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ABSTRACT

During a loss of coolant accident in a pressurized water reactor, borated water

is injected into the core through emergency core cooling system to reduce the decay

heat, remove excess reactivity, and maintain an adequate core cooling throughout the

full range of accident phases. Concentration of boric acid in the core is expected to

increase over time due to the continuous vaporization of water from the core. Under

certain conditions, the concentration may reach the solubility limit and precipitation

of boric acid may occur. Hot leg switchover is a manual emergency procedure involv-

ing simultaneous injection through both the hot and cold legs to ensure adequate

core flushing and prevent or mitigate precipitation of solid boric acid in the core.

The nuclear research community, industry, and regulatory commission are cur-

rently collaborating to understand the possible effects of the precipitation of boric

acid on adequate core cooling during the long–term phase of a loss of coolant sce-

nario, particularly in understanding whether modifications of the current procedures

are required. An experimental apparatus was constructed to conduct experiments

with de–ionized water and boric acid, to observe and study the flow behavior, and

to measure the boric acid concentration in boiling water environments in geometry

similar to a pressurized water reactor. Three methods for quantifying boric acid

content at very high concentrations, even exceeding saturation, were explored. A

gravimetric method for concentration determination proved to be the most effective

for high values as were observed in the test facility. Concentration of solution in the

test section was approximately solved using an analytic approach for comparison to

experimentally determined values.

During experimentation, concentrations of boric acid were found to increase lin-
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early with time. Rapid boiling in the test section induced uniform mixing in the

test section, causing no appreciable difference in the concentration trends between

various solution injection locations and other operational parameters of the facility.

The rate of increase of boric acid concentration in the solution was observed to be

proportional to the applied power to the heating rods in the facility test section.

Comparison of boric acid concentration with the analytical solution confirmed that

a fraction of the boric acid was transported within the vapor phase outside the test

facility. Fractional boric acid loss from the test section was found to be lower than

estimated from the observed losses during the calibration procedure.

The constructed facility is used in the study of effects of the precipitate on coolant

flow conditions related to cooling capabilities during the long-term cooling phase in

a loss of coolant accident. Acquiring this understanding could help the resolution

of General Safety Issue 191 as imposed by the United States Nuclear Regulatory

Commission.
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NOMENCLATURE

10 CFR Title 10, Code of Federal Regulations

Atest total heat transfer surface area in facility

BAP boric acid precipitation

C0 facility initial concentration

Ca concentration of added solution

Cs solubility limit of boric acid in water at 100◦C

CFD computational fluid dynamics

Dcore inner diameter of typical PWR core

DI de-ionized

Drod diameter of heating rods installed in facility

Dtest inner diameter of facility test section

EC electrical conductivity

ECCS emergency core cooling system

El loss of boric acid due to evaporation

GSI generic safety issue

Hcore height of typical PWR core

HPSI high pressure safety injection

HLSO hot leg switchover

Htest height of facility test section

LBLOCA large-break loss of coolant accident

LOCA loss of coolant accident

LPSI low pressure safety injection

MB mass of boric acid
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ṁin mass injection rate

ṁout mass loss rate

PASTA precipitation and stratification test apparatus

Pcore typical reactor power at time of SSO for a PWR

Pref
d typical reactor power density at time of SSO for a PWR

Pinst
test installed electric power in facility

Pref
test reference power for facility

PWR pressurized water reactor

Qin experimental inlet volumetric flow rate

Re Reynolds number

RPV reactor pressure vessel

RWST refueling water storage tank

Ri Richardson number

SBLOCA small-break loss of coolant accident

SSO sump switchover

SG steam generator

q”ref typical reactor heat flux during SSO for a PWR

USNRC United States Nuclear Regulatory Commission

Vtest facility test section free volume
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1. INTRODUCTION

Water circulates as the coolant and moderator in the primary loop of a pressurized

water reactor (PWR). Boron is added to the water in the form of dissolved boric

acid in order to control reactivity in the core during normal operation; boron also

provides the required negative reactivity to maintain a subcritical core configuration

during routine maintenance including refueling. In the event of a loss of coolant

accident (LOCA), the emergency core cooling system (ECCS) in a PWR is designed

to provide sufficient coolant throughput to the core to remove the decay heat, while

the voiding of the core provides sufficient reactivity for shutdown. In the first stages

of a LOCA, the ECCS injects cold water through the cold legs of the reactor pressure

vessel (RPV). In these first stages, the refueling water storage tank (RWST) serves

as the source reservoir for ECCS. In certain circumstances, additional borated water

may be injected from the cold leg accumulators in order to aid cooldown of the core

via the low pressure safety injection (LPSI) or high pressure safety injection (HPSI).

Excess water injected into the core overflows through the break, and is collected in the

containment sump. Following the depletion of RWST, or at sump switchover (SSO),

ECCS begins to draw water from the containment sump and recirculate it back

into the core. This stage of a LOCA can last up to several days, in which water

is continually recirculated from the sump until a cold shutdown condition can be

reached.

During this long term cool down phase, if enough water is evaporated, the

coolant may reach a saturated concentration causing boric acid to precipitate out of

solution[1]. As a method to prevent buildup of boron precipitates in the core, simul-

taneous injection through the cold and hot leg is initiated as a manual action by the
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operators at a time determined by plant specific analysis. This manual operation, hot

leg switchover (HLSO), is an important operational maneuver in the facilitation of

long term cooling of the core during LOCA events. Understanding the local behavior

of the borated water under boiling conditions and the possible effects of the pres-

ence of precipitated boric acid in the solution is necessary for verifying the manual

operation procedures currently in place for LOCA scenarios of different break sizes

and locations. Of particular interest would be scenarios where precipitation of boric

acid occurs, to study the effects of the precipitate on the water cooling capabilities

and the overall core coolability during the long-term cooling phase. Acquiring this

understanding could help the resolution of generic safety issue (GSI) 191[2], where

the combined effect of debris accumulation and boric acid precipitation can affect

core coolability.

1.1 Literature Review

With Title 10, Code of Federal Regulations (10 CFR) 50.46, the United States

Nuclear Regulatory Commission (USNRC) has mandated operational criteria for

ECCS during a variety of LOCA events in which could potentially cause chemical

precipitation along with debris to be accumulated on sump screen, negatively af-

fecting ECCS functionality. Resolution of GSI 191 should sufficiently demonstrate

that transport and accumulation of debris in containment following a LOCA will not

impede ECCS during operation in PWRs [2], and also that the core is maintained

at a sufficiently low temperature and power level during long term cooling stages

following a LOCA. Since the inception of GSI 191, numerous studies have been con-

ducted on various aspects of the debris and chemical precipitation accumulation in

PWR containment.

Buoyancy effects of dilution gradients of boric acid were studied by Cotton et al.[3]
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to determine loop concentrations following small-break LOCA (SBLOCA) events.

With 3D modeling in CFX-5, they were able to determine a strong correlation be-

tween the Richardson number (Ri) and the course of the outcome of a concentration

transient as in a SBLOCA. Even in low Ri regimes, similar to those seen in natural

circulation scenarios, mixing of the boron solution during transient was sufficient to

consider concentration stratification of the borated water minimal. In addition, an

independence of boron concentration stratification from Reynolds number (Re) was

seen for all calculations completed. Also studying the mixing of borated solutions

during transient scenarios, da Silva et al.[4] observed the effects of buoyancy on the

mixibility of two solutions. In PWR boron dilution transients, when borated water

is injected through the ECCS, the large differences in density between the injected

water and the coolant already contained within the core, due to both temperature

gradients and boron concentration, could pose a problem for the safety injection sys-

tem capability. In their experimental facility, a simple vertical loop equipped with an

advanced conductivity probe which provides high spatial and temporal detail, mixing

scenarios with water and a glucose solution were compared to results generated from

CFX-11 computational modeling software. Their analysis showed good agreement

between the experimental results and mixing phenomena seen in the computational

fluid dynamics (CFD) simulations, and again highlighted the correlation between Ri

and overall effectiveness of mixing. Their analysis, however, seems not to explore

extreme concentrations of solution in which densities can be vastly different, and

precipitate could impede the mixing flow between analytes.

Recent analysis of the ECCS during LOCA scenarios, especially those of the

long term cooling phase as done by Lee et al.[5], has made use of the limit that

no precipitation occurs in the core during the end stages of a LOCA event. In

their RELAP5 analysis, the simultaneous injection through both cold and hot legs
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in HLSO, along with containment spray to maintain cooling was seen to be sufficient

additive to prevent the high concentrations of boric acid in which precipitation would

occur[6]. This was seen to be the case even with a time-variant mixing volume as

would be seen in the decreasing in-core coolant level after the beginning stages of

a LOCA, as a faster observed increase of boric acid concentration leads only to an

earlier initiation of HLSO which provides sufficient core flushing.

