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ABSTRACT 

Since the 1970’s, concrete railroad ties have become more and more prominent 

in the railroad industry. Their improved durability and increased safety over traditional 

timber ties has paved the way for new and more efficient concrete ties to be developed. 

Prestressing with steel strands was a key design aspect in providing the strength the ties 

needed to overcome the tonnage seen in heavy haul lines spread across the United States 

and the world. A major flaw seen with these concrete ties is deterioration due to 

environment or fatigue loading under the connected rail. This deterioration can lead to a 

change in gauge of the track structure which can then cause derailment of trains. A 

second issue found in concrete ties that was not found in timber is the electrical 

conductivity. Timber is a highly insulating material while concrete possesses insulating 

and conductive properties based on the amount of moisture present. This is an issue 

because track structures use the steel rails to carry electrical signals to detect the 

presence of a train within a signaled block. During construction, the steel strands may 

come into contact with the embedded steel shoulders on both sides of the tie, therefore 

creating a direct circuit that needs to be insulated from the steel rails.  

Aramid fiber-reinforced polymer bars have shown promise, as an electrical non-

conductive material, to fix the problem of false signaling due to electrical shorts. AFRP 

is a composite material made of Kevlar fibers bound in a polymer resin. This material 

has a tensile strength of approximately 200 ksi and has been investigated for use as a 

replacement for steel in such structures as concrete bridge girders and decks. The 

objective of this research is to design and test new concrete railroad ties utilizing AFRP 

as the prestressing material. Four of these ties were constructed and tested for strength 

following the guidelines provided by the American Railroad Engineering and 

Maintenance-of-way Association (AREMA). Bending tests at the rail seat section and 

center section of the tie were performed to prove strength adequacy, and electrical 

resistivity tests were performed to prove insulation from the current in the rails. The 

AFRP ties showed to have over twice the electrical resistance of their steel counterparts 
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with 2.42 MΩ of resistance compared to 1.11 MΩ. The strength comparison proved 

inconclusive, for although the ties did not fail, they did not meet AREMA cracking 

requirements for strength. A major factor that was seen was in the method of testing 

AREMA provides; through improved testing procedures, AFRP shows to be very 

promising as a full replacement of steel as prestressing reinforcement for concrete 

railroad ties. 
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1. INTRODUCTION 

1.1 Project Motivation 

Concrete ties were first used on North American railroads in the 1890’s by the 

Reading Company in Pennsylvania (Hanna 1979). The ties were standard reinforced 

concrete, which showed no major improvement to the traditional timber ties in use. With 

the development of prestressed concrete structures in the mid 1900’s and increased cost 

of timber due to World War II, railroad companies began to research and experiment 

with prestressing steel in concrete railroad ties. It was not until the 1960’s that 

prestressed concrete railroad ties began to be manufactured and installed in the United 

States with more than 900,000 continuous ties installed on the FEC Railway in 1966 

(White 1984).  However, with much higher capital required to build these ties, 

production has been slow. 

The primary incentive for the use of concrete railroad ties over traditional timber 

ties comes from their extended design life; lasting 50 years compared to 20 for timber. 

Also with concrete ties being substantially heavier than timber, the track holds its 

alignment better and thus requires less maintenance. These advantages have led to a 

higher demand for concrete railroad ties, and the railroad industry has begun to demand 

more out of the tie’s strength and durability to meet ever-growing transportation needs. 

With approximately 160,000 miles of heavy haul track hauling 1.7 trillion ton-miles 

annually, the United States has one of the most extensive system of railroads in the 

world (AAR 2013). These high loads cause significant stress on the rail ties which may 

lead to increased maintenance and higher cost. However, it is important to note that 

prestressed concrete railroad ties are far more advantageous compared to its timber 

counterpart in terms of strength and durability, yet there are issues that need to be 

investigated and improved if they are to reach full potential. 

One such issue is the electrical conductivity of concrete rail ties and how it 

affects signaling. Standard track systems use a direct current (DC) circuit to signal the 

presence of a train within that circuit block which notifies, via signaling, other trains to 
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not enter that section of track. A power source sends current through the rail to a relay 

point which then sends the signal back to the power source along the opposite rail. When 

no train is present the relay is energized and displays a “clear” signal. As a train enters 

the circuit, the steel wheels and axle short circuit the current causing the relay to become 

de-energized which displays a “stop” signal. Figure 1 shows the track circuit with both 

energized, and de-energized relays. The problem occurs when the insulator pad isolating 

the steel shoulders from the rail fails allowing the current to enter the concrete and create 

a connection between the two rails. This connection creates a false short circuit causing 

the relay to de-energize. By having a relay de-energized, the track sees a major loss in 

capacity and must spend money to repair the problem tie once it is detected.  

 

 

Figure 1: Track circuit system: (1) Power source, (2) Energized relay, (3) Wheel and axel of train, (4) De-

energized relay (Johnson 2010) 

 

Another issue is the corrosion and deterioration of concrete ties which has been 

shown to be a primary cause of failure. Corrosion of the prestressing steel may occur 
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when water seeps into cracks in the tie and oxidizes the metal within. Freeze-thaw cycles 

accelerate water penetration and corrosion as well. The American Railway Engineering 

and Maintenance-of-Way Association (AREMA) has stated that a tie has failed if 

cracked under service load conditions, and therefore requires maintenance. If left 

unchecked and unrepaired, train derailment may occur. Figure 2 shows a pair of concrete 

ties after derailment of the Metro-North train in New York City. The National 

Transportation Safety Board (NTSB) reported that the accident was caused by excessive 

track gauge resulting from tie deterioration. The tie deterioration was determined to have 

resulted from fouled ballast and cracks allowing water penetration and corrosion (NTSB 

2014). Derailment may have been avoided if the track was more regularly inspected and 

the ties and fastenings had the required durability to reduce deterioration. Also note in 

Figure 2 the steel tie bar would automatically prohibit trains from running as the system 

would fail-safe to stop. Consequently manual, tablet, train operations would be needed 

which markedly reduces operational effectiveness. 

