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ABSTRACT 

 

Fluid forces acting on the shrouded centrifugal pump/compressor impellers are 

evaluated using the computational fluid dynamics (CFD) approach. A face-seal impeller 

is selected to study for predicting the rotordynamic coefficients of the whirling impeller. 

The resultant impedances of the face-seal impeller can be modeled as a quadratic 

polynomial of whirling frequency to calculate the rotordynamic coefficients. However, 

the impedances of a conventional wear-ring seal impeller have some inflection points in 

the curves. Some possible sources that can affect the fluctuating impedance curves are 

investigated by varying design parameters such as shape of leakage path, inlet tangential 

velocity, flow rate of primary passage, and seal clearance. Effects of the peaks in the 

impedance curves of the wear-ring seal impeller are evaluated by performing stability 

analysis of a rotordynamic finite element (FE) model with the unconventional 

impedances. A linear curve-fit algorithm is developed to identify the complex shape of 

impedance curves of the wear-ring seal impeller. A Jeffcott rotor model with the 

impeller forces is modeled to apply and validate the developed curve-fit algorithm and 

the stability analysis has been performed. The analysis results indicate that the bump and 

dip in the impedance curves destabilize the Jeffcott rotor.  

 Precessing motion of the shrouded centrifugal impeller is also an important 

vibration source that can cause the rotordynamic instability problem. By considering the 

tilted impeller, the reaction force and moment coefficients of the face-seal impeller are 

predicted utilizing CFD technique, and a full set of the rotordynamic coefficient matrices 
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(44) is calculated. In order to evaluate the coupled motion of whirling and precessing 

for the face-seal impeller, a 3D impeller model with the dynamic eccentricity and the 

tilting angle is generated and the corresponding rotordynamic coefficients are obtained. 

The calculated results indicate that the precessing motion increases the tendency towards 

destabilization of the rotor.  

 Lastly, influence of static eccentricity on the face-seal impeller is investigated. In 

actual operation of the rotor, misalignment may be destabilizing and cause serious 

vibration problems. A CFD modeling approach is developed to evaluate the forces for 

the statically eccentric face-seal impeller, and it has been found that the presence of 

static eccentricity on the face-seal impeller has an adverse effect on rotordynamic 

stability.  
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NOMENCLATURE 

 

A     system matrix of Jeffcott rotor model  

, , ,xx xy yx yyA A A A    state matrices of impedances 

 A     system matrix of FE model 

 B     control matrix of Jeffcott rotor model 

, , ,xx xy yx yyB B B B   input matrices of impedances 

bc      bearing damping of Jeffcott rotor model (N-s/m) 

, , ,xx xy yx yyC C C C   output matrices of impedances 

 C     global damping matrix of FE model 

 BC     bearing damping matrix of FE model 

 GC    gyroscopic matrix of FE model 

ID     diameter (m) 

e    imbalance eccentricity distance (m) 

f    / , Precession Frequency Ratio (PFR)  

F    unbalance force vector of Jeffcott rotor model 

rF     radial reaction force of impeller (N) 

tF     tangential reaction force of impeller (N) 

xF    reaction force of impeller in x-direction (N) 
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yF     reaction force of impeller in y-direction (N) 

 uF    unbalance force vector of FE model. 

 uF     magnitude of unbalance force vector of FE model 

 IF     impeller impedance matrix of FE model 

H     head (m) 

I , or  I    Identity matrix 

rI    Radial impedance 

tI    Tangential impedance 

ISR   Inlet Swirl Ratio of impeller model 

K, C, M  direct stiffness, damping, mass (N/m, N-s/m, kg) 

k,c,m   cross-coupled stiffness, damping, mass (N/m, N-s/m, kg) 

bk     bearing stiffness of Jeffcott rotor model (N/m) 

 K    global stiffness matrix of FE model 

 BK     bearing stiffness matrix of FE model 

 SK    shaft stiffness matrix of FE model 

dm     disk mass of Jeffcott rotor model (kg) 

 M     global mass matrix of FE model 

N     spin speed of impeller (rad/s) 

p    static pressure  Pa  
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P     pressure difference between shroud inlet and seal outlet  Pa  

PFR   Precession Frequency Ratio ( /f   ) 

Q     flow rate of impeller (
3 /m s ) 

, , ,xx xy yx yyT T T T    force vectors of impedances 

0V    inlet tangential velocity  

,x yv v     velocity of disk center (m/s) 

x,y,z   Cartesian coordinates 

( ), ( )x t y t    position of disk center (m) 

, , ,xx xy yx yyZ Z Z Z    state vectors of impedances 

Z      eigenvector of Jeffcott rotor model 

 z     displacement vector of FE model  

 z     magnitude of displacement vector of FE model 

    logarithmic decrement of Jeffcott rotor model 

    eccentricity of whirling motion (m) 

ε     turbulence dissipation  

     damping ratio of Jeffcott rotor model 
2 n

c

m



  

k    turbulence kinetic energy 

,x y      angular displacement 

     eigenvalue of Jeffcott rotor model 



 

viii 

 

     flow coefficient 

     head coefficient 

     spin speed (rad/s) 

n      natural frequency of Jeffcott rotor model (rad/s)   
n

k

m
   

     whirl frequency  (rad/s) 

w    whirl frequency ratio at instability (
k

C
) 
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1. INTRODUCTION 

 

1.1 Overview 

Centrifugal pumps and compressors have various vibration sources which can 

produce serious instability problems. Among many possible sources of the rotor 

vibration, fluid forces acting on the turbomachines have been considered an important 

factor causing rotordynamic instability.  In order to analyze the fluid forces, much 

research has been performed experimentally and theoretically. These studies explained 

that fluid forces acting on the shroud surface play an important role in the resulting 

destabilizing forces and understanding the mechanism of the forces are crucial to design 

turbomachines with higher power densities. In the present study, various destabilizing 

mechanism of the shrouded centrifugal impellers and the resultant impedances of the 

impellers will be addressed using CFD technique.   

 

1.2 Literature Review 

1.2.1 Measurements of Hydrodynamic Forces on Centrifugal Impellers 

Jery et al. [1] measured radial and tangential forces of a 3D centrifugal impeller 

and the resulting impedances from the experiment fairly matched a quadratic curve. 

Least square curve fit algorithm was used to calculate the rotordynamic coefficients 

from the measured forces. The authors showed that the identified rotordynamic 

coefficients matrices have equal diagonal elements and skew-symmetric off-diagonal 

elements. Measurements were performed to investigate the effect of a flow coefficient 
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and diffuser guides of the impeller. The flow coefficients is defined based on the 

impeller discharge area and tip speed ( 2 2/Q r A   Q : flow rate, 2r  : impeller tip speed, 

2A : discharge area). The experimental data showed that the hydrodynamic forces are 

affected a lot by the flow coefficient rather than the diffuser guides.  

Bolleter et al. [2] tested a boiler feed pump impeller with vaned diffuser. Seal 

forces were not considered by employing a face seal on the suction side of the shrouded 

impeller. The rotordynamic coefficients of the impeller system were identified by 

performing hydrodynamic force measurements using translational motion and wide 

frequency range excitation. In 1989, Bolleter et al. [3] implemented additional 

experiments by changing the geometry of the impeller shroud, type of seal, spin speed 

and temperature. The tested impellers had tighter clearance of the shroud leakage flow 

path and this resulted in higher values of the rotordynamic coefficients when compared 

to the results of Jery et al. [1]. In the test case of an impeller with an annular seal, a whirl 

frequency ratio at instability ( /k C ) was 2.26. The abnormally high value of the whirl 

frequency ratio at instability was reduced to 1.16 by attaching a small swirl break in the 

suction side of the impeller.  

Ohashi et al. [4] measured lateral fluid forces on two and three dimensional 

centrifugal impellers. The authors evaluated the effect of vaned and vaneless diffusers, 

clearance between the front shroud and the casing, and interaction between the impeller 

and the guide vane. Fluid induced forces on a 3D impeller with a vaned diffuser are 50% 

larger than those with a vaneless impeller. The authors concluded that the clearance 

between the casing and the shroud has an influence on the fluid induced forces on the 
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front shroud of the impeller and the hydrodynamic forces acting on the shroud surface 

are increasing with smaller gap between casing and front shroud. 

Yoshida et al. [5] investigated the effect of the interaction between the impeller 

and the volute casing. The measured tangential force increased as the flow rate was 

reduced and the whirling speed was lowered. Tsujumoto et al. [6] implemented flow and 

pressure measurements in the back shroud/casing clearance of a precessing centrifugal 

impeller and integrated the unsteady pressure distribution to obtain the fluid moment 

coefficients. Yoshida et al. [7] measured detailed flow and pressure in the 

backshroud/casing clearance to calculate moment coefficients. The inlet gap (‘Gap-A’) 

of backshroud leakage flow path and the leakage flow influenced the rotordynamic 

stability. With the decreased inlet gap, the absolute values of fluid moments are 

increasing. The increased leakage flow makes the impeller more destabilizing.         

 

1.2.2 Bulk Flow Analysis for Shroud Leakage Path 

Childs [8] employed a bulk-flow analysis for the leakage path between an 

impeller shroud and a pump housing to predict rotordynamic coefficients. A face-seal 

pump impeller and a conventional wear-ring seal pump impeller were considered. The 

determined rotordynamic force coefficients of the face-seal pump impeller case showed 

reasonable correlation to experiment results measured by Bolleter et al. [2]. In Childs’ 

model, recirculation zones in the shroud leakage path could not be captured since the 

bulk-flow model can analyze only 1D fluid flow. In his results for the face-seal pump 

impeller and the conventional wear-ring seal pump impeller, ‘dips’ and ‘bumps’ were 



 

4 

 

observed in the radial and the tangential impedances curves. Because of the peaks, the 

predicted impedances cannot be modeled by the conventional MCK (Mass-Damping-

Stiffness) model. The phenomenon disappeared when the centrifugal acceleration term 

in the bulk flow model is removed.   

Gupta [9] utilized a bulk flow model for compressible flow and verified his 

approach by comparing the results with the measurement data of Yoshida et al. [7]. The 

compressible bulk flow model showed dips and bumps in the calculated impedance 

curves and the recirculation zones couldn’t be observed due to the limitation of the bulk 

flow model. Based on the verified approach, a full set of rotordynamic coefficients (4X4 

matrices) of an impeller stage was predicted and the stability analysis performed by 

applying the predicted coefficients to a semi cantilevered rotor.   

 

1.2.3 CFD Approaches for Rotordynamic Problems 

Baskharone et al. [10] modeled a 3D eccentric impeller shroud region of Sulzer 

impeller tested by Bolleter et al. [2] and evaluated the rotordynamic coefficients using 

FEM based solution. The calculated impedance curves of the face-seal impeller in the 

FE solution showed smooth curves without bumps and dips. Baskharone et al. [11] 

investigated the main and leakage flow by adding the primary passage on the shroud 

model. However, any perturbations were not imposed in the FE model and no 

rotordynamic coefficients were predicted.  

 Moore et al. [12] performed prediction of rotordynamic forces acting on the 

shroud surface of a centrifugal pump impeller. They used TASCflow which is a 
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commercial code utilizing FVM based CFD technique. For the CFD analysis, a 3D 

eccentric structured grid for the shroud leakage path was generated. The eccentric grid of 

the shroud region was combined with the centered grid model of the blade impeller and 

rotordynamic prediction performed using the commercial CFD solver.  In the combined 

impeller grid model, the eccentricity for generating whirling orbit was applied to only 

shroud region and the primary passage was assumed to be operating at centered position. 

The imposed eccentricity of the grid model was determined to have 10% of the shroud 

clearance based on the study of Moore et al. [13]. The predicted rotordynamic 

coefficients for the face-seal impeller in the study were well matched with the 

measurement data of Bolleter et al. [2]. The fluctuating impedance curves shown in the 

result of bulk flow code by Childs [8] were not observed in the CFD results of the face-

seal impeller.  

Moore et al.  [14] adopted a commercial CFD code for predicting the 

rotordynamic coefficients of a centrifugal compressor. Unstructured mesh technique 

utilized to generate 3D eccentric grid model. Likewise the face-seal impeller case of 

Moore et al. [12], only shroud region was modeled to have 10% eccentricity of the 

shroud clearance. The considered compressor in the paper has 4 stages and suffered from 

rotordynamic instability. Simulations are performed using the given boundary conditions 

to predict the rotordynamic coefficients of the multistage compressor.  The predicted 

rotordynamic coefficients for stage 1 and stage 3 showed good agreement with the 

experimental data. Based on the parametric study using the calculated rotordynamic 
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coefficients, the authors developed a new analytical formula to predict the cross-coupled 

stiffness for the centrifugal compressor impellers.   

 

1.2.4 Measurements and Analysis of Unconventional Impedances 

Franz et al. [15] observed unconventional impedance curves with bumps and dips 

in their measurement and showed the phenomenon was influenced by the flow 

coefficients. Brennen et al. [16] also observed the bumps and dips in the measured radial 

and tangential impedances of the centrifugal impellers at lower flow operations. Similar 

experimental evidences were observed in experimental results (figure 8 and 9) of 

Bolleter et al. [3]. Bolleter pointed out that the measured radial and tangential 

impedances didn’t have parabola curves at lower flow rates in their experiments.  

Childs [8] predicted qualitatively similar results in his bulk flow analysis on the 

shrouded pump impellers and performed extensive studies on the bumps and dips in the 

impedance curves [17-19]. Childs [17] examined the axial reaction forces which are 

caused by the pressure and the shear stress on the shroud surface. He introduced a 

method for estimating stiffness, damping, and mass coefficients for the axial reaction 

forces. The effects of the rotordynamic coefficients for the axial reaction forces were 

investigated by applying the coefficients in a double-suction single-stage pump. The 

rotordynamic coefficients for the axial reaction forces were meaningful only for the case 

that system natural frequency is much lower than the operating speed. An approach to 

calculate eigenvalues for the lateral excitation and the axial vibration was developed in 

Childs [18]. In the research, eigensolutions (magnitude and phase) for the path velocity, 
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circumferential velocity, and pressure were calculated and analyzed according to the 

inlet swirl ratio. In 1992, Childs [19] analyzed the effect of pressure oscillation in the 

shroud leakage path. The variation of the impeller discharge pressure in circumferential 

direction cause the pressure oscillation in shroud clearance. Peak-pressure oscillation in 

the shroud leakage path appeared near the wear-ring seal in the analysis.  

Williams et al. [20] suggested an approach to evaluate the unconventional 

impedance curves in his bulk flow models. They modeled the impedances by dividing 

them into constant rotordynamic coefficients (mass, stiffness, damping) and whirl-

frequency-dependent direct and cross-coupled stiffness. Using the approach, they 

evaluated the Jeffcott-based, double-suction impeller leakage path model and concluded 

that the peaks in the impedances had considerable effect on rotordynamic stability of the 

impeller model.  

 

1.2.5 System Identification for Unconventional Impedances 

Kleynhans and Childs [21] introduced general transfer function model, utilizing 

the impedance model of Bolleter et al. [2]. Their research was motivated to model the 

radial and tangential impedances of a long honeycomb gas seal which cannot be 

modeled using the conventional reaction force equation. Kleyhans employed 

approximated transfer functions to express the unconventional impedance curves in 

Laplace domain. Although their approach couldn’t be fully investigated because of the 

limited frequency range of the used test data, they suggested useful Laplace-domain 

model to perform rotordynamic analysis for the unconventional impedances.  Based on 
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the research of Kleyhans et al. [21], Thorat et al. [22] expanded the model by using a 

curve-fit approach to obtain the impedance functions, D and E, which were introduced 

by Bolleter et al. [2]. Thorat derived D and E functions in the forms of standard 

polynomial. He extracted the stiffness and damping coefficients from the derived D and 

E function to model frequency dependent Models.  Comparisons were made between 

traditional frequency independent force model and frequency dependent model to show 

the validity of their new approach for estimating the unconventional impedance 

functions.  

 

1.2.6 Effect of Static Eccentricity on Rotordynamic Instability 

Falco et al. [23] tested a short seal to investigate the effect of the static 

eccentricity on the cross-coupled stiffness and direct stiffness of the seal. In the case, 

L/D =0.25 and eccentric ratio (e/c) was examined up to 0.7. Analytical solutions of a 

Reynolds’ equation based finite element model were also obtained and comparisons 

were made with the experiment data. The predicted results were fairly close to the 

measured data for the eccentric plain annular seal.   

Nelson et al. [24, 25] developed an approach to analyze eccentric annular 

incompressible seals. A bulk flow model with moody friction model is utilized. Zeroth 

order equations were solved by employing Fast Fourier Transforms (FFT). The 

developed approach was verified by comparisons with the experiment data performed by 

Jenssen [26]. First order equation also solved in Ref. [25] to calculate the rotordynamic 

coefficients for the static displacement of the eccentric annular seal. Comparisons were 
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made with the experiment data of Falco et al. [23] and Allaire et al. [27]. Nelson’s 

approach showed improved results than the predictions for the short seal case of Falco et 

al. [23].      

Padavala et al. [28] developed a simple scheme based on cubic splines to obtain 

solutions for a statically eccentric seal, an arbitrary profile seal, and a distorted seal. 

Using the method, the authors could make simpler solution procedures than the approach 

of Nelson et al. [25]. Comparisons were made with the predictions of Nelson’s and 

Allaire’s approach for the case of Allaire et al. [27]. The predicted rotordynamic 

coefficients showed similar rotordynamic coefficients with the results of Nelson and 

Allaire.  

Kanki and Kawakami [29] measured the rotordynamic force from the circular 

whirling motion of a pump annular seal and evaluated the rotordynamic coefficients 

according to the applied static eccentricity. Test conditions are 2,000 rpm and 

0.98p MPa  . The tested plain annular seal is 1.0L D  and 0.005rC R  . San 

Andres [30] utilized a finite difference scheme to solve the turbulent flow in the seal. 

Moody friction factor was used to account for surface roughness effects. Using the 

developed approach, San Andres predicted the measured seal case of Kanki and 

Kawakami [29] and showed fairly good agreement. Kanki and Kawakami [31] tested 

grooved seals and showed that the grooved seal is insensitive to changes in eccentricity 

ratio.  