Bucalossi et al.[7] performed experimental analysis in order to better understand

in-vessel conditions during boron dilution transients such as a LOCA event. Their

experimental results were also used as a bnechmark for the validation of various

numerical studies in regards to boron dilution transients. Their experimental facility

consisted of a four loop scaled model of the primary side of a PWR with a simplified

structure to simulate core geometry. The facility was used in the observation of two

types of experiments:

1. pump start-up scenarios;

2. steady operation of one to four loops

in which tracer slugs of salinated water mixing with tap water was used to measure

the mixing of coolant from loops through the RPV via electrical conductivity (EC)

measurements. With their facility they were able to see the inverse of flow of loops

which had pumps at rest during the startup of the test loop, as well as the propagation

of the a concentration gradient through the RPV post injection. They were able to

conclude that, with minimal changes in density from the circulating water and the

tracer slug, the overall mixing of the two solutions occurred relatively fast, and that

perturbations of the concentration of either solutions were small. This was true for

all flow rates they studied, with any number of loops isolated from the tested loop.
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Of significant concern during the potential precipitation of boric acid is the plate–

out of boric acid on the fuel rod cladding surface[8], which could compromise core

cooling and lead to fuel damage. With the PKL facility, Umminger et al. have sought

out to determine the amount of plate–out which may occur at saturation conditions,

and its effect on the heat transfer and flow characteristics of coolant during the long

term cooling phase. They also study any integral effects including loop pressure

drop, increase of pressure drop though the steam generator (SG) due to boric acid

accumulation and combined effect on the water level in the core. The PKL facility is

a scaled 1:1 elevation facility with diameters reduced by a factor of 12 (volume and

power scaling factor 1:145). It is equipped with EC probes to measure boric acid

concentration at points located at the core inlet, the core outlet, and the reflector

gap, as well as any in the four loops as detailed in [9, 10, 11, 12]. In their most recent

analysis with the PKL facility, Umminger et al. concluded that even with the loss

of a full loop during large-break LOCA (LBLOCA) scenarios, the mixing volume

for the coolant and injected borated water expands into the remaining loops’ SG,

causing minimal plate–out in the RPV and also the SG tubes; overall core cooling is

not compromised enough to prevent a decrease of the core power to 1%, low enough

to allow for a HLSO and initiate core flushing. Due to the size of the PKL facility,

however, it is assumed that the researchers may not want to reach the saturation

limit of the boric acid in water and that precipitation of boric acid in the core may

be difficult to handle and time consuming. The research conducted at PKL and

described in references [9, 10, 11, 12] seems to be limited to concentrations of boric

acid in the core lower than the saturation.

Another facility constructed to perform experiments on the in–vessel mixing phe-

nomena, as well as validation benchmarking for CFD simulations has been well doc-

umented. The Rossendorf Coolant Mixing Model (ROCOM) facility has been used
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alongside the PKL to study characteristics of in–vessel mixing and upper plenum

flow[13, 14]. Kliem et al. further confirmed the overall mixing quality in the RPV as

well as SG loops. Höhne et al.[15] also used the ROCOM facility to exhibit the strong

dependence on buoyancy in propagating mixing behavior throughout the RPV.

Lastly, Tuunanen et al. have presented a large body of work highlighting results

of an experimental activity conducted on the REWET-II, VEERA, and modified

VEERA facilities[1, 16]. While these facilities include different regions of the vessel

and SG, similarities can be found in the two sets of results. A comparison can be

summarized as follows:

1. Concentration of boric acid is proven to be uniform in the core. The uniformity

is allowed by the mixing due to boiling in the core simulator. The reference

states that mixing seems to be more effecting in larger bundle due to the

trend observed between REWET–II (19 rods) and VEERA (126 rods). This

uniformity due to mixing is confirmed by concentration measurements.

2. Crystallization occurs at certain time during the experiments. While it is

unclear how the crystallization was confirmed and observed in the REWET–

II and VEERA facilities, it is suspected that this was done by concentration

measurements combined by post-test observations of the core simulator.

3. Blockages due to crystallization were possible, and in fact occurred, in the

REWET–II facility, and seemed more likely to occur in smaller bundles (due

to ineffective mixing) and at the top of the core. Blockage seems to be affected

by several parameters and in particular the volume in the core. In the reference

it is mentioned that if the liquid level is maintained above the core, no blockage

is observed since crystallization takes place outside the core.
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Table 1.1: Main features of the experimental facilities used in boron dilution transient
testing. Not included in this table is the planar sensors in the VeMix and ROCOM
facilities for EC measurements.

Facility and Heating Visualization

included references capability capability

1:5 Scaled four-loop[7] None None

VeMix[4] None Full visualization

PKL[8, 9, 10, 12] 1:145 scaled (approx. 650 kW) None

ROCOM[13, 14, 15] None Full visualization

REWET–II[1, 16] 19 heating rods (approx. 10 kW) Post experiment

VEERA[1, 16] 126 heating rods (approx. 60 kW) Post experiment

For all the thermal-hydraulic responses of PWR systems to LOCA conditions

which have been studied, few of the experimental apparatus provide a visual con-

firmation of the data recorded with EC measurements to determine boric acid con-

centration. Further, none of the facilities which provide visualization also include

a heating structure to impart thermal energy to the test fluid. An opportunity ex-

ists to explore the visual appearance of flow, as well as any plate–out of boric acid,

during the extended boiling as seen during the long term cool down phase. Full

visualization of a precipitate particle distribution would aid in the understanding

of plate–out characteristics. The transition and two–phase flow which would exist

within the core during this phase should be accurately captured with full visualiza-

tion wherever possible. This additional heating which takes place in the core may

define the plate–out phenomenon, or alter mixing flow during the HLSO phase, when

injected water is counter current with the escaping steam. As such, a facility was
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originally designed to study the combined effect of the boron precipitation with a

hypothetical core blockage at the bottom of the core which prevents any mixing of

the solution in the core with other RPV regions, including the lower plenum.
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2. THE PASTA FACILITY

The precipitation and stratification test apparatus (PASTA) facility was designed

to provide novel observations on the characteristics of boiling flow for concentrated

solutions of boric acid in de-ionized (DI) water. The facility was created to repro-

duce key geometry from that of a typical PWR core. While rigorous scaling was

not implemented in the design, the facility can provide qualitative visualization of

solutions in various boiling scenarios and precipitation effects at concentrations be-

yond saturation. Figure 2.1 shows the initial construction of the facility prior to

shakedown testing.

As shown, the PASTA facility was constructed of a 6” diameter polycarbonate

pipe with 0.25” polycarbonate flanges welded at either end to form a test section.

45 heating rods internal of the test section are held in place with stainless steel plate

flanges with holes drilled to allow the ends of each heating rod to protrude slightly

into the upper plenum as seen in Figure 2.2. Following initial shakedown tests of the

PASTA facility, four of the shown corner rods were removed to allow for test section

sampling, as well as temperature measurement instrumentation to be added.
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Figure 2.1: The fully assembled PASTA facility test section.

Figure 2.2: Ends of the heating rods held in place with the top plate flange.10



The smaller vent holes in the top plate flange are included to allow the flow of

liquid water into, and steam out of, the test section during experimentation. At the

bottom of the test section, the heating rods are fastened into a 0.25” stainless steel

bottom plate flange with 45 threaded holes as shown in Figure 2.3. Two corner holes

are left void of heating rods in order to allow for instrumentation to be inserted into

the test section. In each of these positions, a k–type thermocouple was inserted to

measure the temperature of the test section fluid near the periphery of the heating

assembly bundle. The other two empty corner holes are fitted with valved ports

which serve as injection points, or sample collection ports (Figure 2.4) depending

on the experiment at hand. These flange plates at each end of the test section hold

the heating rods parallel during experiments, without interfering with the mixing

volume. The bottom flange plate also served as a seal for the lower end of the test

section. Drawings of the top and bottom plate flanges used for production of the the

PASTA facility can be found in Appendix A.1.

At the top of the test section, an extension piece of 6” polycarbonate pipe with

welded flange was fitted to serve as an upper plenum. The upper plenum pipe

was fitted with four valved ports as seen in Figure 2.5, which primarily served as

the injection points for the borated solution during experimentation. Although the

injection lines were not scaled, injection from the top of the facility, as through the

upper plenum ports is representative of injection through the top of a PWR core,

as in HLSO. This design was conceived to observe core characteristics during a full

core blockage at the bottom of the core; no lower plenum mixing is simulated with

the PASTA facility.

