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ABSTRACT

A proton recoil detector was acquired from LND, Inc. to be used in neutron

counting experiments with an 241AmBe source. Neutrons elastically scatter off of

and ionize hydrogen atoms creating protons that can be detected. A single neutron

can undergo multiple scattering events and this can result in several pulses being

registered by the detector. This method of detection creates a detector response

that changes with varying neutron fields, and unless both the incident neutron field

and detector response to the neutron field are known, then it is not possible to

visually determine what the detector is measuring.

In order to solve this problem, we attempted to unfold the measured spectrum

using MAXED. MAXED requires the measured spectrum, as well as a file containing

response functions. Since there was no access to monoenergetic neutron sources

to experimentally determine these response functions, the response functions were

calculated using MCNPX. In addition, the detector response to several different

241AmBe neutron spectra were calculated and compared to the experimental data.

Using MCNPX, the detector response was able to be modeled. Unfolding the

experimental data was not successful, but the MCNPX results are consistent with the

detector measuring an 241AmBe spectrum. The actual 241AmBe neutron spectrum

can vary from source to source, so the spectrum used in MCNPX is not necessarily the

spectrum emitted by the 241AmBe source. For future experiments and simulations

using this specific source, the results of the MCNPX simulation can serve as a starting

point for the neutron energy distribution. There will still be uncertainty associated

with the source in simulations; however, with the number of different 241AmBe source

spectra available, using a spectrum that produces results that match experiments can
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help reduce the error in future simulations.
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NOMENCLATURE

MCNP Monte Carlo N-Particle

eV Electronvolt

UMG Unfolding with MAXED and GRAVEL

MeV Megaelectronvolt

Ci Curie

HDPE High Density Polyethylene

CSDA Constant Slowing Down Approximation

SRIM Stopping and Range of Ions in Matter

LANL Los Alamos National Laboratory
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1. INTRODUCTION

Neutron counting experiments were performed at the Nuclear Science Center

using a 241AmBe neutron source and a proton recoil detector acquired from LND,

Inc. Due to the way the detector functions, the spectrum changes with varying

neutron fields and because of this, it is not possible to tell whether the spectrum

produced by the detector is a result of it actually measuring the 241AmBe neutron

source, or if the shape is distorted by electronic noise. It is believed that the detector

and electronics are functioning properly, however, in order to verify this, MCNP was

used to simulate the detector response.

1.1 Literature Review

There are many methods that can be used for neutron detection, however, these

methods vary depending on the energy of the neutron. Neutrons contain no charge

and are unable to be directly detected. Because of this,neutrons must interact with

another particle which is then able to be detected. Scattering and absorption interac-

tions can be taken advantage of for neutron detection purposes. [1] As neutron cross

sections are energy dependent, the method of detection can vary with the energy of

the incident neutron.

For neutrons with energy less than 0.5 eV, or thermal neutrons, they are usually

detected via nuclear reactions. [2] In a BF3 detector, neutrons are detected via

a10B(n,α)7Li reaction which produces a characteristic spectrum as shown in Figure

1.1.
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Figure 1.1: BF3 detector response to neutrons.

Similar to the BF3 detector, 3He detectors rely on a neutron absorption reaction,

3He(n,p)3H. [2] While these are common methods for thermal neutron detection,

there is no way to obtain any information regarding the energy of the incident neu-

tron.

Another method for fast neutron detection is to detect the recoil nuclei from elas-

tic scatterings. [2] This method is better for faster neutrons than thermal neutrons

as the energy of the recoil nuclei from thermal neutrons is quite small. [2]

1.1.1 Proportional Counters and Proton Recoil Detectors

Proportional counters are gas-filled detectors that rely on gas multiplication to

amplify the signal. As the applied voltage to the detector is increased, the probability

of ions creating secondary ions increases. Those secondary ions might then be able
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to create more ions and so on in a process known as a Townsend avalanche. The

number of secondary ions created is proportional to the number of original ions

created within the detector volume over a limited voltage region. [2]

Proton recoil detectors are proportional counters that rely on the elastic scattering

of neutrons that create a recoil nucleus that is detectable. As they rely on scattering

events rather than absorption events, the detectors are able to detect neutrons above

the thermal range, 0.025 eV. Energy transferred from the neutron to the recoil nucleus

can be related through Equation 1.1 where A is the atomic mass number, En is the

energy of the incident neutron, and θ is the scattering angle. [2]

ER =
4A

(1 + A)2
cos2(θ)En (1.1)

The energy transferred to the recoil nucleus is dependent on the scattering angle

of the recoil nucleus, and the maximum energy transfer occurs when θ is equal to

zero degrees, or in a head-on collision. The maximum energy transfer, ERMax
, in a

head-on elastic collision is shown by Equation 1.2.

