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ABSTRACT 

The focus of this research is to investigate the synthesis of novel mixed linker 

metal-organic frameworks (MOFs) composed of pyrozolate and imidazolate based linkers 

through a mixed-ligand co-assembly process. In MOF synthesis, judicious selection of 

metal containing nodes combined with symmetric ligands can provide a modicum of 

predictability to the ultimate structure of the framework. Traditionally, carboxylate ligands 

have been heavily utilized for the construction of porous materials; however, nitrogen 

based ligands have not been as frequently used. Of the MOF family, zeolitic imidazolate 

frameworks (ZIFs) have been the most widely studied material composed of nitrogen-

based ligands; however, these frameworks have primarily been constructed from only 

tetrahedral building units with zinc and cobalt metal nodes, which severely limits the 

diversity of such frameworks.  

After an introduction of MOF materials and high throughput synthesis, we 

investigate the synthesis of new MOFs through mixed-linker co-assembly. An uncommon 

Pyrazole3Cu3OL3 building unit is observed in two new MOFs, PCN-351 and PCN-352.  

The first MOF, PCN-351 exhibits three distinct channels and small pores. PCN-352 is 

composed of molecular polyhedral cages and exhibits enhanced porosity and surface area.  

Additionally, high-throughput synthesis will allow for the systematic study of MOF 

formation under varying reaction conditions. Structural predictability is often limited, due 

to the many kinetic and thermodynamic factors that contribute to MOF formation 

including metal selection, ligand selection (connectivity, bonding angles, solubility, etc.), 

solvent selection, modulating agents, and pH values.  This project will use a Chemspeed 
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SLT-Swing robotic synthetic platform to exploit combinatorial chemistry methods in 

MOF synthesis. Utilizing the robotic platform, solvothermal reactions can be screened to 

optimize MOF formation through selection of solvent, determination of optimal reactant 

concentrations (metal to ligand ratios, modulation reagents, etc.), and determination of 

appropriate reaction temperature. This project builds upon the previously discover mixed-

linker MOFs using ligand co-assembly. Ligand extension has often been used to study 

reticular chemistry for the formation of MOFs with enhanced porosity. Herein, we will 

explore the effect of linker length in the formation and symmetry of MOFs. A series of 

MOFs have been synthesized using the mixed linker co-assembly procedure and exhibit 

tuneable surface area and porosity.  

Finally, we explore the use of porphyrin linkers in the synthesis of mesoporous 

MOFs (PCN-228, PCN-229 and PCN-230). Porphyrin linkers are highly conjugated 

systems that have been shown to eliminate interpenetration of MOFs. In this work a series 

of elongated porphyrin linkers with Zr6 metal nodes have been studied and show enhanced 

porosity and stability. We build upon the synthesis of porphyrin MOFs, using high-

throughput synthesis and the mixed ligand co-assembly method, to construct a copper 

based porphyrin MOF isostructural to the reported zirconium MOFs.  

 In summary, several new mixed linker MOFs have been developed though a ligand 

co-assembly process and provide an interesting new direction for the development of 

materials with enhanced porosity through topological design. Additionally, high-

throughput methods are a powerful tool for the synthesis of novel MOFs. 
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NOMENCLATURE 

ANG Adsorbed Natural Gas 

BET Brunauer-Emmett-Teller 

CNG Compressed Natural Gas 

DMA N,N-Dimethyl Acetamide 

DMF N,N-Dimethyl Formamide 

DMSO Dimethyl Sulfoxide 

DOE United States Department of Energy 

LNG Liquefied Natural Gas 

MeOH Methanol 

MOF Metal-Organic Framework 

MOP(s) Metal-Organic Polyhedron(Polyhedra) 

NMR Nuclear Magnetic Resonance 

PCN Porous Coordination Network 

PXRD Powder X-Ray Diffraction 

SBB Supramolecular Building Block 

SBU Secondary Building Unit 

TGA Thermogravimetric Analysis 

ZIF Zeolitic Imidazolate Framework 
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1. INTRODUCTION* 

Metal-organic frameworks (MOFs) as a class of inorganic-organic hybrid 

materials have become an exceedingly popular field of supramolecular chemistry. Perhaps 

the most desirable property is the structurally tuneable nature of these advanced materials 

that lead to a wide array of potential applications. Judicious selection of metal nodes in 

combination with the infinite array of organic ligands that function as linkers yield an 

unlimited class of highly porous, functional materials. This section will provide an 

introduction to traditional MOF materials and provide insight into several classical 

carboxylate MOF examples. Zeolitic imidazolate frameworks (ZIFs) will be discussed to 

demonstrate the ability to construct porous materials based with metal-nitrogen bonds. 

Lastly, the development of MOFs with nitrogen-based linkers will be briefly explored.  

 

 

 

 

 

 

 

                                                 

* (Pages 2-10) Reproduced with permission from “Lanthanide Metal-Organic 

Frameworks: Syntheses, Properties, and Potential Applications” Fordham, S.; Wang, X.; 

Bosch, M.; Zhou, H.-C., In Structure and Bonding, Cheng, P.; Ed. Springer: Berlin 

Heidelberg, 2015, 163, 1-27. Copyright Springer 2015 
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Porous materials have attracted a significant amount of attention during the past 

few decades in scientific and technological research. Porous materials have significant 

surface area, which makes them capable of adsorbing and interacting with small molecules 

and ions on their inner surface. Classic inorganic porous materials contain activated 

carbon, silica gels, activated alumina, molecular sieve, zeolites, and mesoporous silica. 

Extensive studies have focused on the development of new classes of porous materials, 

such as MOFs. 

Traditional porous materials have limitations of either pore size or surface area. 

Silica gels, activated carbon, and activated alumina are all amorphous (irregular 

arrangement of pores) polymers containing micro- and mesopores (micropore is defined 

as pores smaller than 2 nm and mesopores between 2 and 50 nm) with a wide pore size 

distribution. From the perspective of materials, the wide pore size distribution, the 

micropores, and limited surface area hamper the utilization of those pores. MOFs, also 

known as porous coordination polymers (PCPs), are defined as 1, 2, or 3 dimensional 

coordination networks with potential porosity.1-3 MOFs are connected by coordination 

bonds through self-assembly between inorganic metal-containing units (generally known 

as secondary building units SBUs) and organic linkers to form a rigid uniform crystalline 

hybrid materials.2, 4-6 

In general, MOFs are prepared via solvothermal or hydrothermal reactions, in 

which metal salts and organic linkers are heated in the presence of high boiling point and 

polar solvents (dialkyl formamides, dimethyl sulfoxide, or water) in a sealed vessel. In 

order to prepare a highly crystalline materials in dilute liquid phase condition, a reaction 



 

3 

 

time of hours to days is needed for the crystallization process.7 The synthesis of MOFs 

can be quite delicate due to a variety of factors greatly impacting the formation of 

crystalline material that can be easily characterized through traditional techniques. In 

general, the main factors that contribute to MOF formation include temperature, pressure, 

reactant solubility, pH, and concentrations of metal salts and ligands. These Lewis acid-

base reactions often lead to the formation of amorphous precipitate from the rapid 

deprotonation of the ligand.8 Several reaction conditions can be modified to improve 

crystallinity including decreasing the reaction temperature or the addition of acid, such as 

hydrofluoroboric acid (HBF4), to slow down ligand deprotonation rate. This often difficult 

trial-and-error process has led to the growth of combinatorial synthetic methods including 

high-throughput robotic screening.9   

MOF-510 , one of the most important representatives in the field of MOFs, was 

first reported by Yaghi et al. through diffusion of triethylamine into a solution of zinc (II) 

nitrate and H2bdc(1,4-benenedicarboxylic acid) in N, N’-dimethylformamide (DMF) and 

chlorobenzene. However, the yield of MOF-5 through the diffusion synthesis is low. 

Therefore, the method was further optimized to a high-yield solvothermal reaction of 

Zn(NO3)2 .4H2O and H2bdc in N, N’-diethylformamide (DEF) at 120 OC for 24 hours.11 

The pore size of MOF-5 was further investigated to be controlled and functionalized by 

applying the isoreticular chemistry in the similar solvothermal conditions. After weak 

hydrothermal stability was revealed for MOF-5, attention shifted to other porous materials 

such as HKUST-112, MIL-10113,  and UiO-6614. In the effort to shorten the synthesis time 

and produce high-quality crystals, alternative synthesis methods have been developed, 
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such as microwave-assisted, sonochemical, electrochemical, and mechanochemical 

methods.7   

For the aforementioned MOFs synthesis, a multitude of new MOFs have been 

developed and extended from several key structures that may be important for the future 

development and applications of MOFs. The hallmark of those MOFs is their permanent 

porosity. The MOFs are constructed from the metal units or SBUs15, formed in situ from 

pre-formed organic linkers through coordination bonds. The adjustment of the geometry, 

length, ratio, and functional group of the linkers will consequently tune the size and shape 

of the pores. Based on the number and geometry of carboxylates and elements in the linker, 

the pre-formed organic linkers could be categorized as ditopic, tritopic, tetratopic, 

hexatopic, octatopic, mixed, desymetrized, metallo, and N-heterocyclic linkers.16 In this 

section, the key discussion will focus mainly on metal units or SBUs with ditopic or 

tritopic linkers. For MOFs composed of other linkers including phosphonate and 

sulfonate, detailed reviews have been published.16-18 

In 1999, MOF-510 and HKUST-112 were synthesized and characterized to 

demonstrate their high crystallinity and porosity, the first major breakthroughs of MOF 

chemistry. MOF-5 was constructed from a 6-connected octahedral Zn4O(CO2)6 cluster and 

ditopic acid terephthalate (bdc) giving an extended 3D cubic framework with square 

opening of 8 Å and 12 Å. One of the unique benefits of MOFs is that the pore size and the 

internal pore surface functionalities can be tuned by using pre-designed organic linkers of 

the same symmetry, which, according to the theory of isoreticular chemistry, will not alter 

the underlying topology.19-20 MOF structure is predicable on the premise of forming SBUs 
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with fixed linking geometries. Using MOF-5 as the prototype material, the 3D porous 

systems can be functionalized with the organic groups of bromo, amino, n-propyl, n-

pentoxy, cyclobutyl, and fused benzene rings.19 Their pore size can be further expanded 

with a stepwise expansion to biphenyl, tetrahydropyrene, pyrene, and terphenyl. This 

IRMOF-n series has open pores that ranging from 2.8 to 28.8 Å (Figure 1).  

 

 

 

Figure 1  Examples of IRMOF-n series. Color Scheme :Zn (turquoise polyhedral); O 

(red); C (black). (Reprinted with permission from Lu, W.; Wei, Z.; Gu, Z. Y.; Liu, T. F.; 

Park, J.; Park, J.; Tian, J.; Zhang, M.; Zhang, Q.; Gentle, T., 3rd; Bosch, M.; Zhou, H. C. 

Chemical Society Reviews 2014, 43 (16), 5561-93. copyright © 2014 Royal Society of 

Chemistry) 

 

 

Another classical MOF, HKUST-112 consists of 4-connected square planar 

dicopper paddle-wheel units as nodes and tritopic 1, 3, 5-benznetricarboxylates (btc) as 
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linker. Each BTC linker connects to three copper paddle-wheel SBUs forming a Td –

octahedron and occupy the alternating triangular faces of the octahedron. Along with the 

connection of other units, a cubic framework with tbo topology is formed.  However, 

linking a 4-connected paddle-wheel unit with ditopic acid, such as bdc, result in a two 

dimensional (2D) sheet rather a three dimensional (3D) MOF material. The various 

combinations of different carboxylates and metal units would lead to a rich library of 

MOFs. The marriage of dicopper paddle-wheel units and extended tritopic organic linkers 

has been investigated to extend the networks and produce a variety of materials with the 

same network topology.  

Combination of elongated tritopic linkers, such as 4,4',4''-s-triazine-1,3,5-triyltri-

p-aminobenzoate (tatab), 4,4',4''-(1,3,4,6,7,9,9)-heptaazaphenalene-2,5,8-triyl)tribenzoate 

(htb),  4,4',4''-s-triazine-2,4,6-triyltribenzoate (tatb), 4,4',4''-(benzene-1,3,5-triyl-

tris(benzene-4,1-diyl))tribenzoate (bbc),  and paddle-wheel units yield a number of 

isoreticular MOFs ( meso-MOF-1, PCN-htb, PCN-6’, and MOF-399, respectively) ( PCN 

stands from Porous Coordination Network) (Figure 2).  
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Figure 2  Examples of MOFs constructed from tritopic carboxylate linkers and dicopper 

paddle-wheel SBUs. Color Scheme: Cu (turquoise); O (red); C (black). (Reprinted with 

permission from Lu, W.; Wei, Z.; Gu, Z. Y.; Liu, T. F.; Park, J.; Park, J.; Tian, J.; Zhang, 

M.; Zhang, Q.; Gentle, T., 3rd; Bosch, M.; Zhou, H. C. Chemical Society Reviews 2014, 

43 (16), 5561-93. copyright © 2014 Royal Society of Chemistry) 

 

 

MOF-7421-22 another well-known example, is the product of the coordination 

between tetraanionic 2,5-dioxido-1,4-benzene-dicarboxylate (dobdc) and an infinite metal 

chain, in which both the aryloxide and carboxylate moieties are bonded to the metal units. 

After applying the isoreticular chemistry of dobdc by the stepwise expansion of long 

molecular struts with phenylene units, a series of MOF-74 isoreticular materials was 

synthesized with pore apertures incrementally varied from 14 Å to 98 Å (Figure 3).23  

 



 

8 

 

 

Figure 3 List of organic linkers used in IRMOF-74 series with the one-dimensional 

channel with 98 Å for IRMOF-74-XI. (Reprinted with permission from Lu, W.; Wei, Z.; 

Gu, Z. Y.; Liu, T. F.; Park, J.; Park, J.; Tian, J.; Zhang, M.; Zhang, Q.; Gentle, T., 3rd; 

Bosch, M.; Zhou, H. C. Chemical Society Reviews 2014, 43 (16), 5561-93. copyright © 

2014 Royal Society of Chemistry) 

 

 

To date, IRMOF-74-XI with pore aperture of 98 Å is the record holder for the 

largest pore among all crystalline materials. Those large pores are capable of allowing 

natural protein to enter without folding, which demonstrate great potential for MOFs to 

serve as the matrix for enzyme immobilization.  
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Figure 4 a) MIL-100, Cu SBU with coordinated btc linker; b) MIL-101, Cu SBU with 

coordinated bdc linker. Color Scheme: Al (blue, purple); O (red); C (gray). 

 

 

Besides 6-connected octahedral metal units, another important SBUs is 6-

connected trigonal prismatic metal units. MIL-101 (MIL stands for Materials Institute 

Lavoisier) is a signature MOF, made from the linkage of bdc and metal trimmers, where 

three trivalent metals each coordinate with four oxygen atoms of bdc, one µ3-O, and one 

oxygen from terminal water or fluorine group in an octahedral environment. 

MIL-101 (Figure 4) is a mesoporous MOF with a hexagonal window of 16 Å and 

a cage diameter of 34 Å. At the same time, MIL-101 is also acknowledged for enhanced 

hydrothermal stability through increasing the charge of the metals. Assembling the same 

trimeric SBUs with tritopic linker btc, MIL-10024 was successfully synthesized. A so-

called “supertetrahedra” is formed with four trimeric metal units as vertices and four btc 

as the triangular faces. The further connection between these supertetrahedras gives rise 

to two mesoporous cages with accessible diameters of 25 and 29 Å.  

a) b) 
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In addition to the aforementioned 4- and 6-conneted SBUs, a 12-connected SBU, 

Zr6O4(OH)4 is identified as  a new class of building units to be investigated and explored. 

In 2008, the first Zr-MOF, UiO-66 (UiO stands for University of Oslo) was synthesized 

under solvothermal condition using bdc as the organic struts.14 In the framework of UiO-

66, six Zr atoms in the square-antiprismatic coordination environment are linked by eight 

oxygen atoms from four bdc and four alternatives of µ3-O and µ3-OH on the triangle face 

to form the Zr6O4(OH)4 core. In the UIO-66 structure, each Zr6O4(OH)4  core is further 

connected by twelve bdc, consequently resulting in a 3D framework with triangular 

window of 6 Å in diameter. The Zr6O4(OH)4  building units have been further applied to 

achieve desired stable porous materials. Functional groups on bdc25 and elongated benzene 

rings14, 26 have been designed for gas storage and metal sensing. However, MOFs with 12-

connected SBUs are still scarce.  

 In addition to MOFs, Zeolites have long been studied as they currently represent 

an enormous class of materials widely used in industrial applications and are ubiquitous 

in nature. Zeolites are crystalline aluminosilicates with tuneable pore size and possess 

chemical stability under harsh conditions yielding cheap materials that have been 

commonly used in molecular sieving and gas storage applications.27 Zeolitic imidazolate 

frameworks (ZIFs) a class of MOFs with zeolite architectures have recently been 

developed to mimic the wealth of zeolite structures. ZIFs are primarily composed of 

tetrahedral metal nodes (M) such as zinc or cobalt bridged with imidazolate (Im) moieties. 