 

 

Figure 2: Cracked concrete rail ties with gauge holding bar installed post-accident (NTSB) 

 

 One promising material is Aramid Fiber-Reinforced Polymer (AFRP), a 

composite tendon that exhibits non-corrosive and electrically non-conducting properties, 



 

 

4 

 

which has recently been investigated as a replacement for steel in prestressed concrete 

structures. These structures are mainly found in locations where corrosion and weather 

induced deterioration is of prime concern, i.e. bridge decks and girders, marine 

structures, etc. Similarly, concrete railroad ties supported on ground and constantly 

exposed to weather could benefit from this material. With the noncorrosive nature of 

AFRP, the ties could experience more cracks before deemed failed by AREMA and 

therefore support a larger train load and require less frequent maintenance. Also, the 

non-conducting property of AFRP eliminates the possibility of a false negative signal. If 

sufficient insulation is provided between the steel shoulders between both rails, it may 

be possible to build concrete ties without the need for the insulator pads decreasing the 

initial cost, but more importantly preventing sources of deterioration at the rail seat. 

There currently are three major types of Fiber-Reinforced Polymer bars that are used in 

concrete structures: Glass, Carbon, and Aramid. Aramid is the chosen FRP bar because 

Carbon does not exhibit the desired electrical insulation that Aramid does, and Glass has 

shown to creep more than Aramid in prestressed applications.  

1.2 Project Objectives 

The objectives of this research are to (1) develop a series of design layouts that 

meet ACI, AREMA, and physical requirements using prestressed AFRP bars in an 

existing concrete railroad tie, (2) construct new ties using the designed layouts, (3) test 

the structural performance of the ties in both the laboratory and in the field, and (4) 

examine the reduction of conductivity between the fastenings within the tie. Overall, the 

purpose of this research is to create a new concrete railroad tie that, if the insulator pads 

fail, will not lead to a short circuit of the track signaling system. 

 These objectives are expected to benefit the railroad industry through increased 

safety and reliability of the track over its life span. This is due to the enhancement in 

durability and serviceability expected from the use of AFRP. Along with increased 

safety, total cost of track is expected to decrease due to the decreased cost from 

maintenance and replacing ties with corroded steel prestressing strands. Finally, with the 



 

 

5 

 

conductivity reduced between the fastenings, it is expected that insulating pads can be 

removed thus decreasing initial costs and improving longevity of the ties as well. 

1.3 Project Significance 

Increased use of concrete railroad ties and the growing importance of the railroad 

transportation system has led to a need for better ties that last longer, require less 

maintenance, and are more durable. Due to the corrosive nature of steel prestressing 

tendons, cracking in the tie is of primary concern. AREMA (2014) states that once 

noticeable cracking occurs in a concrete tie, maintenance must be performed and 

replacement soon after. Replacing a single concrete tie is laborious and time intensive 

which greatly adds to the cost of the replacement. To add to the problem, steel is a strong 

conductor of electricity and with rails carrying a current used in the signaling system, the 

steel tendons can cause a short circuit of the system falsifying the signal. Therefore, 

designing a new tie using non-corrosive, electrically non-conducting material is pertinent 

if the concrete railroad tie is to continuously improve and be more widely used in North 

America. 

 While research has been conducted on improving the durability of concrete 

railroad ties, no entity has gone as far as to replace the prestressing steel with another 

material entirely. By having the steel completely replaced with AFRP tendons, the need 

to repair and replace the ties can reduce significantly. It allows for the tie to crack lightly 

while still maintaining strength and removes the concern of steel corrosion within the tie, 

and it does not conduct electricity which would insulate the tie and prevent inaccurate 

signals. A major concern in the use of AFRP is the pre-tensioning system that will be 

used. Proper anchorage is required due to a stress concentration that can occur at the 

anchor during prestressing which can cause premature failure in the tendon. Usage of a 

1.9 in. diameter by 18 in. long hollow steel pipe filled with grout was found to be the 

most effective anchorage system for the prestressing operation (Medina 2012).  
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1.4 Research Approach 

 Laboratory experimentation is the primary approach that will be taken in 

conducting this research. After careful review of past and on-going experiments 

involving AFRP as a material and applied in concrete structures, study on the design and 

manufacture of concrete railroad ties takes place. A commonly used concrete railroad tie 

is selected as the original specimen to base the research off. LB Foster CXT’s 505S-50 

tie, Figure 3, was chosen due to its extensive use in long line heavy-haul track for Union 

Pacific Railroad. It was assumed this tie would undergo 75 MGT annual tonnage at a 

speed of 60 mph while spaced at 24 in. on center. That information along with charts and 

graphs provided by Chapter 30 of the AREMA manual are to be used in calculating the 

service moments on the tie which it will be designed for.  

 

 

Figure 3: 3D model of concrete railroad tie 

 

 A series of designs were then created using traditional prestressed concrete 

design guides and calculations but instead of using steel, AFRP was the prestressed 

material. Transfer and service loading stresses were considered in the calculations on the 

number of strands, the location of the strands, and the prestressing load applied to the 

strands. The designs chosen for construction used the least amount of AFRP, are within 

allowable prestress range, and met all physical constraints needed for construction. 
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These designs are then tested in accordance with AREMA concrete railroad tie strength 

testing requirements. The ties will be deemed adequate if they meet said requirements 

and prove to be more electrically insulating than its steel counterpart. 