ERMax
=

4A

(1 + A)2
En (1.2)

For a proton recoil detector filled with hydrogen gas, 100% of the energy of the

incident neutron can be transferred to the recoil proton in a head-on collision. The

energy distribution of the recoil nucleus can be determined using Equation 1.3.

P (ER) =
(1 + A)2

A

σ(θ)

σs

π

En

(1.3)

Here σ(θ) is the differential scattering cross section, and σs is the total scattering

cross section. [2] In a detector filled with hydrogen, σ(θ) =
σs(θ)

4π
since neutrons
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are scattered isotropically in the center of mass frame. [3] With this, Equation 1.3

can be simplified and written as Equation 1.4 which shows that for monoenergetic

neutrons, the detector response will be rectangular. While this is what the spectrum

would look like ideally, there are factors, such as multiple particle scatterings, that

can distort this shape. [2]

P (ER) =
1

En

(1.4)

Figure 1.2: Expected response from a monoenergetic neutron source. [2]

1.1.2 UNFOLDING

The convolution of two functions, f(t) and g(t), can be written as shown in

Equation 1.5. [4]

h(t) = (f ∗ g)(t) (1.5)
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For this application where f(t) and g(t) are expressed as the response function

of the detector and the source spectrum and h(t) is the measured spectrum. The

process of deconvoluting involves solving the integral shown in Equation 1.6 where

M(E) is the measured source spectrum (pulse height distribution), S(E’) is the source

spectrum, and R(E,E’) is the response function of the detector. [5]

M(E) =

∫ ∞
0

R(E,E ′)S(E ′)dE ′ (1.6)

The detector response function is the pulse height distribution that is produced

in response to a monoenergetic source and can be determined experimentally using

a monoenergetic source of the radiation of interest, but when such a source is not

available, the response function can be modeled and calculated through the use of

programs such as MCNP. [2] Response functions are detector specific and should be

calculated or measured for each detector.

While solving for the source spectrum is simple for monoenergetic neutron sources,

sources with an energy distribution can require the use of unfolding programs to solve

for the source spectrum.

1.1.2.1 UNFOLDING CODES

UMG created by Physikalisch-Technische Bundesanstalt in Germany. There are

two versions of MAXED and GRAVEL, a ”few-channel” and a ”multi-channel” ver-

sion. This software runs on Windows R© software up to Windows XP R©. To run

MXD or GRV, three input files are needed: a file with the measured data, a file with

the detector response functions, and a file with a default flat-line spectrum. [6]

MXD MC33 processes data until some values, λk, are found that solve the fol-

lowing equations. Nk is the measured counts, σk is the estimate of the measurement

error, fDEF is the default spectrum, Rki is the detector response, and Ω is a parameter
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that fixes the X2 of the solution. [6]

Nk + εk =
∑
i

Rkifi (1.7)

∑
k

ε2k
σ2
k

= Ω (1.8)

fi = fDEF
i exp

(
−
∑
k

λkRki

)
(1.9)

εk =
λkσ

2
k

2

(
4Ω∑

j(λjσj)
2

) 1
2

(1.10)

In addition to UMG, there are other unfolding programs available that use a least

squares method to solve the equation where Φ is the measured spectrum, R is the

detector response function, and N is the incident neutron spectrum. [7]

Φ = R−1N (1.11)

1.1.3 MCNP

MCNP is a Monte Carlo radiation transport code created at Los Alamos National

Laboratory that is capable of simulating the transport of many types of particles.