ZIFs form zeolite structures due to the formation of M-Im-M bonds with a similar angle 

to the zeolite Si-O-Si bond (145ᵒ).28 A multitude of review articles have thoroughly 
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explored the synthesis, characterization, and applications of ZIFs28-32; however for 

simplicity, we will focus mainly on a few representative structures and provide insight 

into key structural features. 

 ZIFs are increasingly explored due to topological and structural properties that are 

controlled through synthetic parameters. ZIFs are synthesized under similar reaction 

conditions as MOFs, usually under hydrothermal or solvothermal reactions. These 

solvothermal reactions are usually performed with high boiling point solvents, such as 

dimethylformamide or dimethyl sulfoxide, under varying temperature ranges up to around 

200oC over several hours to days. General synthetic conditions for ZIF with structural 

diversity have been previously reported.33 

 Yaghi et al. have provided a comprehensive review of the geometrical design 

principles of extended solids including ZIFs; some of these principals will be further 

discussed.34 ZIFs are evaluated based on the topological net of the structure; these nets are 

interesting in crystal space in that they represent the space group symmetry. ZIF are 

categorized by the structural topology, a three-letter code corresponding to zeolite 

structure or reticular chemistry structure resource (RCSR) code (Figure 5).28, 32, 35 An 

example of this naming convention is evident through analysis of common zeolite 

structures, thus the zeolite framework sodalite has code sod; likewise, other common 

zeolites topologies like diamond and quartz have code dia and qtz, respectively.32
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Figure 5 Crystal structures of several representative ZIFs. (Reprinted with permission 

from Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, 

O. M. Accounts of Chemical Research 2010, 43 (1), 58-67, copyright © 2010 American 

Chemical Society)  
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The inherent chemical and thermal stability of ZIFs have yielded a robust material 

that can withstand the harsh condition necessary in some industrial application. Two 

notable examples that exhibit these properties are ZIF-8 and ZIF-11, which exhibit thermal 

stability up to 400oC and chemical stability in a variety of solvents including water, 

toluene, methanol, and aqueous sodium hydroxide.33 ZIFs with tunable structural 

properties (Figure 5) were further developed through synthetic approaches including 

modification of direct synthesis through ligand functionalization, expansion, and 

augmentation,  and post synthetic functionalization.29  

While the zeolitic structures of ZIFs have contributed to strong stability, the 

porosity is compromised due to the tetrahedral SBUs. The Zhou group has recently 

employed the use of soft acid-base interactions to construct materials with enhanced 

porosity without compromising stability.36 Using nitrogen based moieties as linkers to 

form MOFs have led to materials that exhibit improved base stability over traditional soft 

metal-carboxylate MOFs.36-37 The research in this dissertation will seek to use previously 

explored pyrazolate clusters (Figure 6) with imidazolate connecting linkers. 
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Figure 6 Top-down topological analysis: binodal edge-transitive topologies with planar 

4-connected nodes (top line), the nodes assigned to SBUs in corresponding nets (middle 

line), and reported Pz-based SBUs with the same symmetries and connectivities to 

corresponding nodes (bottom line).33, 38-45 (Reprinted with permission from Wang, K.; Lv, 

X.-L.; Feng, D.; Li, J.; Chen, S.; Sun, J.; Song, L.; Xie, Y.; Li, J.-R.; Zhou, H.-C. Journal 

of the American Chemical Society 2016, 138 (3), 914-919, copyright © 2010 American 

Chemical Society) 
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2. HIGH-THROUGHPUT SYNTHESIS OF METAL-ORGANIC FRAMEWORKS 

High-throughput synthesis is a powerful tool for the discovery of novel metal-

organic frameworks (MOFs). Since MOFs possess tunable structural features, 

combinatorial chemistry is often used to develop protocols for the synthesis of new 

materials. A variety of factors influence the formation of metal-organic frameworks 

through solvothermal synthesis including solvent, metal-ligand concentration ratios, 

reaction temperature, co-ligand concentration, co-solvents, and modulating reagent 

concentration. The use of a high-throughput synthetic protocol allows for the elucidation 

of the optimal synthetic parameters for metal-organic framework formation. Utilizing a 

robotic system allows for the screening of a large number of reaction conditions for 

synthetic trends while minimizing the time of new material development. Herein, 

applications of high-throughput methods to the synthesis of MOFs will be discussed.  

Metal-organic frameworks (MOFs) are a class of inorganic-organic hybrid materials that 

are highly porous materials with tunable structures. MOFs are usually synthesized under 

solvothermal reaction conditions, a complex multicomponent system, resulting in multiple 

variables that contribute to MOF formation. Testing each individual component’s 

contribution to MOF formation by hand would require a time consuming, expensive 

process with a large number of reactions. This has led to the investigation of high-

throughput synthesis with the goal of rapidly studying reaction parameters that contribute 

to the formation of these new materials. Using combinatorial methods generates a large 

amount of data and for effective reaction control several key factors must be considered 

including experimental design, solution preparation, synthesis, product isolation, 
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characterization, and big data analysis.46 As new MOF and composite materials are 

discovered, commercialization becomes increasing more important. Therefore, several 

unconventional synthetic techniques utilizing high-throughput method have been 

developed including electrochemical, microwave assisted, mechanochemical, and 

sonochemical synthesis (Figure 7).47-49   

Although several robotics companies now offer advanced platforms for high-

throughput synthesis, the fully automated synthesis of MOFs is still challenging.50 Once a 

new material is synthesized, the resulting powder must be separated from the reaction 

mixture and then characterized. Powder X-ray diffraction is often used to evaluate the 

formation of MOFs, lower angle peaks often indicate the present of a large unit cell usually 

observed with MOF materials. Automated systems for powder x-ray diffraction are often 

available through instrument manufacturers. This allows for screening of large amounts 

of reaction conditions.  
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Figure 7 Different synthesis methods of MOFs. (Reprinted with permission from Stock, 

N.; Biswas, S. Chemical Reviews 2012, 112 (2), 933-969, copyright © 2012 American 

Chemical Society)  

 

 

Due to multiple connection modes of transition metals, multiple phases of MOFs 

or mixed-phase materials might be present. Data analysis then becomes essential to the 

complete characterization of these materials, which will elucidate key reaction parameters. 

Currently there is a limited amount of ability to compare experimental diffraction patterns 

to the expanse collection of reported MOFs. This ultimately requires that the 

characterization of MOF be completed with single crystal X-ray diffraction. This process 

can be very time consuming and requires highly crystalline materials for characterization. 

Thus for the greatest potential for success, the design of the experiment is the most 

important factor. Therefore a factorial approach is often used, a limited number of 
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variables are tested in order to reduce the chemical knowledge or intuition needed to 

rationalize the effects on MOF formation.46   

Although synthetic platforms may vary in customization and automation, most 

platforms function with an axis-controlled robotic arm that operates various automated 

tools. One example of a common system is the Chemspeed® Swing-II robotic synthetic 

platform (Figure 8); this instrument is highly customizable with over forty synthetic tools, 

automation software, and a large selection of reaction vessels. For MOF synthesis, 

common tools include a volumetric transfer unit, gravimetric solid dispensing unit, 

vortexing racks, cryostat, and capper for pressurized reactions. The setup of the platform 

is highly dependent on the synthetic goals of a particular experiment, other tools are 

necessary for complete automated synthesis and characterization. The Swing unit has the 

capability to interface with peripheral instrumentations such as a gas chromatograph or 

powder x-ray diffractometer which could aid in the complete characterization of MOFs 

and ligand. Reaction vessels depend on the scale and desired temperature of the 

solvothermal reaction.  
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Figure 8 Chemspeed® Swing II robotic synthetic platform. Copyright © 

Chemspeed® Technologies 

 

 

Herein, we will discuss a small set of reaction variables that influence the 

formation of several notable MOFs, mainly MIL-101, MOF-5, and HKUST-1.10, 12-13 

Using a factorial approach, common variables tested in high-throughput methods include 

reaction solvent, starting material ratios, reaction temperature and time, and the use of 

modulating reagents. Perhaps one of the most vital components of the solvothermal 

reaction is the solvent selection. During a solvothermal reaction, the solvent has several 

chemical roles including directing lattice formation, interacting with the framework as 

guest molecules, and inducing coordination between metal and ligand ions.51 Several 

studies have shown a strong correlation between the reaction solvent and the resulting 
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MOF structure and properties.52-54  When evaluating the effects of solvent on MOF 

formation, two different scenarios should be considered: the effect of using different 

reaction solvent media, or using mixed solvent reaction media.  

Another key factor, reaction temperature, can be used for kinetic and 

thermodynamic control of the formation of MOFs. Temperature drives the formation of 

the MOF, providing the activation energy for the cleaving of bonds and the generation of 

new coordination bonds. Several studies have shown kinetic control through modulation 

of solvothermal reaction temperature.55-56 Increasing the reaction temperature is a method 

to increase the dissociation of the coordination bonds; however, this causes an imbalance 

in dissociation/substitution rates and has led to the addition of modulating reagents which 

enhance substitution rate.57 Lastly, molar ratios of starting materials play a key role in the 

stoichiometric control of the MOF formation. Stoichiometric changes in metal and linker 

concentrations can often lead to the formation of coordination clusters, alternate phase 

MOFs, or mixed phase materials.   
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Figure 9 Structures obtained from the reaction of trivalent metals (Cr, Fe, and V) and 

terephthalic acid: MIL-47 and MIL-53 (left), MIL-88B (center), and MIL-101 (right). 

(Adapted with permission from Bauer, S.; Serre, C.; Devic, T.; Horcajada, P.; Marrot, J.; 

Férey, G.; Stock, N. Inorganic Chemistry 2008, 47 (17), 7568-7576.  copyright © 2008 

American Chemical Society) 

   

 

Stock et al. have studied the formation of MIL-101-NH2 (MIL stands for 

Matériaux de l’Institut Lavoisier) using high-throughput methods to investigate the 

solvent, temperature, and time effects on crystallization.58 The results have shown the 

formation of several MOFs in the MIL series under varying reaction conditions. 

Modulation of the solvothermal reaction conditions using high-throughput synthesis has 

led to the isolation of MIL53, MIL-88B, and MIL-101 (Figure 9). High-throughput studies 

have been used to elucidate the effects of various aprotic solvents (Methanol, Acetonitrile, 

DMF, and water), reaction temperature, molar ratio of starting materials, and molar 

concentration on the formation of MIL series MOFs.  
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Figure 10 Crystallization diagrams for the high-throughput investigation of the system 

FeCl 3 /NH 2 - H 2 BDC/NaOH in acetonitrile at 110 ° C (a) and 160 ° C (b) based on 

powder XRD measurements. (Adapted with permission from Bauer, S.; Serre, C.; Devic, 

T.; Horcajada, P.; Marrot, J.; Férey, G.; Stock, N. Inorganic Chemistry 2008, 47 (17), 

7568-7576.  copyright © 2008 American Chemical Society) 

 

 

The reaction of NH2-H2-BDC with FeCl3 under solvothermal conditions using 

acetonitrile at 100oC and 160oC for 2 days was performed varying the molar ratios of 

starting materials and concentration of NaOH as a modulating reagent with a total volume 

of 1.5 mL (Figure 10). At lower temperature, increased concentration of sodium hydroxide 

is necessary to deprotonate the NH2-H2-BDC to form the MOFs. Increasing the 

temperature increases the concentration of aminoterephthalate ions in the solution; the 

excess sodium hydroxide is not needed to modulate the reaction. 
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Figure 11 Crystallization diagrams for the high-throughput investigation of the system 

FeCl 3 /NH 2 - H 2 BDC/NaOH in methanol at 110 ° C (a) and 160 ° C (b) based on 

powder XRD measurements. The framed area corresponds to the parameter space 

investigated in the first high-throughput experiment at 160 ° C, and the remaining molar 

compositions were investigated in an additional experiment. (Adapted with permission 

from Bauer, S.; Serre, C.; Devic, T.; Horcajada, P.; Marrot, J.; Férey, G.; Stock, N. 

Inorganic Chemistry 2008, 47 (17), 7568-7576.  copyright © 2008 American Chemical 

Society) 

 

 

High-throughput experiments were also performed with methanol as the reaction 

solvent at 110oC and 160oC following the acetonitrile conditions (Figure 11). At 100oC 

under every experimental condition Fe-MIL-88B-NH2 was synthesized. It is well 

established that methanol easily facilitates the deprotonation of the ligand, and thus MIL-

88B is easily obtained. At a higher temperature of 160oC, it is hypothesized that there is 

an increased concentration of methanolate ions that compete with the aminoterephthlate 

ions limit the formation of Fe-MIL-88-NH2. The synthetic conditions were expanded to 

observe more reaction space; however, an unknown product was obtained and failed to be 

characterized.   
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Using DMF as the reaction media allows for the isolation of two pure phase MOFs, 

Fe-MIL-88-NH2 and Fe-MIL-101-NH2. High-throughput experiments with DMF were 

performed at 110oC, 170oC, and 185oC for one day, varying the concentration of 

metal/ligand ratios and the concentration of NaOH with a total reaction volume of 2mL; 

scale-up of the MOFs was also performed using the selected reaction conditions (Figure 

12). Fe-MIL-101-NH2 was only observed at 110oC and 170oC when no sodium hydroxide 

was added to the reaction. At 110oC and 170oC, Fe-MIL-88-NH2 is observed in every case 

when sodium hydroxide is added to the system. Ligand/metal ratios do not significantly 

contribute to MOF formation at lower temperatures. Fe-MIL-101-NH2 was easily scaled 

at 110oC whereas Fe-MIL-88-NH2 forms with increased concentration at a higher 

temperature. Only Fe-MIL-88-NH2 is observed at 185oC.  

Lastly, water as the reaction solvent resulted in the formation of MIL-53 as the 

major reaction product; however, many mixed phase materials of MIL-53/MIL-88 and 

MIL-53/MIL-101 materials were also obtained. Using water as the reaction solvent is the 

only system in which all three phases (MIL-53, MIL-88, and MIL-101) are observed.58 

Additionally, individual reaction conditions for the pure phase synthesis of each phase is 

not observed. MIL-88 is only observed in mixed phase products.    
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Figure 12 Crystallization diagrams for the high-throughput investigations of the system 

FeCl 3 /NH 2 - H 2 BDC/NaOH in DMF at 110 ° C (a), 170 ° C (b), and 185 ° C (c) based 

on powder XRD measurements. The highlighted compositions in the crystallization 

diagrams refer to the molar ratios realized in the corresponding synthesis scaleup studies. 

(Adapted with permission from Bauer, S.; Serre, C.; Devic, T.; Horcajada, P.; Marrot, J.; 

Férey, G.; Stock, N. Inorganic Chemistry 2008, 47 (17), 7568-7576.  copyright © 2008 

American Chemical Society) 

 

 

Another study by Bein et al. has explored high-throughput method for optimizing 

the synthetic parameters of HKUST-1 and MOF-5.9 This study has limited reaction 

parameters to 1) chemical parameter (metal source, starting material concentrations, and 

reaction pH) and 2) process parameters (temperature and time).  
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Figure 13 Influence of synthesis temperature on the morphology of HKUST-1. Each scale 

bar in the different micrographs corresponds to 10 µm. (Adapted with permission from 

Biemmi, E.; Christian, S.; Stock, N.; Bein, T. Microporous and Mesoporous Materials 

2009, 117 (1–2), 111-117.  copyright © 2008 Elsevier, Inc.) 

 

 

Temperature and reaction concentration were tested to determine the influence on 

the crystal formation of HKUST-1. This study has shown that single crystal morphology 

is diminished with increasing temperature due to the formation of copper (II) oxide (Figure 

13). Pure phase HKUST-1 was obtained at 348K following high-throughput temperature 

screening using previously published synthetic conditions.12 An additional high-

throughput experiment was conducted to explore the effects of concentration on the 

morphology of HKUST-1; the reaction was conducted at 348K for 24 hours varying 

starting material concentrations (Figure 14). Tuning of the crystal morphology is possible 

and octahedral crystals are formed from concentration ratios factor of 0.75-1.3. However, 

at concentration factor 1.75 the MOF loses the ordered octahedral morphology. This 

experiment also demonstrates the ability to control crystal size through concentration of 

starting material.  
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Figure 14 Influence of the concentration on the morphology of HKUST-1. The synthesis 

was performed under solvothermal conditions at 348 K for 24 h starting from Cu(NO3)2 · 

2.5H2O. The scale bar of each micrograph corresponds to 10 µm. ‘‘x” denotes the 

concentration factor with respect to the synthesis recipe.12 (Adapted with permission from 

Biemmi, E.; Christian, S.; Stock, N.; Bein, T. Microporous and Mesoporous Materials 

2009, 117 (1–2), 111-117.  copyright © 2008 Elsevier, Inc.) 

