PARTIAL MOLAR VOLUME

This appendix describes the derivation of the partial molar volume (V i) for component i in

the hydrocarbon phase and for water. This property is used for calculating the flow terms

and the final pressure solution as described in Chapter III .

The partial molar volume is the the change of total volume Vt with respect to the change

of moles of component i at constant pressure and temperature (Eq. A.1). It represents the

contribution of component i to the overall volume of the mixture.

V i =

(
∂Vt
∂ni

)
p,T,nj

(A.1)

A.1 Hydrocarbon partial molar volume

The derivation begins with the variables from Eq. A.1, that is pressure (p), total volume

(Vt), temperature (T ), and total number of moles (n).

F (p, Vt, T, n) = 0 (A.2)

The derivation assumes temperature to be constant in the reservoir. Then, if two of the

remaining three variables are related, then one of the variables may be selected as the

independent variable and the other two as dependent variables (Michelsen and Mollerup,

2007). If T is kept constant, we can work the partial derivative expressions, we can apply

the “minus one rule” as follows:

(
∂p

∂Vt

)
T,n

(
∂Vt
∂ni

)
p,T,nj

(
∂ni

∂p

)
Vt,T,nj

= −1 (A.3)
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From Eq. A.3 we can define the partial molar volume as shown in Eq. A.4.

V i =

(
∂Vt
∂ni

)
p,T,nj

= −

(
∂p

∂ni

)
Vt,T,nj(

∂p

∂Vt

)
T,n

(A.4)

The two pressure derivatives required for calculating Eq. A.4 will be derived using Peng-

Robinson equation of state with volume translation. Re-writing Eq. 2.7 as a function of

total fluid volume Vt and Peneloux et al.’s volume shift results in Eq. A.5 which will be

used throughout this appendix. For the purpose of this derivation, the total volume Vt is the

one corrected with volume shift after completing the phase equilibrium analysis outlined

in III, section 3.2.

p =
RTn

Vt + nc− nb
− n2a

(Vt + nc)2 + 2nb(Vt + nc)− n2b2
(A.5)

The following subsections present the basic thermodynamic principles required for the

derivation, the linear and quadratic mixing rules for calculating parameters a, b, and c of

the mixture, and the partial derivatives of Peng-Robinson equation with respect to ni and

total volume Vt.

Basic thermodynamic properties

Let n be the total number of moles and ni the number of moles i = 1, 2, ...Nc (Eq. A.6).

The derivative of n with respect to ni is then shown in Eq. A.7.

n = n1 + n2 + ...+ nNc (A.6)

∂n

ni

= 1 (A.7)

142



The mole fraction of component i can be expressed as a molar fraction:

xi =
ni

n
(A.8)

The molar volume Vm is an intensive property representing the volume occupied by one

mole of hydrocarbon mixture.

Vm =
Vt
n

(A.9)

Mixing rules and derivatives

The following mixing rules are employed for calculating the parameters a, b, and c of

a mixture. Each parameter will be derived with respect to moles ni as required for the

derivation of the partial molar volume.

Linear mixing rule: parameters b and c

For a mixture of 3 components, we define the b parameter as:

b =
Nc∑
i=1

xibi = x1b1 + x2b2 + x3b3 (A.10)

We can express Eq. A.10 in terms of moles:

b =
Nc∑
i=1

ni

n
bi =

n1

n
b1 +

n2

n
b2 +

n3

n
b3 (A.11)

Differentiating with respect to ni, we have:

∂b

∂ni

=
Nc∑
i=1

bi
n2

(
n
∂ni

∂n
− ni

∂n

∂ni

)
=

1

n
(bi − b) (A.12)
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Similarly, the mixing rule of the c parameters is:

c =
Nc∑
i=1

xici =
Nc∑
i=1

ni

n
ci (A.13)

Where ci = xibisi. Differentiating Eq. A.15 with respect to ni, we have:

∂c

∂ni

=
Nc∑
i=1

ci
n2

(
n
∂ni

∂n
− ni

∂n

∂ni

)
=

1

n
(ci − c) (A.14)

Quadratic mixing rule: parameter a

For a 3-component mixture, the parameter a is represented by the following quadratic rule:

a = 2x1x2(α1,2) + 2x2x3(α2,3) + 2x1x3(α1,3) + x2
1a1 + x2

2a2 + x2
3a3

(A.15)

Where ai,j is a function of parameters ai for component i and j respectively and ki,j is the

binary interaction coefficient between the two components.

αi,j =
√
aiaj (1− ki,j) (A.16)

Expressing Eq. A.15 as a function of number of moles, we have:

a =
1

n2

[
2n1n2(α1,2) + 2n2n3(α2,3) + 2n1n3(α1,3) + n2

1a1 + n2
2a2 + n2

3a3

]
(A.17)

Differentiating Eq. A.17 with respect to the number of moles, we have:

∂a

∂n1

= − 2

n3
Λ +

1

n2
[2n2(α1,2) + 2n3α1,3 + 2n1a1] (A.18)
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Where Λ is:

Λ = 2n1n2(α1,2) + 2n2n3(α2,3) + 2n1n3(α1,3) + n2
1a1 + n2

2a2 + n2
3a3

(A.19)

Generalizing the partial derivative of Eq. A.18 for Nc components, we have:

∂a

∂ni

=
2

n
(Ψ− a) (A.20)

Where:

Ψ =
Nc∑

j 6=i=1

[xj (αij)] + xiai (A.21)

Partial derivative of p with respect to Vt

After differentiating Eq. A.5 with respect to total volume, we obtained Eq. A.22, where

the parameters a and b are independent from the total volume of the mixture.