MCNP was first released in 1977, and the latest version, MCNP6.1, was released in

2013. [8] MCNP-PoliMi was released in 2004 and expanded on the neutron interac-

tions within organic scintillators and included options not available before, such as

accounting for recoil nuclei. Some of the features of MCNP-PoliMi were added to

the latest version of MCNPX, version 2.7.0. [9]

6



2. EXPERIMENTAL SETUP AND MCNP

2.1 Description of Experimental Setup

The experiments were performed using a spherical proton recoil neutron detector

Model 27044 manufactured by LND, Inc, as seen in Figure 2.1. The filling gas for

this detector is hydrogen at a pressure of 2280 torr. The chamber has a diameter of

5.08 cm. The proton recoil detector was connected to an Ortec 142PC preamplifer,

which was then connected to an Ortec 570 pulse shaping amplifer with a shaping

time set at 3 µs and a gain of 200 mV. The output was split between two different

acquisition systems: one with an Ortec 550A single channel analyzer and an Ortec

dual counter/timer, and the other with a Canberra Multiport II MCA controlled by

Genie 2000TM software. The voltage for the proton recoil detector was set at +2.75

kV using a Canberra 3106D power supply. (See Figure 2.2)

Figure 2.1: Schematic of the proton recoil detector purchased from LND, Inc.
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Figure 2.2: NIMBIN module used in the experiment.

An 241AmBe source (MRC-AmBe-1280) was used during the experiment. It is

a continuous source that emits neutrons up to 11 MeV with an average energy 4.2

MeV. [10] In addition to neutrons, the 241AmBe source emits a 4.4-MeV gamma ray

that is capable of interacting with the stainless steel cathode or the fill gas, and able

to produce electrons that contribute to noise. [1] The neutron spectrum of a typical

source is shown in Figure 2.3.
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Figure 2.3: Neutron emission spectrum of an AmBe source. [11]

The 241AmBe source was located within a cylindrical stainless steel casing ap-

proximately 5.08 cm tall and 2 cm in diameter with an initial activity of 2.52 Ci

on November 9, 1972. [12] The actual size and distribution of the 241AmBe mixture

within the stainless steel casing is unknown.

For the measurements, the 241AmBe source was placed in the center of a HDPE

cylinder with the base of the source 7.62 cm from the base of the cylinder. The

HDPE cylinder was surrounded by a 1.27 cm thick layer of borated HDPE. The

HDPE cylinders were located on a 0.64 cm thick layer of boral that was placed on

top of a wooden table 64 cm tall. The lowermost point of the proton recoil detector

was placed approximately 46 cm from the top of the boral plate as seen in Figure

2.4.
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The experiments were performed at the Nuclear Science Center and were subject

to a changing environment since the reactor was powered on and off at least once a

day. Several measurements were taken, ranging between one hour and 15 hours.

Figure 2.4: Experimental setup with the source in the HDPE shield (left) and in the

minimalist configuration (right).

2.2 Description of MCNP Deck and Assumptions

An input deck was created using MCNPX version 2.7.0. The detector was mod-

eled following the specification sheet provided by LND, Inc. [13] Instead of modeling

the 5.08 cm tall cylindrical 241AmBe source where the source distribution within the

steel casing is uncertain, the source was instead modeled as a flat circular plane with

a diameter of 2.6 cm. To simplify the problem, only the detector and the source were

modeled as can be seen in Figure 2.5.

10



Figure 2.5: Geometry of modeled experiment.

The MCNPX deck was run with mode N (neutrons), H (protons), P (photons),

and # (heavy-ions). The physics option for neutrons and protons was needed in

the input deck since MCNP does not account for recoil nuclei based on the default

settings.

The PHYS:N and PHYS:H were required in the input deck to allow for the

simulation of recoil nuclei. A combination of F6, energy deposition, and F8, pulse

height, tallies were used. The F6 tallies were used to calculate the deposited energy

from the protons in the fill gas and in the stainless steel detector walls. The F8 tally

was used as a way to model to the pulse height distribution of the detector, however,
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it required the PHL option to combine the results from the two F6 tallies. The F8

tally was also modified using an FT CAP tally which forces the simulation to run in

an analog mode. Running in analog mode does not allow for variance reduction and

is required for the F8 tally. [14]

MCNPX was run using an ISO 241AmBe spectrum to simulate the experimental

result. The simulation was run using 2.0x109 particles. To calculate the response

functions, 120 different monoenergetic neutrons between 0.15 MeV to 11 MeV were

run individually. Following the monoenergetic neutron runs, the results were pro-

cessed through Matlab R© to smooth the response using the moving average filter,

and then re-sized into a 7 x 147 matrix. The re-sizing of the matrix was necessary

to format it accordingly for the response function file as determined by MAXED.