Also visible in Figure 2.5 is the exhaust port flange, which is fixed to the top of

the upper plenum pipe section. A threaded elbow is connected with an 1” insulative

hose to vent the exhausted steam away from the facility without affecting pressure
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Figure 2.3: Bottom plate flange with shown threaded holes to secure heating rods at
bottom of test section.

in the test section.

As shown in Figure 2.3, each heating element was wired separately, which were

each connected to an individual power supply. As such, these heating elements are

all able to be controlled independently. Each power supply was equipped with a

gauge to monitor its power output. This allows the facility to be used with various

power profiles, both radially and azimuthally to test the effect of different radial

power distributions.
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Figure 2.4: Photo of the valved ports at the bottommost flange of the PASTA facility
test section.

2.1 Scaling and Facility Dimensions

Although rigorous scaling laws were not followed in the assembly of the PASTA

facility, dimensions were defined with proportions calculated to represent PWR core

geometries as close as necessary for qualitative analysis. The test section enclo-

sure dimensions were driven by the core aspect ratio for a typical PWR, defined as

Dcore/Hcore. For a typical PWR this was assumed to equal 0.78. Based on availability

of polycarbonate pipes and flanges, as well as the total electric power to be installed,

a test section with an inner diameter of 15.24 cm (6” standard) was selected. The

height of the test section was then selected in order to preserve the aspect ratio as

close as possible to a typical PWR:

Htest = Dtest
Hcore

Dcore

(2.1)
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Figure 2.5: Photo of the upper plenum of the PASTA facility. The four injection
ports near the top, and exhaust line from the topmost flange can be seen.

Using the polycarbonate pipe available, Eq. 2.1 fixes the facility height to Htest =

19.38 cm. The electrical heating rods were selected to be as close as possible to

the diameter seen in a typical PWR. Based on manufacturing standards available,

rods of diameter Drod = 0.95 cm were selected. To preserve the rod bundle pitch to

diameter ratio, 1.33 for a typical PWR, the center–to–center distance for the test

section heating rods was determined as 1.26 cm. Due to the size and shape of the

installed rods’ 1.27 cm threaded heads(Figure 2.3), however, the pitch to diameter

ratio of the test section necessarily differed from the reference value. A ratio of 1.75

was selected as closest to the reference while still allowing for the installation of the

rods into the bottom plate flange. The selected pitch to diameter ratio resulted in

a center–to–center distance of 1.66 cm for the heating rods. The total heat transfer

surface area of the rods is Atest = 0.24 m2. The enclosure and heating rod bundle

defined the facility free volume, which the coolant–like solution will occupy. This
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facility free volume was calculated as Vtest = 2.97 l.

As described in [17], the total power to be installed in the experimental facility

was estimated based on the assumption that observed reactor power in the PASTA

facility is comparable to scaled decay power at the time of SSO in a typical PWR.

For a LBLOCA, the SSO can be assumed to be approximately 30 minutes after the

event of the break. Reactor power at this time is estimated as Pcore = 75 MW. Two

scaling parameters were then considered:

1. reactor power density Pref
d (W/m3), defined as the ratio of reactor power to the

total core free volume (volume occupied by the coolant)

2. heat flux q”ref (W/m2), defined as the ratio of reactor power to the total core

heat transfer surface area

The reactor reference values used for this evaluation were Pref
d =3.7 MW/m3 and

q”ref = 11.5 kW/m2, both estimated assuming a reactor power equal to decay power

described above. This permitted a scaled total facility power to be calculated using

the reference values as

Pref
test = max

(
q”refAtest,P

ref
d Vtest

)
. (2.2)

Using Eq. 2.2 the facility reference power, Pref
test, is calculated as 11 kW. With

41 rods in the test section the individual rod power is fixed to a minimum of 270

W. Based on electrically heated rods which were readily available, rods of 500 W

nominal power were selected. With selected rods, the total maximum power installed

in the facility was Pinst
test = 20.5 kWe, allowing for a wide range of experimental power

densities to be supported by the PASTA facility. The dimensional features of the

PASTA facility are summarized in Table 2.1. Additional description and photos of
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the facility can be found in [17, 18].

Table 2.1: Main features of the PASTA experimental facility.

Test Section Parameter Value Unit

Inner Diameter 15.24 cm

Height 19.38 cm

Diameter to Height Ratio 0.785 -

Free Volume 2.97 l

Number of Heating Rods 41 -

Heating Rod Diameter 0.95 cm

Heating Rod Pitch to Diameter Ratio 1.75 -

Total Power Installed 20.5 kWe

Due to the loose scaling methodology used for the construction of the PASTA

facility, a number of characteristics necessarily varied from the reference PWR value.

For example, the pitch to diameter ratio was altered to allow for the physical con-

struction of the bottom plate flange to allow for the heating rods to pass through

the threaded holes and fit side by side. This small distortion may cause differences

in the accumulation of boric acid between the heating elements as compared to a

PWR. Also, due to the small size of the facility test section, spacer grids for the

heating rods, similar to those seen in PWR geometry, were not included. Similarly,

the power levels attainable in the facility are not exactly equal to power densities

as might be seen approximately during SSO in an LBLOCA. This difference in in-

stalled power allows for flexibility in experimentation; varying power levels as well
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as different power profiles can be studied. Additional descriptions and photos of the

PASTA facility can be found in [17, 18].

2.2 Operation of PASTA Facility

Each test done with the PASTA facility was conducted according to written proce-

dures which were defined and improved during shakedown of said facility. Operation

of the PASTA facility is centered around two functions: the evaporative heating of

solution in the test section, and the continual injection of a solution of borated DI

water to replenish the evaporated solution. Heating of the solution in the test section

is accomplished with the 41 inserted 0.25” heating rods which protrude through the

bottom plate flange and extend the length of the test section. Addition of solution to

the facility is accomplished with injection via a MityFlex 913 metering pump which

is located under the facility as can be seen in Figure 2.6. Suction of the pump is

submerged in a reservoir of solution of boric acid, which is heated during experi-

mentation to maintain an approximately constant temperature. The pump injects

water into the facility through the valved ports described above. With the valves

and a small manifold, the pump can inject water through any combination of the

four upper plenum and two lower plate flange injection points.
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Figure 2.6: Fully assembled PASTA facility used for experimentation. The metering
pump and reservoir can be seen below the test section.

2.2.1 Test Section Measurement and Sampling

Measurements within the PASTA facility are necessary to correlate the observed

flow characteristics to the boric acid concentration. The facility provides a challenge

for measurement, however, due to the high concentration of solution in the test sec-

tion during experimentation. At these high concentrations, boric acid molecules are

in a constant flux between dissolved and precipitated states. EC probe measurements

within the facility, as used in other facilities[3, 9, 11, 14], are impossible because of

the impingement of these particles with proposed instrumentation causing interfer-
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ence. An alternative method for determining concentration of the solution within

the facility was therefore developed. Description of the solution analysis method is

contained in the following sections.

The PASTA facility was constructed with 4 valved ports which open to the top

of the test section, Figure 2.5. These ports are used for the injection of addition

solution which maintains a constant volume of boric acid solution during routine

experimentation. These ports are above the top of the solution during boiling and

do not present a chance for collection from the test solution as seen in Figure 2.5.

There are 2 additional valved ports which open to the bottom of the test section

as seen in Figure 2.4 which provide direct access to the heated solution. While

these bottom ports can be used to inject solution to the test section, as might be

seen prior to HLSO, they provide most useful for the collection of samples from the

solution during the boiling phase of experimentation. Methods for determining the

concentration of the solution via the samples collected from the PASTA facility are

necessary for the analysis of solution within the test section.

2.2.2 Fixed Volume Sample Collection

To measure the boric acid concentration of solution in the test section during

experimentation, samples were collected via the valved ports at the bottom of the

facility as seen in Figure 2.4 . Collection of samples is described in this section.

During experimentation, the heating of the solution causes a volatile boil through-

out the test section volume. The boiling ensures a well mixed solution in the test

section, and the dissolution of boric acid within the DI water. Due to the well mixed

status of the test section volume caused by volatile boiling, samples collected from

these ports well represent the average solution throughout the test section. While

power is applied to the heating elements, and the solution is well mixed, one of the
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bottom valved ports was be opened. An amount of solution was then allowed to

flow through the port into a waste bucket to ensure a clean flushing of the port

length of any boric acid precipitate. A small vial was then used to collect a known

volume of solution as it streams from the facility. Collected samples, which well

represents the average solution throughout the test section, were used to determine

the concentration of boric acid in the test solution.
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3. SAMPLE ANALYSIS

Once a sample was collected from the facility, it was used to determine the av-

erage concentration of the boric acid solution within the test section at the time

of collection. Three methods for determining concentration are described in this

section.