1.5 Thesis Organization 

This thesis contains eight main chapters including the introduction to the 

research, Chapter 1. Chapter 2 comprises of a look into the current knowledge on 

concrete railroad ties and applications of prestressed AFRP bars through a literature 

review. Chapter 3 covers the design process including the selection of the final layout of 

AFRP bars that will be used in construction. Chapter 4 describes the construction of the 

ties: fabricating the molds, stressing the AFRP, and pouring the concrete. Chapter 5 

presents an overview of the experimental program involving the testing set up and 

instrumentation. Chapter 6 compares the experimentally tested ties reinforced with 

AFRP to the theoretical analysis based on the design parameters of Chapter 3 and as 

built conditions. Chapter 7 compares the experimental data from Chapter 6 to theoretical 

data of steel reinforced ties in a comprehensive AFRP to steel comparison. Finally, 

Chapter 8 summarizes the work done and draws conclusions from the experiments; 

along with a brief look into future research that can be done using the data presented in 

this thesis and recommendations on how to improve further testing. 
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2. LITERATURE REVIEW 

2.1 Concrete Railroad Ties 

Venuti (1980) detailed the history of concrete railroad ties; why they became 

used, how they were designed, fabricated, and installed, and how they’re currently being 

used on modern railroads. He states that concrete railroad ties began becoming popular 

in the 1950’s in post-World War II Europe due to the destruction of the railroads during 

the war and the rising cost of wood. America took notice and began developing its own 

set of codes and specifications in the late 1970’s. These ties were designed to hold a 

wheel load of 40,000 lb which is then factored to account for the dynamics effects of the 

moving train. It was also discovered that pretensioning the ties with strands or wires 

improved their strength by setting an eccentricity off the centroid of the concrete 

balancing out positive bending moments at the rail seat and negative moments at the 

center of the tie. Fabrication of the ties was relatively efficient to begin with by being 

able to cast ties on a daily basis: approximately 2 hours for the initial set, 10 hours for 

curing via steam or hot oil, and 6 hours for demolding, cleaning, prestressing, and 

casting the next tie. Installing the ties was mostly a process of replacement of wood ties 

and track with the concrete ties and a welded rail track. Due to the success of the 

concrete ties, a set of specifications were developed by the American Railway 

Engineering Association (AREA), now known as American Railway Engineering and 

Maintenance Association (AREMA), and ACI Committee 545. These specifications 

contain limits on the positive and negative bending moments, load resistance of 3 

million cycles of downward force, and bond development of the pretensioning tendons. 

With these specifications, a concrete tie design life is expected to be 50 years. 

A concrete tie installed in a rail system typically has two major locations of 

concern within its geometry that affects its strength and durability. These locations are at 

the rail seat and the center of the tie as shown in Figure 4. AREMA states that the top 

and bottom of the tie must be tested for strength at both locations. These checks 

represent positive and negative bending moments within the tie. However, Zeman et al. 
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(2009) states that the primary cause of failure in concrete rail ties is rail seat abrasion 

(RSA). This occurs when moisture becomes present under the rail seat and the tie sees 

high volume of heavy-axle loads. The deterioration of the rail seat can lead to a 

differential in the gauge of the rail which then can cause further damage to the tie or 

derailment of the train. If no RSA is present, then next mode of failure is corrosion of the 

prestressing steel resulting in greater loss of prestressing forces and overall strength of 

the tie. 

 

 

Figure 4: Typical concrete rail tie plan and profile view 

 

There has been noted distress in concrete ties only a few years after installation 

along the eastern coast of the United States. After investigation, this distress was caused 

by delayed ettringite formation (DEF) (Mielenz et al. 1995). This was caused by large 

amounts of sulfate in the cement used in the mix. Mielenz used a scanning electron 

microscopy to located ties with DEF so they can be removed and replaced. DEF causes 

cracking within the ties which can lead to the concrete loosing anchorage to the 

prestressing steel. During the investigation, field engineers took note of patterns and 

irregularities found in the track. These patterns showed engineers that the cause of DEF 

was only due to the concrete mix difference, not environmental or loading conditions. 
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Research has been conducted on concrete rail ties to improve durability and 

overall performance in order to lower the total cost and make their use economical. 

Mindess, et al. (1991) explored the use of mixing fibers into the concrete mix itself to 

increase impact resistance of the tie. Three different concrete mixes were developed 

from a single matrix: a plain concrete mix with no fibers, corrugated steel fibers at 

0.57% by volume, and mono-filament polypropylene fibers at 0.15% by volume. Using 

9.5 mm diameter steel prestressing strands, several ties were made for each concrete 

matrix and tested using a static load applied directly to the rail and impact loads applied 

at varying heights. Failure was typically initiated with cracking at the bottom of the tie 

under the load, and failure occurred with slippage of the prestressing strands. It was 

determined that including fibers within the concrete matrix did increase the toughness 

and durability of the tie by being able to resist a larger peak load and absorb more energy 

prior to failure. However, there is no indication of corrosion resistance and electrical 

conductivity improvements. 

Donovan (1997) performed research into the development of concrete railroad 

ties in order to increase their durability. This was done by evaluating several tie designs, 

concrete mixes, and material sources. Four different tie designs were reviewed and 

tested according to AREMA guidelines: 9, 3/8 in. strand LB Foster CXT; 8, 3/8 in. 

strand LB Foster CXT; 8, 3/8 in. strand Rocla; and 24, 5 mm strand Canadian National. 