 

 

Lastly, effects of metal salt, co-solvent media, and pH on the formation of MOF-

5 through high-throughput synthesis has been studied.9  The synthesis of MOF-5 with 

metal salts, zinc (II) nitrate hexahydrate and zinc (II) oxide, was performed under under 

mixed solvent conditions at 383K for 48 hours. MOF formation with ZnO was successful 

and produce MOF-5 with both DMF/mesitylene, DMF/toluene, and DMF/chlorobenzene; 

however, unreacted ZnO was observed in each condition. Zinc (II) nitrate only yields pure 

phase MOF-5 in a DMF/mesitylene reaction solution. Therefore, ZnO as the starting metal 

salt is less sensitive to the effect from the reaction solvent. MOF-5 is highly water 

sensitive, so the introduction of aqueous solutions result in the inhibition of formation. 

Thus pH studies were not capable to study MOF-5 formation; however, pH was modulated 

to identify reactivity trends.  

This review of high-throughput methods have shown the strong correlation of 

MOF synthesis with solvent selection, temperature, and various starting material ratios.   
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These same design principles have also been applied to other systems, where a factorial 

approach has led to the synthesis of MOF materials.59-63 As improvements are made to 

synthetic protocols and workflows, the rapid development and commercialization of 

MOFs will increase.  

 



 

29 

 

3. TOWARD A METAL-ORGANIC POLYHEDRA BASED MIXED-LINKER 

METAL-ORGANIC FRAMEWORK THROUGH MIXED LIGAND CO-

ASSEMBLY 

 A mixed ligand co-assembly approach has been explored to develop MOFs with 

increased structural diversity. Two new MOFs, PCN-351 and PCN-352 have been 

synthesized exhibiting a triangular Cu3O secondary building units (SBUs) not readily seen 

in reported MOFs. In this approach, pyrozolate moieties are used to form the SBU and 

connected by linear bis(imidazolate) linkers. Topological analysis predicts the potential 

for the formation of a truncated cubic molecular polyhedral cage that can function as a 12-

connected node. PCN-351 forms a condensed structure with 3D channels and limited 

porosity due to the small imidazolate linker, while PCN-352 exhibits truncated 

cuboctahedra cages due to flexibility in an elongated linker. While PCN-351 possesses 

relatively low nitrogen uptake and porosity, the porosity of PCN-352 is improved with a 

BET surface area of 1453 m2/g.   
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3.1 INTRODUCTION 

 Metal-organic frameworks are an interesting class of materials that have a wide 

array of application including gas storage, catalysis, drug delivery, and chemical sensing, 

with many new applications being rapidly discovered.64-68 Perhaps one of the most 

important features of the development of these materials is the need to understand the 

principles of formation. Our group has recently developed new techniques to perform 

controlled synthesis and functionalization of stable MOFs including kinetically tuned 

dimensional augmentation synthesis, post-synthetic metathesis and oxidation, and 

sequential linker installation.55-57, 69-70 Herein, a mixed-ligand co-assembly process is 

developed to synthesis novel mixed-linker MOFs. 

 The inclusion of multiple linkers into the framework structure provide structural 

diversity and the ability to fine tune material properties through pore functionalization.71-

72 Coupling the use of a mixed-ligand approach with engineering of suprapolyhedral 

building blocks, new MOF can be rationally designed.73-74 Perhaps one of the most 

observed SBU when synthesizing copper (II) MOFs is the dicopper (II) paddlewheel; 

however, this work will seek to explore the formation of a triangular Cu3O SBU.75 This 

SBU is of particular interest due to the square planar geometry of each copper atom 

possesses two coordinatively unsaturated metal centers (UMCs). High concentrations of 

UMCs have been shown to provide favorable host-guest interactions within the framework 

enhancing gas uptake.76-78    

 Pyrazole was judiciously selected to construct the triangular Cu3O SBU and it was 

hypothesized that imidazolate moieties have the appropriate bridging angle to form a 
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truncated cubic supramolecular building block.15, 79 The formation of the cubic polyhedral 

cage is of interest due to the potential to be further utilized as a 12-connected node in the 

formation of new MOFs.   

3.2 EXPERIMENTAL SECTION* 

General Information. Copper (II) Nitrate hemipentahydrate, N,N-

dimethylacetamide (DMA), Pyrazole, 1,2,3,5-Benzenetetraamine Tetrahydrocloride, 3,3’-

diaminobenzidine  Formic Acid, Diethyl Ether, and Sodium Hydroxide were all purchased 

from commercially available sources and were used as received. 1H NMR data were 

collected on a Mercury 300 MHz NMR spectrometer. FT-IR data were recorded on an 

IRAffinity-1 instrument. TGA data were obtained on a TGA-50 (SHIMADZU) 

thermogravimetric analyzer with a heating rate of 3 °C min-1 under a N2 atmosphere. 

Instrumentation. 1H NMR data were collected on a Mercury 300 MHz NMR 

spectrometer. FT-IR data were recorded on an IRAffinity-1 instrument. TGA data were 

obtained on a TGA-50 (SHIMADZU) thermogravimetric analyzer with a heating rate of 

3 °C min-1 under a N2 atmosphere. The powder X-ray diffraction patterns (PXRD) were 

recorded on a BRUKER D8-Focus Bragg-Brentano X-ray Powder Diffractometer 

equipped with a Cu sealed tube (λ = 1.54178 Å) at room temperature. Synchrotron-based 

single crystal diffraction (APS) experiments were performed at the ChemMatCars 15-BM 

beamline of the Advance Photon Source in Argonne National Laboratory.  

                                                 

* Ligand and MOF synthesis performed with assistance from Madison Haas and Mario Cosio. Structural 

studies were performed with assistance from Dr. Yusheng Chen and Ying-Pin Chen.  
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General Synthesis Procedure.80 A tetraamine starting material was added to a 

round bottom flask with a magnetic stir bar and formic acid was added to the flask. The 

flask was fitted with an air-jacked condenser and refluxed at 100oC for 2 h - 4 days. The 

reaction as then mixed with ice water (equal volume with formic acid) and neutralized 

with 10% sodium hydroxide. Upon neutralization, a power precipitate was observed and 

collected by vacuum filtration, rinsed with water and dried in a vacuum oven overnight. 

 

 

 

Scheme 1 Synthesis of H2BBI. 

 

 

Synthesis of Benzo-bis(imidazole) (H2BBI).81 1,2,4,5-Benzenetetraamine 

tetrahydrochloride (1g, 3.5mmol) was treated with formic acid (50mL) for 4 days at 

100oC. The reaction was then mixed with ice water (50ml) and neutralized with 10% 

sodium hydroxide solution. The precipitate was isolated as a pale brown powder, washed 

with water, and dried overnight in a vacuum oven. The reaction produced 0.4 g of H2BBI 

with 80.4% yield. 1H-NMR (300 MHz, DMSO-d6): 12.1 (4H, bs), 8.18 (2H, bs), 7.70 (2H, 

bs). Elemental Analysis: C8H6N4*2H2O: C 49.2, H 5.64, N 28.7; found: C 50.7, H 3.65, 

N 27.07.  
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Scheme 2 Synthesis of H2DBI. 

 

 

Synthesis of 3,3’-Dibenzimidazole (H2DBI). 3,3’-Diaminobenzidine (10g, 

46.7mmol) was treated with formic acid (50mL) for 2 h at 100oC. The reaction was then 

mixed with ice water (50ml) and neutralized with 10% sodium hydroxide solution. The 

precipitate was isolated as a cream colored powder, washed with water, and dried 

overnight in a vacuum oven. The Reaction produced 9.8g of H2BBI with 98.9% yield. 1H-

NMR (300 MHz, DMSO-d6): 8.62 (H, s) (Formic Acid), 8.24 (2H, s), 7.84 (2H, d), 7.65 

(2H, d), 7.51 (2H, dd),. 13C NMR (300MHz, DMSO-d6): δ 164.9 (Formic Acid), 143.0, 

138.9, 138.0, 122.1, 116.2, 113.7. Elemental Analysis: C14H11N4*4CHO2: C 52.05, H 

3.61, N 13.50, O 30.84; found: C 48.33, H 3.6, N 12.70.  

Synthesis of PCN-351. A mixture of H2BBI (10 mg, .063mmol) and 

Cu(NO3)2·2.5H2O (50 mg,  .21mmol), and Pyrazole (300mg, 4.41mmol) was added to a 

1 dram vial containing DMA (3 mL). The solution was then sonicated until all solids were 

dissolved. The vial was sealed, heated to 100 °C for a 3 day, and black cubic shaped 

crystals of PCN-352 were collected, washed with DMA, and dried in air to produce. 
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Elemental analysis (%): calculated for C15H12Cu3N9O: C, 34.32; H, 2.3; N, 24.01; found: 

C 37.68, H 4.41, N 21.18. 

Synthesis of PCN-352.  A mixture of H2DBI (30 mg, 0.128mmol) and 

Cu(NO3)2·2.5H2O (150 mg,  0.645mmol), and Pyrazole (290mg, 4.25 mmol ) was added 

to a 1 dram vial containing DMA (3 mL). The solution was then sonicated until all solids 

were dissolved. The vial was sealed, heated to 85 °C for a 4 day, and the blue disk shaped 

crystals of PCN-351 were collected, washed with DMA, and dried in air to produce. 

Elemental analysis (%): calculated for C156H120Cu24N72O8: C 40.24, H 2.60, N 12.66 

found: C 43.68, H 5.6, N 17.25. 

Low-pressure gas adsorption measurements. Gas sorption isotherm 

measurements were performed on ASAP 2020 and ASAP 2420 Surface Area and Pore 

Size Analyzers. As-synthesized samples of PCN-351 and PCN-352 were immersed in dry 

ethyl ether for 24 h and the extract decanted. Fresh dry ethyl ether was subsequently added 

and the crystals remained in the solvent for an additional 24 h. Each sample was collected 

by decanting and the procedure repeated once more with dry ethyl ether. After the removal 

of ethyl ether by decanting, the samples were activated by drying under a dynamic vacuum 

at room temperature. Before the measurement, PCN-351 and PCN-352 was again further 

activated using the “degas” function of the surface area analyzer for 2 h at 25 °C. Other 

activation temperatures were tested, with the reported methods providing the best sorption 

properties. UHP grade (99.999%) N2, H2, and CO2 were used for all measurements. 

X-ray crystallography. Single crystal X-ray diffraction (XRD) measurements 

were performed on a Bruker SMART APEXii diffractometer equipped with CCD detector, 
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an Oxford Cryostream low temperature device, and a fine-focus sealed-tube X-ray source 

(Mo-Kα radiation, λ = 0.71073 Å, graphite monochromated) operating at 50 kV and 30 

mA. Raw data collection and refinement were performed using SMART. Absorption 

corrections were applied using the SADABS routine.  PCN-351 was solved through direct 

methods and refined by full-matrix least-squares on F2 with anisotropic displacement 

using SHELXTL.82 Non-hydrogen atoms were refined with anisotropic displacement 

parameters during the final cycles. Hydrogen atoms on carbon were calculated in ideal 

positions with isotropic displacement parameters set to 1.2 x Ueq of the attached atom. 

Solvent molecules in the structures were highly disordered and attempts to locate and 

refine solvent peaks were unsuccessful. Therefore, the contribution of solvent electron 

density was removed by the SQUEEZE routine in PLATON and refined further using the 

data generated.83 The contents of the solvent region are not represented in the unit cell 

contents in the crystal data.  Single crystal X-ray structure determination of PCN-352 were 

performed at 173(2) K using the Advanced Photon Source on beamline 15ID-B at 

Argonne National Laboratory. PCN-352 was solved by direct methods and refined by full-

matrix least-squares on F2 using SHELXTL.82 Non-hydrogen atoms were refined with 

anisotropic displacement parameters during the final cycles. Organic hydrogen atoms 

were placed in calculated positions with isotropic displacement parameters set to 1.2 × Ueq 

of the attached atom.  

Crystal data for PCN-351. C15H12Cu3N9O, M = 524.96, black cubic, 0.40 × 0.40 

× 0.30 mm3, monoclinic, space group C2/m, a = 24.72(2) b = 17.839(15) c = 16.557(14) 

α = 90.00 β = 90.817(11) γ = 90.00, V = 7301(11) Å3, Z = 8, Dc = 0.955 g/cm3, F000 = 
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2080, MoKα radiation, λ = 0.71073 Å, T = 110(2) K, 2θmax = 24.36˚, 23863 reflections 

collected, 6086 unique (Rint = 0.1145). Final GooF = 0.856, R1 = 0.0829, wR2 = 0.2096, 

R indices based on 6086 reflections with I > 2sigma(I) (refinement on F2), 271 parameters, 

55 restraints. μ = 1.745 mm-1. 

Crystal data for PCN-352. C156H120Cu24N72O8, M = 4656.20, Blue sphere, 0.05 

× 0.05 × 0.01 mm3, cubic, space group P213, a = 34.396(7) b = 34.396(7) c = 34.396(7) α 

= 90.0 β = 90.0 γ = 90.0, V = 40695(14) Å3, Z = 4, Dc = 0.760 g/cm3, F000 = 9280, MoKα 

radiation, λ = 0.41328 Å, T = 110(2) K, 2θmax = 9.97˚, 257967 reflections collected, 8371 

unique (Rint = 0.1622). Final GooF = 0.971, R1 = 0.1093, wR2 = 0.2159, R indices based 

on 8371 reflections with I > 2sigma(I) (refinement on F2), 435 parameters, 194 restraints. 

μ = 0.661 mm-1. 

3.3 RESULTS AND DISCUSSION 

Syntheses and structures. H2BBI and H2BDI were synthesized through a one-

step condensation reaction of tetraamine with formic acid. H2BBI was selected as a short 

rigid linker, while H2BDI is longer in length and also possesses rotational freedom. PCN-

351 was synthesized in a one-pot synthesis by dissolving all starting in DMA and adding 

excess pyrazole as a modulation reagent. Large excess of pyrazole was necessary to form 

the MOF in order to adjust the pH of the reaction solution to optimal conditions for 

solvothermal synthesis. Single crystals of PCN-351 were obtained with black cubic shape 

and was characterized by single crystal x-ray diffraction. PCN-351 (Figure 15) crystalizes 

in the monoclinic, C2/m space group with united cell edges a = 24.72(2) b = 17.839(15) c 

= 16.557(14) and angles α = 90.00 β = 90.817(11) γ = 90.00. 
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Figure 15 Structure of PCN-351, (top left) view down a axis, (top right) view down b 

axis, (bottom) view down c axis. Cu = turquoise; C = black; N= dark blue O = red; H 

and coordinated solvent excluded, for clarity. 
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Figure 16 Assembly of PCN-351, connectivity of planar H2BBI linker with trigonal 

Pz3Cu3O SBUs. Red triangle represents the Copper (II) SBU. Blue rectangle represents 

H2BBI linker. View along c axis.    

 

 

 

The rigidity of the H2BBI linker only allows for connectivity in two planes 

confining the structure to 3D-channels (Figure 16). H2DBI was selected due the single 

bond between the benzimidazole groups allowing for extra degrees of rotational freedom. 

Additionally, the elongated linker also allows for more flexibility than the rigid planar 

H2BBI. PCN-352 was synthesized under solvothermal conditions with excess pyrazole as 

a modulation reagent. PCN-352 was obtained as blue spherical crystals and were 

characterized using synchrotron radiation at Argonne National Laboratory, BM-17. PCN-
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352 (Figure 17) crystalizes in the cubic space group P213, a = 34.396(7) b = 34.396(7) c 

= 34.396(7) α = 90.0 β = 90.0 γ = 90.0.  

 

 

 

Figure 17 Structure of PCN-352, a triangular Pz3Cu3O cluster is connected by the 

H2BDI to form a MOF composed of molecular cages. Spheres occupy different size 

cages present in the structure.  

 

 

PCN-352 is composed of three molecular cages, as seen in Figure 18, the 

combination of the SBU and the connecting imidazole linker yields a truncated cubic cage. 

These cubic cages are then connected through the H2BDI linker forming tetrahedral cages. 

Lastly, the cubic cages are located on the vertices of an octahedral cage.  Due to the 

chirality of the imidazolate linker, a slight twist is observed in the symmetry dependent 

octahedral and tetrahedral cages.  The cages also vary in pores size based on geometry 
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with the cubic cage having a pore size of 15Å, tetrahedral cage of 9Å, and octahedral cage 

of 16Å.    

 

 

 

Figure 18 Structural representation of PCN-352 and packing of molecular cages. a) 

cuboctahedral cage, b) truncated octahedral cage, and c) truncated tetrahedral cage.  