2.3 MAXED

UMG was obtained online from RSICC and contained both MAXED and GRAVEL

software. MAXED works on Windows R© platforms up to XP. Since XP software was

not readily available, it was necessary to run the XP Virtual Machine on Windows R©

7. Once MXD MC33 was installed it was run using a control file that specified the

location of the needed input files and the parameters needed to run the problem.

The three input files needed by MAXED are: a file with the measured response, a

file with the response functions, and a file with the default spectrum. The measured

response was taken from the experimental results, the single response function file

was created with the results of all 120 response functions calculated using MCNPX,

and the default spectrum was a flat-line, as provided by MAXED.

In addition to the input files, the boundaries of the response functions and mea-

sured data need to be specified as well as, a chi-square per degree of freedom, a

number of iterations to use, a user-specified energy bin structure for the solution,
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and whether to scale the default spectrum, and what to scale it by, if needed.

The measured data has three reserved lines that contain a description of the data

in the first line, the units and form (fluence rate per bin) of the measured data in

the second line, and the number of channels and energy boundaries in the third line.

Following this, the energy, pulse height, and uncertainty of the pulse height were

added in three columns. The response function file contains two reserved lines, the

first being the width of the energy bins in MeV, and the second line containing the

energy of the incident particle, the number of channels, and the energy boundaries

for the data. A 7 x 147 detector response matrix was added specifying the incident

neutron energy. Each new incident particle energy was specified prior to adding the

data. The default spectrum follows the exact format as the measured data file.

Running MAXED results in the creation of four files, .txt file with unfolding

information, a .plo solution spectrum, .flu differential solution spectrum, and a .par

that is able to be used as an input file for a separate program included with UMG.
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3. RESULTS AND DISCUSSION

3.1 Experimental

In order to determine the maximum energy of a proton that can fully deposit

its energy within the detector, the density of hydrogen gas inside the detector was

calculated using the ideal gas equation shown in Equation 3.1.

PV = nRT (3.1)

Here P is the pressure in the detector, V is the volume of the detector, n is

the moles of hydrogen gas, R is the ideal gas constant, and T is the temperature.

Substituting Equation 3.2 into the ideal gas equation allowed the density, ρ, to be

calculated directly using the detector parameters where m is the mass of hydrogen

within the detector, and M is the molar mass of hydrogen.

n =
m

M
(3.2)

Inserting the following values of M=2 g/mol, T=300 K, R=62363 cm3 torr/K/mol,

and P=2280 torr into Equation 3.3 led to a calculated density of 2.44x10−4 g/cm3.

ρ =
PM

RT
(3.3)

Using the diameter of the detector and the calculated density of the hydrogen

gas, the CSDA range can be calculated using Equation 3.4 where ρ is the density of
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the hydrogen gas in the detector, and R is the range of the proton in the hydrogen

gas. [15]

Rρ = CSDA (3.4)

Using the calculated density of the hydrogen gas and the diameter of the detector

as the range of the proton, the CSDA range was calculated to be 1.24x10-3 g/cm2.

The CSDA values from NIST were used to determine that, at most, a 1.24 MeV

proton can fully deposit its energy within the detector volume. By rearranging

Equation 3.4 into Equation 3.5, the range for the maximum and average neutron

energies can be calculated.

R =
CSDA

ρ
(3.5)

The range of an 11 MeV proton was calculated to be 260.98 cm, and the range

of a 4.2 MeV proton was found to be 44.96 cm.

Range11 MeV(cm) =
6.36x10-2g/cm2

2.44x10-4g/cm2
= 260.98cm

Range4.2 MeV(cm) =
1.097x10-2g/cm2

2.44x10-4g/cm2
= 44.96cm

The ranges were confirmed by using SRIM, a software that is able to calculate the

range of ions in various media. The output provided a list of the proton range for
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energies ranging from 0.01 MeV to 10 MeV in the previously calculated density. This

was able to be plotted as a function of energy as seen in Figure 3.1.