The CXT ties were shown to have the highest strength at the most reasonable cost. With 

the tie design chosen, Donovan reviewed and selected a possible source of aggregate to 

be used in the concrete mix. Aggregate producers were compared using a series of tests: 

Alkali Silica Reactivity (ASR), freeze-thaw cycles, abrasion resistance, and shape. Of 11 

producers, only 3 passed all the tests. With the aggregate selected, the mix design was 

established using multiple factors including type of cement, use of plasticizers and fly 

ash, air entrainment, and method in which it is cured. This research provided an 

optimized concrete railroad tie, but it was for one specific purpose, a short line railroad 

in Nevada. A durable, corrosion resistant design needs to be established for more general 

use. 
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Jimenez and LoPresti (2004) reviewed the performance of four different 

materials of rail tie: wood, concrete, plastic, and steel. All testing of these ties occurred 

at the TTCI testing facility in Pueblo, CO. Plastic ties were developed by TieTek, Inc. 

and US Plastic Lumber in an attempt to create a lighter and stronger tie compared to 

wood. During laboratory testing, it was found that although cut spike removal required 

less force than wood, uplift of the rail has not been an issue. For full scale testing, two 

zones were set up at the TTCI facility: one with plastic ties intermixed with wood and 

the other with consecutive plastic ties. This testing revealed that spike uplift was a 

problem and temperature had a much greater effect than expected. During a 100°F 

change in temperature the plastics ties experienced a 0.24 in. growth in the gauge length 

while timber ties typically see 0.016 in. Overall, the plastic ties performed just as well as 

timber ties but with an obvious increase in cost meaning this is not a feasible solution.  

One of the primary causes for this research is the electrical resistance of the 

concrete railroad tie. With wet concrete being a type of semi-conductor and steel being a 

high conductor of electricity (Sengul 2009), issues with corrosion and false signaling can 

be more prevalent than anticipated. Performing electrical resistivity tests are becoming 

more popular as a quality control check for concrete. Laysse et al. (2015) performed 

several tests to determine the electrical resistivity of concrete to show correlation with 

chloride penetration and durability. Two of the tests performed were a uniaxial test and a 

four-probe test also called a Wenner test, Figure 5. It was found that the uniaxial test is 

best performed on concrete in labs as another cylinder test similar to standard 

compression tests, while the Wenner test is best done in the field. They concluded that 

concrete with a higher resistivity is more corrosion resistant, and that the higher 

resistivity will prevent rapid chloride penetration (RCP). However, the problem occurs 

with attempting to mitigate the corrosion caused by lack of resistivity.  
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Figure 5: Four-point or Wenner probe test (Layssi 2015) 

 

Monfore (1968) studied the effect of admixtures, within the concrete railroad 

ties, on concrete resistivity as a means of insulating the concrete itself outside of the use 

of insulator pads between the rail and the tie. Moisture proved to be the primary cause of 

electrical conductivity and would cause the ties to behave like common electrolytes 

when exposed to an electrical current. However, when oven dried at 105 °C the 

resistivity increases by nearly 10 million ohm-cm. Several admixtures were tested within 

the concrete matrix: ammonium phosphate, hydroxyacetic acid, hydroxyethyl cellulose, 

and calcium chloride. Each was mixed in a cement paste of variable ratios and cured as 4 

in. cubes which underwent the resistivity test. Although resistivity of the concrete 

increased with the use of admixtures, it was not enough to counter the effect of water on 

and in the cured concrete. Through this research, concrete resistivity was determined to 

be a factor in the rate of corrosion on embedded steel which poses a problem for the 

embedded fasteners within the concrete railroad tie. 

2.2 Concrete Tie Testing Procedures 

To structurally test the concrete ties, three different tests are performed. A 

vertical load test, repeated (fatigue) load test, and ultimate load test. 
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2.2.1 Vertical Load Test 

The first set of testing done on the tie is a vertical load test which follows the 

guidelines of AREMA Chapter 30.4.9.1.4 Rail Seat Vertical Load Test, Chapter 

30.4.9.1.6 Center Negative Bending Moment Test, and Chapter 30.4.9.1.7 Center 

Positive Moment Test. These tests are performed at both the rail seat section and the 

center of the tie for they are the critical sections in the tie for bending moment. First, the 

test is performed at the rail seat in the positive moment direction using a 3-point bending 

apparatus shown in Figure 6. The vertical load is placed 30 in. from the center of the tie 

and supported on two rubber strips located 2.25 in. from the center line of the load. The 

applied load is calculated from Equation 1.  

 2
2

2.25"
3

M
P

X



 (1) 

where P  = the vertical load; M  = the design positive rail seat moment; and X = the 

distance from the load center to the edge of the tie. If under the applied load the tie 

shows no noticeable cracking after 3 minutes, the tie is deemed adequate. The tie is 

simply supported and rests on 2” x 1” rubber pads placed on top of rockers located two 

thirds of the distance from the center line of the vertical load to the edge of the tie 

following the diagram of Figure 6. The load is then applied through a plate resting on 1” 

x ½” rubber strips. AREMA calls for 50A durometer scale hardness to be used as the 

rubber material. 
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Figure 6: Vertical load test at the rail seat in the positive moment direction (AREMA 2014) 

 

This test is repeated for the rail seat but in negative moment direction as shown 

in Figure 7. Here the strips supporting the applied load are located 3.0 in. off the center 

line while the bottom supports are still located the same distance as with the positive 

moment. Equation 1 is adjusted appropriately by replacing 2.25 in. with 3.0 in. to 

achieve the desired applied load for this test. This load is applied for 3 minutes and 

deemed adequate if no visible cracking occurs. 
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Figure 7: Vertical load test at the rail seat in the negative moment direction (AREMA 2014) 

 

Next, the process is repeated but for the center of the tie and follows the 

instructions in AREMA Chapter 30.4.9.6-7. Figure 8 shows the set up for testing the 

center of the tie under negative and positive bending moments respectively. The actuator 

load is again supported on two 1” x ½” rubber strips located 3 in. off the center line of 

the tie, and the tie is resting on two 2”x1” rubber pads sitting on rockers spaced 30 in. 

off the center line of the applied load. Due to the symmetry between the two load cases, 

the equation for finding the necessary applied load is the same for both positive and 

negative and shown in Equation 2  

 2

27"