Marquette et al [32] provided measured results and predictions for a seal with 

0.45L D   and 0.0029C R  . For the prediction of leakage flowrate and the 
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rotordynamic coefficients, a developed code by San Andres [30] was utilized. Overall 

predictions of the rotordynamic coefficients showed good agreement with the test results. 

Leakage flowrate increased with increasing p , and reduced with higher running speed. 

With the increased eccentricity, the leakage flow rate increased slightly. The seal 

became more unstable with increasing eccentricity. Marquette et al. [33] also provided 

rotordynamic coefficients versus eccentricity ratio and leakage flow rate results for 

finely and coarsely grooved seals. For the predictions, Marquette et al. [33] utilized three 

control volume bulk flow theory with Hirs friction model. Rotordynamic coefficients 

and leakage flow rate for grooved seals are relatively insensitive to static eccentric ratio 

up to 0.5. The authors concluded that the grooved seal is more stable than the plain 

annular seals [32] in the aspect of the whirl frequency ratio. However, the grooved seals 

were less stable than the plain annular seals [32] based on effective damping. In their 

results, overall predictions showed accurate results except cross-coupled stiffness terms.   

 

1.3 Objectives and Contributions of Current Work 

API 617 level-II analysis [34] for the rotordynamic stability of centrifugal 

compressors requires detailed computed rotordynamic coefficients if level-I criteria fails. 

Thus, more accurate calculation of the rotordynamic coefficients is important to examine 

the rotordynamic stability.  The goal of the current work is to predict more reliable fluid 

induced forces and the corresponding rotordynamic coefficients of shrouded centrifugal 

compressor/pump impellers. This will be implemented through the use of the 

commercial CFD code, ANSYS CFX. The specific objectives and contributions are: 
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1) To develop a numerical approach to calculate 44 rotordynamic coefficients with 

CFD : 

CFD models to determine 4  4 rotordynamic coefficients will be 

developed in the current work. To calculate the full set of the rotordynamic 

coefficients using CFD technique, the circular motion with the whirling orbit and 

the conical motion with the tilt angle should be modeled. Since there’s no 

validated approach to model 3D tilted centrifugal impeller for the CFD analysis, 

the developed approach for the tilted impeller will be verified by considering the 

test case of [7]. After the verification, the 44 rotordynamic coefficients will be 

calculated for the face-seal impeller analyzed in [2, 8, 12] and the rotordynamic 

analysis will be performed using the coefficients to estimate the stability of the 

impeller.     

   

2) To develop a CFD modeling approach for coupled circular and conical motion of a 

shrouded centrifugal face-seal impeller:   

In the real rotor operation, lateral motion and tilt motion arise together 

when considering the flexible rotor bending motion. The coupled (circular + 

conical) motion can be modeled in one CFD complete model by imposing 

whirling orbit and tilting angle. In the present study, ANSYS CFX is utilized to 

model the coupled rotor motion by imposing dynamic eccentricity and tilting 

angle in the 3D shrouded face-seal impeller model. Because of the geometric 

constraint, small angles (0.025 ° and 0.05 ° in the face-seal impeller case) should 
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be imposed with the dynamic eccentricity. The effect of the coupled motion on 

the rotordynamic stability will be investigated by evaluating the whirl frequency 

ratio at instability using the resultant rotordynamic coefficients from the CFD 

simulation of the coupled motion.  

 

3) To examine factors causing rotordynamic instability of a shrouded centrifugal 

impeller: 

As reviewed in the above, Childs [8] predicted the unconventional 

impedances for the face-seal impeller and the wear-ring seal impeller. The 

phenomenon also observed in the measurements of Franz et al. [15] and Brennen 

et al. [16]. For the face-seal impeller case, Moore [35] calculated the fluid 

induced forces acting on the shroud surface using CFD approach and the bumps 

and dips in the impedance curves were not observed. The same face-seal impeller 

model is constructed for the verification in the current research and the estimated 

impedances show typical impedance curves for the positive precession frequency 

range. However, slight bumps and dips can be observed in the predicted 

impedance curves when the fluid induced forces on the shroud surface are 

calculated for a wider range including the negative frequency region. For the 

wear-ring seal case, the bumps and dips in the predicted impedance curves are 

clearly seen and the trend and shape are very similar with the results of Childs [8]. 

According to Childs’ analysis, the unconventional impedances resulted from the 

centrifugal acceleration term in his bulk flow model. In this study, CFD code will 



 

13 

 

be utilized to examine factors causing the peaks including the centrifugal 

acceleration effect. In addition, rotordynamic stability analysis will be also 

performed to investigate the influence of the bumps and dips in the impedance 

curves.  

 

4) To develop a reliable approach to model impedances of seals and impellers:   

The fluctuating impedance curves cannot be modeled by the traditional 

MCK model with rotordynamic coefficients. In order to identify the impedances, 

earlier work utilizing the transfer function approach to identify the 

unconventional impedance curves was suggested by Kleyhans et al. [21] and 

Thorat et al. [22] expanded the approach. However, Kleyhans’ approach had 

limitations such as low curve-fit quality and limited frequency range for its 

application. The transfer function derived by Thorat was open-loop unstable. 

Thus, in order to address these limitations, a new alternate approach using 

fictitious, fast poles and segmentation will be suggested and validated in this 

research.   

 

5) To develop a numerical approach to model a statically eccentric, whirling shrouded 

centrifugal impeller:  

For the vibration problems of centrifugal impellers, static eccentricity has 

not been considered in the previous research. When considering the actual 

operation of the centrifugal impeller, the vibration caused by the static 
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misalignment is more likely to happen. Thus, an approach for analyzing the 

effect of the static eccentricity will be developed in this study. Measurement 

results by Falco et al. [23] and analysis predictions of [24, 25, 27, 28] on 

eccentric seals will be compared with the CFD results in order to validate the 

developed approach. The developed approach will be applied for the face-seal 

impeller case.       
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2. NUMERICAL METHOD DESCRIPTION
123

 

 

The reaction forces acting on the impeller should be calculated at multiple 

excitation frequencies to predict the rotordynamic coefficients. For more accurate 

prediction of the rotordynamic coefficients, it is important to perform the CFD analysis 

in the wide range of the excitation frequency with the refined step. However, too many 

steps require high computational cost. Thus, it is important to consider efficiency as well 

as accuracy when choosing a numerical solver for the rotordynamic problems.  

The present study utilizes ANSYS CFX to calculate the rotordynamic coefficients. 

ANSYS CFX uses the co-located grid approach that all flow variables are stored at the 

grid nodal point [36]. Basically, the approach is less laborious than the staggered grid 

approach utilized in other solvers because the co-located grid approach doesn’t need a 

different grid for each velocity component and the pressure. In addition to that ANSYS 

CFX has been widely used to perform the rotordynamic analysis of rotating machinery 

and well proven in many rotordynamic problems. The validity of the selected solver 

(ANSYS CFX) and the numerical approach for the current research will be evaluated by 
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the mesh density study and the comparisons of impedance curves between the 

predictions and the measured data in Sec. 2.7.  

The standard k - ε  turbulence model is selected to analyze complex turbulent flow 

in the shrouded impeller leakage path in the current research. Although the standard k - ε  

model is robust and reasonably accurate, the ε  equation contains a term that cannot be 

calculated at the wall and the model has limitation to perform accurate prediction for 

flows with strong separation, large streamline curvature, and large pressure gradient. In 

order to compensate those drawbacks, ANSYS CFX employees the scalable wall 

function for the standard k - ε  model and curvature correction that are utilized for the 

rotordynamic analysis of the present study. The subsequent sections will explain the 

utilized CFD technique including the scalable wall function and the curvature correction. 

The strategy for rotordynamic modeling will be also discussed.   

 

2.1 The Standard k ε  Turbulence Model 

In turbulence models, the original unsteady Navier-Stokes Equations are modified 

by introducing averaged and fluctuating quantities to produce the Reynolds Averaged 

Navier-Stokes (RANS) equations. Think that velocities , , ,u v w  and pressure, ,p  may be 

composed of ensemble average values and turbulent fluctuations as below : 

' '

' '

u u u v v v

w w w p p p

   

   
 (1) 

Components with apostrophe denote fluctuating time varying parts and 

components with hyphen indicate the ensemble average or the mean value. For example, 
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an average component ( u  ) is given by 

1
t t

t

u u dt
t




   (2) 

Substituting these decompositions of Eq. (1) to the Navier-Stokes equations and 

taking the ensemble average, the Reynolds averaged equations are obtained as 

  0j

j

U
t x




 
 

 
 (3) 

   i

i j ij i j M

j i j

U
U U u u S

t x x x

 
  

   
     

   
 (4) 

where, MS  is the sum of body forces and   is the molecular stress tensor. Equations for 

ensemble averaged values equal to the Navier-Stokes equation except for the cross-

products of the fluctuation terms, 2 2 2( ') , ( ') , ( ') , ( ' '), ( ' '), ( ' ')u v w u v u w v w . These terms are 

called Reynolds stresses, i ju u , or ‘turbulent stresses’, since they have similar functions 

as viscous stresses. In order to close the system, the behavior for the turbulence cross-

product terms should be defined. Reynolds Stress Model (RSM) needs transport 

equations for the fluctuation terms by six. This model has advantage in complex 3D 

turbulent flows with large streamline curvature and swirl. However, this approach is 

difficult to attain the converged solutions and the computational cost is higher than One-

Equation or Two-Equation models. Two equation turbulence models are commonly used 

and the number of extra equations for the fluctuation terms is reduced to only two. 

ANSYS CFX provides various Two-Equation models [36]. In the current research, the 

standard k - ε  model is utilized to compute the turbulent flow and the scalable 
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logarithmic wall function is used to describe the near wall velocity.  

In the standard k - ε  model, the Reynolds stresses are assumed to be proportional 

to mean velocity gradients. The turbulent Reynolds stresses are approximated by the 

Boussinesq hypothesis and modeled as  

2

3

ji k

i j t ij t

j i k

UU U
u u

x x x
    

    
            

k  (5) 

t   is the turbulence viscosity defined using the turbulence kinetic energy, k , and the 

turbulence dissipation rate, ε  , as follows : 

t C 
k

ε
 (6) 

where, C  =0.09.  

The extra equations are needed for the closure and the transport equations for k  

and ε  are modeled as  

   
  t

j k kb

j j k j

U P P
t x x x

 
  



     
       

      
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ε ε ε
ε ε

k
 (8) 

where 1 2, , kC C    , and   are constants. kbP  and bP  represent the influence of the 

buoyancy forces. kP  is the turbulence production due to viscous forces, which is 

modeled with:     

 2
3

3

ji i k k

k t t

j i j k k

UU U U U
P

x x x x x
  
      

             

k  (9) 
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The empirical constants are 

1 20.09, 1.44, 1.92, 1.0, 1.30kC C C          (10) 

 

2.2 Scalable Wall Function 

In the law of wall function model, the boundary layer can be divided into three 

regions of viscous sublayer, log layer, and defect layer, according to the near-wall 

distance. The near wall tangential velocity in the log layer region is related to the wall-

shear-stress,  , by means of a logarithmic relation. The near wall velocity, u 
, is 

described as  

 
1

lntU
u y C

u 

     (11) 

where,  

1

2

,
y u

y  


 


 

   
   

 
 (12) 

In the above equations, u , is the friction velocity, tU , is the known velocity tangent to 

the wall at a distance of y  from the wall and y  is the dimensionless distance from the 

wall.   is the von-Karman constant and C  is a log-layer constant depending on the 

roughness. For a smooth wall condition, C  is 5.10.   

Eq. (12) cannot be used at the separation point because the near wall velocity, tU , 

approaches zero at the point and it becomes singular. To prevent this, an alternative 

velocity scale, 
*u , can be utilized instead of u  as shown in the below.  



 

20 

 

* 1/4 1/2u C   (13) 

   This scale doesn’t become zero when the near wall velocity approaches zero. By 

utilizing this, the following equation for u  can be defined as  

 *1 ln

tU
u

y C







 (14) 

Then, the absolute value of the wall shear stress,  , becomes  

*u u    (15) 

where, 

 *

*
u y

y





  (16) 

In the wall function model, the numerical calculation results are affected by the 

mesh quality near the wall. In addition, the accuracy of the results is not guaranteed by 

refining the mesh (Grotjans and Menter [37]). ANSYS CFX developed the scalable wall 

function approach to provide consistent solutions on arbitrarily fine meshes near the wall 

regardless of the Reynolds number of the application [36]. The basic idea of the scalable 

wall function is that the computed value of *y  is not allowed to become below 11.06. 

This number indicates the intersection between the logarithmic and the linear near wall 

profile. The *y  can be limited in ANSYS CFX by using a relationship defined as  

 * *max ,11.06y y  (17) 
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Eq. (17) makes all mesh points locate outside the viscous sublayer and the 

inconsistencies according the mesh refinement can be overcome. In order to guarantee 

the accuracy by applying the scalable wall function, most *y  have to bigger than 11.06.  

 

2.3 Curvature Correction 

ANSYS CFX utilizes curvature correction for Two-Equation turbulence models 

including the standard k - ε  model to sensitize the turbulence models to streamline 

curvature and system rotation [36]. In order to analyze the swirling flows and flows with 

strong streamline curvature, an empirical function is introduced by Spalart and Shur [38] 

as shown below.  

 
*

1

1 3 2 1*

2
(1 ) 1 tan

1
rotation r r r r

r
f c c c r c

r

     
 (18) 

where, 1 1.0rc  , 2 2.0rc  , and 3 1.0rc  . 

This function is utilized as a multiplier of the production term of Eq. (9). The multiplier 

is limited as follows: 

k k rP P f   (19) 

where,  

 max 0,1 1r scale rf C f   
 

 (20) 

  max min ,1.25 ,0r rotationf f  (21) 
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scaleC  of Eq. (20) is utilized to influence the effect of the curvature correction for a 

specific flow if needed. The scaling coefficient is set as 1.0 for all cases in the current 

research. In Eq. (18), all the variables and their derivatives are defined with respect of 

the reference frame of the calculation and rot , 
*r , and r  of Eq. (18) are defined as 

* S
r 


 (22) 

  3
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ik jk imn jn jmn in m

DS
r S S S

Dt D
 

 
     
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 (23) 

The strain rate and vorticity tensor are defined using Einstein summation 

convention as 
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 (25) 

where 

2 2 ij ijS S S , 2 2 ij ij    , 2 2 2max( ,0.09 )D S        (26) 

 

2.4 Pressure-Velocity Coupling 

ANSYS CFX utilizes non-staggered, a co-located grid that the control volumes are 

identical for all transport equations [36]. Rhie and Chow [39] introduced an alternative 

discretization approach for the mass flows to prevent a decoupled (checkerboard) 

pressure field for the non-staggered grid. Majumdar [40] performed further modification 



 

23 

 

of the discretization approach to eliminate the dependence of the steady-state solution on 

the time step. The Rhie-Chow interpolation is the same as adding a pressure term which 

is for eliminating pressure and velocity oscillations. In the continuity equation, the 4
th

 

order pressure term is added as below: 

3 4

4
0

4i

U x A P

x m x

    
   

    
      (27) 

The additional term in Eq. (27) is called the pressure-redistribution term and the 

term becomes significantly smaller when the mesh is refined to reasonable level. In the 

term, A  is the face area and x  is the grid spacing.    

 

2.5 Summary of Assumptions  

The summarized assumptions and numerical methods for the present study are 

shown in Table 1..  

Table 1 Numerical method and assumptions 

Analysis Type Steady State 

Turbulent model Standard k - ε , scalable wall function 

Discretization scheme High resolution 

Heat Transfer Isothermal 

Wall properties Smooth, Non-slip, Adiabatic 

 

All the predictions of the rotordynamic coefficients in the present research are 

calculated using steady state solution. The wall properties of the shrouded centrifugal 

impeller problems are assumed to be smooth, non-slip and adiabatic. Since there are no 

heat sources in the selected experiment cases for the centrifugal impellers, isothermal 



 

24 

 

condition is assumed in the numerical calculation. The utilized discretization scheme is 

high resolution scheme (2
nd

 order upwind scheme with limiter). 

 

2.6 CFD Modeling for Whirling Rotor Motion 

 

Fig. 1  Circular whirl orbit motion of the impeller 

 

Fig. 1 illustrates typical whirling motion of rotor model which is applied in the 

present study. The points O and p  indicate the center of the whirling orbit and the center 

of the impeller, respectively. The distance  represents the dynamic eccentricity of the 

impeller. The shrouded impeller is whirling at the angular rate Ω, while the shroud 

surface spins about the center of the rotor at the spin rate ω. In ANSYS CFX, this motion 

is modeled by defining the fluid region as a rotating frame while the stator wall is 

defined as a counter rotating wall in the opposite direction to the rotating frame. To 

simulate positive whirling, the direction of the rotating rotor has to be same with the 

direction of the rotating frame.  
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The conventional, MCK model used to describe the fluid structure interaction 

forces between the shroud leakage, secondary flow path fluid and the whirling rotor is:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x

y

F t K k x t C c x t M m x t

F t k K y t c C y t m M y t

             
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 (28) 

where, ( ) cos( )x t t   and ( ) sin( )y t t  . In this equation, ( )xF t  and ( )yF t  are related to 

the radial and tangential forces by  
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At 0t  , the location, velocity, and acceleration of the impeller center become    
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By substituting Eq. (30) into Eq. (28), the forces exerted on the impeller are expressed as  
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  (31) 

Once a numerical solution is obtained at a certain whirl frequency, the radial and 

tangential forces, rF  and tF , can be determined by integrating the force at each node 

on the shroud surface. The forces can be expressed 
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where,  
ixf  : reaction force in X direction at each node 

  
iyf  : reaction force in Y direction at each node 

The forces at each node are calculated by  

i i

i i

x i i x

y i i y

f P A n

f P A n

  

  
 (33) 

where, iP  : pressure at each node , iA  : area at each node 

ixn  : normal vector in X direction at each node 

iyn  : normal vector in Y direction at each node 

 

In Eq. (31), the impedances, /rF   and /tF  , should be obtained at least at three 

whirl frequencies to calculate the rotordynamic coefficients because there are 6 

unknowns, the linear stiffness, damping, and mass coefficients in Eq. (28). Preferably, 

the rotordynamic coefficients can be evaluated using the Least Square Algorithm after 

obtaining impedances at many frequency ratios. To obtain solutions at multiple 

frequency ratios, relative rotor speed is required at each frequency ratio to impose a 

boundary condition of the rotor speed. The relative rotor speed is defined is defined as 

follows: 

rotor    (34) 

  is identical rotational speed of the domain and rotor  is the relative rotor spin 

speed. The rotor spin speed,  , of the shroud impellers in this research is 2000 rpm.  