Prior to measurement of samples collected from the facility during experimenta-

tion, a calibration of measurements for known concentrations was generated. The

calibrations in this section were accomplished with the same DI water, and boric acid

used in the PASTA facility during experimentation. Calibrations were performed at

concentrations of boric acid in DI water which were characteristic of the facility, and

as similar as possible to those expected, even up to precipitation.

3.1 Gravimetric Method

Gravimetric analysis methods provide a simple and effective method for deter-

mining the content of a sample solution when the analyte is known. For a constant

volume of boric acid solution, a higher concentration correlates to a greater mass of

boron in the sample. Samples collected from the PASTA facility were pure DI water

mixed only with boric acid. As such, uncertainty of mass measurements specifically

due to impurities were minimal. A sample collected from the facility was able to

be dried directly, and the mass of boric acid measured. The mass of boric acid was

be used to determine concentration of the known volume which was collected, and

correlate to the average concentration of the facility at time of sampling.
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3.1.1 Calibration Procedure and Error Estimation

A calibration curve was generated of the measurable mass of boric acid from

various known–concentration solutions. The calibration was generated to befitting

concentrations of boric acid in DI water which are seen in the PASTA facility. Dry-

ing trays were prepared with absorbent paper sheets and then weighed as shown in

Figure 3.1a. Calibration solution was then created, after which a liquid sample con-

taining boric acid was collected in a tray and dried until only boric acid remained.

The mass of boric acid was determined by weighing the tray after drying and sub-

tracting the predetermined weight of the tray with the paper sheets.

(a) Tared tray before sample collection.

(b) Tray after drying process.

Figure 3.1: Example drying trays used for gravimetric calibration of samples from
the PASTA facility.
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To perform the calibration, five solutions of known boric acid concentrations were

prepared. A solution of 100 g/l boric acid in DI water was prepared at 100◦C. From

this calibration solution, a 16 ml sample was collected and immediately transferred

to a prepared drying tray. The tray was placed on a heated surface to dry at a

constant temperature of 50◦C. This process was repeated to produce 10 samples

for error estimation. The same procedure was applied for calibration solutions of

250 g/l, 275 g/l, 280 g/l, and 300 g/l of boric acid in DI water at 100◦C. Control

samples were also prepared using pure DI water to verify the calibration method, by

confirming that the original mass was recovered after the drying procedure, and to

estimate the drying time. After the samples were dried, as shown in Figure 3.1b, the

trays for each calibration solution were again weighed using the Acculabr VI-350

(0.01 g accuracy) scale. The average mass of boric acid from the 10 samples was

calculated for each calibration solution, along with the uncertainty, reported as 2σ,

and is plotted in Figure 3.2.
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Figure 3.2: Boric acid dried mass as a function of calibration solution concentration
for a 16 ml sample. A linear fit was made for the calibration solutions. Data contained
in Table B.1.

From the dry mass of the gravimetric calibration samples, it was determined a

fraction of the boric acid in solution was lost from each sample during the drying

process. Losses were found to follow a linear relationship which results in a multi-

plication coefficient of

boric acid in solution (g)

measurable boric acid after drying (g)
= 1.18 (3.1)

to be used to determine the concentration of boric acid in DI water from the 16 ml

samples taken from the PASTA facility during experimentation.
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3.2 pH Measurements Method

Another proposed method for determining the concentration of boric acid in a

solution was measurements of pH. Because the concentration of boric acid in the

PASTA facility can reach the solubility limit, however, samples needed to be diluted

such that the sample is below saturation. Calibrations of pH measurements of diluted

samples collected from known solution concentrations were used to generate a curve

that can be used to determine concentrations of samples collected from the PASTA

facility.

3.2.1 Calibration Procedure and Error Estimation

Dilution beakers and graduated cylinders were cleaned and dried in preparation

of sample collection. A solution of boric acid with known concentration (50 g/l)

was prepared in DI water heated near to 100◦C. A 16 ml sample was collected

from the calibration solution and transferred to a graduated cylinder. The sample

was then diluted to a total volume 100 ml using DI water and set aside to cool to

room temperature. Allowing samples to cool to room temperature after dilution

ensured minimized uncertainty in pH measurements due to temperature variance.

This process was repeated with ten samples for error estimation. After the samples

had cooled to room temperature (25-27◦C), a Mettler Toledor SevenCompact pH and

ion meter was used to measure the pH of each sample. For the ten diluted samples

measured, the average pH was calculated, along with the uncertainty reported as

2σ. Ten similar samples were also collected from the calibration solution and diluted

to a total of 200 ml to quantify the effect of dilution on the measurements taken.

The process for 100 ml and 200 ml diluted samples was repeated for calibration

solutions of concentrations 100 g/l, 150 g/l, 200 g/l, 250 g/l, and 300 g/l, which are

characteristic of the PASTA facility. The average pH of the samples for both 100
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ml and 200 ml dilutions as well as logarithmic best fits was plotted as a function of

calibration solution concentration in Figure 3.3.

Figure 3.3: Measured pH of diluted 16 ml samples as a function of calibration solution
concentration. Logarithmic fits were made for the set of pH vs concentration. Data
contained in Table B.2.

Due to the high concentration of solutions required for calibration, it was deter-

mined unfeasible to measure the pH of a 100 ml dilution for the 300 g/l calibration

solution. A logarithmic fit proved to be the best matching curve for the data. The

decrease in slope at the higher concentrations, which are characteristic of the facility,

would decrease precision of measurements of concentration using pH, as the same

measurement was seen for various calibration solutions, as can be seen in compari-

son of the 200 g/l, 250 g/l, and 300 g/l data points for 200 ml dilutions. As such,

quantitative analysis of concentration using pH measurements was determined to be

unrealistic.
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3.3 EC Measurements Method

The last method for determining concentration of boric acid in DI water was

EC measurement. Similar to the pH measurements, this method also required the

use of dilution, as the high concentration of boric acid in samples interfere with

the instrumentation used. Calibrated EC measurements of diluted samples collected

from known concentrations of calibration solutions were used to generate curves that

can be used to determine the concentration of a sample collected from the PASTA

facility. The calibration curve was made using known concentrations of boric acid

solution in a similar sampling method as for the pH method.

3.3.1 Calibration Procedure and Error Estimation

Dilution beakers and graduated cylinders were cleaned and dried in preparation

of sample collection. A calibration solutions were prepared as for the pH measure-

ments, and twenty samples of 16 ml were collected concurrently. For error estima-

tion, ten samples each were diluted with DI water to total volumes of 100 ml and

200 ml. The samples were allowed to cool to room temperature, and a MultiPa-

rameter PCSTestrTM 35 by Eutech Instrumentsr and Oaktonr was used to measure

the EC of each sample. As done for the pH calibrations, the process was done for

calibration solutions of concentrations 50 g/l, 100 g/l, 150 g/l, 200 g/l, 250 g/l, and

300 g/l in order to represent the full range of concentrations which would be seen

in the PASTA facilitiy. The resultant EC measurements are plotted as a function of

solution concentration in Figure 3.4.
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Figure 3.4: Measured EC of diluted 16 ml samples as a function of calibration solution
boric acid concentration. Linear fits were made for the set of EC vs concentration.
Data contained in Table B.3.

Again, for the high concentration of solutions required for calibration, it was

determined unfeasible to measure the EC of a 100 ml dilution for the 300 g/l cali-

bration solution. Linear fits proved to be the best fitting curves for the data. The

100 ml diluted samples, however, would be unable to be used in conjunction with

and experimental run in the PASTA facility, as concentration would be unable to be

quantitatively analyzed. As such, the 200 ml dilutions were determined to be the

only useful method for measurements to determine concentration of a solution.

3.4 Calibration Results

Comparing the three calibration methods, a number of features stand out. The

method of pH measurements appears to have very little application to the determina-

tion of boric acid concentration from the PASTA facility. Due to the high concentra-

tion expected in the facility test section, the pH measurements, even after dilution of
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samples, provided very little quantitative difference between samples. Without any

differentiation of the measured samples, it could not be accurately determined what

the original solution concentration was. The linear fits of the gravimetric and EC

measurements seemed to provide a more appropriate tool for determining concentra-

tion of unknown solutions. The 100 ml dilutions for measurements of EC provides

the best resolution in differences of measurement when compared to the original so-

lution concentration. At concentrations in the PASTA facility, however, which are

in excess of 275 g/l, the dilution to 100 ml does not provide enough DI water to

maintain an all-dissolved boric acid solution. Due to this, the EC measurements

would only be feasible with the 200 ml diluted samples. In all calibrations, uncer-

tainty of measurements was seen to be proportional to concentration of the sampled

solution. This was of particular concern in the EC calibration, in which there was

overlapping uncertainty in measurements of the higher concentration regime. Due to

the overlapping uncertainty coupled with the visibly smaller slope of the calibration

line generated from the samples diluted to 200 ml, the EC measurements were also

determined to have little application in determination of solution concentration for

high values as were expected to be seen in the PASTA facility.