M
P    (2) 

where ܲ = the applied load and ܯ = the service moment for the negative and positive 

moments respectively. 
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(a) 

(b) 

Figure 8: Vertical Load test at center section for (a) negative moment test and (b) positive moment test 

 

2.2.2 Repeated Load Test 

The repeated load test is intended to simulate fatigue loading on the tie. Set up 

for this test follows AREMA Chapter 30.4.9.1.5 Rail Seat Repeated-Load Test; therefore 

it is only performed at the rail seat and in the positive moment direction as laid out in 

Figure 9 and following the support setup of Figure 6. When performing the repeated load 

test, the cracking load, Pc, is found first. In this instance the cracking load is defined as 
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the load in which a crack has formed and propagated from the tension face to the 

outermost layer of reinforcement. From there, the load is released down to 4 kips and 

where it then begins to cycle from that load to 1.1Pc. Approximately 3 million cycles are 

counted at a rate of no more than 10 Hz. Once the repetition of load is complete, a static 

load of 1.5Pc is applied at the same location. If no tendon slippage above 0.001 in, 

concrete compression, shear cracking, or tendon rupture occurs then the tie is deemed 

adequate under fatigue loading. 

  

  

Figure 9: Repeated load test set up (AREMA 2014) 

 

2.2.3 Ultimate Load Test  

The ultimate load test is designed to determine the failure load and mode of the 

ties and follows AREMA Chapter 30.4.9.1.8 Bond Development, Tendon Anchorage, 

and Ultimate Load Test. A static load of 1.5Pc, as defined in the previous section,  is 

applied to an uncracked positive rail seat section and the bottom layer of reinforcement 

is checked for tendon slippage. If less than 0.001 in. of slippage occurs then the tie meets 

bond requirements and can then be loaded until failure. Once failure occurs, the tendon 

slippage, maximum load, and failure mode are documented. It is expected that the failure 
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mode of the ties reinforced with AFRP to be tendon rupture based on prior experiments 

involving bending moment tests of beams prestressed with AFRP (Gar 2013).  

2.3 AFRP Material Properties 

 Medina (2011) performed detailed analysis on the properties of Arapree® AFRP 

bars including tensile tests, creep-rupture tests, and relaxation tests. Through the process 

of testing the tensile strength of the AFRP, the appropriate anchorage was developed to 

best be used for this material as it undergoes prestress. The use of 1.9 in. diameter, 18 in. 

long steel pipes were used to house the bars and they were then filled with Shepler’s 

Shep RockTM quick setting grout. This type of anchor allowed for proper development 

length so that there were minimal stress concentrations at the anchor and more accurate 

results could be determined.  

2.3.1 Ultimate Strength 

 Tensile tests for the AFRP were done using six specimens in the set up shown in 

Figure 10 and averaging their strengths to determine the typical tensile strength. 

Modulus of elasticity was also determined by plotting the stress-strain diagram found for 

each specimen. The results of the stress-strain diagrams for all six specimens are shown 

in Figure 11. It should be noticed that there is no clearly defined yield point as there is 

with steel. This means that when applying prestress to AFRP, no more than 50% of the 

ultimate stress shall be applied through the jack (ACI 440.4R). The numerical values for 

the ultimate stress, strain, and modulus of elasticity or shown in Table 1 and are used to 

calculate the necessary prestressing load to use on the AFRP. Based on the results 

present, the ultimate strength of AFRP is 212 ksi with an ultimate strain of 0.0209 in/in 

leading to a modulus of elasticity of 10231 ksi. With the modulus of elasticity of steel 

being 29000 ksi, it is evident that the AFRP has approximately one-third of the elasticity 

to that of steel.  
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Figure 10: Tensile test of AFRP bars (Medina 2012) 

 

 

Figure 11: Results from 6 tensile tests of AFRP bars (Medina 2011) 
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Table 1: Test summary for tensile test of AFRP (Medina 2011) 

Specimen 
Ultimate 

Load (kips)
Ultimate 

Stress (ksi)
Ultimate 

Strain 
Modulus of 

Elasticity (ksi) 
1 27.39 224 0.0222 10189 
2 26.30 215 0.0206 10500 
3 25.29 207 0.0207 10071 
4 24.01 196 0.0207 9819 
5 25.31 212 0.0210 10092 
6 26.31 215 0.0202 10717 

Average 25.86 212 0.0209 10231 

 

2.3.2 Creep-Rupture 

 To further determine the desired prestressing load required for the AFRP bars, a 

creep-rupture test was performed also by Medina (2011). Both short and long term creep 

analysis was considered during experimentation. Short-term creep testing consisted of 

prestressing six AFRP bars to 80 and 85% of ultimate (3 for each stress level) and 

locked into place similar to the tensile test set up. It was quickly discovered that the 

tendons would rupture within a few hours of being stressed showing that the prestressing 

load plays a significant role in the creep of the tendons (Gar 2012); therefore when 

conducting long-term creep tests, the stresses were lowered to 50% and 60% 

respectively. These specimens were also encased in concrete to better recreate real-world 

conditions for prestressed AFRP applications as seen in Figure 12. It was seen that the 

specimens stressed to 50% of the ultimate yielded the best results showing a 4% increase 

in strain of a 1000 hour period of time with no rupture of slippage occurring (Gar 2012). 

However, the specimens stressed to 60% of the ultimate did not fare so well, two had 

experienced slippage in the anchor at 150 hours and 350 hours respectively while the 

third did not slip until 550 hours, long enough to go through the two phases of creep: 

primary and secondary. Figure 13 shows the increase in strain for the three bars stressed 

to 50% and the location of the primary and secondary creep phase and Figure 14 shows 

it for the bars stressed to 60%. 
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Figure 12: Creep-rupture test set-up (Medina 2011) 

 

 

Figure 13: Strain increase due to creep for AFRP prestressed to 50% of ultimate (Gar 2012) 
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Figure 14: Strain increase due to creep for AFRP prestressed to 60% of ultimate load (Gar 2012) 

 

 Based on the results from the creep-rupture test here, increasing the prestressing 

load from 50% to 60% can increase the long-term strain increase from 4% to 6%. This 

indicates that a prestressing load of 50% of ultimate shall be used in prestressed concrete 

applications such as prestressed concrete railroad ties. 