Figure 3.1: Range of protons at various energies in hydrogen gas.

After setting up the experiment, the 241AmBe source was removed from the room

and a background measurement was started and counted for 15 hours with the gain

set at 100. The background spectrum can be seen in Figure 3.2.
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Figure 3.2: Proton recoil detector response to background.

Following the background measurement, the source was placed on top of the

HDPE shield to minimize the distance to the detector and counted for 15 hours. The

source was placed within the HDPE shield and counted for 15 hours. As expected, the

number of counts in the minimalist configuration was much larger than the number

of counts with the source farther from the detector, as seen in Figure 3.3.
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Figure 3.3: Response of proton recoil detector to two different source distances

It was not expected that the distance of the source to the detector would affect

the overall shape of the spectrum, but the normalized shape is shown to be the same

as seen in Figure 3.4. The major difference between the two visually is that the

minimalist configuration spectrum appears to be shifted left. This is evident up to

channel 100, and between channel 250 and 400. The maximum difference of 24.5%

between the two spectra was located at channel 394 where the shielded source had

a relative value of 0.058 and the minimalist spectrum had a relative value of 0.0494.
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Figure 3.4: Normalized response of proton recoil detector to two different source

distances

The background spectrum was subtracted from the source in the shield spectrum,

but since there were so few counts in the background spectrum compared to the

source spectrum, there were not any major changes within the background corrected

spectrum. The largest difference between source in shield spectrum and background

corrected spectrum is 11.04% at channel 43. Overall, the difference between the two

spectra was most visually evident up to channel 300. Over the entire spectrum, the

maximum different between the two spectra was 14.1% at channel 508. The spectra

can be seen in Figure 3.5.
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Figure 3.5: Background subtracted spectrum.

Following these measurements, the coarse gain was increased from 100 to 200

and counted for 15 hours. By increasing the coarse gain, the spectrum is observed

over a larger number of channels, allowing features to be spread over a larger area.

Changing the coarse gain scales the spectrum linearly, so the spectrum with the

coarse gain set at 100 is able to be matched with a spectrum with the coarse gain set

at 200. The largest difference between the neutron spectrum with the gain at 200

and the scaled neutron spectrum with the gain at 100 was calculated to be 6.2%,

and is seen at channel 1024. The three spectra are shown in Figure 3.6.
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Figure 3.6: Proton recoil response with the coarse gain adjusted from 100 to 200.

3.2 MCNP

Initially, the MCNPX input deck was run without the use of the PHL tally

modifier and while the F8 tally for neutrons produced results, the F8 tally for the

protons failed to produce any results outside of a value in a single bin. The PHL tally

modifer works by linking the F8 tally with the F6 tally and can combine the results

from multiple cells. [16] However, when the PHL option was used in the gas and

wall cells simultaneously, the result was not equal to the sum of the result with the

PHL tally modifier in the gas and the PHL tally modifier in the wall. The changes

due to the PHL tally modifier are shown in Figure 3.7.
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Figure 3.7: Detector response to neutron source with changes in the PHL tally

modifier.

3.2.1 Response Functions

The only accessible neutron source was the 241AmBe used throughout the ex-

periment, but to determine the response functions for the proton recoil detector,

monoenergetic neutrons sources were needed. As it was not possible to experimen-

tally determine these response functions, MCNPX was used to simulate them. 120

different response functions were created ranging from 0.15 MeV to 11 MeV.

The response functions were rectangular in shape, however, at 3.03 MeV, a peak

appeared at the end of the spectrum. As the initial energy of the neutron increased,

the size of the peak increased, and the starting point of the peak shifted left. Protons

with energies higher than 1.24 MeV have a range in the hydrogen gas larger than the
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diameter of the detector. Once the proton reaches the wall, the remaining energy is

deposited within the wall which shows up as the peak seen in the response functions.

At approximately 0.055 MeV, the stopping power of a proton reaches a maximum

and the stopping power decreases as the energy of the proton increases. [15] Lower

energy protons will deposit more of their energy within the detector volume, but

the higher energy protons have a lower stopping power and will deposit less energy

within the detector volume, and will be depositing more energy within the detector

wall.