Even with the losses of boric acid due to the drying process required in the

gravimetric measurement method, the uncertainty of measured values provided less

overlap than was seen in the EC measurements, while still providing a reasonably

sloped line from calibration measurements to resolve differences in concentration of

original solution from measured boric acid of dried trays. The gravimetric method

for determination of boric acid concentration was therefore used for all experimental

trials described in this thesis.
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4. EXPERIMENTAL PROCEDURE

All experimental runs were conducted according to written procedures, which

were developed and refined during the facility shakedown. This section provides a

brief description of the official written procedure, which is contained in Appendix C.

The facility was first filled with DI water and heated to a boiling state to prevent

any thermal damage or shock to the facility hardware. During the initial preheating,

an initial solution was prepared with 660 g of Optiborr Orthoboric Acid in 2 l of DI

water at approximately 50◦C. After draining the test section of the preheating water,

the initial solution was poured into the test section from the upper plenum which was

kept open. An additional 0.5 l of DI water at the same temperature was then used

to clean any boric acid which had accumulated at the upper plate flange. This final

solution in the test section at the beginning of an experimental runs, which contained

660 g of boric acid in 2.5 l of DI water to make facility initial concentration (C0)

= 264 g/l, was chosen to be slightly below solubility limit of boric acid in water at

100◦C (Cs) = 275 g/l[6] so that the saturation could be reached shortly following test

solution boiling. The total initial volume corresponded to a liquid level just above

the top plate to allow for full coverage of the heating rods. With the initial boric

acid solution in the facility, the test section was allowed to come to a quiescent state

as shown in Figure 4.1 with the excess of boric acid deposited at the bottom of the

test section.
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Figure 4.1: Initial loading of test section during experimentation.

A solution was prepared for injection into the facility using similar techniques

described above. The concentration of added solution (Ca) selected was equal to 60

g/l, which is not typical for any plant conditions and was selected arbitrarily based

on solubility of boric acid at the preparation temperature of 50◦C. Addition solution

was held at preparation temperature in the reservoir beaker as shown in Figure 2.6.

After the addition solution was prepared, the heaters were turned on to the prescribed

operational power for the experiment. The temperature of the test section solution

was monitored closely during the first heating, as well as the power of the heating

rods, which varied slightly due to thermal resistance differences. Applied power to

the heating rods was adjusted during the first five minutes of facility operation to

maintain a constant power draw.

Once the test section solution was observed to have completely dissolved the
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excess boric acid, the injection solution in the reservoir beaker was added to the

facility via the metering pump. Time of initiation of injection solution addition was

recorded for each experimental run, and was considered the beginning of the change

of concentration regime for the experiment. Additional prepared injection solution

was added to the reservoir when the remaining solution reached the 300 ml mark on

the graduated reservoir beaker. Time of addition of each injection solution batch was

also recorded during the experiment. Periodically throughout the experiment, the

heaters were turned off for a minimal amount of time for the boiling solution to come

to a quiescent state and the level of solution to be determined. Injection rate via the

metering pump was adjusted for any differences in solution level from the beginning

of experiment and from the previous solution level check. This procedure was used

to maintain the constant solution volume in the test section during experimentation.

Throughout the experiment, 16 mL samples were collected from the port at the

bottom of the facility test section as per the sample collection procedure described

above, while recording the time of collection. In following of the gravimetric method

for concentration determination also previously described, each sample collected was

transferred to a analysis tray and dried on a heating plate. From the samples dried

mass and using Equation 3.1, the concentration of the solution in the test section at

the time of collection was determined with associated uncertainty.

The heaters were left on, except for short periods to determine solution level, until

the test section solution was observed to exceed the solubility limit as determined by

a change in the turbidity of the solution which obscured light passing through the

facility test section as can be seen in comparison of Figure 4.1 with Figure 4.2, as

well as the appearance of solid precipitates in suspension in the solution.
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Figure 4.2: Final state of test section during experimentation.

Once the solubility limit was exceeded, the test was terminated by cutting off

power to the heating rods and flushing the test section with DI water repeatedly

until it was clean. The samples collected from the facility during experimentation

were placed on the heating surface to dry. After the analyte samples were dried

completely, they were weighed as described above to determine concentration of

the facility at time of collection. For each experimental trial, concentration of the

solution in the test section was plotted as a function of elapsed time since the initial

injection from the reservoir.

4.1 Test Matrix and Conditions

To determine the facility dependence on physical features and construction pieces,

a number of tests were run with varying parameters of operation. Features that were

altered included the sealing of the top lid, total power applied to the heating rods,
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as well as injection location from either the top or bottom of the facility. Other

operational parameters were unaltered during the perturbed experiments, including

radial power distribution, concentration of injected solution, and initial concentration

of facility solution. Table 4.1 summarizes the conditions of the perturbed shakedown

experiments.

Table 4.1: Operational parameters of perturbed shakedown experiments.

Test C0 Ca Total power Power shape Lid Injection

number (g/l) (g/l) (kW) profile Status point

1 264 60.0 4.0 Flat Closed Top

2 264 60.0 4.0 Flat Open Top

3 264 60.0 4.0 Flat Closed Bottom

4 264 60.0 2.0 Flat Closed Top

During the experiment described in this thesis the total power used was uniformly

distributed among the 41 rods, constituting a flat power profile. This flat power

profile is not characteristic of a full PWR core, but within the geometry described,

may provide a more appropriate description of a smaller segment as might be seen in

a single assembly. Test 1 was used as a baseline, as it presented the easiest setup and

operation of the facility. Injection from the top of the facility was hypothesized to

create a gradient of boric acid concentration in which the bottom of the test section

near the sampling port would be lower than near the top. Injection from the bottom

was thought to induce greater mixing in the test section solution, which would create

a more uniform concentration throughout the facility. Opening the facility lid for the
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duration of an experiment was hypothesized to decrease the overall concentration of

the solution in the facility, due to additional losses in rapid vaporization and exhaust.

The rapid boiling of the facility solution was also thought to cause splashes of solution

out of the facility which could also entrain boric acid out of the facility. Decrease of

the total power applied via the heating rods was expected to slow the overall increase

of test section solution concentration. Each of the hypotheses was tested.
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5. ANALYTICAL SOLUTION

For comparison of the determined concentration of the test section with the an-

alytical expected value, the rate of change of mass of the boric acid in solution was

analytically calculated by solving the mass conservation equation expressed as

dMB

dt
= ṁin − ṁout. (5.1)

In Equation 5.1, the injected mass rate, ṁin (g/s), was determined by the con-

centration, Ca (g/l), and approximately constant volumetric flow rate, Qin (l/s), of

the injection solution into the facility as

ṁin = QinCa. (5.2)

The boric acid loss rate, ṁout (g/s), was calculated from the calibration data. To

determine loss of boric acid due to evaporation (El) (g/l), the fractional loss was cal-

culated for each calibration concentration of boric acid as per the samples collected.

As described in the experimental procedure, solution volume in the test section was

held constant, which permitted the assumption that volume of solution injected was

equal to volume of solution evaporated, ie. Qin = Qout. These assumptions allowed

for a mass loss rate to be determined as

ṁin = QinEl. (5.3)

For comparison to an ideal experimental operation, the loss of boric acid due to

evaporation was neglected, and the rate of change of boric acid was approximated as

36



dMB

dt
= ṁin. (5.4)

Equations 5.1 and 5.4 were divided by the facility test section free volume, Vtest

(l), to express the rate of change in boric acid concentration. The injection rate

for both equations was determined using the time of batch injection during exper-

imentation, and analytical solutions of 5.1 and 5.4 were used in comparison to the

concentration of the test section as determined from the samples collected.
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6. RESULTS

During experimentation, after the electric heaters were turned on, solution tem-

perature in the test section was found to increase until reaching the boiling point.