2.3.3 Relaxation 

 Relaxation tests were also performed to reinforce the idea of limiting the 

allowable prestress to only 50% of the ultimate stress of the AFRP bars. The set up for 

the relaxation test is similar to that of the long-term creep test with the prestressed AFRP 

being cast into individual concrete blocks as shown in Figure 12. The total relaxation 

was calculated by finding the total loss after 1000 hours and subtracting the loss due to 

creep and slippage. Each was measured using strain gauges and LVDTs respectively. It 

was seen that at 50% prestress, the AFRP relaxed approximately 7.5% yet it relaxed 

9.7% at 60% prestress (Gar 2012). This once again shows that the more prestress applied 

to the bars, the more losses will occur. Therefore, the total loss that can be predicted in 
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50% prestressed AFRP due to the combined effects of creep and relaxation is 11.5%. 

This confirms the assumption of a 20% total loss in prestressing AFRP. 

2.4 Prestressed AFRP Applications 

A fast growing solution to the corrosion problem is the introduction of Fiber-

Reinforced Polymer (FRP) bars. There are three main types of FRP bars currently in use 

today: Aramid (AFRP), Carbon (CFRP), and Glass (GFRP). AFRP bars have shown to 

be the more applicable material due its greater deflection and curvature under 

prestressed applications compared to carbon, and greater strength and moment capacity 

compared to glass (Gar 2013). Current research of the use of AFRP bars in prestressed 

concrete structures primarily focused on bridge girders and decks. Due to the 

environmental similarities seen by both railroad ties and bridge girders, the success of 

AFRP in concrete railroad ties should reveal similar results.  

Most research involving prestressed FRP tendons is through the use of concrete 

beams. McKay and Erki (1992) demonstrated this by prestressing three similar concrete 

beams with AFRP bars on the bottom and conventional steel on the top, Figure 15. The 

AFRP bars were prestressed to 80% of the ultimate strength. Each beam was subjected 

to a different loading condition: beam 1 was loaded to near ultimate, released, and 

loaded again until failure; beam 2 was loaded until cracking then set under a cyclic 

loading of 4 Hz and failed after 1.96 million cycles; and beam 3 was loaded in the same 

fashion as beam 2 but with a more consistent cycle of loading to minimize elastic 

recovery. The results of this experiment showed the AFRP having a higher relaxation 

than steel at 10-20% over 50 years, yet near equal fatigue strength under service 

conditions to that of steel. Another major finding was found that AFRP should be used 

in fully prestressed applications to prevent the need for rod fretting which leads to a 

decrease in bond strength decreasing the capacity of the concrete beam. 
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Figure 15: Dimensions and loading pattern for concrete beams (McKay 1992) 

 

 Lutch (2009) researched an optimal layout design for concrete ties by using 

combinations of concrete strengths, prestressing loads, and prestressing materials. Four 

different concrete compressive strengths were used in the project: 7, 9.5, 12, and 15 ksi. 

For each concrete strength, three different prestressing materials were used: 0.21 in. 

diameter wire; 0.25, 0.3125, and 0.375 in. diameter 7-wire strands; and 0.25 and 0.3125 

in. diameter CFRP. A CXT 505S-50 tie was used as the basis for the optimization design 

and posed to be the basis for this proposed thesis project as well. Following the 

guidelines set by ACI 440, the committee on the application of FRP in concrete, a tie 

using 0.25 in. diameter CFRP resulted in having the highest flexural capacity for high 

strength concrete. Although this project shows the best resemblance of the proposed 

research, it is only a theoretical application with no physical testing performed. 

Gar et al. (2013) used prestressed AFRP in an AASHTO Type 1 I-girder in 

composite with a conventional bridge deck and compared to conventional prestressed 

steel girder with the same decking as seen in Figure 16. Both experimental and a finite 

element analysis were performed resulting in a 5%-7% error in the prediction of 

cracking moments and material failure. Gar demonstrated that pre-tensioned AFRP both 

meets serviceability requirements and maintains adequate flexural strength. It was seen 

that the curvature at failure was approximately 18 times greater than the curvature at 

cracking, yet the mode of failure was tendon rupture in the tension face. This increase in 
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curvature showed that although the tendons may fail suddenly in rupture, there is 

sufficient ductility present to provide appropriate warning prior to failure. Deflection of 

the girder was also measured during the load testing. It was found that the AFRP girder 

deflected half the allowable under service loading and half the deflection of a 

comparable prestressed steel girder at failure see in Figure 17. This is due to the higher 

ductility of steel after yielding compared to AFRP. However, this research does not 

review the corrosion resistance of the AFRP girder in comparison to the prestressed steel 

girder and how it affects serviceability. 

 

 

Figure 16: Prestressing layouts of Type-1 girder (a) is prestressing steel and (b) is prestressed AFRP (Gar 
2013) 
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Figure 17: Deflection graphs of (a) at service, (b) post-cracking, (c) at failure, and (d) with respect to load 
(Gar 2013) 

 

Gar (2012) also considered the use of prestressed AFRP bars on a two-way 

bridge deck with precast panels. The deck consisted of two 18’ x 7’-10” panels at 8 in. 

think, and prestressed with AFRP bars spaced about 5 in. on center in the direction of 

traffic and reinforced with AFRP bars spaced about 6 in. on center in the transverse 

direction. The entire deck was supported on three reinforced beams equally spaced with 

equal tributary areas for each as shown in Figure 18. The deck was loaded with a 

factored HS20 truck load equating to approximately 22.5 tons and was applied through a 

steel plate representative of the tire footprint. This load was applied to seven locations on 

the deck as shown in Figure 18 and cracking patterns were observed. It was found that 
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the deck resisted the maximum factored wheel loads in all locations. Failure was 

governed by flexure, the tandem axle load governed the flexural failure, and shear 

requirements were met. It was also discovered that although AFRP bars are a brittle 

material with no clear yield point, the deck underwent noticeable deformation before 

failure due to the low modulus of elasticity of AFRP, about 1/3 that of steel as seen in 

Figure 19. 