Figure 3.8: Response function for specified incident neutrons up to 2.01 MeV.
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Figure 3.9: Response function for specified incident neutrons between 3.03 MeV and

5.02 MeV.

3.2.2 241AmBe Source to MCNP

Following the addition of the PHL tally modifier, the F8 tally for protons pro-

duced a spectrum that was similar to the experimental spectrum, but the MCNPX

result had an additional large peak at 1.7 MeV as seen in Figure 3.10.

It was found that the 241AmBe spectrum that was used in the sdef card had an

error that resulted in a majority of neutrons being emitted at energies above 8 MeV.

After discovering this error, an 241AmBe spectrum obtained from Dr. Sunil Chirayath

from the Monte Carlo Methods course was used to test whether the experimental

spectrum matches that of MCNPX with an 241AmBe source. The 241AmBe neutron

spectrum is shown in Figure 3.11.
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Figure 3.10: MCNPX F8 proton tally response to the incorrect 241AmBe source.
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Figure 3.11: NUEN630 neutron spectrum.

The calculated and experimental spectra were normalized, and then plotted to-

gether. The experimental results were not energy calibrated and only presented as

a function of channel while the calculated results were presented as a function of

energy. Each bin in the calculated results was assigned a channel, but in doing so,

features that were present in both spectra were located at different channels. The

calculated spectrum was held steady while the experimental spectrum was scaled to

match the calculated spectrum by adjusting the width of each channel. The differ-

ence was calculated between the two spectra until it reached a minimum and that

determined the best fit.

After running the input deck with the new spectrum, the peak at 1.7 MeV disap-

peared and the resulting spectrum was similar to what was collected experimentally
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as seen in Figure 3.12.

Figure 3.12: MCNPX F8 tally response to NUEN630 neutron spectrum.

The MCNPX spectrum matches the experimental spectrum well, except at two

locations. Between channels 25 and 39, the calculated spectrum deviates from the

measured spectrum by showing a sudden increase in the relative number of counts.

Between channels 39 up to approximately channel 265, the two spectra fit well and

had a difference no larger than 6%. After channel 265, the flat region of the calculated

spectrum starts to decline before the measured spectrum does at approximately

channel 300. Over the entire spectrum, the largest difference between the measured

and calculated response was 34.9% at channel 346.

A new 241AmBe spectrum was generated that corrected the mistake of the initial
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neutron spectrum and was inserted into the deck. The two 241AmBe spectra can be

seen in Figure 3.13.

Figure 3.13: Sources-4C neutron spectra - old and new.

The major differences between the Sources-4C spectrum and the experimental

spectrum occur between channel 6 and channel 125. At lower energies, the Sources-

4C spectrum is concave up to channel 130, whereas the experimental spectrum is

convex up until channel 231. This difference in concavity prevented the experimental

and MCNPX generated spectra from matching at the lower channels up to channel

92. Between channels 155-300 and 396-522, the MCNPX and experimental results

were more well-matched, with the largest difference between the two spectra being

24.2% at channel 60.
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Figure 3.14: Sources-4C result compared with experimental results.

A third 241AmBe spectrum, seen in Figure 3.15, was obtained from LANL that

was created using ISO-8529 as a reference.

The resulting spectrum differed the most from the experimental spectrum as seen

in Figure 3.16. Between channels 100 and 300, the experimental spectrum contains

a shelf while the calculated spectrum is constantly decreasing with a larger slope.

The two response spectra were able to match well at the lower end up to channel 23

and at the higher end after channel 500. The largest differences between the spectra,

28.8% and 21%, occurred at channel 77 and channel 323.
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Figure 3.15: LANL neutron spectrum created from ISO-8529 neutron spectrum.
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Figure 3.16: LANL result compared with experimental results.

The three neutron spectra that were used can be seen in Figure 3.17. The

NUEN630 and LANL spectra have very similar shapes, but the main difference

between the two is the probability of a neutron being emitted at certain energies.