 Table 2 shows the whirling speed and the calculated relative speed using Eq. (34) 

at each frequency ratio. The listed frequencies are utilized value to obtain the impedance 

curves of the shrouded centrifugal impellers as shown in Fig. 8.   
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Table 2 Whirling speed and relative rotor speed ( 2000 rpm  )  

Frequency ratio 

(f = Ω/ ω) 
0 0.25 0.5 0.75 1 1.5 

Ω 

(rpm) 
0 500 1000 1500 2000 3000 

𝜔𝑟𝑜𝑡𝑜𝑟  

(rpm) 
2000 1500 1000 500 0 -1000 

 

To simulate multi domain problems with rotating frames, interface model is 

required. In this study, Frozen Rotor model will be used to capture circumferential flow 

variation. Since speeds of each domain are not same, mesh connection method is need to 

be set as GGI ( general grid interface ) and this model does not require matching nodes 

on either side of two connected surfaces.  

 

Fig. 2 Overall work flow for dynamic impedance and dynamic coefficient 

determination 
 

Fig. 2 illustrates the overall computation procedure to calculate the rotordynamic 

impedances and coefficients. The numerical solution process is performed over a wide 

whirl frequency range for use in both imbalance response and rotordynamic stability 

codes. The frequency response results are used to calculate the rotordynamic coefficients 
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using the method of least square error. Thus, by varying the precession frequency ratio 

as shown in Table 2, the preprocessing and solving step is repeated as shown in the 

figure.   

2.7 Mesh Generation and Boundary Conditions 

Fig. 3 shows geometric and dimensional information for the face seal impeller and 

a conventional wear-ring seal impeller, which is used for the CFD simulations. 

Dimensions in each impeller model are indicated based on the information in [8, 

12]. In case of the face-seal impeller, some of the dimensions of the leakage flow path in 

the shroud model had to be approximated because the exact geometry information is 

unclear in the references. 

(a)        (b) 

Fig. 3 Nominal configuration of impeller (a) face-seal impeller [8] (b) Wear-ring 

seal impeller [8] 
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(a) 

 

(b) 

Fig. 4 Cut plane view of 3D eccentric grid (a) face-seal impeller (b) wear-ring seal 

impeller 
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Based on the dimensions in Fig. 3, 3D eccentric grid models for the face-seal 

impeller and the conventional wear-ring seal impeller are generated. Fig. 4 describes the 

cut plane view of the 3D eccentric grid models of the impeller. The goodness of the 3D 

eccentric mesh will be evaluated using the mesh density studies in the following sections. 

The impeller models are composed of three domains as shown Fig. 4. The diffuser 

domain in each numerical model is added to impose the inlet swirl velocity on the 

secondary flow path, which can be set in the computational model by defining the 

domain as a rotating frame. Two surfaces located between domains are set as domain 

interfaces to define domains rotating at different spin rates. The numerical impeller 

models have 2 inlets and 2 outlets and they are placed in the diffuser and inlet domains 

as shown in Fig. 4. The same mass flow rate should be imposed at the two inlets since 

the omitted primary flow passage is a continuous flow path. The outlet pressures are 

determined based on the head rise at the main flow region. Based on the operating 

conditions provided in the research of Bolleter et al. [2], the boundary conditions at 

0   are specified as shown in Table 3, where   is the whirl velocity as shown in Fig. 

1. Stationary walls in the rotating frames are treated as counter rotating walls and a no-

slip condition is imposed at all walls in the numerical model. For the numerical 

calculation, a 64 bit processor with 4 cores operating at 28GHz and 8 GB memory are 

utilized and the desired convergence target of each solution is 
410
 or an even lower 

value. 
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Table 3 Boundary conditions for the shrouded impeller model at 0   

Parameters Values 

Working Fluid Water 

Fluid Temperature 26.5  

Inlet Swirl Ratio 0.5 

Flow rate at Inlet1 130 Kg/s 

Flow rate at Inlet2 130 Kg/s 

Static Pressure at Outlet1 0.1 MPa 

Static Pressure at Outlet2 0.57 MPa 

Stationary walls Counter Rotating Wall 

Rotating walls 2000 rpm 

 

2.8 Validity of Axisymmetric Pressure Boundary Condition 

Constant pressure boundary condition at Outlet2 is assumed for the shrouded 

only impeller model as indicated in Table 3. If a centrifugal impeller is installed in an 

asymmetric volute, the constant pressure at the outlet of the impeller is need to be 

justified when considering asymmetric shape of the volute. Alemi et al. [41] investigated 

the effect of a volute on a centrifugal pump. They measured pressure along the 

circumferential direction at the impeller outlet as shown in Fig. 5.  The measured data 

were compared with the predictions using various types of turbulence model provided in 

ANSYS CFX. The compared results are indicated in Fig. 6. The measurement and the 

predictions showed that deviation of the pressure along the circumferential direction at 

impeller outlet is small enough to assume constant pressure boundary condition.  
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Fig. 5 Asymmetric volute and impeller geometry [41] 

 

 

 
Fig. 6 Comparison of pressure at outlet of impeller between measurement and 

predictions [41] 

 

  

2.9 Grid Independence Study  

2.9.1 Face Seal Impeller of Fig. 3(a) 

The 3D eccentric grid model of the face-seal impeller of Fig. 3(a) does not include 

the primary passage as shown in Fig. 4 (a) because the exact geometry information of 
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the impeller blade is unavailable. Thus, the 3D shroud only model which was utilized in 

the previous CFD research [10, 12] is used to determine the rotordynamic coefficients.  

Three grid models (coarse, medium, and fine) are constructed to determine the 

appropriate mesh size for the rotordynamic predictions. The sizes of the coarse, medium, 

and fine mesh are 
60.46 10 , 

60.82 10 , and 
61.61 10  nodes, respectively. Fig. 7 

shows the predicted impedances for the three grid models. The results of the medium 

grid and the fine grid model are almost identical and the coarse grid result has negligible 

differences from other grid models. Moreover, when considering the fact that a grid 

model with 187,800 nodes in the previous study [12] could predict reliable solutions for 

the face-seal impeller case, the fine grid of Fig. 7 can be considered enough to determine 

the fluid induced forces.  

 

   
(a)                                                                 (b) 

Fig. 7 Influence of grid density on impedance curves of face-seal impeller (a) radial 

(b) tangential 

 

A wide range of the precession frequency ratios (PFR, /f   ) is investigated 

in Fig. 7 to check the existence of the bump and dip which were observed in the bulk 
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flow analysis by Childs [8]. Slight bump and dip are observed in the calculated 

impedances for all grid models as shown in Fig. 7. The computed results of Fig. 7 can be 

reasonably curve fit to Eq. (31) to obtain the rotordynamic coefficients because the 

magnitudes of the bump and dip are small enough to ignore. 

The predicted results for fine mesh are compared to the results of previous 

studies in Fig. 8 and Table 4. The precessing frequency of the compared impedances of 

Fig. 8 is ranging from 0 to 1.5. The calculated direct and cross-coupled stiffness are 

under-predicted and the direct damping is somewhat over-predicted when compared to 

the experiment results. However, when considering the fact that geometry 

approximations had to be made for constructing the current face-seal impeller model, the 

overall results show reasonable agreement with the experimental data.  

 

   
(a)                                                                 (b) 

Fig. 8 Predicted impedances for the comparison with the previous predicted and 

measured results (a) radial (b) tangential 
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Table 4 Calculated rotordynamic coefficients for the face-seal shrouded impeller 

 

K 

(N/m) 

c 

(N-s/m) 

M 

(kg) 

k 

(N/m) 

C 

(N-s/m) 

m 

(kg) 

k

C
  

Present Model -2.50E+05 3.58E+03 1.01E+01 4.10E+05 4.35E+03 -6.06E+00 0.45 

FVM[12] -3.24E+05 3.59E+03 7.92E+00 4.71E+05 4.05E+03 -2.92E+00 0.56 

Experiment [3] -3.53E+05 6.80E+03 2.36E+01 5.06E+05 2.58E+03 8.85E+00 0.94 

FEM [10] -2.68E+05 2.92E+03 5.03E+00 1.65E+05 1.64E+03 3.03E+00 0.48 

Bulk Flow Model [8] -4.20E+04 2.29E+03 8.96E+00 2.88E+05 2.02E+03 -9.00E-03 0.69 

 

The effect of the inlet swirl ratio on the face-seal impeller is investigated in Fig. 

9 to determine its influence on the impedance curves. The y-intercepts of the impedance 

curves are increasing and therefore by eq. (1) the absolute values of the direct and cross-

coupled stiffness are increasing as the intensity of the inlet swirl at the shroud entrance 

becomes larger. Small deviations from the forms in eq. (1) can be seen and their 

magnitudes are increasing at higher ISR. However, the magnitudes of the bump and dip 

are smaller than the predictions of Childs [8] and the shapes of the peaks are quite 

different.  

       
(a)                                                                 (b) 

Fig. 9 Impedances for the face-seal impeller according to ISR (a) radial (b) 

tangential 
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2.9.2 Conventional Wear-Ring Seal Impeller of Fig. 3(b) 

In this section, a mesh density study is performed to obtain reliable results and 

determine optimal grid model for the calculation of the impeller reaction forces. Table 5 

shows the grid models for the mesh density study and the corresponding calculation time 

per precession frequency ratio. The grid model is defined as a coarse grid in cases of less 

than a million nodes. CFD calculations are implemented and the leakage flow rates are 

compared in Fig. 10. As shown in the figure, no noticeable changes are observed for the 

grid models over 800,000 nodes and the difference between the medium and fine grid is 

only 0.5 %. Fig. 11 shows a comparison of the impedances for the various grid models. 

In cases of Coarse1 and Coarse2, the calculated impedances have some significant 

differences when compared to the other cases. The results of the medium and fine grid 

are almost identical. Based on the results, the CFD solutions for the fine grid can be 

considered as converged results and therefore the fine grid model is selected for the 

simulation in this paper.     

 

Table 5 Comparison of grid models of the wearing seal impeller 

Grid 

Model 

No. of 

Nodes 

Calculation Time 

for PFR = 0 

Fine 1949568 35.123 10 sec  

Medium 1310836 33.827 10 sec  

Coarse1 810768 32.640 10 sec  

Coarse2 224200 28.722 10 sec  

Coarse3 159488 26.942 10 sec  
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Fig. 10 Leakage flow rate at seal outlet of the wear-ring seal impeller 

 

 
(a)                                                                   (b) 

Fig. 11 Influence of grid density on impedance curves of the wear-ring seal impeller 

(a) radial (b) tangential 
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3. ROTORDYNAMIC ANALYSIS ON SHROUDED CENTRIFUGAL 

IMPELLER  

 

3.1 Impedances of Conventional Wear-Ring Seal Impeller  

Fig. 4(b) shows the 3D eccentric grid of the conventional wear-ring seal impeller 

of Fig. 3(b). This model is also constructed without blade region and has three domains 

like the face-seal impeller case. And the detailed boundary conditions used for the 

numerical simulation of the conventional wear-ring seal are the exactly those of the face 

seal impeller case. The shroud domain of the wear-ring seal impeller is divided into 2 

sections: seal and shroud as shown in Fig. 4 (b), in order to evaluate the fluid induced 

forces on the seal and shroud surface separately. Fig. 12 and Fig. 13 show the predicted 

radial and tangential impedances of combined (seal + shroud), shroud, and seal versus 

the precession frequency ratio, which ranges from -1.5 to 2.0. The radial and tangential 

impedances in the figures have the dip and bump shapes in the frequency ratio range 0 to 

0.5. The predicted impedance curves for the shroud of the wear-ring seal impeller in Fig. 

12(b) and Fig. 13(b) have similar trends with the bulk flow results of Childs [8]. The 

peaks are clearly present in the computed curves and the magnitudes of the bump and 

dip are increasing at higher ISR. Fig. 12(c) and Fig. 13(c) indicate the computed radial 

and tangential impedances for the wear-ring seal of the impeller model. The seal results 

show relatively small bump and dip when compared to the values of the shroud. In case 

of the tangential impedance, the fluid induced forces on the shroud contribute most for 

generating the bump in the curves. Generally, the x-intercept of the tangential impedance 
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curve can be defined as the whirl frequency ratio at instability, w
k

C
  , if the curve 

is approximately linear. With higher w , the impeller is more destabilizing. In Fig. 13(a), 

the x-intercept of the tangential impedance has a higher value for increased ISR and thus 

it can be concluded that the impeller tends to be more destabilizing at higher ISR. The 

same phenomenon could be observed in the results of the bulk flow model by Childs [8]. 

 

 
Fig. 12 Radial impedances for the wear-ring seal impeller according to the inlet 

swirl ratio (a) combined (shroud + seal) (b) shroud (c) seal 

 

 
Fig. 13 Tangential impedances for the wear-ring seal impeller according to the inlet 

swirl ratio (a) combined (shroud + seal) (b) shroud (c) seal 

 

The peaks in the impedance curves of the centrifugal impeller could be also 

observed clearly in the past experimental results from the Caltech program by Franz et 

al. [15]. In that paper, the tangential and radial impedances of centrifugal impeller had 

been measured by varying the flow rate of the primary passage with constant speed and 
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the several types of volutes and impellers. They investigated the influence of the flow 

rate on the rotordynamic instability and concluded that the volute had impact on the 

hydrodynamic force for high flow rates and the shape of the tangential force curve and 

the destabilizing force were affected by the flow rate. The same phenomenon was 

observed in the experiment by Brennen et al. [16]. In their research, the bump and dip 

were also shown in the measured forces at low flow coefficients and the authors 

concluded that the impedance bump and dip were independent of volute type. 

 

3.2 Effect of Main Flow Rate 

Franz et al. [15] evaluated the effect of flow coefficients and found that the shape 

of the force curves was influenced by the flow coefficients. In this section, a 3D 

numerical model of the conventional wear-ring seal impeller is employed to determine 

the dependence of impedances on flow rate through the primary passage. The flow rates 

of the primary passage are used as inlet boundary conditions for the numerical solutions 

of the face-seal impeller and the conventional wear-ring seal impeller in the present 

study. The boundary conditions are indicated in Table 3. In order to evaluate the effect 

of the flow rate on the wear-ring seal impeller, the flow rates on inlet boundary 

conditions are changed. The flow rate is changed from 130kg/s to 250kg/s and 300kg/s. 

Note that the static pressures are assumed to be constant for the cases.  
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(a) 

 
(b) 

Fig. 14 Impedances on the shroud for three flow rates of the primary passage (a) 

radial (b) tangential 

 

Fig. 14 shows the computed impedance curves according to the flow rate in the 

primary passage. In the results, it is observed that as the main flow rate increases, the 

shape of the bump and dip in the impedance curves changes.  In case of the radial 
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impedance in Fig. 14(a), the magnitude of the bump in the curve becomes smaller with 

lowered flow rate. Fig. 14(b) describes the computed tangential impedances according to 

the flow rate. At the highest flow rate, the y-intercept of the tangential impedance has the 

largest value and the x-intercept has the smallest value. This tendency of the current 

numerical solution is identical to the measured data from Franz et al. [15] and it can be 

concluded that the wear-ring seal impeller is viewed as being less destabilizing at lower 

flow rate.  

 

3.3 Effect of Shroud Leakage Path Shape 

Childs [8] explained that the bump and dip in the impedance curves computed by 

the bulk flow analysis appear because of a centrifugal acceleration term in the path-

momentum equation. He explained that the peaks substantially decreased when the term 

was removed in the path-momentum equation of the bulk flow model. The bulk flow 

centrifugal acceleration term was defined as follows:  

202
/

u dr
b

r ds

  (35) 

 

where, 0u  is the circumferential velocity, and r, s, and b are the non-dimensional 

variables of the inlet radius, path length, and velocity ratio in reference [8].  
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(a) 

 

 
(b) 

Fig. 15 Velocity vector plots of the wear-ring seal impeller at (a) shroud entrance (b) 

seal inlet 

 

The centrifugal acceleration effect in the shroud region is visualized in the vector 

plot near the shroud surface as indicated in Fig. 15. In the figure (a) and (b), the fluid 
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flow near the shroud surface of the impeller is pushed up while the fluid near the stator 

wall flows to downward due to the pressure difference between the shroud entrance and 

the outlet of the wear-ring seal.  

 

Fig. 16 Modified shroud geometry on stator-side  

 

In eq. (35) , the circumferential velocity term is one of the factors that has an 

influence on the centrifugal acceleration. Thus, reducing the velocity near the shroud 

wall can make the centrifugal acceleration decrease. In order to reduce the velocity of 

the reverse flow near the shroud surface, the geometry of the shroud region is changed as 

illustrated in Fig. 16. Additional recirculation zones are added by assuming that strong 

recirculation in the shroud region can slow down the velocity of the reverse flow and 

circumferential velocity. Three cases referred to as A1, A2, and A3 are considered to 



 

45 

 

evaluate the effect of the added zone on the impedance curves of the wear-ring seal 

impeller model. The widths and heights of the cases are shown in Table 6. CFD models 

are constructed and the flow fields of the models are calculated using these parameter 

values.  