 

 

 Figure 18: Loading plan of AFRP bridge deck (Gar 2012)  



 

 

28 

 

 

 

Figure 19: Load-deflection graphs for loads on the overhang (left), and interior panels (right) (Gar 2012) 

 

 Based on the previous work described above, the following research questions 

arise: 

1. As the bond length of AFRP strands is relatively large when compared to the 

steel strands presently used in prestressed concrete railroad ties, how will this 

affect the performance of AFPR prestressed ties? 

2. Given the small cross section of concrete railroad ties, how can the AFRP bars, 

which have a larger diameter than their steel counterparts, fit into that congested 

space while still meeting quantities necessary for strength adequacy and 

allowing proper anchorage? 

3. How does the resistivity between the Pandrol shoulders that are used for 

fastening the rails compare for AFRP versus steel prestressed tie systems? 
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3. DESIGN OF PRESTRESSED CONCRETE RAILROAD TIES WITH 

AFRP 

3.1 Introduction 

 This section reviews the design process for a new class of prestressed concrete 

railroad tie using prestressed AFRP to replace the conventional steel strands. Firstly, an 

in-depth look into the current status of material properties of AFRP is conducted to 

determine what the limits are for its use. Next, a detailed outline of the tie itself is 

analyzed to determine the required section properties design. This project used a LB 

Foster CXT 505S-50 concrete tie that is primarily used by Union Pacific Railroad 

Company on their main heavy haul tracks. Using the AREMA 2014 manual for concrete 

tie design, the service moments were calculated based on the annual tonnage, average 

speed, and tie spacing. Using these moments as checks, transfer and service limit state 

design was explored for determining the most efficient location of the centroid of the 

AFRP tendons. Once an acceptable range of successful eccentricities were found, a 

series of layouts were modeled to meet strength requirements. These layouts were 

limited not only by strength needs and spacing within the tie cross section, but anchorage 

space limited the center spacing of the AFRP tendons to a 2 in. minimum. After all 

constraints were considered, a final design was selected for construction and testing. 

3.2 Concrete Tie Properties 

 There are several different parts of the concrete tie that are involved in its design 

including location of the critical sections and the cross section at those points, amount of 

loss experienced in prestressing, and material used in the concrete. The critical sections 

are points in the tie where stress is maximized based on the loading applied. For concrete 

railroad ties, the critical sections are at the rail seat section and under positive moment 

(i.e. the top of the tie is in compression while the bottom is in tension), and at the center 

of the tie under negative moment (AREMA 2014). These are the service moments that 

occur when the wheels of a train are directly on top of the tie and will be calculated later. 

The CXT 505S tie, the subject of this investigation, has a typical positive moment 
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capacity of 381 kip-in at the rail seat and a negative moment capacity of 224 kip-in at the 

center (LB Foster). This capacity will be attempted to be matched by the newly designed 

tie. 

3.2.1 Tie Cross Sections 

 The dimensions properties for the CXT 505S tie were provided by the 

manufacturer and compared to the work of Lutch (2009). These dimensions are shown in 

Figure 20 and summarized in Appendix B. Due to the non-standard shape of the tie, the 

cross section was broken up into six sections of rectangles and triangles for ease of 

calculation. The extra area on the side of the cross section is not considered for it is a 

shear key used solely for lateral resistance which is not covered in the scope of this 

research.  

 

 

Figure 20: Cross section of tie at rail seat and center sections 
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 The reason the center section is of smaller area and thus lower neutral axis is due 

to the bending moment critical sections as discussed previously. By changing the depth 

of the tie throughout the length, it allows for an altering neutral axis and, with the use of 

straight pretensioned steel strands, an altered eccentricity. This then can utilize the 

tension in the strands to resist both positive moment and negative moments 

simultaneously at the critical points. This concept is employed in determining the 

location of the AFRP strands; having the centroid below the rail seat neutral axis, yet 

above the center neutral axis. By having two eccentricities both above and below the 

cross section neutral axis, a sign convention was established which will also create 

consistency in the stress calculations. For this project, any eccentricity below the neutral 

axis is defined as positive, while an eccentricity above the neutral axis is negative. 

Compression stresses are defined as negative and tensile stresses as positive. 

3.2.2 Concrete Properties 

 When designing a new cross tie with AFRP, it is important to use current 

properties of concrete for continuity and error limitation. Typical manufactured CXT 

505S ties are composed of 8000 psi strength concrete with a 4500 psi minimum transfer 

strength. However, with speed being of great importance when manufacturing these ties, 

typical 28-day strengths can reach much higher values that can range from 9000 to 

11000 psi (Lutch 2009). This fact was considered in the design process for the new ties 

to help keep the total number of tendons low assists in keeping the initial cost low. 

AREMA have set forth guidelines for concrete mix design. However, mix proportions 

were provided for this research by CXT. 

 The concrete used by CXT is a self-consolidating concrete (SCC) that contains a 

plasticizer to maintain workability while decreasing the water/cement ratio. Table 2 

shows the mix provided by CXT including type of material and its weight per cubic 

yard. The mix also includes an air entrained admixture to assist in preventing freeze-

thaw damage. Air entrained concrete is typically seen in exterior structural concrete in 

areas where freeze-thaw cycles are regular and have shown to cause damage to the 

concrete. 
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Table 2: Concrete mix design used by LB Foster CXT for the 505S tie 

Material Size/Type Weight / yd3 

Cementitious Material
Type III Portland Cement 650 lb. 