 

 

Thermogravimetric analysis (Figure 19) demonstrates the poor thermal stability of 

PCN-351, while PCN-352 is stable to approximately 400oC. PCN-351 shows a gradual 

weight loss from (25-250oC) representing the loss of coordinated solvent molecules and 

then the gradual decomposition of the framework from (250-500oC). PCN-352 exhibits 

much greater chemical stability with no initial weight loss from 25-250oC, followed by 
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removal of the solvent (250-400oC) and, the gradual degradation of the MOF (above 

400oC).    

 

 

 

Figure 19 Thermogravimetric analysis of PCN-351 and PCN -352.  

 

 

Gas Studies. Activation of these MOFs are challenging due to coordinated 

solvents on the open metal sites during synthesis. In order to fully activate the samples, an 

extensive solvent exchange process with diethyl ether is necessary. Failure to remove the 

strongly coordinating DMA solvents cause framework collapse upon degassing on the 

porosity analyzer. Additionally, in the case of PCN-351, due to poor thermal stability 

framework collapse is observed under elevated degassing temperatures. Nitrogen uptake 

at 77K demonstrates typical type I isotherms (microporous materials) with PCN-351 
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exhibiting low uptake of approximately 50 cm3/g (1 bar)  and BET surface area of 417m2/g 

and PCN-352 possessing high nitrogen uptake of approximately 400 cm3/g (1 bar) and 

BET surface area of 1453m2/g.  

 

 

 

Figure 20 Nitrogen isotherms of PCN-351 and PCN-352 measured at 77K.  

 

 

Due to the low porosity of PCN-351, further gas studies were not performed on 

the material. CO2 and H2 uptake of PCN-352 were further studied. Moderate H2 uptake 

was observed at 273K; however, the MOF demonstrated low uptake of CO2.   
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Figure 21 CO2 and H2 uptake isotherms of PCN-352 at varying temperature.   

 

 

3.4 CONCLUSIONS 

 In conclusion, two new mixed-linker MOFs were formed with a Pz3Cu3O3 

triangular SBU connected through linear imidazolate linkers. These MOFs were formed 

in a one-pot solvothermal synthesis with excess pyrazole as a modulating reagent. This 

mixed-ligand co-assembly is an interesting approach to explore the development of new 

MOFs with structural diversity and enhanced tuneability. PCN-351 poessess 3-D channels 

and BET surface area of 417m2/g, while PCN-352 is composed of three types of molecular 

cages and exhibits enhanced BET surface area of 1453m2/g. While chemical stability does 

is not improved over traditional MOFs, PCN-352 exhibits thermal stability to 400oC. 

Moderate gas uptake for H2 and CO2 are observed for PCN-352.     
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4. HIGH-THROUGHPUT SYNTHESIS OF MIXED-LINKER METAL-

ORGANIC FRAMEWORKS THROUGH LIGAND CO-ASSEMBLY 

High-throughput techniques are a powerful tools to investigate the synthesis of 

new MOF materials due to the nature of their synthesis. The synthesis of MOFs are 

optimized through one-pot hydrothermal or solvothermal reactions with small variations 

in reaction condition influencing their formation. Due to the wide variety of possible 

reaction conditions, combinatorial methods are beneficial for elucidating the contribution 

of reaction components on the formation of MOFs. For characterization purposes, x-ray 

quality single crystals are needed to facilitate structural determination; however, crystal 

growth is reliant on many factors including solvent, starting material ratios, pH, reaction 

temperature, modulating reagents, and reaction time. For implementation of a material, a 

powder might instead be desired requiring entirely different reaction conditions. In this 

study, high-throughput synthetic techniques have been utilized to synthesis optimize the 

synthesis of PCN-352 and to develop two new MOF, PCN-353 and PCN-354. These new 

MOFs were synthesized using a mixed-ligand co-assembly of a given linker and pyrazole.    
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4.1 INTRODUCTION 

 Recent advances in robotic and automated synthesis has pushed researchers to 

study new methods for the rapid synthesis and characterization of materials. A 

combinatorial approach has recently be utilized as a high-throughput method for the 

synthesis of MOFs.84-85 The synthesis of MOFs is a challenge process due to the many 

variables that contribute to the formation of new materials including: metal-ligand ratios, 

solvent, temperature, modulation reagent, and pH.7, 86 

 

 

 

Figure 22 Proposed combinatorial approach to improve efficiency of synthesis and 

characterization of new MOFs.  
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The synthesis and characterization of new MOFs is a time consuming process 

including: continual design and synthesis of new ligands (weeks), solvothermal MOF 

synthesis (weeks), and structure determination through powder or single crystal X-ray 

diffraction (days-weeks). Thus, an ideal combinatorial approach (Figure 22) could 

drastically increase the development of new materials through combining ligand and MOF 

synthesis using a high-throughput synthetic platform, and coupling automated PXRD 

characterization with data-mining to enhance structural determination.  Perhaps the 

biggest challenge for these materials is characterization of a large number of samples 

generated through the high-throughput method (Figure 23).  

 

 

 

Figure 23 Characterization of MOFs through single crystal and powder X-ray diffraction. 
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 In this study, we have chosen to use reticular synthesis to investigate the formation 

of new MOFs with structural topology of the previous reported PCN-352. Reticular 

chemistry is a powerful concept for exploring new MOFs. In this approach, ligands and 

SBUs are selected such that known topologies are formed upon synthesis based on their 

connectivity and geometric properties. Linear elongated bis(imidazolate) linkers are 

selected to enhance porosity of PCN-352 type MOFs by increasing the pore size. The 

Pz3Cu3O SBUs is again used to provide the 12-connected supramolecular node. Based on 

reticular synthesis, we would expect to observe enlargement of pore size of the truncated 

octahedral and truncated tetrahedral cages as the linker is elongated.  

 In this project, a Chemspeed SLT-II synthetic platform was used for high-

throughput synthesis. The platform was equipped with a volumetric transfer unit 

consisting of one milliliter syringes and fluorosilane coated needles (acid-base resistance), 

and a 50 vial reaction plate (Figure 24). Reaction conditions of PCN-352 were observed 

at 85oC, 100oC, and 120oC and with varying concentrations of pyrazole as a modulation 

reagent. The conditions that provide large yield and single crystallinity were selected for 

synthesis with pyridine as a modulation reagent. The synthetic procedure was then 

completed to observe the formation of PCN-353 and PCN-354.  
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Figure 24 Chemspeed® SLT-Swing high-throughput synthetic platform. The platform is 

fully configurable with a variety of vial and rack options. The TAMU instrument is 

equipped with a solid depensing unit, volumetric syringes and coated needles, 4 

configured rack for vials (1ml-50ml), vial capper, and vortexing heated plates.  

 

 

4.2 EXPERIMENTAL SECTION* 

General Information. Copper (II) Nitrate hemipentahydrate, N,N-

dimethylacetamide, Pyrazole, 1,2,3,5-Benzenetetraamine Tetrahydrocloride, 3,3’-

diaminobenzidine  Formic Acid, Sodium Hydroxide, Pyridine, p-Phenylenediamine, 

3,3’,5,5’-tetramethylbenzidine and N,N’-dimethylformamide,  were all purchased from 

                                                 

* Ligand and MOF synthesis performed with assistance from Madison Haas, Mitchel Johnson, and Mario 

Cosio. Structural studies were performed with the assistance of Ying-Pin Chen, Dr. Yusheng Chen, and 

Dr. Andrey Yakovenko.  
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commercially available sources and were used as received. 1H NMR data were collected 

on a Mercury 300 MHz NMR spectrometer. FT-IR data were recorded on an IRAffinity-

1 instrument. TGA data were obtained on a TGA-50 (SHIMADZU) thermogravimetric 

analyzer with a heating rate of 3 °C min-1 under a N2 atmosphere. 

Instrumentation. 1H NMR data were collected on a Mercury 300 MHz NMR 

spectrometer. FT-IR data were recorded on an IRAffinity-1 instrument. TGA data were 

obtained on a TGA-50 (SHIMADZU) thermogravimetric analyzer with a heating rate of 

3 °C min-1 under a N2 atmosphere. Synchrotron-based single crystal diffraction (APS) 

experiments were performed at the ChemMatCars 15-BM beamline of the Advance 

Photon Source in Argonne National Laboratory. Synchrotron-based powder diffraction 

(APS) experiments were performed at the 17-BM beamline of the Advance Photon Source 

in Argonne National Laboratory. 

General Synthesis Procedure H2PBI and H2BPBI.87 A linear diamine starting 

material was added to a round bottom flask with a magnetic stir bar and DMF was added 

to the flask. The flask was fitted with an air-jacked condenser and heated at 100oC for 

overnight. The reaction was then mixed with distilled water and the resulting precipitate 

was collected by vacuum filtration, rinsed with water and dried in a vacuum oven 

overnight.    
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Scheme 3 Synthesis of H2PBI. 

 

 

Synthesis of  6,6’-(1,4-phenylene)bis(indeno[5,6-d]imidazole-5,7(1H,6H)-

dione) (H2PBI). p-Phenylenediamine (1.5g, 13.9mmol) and 5,6-dicarboxylic acid 

benzimidazole (5.73g, 27.8mmol) was added to a round bottom flask with DMF (100mL). 

The flask was fitted with an air-jacketed condenser and heated at 135oC overnight. The 

reaction was then mixed with distilled water (100mL). The resulting precipitate was 

isolated as a cream colored powder by vacuum filtration, washed with water, and dried 

overnight in a vacuum oven. The reaction produced 2.58g of H2PBI with 43.0% yield. 1H-

NMR (300 MHz, DMSO-d6): 13.3 (2H, bs, N-H), 8.61 (2H, s), 8.22 (2H, s), 8.13 (2H, s), 

7.64 (4H, s). Elemental Analysis: C26H14N4O4: C 64.3, H 2.70, N 18.7, O 14.3; found: C 

63.4, H 2.84, N 18.6.  

 

 

 

Scheme 4 Synthesis of H2BPBI.  
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Synthesis of 6,6’-(3,3’,5,5’-tetramethyl-[1,1’-bephenyl]-4,4’-

diyl)bis(imidazo[4,5-f]isoindole-5,7(1H,6H)-dione (H2BPBI). 3,3’,5,5’-

tetramethylbenzidine (3.00g, 12.4mmol) and 5,6-dicarboxylic acid benzimidazole (5.14g, 

24.8mmol) and DMF (150mL) was added to a round bottom flask fitted with an air-

jacketed condenser and heated at 135oC overnight. The reaction was then treated with 

water (150mL). The resulting precipitate was isolated by vacuum filtration, washed with 

water, and dried overnight in a vacuum oven. The reaction produced 4.77g of H2PBI with 

66.3% yield. 1H-NMR (300 MHz, DMSO-d6): 13.3 (4H, bs), 8.60 (2H, bs), 8.16 (2H, bs), 

7.6 (2H, s), 2.15 (12H). Elemental Analysis: C34H24N6O4: C 70.34, H 4.17, N 14.47, O 

11.02; found: C 66.88, H 4.96, N 13.45.  

Synthesis of 3,3’-Dibenzimidazole (H2DBI). 3,3’-Diaminobenzidine (10g, 

46.7mmol) was treated with formic acid (50mL) for 2 h at 100oC. The reaction was then 

mixed with ice water (50ml) and neutralized with 10% sodium hydroxide solution. The 

precipitate was isolated as a cream colored powder, washed with water, and dried 

overnight in a vacuum oven. The Reaction produced 9.8g of H2BBI with 98.9% yield. 1H-

NMR (300 MHz, DMSO-d6): 8.62 (H, s) (Formic Acid), 8.24 (2H, s), 7.84 (2H, d), 7.65 

(2H, dd), 7.51 (2H, dd),. 13C NMR (300MHz, DMSO-d6): δ 164.9 (Formic Acid), 143.0, 

138.9, 138.0, 122.1, 116.2, 113.7. Elemental Analysis: C14H11N4*4CHO2: C 52.05, H 

3.61, N 13.50, O 30.84; found: C 48.33, H 3.6, N 12.70.  

High-throughput Synthesis. A Chemspeed SLT-II Swing synthetic platform was 

used for MOF synthesis. Chemspeed Autosuite was used for all programming and for 

workflow. Volumetric transfer was performed using Chemspeed syringes with accuracy 
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± 10µL. All starting materials were dissolved into stock solutions with fixed 

concentrations in DMA. The solutions were then mixed based on reaction parameters into 

borosilicate vials and heated for 2-4 days (Table 1). Multiple experiments were performed 

with optimal runs reported.    

Synthesis of PCN-353. A mixture of H2PBI (4 mg, .009mmol) and 

Cu(NO3)2·2.5H2O (14 mg,  .06mmol), and Pyrazole (24.5mg, .36mmol) each in DMA 

were volumetric transferred, using a robotic platform, to a 1 dram vial and the solution 

was brought to 3mL. The vial was sealed, heated to 100 °C for a 3 day, and blue cubic 

shaped crystals of PCN-353 were collected, washed with DMA. Elemental analysis 

(%):found: C 48.25, H 6.47, N 11.07. 

Synthesis of PCN-354. A mixture of H2BPBI (2.75 mg, .0048mmol) and 

Cu(NO3)2·2.5H2O (14 mg,  .06mmol), and Pyrazole (24.5mg, .36mmol) were each  added 

to a 1 dram vial for a total reaction volume of 3mL DMA using a robotic platform. The 

vial was sealed, heated to 100 °C for 3 days, and black octahedral shaped crystals of PCN-

354 were collected, washed with DMA. Elemental analysis (%): found: C 48.25, H 6.63, 

N 16.08. 
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Table 1 Sample high-throughput synthesis conditions of PCN-352. 

 Metal Linker Pyrazole Solvent 
 

    

ID eq mmol mL eq mmol mL eq mmol mL mL 

1 1 0.06 1 0.1 0.006 0.4 2 0.12 0.2 1.4 

2 1 0.06 1 0.15 0.009 0.6 2 0.12 0.2 1.2 

3 1 0.06 1 0.2 0.012 0.8 2 0.12 0.2 1 

4 1 0.06 1 0.25 0.015 1 2 0.12 0.2 0.8 

5 1 0.06 1 0.1 0.006 0.4 4 0.24 0.4 1.2 

6 1 0.06 1 0.15 0.009 0.6 4 0.24 0.4 1 

7 1 0.06 1 0.2 0.012 0.8 4 0.24 0.4 0.8 

8 1 0.06 1 0.25 0.015 1 4 0.24 0.4 0.6 

9 1 0.06 1 0.1 0.006 0.4 6 0.36 0.6 1 

10 1 0.06 1 0.15 0.009 0.6 6 0.36 0.6 0.8 

11 1 0.06 1 0.2 0.012 0.8 6 0.36 0.6 0.6 

12 1 0.06 1 0.25 0.015 1 6 0.36 0.6 0.4 

13 1 0.06 1 0.1 0.006 0.4 8 0.48 0.8 0.8 

14 1 0.06 1 0.15 0.009 0.6 8 0.48 0.8 0.6 

15 1 0.06 1 0.2 0.012 0.8 8 0.48 0.8 0.4 

16 1 0.06 1 0.25 0.015 1 8 0.48 0.8 0.2 

17 1 0.06 1 0.1 0.006 0.4 10 0.6 1 0.6 

18 1 0.06 1 0.15 0.009 0.6 10 0.6 1 0.4 

19 1 0.06 1 0.2 0.012 0.8 10 0.6 1 0.2 

20 1 0.06 1 0.25 0.015 1 10 0.6 1 0 
 

    

 

 

Low-pressure gas adsorption measurements. Gas sorption isotherm 

measurements were performed on ASAP 2020 and ASAP 2420 Surface Area and Pore 

Size Analyzers. Due to the extension of the linker, framework collapse is likely under 

normal degassing activation on the analyzer. As such, these MOFs were activated by 

solvent exchange followed by supercritical CO2 drying. As-synthesized samples of PCN-

353 and PCN-354 were immersed in dry DMA for 24 h and the supernatant decanted. 
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Fresh dry DMA was subsequently added and the crystals remained in the solvent for an 

additional 24 h. Each sample was collected by decanting and the procedure repeated once 

more with dry DMA. PCN-353 and PCN-354 were then removed from the solvent and 

activated using a Tousimis Samdri PVT-3D supercritical point dryer.88 N2 isotherms were 

then measured at 77K to determine porosity and N2 uptake.  

X-ray crystallography. Single crystal X-ray diffraction (XRD) measurements 

were performed on a Bruker SMART APEXii diffractometer equipped with CCD detector, 

an Oxford Cryostream low temperature device, and a fine-focus sealed-tube X-ray source 

(Mo-Kα radiation, λ = 0.71073 Å, graphite monochromated) operating at 50 kV and 30 

mA. Raw data collection and refinement were performed using SMART. The powder X-

ray diffraction patterns (PXRD) were recorded on a BRUKER D8-Focus Bragg-Brentano 

X-ray Powder Diffractometer equipped with a Cu sealed tube (λ = 1.54178 Å) at room 

temperature. Synchrotron-based powder diffraction (APS) experiments were performed at 

the 17-BM beamline of the Advance Photon Source in Argonne National Laboratory. The 

simulated PXRD spectra were obtained by the diffraction-crystal module of the Mercury 

program based on the single-crystal data. The program is available free of charge via 

internet at http:/www.iucr.org.  