At this point, the solution was observed to undergo a volatile boil–off which caused

highly turbulent flow conditions in the test section due to the rapid bubble formation

and migration to the upper plenum, as can be seen in Figures 4.2 and 6.1. Elevated

temperatures achieved and highly turbulent flow in the test section produced disso-

lution of the entire quantity of boric acid initially deposited at the bottom of the

test section during preparation. As described in the experimental procedure, once all

boric acid was observed to have dissolved and no solid traces were visible in the test

section, the metering pump was turned on and set to a rate required to compensate

for the evaporation of DI water from the test section for the selected test power. Rate

of solution injection via the metering pump was defined during shakedown testing

and, as described in the experimental procedure, manually fine–tuned during the

experiment.
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Figure 6.1: Volatile boiling in test section during experimentation.

6.1 Flow Visualization

During shakedown tests, and defined experimentation within the scope as de-

scribed in Table 4.1, a number of observations were made on the qualitative flow

characteristics within the test section. Observations of the test section included the

following:

� After the first complete batch of injection solution, which was expected to raise

the concentration beyond the solubility limit, the solution in the test section

remained as clear as the initial loading of the solution.

� Later, during experimentation, small visible particles started appearing in the

solution. These particles were entrained in the turbulent flow or maintained in

suspension via the volatile bubbles departing from the surface of the rods

� Due to the particle entrainment or suspension phenomenon, deposition on the

heating rods or test section wall of the boric acid precipitate was prevented.
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� Also due to the flow turbulence and bubble formation, the test section solution

fully represented a well mixed homogeneous volume.

� As the mass of boric acid in the liquid increased, turbidity of the test section

solution visibly increased and a layer of boric acid precipitate at the top plate

flange formed which continued to grow until termination of the experiment as

in Figure 6.2.

� At high concentrations just prior to the termination of experimentation, the

appearance of a boric acid precipitate layer was accompanied by the appearance

of larger particles, as well as deposition of precipitate near the rod bundle

periphery and test section walls.

– The density of these larger particles was observed to be great enough

to prevent the entrainment of the particles in the boiling flow as was

previously seen.

� For experiments in which the lid flange was left open, the volatile boiling caused

a quantity of boric acid to splash up out of the upper plenum and deposit

boric acid precipitate around the uppermost flange and on the PASTA working

surfaces, as seen in Figure 6.3
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Figure 6.2: Boric acid precipitate at top of test section during experimental runs
near termination.

Figure 6.3: Boric acid precipitate deposition during unlidded experimental runs.
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6.2 Concentration Measurements

Following the termination of experimentation by shutting off the heating rods,

the collected samples were placed on the heated surface to dry. When it was de-

termined the analyte trays had dried completely, the measurable mass of boric acid

was used to determine the concentration of the solution in the facility as described

in the calibration and sample analysis sections. Concentration of the solution was

then plotted as a function of time after injection initiation for each experiment.

Equations 5.1 and 5.4 were used to calculate a range of theoretical concentration in

the facility and were plotted as a function of time according to the injection rate,

Qin, during experimentation as determined by the metering pump. The analytical

approximations of facility concentration along with the experimental data from test

experiments 1, 2, and 3 is plotted in Figure 6.4.
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Figure 6.4: Analytically approximated alongside experimentally determined boric
acid concentration for Tests 1, 2, and 3.

Experimental data resulted a linear trend for the test section solution concentra-

tion which is loosely bounded by the analytical solutions, Equations 5.1 and 5.4. Ex-

perimental results deviate from the evaporative loss approximation in Equation 5.1,

indicating that losses due to evaporation of the solution are less significant than what

was observed during calibration of the gravimetric measurement method. Boric acid,

however, is certainly lost from the facility, as the collected data are well below the

lossless approximation as described by Equation 5.4. Deviation from the lossless

operation of the facility is hypothesized to be due to entrainment of liquid droplets

out the exhaust vent in the vapor phase. This exhaust vapor was not collected or

analyzed for boric acid content to determine concentration.

To quantitatively determine the dependence on applied power to the rate of in-
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crease of boric acid concentration in the PASTA facility during experimentation, Test

4 was executed with half the total applied power through the heating rods. Samples

were collected as previously described and were permitted to dry for gravimetric

analysis. After weighing the collected samples, the experimentally determined boric

acid concentration was plotted as a function of time for both Test 1 and 4. Linear

fits were made to both data sets as shown in Figure 6.5.

Figure 6.5: Experimentally determined boric acid concentration for Tests 1 and 4.

The experimental data for Test 4 was also seen to follow a linear trend. As seen

by the trend line equations, the rate of increase of concentration was half of the

baseline Test. Similar losses were observed in all four Tests, which require additional

analysis to determine the full mass conservation relationship of boric acid in the

PASTA facility during experimentation.
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6.3 Discussion

Each of the Tests 1, 2, and 3 were observed to follow an almost identical rate of

increase of concentration throughout the duration of the experiment. Even with the

variance to the lid, which was left open in Test 2, the experiment reached precipita-

tion at approximately the same time as the other Tests. This disproved the initial

hypothesis of dependence of evaporative losses as had been seen in the gravimet-

ric calibration process. It was also observed that due to the highly volatile boiling

within the test section, the solution was homogeneous regardless of injection loca-

tion, as varied from Test 1 to 3. No gradient was observed in any orientation in

the test section, and mixing was driven by the boiling flow and bubble formation,

rather than the flow disturbance due to solution injection, which was minor. This

disproved the hypotheses of improved mixing due as well as concentration gradients

due to injection position.

In comparing the data sets from Tests 1 and 4, it can be seen that the total

time required to reach boric acid precipitation within the PASTA facility is inversely

proportional to the total thermal power applied to the solution via the heating rods.

With half the total power applied in Test 4 as Test 1, the rate of increase of concen-

tration was almost exactly halved as shown by the trend line solutions in Figure 6.5.

This is in agreement with the hypothesized effect as described.

As shown in all data sets in Figures 6.4 and 6.5, concentration of the solution in

the test section was greater than Cs = 275 g/l for the majority duration of the ex-

periment. This high concentration of boric acid in the facility, however, did not have

a visible effect on the flow characteristics of the boiling, even when particles of boric

acid were visible throughout the test section. Turbidity of the test section solution

was the best indicator of approximate concentration during each experiment, rather
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than any perceptible change in flow characteristics. Further, change in water density

caused by increased boric acid concentration did not bring about stratification of the

test section soltuion. Instead uniform flow mixing was observed, facilitated by the

rapid boiling in the test section.

For all Tests observed, the rapid bubble generation which drove the test section

mixing prevented deposition of boric acid precipitate within the rod bundle. Ex-

perimentation clearly visualizes the mixing due to boiling and the distribution of

the precipitate particles in the solution when they become visible. In particular, no

appreciable deposition of solid precipitate was observed between the internal rods of

the bundle or on the rods surface. Instead, deposition of the precipitate occurred in

regions of lower power density or at colder surfaces, ie. the rod bundle periphery or

the test section walls, respectively. This is confirmed in all presented experiments

in the PASTA facility. This phenomenon can be observed in real time during the

experimentation. Crystallization starts at the top of the mixture level and contin-

ues in the liquid in the form of small spherical particles of approximately 0.5–1 mm

in diameter. The majority of these particles remains suspended due to the violent

boiling. Towards the end of experimentation, when concentration is well beyond the

solubility limit, the behavior of the precipitate accumulating at the top of the mixture

level seems similar in all experimental activities. This is in agreement with results

as reported from experiments at the VEERA facility[16], although it is unclear if the

referenced experiments were conducted considering the liquid level (collapsed level)

or the mixture level as reference. In the case of the Tests conducted in the PASTA

facility, the liquid level, verified at the clear test section before heating the solution

via the rods, was maintained right at the core top plate elevation. This may explain

the fact that no blockage was observed in the presented Tests due to the larger water

inventory.
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7. CONCLUSIONS

An experimental apparatus was constructed to conduct experiments with DI wa-

ter and boric acid, to observe and study the flow behavior, and to measure the boric

acid concentration in boiling water. The PASTA facility focuses on studying the

effect of the increase in the boric acid concentration exclusively in the core and does

not account for other effects such as volume mixing. This facility was originally de-

signed to study the combined effect of the boron precipitation with a hypothetical

core blockage at the bottom of the core which prevents any mixing of the solution

in the core with other RPV regions, including the lower plenum. Three methods for

determining the concentration of boric acid at very high concentrations, even exceed-

ing saturation, were explored. A gravimetric method for concentration determination

proved to be the most effective for high values as were characteristic of the PASTA

facility. The concentration of solution in the test section was approximately solved

using an analytic approach for comparison to experimentally determined values.

During experimentation, concentrations of boric acid were found to increase lin-

early with time. Due to initial experiment conditions, the saturation limit was

reached very early in the experiments, with no major effect on the flow observed.