 

 
Fig. 17 Vector plots in the added recirculation zone (A2) 

 

Table 6 Dimensions of added zones on the shroud leakage path 

 
A1 A2 A3 

a (mm) 10.2 15.3 20.4 

b (mm) 20.0 30.0 40.0 
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Fig. 18 Averaged circumferential velocity according to the shape of shroud  

Fig. 17 shows the recirculation flow in the added zone (A2). The averaged 

circumferential velocity along the z-axis of the entire shroud region is obtained for the 

changed shroud cases and the original shroud case. The sampled region to obtain the 

averaged circumferential velocity for all compared cases is indicated in Fig. 16. A 

comparison of the averaged circumferential velocity is made in Fig. 18. The averaged 

circumferential velocity in the shroud region decreases as the area of the added zone 

increases. Since the clearance near to the shroud entrance is same, the effect of the added 

area is relatively small and therefore the velocity differences of all the cases could be 

considered negligible. However, the velocity differences around the enlarged shroud 

zone are large enough to have an influence on the shear stress on the shroud surface.  
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Table 7 Comparison of leakage flow rate according to the size of the added zones  

 

Added zone 

original A1 A2 A3 

Leakage  

(kg/s) 
3.5685 3.2350 3.2344 3.2549 

 

    
(a)                                                                  (b) 

Fig. 19 Impedances on the shroud according to the secondary flow path geometry 

(a) radial (b) tangential 

 

In order to check the effect of the added zone on the shroud leakage path, the 

radial and tangential impedances of the shroud are compared according to the size of the 

added zone including the original wear-ring seal impeller model in Fig. 19. Adding the 

recirculation zone reduces the magnitude of the bump and dip in the impedance curves 

and the cross coupled stiffness. Increasing the area in the shroud region further reduces 

the peaks in the impedance curves. Reducing the velocity in the leakage flow path is 

effective for decreasing the peaks from the impedance predictions and modifying the 

shroud shape is one possible solution to reduce the circumferential velocity and 
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centrifugal acceleration. The leakage flow rate is reduced by about 10 % when the 

additional recirculation zone is added as indicated in Table 7. However, no noticeable 

change of the leakage flow rate is shown as the area in the shroud leakage path is 

increased from A1 ( 2102 mm ) to A3 ( 2408mm ).    

 

3.4 Effect of Seal Clearance 

This section investigates the effect of the wear ring, end-seal clearance on 

impedances. The selected seal clearances for the comparison are 0.36, 0.54, and 0.7mm. 

The imposed boundary conditions for the simulations are assumed to be the same for all 

cases. The computed results are described in Fig. 20 and Fig. 21. Like the previous cases 

in this paper, the shroud has a relatively larger contribution as a cause for the bump and 

dip in the impedance curves. In case of 0.36mm, the phenomenon can be seen clearly 

and the peaks disappear with the increased seal clearance as shown in Fig. 20(b) and Fig. 

21(b). The y-intercepts of the radial and tangential impedances in Fig. 20(c) and Fig. 

21(c) decrease when the seal clearance is increasing. If assumed that the impedances are 

approximately modeled using Eq.(37), the decreased y-intercepts in impedance curves 

imply reduced direct stiffness and cross-coupled stiffness, respectively. The same trend 

was predicted for the conventional wear-ring seal impeller by the bulk flow analysis of 

Childs [8]. 

Table 8 indicates the leakage flow rate increases more than proportionately as the 

wear-ring seal clearance increase. 
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Fig. 20 Radial impedances for the wear-ring seal impeller according to the seal 

clearance (a) combined (shroud + seal) (b) shroud (c) seal 

 

 
Fig. 21 Tangential impedances for the wear-ring seal impeller according to the seal 

clearance (a) combined (shroud + seal) (b) shroud (c) seal 

 

Table 8 Comparison of leakage flow rate according to the seal clearance  

 

Seal Clearance 

0.36 0.54 0.72 

Leakage  

(kg/s) 
3.5685 6.6498 9.5105 
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4. STABILITY ANALYSIS WITH FINITE ELEMENT MODEL
4
 

 

4.1 Finite Element Rotordynamic Model  

Fig. 22 shows the configuration of a FE rotor model with the conventional wear-

ring seal impeller analyzed. In the FE model, the shaft has 5 beam elements on both 

sides and the disk has 2 beam elements. In the FE analysis, it is assumed that the 

impeller force from the lateral motion of the impeller is acting on the center where the 

position is located at the 7
th

 node (center node) in the model of Fig. 22. The system is 

supported by the flexible bearings placed at both ends. The bearing coefficients and 

geometry demensions of the FE rotor model are indicated in Table 9.  

 

Fig. 22 Finite element model of rotor-bearing system 

                                                 

4
 Reprinted in Part with permission from “Rotordynamic Force Prediction of a Shrouded Centrifugal 

Pump Impeller-Part I : Numerical Analysis,” by Eunseok Kim and Alan Palazzolo, J. Vib. Acoust. 2016; 

138(3), p. 031014. ©  2016 ASME. 
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Table 9 Parameters of the Rotor-Bearing Model 

Parameters Values 

Young’s modulus (Pa) 112 10  

Density (
3/kg m ) 8000 

Length of shaft ( m ) 1.0 

Length of disk ( m ) 0.14 

Diameter of shaft ( m ) 0.1 

Diameter of disk ( m ) 0.3 

Unbalance eccentricity of disk ( m ) 40.36 10  

Bearing stiffness ( /N m ) 61.5 10  

Bearing damping ( /Ns m ) 32 10  

 

4.2  Synchronous Unbalance Response Analysis 

The free body diagram of the wear-ring seal impeller is shown in Fig. 1. The point 

O  in Fig. 1 indicates the center of the whirling orbit and the point p  represents the 

center of the rotating impeller. The finite element model of Fig. 22 is expressed 

mathematically as 

            u IM z C z K z F F     
(36) 

 

where at node i , the displacement vector,  iz , is expressed as  

   
T

i i xi i yiz x y   
(37) 
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The  IF  of Eq. (36) is an impeller force vector acting on the disk of Fig. 22. An element 

vector of  IF  at node No.7 can be expressed with mass, damping, and stiffness matrices 

and it has a form of  

 

7 7 7

7 7 7

7

7 7 7

7 7 7

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

x x x

I

y y y

x x xM m C c K k

F
y y ym M c C k K

  

  

          
          
                  

            
                    

 

 

(38) 

 

and  IiF  is zero at the other nodes. By assembling the mass, damping, and stiffness 

matrices with 4 4  zero matrices for other elements,  IF  of the Eq. (36) can be derived 

in the form of a global matrix equation to utilize in the stability analysis.  

For circular and synchronous whirl motion of Fig. 1, the whirl orbit is defined as   

cos

sin

i i

i i

x t

y t





 

 
 

(39) 

 

and the whirl frequency equals the spin frequency   

   
(40) 

The circular motion constraint in Eq. (39) is consistent with the assumptions in part I but 

in practice is typically relaxed to model arbitrary motions in rotordynamic unbalance 

response, transient and stability simulations. In Eq. (36),  IF  is the impeller forces 

matrix and  uF  is the unbalance force vector of the FE model.  M ,  C , and  K  
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represent a global mass, damping, and stiffness matrix. The  C matrix and the  K

matrix are defined as 

     

     
B G

B S

C C C

K K K

 

  (41) 

where B indicates bearing, G indicates gyroscopic and S indicates shaft. 

For a steady state solution, it’s assumed that 

   

   

i t

i t

u u

z z e

F F e









(42) 

Substitute Eq. (42) into Eq. (36), and divide by 
i te 

 to obtain

           2

I uM i C K F z F     
(43) 

Define 

         2

IA M i C K F     
(44) 

and the synchronous whirl coordinate of the FE model can be determined by 

     
1

uz A F



(45) 

In order to obtain synchronous unbalance response, the impeller impedances at 

PFR=1 are required , and also over a frequency range if an M-K-C approach is utilized. 

This must be repeated at many different spin speeds and the corresponding boundary 
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conditions for the CFD analysis must be changed at each spin speed. The next section 

discusses the appropriate treatment of boundary conditions as spin speed varies. 

4.3 Calculation of Boundary Conditions 

To calculate impedances at multiple spin speeds using CFD approach, boundary 

conditions of the inlet and outlet at different spin speed have to be determined properly 

since the blade region is not included in the current CFD model of Fig. 4(b). The 

boundary conditions are mass flow rate of the primary passage of the impeller and 

pressure difference, P , between the shroud entrance and the seal exit. 

A flow coefficient and head coefficient are employed [42] to obtain the boundary 

conditions vs. rotor spin speed. For the calculation of the boundary conditions, it is 

assumed that the wear-ring seal impeller runs at the same design point, BEP (Best 

Efficient Point). 

The head coefficient is expressed by 

Head coefficient : 
2 2

I

gH

N D
 

(46) 

where, H , N , and ID  indicate head( m ), spin speed( /rad s ), and diameter( m ) of the 

wear-ring seal impeller, and the flow coefficient is defined as below: 

Flow Coefficient : 
3

I

Q

ND
  (47) 
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In Eq. (47), Q (
3 /m s ) is the flow rate in the main flow passage of the wear-ring 

seal impeller model. To determine the boundary conditions of the impeller model, the 

head and flow coefficients need to be calculated first based on the operating condition of 

the wear-ring seal impeller. The operating conditions are shown in Table 10 as obtained 

from [2, 8].  

 

Table 10 Operating conditions of the conventional wear-ring seal impeller 

Parameters Values 

Working fluid Water 

Density (
3/kg m ) 1,000 

Spin speed ( /rad s ) 209.44 

Head ( m ) 68 

Diameter ( m ) 0.35 

Flow rate (
3 /m s ) 0.130 

 

Table 11 Calculated boundary conditions at multiple spin speeds 

Spin Speed 

(rad/s) 
104.72 209.44 314.16 418.88 

Q 

(kg/s) 
65.10 130.21 195.31 260.41 

P  
(MPa) 

0.12 0.47 1.05 1.87 

 

The computed head and flow coefficients from the operating conditions are 

0.124, 0.0145   , respectively. Based on these values, each operating condition is 

calculated as indicated Table 11. The flow rates are converted from 
3 /m s  to Kg/s by 
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multiplying by the density of water. The impedances curves of the impeller at different 

spin speed are calculated and compared in Fig. 23. The sizes of the bump and dip in the 

impedances increase as the spin speed of the impeller increases. At lower spin speed 

case, the bump and dip in the impedance curves still exist although their magnitudes are 

relatively small.   

 

 
(a)                                                                (b) 

Fig. 23 Impedance curves at multiple spin speeds 

 

The quadratic least square curve-fit to calculate mass/damping/stiffness of Eq. 

(28) cannot be used to represent the impeller impedances for stability analysis, in cases 

where the calculated impedance curves have a highly non-quadratic shape. Likewise, 

this suggests that the accuracy of synchronous imbalance response predictions will be 

enhanced by utilizing the calculated impedances at PFR=1 instead of using stiffness, 

damping and mass representations obtained from curve fitting the calculated impedances 

with quadratic curve fits at each speed.  
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4.4 Rotordynamic Models and Predicted Response  

In order to perform the synchronous unbalance response analysis, the radial and 

tangential impedances are calculated at multiple spin speeds and the resultant 

synchronous (PFR=1) impedances vs. spin speeds are plotted in Fig. 24. The two curves 

shown in Fig. 24 correspond to the following 2 approaches: 

a) Quadratic Approximation: The stiffness/damping/mass coefficients are 

determined at each rotor speed using the least square, quadratic curve-fit of the 

impedance curves of Fig. 23. The impeller’s synchronous impedances (PFR=1) 

for the unbalance response prediction are then determined from the computed 

rotordynamic coefficients.  

b) Full Impedance: Impedances are selected from the actual curves of Fig. 23 at 

PFR=1. To utilize the impeller forces for the calculation of the synchronous 

unbalance frequency response, Eq. (28) is modified as follows:  

         
 

' '

' '

( ) ( )

( ) ( )

x

y

K K k kF M m C c

F m M c C k k K K

         
          

             

 (48) 

 

where 
'K  and 

'k  are included to account for the differences between the actual 

impedances and the approximated impedances (obtained from the least square 

quadratic curve fit). This model was used by Williams et al. [20] to predict the 

unbalance frequency response for a Jeffcott rotor model.  

 

The magnitude of the radial impedance in Fig. 24(a) is quite large compared with 
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the tangential impedance in Fig. 24(b), at the same spin speed. As the spin speed 

increases, the absolute values of the radial and tangential impedances increase and the 

values converge to zero when the spin speed approaches zero. The FE model’s 

synchronous unbalance response vs. spin speed is calculated using the impedances and is 

shown in Fig. 25. The quadratic approximation impedance approach shows slightly 

smaller amplitudes than the results of the full impedance approach. The difference 

results from the deviation between the original impedances and the approximated 

impedances at PFR=1 in Fig. 24.  

The increased amplitude is indicative of reduced damping. Thus the FE model’s 

stability is expected to be less when using the quadratic curve fit than when using the 

impedances directly from the PFR =1 prediction from the impeller flow CFD model.      

 

 
(a)                                                           (b) 

Fig. 24 Impedances for PFR=1 at multiple spin speeds: (a) radial impedance (b) 

tangential impedance 
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Fig. 25 Synchronous unbalance response vs. spin speed 
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5. STABILITY ANALYSIS ON JEFFCOTT ROTOR MODEL  

 

Rotordynamic stability of the shaft/bearing/seal/impeller system is typically 

evaluated by using rotordynamic coefficients calculated from the least squares, quadratic 

curve fit of the measured or calculated impeller impedances. However, when the bump 

and dip exists in the computed impedance curves as described in Fig. 12 and Fig. 13, the 

impedances may not be well represented by the quadratic force model of Eq.(31), in 

which case the system stability prediction may be unreliable.  

In the present study, a curve-fit algorithm is considered to represent the 

unconventional (bump and dip) impedances of the impeller and include them in the 

system stability simulation.  

  

5.1 System Stability Prediction with Impeller Impedances for a Jeffcott Rotor 

Model  

For sake of illustration consider the simplified Jeffcott model of a rotating 

shaft/disc assembly as shown in Fig. 8. This model is often used for explaining some 

general features of rotating machinery vibration. In the rotor model, fluid induced forces, 

xF  and yF , are acting on the disc which represents the wear-ring seal impeller.  
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Fig. 26 Simple Jeffcott rotor model including impeller impedances 

 

The governing equations for the Jeffcott rotor model with the impeller forces are 

expressed by    

x

y

d b b u x

d b b u y

m x c x k x F F

m y c y k y F F

   

   
 (49) 

 

where bc  and bk  indicate bearing damping and stiffness coefficients, and 
xuF  and 

yuF  

are unbalance forces in the model. The bearing support stiffness in the model is assumed 

to be considerably softer than the shaft bending stiffness. The bearing damping ratio  is 

defined as 
2 n

c

m



 . As previously mentioned, the impeller forces of Eq. (49) can be 

modeled by Eq. (28) if the radial and tangential impedance curves have the form of a 

parabola. The existence of the bump and dip in the impedance curves as shown in Fig. 

12 and Fig. 13, may disallow use of Eq. (1) for modelling the fluid induced forces of the 

impeller. In order to express the forces properly, a new approach is proposed below.  

If the fluid induced forces in the x and y direction are assumed to be modeled by 

nth order differential equations, the forces can be described as 

 

yF

xF

X 

Y 
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0 0 1 1 2 2

0 0 1 1 2 2

(4) ( )

3 3 4 4

(4) ( )
3 3 4 4
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F b a b a b ay y y

a b a ba bx x x

b a b ab ay y y

a b

b

             
                

              

            
           

              




(i)

(i)
0

n

i i i

x

a y

    
  
    



 (50) 

 

For harmonic, steady state vibration of frequency , the fluid forces and the 

resultant responses are defined as 

Re( )j tx xe  , Re( )j ty ye  , Re( )j t

x xF F z   , Re( )j t

y yF F y   
(51) 

Substitute Eq. (51) into Eq. (50). Then, the forces in x and y direction become 

 

   

   

0 0 1 1

0 0 1 1

3 32 2 2 3

3 32 2
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y

j t j t

nn nj t

n n

F a b a bx x
e e j e

b a b ay yF

a ba b x x
e j e

b ab a y y

a ba b x x
e j e

b ab a y y
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 



         
           

        

      
         

       

      
         

       
 

  
0

j t

n
ii i j t

i i i

a b x
j e

b a y







   
   

   


 (52) 

 

The impeller fluid forces can be expressed as complex forms of functions, 

( )D j , and ( )E j  in the frequency domain as shown below:    

( ) ( )

( ) ( )

x

y

F D j E j x

F E j D j y

      
      

      

 (53) 

 

where 
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   

   

2 4 3 5

0 2 4 1 3 5

2 4 3 5

0 2 4 1 3 5

( )

( )

D j a a a j a a a

E j b b b j b b b

             

             
 

(54) 

Bolleter et al. [2] introduced the force model of Eq. (53) which can be expressed 

with the complex functions, ( )D j  and ( )E j for circular orbit motion, i.e. the shaft 

center motions become 

2

3

( ) cos( )

( ) sin( )

( ) cos( )

( ) sin( )

x t r t

x t r t

x t r t

x t r t

 

   

   

  

,

,

,

,

   
2

3

( ) sin( )

( ) cos( )

( ) sin( )

( ) cos( )

y t r t

y t r t

y t r t

y t r t

 

  

   

   

 
(55)  

In order to obtain the radial and tangential impedances, substitute Eq. (55) into 

Eq.(50) and evaluate the resulting equation at 0t  : 

2
0 0 1 1 2 2

0 0 1 1 2 2

4
3 3 4 4

3
3 3 4 4

(0) 0

(0) 0 0

0

0
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                    

               

      
       

         

 (56) 

 

or; 

2 3 4

0 1 2 3 4

2 3 4

0 1 2 3 4

/

/
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t t

a b a b aF rI

I F r b a b a b

           
        

               

 
(57) 

From Eq. (53), (54), and (57), the radial and tangential impedances for the 

forward and backward whirl can be determined using 
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   

   

 

 

( ) Re ( ) Im ( )

( ) Re ( ) Im ( )

( ) Re[ ( )] Im ( )

( ) Re ( ) Im[ ( )]
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I D j E j
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I E j D j
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









     

     

     

     

 (58) 

 

In the above equations, rI  and  tI  represent the radial and tangential impedances and the 

superscripts of the impedance functions, ‘+’ and ‘-‘, indicate the forward and backward 

whirl cases, respectively. ( )D j and ( )E j  can be calculated using Eq. (58) with the 

meadured or calculated impedances. After calculating ( )D j and ( )E j , each function 

can be identified in the form of the transfer functions, ( )D s and ( )E s , by utilizing the 

system identification toolkit in Matlab. The detailed procedure for deriving the transfer 

functions will be delivered in the next chapter. Once the transfer functions are computed, 

Eq. (49) can be rewritten in the Laplace domain by considering the relation of Eq. (53) 

as follows: 

 

 

2

2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x

y

d b b xx xy u

d b b yx yy u

m s c s k x s T s T s F s

m s c s k y x T s T s F s

    

    
 (59) 

 

where 

( ) ( ) ( ) , ( ) ( ) ( ), ( ) ( ) ( ) , ( ) ( ) ( )xx xy yx yyT s D s x s T s E s y s T s E s x s T s D s y s      (60) 

 

Eqs. (59) are transformed into a set of 1
st
 order differential equations in order to solve for 

system stability. Let 

x

y

v x

v y




 (61) 

 

The state space counterparts of the transfer functions, ( )D s and ( )E s , are defined by:  
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,

,

,

,

xx xx xx xx xx xx xx

xy xy xy xy xy xy xy

yx yx yx yx yx yx yx

yy yy yy yy yy yy yy

Z A Z B x T C Z

Z A Z B y T C Z

Z A Z B x T C Z

Z A Z B y T C Z

  

  

  

  

 
(62) 

 

Substituting the velocity vectors of Eq. (61) and the state equations of Eq. (62) into Eq. 