Crystal data for PCN-353. Blue cubes, cubic, space group Pa3, a = 47.9128 b 

= 47.9128 c = 47.9128 α = 90.00 β = 90.00 γ = 90.00. Rexp= 0.24%, Rwp= 2.66%, 

Rp=1.48%, Goof= 11.31 

Crystal data for PCN-354. Black octahedral, cubic, space group Pa3, a = 

52.497(15) b = 52.497(15) c = 52.497(15) α = 90.00 β = 90.00 γ = 90.00.  



 

55 

 

4.3 RESULTS AND DISCUSSION 

Syntheses. In Section 3, PCN-352 was synthesized using a mixed ligand approach; 

however, large excesses of pyrazole was needed and the morphology was not well defined. 

Using a high-throughput synthetic platform, the synthesis of PCN-351 was investigated to 

determine the effect of ligand concentration, temperature, and modulating reagent on the 

formation of the MOF. First, PCN-351 was investigated at 85oC, 100oC, and 120oC for 3-

4 days. The ratio of ligand to metal was modulated from 0.1 molar equivalents to 0.25 

molar equivalents. Pyrazole was also used as a modulating reagent varying concentrations 

from 0 molar equivalents to 8 molar equivalents with respect to metal concentration.  

 The results of the robotic synthesis of PCN-352 have been graphically summarized 

in Figure 25 and Figure 26. In the case of each temperature, an unidentifiable green 

amorphous power was observed at low or zero equivalents of pyrazole, which is expected 

due to the absence of pyrazole which forms the Pz3Cu3O SBU. The experiments with zero 

molar equivalence were screened due to the possibility of forming a MOF solely with the 

bis(imidazolate) linkers. It is also important to note that no reaction was observed for PCN-

352 at 85oC for 3 day, the reaction needed an extra day of time for the formation of 

material. For reactions at 85oC and 100oC, no reaction was observed at low concentration 

of ligand (0.1 eq and 0.15eq) and low concentration of pyrazole (2 eq). Also, higher 

concentration of pyrazole (6 eq and 8 eq) and low concentration of ligand resulted in the 

formation of a small molecule Cu(pyrazole)4 complex. At 85oC for 4 days, PCN-352 was 

only observed at ligand concentration of 0.25 molar equivalents. Additionally, only small 

amounts and crystal size was observed at 4 equivalents pyrazole. 
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Figure 25 Crystallization diagrams for the high-throughput investigation of the system 

Pyrazole /Cu(NO3)2  and H2BDI/Cu(NO3)2 in DMA at 85 ° C for 4 days (a) and 120 ° C 

for 3 days (b) based on powder XRD measurements. 

 

 

 At the elevated temperature of 120oC for 3 days, a product was observed at every 

reaction condition. For low concentration of pyrazole (0 eq and 2 eq), amorphous material 

was observed at every concentration of H2BDI. However, in at 0.2 and 0.25 molar 

equivalents of H2BDI, small amounts of PCN-352 were observed. The formation of PCN-

352 is segmented into the top right quadrant of the crystallization diagram signify the need 

for excess pyrazole for MOF formation as observed in Section 3. At low concentration of 
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linker, the excess pyrazole tends to favor the formation of the copper cluster. At both 85oC 

and 120oC the transition point seems to be 4 equivalence of pyrazole.   

  

 

 

Figure 26 Single crystal material and crystallization diagrams for the high-throughput 

investigation of the system Pyrazole /Cu(NO3)2  and H2BDI/Cu(NO3)2 in DMA at 100 ° 

C for 3 days based on powder XRD measurements. a) small molecule copper pyrazolate 

cluster, b) blue spherical crystals of PCN-352 obtained under excess pyrazole conditions, 

c) cubic blue crystals of PCN-352 obtained with 2 drops pyridine, d) crystallization 

diagram for reaction with excess pyrazole, and e) crystallization diagram for reaction with 

pyridine.   

 

 

Lastly, at 100oC the transition for MOF formation again appears to be 4 equivalents 

of pyrazole with respect to copper (II) nitrate with small crystals formed at these 

concentrations. Large blue spherical crystals are observed at the condition of 0.25 eq 
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Pyrazole /Cu(NO3)2  and 6 eq H2BDI/Cu(NO3)2. These optimized conditions were further 

used to test synthesis with pyridine as a modulating reagent. Under the reaction contions, 

4 eq Pyrazole /Cu(NO3)2, 0.25 eq H2BDI/Cu(NO3)2,  and 2 drops pyridine, blue cubic 

single crystal were observed. These results point to better control of crystal morphology 

and growth using pyridine rather than excess pyrazole.  

 As the optimal reaction conditions for PCN-352 were observed at 100oC, similar 

reaction conditions were evaluated for the synthesis of new MOFs with H2PBI and 

H2BPBI. Screening at 100oC for 3 days with DMA resulted in the formation of the new 

MOF, PCN-353 (Figure 27). At low pyrazole concentration, only amorphous powder is 

observed except for the mixed product at 2 eq pyrazole and .25 eq H2PBI. Above 4 

equivalents of pyrazole, solely PCN-352 is synthesized. The optimal condition based on 

excess pyrazole were 6 eq Pyrazole/Cu(NO3)2  and .15 H2PDI/Cu(NO3)2 forming crystals 

with undefined morphology. These conditions were further tested with pyridine yielding 

PCN-353 at conditions above 4 eq of pyrazole. The use of pyridine allowed for the 

formation of blue cubic crystals at lower pyrazole concentration. These crystals were later 

characterized by X-ray diffraction.   
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Figure 27 Single crystal material and crystallization diagrams for the high-throughput 

investigation of the system Pyrazole /Cu(NO3)2  and H2PBI/Cu(NO3)2 in DMA at 100 ° C 

for 3 days based on powder XRD measurements. a) crystallization diagram for reaction 

with excess pyrazole, b) crystallization diagram for reaction with pyridine, and c) blue 

cubic crystals of PCN-353 obtained with 1 drops pyridine.  
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Figure 28 Single crystal material and crystallization diagrams for the high-throughput 

investigation of the system Pyrazole /Cu(NO3)2  and H2BPBI/Cu(NO3)2 in DMA at 100 ° 

C for 3 days based on powder XRD measurements. a) crystallization diagram for reaction 

with excess pyrazole, b) crystallization diagram for reaction with pyridine, and c) black 

octahedral crystals of PCN-354 obtained with 1 drops pyridine.  

 

 

Lastly, the crystallization conditions were tested with the H2BPBI linker (Figure 

26) yielding similar results to PCN-352 and PCN-353; however, MOF growth seems 

independent of modulating reagent concentration at higher ligand concentration (0.08 eq 

H2BPBI). Cluster formation is observed at low H2BPBI concentration and high pyrazole 
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concentration. PCN-354 was obtained as octahedral black crystals at the following 

reaction conditions: 6 eq Pyrazole/Cu(NO3)2  and .08 H2BPBI/Cu(NO3)2 with or without 

pyridine modulating reagent.  

Structural Studies. Due to the large porosity of these MOFs, solving the crystal 

structure through single crystal X-ray diffraction is challenging due to void space within 

the molecule. For this reason, powder X-ray samples were measured at both Argonne 

National Laboratory at beamline 17-BM and Lawerence Berkeley National Laboratory at 

Beamline 11.3.1. This data was paired with single crystal measurements performed at 

Argonne National Laboratory beamline 15-BM. PCN-353 and PCN-354 both exhibit 

cubic symmetry and crystallize in the Pa3 space group.    

 

 

 

Figure 29 Pawley whole powder pattern decomposition for PCN-353. Red line is the 

calculated pattern, blue line is experimental pattern, and gray line is difference in patterns. 

 

 

 Pawley powder pattern decomposition was used to match the experimental pattern 

with the simulated structure and the fit is well matched (Figure 29). The structure of PCN-



 

62 

 

353 and 354 is composed of three molecular cages, 12-connected cuboctahedral cages, 

truncated octahedral cages, and truncated tetrahedral cages (Figure 30 and Figure 31). The 

twist of the ligand from PCN-352 is not observed in these structures due to the absence of 

chirality in the linkers. With the elongation of the linker, the cages are enlarged and stretch 

into the mesoporous domain.     

 

 

 

Figure 30 Structural representation of PCN-353 and PCN-354 and packing of molecular 

cages. a) cuboctahedral cage, b) truncated octahedral cage, and c) truncated tetrahedral 

cage. 
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Figure 31 Structure of PCN-353. cubic, space group Pa3, a = 47.9128 b = 47.9128 c = 

47.9128 α = 90.00 β = 90.00 γ = 90.00. Cu = turquoise; C = black; N= dark blue O = red; 

H and coordinated solvent excluded, for clarity. 

 

 

Porosity and Nitrogen Uptake. Nitrogen isotherms at 77K were measured to 

determine surface area once activated by supercritical point CO2 drying. PCN-353 exhibits 

a high uptake of N2 (~1000 cm3/g at 1 bar) and surface area (3085 m2/g) with characteristic 

mesoporous adsorption isotherm. PCN-354 exhibits lower N2 uptake (~500 cm3/g) and 

BET surface area (1845 m2/g) most likely due to framework collapse as no signs of 

mesoporosity are observable in the isotherm. 
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Figure 32 Nitrogen isotherms of PCN-353 and PCN-354 measured at 77K. 

 

 

4.4 CONCLUSIONS 

 In this section, the optimized synthesis of PCN-352 is reported and these results 

were utilized to perform the reticular synthesis of PCN-353 and PCN-354. These MOF 

have been isolated using high-throughput synthesis and the effects of temperature, ligand-

to-metal ratios, and modulation reagents have been observed. The use of pyridine instead 

of pyrazole as a modulating reagent increases the uniformity of crystal morphology for 

the PCN-35x series. Indicating that the use of non-bridging or topologically different 

modulating reagents may need to be explored in other areas of MOF synthesis. These 

MOFs were characterized by synchrotron single crystal X-ray diffraction to determine unit 

cells and refined using synchrotron powder X-ray diffraction. The MOFs exhibit enhanced 

porosity and high N2 uptakes and high BET surface area (3085 m2/g and 1845 m2/g, 

respectively).  
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5. TOPOLOGY GUIDED DESIGN AND SYNTHESES OF HIGHLY STABLE 

MESOPOROUS PORPHYRINIC ZIRCONIUM MOFS WITH HIGH SURFACE 

AREA* 

Through a topology guided strategy, a series of Zr6 containing isoreticular 

porphyrinic MOFs, PCN-228, PCN-229 and PCN-230, with ftw-a topology were 

synthesized using the elongated porphyrinic linkers. The highly conjugated porphyrin ring 

effectively prevents the network interpenetration which often appears in MOFs with 

increased linker length. The pore aperture of the structures range from 2.5 nm to 3.8 nm 

and among them PCN-229 demonstrates the highest porosity and BET surface area among 

the previously reported Zr-MOFs. Additionally, by changing the relative direction of the 

terminal phenyl rings, this series replaces a Zr8 cluster with a smaller Zr6 cluster in a 

topologically identical framework. The high connectivity of the Zr6 cluster yields 

frameworks with enhanced stability despite high porosity and ultra-large linker. As a 

representative example, PCN-230, constructed with the largest porphyrinic linker, shows 

excellent stability in aqueous solutions with pH values ranging from 0 to 12 and 

demonstrates one of the highest pH tolerances among all porphyrinic MOFs. This work 

not only presents a successful example of rational design of MOFs with desired topology, 

but also provides a strategy for construction of stable mesoporous MOFs.  

                                                 

*Reproduced with permission from “Topology Guided Design and Syntheses of Highly 

Stable Mesoporous Porphyrinic Zirconium MOFs with High Surface Area”, Liu, T.-F.; 

Feng, D.; Chen, Y.-P.; Zou, L.; Bosch, M.; Yuan, S.; Wei, Z.; Fordham, S.; Wang, K.; 

Zhou. H.-C., J. Am. Chem. Soc., 2015, 137, 1, 413–419. American Chemical Society © 

2015. 
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5.1 INTRODUCTION 

Mesoporous metal-organic frameworks (MOFs) have attracted great interest as 

heterogeneous platforms to immobilize or encapsulate functional moieties, such as 

organometallic catalysts, nanoparticles and enzymes.23, 89-92 However, compared with the 

well-explored microporous MOFs, mesoporous MOFs are relatively under-developed. 

This is ascribed to the difficulty in organic linker extension, challenges in activation of 

MOFs with ultra-large pores, as well as the common appearance of undesired 

interpenetration.23, 93 Moreover, the stability of the framework becomes difficult to 

maintain after extension of the organic linker, especially for mesoporous materials whose 

applications are usually conducted under aqueous or harsh chemical environments. The 

majority of reported carboxylate containing MOFs are constructed with relatively soft 

Lewis acidic metal species, such as Cu2+ and Zn2+. The weak coordination bond between 

the soft Lewis acid and hard Lewis base causes their low stability and severely hampers 

further exploration of their potential.94 To improve the chemical stability of MOFs, hard 

Lewis acidic species such as Al3+, Fe3+, Cr3+ and Zr4+, which can form much stronger 

bonds with carboxylates, are often incorporated.3, 14, 26, 69, 95-103 Despite thus adjustment, as 

isoreticular chemistry is applied to augment the internal cavity of known MOF structures, 

the pore size and stability are usually inversely correlated.  

One strategy to compensate for the low stability of MOFs constructed with large 

linkers is to increase the connectivity of either organic linkers or inorganic clusters.104-105 

The Zr6 cluster (Zr6O4OH4(COO)12), which has the highest connectivity among reported 

zero dimensional (0-D) inorganic nodes in MOFs, is an outstanding example which 
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endows the framework with excellent stability.14, 95, 100, 102, 106 In particular, when the linker 

also exhibits high connectivity, the obtained MOFs are manifested to be robust even with 

very large pore size.107 Hence, further increasing the overall connectivity of Zr-MOFs 

could be an effective strategy allowing construction of highly stable mesoporous MOFs 

with ultra-large linkers. 

Porphyrinic derivatives as organic linkers have been extensively explored in MOFs 

due to their versatile functionality, such as catalysis, light harvesting and sensing.108-115 

Moreover, porphyrinic linkers usually have very large size (~2 nm), which assists in 

generating large pores inside the frameworks, resulting in mesoporous MOFs. In order to 

achieve the high connectivity, we used elongated tetratopic carboxylate porphyrin ligand 

H4TCPP (tetrakis (4-carboxyphenyl) porphyrin) and the twelve connected Zr6 cluster to 

construct mesoporous MOFs. The fully occupied Zr6 is twelve-connected with Oh 

symmetric and the free H4TCPP is four-connected with D4h symmetry (Figure 1). 

Topological connection of these two nodes to each other could ideally give rise to a high 

connected ftw-a network. However, not only the connectivity and symmetry of nodes, but 

also the direction and relative position between each node are crucial for topological 

design and the latter is often neglected when modulating the building units to obtain the 

desired structure. In other words, even if both connectivity and symmetry are perfectly 

matched, it is still not possible to form the expected framework if the relative directions 

of nodes are not correctly arranged.116-120 

Herein, guided by topology and symmetry, porphyrinic linkers (named as H4TCP-

1, H4TCP-2 and H4TCP-3) were elongated with desired conformation by arranging the 
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vicinal phenyl ring and carboxylate group. Through combination of the organic linkers 

and twelve connected Zr6 cluster, a series of mesoporous MOFs with ftw-a topology, 

namely PCN-228, PCN-229, and PCN-230 (PCN stands for the porous coordination 

network) were synthesized. The pore size of these MOFs ranges from 2.5 nm to 3.8 nm 

and PCN-229 shows both the highest porosity as well as BET surface area among all the 

previously reported Zr-MOFs. Moreover, the ligand extension does not impair the stability 

of the material. PCN-230, as a representative, which is constructed with the largest linker, 

shows excellent stability in aqueous solutions with pH ranging from 0 to 12, demonstrating 

the highest pH tolerance among all previously reported porphyrinic MOFs. 

 

 

Figure 33 Assembly of Oh and D4h nodes into ftw-a network. 
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5.2 EXPERIMENTAL SECTION* 

General Information. Zirconium(IV) chloride, N,N-dimethylformamide (DMF), 

Hexanes, Ethyl acetate, Methanol (MeOH), Ethanol (EtOH), Tetrahydrofuran (THF), 

Triethylamine (Et3N), Dichloromethane (CH2Cl2), Acetone, Hydrochloride acid (HCl), 1, 

2-Dimethoxyethane (DME), Tetra-n butylammonium fluoride 1M soln in THF (TBAF), 

Boron triflouride (BF3OEt2), Sodium Hydroxide (NaOH), Copper (I) iodide (CuI), 3, 4-

dicholoro-5, 6-dicyano-1, 4-benzoquinone (DDQ), Ethyl - 4 - iodobenzoate, 4-

Bromobenzaldehyde were all purchased from Alfa Aesar. 1.4 Diiodo-2, 5-dimethyl 

benzene, 1, 4-Diethyloxybenzene were purchased from TCI. Bis (triphenylphosphine) 

palladium (II) Dichloride (Pd(PPh3)2Cl2) was purchase from Matrix Scientific. 