Both have a maximum at 3.2 MeV and show that no neutron is emitted at an energy

higher than 11 MeV, but especially in the energy region up to 3.2 MeV, the LANL

spectrum has more neutrons being emitted at lower energies than the NUEN630 spec-

trum. The Sources-4C neutron spectrum shared a few similarities with the other two

241AmBe neutron spectra such as the location of local maximum, but the maximum

of the Sources-4C spectrum was located at 4 MeV which is where the other spec-

tra have a local minimum. The major difference between the Sources-4C neutron

spectrum and the previous two neutron spectra is that the Sources-4C has neutrons
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being emitted at energies up to 14 MeV, whereas the others emit nothing higher

than 11 MeV neutrons. In addition, over 57% of neutrons were emitted at energies

higher than 7.71 MeV in the Sources-4C spectrum, where at most, 14% of neutrons

were emitted at energies higher than 7.71 MeV in the NUEN630 and LANL spectra.

Figure 3.17: Various 241AmBe neutron spectra.

3.2.3 Mixed 241AmBe Sources

To observe which energy ranges affected the detector response to the 241AmBe

source, two new neutron spectra were created by merging features from the LANL

and NUEN630 neutron spectra, and the Sources-4C and LANL spectra.

The main difference between the two spectra was in the energy region up to 3

MeV. The region below 3 MeV from the LANL spectrum, and the region from 3
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MeV to 11 MeV from the NUEN630 spectrum were merged into a new spectrum as

seen in Figure 3.18.

Figure 3.18: Neutron spectrum created from the LANL and NUEN630 spectrum.

The mixed source response was most similar to the LANL response up to 1 MeV,

then above 1 MeV, it followed the shape of the NUEN630 response spectrum, but at

a higher relative height. The three spectra can be seen in Figure 3.19.

The F8 proton tally response to the LANL-NUEN630 source was a better fit to

the experimental response than either the NUEN630 or LANL spectra. Up to channel

400, the largest difference between the experimental and mixed source spectra was

18.2% at channel 275.
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Figure 3.19: Comparision between mixed source, LANL, and NUEN630 detector

response.
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Figure 3.20: Mixed LANL-NUEN630 spectrum response fit to experimental results.

To observe the effect the region above 7.71 MeV had on the detector response,

the energy region above 7.71 MeV in the Sources-4C spectrum was replaced with

the LANL neutron spectrum between 8.2 MeV and 11 MeV. The mixed neutron

spectrum can be seen in Figure 3.21.

The calculated response contains a local maximum at 1.71 MeV, a feature not

seen in either the LANL or Sources-4C response. As with the mixed LANL and

NUEN630 response spectrum, the Sources-4C and LANL spectrum response had a

larger relative height than the original Sources-4C response spectrum. Changing the

neutron spectrum did not result in a change in a single, isolated region, but affected

the entire response.
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Figure 3.21: Neutron spectrum created from the LANL and Sources-4C spectrum.
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Figure 3.22: Comparison between second mixed neutron source and Sources-4C de-

tector response.

3.2.4 Test

A simple problem of three discrete neutron energies, 0.8 MeV, 1.2 MeV, and 3.0

MeV was run in MCNPX to use as a test problem for MAXED. All three energies

were emitted at a 1:1:1 ratio.

3.3 MAXED

Once the output files were generated from MCNPX, the output had to be for-

matted in a certain way for MAXED. Errors are magnified throughout the unfolding

process, so the MCNPX calculated response functions were smoothed. [17] To facil-

itate this, MATLAB c© was used to smooth the response functions.
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3.3.1 Test

After running the result of the test file of the three discrete energies, 0.8, 1.2,

and 3.0 MeV, the results were unfolded using MAXED. The result of the unfolding

is shown in Figure 3.23.

Figure 3.23: MAXED test unfolded response.

In MCNPX, each of the energies were made to be emitted 100% of the time,

however that is not what is shown in MAXED. The unfolded spectrum was able to

show the three emitted energies, however, rather than a pulse at the one energy, the

pulse extends over a fraction of a few MeV. The first peak ranged from 0.71 MeV to

0.9 MeV with the center located at 0.8 MeV. The second peak ranged from 1.15 MeV
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to 1.26 MeV with the center at 1.21 MeV, and the final peak ranged from 2.7 MeV

to 3.19 MeV with the average at 2.95 MeV, but the maximum was located at 3.07

MeV. The height of each peak ranged from 0.3278 to 4.1207, a relative difference

of 92% from the maximum. In addition, a .txt file was created that showed the

experimental or MCNPX response compared to the response calculated by MAXED

with the response functions. The results are shown in Figure 3.24.