(49), provides the state variable form   

 

 

1

1

x

y

x

y

x b x b xx xx xy xy u

d

y b y b yx yx yy yy u

d

xx xx xx xx

xy xy xy xy

yx yx yx yx

yy yy yy yy

x v

y v

v c v k x C Z C Z F
m

v c v k y C Z C Z F
m

Z A Z B x

Z A Z B y

Z A Z B x

Z A Z B y





     

     

 

 

 

 

 

(63) 

The corresponding matrix form is  

Z AZ BF   (64) 

 

where 

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0

0 0 0 0 ,

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

xyb b xx

d d d d

yx yyb b

d d d d

xx xx

xy xy

yx yx

yy yy

T

Ck c C
m m m m

C Ck c
A m m m m

B A

B A

B A

B A

B

 
 
 
  
 
 

  
  
 
 
 
 
 
 
 

 
  
 

 

(65) 
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and  

 
T

x y xx xy yx yyZ x y v v Z Z Z Z , 
x

y

u

u

F
F

F

  
  
  

 
(66) 

 

 

Note that the above are partitioned matrices since , , ,xx xy yx yyA A A A , , , ,xx xy yx yyB B B B  

, , ,xx xy yx yyC C C C  are matrix – vector quantities. In the above equation, A  represents the 

system matrix for the Jeffcott rotor model with impeller forces, and B  is the matrix that 

weights the given inputs. The solutions to Eq. (66) are obtained by assuming a solution 

that has the form of 
tZ Ze , which yields   

( ) 0I A Z    
(67) 

where I  denotes the identity matrix.  

The eigenvalues and eigenvectors of the Jeffcott rotor system can be determined 

by using the MATLAB ‘eig’ command or any other eigenvalue solver.  

 

5.2 Identifying Approximated Impedances for Verification 

Eq. (49) for the Jeffcott rotor of Fig. 26 can be rewritten as follows assuming that 

the fluid induced forces satisfy the quadratic curve model and can be accurately 

described within the framework of Eq. (28), 

x

y

ud b b

ud b b

Fm M m c C c k K kx x x

Fm m M c c C k k Ky y y

               
              

                  

 
(68) 

In this section, the conventional stability analysis using the relation of Eq. (68), 

i.e. the ‘MCK Model’ is considered in order to compare results with the more exact 
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transfer function model. The transfer function model more accurately captures the bump 

and dip shape of the predicted impedance curves.   

 

 
(a) 

 
(b) 

 

Fig. 27 Least square curve-fit impedances of 2,000 rpm case (a) tangential 

impedance (b) radial impedance 

 



 

68 

 

For verification purposes the general transfer function model is applied to a 

purely quadratic impedance curve (Fig. 9) to determine if the results agree with the 

MCK model. The negative frequencies in this figure correspond to the imposed 

backward, circular orbits of the impeller in the CFD model. The dynamic coefficient 

values utilized to generate the impedance curves in Fig. 27 are shown in Table 12. The 

impedances rI 
, rI 

, tI 
, and, tI 

of Fig. 27 are utilized to calculate ( )D j and ( )E j  

functions of Eq. (58). Fig. 28 indicates the computed magnitude and phase of the 

functions.   

 

Table 12 Approximated rotordynamic coefficients of the conventional wear-ring 

seal impeller using least square curve-fit 

Rotordynamic Coefficients Values 

( / )K MN m  1.96 

( / )k MN m  1.72 

( / )C KN s m  9.55 

( / )c KN s m  2.14 

( )M kg  7.7 

( )m kg  0.009 

k

C
  0.86 

 

Once ( )D j and ( )E j  functions are obtained, the corresponding transfer 

functions (s)D and (s)E  are determined to utilize them in the stability analysis Eq. 

(67). Kleynhans et al. [21] introduced general transfer function models for the 

eigenvalue analysis, following the model of Bolleter et al. [2]. Thorat et al. [22] 
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expanded the model by using a curve-fit approach to obtain the D and E functions. 

However, the approximated transfer functions of Kleynhans [21] had low quality curve-

fit results and the ranges were limited, and the transfer function calculated by Thorat [22] 

had unstable poles (open loop unstable). In the present study, an open-loop stable 

transfer function for the full range of the original curves is obtained by including 

artificial, fast (large, negative pure real) poles in the curve fit. Identification of the 

transfer functions utilizes the Matlab system identification command ‘invfreqs’. The 

command employs an iterative algorithm developed by Levi [43], which is based on the 

damped Gauss-Newton method. The detailed procedure to derive the transfer functions 

with stable poles is described as follows: 

(1) Obtain ( )D j  and ( )E j  functions from the forward and backward whirl, 

measured or predicted impedances at specified whirl frequencies. 

(2) Curve-fit the ( )D j and ( )E j amplitude and phase angle vs.   with nth or

der numerators and zeroth order denominators in the form 

1

1 2 1

1

n n

nb s b s b

  
 (69) 

(3) Include (n+1) artificial fast real poles. These poles are sufficiently displaced i

n the left hand plane to have no influence on the curve fit transfer functions in

 the range of interest. Include a series product of the added fast poles in a man

ner that insures an invariant zero frequency. 

1

1 2 1 1 2 1

1 2 1

( )

( )( ) ( )

n n

n n

n

p p p b s b s b

s p s p s p



 



  

  
 

(70) 
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Curve fits of the ( )D j  and ( )E j  functions are obtained with the above 

procedure applied to the results in Fig. 28, and the curve fits are overlaid with the data 

from Fig. 28, in Fig. 29. Goodness-of-fit for each result is excellent as expressed by 2R  

values indicated in the plots. The corresponding curve fit transfer functions are  

 

18 2 21 23

3 6 2 12 17

15 2 20 23

3 6 2 12 17

1.616 10 2.005 10 4.116 10

1.8 10 1.07 10 2.1 10

1.968 10 4.487 10 3.613 10

1.8 10 1.07 10 2.1 10

( )

( )

D s

E

s s

s s s

s

s
s

s

s s

    

     

    

    






 
(71) 

 

 

Fig. 28 Magnitude and phase of ( )D j and ( )E j  for the approximated quadratic 

impedances of 2,000 rpm case 
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The values of the added fast poles for this example are :  

1 2 3500000, 600000, 700000p p p       
(72) 

The derived transfer functions of Eq. (71) are open-loop stable and the curve-fit 

results of Fig. 29 show good quality to represent the complex functions with the 2
nd

 

order numerators and the 3
rd

 order denominators.   

Experience indicates that low order fits are required to obtain reliable system eigenvalue 

results. This results because the magnitudes of the coefficients in the transfer functions 

significantly increase for higher order transfer functions. In case of the approximated 

impedance case of Fig. 28, smooth curves of ( )D j and ( )E j  facilitate to obtain good 

quality curve-fits with relatively lower order transfer functions. However, when 

considering the complex curves of Fig. 12 and Fig. 13, the order of the transfer functions 

must be increased to enhance the curve-fit qualities.  

A novel approach is utilized in order to obtain high quality curve-fit with lower 

order transfer functions for arbitrary shapes of the complex impedance curves. This 

approach divides the frequency range into segments and then employs independent curve 

fits of ( )D j and ( )E j  over each frequency segment. For the segmentation approach, 

the curves of Fig. 28 should be divided in the frequency domain and the transfer 

functions should be calculated for each segment, respectively.  
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(a) 

 
(b) 

 

Fig. 29 Curve fit results of ( )D j and ( )E j  for the approximated impedances of 

2,000 rpm case 
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(a) 

 
(b) 

 

Fig. 30 Curve fit results utilizing frequency range segmentation of ( )D j and 

( )E j  for the approximated impedances of 2,000 rpm 

 

Fig. 30 show curve-fit results with the multiple segments (red dashed lines) 

transfer function. The curve-fits are sufficient to represent the function of ( )D j and 
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( )E j quite well. These transfer functions are provided in the Appendix A. In the 

proposed segmented model approach, the width of each segment is determined with the 

analyst’s intuition using the following considerations: 

1) The curve-fit quality of each segment should be high enough to predict m

ore accurate eigenvalues and eigenvectors for the stability analysis.  

2) The order of the determined transfer function should be minimized to red

uce mathematical errors and computation time.  

3) The number of segments should be minimized to secure computational ef

ficiency.  

In order to examine the validity of the segmentation, an eigenvalue analysis is 

provided and comparison of logarithmic decrement (log-dec) for ‘MCK model’, 

‘Transfer Function Model’, and ‘Transfer Function Model with Segmentation’ is made 

for the verification. For the analysis, the mass and the natural frequency of the Jeffcott 

rotor model (without impeller force) of Fig. 26 are chosen as below: 

dm =120 Kg, n =150 rad/s (73) 

 

A system matrix, A , in Eq. (33) is evaluated for each frequency range segment 

established in the transfer function curve fit. The eigenvalues of the 
thi  segment A 

matrix are evaluated and those with frequencies outside of the 
thi  frequency segment 

range are discarded. This process is repeated for all frequency segments. Fig. 31 shows 

the calculated log-dec from the computed eigenvalues. As expected the calculated results 

for the three approaches are almost identical since the impedance curve was developed 
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by selecting dynamic coefficients and generation the impedance curves using quadratic 

frequency representations. This provided confirmation of the segmentation approach for 

stability analysis, for the no-dip, no-bump, conventional quadratic impedance case. In 

the next section, the transfer function model with segmentation will be applied for the 

unconventional impedance cases and the influence of the bumps and dips in the 

impedance curves on the rotordynamic stability will be examined.  

 

Fig. 31 Comparison of system log-dec for the quadratic impedance case, vs. 

damping ratio   

 

5.3 Unconventional Impedance and Stability Analysis 

The impedances for the 4,000 rpm case in Fig. 23 are chosen to investigate the 

effect of the magnitude of the bump and dip in the impedance curves. The full frequency 

range curve fit approach is first utilized to identify the transfer functions of the 

impedance curves.  
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(a) 

 
(b) 

Fig. 32 Curve fit results of 4,000 rpm case by transfer function model 

 

Fig. 32 illustrates the results of the transfer function model. As mentioned in the 

previous section, transfer functions should have low order numerators and denominator 

to ensure numerically stable results. For the selected case, however, the orders of the 

numerators and denominators are determined to be 18 and 19 after repeating the curve-

fit process for several times to obtain high quality curve-fit results. The derived transfer 
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functions are shown in the Appendix A. The high orders of the numerators and the 

denominators yield coefficients with magnitudes exceeding 
10010 . This will result in 

erroneous eigenvalues and singular matrix calculations in Matlab. Thus, the derived high 

order transfer functions cannot be applied for stability analysis and the segmentation 

approach is required to calculate low order transfer functions for the selected case.  

 

 
(a) 

 
(b) 

Fig. 33 Curve fit results of 4,000 rpm case by transfer function model with 

segmentation 
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To obtain high quality curve-fit results with lower order transfer functions, the 

curves are divided into 6 segments and the transfer function for each segment is 

calculated separately. Fig. 33 provides the results of the transfer function model with 

segmentation. The obtained transfer functions are also indicated in Appendix A.  

 

 

Fig. 34 Comparison of log-dec between the approximate (quadratic) impedances 

and the original (segmented curve fit) impedances, vs damping ratio   for 4,000 

rpm case 

 

 

Fig. 35 Log-dec versus damped natural frequency (rad/s) for 4,000 rpm case 
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Stability analysis of the Jeffcott model is performed utilizing the parameters of 

Eq. (73). A comparison is made between the approximate (quadratic curve fit) 

impedances and the original impedances in Fig. 34 by utilizing impedances at 4,000 rpm 

in Fig. 23. The purpose is to investigate the effect of the impedance curve bump and dip 

on rotordynamic stability. The results of the approximated (quadratic curve fit) 

impedance case have relatively larger logarithmic decrement values than the results of 

the original (segmented curve fit) impedance case and the differences are too large to 

neglect for accurate stability analysis. Fig. 35 indicates the compared log-dec versus 

damped natural frequency for 4,000 rpm case. The damped natural frequency is reduced 

by 3 percent producing smaller values of log-dec when the original impedances are 

applied in the Jeffcott rotor model. These results suggest a necessity of the segmentation 

approach for more accurate results when predicted or measured fluid induced forces 

acting on the rotordynamic systems cannot be properly fit by the conventional quadratic 

model. 

 

 
Fig. 36 Log-dec versus damping ratio  comparisons for different ISR for 2,000 

rpm case using the multi-segment approach  
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Fig. 37 Log-dec versus damped natural frequency (rad/s) for different ISR for 

2,000 rpm case using the multi-segment approach  

 

 

Fig. 36 indicates the predicted log-dec for 3 inlet swirl ratios ISR of the Jeffcott 

rotor model. Impedances of Fig. 12 and Fig. 13 are utilized to evaluate the effect of ISR 

on the rotordynamic stability. Fig. 37 shows log-dec versus damped natural frequency 

according to the applied ISR. With larger ISR, speed for the unstable motion is 

decreasing.  

 

 
Fig. 38 Log-dec versus damping ratio  comparisons for different spin speeds 

using the multi-segment approach  
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In Fig. 38, the dependence on impeller spin speed is investigated using the 

impedances in Fig. 23. The rotor bearing system stability is seen to be significantly 

diminished and lost as spin speed increases. The effect of the spin speed on the 

rotordynamic stability is clearly larger than the effect of the ISR.   

Fig. 34 clearly indicates that the peaks in the impedances curves have a negative 

influence on the rotordynamic stability of the Jeffcott rotor model. From the results, it 

can be concluded that stability predictions may have significant errors when the radial 

and tangential impedances curves do not follow the forms of a parabola, using the 

conventional form of Eq.(31).  
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6. ROTORDYNAMIC ANALYSIS OF CENTRIFUGAL COMPRESSOR 

IMPELLER WITH PRECESSING MOTION
5
 

 

6.1 Overview of Precessing Motion 

In rotating machinery, a vibrating rotor can be described by whirling and 

precessing motions that can cause rotordynamic instability problems.  In the present 

study, the analyses shown so far are about the fluid induced forces caused by the 

whirling motion of the frond shroud leakage path. Unlike the whirling motion, the 

studies on the precessing motion mostly have been performed for the backshroud region. 

Tsujimoto et al. [6] and Yoshida et al. [7] measured and predicted the reaction moments 

induced by the precessing motion on the backshroud/casing and explained the 

destabilizing mechanism at small precessing velocity ratio for the positive radial fluid 

moment. Flow mechanism was discussed using bulk flow analysis by Tsujimoto et al. 

[6]. With the reduced clearance at the entrance (‘Gap-A’) of the backshroud, the absolute 

value of fluid moments is increasing and the range of the destabilizing frequency is 

increasing with the increased leakage flow rate in their research. 

 

                                                 

5
 Reprinted in Part with permission from “Fluid Force Moment on a Centrifugal Impeller Shroud in 

Precessing Motion,” by Yoshinobu Tsujimoto, Yoshiki Yoshida, Hideo Ohashi, orihiro Teramoto, and 

Shin Ishizaki, J. Fluids Eng., 1997, 119(2), pp. 366-371. ©  1997 ASME. 
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6.2 Moment Coefficients for Precessing Impeller 

In turbomachinery, precessing motion occurs by the angular motion of the tilted 

rotating shaft. Fig. 39 describes a precessing motion of an impeller studied by Tsujimoto 

et al. [6]. In the precessing motion of the centrifugal impeller, the rotor is precessing at 

the speed Ω while its surface spins on center of rotor at the speed ω. The r-axis is on the 

impeller and located at the maximum backshroud/casing clearance and the t-axis is also 

on the impeller and placed perpendicular to the r-axis. The fluid moment indicated in the 

coordinate system can be calculated as follows: 

 

 

Fig. 39 Coordinate system and components of moment [6] 
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     

x x y y z z

z y x x z y y x z

M r F

M e M e M e

y f z f e z f x f e x f y f e

 

  

      
 

 
(74) 

 where, xf : X direction force at each node 

             yf : Y direction force at each node 

             zf : Z direction force at each node 

x, y, z : Cartesian Coordinates at each node 

In Eq.(74), the magnitudes of xM  and yM  are  

x z yM y f z f   (75) 

y x zM z f x f   (76) 

 

The reaction moments are represented as: 

 
x x x

y y y

x

y

M M m C c K k

M m M c C k K

     

     

  

  

            
               

              

 (77) 

 

where, M : Direct added inertia, m : Cross-coupled inertia 

            C : Direct damping, c : Cross-coupled damping 

            K : Direct stiffness, k : Cross-coupled stiffness 

 

Eq. (77) is non-dimensionalized by 𝐼α𝜔2.  I is the moment of inertia which is defined as 
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2 2

2iI R b i  (78) 

 where,   𝜌 : fluid density 

  𝑅𝑖 :  impeller outer radius 

  𝑏2 :  impeller outlet height 

    i :  radius of gyration : 

2 2

2

4 12

iR b
i     

 

Since the geometrical condition around the impeller is symmetric, 𝑀𝑟  and 𝑀𝑡  can be 

defined by the following quadratic equation using nondimensionalized components 

follows [7, 9]:  

2

2 2

 Ω Ω
     

 α

y

r

M m C k

I
M

I II

  

   

   
     

   
  (79) 

2

2 2

   Ω Ω
   

 α

x

tM
M M c K

I II I

  

   

   
      

   
 (80) 

 

6.3 Modeling for Precessing Impeller 

The basic geometry of the backshroud is shown in Fig. 40. The center of 

precessing motion is placed at the impeller center ‘O’ and the tilt angle of the shaft is set 

with 0.9°. Tsujimoto et al. [6] measured pressure distribution between radii r=47.5 and 

r=165mm and integrated it to calculate the fluid moment of the backshroud for various 

leakage flow rate which was controlled by suction blower. And the measured range of 

precessing frequency ratio (f = Ω/ω) is from -1.4 to 1.4.  
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Fig. 40 Basic geometry of Backshroud [6] 

 

Dimensions indicated in Fig. 41 are utilized to construct 3D Backshroud model 

for CFD analysis. Downstream region of the figure is for the leakage flow and the region 

including 1mm outlet gap is approximated based on the indicated shape in Fig. 40. The 

backshroud surface in Fig. 41 is rotated through 0.9° counterclockwise with respect to 

the origin O to make precessing motion of the backshroud.  Based on the dimensions, a 

3D model is created using 3D modeler as shown in Fig. 42.  