Trimethylsilyl acetylene was purchased from Oakwood. 3, 4-Diethyl pyrrole was 

purchased from Frontier. 4-Methoxy carbonylphenylboronic acid was purchased from AK 

Scientific Inc. 

Instrumentation. The powder X-ray diffraction patterns (PXRD) were recorded 

on a BRUKER D8-Focus Bragg-Brentano X-ray Powder Diffractometer equipped with a 

Cu sealed tube (λ = 1.54178 Å) at room temperature. Synchrotron-based powder 

diffraction (APS) experiments were performed at the 17-BM beamline of the Advance 

Photon Source in Argonne National Laboratory. The simulated PXRD spectra were 

obtained by the diffraction-crystal module of the Mercury program based on the single-

                                                 

* Ligand and MOF synthesis performed with assistance of Tian-fu Liu, Dawei Feng, Lanfang Zou. 

Structural studies were performed with assistance from Ying-pin Chen, Mathieu Bosch, and Zhangwen 

Wei.  
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crystal data. The program is available free of charge via internet at http:/www.iucr.org. 

Thermogravimetric analysis (TGA) was conducted on a TGA-50 (SHIMADZU) 

thermogravimetric analyzer in the air atmosphere. Nuclear magnetic resonance (NMR) 

data were collected on a Mercury 300 spectrometer. Gas sorption measurements were 

conducted using a Micrometritics ASAP 2020 system at different temperatures. PCN-229 

or PCN-230 were activated by supercritical carbon dioxide using MADRIDE prior to gas 

adsorption. 

Synthesis of 1. 4-Bromobenzaldehyde (1.8 g, 10 mmol), 4-Methoxy 

carbonylphenylboronic acid (1.79 g 10 mmol) Pd(PPh3)2Cl2 (288 mg, 0.4 mmol) and CuI 

(57 mg, 0.3 mmol) were charged in a three-necked round bottom flask. The flask was 

connected to the Schlenk line then vacuum and refilled nitrogen alternately for three time. 

150 mL dimethyoxyethane (DME) was bubbled with nitrogen for 30 min at room 

temperature (RT) to degas, then was added through a cannula. The mixture was stirred 

and heated to reflux for 48h under the nitrogen atmosphere. After cooling it to RT, The 

solvent was removed and the residual powder was dissolved in CH2Cl2 (100 mL) and H2O 

(100 mL). The aqueous phase was extracted with CH2Cl2 (50 mL) four times. The mixed 

organic phase was dried with MgSO4. After the solvent was removed, the crude product 

was recrystallized by acetone/methanol to give the white product 1.5 g. (yield. 62%).1H 

NMR (300 MHz, CDCl3) δ 10.11 (s, 1H) 8.02 (d, J = 7.99 Hz, 2H), 8.18 (d, J = 7.99 Hz, 

2H), 7.82 (d, J = 8.22 Hz, 2H), 7.74 (d, J = 7.99 Hz, 2H), 3.99 (s, 3H). 

Synthesis of 2 and H4TCP-1. A solution of 1 (1.5 g, 6.25 mmol) in dry CH2Cl2 

450 mL was charged in a two-necked round bottom flask under nitrogen atmosphere 
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followed by the addition of 0.85 mL (6.25 mmol) 3, 4-Diethyl pyrrole. After stirring 15 

min, BF3OEt2 0.15 mL was add and the mixture was stirred for more 2 h at RT. DDQ (3, 

4-dicholoro-5, 6-dicyano-1, 4-benzoquinone, 1 g, 4.4 mmol) were added and reflux 

another 2 h to complete the reaction. The solvent was evaporated followed by 

recrystallization in CH2Cl2 / Methanol (0.5% NaOH) 150 mL. 2 was obtained as green 

powder after filtration. The obtained ester was stirred in a 90 mL mixture of THF : MeOH : 

H2O = 1 : 1 : 1, to which 1.4 g NaOH was added and heated to reflux overnight. After 

cooling to RT, the mixture was filtered to obtain green solid. The solid was then stirred in 

50 mL water and acidified with 20% HCl. After heating and stirring the mixture for 2 h, 

green solid was collected by filtration, washed with water and dried in vacuum to give 

1.1g (0.83mmol) pure compound H4TCP-1 (yield. 53%).1H NMR (300 MHz, CDCl3) δ 

8.72 (d, 8H), 8.18 (d, 8H), 8.03 (d, 8H), 7.82(d, 8H), 2.11 (b, 16H), 0.71 (b, 24H). Refluxed 

NiCl2 (500 mg) and H4TCP-1 (300 mg) in DMF solution for 12 hours to get the H4TCP-

1-Ni complex for Mass spectroscopy (for better solubility). 

 



 

72 

 

500 1000 1500 2000 2500 3000 3500 4000 4500

 H
4
TCP-1-Ni

In
te

n
s
it
y

Mass (m/z)

1376.7369

 

Figure 34 MALDI MS (positive ion mode) of H4TCP-1-Ni (theoretical mass 1376.2604). 
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Scheme 5 Synthesis of H4TCP-1. 

 

 

Synthesis of 3. Ethyl-4-iodobenzoate (2.7 g, 10 mmol), Pd(PPh3)2Cl2 (288 mg, 0.4 

mmol) and CuI (57 mg, 0.3 mmol) were charged in a three-necked round bottom flask 

followed by three evacuation and refill cycles with nitrogen on a schlenk line. A 200 mL 

mixture of Et3N: THF = 1:1 was bubbled with nitrogen for 30 min at RT to degas, and 

added to the reaction flask through a cannula. Trimethylsilyl acetylene (1.7 mL, 12 mmol) 

was added by syringe. The mixture was stirred at RT for 5 h under nitrogen atmosphere. 

The solvent was removed and the crude product was purified by a short column (EtOAc / 
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n-hexane = 1/6) to yield yellow oil 2.1 g. (yield. 85%). 1H NMR (300 MHz, CDCl3) δ 7.98 

(d, 2H), 7.52(d, 2H), 4.38 (q, 2H), 1.38 (t, 3H), 0.25 (s, 9H). 

Synthesis of 4. 3 (2.95 g, 12 mmol), 4-Bromobenzaldehyde (2.6g 14mmol), 

Pd(PPh3)2Cl2 (316 mg, 0.45 mmol) and CuI (57 mg, 0.3 mmol) were charged in a three-

necked round bottom flask followed by three evacuation and refill cycles with nitrogen on 

a schlenk line. A 200 mL mixture of Et3N: THF = 1:1 was bubbled with nitrogen for 30 

min at RT to degas, then was added to the reaction flask through a cannula. TBAF (Tetra-

n butylammonium fluoride 1M soln in THF) 12mL was added dropwise and the resulting 

mixture was stirred at RT for 4 h under nitrogen atmosphere. The solvent was removed 

and the residual powder was recrystallized by acetone / Methanol (150 mL) to give a white 

product 1.52 g. (yield. 45%). 1H NMR (300 MHz, CDCl3 ) δ 10.07 (s, 1H), 8.09 (d, J = 

8.14 Hz, 2H), 7.92 (d, J = 8.06 Hz, 2H), 7.73 (d, J = 8.37 Hz, 2H), 7.65 (d, J = 8.16 Hz, 

2H), 4.43 (q, J = 7.12 Hz, 2H) 1.44 (t, J = 7.14 Hz, 3H).  

Synthesis of 5 and H4TCP-2. A solution of 4 (2.55 g 9.1 mmol) in dry CH2Cl2 

550 mL was charged in a two-necked round bottom flask under nitrogen atmosphere 

followed by the addition of 1.22 mL (9.1 mmol) 3,4-Diethyl pyrrole. After stirring 15 min, 

BF3OEt2 0.17 mL was added and the mixture was stirred for 2 h at RT. DDQ (1.6 g, 7 

mmol) was added and reflux another 2 h to complete the reaction. The solvent was 

evaporated followed by recrystallization in CH2Cl2 / Methanol (0.5% NaOH) 150 mL. 5 

was obtained as green powder after filtration. The obtained ester was stirred in a 120 mL 

mixture of THF : MeOH : H2O = 1 : 1 : 1, to which 2 g NaOH was added and heated to 

reflux overnight. After cooling to RT, the mixture was filtered to obtain green solid. The 



 

75 

 

solid was stirred in 50 mL water and acidified with 20% HCl. After heating and stirring 

the mixture for 2h, green solid 5 was collected by filtration, washed with water and dried 

in vacuum to give 1.4 g (0.99 mmol) pure product H2TCP-2 (yield. 44%). 1H NMR (300 

MHz, CDCl3) δ 8.73 (d, 8H), 8.22 (d, 8H), 8.09 (d, 8H), 7.87(d, 8H), 2.15 (b, 16H), 1.36 

(b, 24H). 
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Figure 35 MALDI MS (positive ion mode) of H4TCP-2 (theoretical mass 1416.5925). 
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Scheme 6 Synthesis of H4TCP-2. 

 

 

Synthesis of 6. 3 (2.46 g, 10mmol) was dissolved in 60 mL THF and stirred at RT. 

TBAF 10mL was added and the mixture was allowed to react for 15min. The solvent was 

then removed and the crude product was purified by a short column (EtOAc / n-hexane = 

1/7) to give the yellow oil 6 1.6 g. (yield. 92%). 1H NMR (300 MHz, CDCl3): δ 7.99 (d, 

2H), 7.51 (d, 6H), 4.39 (q, 2H), 3.22 (s, 1H) 1.37 (t, 3H).  

Synthesis of 7. A mixture of Xylene (1.78 g, 16.8 mmol), I2 (6.86 g, 27 mmol), 

HIO4•2H2O (3.1 g, 13 mmol) was placed into a 100 ml flask, and H2SO4 (1 ml), 

CH3COOH (24mL), H2O (5 ml) was added into flask, and the mixture was stirred at 90°C 
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for 10h. The reaction mixture was diluted with 250 ml water to remove acid and the 

resulted precipitate was filtered, and washed with Methanol to yield the white solid 7 5.4 

g. Yield: 80 %. 1H NMR (300 MHz, CDCl3): δ 7.68 (s, 2H), 2.37 (s, 6H) 

Synthesis of 8. 7 (3.5 g, 10 mmol), Pd(PPh3)2Cl2 (288 mg, 0.4 mmol) and CuI (57 

mg, 0.3 mmol) were charged in a three-necked round bottom flask followed by three 

evacuation and refill cycles with nitrogen on a schlenk line. A 200 mL mixture of Et3N: 

THF = 1:1 was bubbled with nitrogen for 30 min at RT to degas, then was added to the 

reaction flask through a cannula. Trimethylsilyl acetylene (1.1 mL, 8 mmol) was added 

by syringe. The mixture was stirred at RT for 5h under nitrogen atmosphere. The solvent 

was removed and the crude product was purified by column (hexane) to give 8 as yellow 

oil 1.6g (yield. 63% based on Trimethylsilyl acetylene).1H NMR (300 MHz, CDCl3 ) δ 

7.68 (s, 1H), 7.30 (s, 1H), 2.37 (s, 6H), 0.28 (s, 9H). 

Synthesis of 9. 6 (1.74 g 10 mmol), 8 (3.27 10mmol) Pd(PPh3)2Cl2 (316 mg, 0.45 

mmol) and CuI (57 mg, 0.3 mmol) were charged in a three-necked round bottom flask 

followed by three evacuation and refill cycles with nitrogen on a schlenk line. A 200 mL 

mixture of Et3N: THF = 1:1 was bubbled with nitrogen for 30 min at RT to degas, then 

was added to the reaction flask through a cannula. The resulting mixture was stirred at RT 

for 4 h under nitrogen atmosphere. The solvent was removed and the residual powder was 

purified by column (EtOAc / n-hexane = 1/7) to give the white product 1.91 g. (yield. 

51%). 1H NMR (300 MHz, CDCl3 ) δ 8.05 (d, J = 8.65 Hz, 2H), 7.60 (d, J = 8.65 Hz, 2H), 

7.36 (d, J = 7.85 Hz, 2H), 4.42 (q, J = 7.13 Hz, 2H), 2.44 (d, J = 14.87 Hz, 6H), 1.43 (t, J 

= 7.13 Hz, 3H), 0.29 (s, 9H) 
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Synthesis of 10. 9 (1.87 g, 5 mmol), 4-Bromobenzaldehyde (0.91g 5 mmol), 

Pd(PPh3)2Cl2 (288 mg, 0.4 mmol) and CuI (57 mg, 0.3 mmol) were charged in a three-

necked round bottom flask. The flask was connected to the Schlenk line then vacuum and 

refilled nitrogen alternately for three time. A 200 mL mixture of Et3N: THF = 1:1 was 

bubbled with nitrogen for 30 min at RT to degas, then was added to flask through a 

cannula. TBAF 5mL was added dropwise and the resulting mixture was stirred at RT for 

4 h under the nitrogen atmosphere. The solvent was removed and the residual powder was 

recrystallized by acetone / CH2Cl2 (150 mL) to give the white product 1.72 g. (yield. 84%). 

1H NMR (300 MHz, CDCl3) δ 10.06 (s, 1H), 8.07 (d, J = 8.64 Hz, 2H), 7.91 (d, J = 8.51 

Hz, 2H), 7.71 (d, J = 8.17 Hz, 2H), 7.62 (d, J = 8.66 Hz, 2H), 7.44 (s, 2H), 4.43 (q, J = 

7.13 Hz, 2H), 2.52 (s, 6H), 1.44 (t, J = 7.13 Hz, 3H).  

Synthesis of 11 and H4TCP-3. A solution of 10 (2.03 g 5 mmol) in dry CH2Cl2 

600 mL was charged in a two-necked round bottom flask under nitrogen atmosphere 

followed by the addition of 0.67 mL (5 mmol) 3,4-Diethyl pyrrole. After stirring 15 min, 

BF3OEt2 0.17 mL was added and the mixture was stirred for 2 h at RT. DDQ (1.6 g, 7 

mmol) was added and reflux another 2 h to complete the reaction. The solvent was 

evaporated followed by recrystallization in CH2Cl2 / Methanol (0.5% NaOH) 150 mL. 11 

was obtained as green powder after filtration. The obtained ester was stirred in a 120 mL 

mixture of THF : MeOH : H2O = 1 : 1 : 1, to which 2.5 g NaOH was added and heated to 

reflux overnight. After cooling to RT, the mixture was filter to obtain green solid. The 

obtained solid was stirred in 60 mL water and acidified with 20% HCl. After heating and 

stirring the mixture for 2 h, green solid was collected by filtration, washed with water and 
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dried in vacuum to give 0.99 g (0.51 mmol) pure product H4TCP-3 (yield. 41%) 1H NMR 

(300 MHz, CDCl3) δ 8.76 (d, 8H), 8.21(d, 8H), 8.04 (d, 8H), 7.74(d, 8H), 7.63 (s, 8H), 

2.54~2.51 (m, 24H), 2.17 (b, 16H), 1.06 (b, 24H). 
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Figure 36 MALDI MS (positive ion mode) of H4TCP-3 (theoretical mass 1928.8429). 
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Scheme 7 Synthesis of H4TCP-3. 

I2, HIO4, H2O,
I

I

Si

I

Si
7

COOEt

Si

TABF

COOEt

H

3 6

COOEt

9

11

H4TCP-3

N

NH N

HN

COOH

COOH

COOH

HOOC

N

NH N

HN

COOEt

COOEt

COOEt

EtOOC

Si

Br

CHO

COOEt

CHO

N

10

8

THF

H2SO4, AcOH CuI, Pd(PPh3)2Cl2
THF, NEt3

CuI, Pd(PPh3)2Cl2
THF, NEt3

BF3¡¤OEt2 
DDQ,   CH2Cl2, 
reflux

1: NaOH, EtOH,
    THF, H2O

2:HCl

CuI, Pd(PPh3)2Cl2
THF, NEt3



 

81 

 

Synthesis of PCN-228 (Zr6(OH)4O4(TCP-1)3•10DMF•2H2O). ZrCl4 (15 mg), 

H4TCP-1 (15 mg) and benzoic acid (350mg) in 2 mL of DMF were ultrasonically 

dissolved in a 4 mL Pyrex vial. The mixture was heated to 120 ºC in an oven for 12 h. 

After cooling down to room temperature, dark green crystals 16 mg were harvested by 

filtration (Yield. 85%). Found. C, 67.51; H, 5.63; N, 4.56%. 