Volatile boiling in the test section induced uniform mixing in the test section, causing

no appreciable difference in the concentration trends between the top and bottom

solution injection locations. Opening the lid during experimentation did not affect

the overall rate of increase of solution concentration in the facility test section. Ap-

plied power to the heating rods in the test section was observed to be proportional

to the rate of increase of concentration of the test section solution in the facility.

Comparison of boric acid concentration with the analytical solution confirmed that
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a fraction of the boric acid was transported within the vapor phase outside the test

facility. The fraction released contributed to the reduced rate of increase of boric

acid concentration in the solution. Fractional boric acid loss from the test section

was found to be lower estimated from the observed losses during the calibration pro-

cedure. This may be attributed to condensation in the upper plenum and through

the test exhaust and the subsequent reflux of the liquid into the test section.

7.1 Future Work

Further work with the PASTA facility allows for many directions. To address

issues seen in this thesis, it should first be noted that the concentrations of boric

acid from the test section which were determined by the gravimetric method were

above the values initially calibrated. This extrapolation of a calibration curve should

be improved. Whether a gravimetric method can still be used at the supersaturated

conditions observed must be further explored to validate these measurements re-

ported. Also of note, is the conservation of mass equation which describes the boric

acid in the test section solution during experimentation. Experimental results lie

between a lossless approximation and an overestimated value for evaporative losses.

The observed losses are attributed to the entrainment of boric acid precipitate parti-

cles in the vapor phase of the water escaping the facility. These losses, however, may

be a procedural error in the sample analysis, which is not accurately determining the

concentration of samples from the test section compared to the calibration samples.

To resolve this, the exhaust vapor should be collected and condensed to perform a

similar concentration analysis as on the directly collected samples. Additional con-

struction to the facility would require the the test section maintain ambient pressure

for direct comparison with the current analysis.

Held constant in this analysis is the variance of power in a radial and azimuthal
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direction. This approximation is used to simplify the construction of the facility as

well as qualitatively observe a smaller region of the proposed PWR core, rather than

looking at an entire core for boric acid precipitate analysis. The smaller scope of

even a single assembly in a PWR, however, has a ”radial” power profile that can

be quantified. It was observed that boric acid precipitates deposited near the colder

sections of the test section. Varying power profiles with pronounced cold spots would

provide further insight to the deposition of boric acid solids in regions of minimal

decay heat during LOCA events.

To further improve the PASTA facility’s likeness with a typical PWR, the test

section could be reconstructed to include an annular downcomer at the periphery,

with bottom injection from all azimuthal positions simultaneously. This alteration

to the facility would even further improve the analysis of cold spots in the RPV for

boric acid precipitate accumulation. A spacer grid could also be constructed to fit

around the rods in the test section. Accumulation of boric acid in those regions are

not captured by the current PASTA construction, and may be of interest for the final

resolution of GSI 191.
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APPENDIX A

PASTA PRODUCTION IMAGES

A.1 Drawings

The following are drawings used in the manufacturing of the PASTA facility.
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Figure A.1: Manufacturing drawing of the top plate flange.
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Figure A.2: Manufacturing drawing of the bottom plate flange.
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APPENDIX B

CALIBRATION DATA

Following is the collected data used in calibration.

Table B.1: Expected mass and mean dried mass for each ten samples, 16 ml, collected
from the various gravimetric calibration solutions.

Solution Concentration Expected mass Mean dried mass

(g/l) (g) (g)

100 1.60 1.49 ± 0.06

250 4.00 3.41 ± 0.10

275 4.40 3.70 ± 0.13

280 4.48 3.72 ± 0.12

300 4.80 4.11 ± 0.17
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Table B.2: Measured pH for each ten samples, 16 ml, diluted to 100 ml and 200
ml for various calibration boric acid solutions. Samples diluted to 100 ml for the
calibration solution of 300 g/l were unable to be measured with the Mettler Toledor

SevenCompact pH meter, as boric acid had precipitated out of solution and interfered
with the instrumentation.

Solution Concentration 100 ml dilutions 200 ml dilutions

(g/l) measured pH measured pH

50 5.67 ± 0.04 5.98 ± 0.08

100 5.17 ± 0.05 5.75 ± 0.05

150 4.46 ± 0.08 5.28 ± 0.03

200 4.22 ± 0.11 5.01 ± 0.06

250 4.12 ± 0.08 4.77 ± 0.04

300 N/A 4.86 ± 0.06
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Table B.3: Measured EC for each ten samples, 16 ml, diluted to 100 ml and 200
ml for various calibration boric acid solutions. Samples diluted to 100 ml for the
calibration solution of 300 g/l were unable to be measured with the MultiParameter
PCSTestrTM, as boric acid had precipitated out of solution and interfered with the
instrumentation.

Solution Concentration 100 ml dilutions 200 ml dilutions

(g/l) EC (µS/cm) EC (µS/cm)

50 21.9 ± 0.4 19.6 ± 0.1

100 27.6 ± 0.6 21.8 ± 0.5

150 35.3 ± 0.5 25.3 ± 0.7

200 44.6 ± 1.3 27.4 ± 0.3

250 54.1 ± 2.0 30.2 ± 1.3

300 N/A 33.4 ± 1.0
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APPENDIX C

EXPERIMENTAL PROCEDURE

The following pages are the procedure for preparation and operation of the

PASTA test facility. Each test described in this thesis was accomplished using these

instructions after development during construction and shakedown testing of the

facility.
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1.0 PURPOSE 

The purpose of this document is to provide instructions to conduct boron precipitation experiments on 

the PASTA test facility at Texas A&M University (TAMU). 

 

2.0 EXPERIMENTAL FACILITY 

The facility was designed for high temperature tests in presence of chemicals. The facility consists of an 

acrylic cylindrical section (test section) with 41 heated rods. A variable speed metering pump injects boric 

acid solution through the injection lines into the test section to compensate the liquid water lost by 

evaporation, continually increasing the concentration of boric acid until precipitation occurs.  

3.0 TEST PROCEDURE 

3.1 GENERAL PROCEDURE 

This section describes how to use this document. Sections 3.2 through 3.4 must be completed before the 

actual experiment can begin, outlined in section 3.5. 

Section 3.2 describes how to prepare the general materials required, 3.3 describes how to prepare the 

PASTA facility, and 3.3 describes how to prepare the solution.  

When initiating a step of the procedures, the step will be marked with an “O”. The “O” will be crossed 

when the step is completed. Steps that are skipped, or do not apply to an experimental run, will be marked 

as N/A. 

3.2 MATERIALS PREPERATION 

The following steps provide instructions for preparing the materials that will be required during the 

experiment.  

Prerequisite Materials 

- 11 Plastic closed containers (Figure 1a) 

- Minimum of 1260 g of boric acid 

- Minimum of 5 gallons of DI water 

- 10 glass vials with a 16 mL indicator mark (Figure 1b) 

- 10 Trays with each containing 2 lab foils (Figure 1c) 

- Safety masks for boric acid handling 
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Figure 1a. Plastic container used for boric acid preparation. b. Glass vial for sampling with 

16 mL indicator. c. Tray and foils used for sample drying. 

Date: ____________  

1. _____  Ensure the 16 mL indicator on the glass vials is clearly visible 

2. _____ Label the trays 1-10, and measure with the foil in the tray 

3. _____  Record the masses of the trays in Table 3.2.1. 

4. _____ Prepare 660 g of boric acid in a closed plastic container 

5. _____ Prepare 10 x 60 g of boric acid in closed individual plastic containers 

 

Tray Number Measured mass (g) 

1  

2  

3  

4  

5  

6  

7  

8  

9  

10  
 

Table 3.2.1. Test sampling tray masses 
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3.3 TEST SECTION PREPARATION 

The following steps provide instructions for setting up the facility to begin the experiment. 

Prerequisite Materials 

- 1 hot plate with stirring capability (Figure 2a)  

- Water Heater – a tea kettle works well 

- Stainless steel rod 

- Syringe, minimum of 20 mL 

- 2 Thermocouple readers  

- 2 x 2000 mL clean glass beaker 

- 1000 mL clean glass beaker 

- 1000 mL clean graduated cylinder 

- Stainless steel container, minimum of 2500 mL 

 

         
 

Figure 2a. Stirring hot plate used for boric acid batch solution preparation.  

Date: ____________  

1. _____ Fill the test facility with DI water until the heater rods are completely covered – 

2500 mL. 

2. _____ Connect the thermocouple reader to the thermocouple inside the test facility. 