The precessing motion can be solved by defining the tilted fluid region as a 

rotating frame while the stator wall is defined as a rotating wall in the opposite direction 

to the rotating frame. The center of the precessing is z-axis and the center of the rotating 

shroud surface is the inclined axis with 0.9 from the z-axis. For the CFD simulation, the 

backshroud model of centrifugal impeller is composed of 2 domains, IN and OUT as 

shown in Fig. 41. IN domain is for imposing the inlet swirl velocity and OUT domain is 

for generating precessing frequency.  
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Fig. 41 Dimensions of the backshroud/casing for 3D CFD modeling 

 

 

Fig. 42 3D model of the backshroud of centrifugal impeller 
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6.4 Calculating Rotordynamic Coefficients for Precessing Impeller 

In CFD analysis, the considered precessing frequency ratios in the backshroud 

leakage path for calculating the rotordynamic coefficients are ranging from -1 to 1.5. 

Shroud surface between r=47.5mm and r=165mm is defined for integrating pressure to 

calculate the moment coefficients. Based on the test parameters of Ref [6, 7], boundary 

conditions for CFD analysis are determined. Table 13 shows the operating conditions of 

the centrifugal impeller. Working fluid is air and isothermal condition is assumed in the 

simulation. 

Table 13 Operating conditions of the centrifugal impeller 

Supply Pressure 1.1375 bar 

Exit Pressure 1.1329 bar 

Running Speed 677 rpm 

Design flow rate 0.043 kg/s 

Inlet Swirl Ratio 0.5 

Temperature 305 K 

Working Fluid Air 

Leakage Flow Rate 0.00355 kg/s 

 

 Vector plot at the backshroud inlet is shown in Fig. 43, showing the presence of 

recirculation zone. The centrifugal acceleration force causes reverse flow toward the 

backshroud inlet, while pressure forces drive the flow downward near the stator wall. 

Fig. 44 shows velocity vector at leakage flow path.  Since the space of the leakage path 

is large when considering the leakage flow rate, the intensity of the recirculation flow 

near the leakage outlet is relatively week.  
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Fig. 43 Computed velocity vector at backshroud inlet 

 

 

Fig. 44 Velocity vector at leakage flow path 

 

 Fig. 45 provides comparisons for the measured and predicted transverse moment 

coefficient and direct moment along with the curve-fits. The plot shows reasonable 

prediction in both moment coefficients and improved results compared to the bulk flow 

model. The rotordynamic coefficients from the curve-fits are summarized in Table 14. 

Comparisons to the experiment results of a precessing centrifugal impeller show good 

correlation.  
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(a) 

 

(b) 

Fig. 45 Normalized moment components (a) Transverse moment (b) Direct moment 
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Table 14  Summary of predicted rotordynamic moment coefficients 

M𝛼 
(Kgm^2) 

m𝛼 
(Kgm^2) 

C𝛼 
(NmS/rad) 

c𝛼 
(NmS/rad) 

K𝛼  
(Nm/rad) 

k𝛼 
(Nm/rad) 

k

C

CFX 2.93E-04 -2.66E-05 3.06E-02 2.25E-02 1.38E-01 1.18E+00 0.54 

Experiment 3.20E-04 4.10E-06 2.20E-02 1.60E-02 2.58E-01 1.02E+00 0.65 

Gupta 

(Bulk Flow) 

ξ = 0.1 

4.30E-03 1.20E-05 9.00E-03 4.90E-02 -1.84E+00 8.11E-01 1.27 

Since the leakage outlet path is not clear, the influence of the outlet gap is 

considered. Fig. 46 shows conceptual figure for changing outlet gap. The predicted 

impedance curves according to the inlet gap are shown in Fig. 47. As the gap is getting 

smaller, the direct moment coefficient is getting closer to the experiment result and the 

direct damping coefficient is increasing.  In 

Table 15, the rotordynamic coefficients are calculated from the curve-fit. With 

smaller outlet gap, the solved rotordynamic coefficients show good agreement with the 

experiment results. 

Fig. 46 Changing outlet gap for leakage flow 
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(a) 

 

 

(b) 

Fig. 47 Impedance curves according the inlet gap size (a) Transverse moment (b) 

Direct moment 
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Table 15 Predicted moment coefficients according to the outlet gap 

  
M𝛼  

(Kgm^2) 

m𝛼  
(Kgm^2) 

C𝛼  
(NmS/rad) 

c𝛼  
(NmS/rad) 

K𝛼  
(Nm/rad) 

k𝛼  
(Nm/rad) 

k

C




 

CFD(7mm) 2.36E-04 -5.62E-05 1.39E-02 2.08E-02 -2.21E-01 1.28E+00 1.3 

CFD(4.5mm) 3.11E-04 -4.76E-05 3.36E-02 2.36E-02 -2.46E-01 1.12E+00 0.47 

CFX(3.5mm) 2.93E-04 -2.66E-05 3.06E-02 2.25E-02 1.38E-01 1.18E+00 0.54 

Experiment 3.20E-04 4.10E-06 2.20E-02 1.60E-02 2.58E-01 1.02E+00 0.65 

Gupta 

(Bulk Flow) 

ξ = 0.1 

4.30E-03 1.20E-05 9.00E-03 4.90E-02 -1.84E+00 8.11E-01 1.27 
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7. PREDICTING ROTORDYNAMIC COEFFICIENTS FOR CIRCULAR AND

CONICAL MOTION OF A SHROUDED CENTRIFUGAL IMPELLER 

7.1 Circular and Conical Motion of Rotor 

Childs [8] introduced an equation to describe the forces and moments of the 

impeller and Gupta [9] utilized the relation to predict a full set of the rotordynamic 

coefficients of a compressor stage.  The linearized equations for circular and conical 

motion of a concentric impeller have the form of Eq. (81) and the circular and conical 

whirling motions are described in Fig. 48. In the equation, the reaction forces are caused 

by circular motion with coordinates ( , y)x  and the reaction moments are induced by 

conical motion with rotations ( , )x y  . 

X

Y

YY

X X

Y

a X

XK k K kF

Yk K k KF

K k K kM

k K k KM

XC c C c

c C c C Y

C c C c

c C c C

M m M m

m M m M

M

 

 

   

   

 

 

   

   

 

 











    
   

          
    
         

  
  

       
   
      



  


Y

a X

X

Y

m M m

m M m M

   

   





  
  
    

   
      

(81) 
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(a)                                                                           (b) 

Fig. 48 Configuration of whirling rotor (a) circular motion (b) conical motion 

Rotordynamic coefficients for the whirling and precessing motions are defined 

by Childs [8]. The equations are: 

For the whirling motion, 

2

_

2

_

2

_

2

2

_

r w

t w

n w

t w

F K c M

F k C m

M K c M

M k C m

  

  

     

    

    

    

(82) 

For the precessing motion, 

2

_

2

_

2

_

2

2

_

r p

t p

n p

t p

F K c M

F k C m

M K c M

M k C m

  

  

  

  

     

    

    

    

(83) 
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7.2 Calculating a Full Set of Rotordynamic Coefficients  

CFD models for the circular and conical motions of the face-seal impeller are 

constructed and simulated at multiple precession frequency ratios to obtain the full set of 

the rotordynamic coefficients. The imposed precession frequency ratios in the CFD 

model is ranging from -1.5 to 2.5. Fig. 49 and Fig. 50 contain impedances for eccentric 

motion and Fig. 51 and Fig. 52 contain impedances for tilting motion. For the tilting 

motion, the approach verified with the case by Yoshida et al. [7] is utilized. In contrast to 

the force impedances for the circular motion, the moment impedances and the force 

impedances for the conical motion have some bumps and dips in the impedance curves. 

Especially, the force impedances for the conical whirling motion have relatively larger 

bumps and dips than those of other impedances.  

 

    

(a)                                                                           (b) 

Fig. 49 Force Impedances for circular whirling motion (a) radial (b) tangential 
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(a)                                                                           (b) 

Fig. 50 Moment impedances for circular whirling motion (a) transverse (b) direct 

 

  

(a)                                                                           (b) 

Fig. 51 Force impedances for conical whirling motion (a) radial (b) tangential 

 

    

(a)                                                                           (b) 

Fig. 52 Moment impedances for conical whirling motion (a) transverse (b) direct 
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Table 16 gives the full set of the rotordynamic coefficients for the face-seal 

impeller. When comparing the dynamic coefficients between the circular motion and 

conical motion, the rotordynamic coefficients caused by the circular motion are 

relatively larger than those of the circular motion. 

 

Table 16 Full set of the rotordynamic coefficients for face-seal impeller 

K  

( / )N m  

c  

( / )N s m  

M  

( )Kg  

k  

( / )N m  

C  

( / )N s m  

m  

( )Kg  

-247181.00 3538.50 10.56 407424.00 4352.30 -6.06 

k  

( / )N m  

C  

( )N s  

m  
2( )N s  

K  

( )N  

c  

( )N s  

M  
2( )N s  

-19346 -155.93 0.0521 1442.40 78.71 0.2627 

K  

( / )N rad  

c  

( / )N s rad  

M   

( )Kg m  

k  

( / )N rad  

C  

( / )N s rad  

m  

( )Kg m  

84905.00 70.44 0.4910 74675.00 292.19 0.2113 

k  

( / )N m rad

 

C  

( / )N m s rad   

m  
2( )Kg m  

K  

( / )N m rad  

c  

( / )N m s rad 

 

M  
2( )Kg m  

21556.00 150.15 0.0033 11271.00 11.94 0.0932 

 

7.3 Stability Analysis using  44 Rotordynamic Coefficients 

Whirl frequency at instability is a useful coefficient to explain the rotordynamic 

instability of turbomachinery. The conventional whirl frequency ratio is defined as 

w

k
f

C
  

(84) 

According to the test data for centrifugal pump impellers in Ref. [1, 4, 5, 6, 7], 

the calculated whirl frequency ratios are typically around 0.5. However, the whirl 
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frequency ratio of the face-seal impeller tested by Bolleter et al. [2] is 0.94wf   while 

the result of the current CFD model is 0.45wf  .  

For the explanation of the large whirl frequency ratio of Bolleter et al. [2], Childs 

[44] developed an analytical model for the reaction force and moments for circular and 

conical motion of pump-impeller-shroud surfaces. Following explanations show the 

procedure to derive the modified whirl frequency ratio at instability utilizing the full set 

of the rotordynamic coefficients.  

Consider an operating impeller pitching up in a clockwise direction as it moves 

vertically upwards [44]. The complex motion can be described as shown in Fig. 48, and 

the motion is expressed by  

 

( ) : , ( ) ( ) 0x l yY Y t a Y X t t       (85) 

where 

la



 , 

  : magnitude of rotation vector 

  : magnitude of eccentricity vector 

(86) 

 

 

The reaction force due to pitch and yaw motion is derived by substituting above 

equation in to 4by4 matrix equation as shown below: 

 



 

100 

 

              ( ) ( ) ( )

x x x x

l l l

F kY k cY c mY m

k a k Y c a c Y m a m Y

  

  

        

     
 (87) 

                           
( ) ( ) ( )

Y x x x

l l l x

F KY K CY C MY M

K a K Y C a C Y M a M Y

  

  

        

     
     (88) 

 

Ignoring the virtual-mass term m, the whirl frequency ratio for the pitch and yaw 

motion of the shrouded face-seal impeller can be expressed as 

 

_

(1 )
( )

( )
(1 )

l
l

w

l
l

k
a

k a k k kf
CC a C C

a
C






 




 




 (89) 

 

To evaluate the stability of the shroud face-seal impeller using the modified whirl 

frequency ratio at instability, the predicted rotordynamic coefficients in Table 16 are 

utilized. The detailed procedures are shown in the below: 

 

The imposed dynamic eccentricity is 0.00062 m  , and the imposed tilting 

angle is 0.05 deg. Thus, la  of Eq. (86) can be calculated as follows: 

0.05deg [ ]
180deg

1.4075rad/ m
0.00062m

la









    
(90) 
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_

(1 )
( )

( )
 0.514

(1 )

l
l

w

l
l

k
a

k a k k kf
CC a C C

a
C






 





 




 (91) 

By reviewing the calculated whirl frequency ratio in Eq. (91), it can be known 

that the coupled perturbation of the circular and conical whirling cause larger 

whirl frequency ratios. In the present study, the value increases by 12 %. 

7.4 Effect of Moment of Coupled Motion 

Tsujimoto et al. [45, 45] introduced a novel approach to evaluate whirl and 

precession moment on the back shroud of centrifugal impeller.  The author studied the 

influence of the whirling or precession moment on the rotordynamic stability. The 

moment coefficients were computed from the measured normal and tangential moment, 

and the values were utilized to figure out the effect of the whirl and precession moments 

in the rotordynamic stability analysis. Tsujimoto et al. [45, 46] considered a cantilevered 

rotor system using lumped parameter method to perform the stability analysis and 

showed: (i) The rotor motion is destabilizing when the normal moment has the same sign 

as the whirl/precession, and (ii) The precession moment is dominant on the system with 

the shorter shaft and the whirl moment has more influence on the longer shaft. 

Tsujimoto’s work showed that the moments from the whirling and precessing 

motion of the back shroud leakage path of the impeller can produce self-excited 

vibration of a vertical hydraulic pump or turbine. However, since the gyroscopic 

moment and the fluid forces were not considered in the vibration model, there might be a 
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limit to investigate the effect of the destabilizing motion caused by the whirling and 

precessing motion. Childs and Muhammed [47] reduced a 4 DOF model into two 

separate models of the displacement and the rotation using Guyan reduction. Model A 

that only considers displacements provide inconsistent instability requirement. However, 

Model B that only considers rotations showed consistent instability requirement with 

Tsujimoto’s results. 

The calculated 4 4  rotordynamic coefficients of Table 16 can be utilized for the 

analysis of the approaches developed by Tsujimoto et al. [45] and Childs and 

Muhammed [47]. 

7.5 Finite Element Rotordynamic Model with Coupled Motion 

FE model with the force and moment coefficients of the shrouded face-seal 

impeller is constructed to evaluate the effect of the pitching and yawing motion as 

shown in Fig. 53. The calculated 
4 4

 coefficients of Table 16 are used to perform the 

stability analysis of the FE model. In the model, it is assumed that the impeller force and 

moment from the lateral and tilt motion of the impeller is acting on the 9
th

 node of the

model. The system is supported by the flexible bearings placed at both ends and the 

face-seal impeller is modeled by a disk of 2-beam elements. The off-centered position of 

the disk is selected to check the effect of the tilt motion clearly. 
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Fig. 53 Finite element model of rotor-bearing system with impeller whirling and 

precessing motion 

 

7.6 Stability Analysis of FE Rotordynamic Model with Coupled Motion 

The governing equation of the FE model is indicated in Eq. (36) and (37). In this 

chapter, the  IF  of Eq. (36) is changed to have impeller force and moment coefficients 

in the equation. An element vector of the changed  IF  at node No.9 of Fig. 53 can be 

expressed with mass, damping, and stiffness matrices and it has a form of  

 
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(92) 
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The second order matrix-vector differential equation in Eq. (36) can be written in 

first order differential equation form as 

 
 

 

 
   
 

 

 
 0

0 0 0

tot tot tot u

tot tot

M z C K z F

K z K z

        
         

        

(93) 

where 

   

       

       

tot I

tot B G I

tot B S I

M M

C C C C

K K K K



  

  
(94) 

In Eq. (101),  IM ,  IC , and  IK  are mass, damping, and stiffness matrix of 

the applied impeller force and moment on the FE rotor model of Fig. 53. By matrix 

operation, Eq. (101) can be transformed as 

 

 
       

 

 

 
   

1 1 1

0 0

tot tot tot tot tot u
z zM C M K M F

z zI

         
       

        

(95) 

Eq. (102) is used to obtain the eigenvalues and eigenvectors of the FE rotor 

model with whirling and precessing impeller. The bearing stiffness and damping 

coefficients of the FE model with impeller whirling and precessing motion are calculated 

by utilizing the rotor/disk mass and the assumed natural frequency.  The calculated 

rotor/disk mass from the FE model of Fig. 53 and the assumed natural frequency values 

are 
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sm =30.66 Kg, n  =80 rad/s (96) 

The utilized parameters for the calculation of the rotor/disk mass and the 

simulation of the FE model are shown in Table 17.  The bearing stiffness coefficient ( bK ) 

and the bearing damping coefficient ( bC ) can be calculated from the rotor/disk mass, the 

assumed natural frequency and the bearing damping ratio as shown in Eq. (104) . 