Figure 3.24: MCNPX calculated response and MAXED calculated response to three

discrete energies.

The MAXED response can be seen to follow the general trend of the MCNPX

calculated response, however there are large differences in the relative height of the

response. The largest difference between the MCNPX and MAXED response was
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found to be 288.4% at detector number 70, while at detector number 69, the relative

difference between the two responses is 0.39%. The MAXED response was not able

to have changes as drastic as the MCNPX response from one detector number to the

next.

3.3.2 241AmBe

Following the unfolding of the test file, MAXED was run with the experimentally

collected response. The unfolded response is shown in Figure 3.25.

Figure 3.25: Unfolded experimental detector response.

The response was not able to be unfolded up to 11 MeV without failing to cre-

ate any sort of unfolded response. The response shown in Figure 3.26 was the best

estimate able to be collected from MAXED for the experimental spectrum. Unfortu-

nately, the spectrum fails to show any resemblance to the previously shown 241AmBe

spectra.
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Figure 3.26: Experimental detector response and MAXED calculated response to

241AmBe source.

The response file created by MAXED using the MCNPX generated response

shows similarities to the experimental response, but much like the MCNPX cal-

culated responses, the flat region of the spectrum ends too early at 2 MeV while

the experimental spectrum ends at approximately 3 MeV. The results presented

by MAXED are not able to determine the spectrum observed by the proton recoil

detector.
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4. CONCLUSION AND FUTURE WORK

4.1 Conclusion

While attempting to unfold the neutron spectrum from the proton recoil detector,

there were difficulties encountered while using MAXED. MAXED has been shown

to successfully unfold an 241AmBe spectrum, however, when attempted with the

experimental results and MCNP generated response functions, the unfolding was not

successful. As mentioned before, errors are amplified through the unfolding process,

so errors in the experimental and response functions could have led to the result

shown. It is possible that the number of MCNP calculated response functions could

have been insufficient and a larger number was needed to successfully use MAXED.

The test file with three discrete energies was able to be unfolded, but there

was a large discrepancy in the relative pulse height of the emitted energies. Since

the response functions used were constant between the test and experimental input

files, some of the error can be attributed to the variation in the calculated response

function which can possibly be resolved by running a larger number of particles.

Despite this, the experimental spectrum was able to be reproduced to a cer-

tain degree using MCNP. Three different 241AmBe spectra that were collected and

contained significant differences between them were able to match the experimen-

tal spectrum to a certain degree. However, when the LANL and NUEN630 spectra

were combined to form a new neutron spectrum, the result was the best fit to the

experimental data. The simulated detector was sensitive to changes in the neutron

spectrum as the calculated responses show. While the LANL and NUEN630 spec-

trum follows the shape of the 241AmBe ISO standard and best fits the experimental

data, it does not necessarily mean that is the neutron spectrum that the proton recoil
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detector is measuring. Further attempts can be made to minimize the error in the

response functions and to create more response functions so the measured neutron

spectrum can be unfolded and compared with known 241AmBe source spectra.

4.2 Future Work

As mentioned earlier, the experiments were performed under changing conditions.

Future results should all be performed under the same conditions, most likely over

the weekend when the reactor at the Nuclear Science Center is guaranteed to be off.

More work can be done to reduce the statistical error associated with the MCNP

calculations by executing the code with a larger number of histories or through

variance reduction techniques. A larger number of response functions could be what

is needed to successfully unfold the neutron spectrum. In simulations, the different

neutron spectra result in different count rates, so MCNP can be run with the different

neutron spectra and the count rates between the simulation and experiment can be

compared. In addition, work is being done to improve the MCNP input deck and

resolve any errors that were not previously noticed.
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APPENDIX

The following are the files used to execute MCNP and MAXED. The first file is

shown in the MCNP input deck, the second file is the control file that was used to

execute MAXED.

46



47



48



49



50