3. _____ Turn on only a few of the rods, or a maximum of 400 W to slowly increase the 

water temperature until boiling.  

4. _____ Add the 660 g of boric acid to the 2500 mL clean stainless steel container. 

5. _____ Using the water heater, heat up an excess of 2800 mL of DI water to boiling. 
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6. _____ Add 2000 mL of hot DI water to the 660 g of boric acid in the stainless steel 

container and stir with stainless steel rod until as much of the boric acid is dissolved 

as possible. 

7. _____ Place the stainless steel beaker with the 660 g solution near the PASTA facility and.  

8. _____ Turn off the heaters in the test facility and open the valves to drain the DI water 

from the facility via the lower drain into the catch bucket located below the test 

section. 

9. _____ Prepare a small amount (approximately 300 ml) of hot DI water in a clean glass 

beaker and connect to the suction of the PASTA metering pump. 

10. _____ Open the selected injection port and turn on the metering pump to flush the 

injection with hot DI water. 

11. _____ Turn off the pump and immediately close the injection valve to ensure that water 

remains in the injection lines. 

12. _____ Close the drain valves used to drain the water from the test section. 

13. _____ Pour the 2000 ml heated solution (step 7) from the stainless steel container into the 

test section.  

14. _____ Use the remaining hot DI water container to clean any remaining boric acid from 

the container and add to the test facility. (Note the total volume of DI water 

injected in steps 14 and 15 must be 500 ml) 

15. _____ With a syringe filled with DI hot water from the remaining 500ml, clean the walls of 

the upper test section with heated DI water. 

16. _____ Ensure the liquid level is at the top of the steel plate. 

17. _____ Close the top lid of the facility, confirming the O-ring is properly set. 

18. _____ Install and hand-tighten the lid hold-down bolt. 

19. _____ Connect silicon hose exhaust to the vertical exhaust pipe. 

20. _____  Place video camera and adjust settings to view the experimental facility. Turn off 

audio recording. 

21. _____ Take a final picture of the facility after test preparation. 

22.  

Procedure notes: 
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3.4 Batches Preparation 

The following steps provide the instructions for preparing the boric acid solutions that will be injected 

during the duration of the experiment. 

Prerequisite Materials 

- DI water from section 3.2 

- Boric acid from section 3.2 

- Water heater 

- Hot plate with temperature control and stirring device 

 

Date: ____________ 

Preparation of Batch 1 

1. _____ Prepare 1000 ml of hot DI water. 

2. _____ Add 60 g of boric acid in a 2000 mL glass beaker. 

3. _____  Add the hot DI water prepared in step 1 to the beaker. 

4. _____ Use the stirring hot plate, set at 69, to keep solution agitated and hot 

5. _____ Place the beaker of solution on the injection reservoir heater. 

6. _____ Place the suction hose from the metering pump into the solution. 

7. _____ Place the thermocouple probe into the solution and turn on the thermocouple 

reader. 

8. _____ Monitor the temperature of the solution and ensure it remains at approximately 

70°C - 80°C throughout the entirety of the experiment. 

Preparation of Subsequent Batches 

1. _____ Begin preparing subsequent batch immediately after adding a batch to the injection 

reservoir. 

2. _____ Follow steps 1-4 from the batch 1 preparation to make another 1 L solution of 100 

g/L concentration.  

 

Procedure notes: 
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3.5 TEST EXECUTION: TEST #__________ 

The following steps provide instructions for operating the PASTA facility. The test initiation is outlined 

below. Throughout the experiment it will be required to check that the level of solution in the test section 

remains just over the plate. It will also be required to take samples during the experiment to later 

determine the concentration of the solution. 

Prerequisites 

- Prepared batches of boric acid solution 

- Timer 

- Camera 

- Backlight 

- Vials and trays 

- Syringe 

- Cold DI water  

Date: ____________  

Test Initiation 

1. _____ These steps are to be completed after Test Preparation procedures. 

2. _____ Turn on the video camera and backlight. 

3. _____ Record the time of test initiation and start timer. _______ 

4. _____ Turn on all switches for the electrical heaters. 

5. _____ Calibrate heaters’ power by adjusting the knob on the power supply while reading 

the output from the power meter. Fine tune the power supplies until each power 

meter reads 400 W (Each power supply will be approximately 40%). 

6. _____  Check power after 5 minutes for stability. 

7. _____ Record each reading from the power meters and total to determine total power 

output from the heaters.  

______________________________________________________________

______________________________________________________________ 

Total: _________ kW. 

8. _____ Monitor the water as the temperature increases until complete dissolution of boric 

acid. 
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9. _____  Perform first Solution Level Check (see next section). If liquid level is below 

target, turn on pump until the appropriate level is reached. 

10. _____ When all boric acid is dissolved and the solution is boiling and clear, begin injection 

by starting the pump and opening the injection valve (Pump should start at 

approximately 30-35%). 

11. _____  Start pump and record the start time of injection. ______ m:s. 

12. _____ When 300 mL solution remains in the injection reservoir, add the prepared solution 

batch to the injection reservoir beaker.  

13. _____ Record the time of solution batch addition in Table 3.5.1. 

14. _____ Record time of experiment termination. _______ m:s. 

15. _____ Stop camera recording. 

16. _____ Turn off experimental facility heaters and injection pump. 

 

Solution Level Check 

This is suggested to be repeated at each batch injection  

1. _____ Ensure the experimental facility heaters and injection pump are turned off. 

2. _____ Check the solution level in the test facility. 

3. _____ Adjust pump rate with heaters off until more suitable level is achieved. 

4. _____ Turn heaters and pump back on. 

5. _____ Check power and fine tune if necessary. 

 

Sampling 

1. _____ Record the time of sampling in Table 4.0.1. 

2. _____ Fill the vial with solution from the test section to the marked 16 mL level by opening 

the sampling valve. 

3. _____ Immediately pour the solution into the tray without the lab foils in them. 

4. _____ Clean boric acid from the vial with small amounts of DI water with the syringe. 

5. _____ Pour any remaining DI water in the vial into the tray. 
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6. _____ Repeat steps 4 and 5 until vial is clean. 

7. _____ Replace lab foils in the tray and allow to absorb the solution. 

8. _____ Place the tray on the drying plate. 

 

Batch Number Injection time 

1  

2  

3  

4  

5  

6  

7  

8  

9  

10  

 

Table 3.5.1. Time of batch injections. 

 

Procedure notes: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signatures: 
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Test Operator 1 

 

   

Name Signature Date 
 

 

Test Operator 2 

 

   

Name Signature Date 
 

 

 

Quality Assurance Officer or Test Reviewer 

 

   

Name Signature Date 
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3.6 TEST SECTION CLEANING 

The following steps provide instructions for cleaning the precipitated boric acid from the test section 

Prerequisites 

- DI Water 

Date:____________ 

1. _____ Turn on only a few rods to boil at a much lower rate than during the experiment. 

2. _____ Remove the boric acid injection reservoir from the lower hot plate. 

3. _____ Replace with a beaker containing hot DI water. 

4. _____ Turn on the pump to a fairly high speed and inject until the water level is at the 

injection nozzles. 

5. _____ Open the lower sampling valve and allow the solution to drain into the lower catch 

bucket. 

6. _____ Close the valve when the water level reaches the plate. 

7. _____ Repeat steps 4 through 6 until the water is completely clear and there is no longer 

precipitated boric acid on any of the test section interior surfaces. 

8. _____ Turn off the heaters. 

9. _____ Allow the facility to reach room temperature. 

10. _____ Drain the facility. 

 

 

 

Procedure notes: 
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Signatures: 

 

 

Test Operator 1 

 

   

Name Signature Date 
 

 

Test Operator 2 

 

   

Name Signature Date 
 

 

 

Quality Assurance Officer or Test Reviewer 

 

   

Name Signature Date 
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4.0 DATA ACQUISITION  

The following steps provide instructions for measuring the samples to determine the concentration of the 

sample when it was taken during the procedure. 

Date: ____________  

1. _____ Remove the samples from the drying plate and measure their masses with a scale             

(weight is assumed to be final when the scale reading is stable) 

2. _____ Record their masses on table 4.0.1. 

 

Tray Number Acquisition time Measured mass (g) 

1   

2   

3   

4   

5   

6   

7   

8   

9   

10   

 

Table 4.0.1. Test sample acquisition time and masses 

 

Procedure notes: 
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Signatures: 

 

 

Test Operator 1 

 

   

Name Signature Date 
 

 

Test Operator 2 

 

   

Name Signature Date 
 

 

 

Quality Assurance Officer or Test Reviewer 

 

   

Name Signature Date 

 

 

  

 
 

 

 

 

79