2

b s nK m   , 2b s nC m    (97) 

Table 17 Simulation parameters of the Rotor-Bearing Model with the lateral and 

tilt motion of the face-seal impeller 

Parameters Values 

Young’s modulus (Pa) 112 10

Density (
3/kg m ) 8000 

Length of shaft ( m ) 1.0 

Length of disk ( m ) 0.14 

Diameter of shaft ( m ) 0.1 

Diameter of disk ( m ) 0.3 

Unbalance eccentricity of disk ( m ) 40.36 10

Fig. 54 and Fig. 55 indicate the mode shapes of the FE model of Fig. 53 when 

0.2  , 0.196bK MN m , 981.18bC N S m   and the rotor spin speed is 2,000 

rpm. In order to investigate the stability of the FE rotor model, simulations are 

performed by varying the bearing damping ratio ( ) and comparisons are made for the 

calculated log-dec values according to the applied impeller loads as shown in Fig. 56.  

The damped natural frequencies for the cases are indicated in Fig. 57. In the results, it 
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can be known that the rotor model goes unstable at 0.04   when 4 4  full coefficients 

are applied in the rotor model and the damped natural frequency is 108.4 rad/s.  

 

 
Fig. 54 1

st
 mode shape of FE rotor model with the lateral and tilt motion, rotating 

at 2000 rpm, 0.04  , 0.196bK MN m , 196.24bC N S m  , 1 108.4d rad s  , 

0.026    

 

 

Fig. 55 2
nd

 mode shape of FE rotor model with the lateral and tilt motion, rotating 

at 2000 rpm, 0.04  , 0.196bK MN m , 196.24bC N S m  , 1 236.32d rad s  , 

0.92   
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In Fig. 56, the results of ‘force coeff.’ have relatively larger logarithmic 

decrement values than the results of ‘ 4 4 full coeff.’ and the differences are too large to 

neglect. This suggests that the tilted motion of the impeller can make the FE rotor model 

of Fig. 53 more unstable and the effect of the tilted motion can be considered as a crucial 

factor to evaluate the rotordynamic stability.    

 

 

Fig. 56 Log-dec versus bearing damping ratio  comparisons according to the 

applied load for 2,000 rpm 

 

 

Fig. 57 Log-dec versus damped natural frequency (rad/s) according to the applied 

rotordynamic coefficients 
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In addition to the positive tilted angle of the rotor, negative tilted angle of l  in 

Eq. (89) is also considered by suggestion [48]. With the negative value of la ,  the value 

of _wf   in Eq. (89) decreases by 0.35 and this implies that the impeller motion becomes 

more stable than the impeller motion with positive angle or without angle. This tendency 

can be evaluated using FE rotor model in the following analysis.  

Negative tilted angle of  la  in FE model in Fig. 53 can occur if the location of the 

disk moves to the opposite side as shown in Fig. 58 when considering flexible rotor 

motion. The FE rotor model of Fig. 58 is simulated to investigate the effect of the sign of 

tilting angle by varying the bearing damping ratio. The utilized parameters for the 

simulation are same with the FE rotor model of Fig. 53 as shown in Table 17.  

 

 

Fig. 58 Finite element model of rotor-bearing system with impeller whirling and 

precessing motion for negative tilted angle of impeller 

 

The calculated logarithmic decrement values according to the applied load in the 

FE rotor model of Fig. 58 is shown in Fig. 59 and the corresponding damped natural 
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frequencies are indicated in Fig. 60. Both cases in Fig. 59 have positive log-dec values 

and the results of ‘ 4 4 full coeff.’ are larger than the results of ‘force coeff.’. This 

indicates that the stability of the FE rotor model with the negative tilted angle becomes 

more stable and this tendency is identical with the stability prediction using  _wf   of Eq. 

(89) suggested by Childs [44].  

 

Fig. 59 Log-dec versus bearing damping ratio  comparisons according to the 

applied load for 2,000 rpm for negative tilted angle of impeller 

 

 

Fig. 60 Log-dec versus damped natural frequency (rad/s) according to the applied 

rotordynamic coefficients for negative tilted angle of impeller 
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7.7 Rotordynamic Coefficients for Coupled Motion  

 

Fig. 61 Whirling and precessing motion 

            

Tilting motion with the dynamic eccentricity would typically occur in a pump or 

compressor due to the flexible rotor bending.  Fig. 61 shows the coupled motion of 

whirling with dynamic eccentricity  , and precessing with tiling angle  . In the present 

study, face-seal impeller models with 10% dynamic eccentricity and 0.025/0.05° 

inclinations are modeled to investigate the effect of the precessing motion on the 

rotordynamic stability. The pitch angles are selected by considering the rub avoidance 

and the feasibility of the mesh generation in the small gap between the face-seal and 

stator. The utilized boundary conditions are same as the model with only whirling 

motion as shown in Table 3.  The calculated radial and tangential impedances are shown 

in Fig. 62. In order to evaluate the effect of the tilted angle, 0deg, 0.025deg, and 0.05deg 

cases are compared.   
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(a) 

  

(b) 

Fig. 62 Impedances versus PFR(f=Ω/ω) for the whirling and precessing face-seal 

impeller (a) tangential (b) radial 
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Table 18 Rotordynamic force coefficients for the whirling and precessing impeller 

Angle 
EAM  

( )Kg  
EAm  

( )Kg  
EAC  

( / )N s m  
EAc  

( / )N s m  
EAK  

( / )N m  
EAk  

( / )N m  

0 ° 10.56 -6.06 4352.3 3538.5 -247181 407424 

0.025 ° 15.598 -3.27 6289.8 4768.2 -176950 842523 

0.05 ° 17.036 -3.67 8804.13 4886.7 -78217 1324460 

 

Table 19 Whirl frequency ratio at instability according to the tilted angle 

        

 

                                              

 

      

Although the impedance curves have some inflection points, they can be 

modeled by a MCK quadratic model of Eq. (98).  

 

_ 2

_ 2

r EA

EA EA EA

EA

t EA

EA EA EA

EA

F
K c M

F
k C m





     

    

 (98) 
 

 

Subscript, ‘EA’, in the above equations indicates the coupled motion of the 

whirling and precessing. Since the 3D model for the coupled motion doesn’t have 

constant eccentricity because of the tilted angle, the minimum eccentric value, EA , in the 

 0 (no angle) 0.025 ° 0.05 ° 

_( )EA

w EA

EA

k
f

C 
  (

k

C
=)0.45 0.64 0.72 
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3D model is utilized to calculate the rotordynamic coefficients.  EA  is  0.00032 m  for 

0.025  and EA  is  0.00028 m  for 0.05  . The rotordynamic force coefficients for the 

whirling and precessing motions are calculated using 2
nd

 order curve-fit and shown in 

Table 18. The whirl frequency ratio at instability for each case is calculated using the 

corresponding coefficients and compared in Table 19. As shown in the table, the whirl 

frequency ratio at instability is increasing as the imposed angle increases.  This 

relationship between the tilted angle and the whirl frequency at instability was estimated 

in the model developed by Childs [44]. The increased whirl frequency ratio at instability 

for larger tilted angle of the impeller indicate that the impeller is more destabilizing for 

the larger pitching(precessing) motion. This is identical with the destabilizing 

mechanism introduced and studied in Refs [44 - 46].  
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8. ROTORDYNAMIC FORCE PREDICTION FOR ECCENTRIC IMPELLER 

 

8.1 Modeling of Orbiting Rotor at Statically Eccentric Position 

 

Fig. 63 Schematic of a whirling rotor motion about an eccentric position 

 

An approach is developed to predict the rotordynamic coefficients of eccentric 

annular seals using CFD. Fig. 63 shows the schematic of a whirling rotor motion about 

an eccentric position. The reaction forces acting on the whirling rotor about a non-

centered position can be expressed as  
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

x xx s xy s

yx s yy sy

xx s xy s

yx s yy s

xx s xy s

yx s yy s

F K E k E x

k E K EF y

C E c E x

c E C E y

M E m E x

m E M E y

      
     

      

   
   

   

   
   

   

(99) 

In the equation above, sE  is the static eccentricity of the rotor. x  and y  are 

rotor displacements from the steady-state position. The displacements are expressed as 

cos

sin

x t

y t





  

  
(100) 

where,  is the whirling orbit radius. 

The forces, xF  and yF , in Eq. (99) are indicating the reaction forces caused

by the whirling motion about the whirling orbit center. When the rotor is operating with 

the whirling motion about the misaligned position, the reaction forces can be divided 

into two kinds of independent forces according to their sources. They are (1) forces 

resulted from the whirling along the orbit radius,   (2) forces caused by only the 

misaligned position which can be also defined as non-vibrating forces. Fig. 64 shows the 

forces acing on the rotor according to the position of the rotor. Fig. 65 indicates the 

forces when the rotor is operating without whirling motion at static eccentric position.  

In the figures, the static eccentricity is imposed along the x-axis. 
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 (a)                                                                                    

 

 
 

 (b) 
 

Fig. 64 Forces acing on the rotor by whirling motion at static eccentric position (a) 

0t   (b) 
2

t


   
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Fig. 65 Forces acing on the rotor at static eccentric position without whirling 

motion 
 

In order to calculate the reaction forces in Eq. (99), non-vibrating forces at the 

static eccentric position of the rotor should be subtracted from the forces induced by the 

whirling motion about the static eccentric position. The forces of Eq. (99) are obtained 

according to the position of the rotor. For each position, xF  and yF  are calculated by  

 

At 0t   

1 0

1 0

x x x

y y y

F F F

F F F

  

  
 (101) 

 

At 
2

t


   

2 0

2 0

x x x

y y y

F F F

F F F

  

  
 (102) 



 

118 

 

The rotordynamic coefficients for the static eccentricity should be calculated for 

0t   and / 2t   because the motion of the whirling rotor about the static eccentric 

position is not axisymmetric. By substituting Eq. (100) into Eq. (99), the reaction forces 

on the rotor according to its position are defined as below.   

At 0t   

2

2

x

xx xy xx

y

yx yy yx

F
K c M

F
k C m






     


      

 (103) 

 

At / 2t    

2

2

x

xy xx xy

y

yy yx yy

F
k C m

F
K c M






     


    

 (104) 

 

8.2 CFD Approach for Static Eccentricity 

Though ANSYS CFX is only capable of solving axisymmetric model, an 

approximated model can be created for the simulation of the static eccentric case which 

is asymmetric. Fig. 64 illustrates a whirling rotor about a position misaligned statically.  

  is the whirling frequency and   is the spin speed of the misaligned whirling rotor. 

A sliding surface is generated between the rotor surface and the stator surface. The 

center of the sliding surface is identical to the center of the whirling motion. Outer 

region divided by the sliding surface should be defined as a stationary frame while the 

inner region is defined as a rotating frame. The inner rotating frame makes the whirling 

motion of the rotor and causes fluid rotation between the rotor and stator. The 
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rotordynamic coefficients for the static eccentricity of the rotor can be calculated by 

varying the precession frequency ratio of the inner rotating frame.   

 

8.3 Case Studies for Verification  

8.3.1 Test Case by Falco et al. [23] 

In order to validate the CFD approach for the rotordynamic coefficients caused 

by the static eccentricity, comparisons with experimental data of Falco et al. [23] are 

made in Fig. 66 and Fig. 67. The eccentric seal parameters are shown in Table 20.  

 

Table 20  Eccentric seal data of Falco et al. [23] 

Seal Geometry 

Length 4.0 cm 

Radius 8.0 cm 

Nominal clearance 0.36 mm 

Fluid properties & Operating conditions 

Density 1000 3/kg m  

Viscosity 10E-3 2/N s m  

Pressure drop 1 MPa 

Rotor angular 

speed 
4000 rpm 

Inlet pre-swirl ratio 0.3 

Inlet loss 

coefficients 
0.3 

 

For the case, Falco et al. [23] analyzed the annular seal using the Reynolds-

equation based FE solution and Nelson et al. [25] developed bulk flow code with Moody 



 

120 

 

friction model for eccentric seals. Those previous results are compared with the current 

CFD results to validate the approach. The predicted rotordynamic coefficients using 

CFD model show reasonable results and follow similar trend when comparing with the 

results of others. The calculated stiffness values of 0 and 0.5 eccentric ratio cases are 

close to the results of experiment. However, 0.7 eccentric ratio results are relatively 

larger than others except for xyk .  

 

   
(a)                                                                           (b) 

Fig. 66  Direct stiffness vs. eccentric ratio (a) xxK (b) yyK  

 

   
(a)                                                                           (b) 

Fig. 67 Cross-coupled stiffness vs. eccentric ratio (a) xyk  (b) yxk  
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8.3.2 Eccentric Seal of Allaire et al. [27] 

Allaire et al. [27] examined the effect of the eccentric seals using short seal 

solution. Direct stiffness, damping and cross-coupled stiffness are compared with the 

previous results [24, 25, 27, and 28]. The seal parameters are shown in Table 21. 

Comparisons in Fig. 68 show that all of the approaches predict similar results for the 

eccentric seal.   

 

Table 21 Eccentric seal data of Allaire et al. [27] 

Seal Geometry 

Length 40.6 mm 

Radius 39.9 cm 

Nominal clearance 0.14 mm 

Fluid properties & Operating conditions 

Density 57.657 3/kg m  

Viscosity 7.4396E-6 2/N s m  

Pressure drop 7.26 MPa 

Rotor angular speed 23700 rpm 

Inlet pre-swirl ratio 0.3 

Inlet loss coefficients 0.10 
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(a)       

                                                                          

 

(b) 

 

 

(c) 

Fig. 68 rotordynamic coefficients vs. eccentric ratio  (a) direct stiffness (b) direct 

damping (c) cross-coupled stiffness 
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8.4 Rotordynamic Coefficients for Statically Eccentric Impeller 

The impedances of the face-seal impeller for the static eccentricity are calculated 

for 0t   and / 2t   . The boundary conditions are same with the concentric case of 

Table 3. The investigated precession frequency ratios are ranging from -3.0 to 3.0 as 

shown in Fig. 69 and Fig. 70. Bump and dip are observed in the impedance curves and 

their sizes are increasing for the larger static eccentricity. For the static eccentricity cases, 

the rotordynamic coefficients cannot be calculated because of the bump and dip and 

therefore the rotordynamic stability for the static eccentricity of the shroud will be 

investigated using the transfer function model.   

 
(a)                                                                     

 
 (b) 

Fig. 69 Impedances of the whirling shroud about the statically eccentric center at 

0t   (a) xF  (b) yF   
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(a)                                                                     

 

 (b) 

Fig. 70 Impedances of the whirling shroud about the statically eccentric center at 

2
t


   (a) xF  (b) yF   

 

8.5 Curve-Fits for Identification of Unconventional Impedances 

In this chapter, rotordynamic stability analysis is performed using the transfer 

function model. Eq. (53) has a form of skew symmetry because the center of the 

whirling motion is same with the center of the stator center. However, the whirling 

motion about the statically eccentric position is asymmetric and therefore the reaction 

forces acting on the statically eccentric shroud should be changed in the form of 

equation shown in the below: 
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0 0 1 1 2 2

0 0 1 1 2 2

(4) ( )

3 3 4 4

(4) ( )
3 3 4 4
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F c d c d c dy y y

a b a ba bx x x
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c d

             
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            

            
           

            

 
 


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i

x
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  
 
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

 (105) 

 

Eq. (51) indicates the fluid forces and the resultant responses for harmonic, 

steady state vibration of frequency  . By substituting Eq. (51) into Eq. (105), the forces 

in x and y direction become 

 

   

    
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e j e
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e j e
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   
  

  


 (106) 

 

The impeller fluid forces can be expressed with four different impedance 

functions, ( )xxD j , ( )xyD j , ( )yxD j , and ( )yyD j  in the frequency domain as 

shown below:    

( ) ( )

( ) ( )

x xx xy

yx yyy

F D j D j x

D j D jF y

      
           

 (107) 

 

where 
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(108) 

By considering the shaft center of Eq. (55), the radial and tangential impedances 

can be obtained for 0t   and 
2

t


   as follows: 
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or; 
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From Eq. (108), (109), (110), (111), and (112), the radial and tangential 

impedances for the forward and backward whirl can be determined using 

 

 
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 (113) 
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( ) Re ( ) Im ( )

yx yx yy

yx yx yy

I D j D j

I D j D j





           

           

 (115) 

( ) Re ( ) Im ( )

( ) Re ( ) Im ( )

yy yy yx

yy yy yx

I D j D j

I D j D j





           

           

 (116) 

 

Complex impedances, ( )xxD j , ( )xyD j , ( )yxD j , and ( )yyD j can be 

calculated using the relationship in Eq.(113) – Eq. (116). To identifiy the complex 

impedances, the curve-fits are performed using multi-segment approach developed in 

Chapter 5. The curve-fits have been performed for various eccentric ratios. The ratios are 

ranging from 0 to 0.8 and the results are shown in Fig. 71 - Fig. 75. Goodness-of-fit for 

each result is indicated by 2R  values and the quality of the curve fits are good enough to 

utilize in the stability analysis of the Jeffcott rotor model.  
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(a)                                                             (b) 

 

(c)                                                             (d) 

Fig. 71 Curve fit results of 0.0 eccentric ratio case by transfer function model with 

segmentation (a) ( )xxD j  (b) ( )xyD j  (c) ( )yxD j  (d) ( )yyD j  
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(a)                                                             (b) 

 

(c)                                                             (d) 

Fig. 72 Curve fit results of 0.2 eccentric ratio case by transfer function model with 

segmentation (a) ( )xxD j  (b) ( )xyD j  (c) ( )yxD j  (d) ( )yyD j  
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(a)                                                             (b) 

 

(c)                                                             (d) 

Fig. 73 Curve fit results of 0.4 eccentric ratio case by transfer function model with 

segmentation (a) ( )xxD j  (b) ( )xyD j  (c) ( )yxD j  (d) ( )yyD j  
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(a)                                                             (b) 

  

(c)                                                             (d) 

Fig. 74 Curve fit results of 0.6 eccentric ratio case by transfer function model with 

segmentation (a) ( )xxD j  (b) ( )xyD j  (c) ( )yxD j  (d) ( )yyD j  
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(a)                                                             (b) 

  

(c)                                                             (d) 

Fig. 75 Curve fit results of 0.6 eccentric ratio case by transfer function model with 

segmentation (a) ( )xxD j  (b) ( )xyD j  (c) ( )yxD j  (d) ( )yyD j  
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8.6 Stability Analysis of Simplified Jeffcott Rotor Model with Statically Eccentric 

Impedance 

In order to evaluate the stability of the statically eccentric impeller, a simplified 

Jeffcott rotor is also considered in this chapter. The jeff-cott rotor model with the 

centrifugal impedances using the transfer function model is illustrated in Eq. (59). In the 

equations, ( )xxT s , ( )xyT s , ( )yxT s , and ( )yyT s  for the complex impedances of the 

statically eccentric impedances are defined as follows: 

( ) ( ) ( ) , ( ) ( ) ( ),

( ) ( ) ( ) , ( ) ( ) ( )

xx xx xy xy

yx yx yy yy

T s D s x s T s D s y s

T s D s x s T s D s y s

 

  
 (117) 

 

For the analysis, the selected mass and natural frequency of the Jeffcott rotor 

model is  

dm =120 Kg, n  =480 rad/s (118) 

 

A comparison of log-dec according to the eccentric ratio is in Fig. 76.  For the 

given parameters of Eq. (118), log-dec is decreasing when the eccentric ratio is 

increasing. The deviation of log-dec in Fig. 76 is small because the magnitudes of the 

complex impedances are relatively small when considering the mass of the Jeffcott rotor.  