Synthesis of PCN-229 (Zr6(OH)4O4(TCP-2)3•45DMF •25H2O). ZrCl4 (15 mg), 

H4TCP-2 1415 (15 mg) and benzoic acid (350mg) in 2 mL of DMF were ultrasonically 

dissolved in a 4 mL Pyrex vial. The mixture was heated to 120 ºC in an oven for 12 h. 

After cooling down to room temperature, dark green crystals 14 mg were harvested by 

filtration (Yield. 82%). Found. C, 56.98; H, 5.95; N, 7.20 %. 

Synthesis of PCN-228’. Although we can obtain the single crystal of PCN-228, 

it’s failed to get the single crystal X-ray diffraction data because of the small crystal size. 

However, using the similar ligands H4TCP-1’ (Scheme 1), we can obtained very large 

single crystal PCN-228’ whose structure can be successfully determined by single crystal 

X-ray diffraction. The PXRD of PCN-228 is identical with the simulated PXRD of PCN-

228’ indicating the isostructure of these two MOFs. The structure and phase purity of 

PCN-228 thereby were determined. C216 H120 N12 Ni3 O32 Zr6 

Synthesis of PCN-228’. ZrCl4 (15 mg), H4TCP-1’ (15 mg) and acetic acid 

(0.4mL) in 2 mL of DMF were ultrasonically dissolved in a 4 mL Pyrex vial. The mixture 

was heated in 120 ºC oven for 12 h. After cooling down to room temperature, dark red 

crystals were harvested by filtration. Although we can obtain the single crystal of PCN-

228, it’s failed to get the single crystal X-ray diffraction data because of the small crystal 
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size. However, using the similar ligands H4TCP-1’ (Scheme 1), we can obtained very large 

single crystal PCN-228’ whose structure can be successfully determined by single crystal 

X-ray diffraction. The PXRD of PCN-228 is identical with the simulated PXRD of PCN-

228’ indicating the isostructure of these two MOFs. The structure and phase purity of 

PCN-228 thereby were determined.  
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Figure 37 The structure of H4TCP-1’. 
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Scheme 8 Syntheses of H4TCP-1, 2 and 3 using the precursor of n1, n2, and n3. 
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Synthesis of PCN-229 (Zr6(OH)4O4(TCP-2)3•45DMF •25H2O). ZrCl4 (15 mg), 

H4TCP-2 (15 mg) and benzoic acid (350mg) in 2 mL of DMF were ultrasonically 

dissolved in a 4 mL Pyrex vial. The mixture was heated to 120 ºC in an oven for 12 h. 

After cooling down to room temperature, dark green crystals 14 mg were harvested by 

filtration (Yield. 82%). Found. C, 56.98; H, 5.95; N, 7.20 %. 

Single X-ray Crystallography. Single crystal X-ray crystallographic data of 

PCN-228’ and PCN-230 were collected on a Bruker single crystal APEXII CCD 

Diffractometer with Mo Kα (λ = 0.71073 Å) at 110 K. All structures were solved by direct 

methods and refined by full-matrix least-squares on F2 using SHELXTL.121 Non-hydrogen 

atoms were refined with anisotropic displacement parameters during the final cycles. 

Organic hydrogen atoms were placed in calculated positions with isotropic displacement 

parameters set to 1.2 × Ueq of the attached atom. The solvent molecules are highly 

disordered, and attempts to locate and refine the solvent peaks were unsuccessful. 

Contributions to scattering due to these solvent molecules were removed using the 

SQUEEZE routine of PLATON;83 structures were then refined again using the data 

generated. Crystal data were summarized in Table 1. The CIF file can be obtained free of 

charge from the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif (CCDC 1038049 for PCN-228’, 1038050 for PCN-

230). After the initial structural solution was found based on the single crystal X-ray 

diffraction data of PCN-228’, the structures of PCN-228 and 229 were refined by a self-

consistent iterative procedure in which successive geometry optimization calculations 

were performed using the Forcite module of Materials Studio 6.0.62  
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Gas Adsorption of PCN-228, PCN-229 and PCN-230. Before the gas sorption 

experiment, as-synthesized PCN-228(~100 mg) was washed twice with DMF and acetone, 

respectively. Fresh acetone was subsequently added, and the sample was allowed to soak 

for 24 h to exchange and remove the nonvolatile solvates (DMF). After the removal of 

acetone by decanting, the samples were activated by drying under vacuum, then dried 

again by using the ‘outgas’ function of the adsorption instrument for 5 h at 100 ºC prior to 

gas adsorption/desorption measurement. For PCN-229 and PCN-230, the as-synthesized 

samples (~100 mg) were washed with DMF three times and then soaked in fresh DMF 

overnight. Afterwards, the samples were activated by supercritical CO2 and then dried 

again by using the ‘outgas’ function of the adsorption instrument for 5 h at 100 ºC prior to 

gas adsorption/desorption measurement. 

Stability test of PCN-228, 229 and 230. About 200 mg of as-synthesized samples 

were separated into several portions and transferred to vials containing aqueous solutions 

with different pH values. After 24h, the samples were washed with fresh DMF twice for 

PXRD measurement or activated by supercritical CO2 for N2 adsorption. 
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Figure 38 The PXRD of PCN-228 after treated with different aqueous solution. 
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Figure 39 The PXRD of PCN-229 after treated with different aqueous solution. 
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Figure 40 The PXRD of PCN-230 after treated with different aqueous solution.  

 

 

5.3 RESULTS AND DISCUSSION 

Porphyrinic ligands were chosen for reticular chemistry in this work for several 

reasons. The porphyrin ligand is synthesized from a condensation reaction; elongation of 

the precursor provides a facile method for the effective enlargement of the target ligands. 

The elongated porphyrin is relatively easier to synthesize compared with other organic 

linkers with comparable size. Additionally, the center of a porphyrin is a highly conjugated 

bulky solid ring, which usually inherently prevents interpenetration. Therefore, using a 

porphyrinic organic linker could be an effective approach to obtain extra-large pores in 

MOFs. Moreover, the porphyrin center endows the obtained mesoporous MOFs with 

versatile functionality which has potential for a wide array of applications. Owing to their 
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large size and the use of relatively soft Lewis acidic metal species as nodes, most reported 

porphyrinic MOFs suffer from weak stability, which severely hampers their application. 

Utilizing hard Lewis acidic species as inorganic nodes in porphyrinic MOFs has 

remarkably improved the chemical stability and extended their use under harsh chemical 

environments.107, 116-120 

As shown in Figure 41, the ftw-a network is composed of the twelve connected Oh 

nodes and four connected D4h nodes. However, when substituting the corresponding nodes 

with the twelve connected Zr6 clusters and TCPP ligands to construct ftw-a topology, the 

peripheral phenyl rings have to rotate into the same plane with the porphyrin. The rotation 

on position I (Figure 41a) is forbidden because of the steric effect between the porphyrin 

ring and the phenyl ring. The rotation on position II would destroy the conjugated system 

between carboxylates and benzene rings, which is also highly energetically non-preferred. 

Therefore, these two building units are unable to form the ftw-a network because of their 

incompatible direction (Figure 41b). The previously reported Zr6 cluster usually adopts 

reduced connectivity and symmetry to form other networks with TCPP;107, 119-120 is fully 

occupied by TCPP with an energetically disfavored conformation;120 or alternatively, the 

Zr8 cluster needs to be incorporated with TCPP to construct the highly connected ftw-a 

network as represented in PCN-221 (Figure 41d). However, this framework is not stable 

in aqueous environments because of the charge unbalanced Zr8 cluster.118 
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Figure 41 a) Representation of the connections between the Oh node and D4h node when 

combining Zr6 and H4TCPP, and the sterically controlled phenyl and carboxylate angle. b) 

Substitution of the Zr6 cluster and H4TCPP in ftw-a topology and the chemically forbidden 

conformation of ligand (highlighted with red circle). c) Representation of the Zr6 and Zr8 

cluster, and the 90o rotation of the carboxylate groups between these two clusters. d) 

Structure of PCN-221 constructed with Zr8 cluster and H4TCPP. e) Structure of PCN-228 

constructed with Zr6 cluster and H4TCP-1 (ethyl groups were omitted for clarity).  
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     To overcome such conflicts and construct stable mesoporous porphyrinic Zr-

MOFs with ftw-a topology, the elongated porphyrinic ligand H4TCP-1, H4TCP-2 and 

H4TCP-3 were designed with desired conformation by well-arranging the vicinal phenyl 

rings and carboxylate groups. By taking advantage of the steric effect between porphyrin 

center and connected phenyl rings as well as the adjacent two phenyl rings, the four 

carboxylate groups in H4TCP-1 are likely to stay in the same plane with the porphyrin 

center which is necessary to form the ftw-a network with Zr6. In contrast, we try to 

alleviate the steric effect as much as possible for H4TCP-2 and H4TCP-3. The ethynyl 

group is known to promote low or no barrier torsional motion for the vicinal phenyl 

rings.122 In H4TCP-2 and H4TCP-3, ethynyl moieties were used for ligand elongation, 

which allow the peripheral benzoates to rotate freely to stay in the same plane as the 

porphyrin center without significantly increasing the inherent energy. Therefore, the 

ligands can adopt a compatible direction with the Zr6 cluster to construct fta-w network. 

Meanwhile, eight ethyl substituents were introduced in the porphyrin rings aiming to 

increase the solubility of ligands (Scheme 8). Solvothermal reaction of H4TCP-1 (H4TCP-

2 and H4TCP-3), ZrCl4 and acetic acid in DMF give rise to large dark green cubic crystals, 

namely PCN-228, PCN-229 and PCN-230 respectively (Figure 42a, 42b and 42c). Single 

crystal x-ray diffraction reveals a space group of Pm͞3m for PCN-228’ and. The overall 

frameworks are based on uniform cubes, each of which has faces consisting of the 

porphyrinic linker.  
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Figure 42 Structures and crystals of a) PCN-228, b) PCN-229, c) PCN-230, d) 

Experimental and simulated PXRD of PCN-228, 229 and 230. (Simulated PXRD of PCN-

228 and PCN-229 were calculated from the simulated structure) 
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Although single crystals are also obtained for PCN-229, the diffraction is too weak 

to solve the structure due to their relatively small size. Hence, an isoreticular structure 

model of PCN-229 was constructed using Material Studio 6.0,15 and further confirmed 

by synchrotron powder X-ray diffraction (PXRD) collected at 17-BM beamline at 

Advanced Photon Source, Argonne National Laboratory. PCN-228 and PCN-230 are also 

confirmed by the PXRD patterns (Figure 42d). Due to the extra-large size of these 

porphyrinic linkers, all three MOFs are mesoporous with pore size ranging from 2.5 nm 

to 3.8 nm (Figure 42a, 42b and 42c). As we expected, all the peripheral benzoates stay in 

plane with the porphyrin center, which allows the formation of the ftw-a network with the 

twelve-connected Zr6 cluster. Although these MOFs are constructed from Zr6 clusters, they 

share the same space group and topology with PCN-221 wherein the peripheral benzoates 

in TCPP are perpendicular to the central porphyrin ring. Structural analysis of PCN-221 

has shown the carboxylate groups of the Zr8 cluster have a 90o rotation compared with that 

of the Zr6 cluster (Figure 41). With this orientation, these two nodes are compatible to 

form the ftw-a topology. However, even with theoretically qualified nodes, some reported 

zirconium porphyrin MOFs possess reduced connectivity and symmetry due to the 

incompatible directionality of the metal nodes and linker, resulting in the obtained 

frameworks with diminished pH stability compared with the 12-connected PCN-228 

series.98, 117, 119-120These examples demonstrate that not only the symmetry, but also the 

relative direction of each node, must be considered in topological MOFs design.  

To the best of our knowledge, PCN-230 exhibits the largest pore among all Zr-

MOFs. If we consider Zr-MOF growth as a ligand substitution process taking place with 
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Zr clusters, it is a more entropically favored process when the connecting number on the 

cluster is higher.57 Supposing that bond energy of the Zr-carboxylate bond is similar for 

different connectivity arrangements, the twelve-connected porphyrinic Zr-MOFs could be 

energetically more favored compared to other porphyrinic Zr-MOFs with lower 

connectivity (it should have a lower Gibbs free energy due to the entropy effect).  

In order to assess the porosity of PCN-228, 229 and 230, we performed N2 sorption 

measurement at 77 K. PCN-228, PCN-229 and PCN-230 show N2 uptake of 1245 cm3/g, 

1455 cm3/g and 1085 cm3/g respectively (Figure 42a). The experimental Brunauer-

Emmett-Teller (BET) surface area is 4510 m2/g for PCN-228, 4619 m2/g for PCN-229 and 

4455 m2/g for PCN-230. PCN-229 shows both the highest porosity and BET surface area 

among all the previously reported Zr-MOFs as well as among porphyrinic MOFs.123-129 

The BET surface areas were calculated to be 4178 m2/g for PCN-228, 4935 m2/g for PCN-

229 and 7154 m2/g for PCN-230 by Materials Studio 6.0 using the “atom volumes and 

surfaces” function. The inconsistency of experimental and calculated surface area comes 

from the difficulty in activation of ultra-high porosity material. The extremely large cavity 

can easily trap unreacted ligands and metal clusters which are difficult to remove during 

the activation process. From TGA curves, we can see that the weight loss of PCN-230 is 

smaller than that of PCN-229 after solvent removal at 100oC. Moreover, PCN-230 left 

more residue than PCN-229 after complete decomposition. This unusual phenomenon 

supports the idea that PCN-230 may contain bulky trapped species that could not be 

removed. Moreover, PCN-230 has the lowest stability among these MOFs, which also 

accounts for the unexpectedly low N2 uptake compared with PCN-228 and PCN-229.  
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The MOFs reported in this work show high gravimetric surface area. Especially 

when the volumetric surface area is considered, PCN-228 is very outstanding among those 

well-known MOFs. Typically, the MOFs with large pore size possess relative low 

gravimetric and volumetric surface area. However, PCN-228 and PCN-229 possess much 

higher gravimetric and volumetric surface area compared with PCN-221 bearing much 

smaller pore size. The great improvement of both the volumetric and gravimetric surface 

areas can be ascribed to the replacement of the Zr8 clusters with the smaller Zr6 clusters. 

The low volumetric surface area of PCN-230 can be ascribed to its extremely low crystal 

density (0.189 g/cm3). However, it is still comparable with PCN-221 which has higher 

density (0.48 g/cm3) but much lower gravimetric surface area. Overall, this series of 

mesoporous MOFs possesses high and permanent porosity after removal of solvent 

molecules, demonstrating its excellent physical stability. 

The Zr6 cluster is fully occupied by twelve carboxylates from the porphyrinic 

linkers and gives rise to the highest connectivity among Zr-MOFs, hence this series of 

MOFs were expected to possess excellent chemical stability. We tested the chemical 

stability of PCN-230 as a representative, with consideration that MOF stability decreases 

along with the increase of the linker length for isoreticular structures. After being soaked 

in aqueous solutions with pH values ranging from 0 to 12 (prepared by HCl and NaOH 

solution respectively) for 24 hours, the PXRD patterns of PCN-230 are almost unaltered, 

which suggests maintenance of the crystallinity. To further confirm that the frameworks 

were intact, we performed N2 adsorption measurement for samples after different 

treatments. N2 uptake measurements of PCN-230 after treatment have minimal deviation 
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from the pristine sample, which indicates the robustness of the framework under harsh 

chemical conditions (Figure 42b). To our knowledge, PCN-230 shows the highest stability 

in the widest pH range among previously reported porphyrinic MOFs despite its extremely 

large linker. Stability tests of PCN-228 and PCN-229 treated with different aqueous 

solutions were also conducted (Figure 38 and Figure 39). The well maintained PXRD 

patterns of the samples after different treatments demonstrate that PCN-228 and PCN-229 

are stable even in 1M HCl for 24 hours, displaying higher stability than PCN-230. This 

series of Zr-MOFs with elongated linkers successfully realize the combination of meso-

porosity with high stability, and would be of great potential for application in nano-scale 

chemistry.  

5.4 CONCLUSIONS 

In conclusion, through topological and symmetry analysis, we developed a series 

of twelve-connected Zr6 containing porphyrinic MOFs with ftw-a topology using 

elongated porphyrinic linkers. Among them, PCN-230 exhibits the largest cage (3.8nm) 

and PCN-229 shows both the highest porosity and BET surface area among previously 

reported Zr-MOFs. PCN-230, constructed with the largest linker, shows excellent stability 

in aqueous solutions with pH ranging from 0 to 12, which is the widest range among all 

porphyrinic MOFs. 
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6. SYNTHESIS OF A COPPER-BASED PORPHYRINIC MOF FROM MIXED 

LIGAND CO-ASSEMBLEY 

 Topological analysis suggests that the connectivity of an imidazolate porphyrinic 

linker would possess the necessary geometry to form a mesoporous MOF isostructural to 

the previous reported 12-connected Zr6 series. In this study, an elongated porphyrin linker 

was readily synthesized through amine-dicarboxylic acid coupling. High-throughput 

synthesis was then used to construct PCN-355 through the previously discussed mixed-

linker co-assembly approach. The structure was further evaluated through synchrotron 

powder and single crystal X-ray diffraction. PCN-355 also exhibits high N2 uptake (~850 

cm3/g) at 77K and BET surface area (2264 m2/g). No interpenetration is observed and the 

pore size of the MOF reaches 3.2 nm. Lastly, CO2 and H2 gas studies were performed to 

evaluate potential for gas storage applications.   