(
∂p

∂Vt

)
T, ~N

= − RTn

(Vt + nc− nb)2
+

2n2a(Vt + nc+ nb)

[(Vt + nc)2 + 2nb(Vt + nc)− n2b2]2
(A.22)

Partial derivative of p with respect to ni

Derivation of Eq. A.5 will be split in two terms: repulsion and attraction.

p =
RTn

Vt + nc− nb︸ ︷︷ ︸
Repulsion

− n2a

(Vt + nc)2 + 2nb(Vt + nc)− n2b2︸ ︷︷ ︸
Attraction

(A.23)
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Repulsion term derivative

∂

∂ni

(
RTn

Vt + nc− nb

)
Vt,T,nj

=
RT

(Vt + nc− nb)2

[
(Vt + nc− nb)− ∂

∂ni

(Vt + nc− nb)
]

(A.24)

Applying linear mixing rules for parameters b and c, we have:

∂

∂ni

(
RTn

Vt + nc− nb

)
Vt,T,nj

=
RT

(Vt + nc− nb)2
[(Vt + nc− nb) + nbi − nci]

=
RT

Vt + nc− nb
+

RTn(bi − ci)
(Vt + nc− nb)2

(A.25)

Attraction term derivative

∂

∂ni

(
n2a

X

)
Vt,T,nj

=
1

X2

{
X

[
n2 ∂a

∂ni

+ 2na

]
− n2a

[
2(Vt + nc)

(
n
∂c

∂ni

+ c
∂n

∂ni

)
+ 2nb

(
n
∂c

∂ni

+ c
∂n

∂ni

)
+ 2(Vt + nc)

(
n
∂b

∂ni

+ b
∂n

∂ni

)
−

(
n2 ∂b

2

∂ni

+ b2∂n
2

∂ni

)]}
(A.26)

Where X is given by Eq. A.27

X = (Vt + nc)2 + 2nb(Vt + nc)− n2b2 (A.27)

Incorporating the derivatives of linear and quadratic mixing rules for a, b, and c and ma-

nipulating the terms, we have:

∂

∂ni

(
n2a

X

)
Vt,T,nj

=
2

X2

{
nXΨ− n2a

[
(Vt + nc)ci + nbci + (Vt + nc)bi − nbbi

]}
(A.28)
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Final partial molar volume form

Combining the partial derivative of p with respect to Vt and the partial derivative of p with

respect to ni, we obtain the final form for partial molar volume (Eq. A.29) as a function of

molar volume Vm.

V i = − A+B

C +D + E
(A.29)

Where:

A = − RT

(Vm + c− b)2
(A.30)

B =
2a(Vm + c+ b)

[(Vm + c)2 + 2b(Vm + c)− b2]2
(A.31)

C =
RT

Vm + c− b
+

RT (bi − ci)
(Vm + c− b)2

(A.32)

D = −2Ψ

X2

+ a
(Vm + c)ci

X2
2

(A.33)

E =
2a

X2
2

(bci − bbi)−
2abi
X2

2

(Vm + c) (A.34)

X2 = (Vm + c)2 + 2b(Vm + c)− b2 (A.35)

147



A.2 Water partial molar volume

Water is assumed to be a pure component immiscible in the oil and gas, then the partial

derivative of total fluid volume with respect to water is defined as Eq. A.36, where Vmw is

the molar volume of the water phase.

V w =

(
∂Vt
∂nw

)
p,T,ni

= Vmw (A.36)
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APPENDIX B

DERIVATION OF VOID TERM

This appendix presents the calculation of the term Void as described in Chapter III, where

cf is the rock compressibility, and V ref
p is the pore volume at reference pressure pref .

Void =
∂Vp
∂p
−
(
∂Vt
∂p

)
T, ~N

(B.1)

Derivative of pore volume with respect to pressure

The pore volume is defined as the ratio of porous space to the total volume of the system

(Vb). This is expressed as shown in Eq. B.2, where φ is the porosity.

Vp = φVb (B.2)

For a slightly compressible rock formation, we assume the following relation for varia-

tion of pore volume with respect to pressure, where V ref
p is the pore volume at reference

pressure and cf is the constant rock compressibility.

dVp
dp

= V ref
p cf (B.3)

Derivative of total volume with respect to pressure

The total fluid mixture (Vt) is a function of volumes of each phase: water (w), oil (o), and

gas (g). n is the number of moles and v the molar volume of each phase.

Vt = nwVmw + Vo + Vg (B.4)
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The derivative of total fluid Vt with respective to pressure can be expressed as:

(
∂Vt
∂p

)
T, ~N

= nw

(
∂Vmw

∂p

)
T, ~N

+

(
∂Vo
∂p

)
T, ~N

+

(
∂Vg
∂p

)
T, ~N

(B.5)

Derivative of water volume with respect to pressure

Assuming water as slightly compressible, we can approximate the water molar density as

shown in Eq. B.7, where where ρrefmw
is the water molar volume at reference pressure pref ,

and cw is the water compressibility.

ρmw =
ρrefmw

1 + cw(p− 2pref )
(B.6)

The derivative of water molar volume with respect to pressure, is then:

∂vw
∂p

=
∂(1/ρmw)

∂p
= −

cw(ρrefmw
+ 2p− pref )

ρ2
mw

(B.7)

Derivative of hydrocarbon volume with respect to pressure

Appendix A described the derivative of pressure with respect to volume for the hydrocar-

bon phase. Therefore, we can express the derivative of hydrocarbon volume with respect

to pressure as:

(
∂Vt
∂p

)
T, ~N

=
1(

∂p

∂Vt

)
T, ~N

(B.8)

(
∂Vt
∂p

)
T, ~N

=
1

− RTn

(Vt + nc− nb)2
+

2n2a(Vt + nc+ nb)

[(Vt + nc)2 + 2nb(Vt + nc)− n2b2]2

(B.9)
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