In order to investigate the effect of the static eccentricity, the mass is changed to 20 Kg 

and the log-dec values are calculated and compared in Fig. 77. With the decreased mass, 

the deviation of log-dec is increasing and it can be concluded that larger static 

eccentricity has a negative effect on the stability of the Jeffcott rotor.    
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Fig. 76 Comparison of log-dec according to the eccentric ratio for dm =120 Kg  

 

 

Fig. 77 Comparison of log-dec according to the eccentric ratio for dm =20 Kg 
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9. CONCLUSION 

 

The fluid induced forces arising in the leakage flow path of the shrouded face-

seal impeller and the conventional wear-ring seal impeller have been investigated 

utilizing the CFD approach. ANSYS CFX is employed to predict the rotordynamic 

forces caused by a whirling centrifugal impeller by considering various operating 

motions and the corresponding resultant impedances are analyzed utilizing the newly 

developed linear curve-fit approach.   

First of all, the computational approach is verified by reasonable prediction of the 

rotordynamic coefficients for the face-seal impeller as compared with other approaches 

and experiment. A wide range of precession frequency ratios (-1.5 ~ 2.0) are considered 

to check the existence of the bump and dip in the impedance curves of the face-seal 

impeller case. The conventional quadratic least square curve-fit approach can be used to 

determine the rotordynamic coefficients of the face-seal impeller since there are no 

significant bump and dip in the impedance curves. Using the validated approach, a 

conventional wear-ring seal impeller is analyzed and the radial and tangential 

impedances are computed. The results of the simulation show peaks in the impedances 

which have not been observed in the prior CFD models, but have appeared in the bulk 

flow impeller analysis of Childs. Review of past experimental work also shows the 

peaks in measured impeller impedances. Inlet swirl ratio, flow rate of primary passage, 

shape of shroud, and seal clearance are varied to analyze their effects in the conventional 

wear-ring seal impeller impedances. The impedances from the seal are relatively larger 
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than the values from the shroud of the conventional wear-ring seal impeller. The bump 

and dip in the impedance curves of the impeller are caused mainly by forces originating 

in the shroud rather than the seal. The phenomenon is clearly observed in the tangential 

impedance. The bump and dip in the predicted impedance curves increase with higher 

inlet swirl ratio. The wear-ring seal impeller is less destabilizing and the size of the 

impedance peaks decrease at higher flow rate of the primary passage. The trend is 

identical to the results of the experiment by Franz et al. [15]. Added recirculation zones 

in the leakage flow path reduce the velocity of the circumferential direction in the shroud 

surface and the magnitude of the impedance peaks. With larger added area in the shroud 

leakage path, the peaks in the impedance curves can be suppressed more effectively. 

Leakage flow rate is reduced with the additional recirculation zone. Enlarging the seal 

clearance of the impeller is one method to reduce the size of the dip and bump. 

However, using a larger clearance seal in the impeller model has the negative effect of 

increasing the leakage flow rate.    

  Secondly, rotordynamic stability analysis has been performed using the fluid 

induced forces for a conventional wear-ring seal impeller. Since the calculated 

impedances of Fig. 12 and Fig. 13 cannot be modeled by the traditional quadratic curve 

fit method, several alternative approaches are considered and suggested for the 

rotordynamic stability analysis. A  FE model was constructed to implement the 

unbalance synchronous response analysis. In order to investigate the speed dependent 

impeller forces for the FE rotor model, speed dependent impedances are computed by 

employing the flow and head coefficients. Using the impedances, comparison of the 
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unbalance synchronous response is made between the quadratic approximation and the 

full impedance to estimate the validity of the approximated impedances by the least 

square curve-fit when the bump and dip are shown in the impedances. The computed 

unbalance synchronous responses of the quadratic approximation and the full impedance 

approaches indicate noticeable differences. A linear curve-fit algorithm is utilized to 

identify the irregular shapes of impedances and the identified impedances are applied to 

a rotordynamic stability analysis of a Jeffcott rotor model in the form of transfer 

functions. Earlier work utilizing the transfer function approach to address the 

unconventional impedance curves was suggested by Kleyhans et al.[21] and Thorat et al. 

[22] expanded the approach. However, Kleyhans’ approach had limitations such as low 

curve-fit quality and limited frequency range for its application. The transfer function 

derived by Thorat was open-loop unstable. Two alternate approaches were developed to 

address these limitations. An approach using fictitious, fast poles was developed to 

obtain open-loop stable transfer functions. In addition to that, segmentation is utilized to 

perform linear curve-fits of sufficiently low order to facilitate reliable eigenvalue results. 

After the verification using the approximated ( pure quadratic ) impedance case, the 

transfer function model with segmentation is applied for the stability analysis of the 

unconventional (bump and dip) impedance case. Comparison between the actual 

impedance and the approximated impedance cases is made to demonstrate the limitations 

of the conventional MCK model and show the effects of ISR and spin speeds. The 

results show that bumps and dips in the impedance curves have a destabilizing influence 

on the Jeffcott rotor model as compared with the results from the quadratic curve fit 
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model. The developed transfer function model with segmentation provides good results 

for stability analysis even if the impedance functions have complex shapes that cannot 

be described well by the conventional quadratic curve form. Expanding the approach to 

more complicated rotor models and verifications with actual rotor tests is required as 

future studies.   

Thirdly, a full set of the rotordynamic coefficients of the face-seal impeller has 

been calculated using the CFD approach. To calculate 4 4 mass, damping and stiffness 

coefficients, a whirling centrifugal impeller and a precessing centrifugal impeller have to 

be modeled and the reaction forces and moments should be calculated through the 3D 

whirling and precessing impeller simulation. The whirling centrifugal impeller 

simulation for predicting the rotordynamic coefficients using CFD technique was well 

validated by Moore et al. [12]. In the present study, a CFD modeling approach for a 

precessing impeller is developed and validated by considering a test case by Yoshida et 

al. [7].  Using the validated CFD approaches for the rotordynamic force and moment 

coefficients, a full set of the rotordynamic coefficients of the face-seal impeller is 

calculated and the stability analysis is performed. Childs [44] suggested a new formula 

of whirl frequency ratio at instability for circular and conical motion. In this study, the 

formula is employed to evaluate the stability of the face-seal impeller by assuming a 

situation that the impeller is whirling and precessing while it is operating. The calculated 

whirl frequency ratio at instability for circular and conical motion increases when 

coupled (circular and conical) motion arise during the impeller operation. The coupled 

circular and conical motion can be modeled with a single CFD model by imposing 
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dynamic eccentricity and tilting angle. Because of the geometrical limitation, small 

angles, 0.025 ° and 0.05 °,  are imposed with the 10% of the dynamic eccentricity and 

the whirl frequency ratios at instability for the coupled motion are calculated to check 

the influence of the precessing motion on the rotordynamic stability. With the larger 

inclined angle of the impeller, the whirl frequency ratio at instability is increasing and 

this trend is identical with the conclusions of Childs [44] and Tsujimoto et al. [45] that 

the precessing motion makes the impeller more destabilizing.   

Lastly, the influence of the static eccentricity on the face-seal impeller is 

investigated. Since whirling about the statically eccentric position is asymmetric, a 

special treatment has to be applied in the model. In order to make axisymmetric motion 

about the whirling center located at the eccentric position, a sliding surface is inserted 

and the whirl frequency is imposed by rotating the inner region that has the same center 

with the generated sliding surface. The developed approach for the statically eccentric 

rotor motion is validated for the measured data of the misaligned plain annular seals. The 

predicted results calculated by the CFD approach show fairly good agreement with the 

results of the measurement and other analytical results. This validated approach is 

applied to a shrouded face-seal impeller case to investigate the effect of the static 

eccentricity on the fluid induced forces of the shrouded impeller. Peaks are observed in 

the predicted impedances curves of the statically eccentric face-seal impeller and the 

magnitude of the bump and dip is increasing as the eccentric ratio increases. The 

conventional least square curve-fit for calculating the mass, damping, and stiffness 

coefficients of the impeller cannot be utilized for the fluctuating impedance curves. Thus, 
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the newly developed linear curve-fit algorithm with segmentation approach is applied to 

identify the impedances of the statically eccentric impeller and the transfer functions of 

the impedance curves are determined from the curve-fit. A simplified Jeffcott rotor 

model with the impeller impedances is considered to evaluate the influence of the static 

eccentricity. Since the magnitudes of the impedances are relatively small, the influence 

of the static eccentricity on the impeller seems small with the larger mass. However, 

with the decreased mass, it can be seen that the increased static eccentricity makes the 

Jeffcott rotor model more destabilized.  

The following items can be expected future works: 

a) Influences of the interaction between impeller and volute casing/ vaned 

diffuser needs to be investigated in terms of rotordynamic stability 

b) Investigate the effect of the temperature on the fluid force (especially, 

compressible flow)  

c) Various eye-seals with impeller shroud leakage path need to be considered.  

d) A complete model of a centrifugal impeller including impeller, 

front/backshroud, and volute casing with various perturbation model needs to 

be modeled and analyzed.   
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APPENDIX A  

 

1. Transfer functions for Fig. 30 

 

 

2. Transfer functions for Fig. 32 
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2) ( )E s  

 

3. Transfer functions for Fig. 33  

1) ( )D s  

 

Segment 

No. 
Transfer function 

1 

73 18 76 17 79 16 82 15

86 14 88 13 92 12 94 11

97 10 100 9 103 8 105 7

108 6 110
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(

319 10

2.681 10 8. 2 1

)

18 0

s s s s

s s s s

s s

s

s

s s

E

s

       

       

       

 



  5 113 4 115 3

118 2 120 112

19 7 18 14 17 21 16 28 15

34 14 41 13 47 12 53 11

60 10

2.779 10 6.654 10

1.447 10 2.802 10 7.23 10

2.66 10 3.323 10 2.591 10 1.413 10

5.729 10 1.789 10 4.404 10 8.668 10

1.376 10 1.768

s s

s s

s s s s s

s s s s

s

   

     

       

      

  



66 9 72 8 78 7

84 6 89 5 95 4 100 3

106 2 111 116

10 1.839 10 1.541 10

1.031 10 5.428 10 2.195 10 6.573 10

.372 10 1.778 10 1.01 77 10

s s s

s s s s

s s

   

       

    





 

Segment 

No. 
Transfer function 

1 
8 3 22 2 27 30

1 4 6 3 12 2 18 23

1.973 10 3.849 10 1.935 10 1.81 10
( )

2.6 10 2.51 10 1.066 10 1.68 10

s s s
D s

s s s s

      


       
 

2 
22 3 25 2 27 30

2 4 6 3 12 2 18 23

1.439 10 1.318 10 1.949 10 1.887 10
( )

2.6 10 2.51 10 1.066 10 1.68 10

s s s
D s

s s s s

      


       
 

3 
22 3 24 2 26 30

3 4 6 3 12 2 18 23

2.936 10 9.032 10 8.89 10 1.774 10
( )

2.6 10 2.51 10 1.066 10 1.68 10

s s s
D s

s s s s

       


       
 

4 
22 3 24 2 27 30

4 4 6 3 12 2 18 23

1.327 10 4.616 10 1.886 10 1.499 10
( )

2.6 10 2.51 10 1.066 10 1.68 10

s s s
D s

s s s s

       


       
 

5 
21 3 24 2 27 30

5 4 6 3 12 2 18 23

6.43 10 2.385 10 2.746 10 1.204 10
( )

2.6 10 2.51 10 1.066 10 1.68 10

s s s
D s

s s s s

       


       
 

6 
23 4 25 3 29 2 33 35

6 5 6 4 12 3 18 2 24 29

1.783 10 4.054 10 2.667 10 3.976 10 6.514 10
( )

3.5 10 4.85 10 3.325 10 1.127 10 1.512 10

s s s s
D s

s s s s s

         


         
 



 

150 

 

2) ( )E s  
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APPENDIX B 

 

Shroud only Model with whirling and precessing 

A shroud model with the dynamic eccentricity and tilting angle is generated as 

shown in Fig. 78. The figure shows the whirling and precessing shroud which has 3 

domains with inclined shroud rotor surface. The imposed eccentric value,  , is 0.6 

mm(about 10% of the shroud clearance) and the tilting angle is 0.05° by considering the 

clearance between the face-seal and the stator. Fig. 79 illustrates domains and surfaces 

that are defined for the rotordynamic analysis using the commercial CFD program, 

ANSYS CFX. The eccentricity and the tilting angle are imposed on the ‘Diff_Inlet’, 

‘Sh_Rotor’, ‘In_Rotor’, and ‘In_Outlet’ as shown in Fig. 79.  

 

 

Fig. 78 Schematic of the shroud only model with the whirling and precessing 



 

152 

 

 

Fig. 79 Domains of the shroud only model with the whirling and precessing 

 

 The tilted shroud surface is whirling at the speed   about Z-axis while the rotor 

surface spins at the speed of   about the tilted axis. In ANSYS CFX, this motion can be 

solved by defining the fluid region as a rotating frame in the model while the stator wall 

is defined as a counter rotating wall. To impose the spin speed of  , the shroud surface 

is defined as a rotating wall.  

 For the rotordynamic analysis, solutions for calculating dynamic coefficients of 

the model should be obtained at multiple frequency ratios defined as the ratio of the 

shroud whirling frequency to the spin speed, f



 . Once a CFD solution is obtained at 

a certain frequency ratio, the radial and tangential forces can be determined by 

integrating the static pressure of the nodes on the tilted shroud surface. By calculating 



 

153 

 

the forces at multiple frequency ratios, the rotordynamic coefficients can be calculated 

using the relationship of Eq. (31).  To solve the whirling shroud with the tilted angle 

using CFD approach, relative shroud speed should be utilized. The equation is   

shroud     (119) 

 

  indicates the whirling speed and shroud  is the relative rotor speed. To simulate 

the multi domain problems with rotating frames, interface model is required. In this 

study, ‘Frozen Rotor’ model in ANSYS CFX is utilized to capture circumferential flow 

variation in the shroud leakage path. Since speeds of each domain are different, mesh 

connection method is needed to set the speed variation between the domains using 

GGI(General Grid Interface). The model does not require matching nodes on either side 

of two connected surfaces.   
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APPENDIX C 

Shroud only Model with Static Eccentricity 

Fig. 80 indicates statically eccentric shroud model to calculate the force 

coefficients. The model is composed of 4 domains and 3 sliding interfaces as shown in 

Fig. 81. Two separate domains in the shroud leakage path are utilized to impose the 

whirling frequency.  Inner shroud leakage path should be defined as a rotating frame and 

the outer shroud leakage path should be defined as a stationary frame. The axis of 

whirling of the inner shroud leakage path is ‘Axis of Whirling’ of Fig. 80 and the axis of 

the shroud rotation is ‘Axis of Rotation’ and the location is defined as the sum of the 

dynamic eccentricity,   and the static eccentricity, sE . The position of the ‘Axis of 

Whirling’ is changing according to the eccentric ratio.  

 
 

Fig. 80 Schematic of the shroud only model with the static eccentricity 
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Fig. 81 Domains of the shroud only model with the static eccentricity 

 

The orbit size of the shroud,   is 10% of the shroud inlet gap(Gap ‘A’, 3.55 mm) .  

Overall procedure for calculating the force coefficients of the statically eccentric shroud 

model is same with the concentric case.  The positions of ‘Axis of Whirling’ and ‘Axis 

of Rotation’ according to the impeller position and the eccentric ratio are indicated in 

Table 22 and Table 23.  

 

Table 22 Position of ‘Axis of Whirling’ and ‘Axis of Rotation’ at 0t   

Eccentric ratio 
Position of ‘Axis of Whirling’ 

(x, y) 

Position of ‘Axis of Rotation’ 

(x, y) 

0.2 (0, 0.71) (0, 1.065) 

0.4 (0, 1.42) (0, 1.775) 

0.6 (0, 2.13) (0, 2.485) 

0.8 (0, 2.84) (0, 3.195) 

(Unit : mm) 
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Table 23 Position of ‘Axis of Whirling’ and ‘Axis of Rotation’ at 
2

t


   

Eccentric ratio 
Position of ‘Axis of Whirling’ 

(x, y) 

Position of ‘Axis of Rotation’ 

(x, y) 

0.2 (0.355, 0.71) (0.355, 0.71) 

0.4 (0.355, 1.42) (0.355, 1.42) 

0.6 (0.355, 2.13) (0.355, 2.13) 

0.8 (0.355, 2.84) (0.355, 2.84) 

(Unit : mm) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  