 

 

 

 

 

 

 

 

 

 



 

97 

 

6.1 INTRODUCTION 

 Porphyrinic MOFs are an interesting class of porous materials due to the potential 

to form MOFs with large surface areas and high porosity without the potential for 

interpenetrated structures.107, 109-110, 130-131 Several porphyrinic MOFs are composed of 

mesopores, allowing potential use in a variety of applications including biomimetic 

catalysis, gas storage, enzyme immobilization, and sensing applications.115, 132-135 

Porphyrinic linkers in MOFs have recently been targeted due to the ability to incorporate 

functionality that closely mimics metalloproteins such as heme.136 The porphyrin 

architectures can be further metalated to perform a wide array of catalytic functions with 

increased accessibility due to the porous nature of MOFs.107, 112, 116    

 In Section 5, a series of porphyrin MOFs with increased porosity was studied 

through the elongation of the porphyrin linker.131 These MOFs demonstrate our ability to 

control pore size in the ftw-a topology; however, the synthesis of these elongated 

porphyrins is complex and requires multiple step reactions, expensive catalysts, and 

extensive purification procedures. Our approach is to use easily synthesized amine 

functionalized porphyrin that can easily be coupled to a benzimidazole moiety through an 

amine-dicarboxylic acid coupling reaction.87 The elongated porphyrin used in this work is 

synthesized without the need of expensive catalyst and is easily collected through 

precipitation in water due to high conjugation. The addition of the benzimizaole group in 

this work through the green coupling reaction is a more efficient way of porphyrin 

elongation rather than the extension through palladium coupling. 
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6.2 EXPERIMENTAL SECTION* 

General Information. Copper (II) Nitrate hemipentahydrate, N,N-

dimethylacetamide (DMA), Pyrazole, 4-Nitrobenaldehyde, Pyrrole, Acetic Anhydride, 

Propionic Acid, Pyridine, Tin (II) Chloride, Chloroform, Hydrochloric Acid, Ammonium 

Hydroxide, Sodium Hydroxide, DMF, and Benzimidazole-5,6-dicarboxylic Acid were all 

purchased from commercially available sources and were used as received 

Instrumentation. 1H NMR data were collected on a Mercury 300 MHz NMR 

spectrometer. FT-IR data were recorded on an IRAffinity-1 instrument. TGA data were 

obtained on a TGA-50 (SHIMADZU) thermogravimetric analyzer with a heating rate of 

3 °C min-1 under a N2 atmosphere. The powder X-ray diffraction patterns (PXRD) were 

recorded on a BRUKER D8-Focus Bragg-Brentano X-ray Powder Diffractometer 

equipped with a Cu sealed tube (λ = 1.54178 Å) at room temperature. Synchrotron-based 

powder diffraction (APS) experiments were performed at the 17-BM beamline of the 

Advance Photon Source in Argonne National Laboratory.  

 

                                                 

* Ligand and MOF synthesis performed with assistance from Madison Haas and Mario Cosio. Structural 

studies were performed with assistance of Ying-Pin Chen, Dr. Yusheng Chen, Dr. Andrey Yakovenko, 

and Dr. Simon Teat.  
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Scheme 9 Synthesis of H4TBIPP. 

 

 

Synthesis of 1, tetrakis(4-nitrophenyl)porphyrin (TNPP).137To a solution of 

acetic anhydride (12mL) and propionic acid (300mL) was added 4-nitrobenzaldehyde 

(11g, 73mmol). The solution was brought to reflux and pyrrole (5ml, 73mmol) was added 

to the reaction and further refluxed for 30 mins. The resulting reaction was filtered and 

cooled overnight. The solution was then filtered and washed with water (600mL) and dried 

under vacuum. The resulting powder was dissolved in pyridine (80mL) and refluxed for 

1h and then placed in the freezer overnight. Upon filtering, a deep purple powder was 

recovered (2.1g, 15.4%) Mass Spec: Theoretical 794.19 m/z, Positive ion MALDI-MS 

Found: 795.20 m/z.    
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Synthesis of 2 tetrakis(4-aminophenyl)porphyrin (TAPP).137 A solution of 1 

(2.0 g, 2.5 mmol) in concentrated HCl (100mL) was bubbled under anhydrous nitrogen 

gas for 1h. Another solution of SnCl2*2H2O (9g, 40mmol) in concentrated HCl (140mL) 

was also bubbled under anhydrous nitrogen gas for 1 h. The tin (II) chloride solution was 

then cannulated into the porphyrin solution and the refluxed for 30mins under nitrogen 

atmosphere. The resulting solution was cooled to room temperature in a water bath then 

cooled further in an ice bath. The reaction solution was brought into air and centrifuged. 

The resulting dark powder was treated with sodium hydroxide (5%, 200mL) and 

centrifuged. The powder was again washed with water and dried under vacuum. The dark 

powder was then Soxhlet extracted with chloroform (400mL) for 2 days, then concentrated 

to 150mL and ethanol (100mL) was added to the solution and evaporated to dryness. A 

dark purple powder was collected (1.6g, 94%). 1H NMR (300 MHz, C5D5N) δ 5.26 (N-H, 

bs), 7.36 (8H, d), 8.20 (8H,d), 9.24 (8H, s), 14.0 (N-H, s). Mass Spec: Theoretical 674.29 

m/z, Positive ion MALDI-MS found 675.47 m/z.  

Synthesis of H4TBIPP, tertrakis((4-imidazo[4,5]isoindole-

5,7dione)phenyl)porphyrin (TBIPP).87 2 (1g, 1.48 mmol) was mixed with 

benzimidazole-5,6-dicarboxylic acid (1.22g, 5.93mmol) in DMF (75mL) and heated at 

135oC overnight. The solution was then washed with water and dried under vacuum to 

yield a metallic purple product (1.27g, 68%). 1H NMR (300 MHz, DMSO-d5) δ 5.7 (N-

H, bs), 8.28 (8H, d), 8.40 (8H,d), 9.01 (8H, s), 10.8 (N-H, s). Mass Spec: Theoretical 

1355.29 m/z, Positive ion MALDI-MS 1355.27 m/z.  
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Low-pressure gas adsorption measurements. Gas sorption isotherm 

measurements were performed on ASAP 2020 and ASAP 2420 Surface Area and Pore 

Size Analyzers. As-synthesized samples of PCN-354 were immersed in dry ethyl ether for 

24 h and the extract decanted. Fresh dry ethyl ether was subsequently added and the 

crystals remained in the solvent for an additional 24 h. Each sample was collected by 

decanting and the procedure repeated once more with dry ethyl ether. After the removal 

of ethyl ether by decanting, the samples were activated by drying under a dynamic vacuum 

at room temperature. Before the measurement, PCN-351 and PCN-352 was again further 

activated using the “degas” function of the surface area analyzer for 4 h at 25 °C. Other 

activation temperatures were tested, with the reported methods providing the best sorption 

properties.  

High-throughput Synthesis. A Chemspeed SLT-II Swing synthetic platform was 

used for MOF synthesis. Chemspeed Autosuite was used for all programming and for 

workflow. Volumetric transfer was performed using Chemspeed syringes with accuracy 

± 10µL. All starting materials were dissolved into stock solutions with fixed 

concentrations in DMA. The solutions were then mixed based on reaction parameters into 

borosilicate vials and heated for 3 days (Table 2). Multiple experiments were performed 

with optimal runs reported.    

Synthesis of PCN-355. A mixture of H4TBIPP (4.34 mg, .0032mmol) and 

Cu(NO3)2·2.5H2O (37.2 mg,  .16mmol), and Pyrazole (80mg, 1.28mmol) each in DMA 

were added to a 1 dram vial and the total was brought to 3mL using a robotic platform. 

The vial was sealed, heated to 100 °C for 3 days, and black cubic shaped crystals of PCN-
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355 were collected, washed with DMA. Elemental analysis (%): found: C 37.68, H 4.41, 

N 21.18. 

 

 

Table 2 Sample high-throughput synthesis conditions of PCN-355 

 Metal Linker Pyrazole Solvent 
 

    

ID eq mmol mL eq mmol mL eq mmol mL mL 

1 1 0.16 1 0.01 0.0016 0.4 2 0.32 0.2 1.4 

2 1 0.16 1 0.02 0.0032 0.6 2 0.32 0.2 1.2 

3 1 0.16 1 0.03 0.0048 0.8 2 0.32 0.2 1 

4 1 0.16 1 0.04 0.0064 1 2 0.32 0.2 0.8 

5 1 0.16 1 0.01 0.0016 0.4 4 0.64 0.4 1.2 

6 1 0.16 1 0.02 0.0032 0.6 4 0.64 0.4 1 

7 1 0.16 1 0.03 0.0048 0.8 4 0.64 0.4 0.8 

8 1 0.16 1 0.04 0.0064 1 4 0.64 0.4 0.6 

9 1 0.16 1 0.01 0.0016 0.4 6 0.96 0.6 1 

10 1 0.16 1 0.02 0.0032 0.6 6 0.96 0.6 0.8 

11 1 0.16 1 0.03 0.0048 0.8 6 0.96 0.6 0.6 

12 1 0.16 1 0.04 0.0064 1 6 0.96 0.6 0.4 

13 1 0.16 1 0.01 0.0016 0.4 8 1.28 0.8 0.8 

14 1 0.16 1 0.02 0.0032 0.6 8 1.28 0.8 0.6 

15 1 0.16 1 0.03 0.0048 0.8 8 1.28 0.8 0.4 

16 1 0.16 1 0.04 0.0064 1 8 1.28 0.8 0.2 

17 1 0.16 1 0.01 0.0016 0.4 10 1.6 1 0.6 

18 1 0.16 1 0.02 0.0032 0.6 10 1.6 1 0.4 

19 1 0.16 1 0.03 0.0048 0.8 10 1.6 1 0.2 

20 1 0.16 1 0.04 0.0064 1 10 1.6 1 0 
 

    

 

 

X-ray Crystallography. Single crystal X-ray structure determination of PCN-355 

were performed at 173(2) K using the Advanced Photon Source on beamline 15ID-B at 

Argonne National Laboratory to obtain unit cell of the MOF. Synchrotron-based powder 
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diffraction (APS) experiments were performed at the 17-BM beamline of the Advance 

Photon Source in Argonne National Laboratory. The simulated PXRD spectra were 

obtained by the diffraction-crystal module of the Mercury program based on the simulated 

single-crystal data. The program is available free of charge via internet at 

http:/www.iucr.org. 

Crystal data for PCN-355: dark black cubic, cubic, space group Pm3m, a = 32.8353 b = 

32.8353 c = 32.8353 α = 90 β =90 γ = 90 

6.3 RESULTS AND DISCUSSION 

High-throughput synthesis. In this study, a high-throughput synthetic protocol 

was used to synthesize a mesoporous porphyrinic MOF. Due to the high molecular weight 

of the H2TIBPP linker, the concentration was decreased for these screening studies in 

order to maintain ligand-metal ratios and to avoid solubility issues. PCN-351 was 

synthesized at 100oC in DMA. From the crystallization diagram, it was observed that at 

low molar concentrations of pyrazole and H2TBIPP yield unidentifiable amorphous 

powder and mixed phase materials. Higher concentration of pyrazole (6 eq, 8 eq, and 10 

eq) and low concentration of H2TBIPP yield pure phase PCN-355 as verified by powder 

x-ray diffraction.      
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Figure 43 Crystallization diagrams for the high-throughput investigation of the system 

Pyrazole /Cu(NO3)2  and H2TBIPP/Cu(NO3)2 in DMA at 100 ° C for 3 days based on 

powder XRD measurements.  

 

 

Structural Studies. PCN-355 were performed using synchrotron X-ray diffraction 

due to the low electron density due to the large unit cell of the framework. PCN-355 was 

found to crystalize in the cubic unit cell Pm3m, a = 32.8353 b = 32.8353 c = 32.8353 α 

= 90 β =90 γ = 90. PCN-355 is composed of the 12-connected cuboctahedron cages at the 

corners of the unit cell connected by bridging H2TBIPP molecules (Figure 44). PCN-355 
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was further refined using GSASII (Figure 45) based on the topology of PCN-228.131, 138 

Refinement of the powder pattern with respect to the calculated patterns shows that the 

unit cell is well matched.  

 

 

 

Figure 44 Structural representation of PCN-355 and packing of molecular cages. b) edge 

view of H2TBIPP linker, c) top view of H2TBIPP linker,  d) 12-connected cuboctahedral 

node.  
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Figure 45 Pawley whole powder pattern decomposition for PCN-355. green line is the 

calculated pattern, dark blue line is experimental pattern, and turquoise line is difference 

in patterns. 

 

 

Gas Studies. Due to the large mesopores within the structure, activation of the 

material for gas uptake can be challenging. Nitrogen isotherm at 77K was measured to 

determine surface area once activated by supercritical point CO2 drying.  PCN-353 

exhibits a high uptake of N2 (~850 cm3/g at 1 bar) and surface area (2264 m2/g). Moderate 

uptake of CO2 and H2 are observed with characteristic hysteresis due to capillary 

condensation of gases within the mesopores of the framework.   
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Figure 46 Nitrogen isotherms of PCN-355 measured at 77K. 

 

 

 

 

Figure 47 CO2 and H2 uptake isotherms of PCN-352 at 273K and 77K, respectively. 
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6.4 CONCLUSIONS 

 A new mesoporous porphyrinic MOF has been synthesized from a high-

throughput screening protocol with mixed linker co-assembly. PCN-355 was 

characterized by combining synchrotron powder X-ray diffraction and single crystal X-

ray. This MOF exhibits the expected 12-connected supramolecular building block 

connected through square planar porphyrin tetraimidazolate moieties. PCN-355 is 

isostructural to the previously reported Zr6 MOF from Section 5 as expected. Gas studies 

were performed with PCN-355 possessing high N2 uptake (~850 cm3/g) and BET surface 

area (2264 m2/g), and moderate H2 and CO2 uptake.   
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7. SUMMARY 

In this dissertation, the synthesis of new metal-organic frameworks through 

rational topological design and high-throughput techniques have been studied. Utilizing a 

mixed-ligand co-assembly process, several new MOFs have been synthesized with a 

triangular copper (II) SBU not often readily observed in the MOF literature. The formation 

of new MOFs through combinatorial synthetic techniques has also been investigated with 

a Chemspeed® synthetic platform.  In Section 2, an evaluation of combinatorial 

approaches to MOF synthesis was discussed.    

In the following four sections, the synthesis of several new MOFs were 

investigated. Section 3 examines an approach to synthesize novel mixed-ligand MOF 

composed of cubic metal-organic polyhedral cages through topological design. PCN-351 

was obtained with small channels and low porosity due to size and geometry of the H2BBI 

linker. The extension of the linker to an elongated bis(imidazolate) provides some 

flexibility in the structure and PCN-352 was synthesized composed of molecular cages. In 

Section 4, high-throughput synthesis was used to investigate the synthesis of new MOFs 

through a mixed-linker approach with modulation reagents. Two new MOFs, PCN-353 

and PCN-354, were synthesized using a high-throughput robotic platform. PCN-352 was 

used as starting point to optimize synthetic parameters with a pyridine modulating reagent. 

These new MOFs exhibit enhanced porosity and structural tuneability. 

In Section 5, topological design was used to synthesize a new series of Zr6 

porphyrinic MOFs with enhanced porosity and stability. Lastly, in Section 6, a new 
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porphyrinic MOF composed from twelve connected molecular cage was synthesized and 

isostructural to the reported Zr6 MOFs.  

From these studies, topological design and high-throughput synthesis have been 

shown to be a powerful tools for the development of new materials. The mixed-ligand co-

assembly process is an interesting new approach to synthesize MOFs where the SBU is 

formed with one ligand and then an additional linker connects the SBUs to form the 

framework. Nitrogen donor ligand are used to build upon the porosity of traditional 

carboxylate MOF, unfortunately in this system enhanced chemical stability is not 

observed. The synthesis of copper porphyrinic MOFs are rare and a new MOF has been 

synthesis with structural similarity to Zr6 series.  

Future work will explore the continued development of high-throughput synthetic 

protocols. A wealth of new MOF structures may exist using this mixed-linker approach. 

Judicious selection of the metal-nodes and linkers could yield futher interesting SBUs not 

readily observed in the literature. Examination of existing clusters in the literature 

combined with topological design and high-throughput synthesis will lead to the rapid 

development of materials with tuneable structural feature for a wide array of applications.      
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