Class F Fly Ash (30%) 195 lb. 

Aggregate 
Blended Sand 875 lb. 

#57 Coarse 1015 lb. 
#8 (3/8”) Pea Gravel 760 lb. 

Water - 242 lb. 

Admixtures 
Sika Air 360 10 oz. 

Sika 2110 HRWR 90 oz. 

  

3.3 Service Load Calculations 

 AREMA provides a guide to calculating the design moments based on the length 

of the ties and their center to center spacing. Appendix B walks through that process 

using the 8’-6” long CXT 505S-50 tie at a 24 in. center to center spacing. For this 

research, CXT provided design moments required by the primary client of the 505S-50 

tie and are shown in Table 5. 

 

Table 3: Applied service moments 

Moments 
Positive Moment @ RS = 378 kip-in

Negative Moment @ RS = -176 kip-in
Negative Moment @ C = -230 kip-in
Positive Moment @ C = 140 kip-in

 

3.4 Limit States 

 This project was designed with two limit states in mind: transfer and service. 

These limit states follow the guidelines and requirements set by the American Concrete 

Institute (ACI). However, the prestressing limits are followed by ACI 440.4R, the report 

on prestressed design of concrete using FRP tendons. It states that AFRP stressing is not 
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to exceed 50% of the ultimate load during jacking, and 40% immediately following 

transfer. This low limit is based on the failure mode of AFRP, rupture. For this research, 

a prestressing load of 11 kips was used because that is 45% of the ultimate load: 

sufficient to counter the losses and service loads seen on the ties. Assuming 20% 

prestress loss, a design load of 8.8 kips was adopted for the service load calculations. 

3.4.1 Transfer 

 Transfer occurs when the applied prestress force is released onto the freshly 

manufactured early age concrete ties. This action typically occurs 16-24 hours after the 

concrete is poured, or when the concrete strength reaches 60% of its specified strength. 

In standard beam design, critical sections for transfer strength are at the top or bottom 

edges of the ends of the beam, depending on the eccentricity. For the concrete railroad 

ties, strength at the top of the center is more important being that the tie does not have a 

consistent cross section. As a double check, stresses under the rail seat are also 

calculated to ensure no cracking occurs. The stress is calculated by summing the total 

initial load over the cross sectional area in question and the stress due to the moment 

caused by the eccentricity of the load. Equation 3 depicts the stress calculation with ܨ௜  

being the initial force, A  being the cross section area, ݁  being the eccentricity, and ܵ௫  

being the section modulus. 

 i i

x

F Fe

A S
      (3) 

 The sign of the stress (whether it is compressive or tensile) depends on the 

location of the AFRP centroid in relation to the cross section neutral axis. If the location 

in question is in the tension face, the eccentric load created a tensile stress and is 

positive, yet if it is in the compression face, a negative stress is found. Figure 21 shows 

the stress blocks at the rail seat and center sections of the tie during manufacturing. Note 

that there is not scaling in this figure as to what the actual stresses are. They are also 

upside-down because that is how they will be cast to match the process by the 

manufacturer. Once calculated, the stress values are compared to the ACI (2011) 
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required transfer stress conditions. The tension limit is 3 't cif   while the 

compression limit is 0.6 'c cf   . 

 

 

Figure 21: Stress blocks at transfer during manufacturing 

   

3.4.2 Service 

 The second limit state considered is the service limit. This occurs when the tie is 

placed in the rail system and begins to see the live loading of trains passing over it. As 

trains pass over the tie two moment conditions occur: Positive moment at the rail seat 

with negative moment at the center, and negative moment at the rail seat with positive 



 

 

35 

 

moment at the center. The greater of the two is when positive moment at the rail seat and 

negative moment at the center occur, for this is when the wheels are directly over the tie 

and its load is being transferred straight down. Adding service moments the total stresses 

are 

 
x x

F Fe M

A S S
       (4)  

To more accurately represent the loads during the service time of a tie, prestress losses 

must be accounted for. Losses of 22% are typically found in the final design of ties 

(Kaewunruen 2011), but for this research an assumed loss of 20% is used to account for 

elastic shortening, creep and relaxation, and anchor slippage. Therefore a new axial load 

is used for the stress calculations, F  is now 0 .8 iF . This then changes the stress block to 

that shown in Figure 22. For the service limit state, the tensile limit becomes  ߪ ൑

7.5ඥ݂′௖ and the compressive limit becomes ߪ ൒ െ0.6݂′௖ (ACI 318-11). By having a 

concrete strength of 8 ksi, the tensile limit under service becomes 0.671 ksi and the 

compression limit is 4.8 ksi. However, one of the ideas behind using AFRP over steel in 

a concrete tie is that it should allow the tie to crack slightly before being considered 

failed. The lack of cracks in the tie is to prevent as much water penetration as possible to 

protect the steel within from corroding. If AFRP does not corrode, there may be some 

minor cracking permitted because the resulting water infiltration should have little or no 

effect on the strength of the tie itself. 
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Figure 22: Service stresses on rail seat and center sections 

 

3.5 Design Options 

3.5.1 Prestressing Load 

 After considering all the limit states needed to complete the design, a series of 

tables were created to determine the centroid of the AFRP strands, the eccentricity 

caused by the centroid, the transfer stress checks, and the service load checks. Medina 

(2011) and Gar (2012) concluded that Arapree AFRP strands have a tensile strength of 

approximately 203 ksi, and with a diameter of 0.39 in. (10 mm), the ultimate load for 

AFRP is 24.25 kips. ACI 440.4R states that the jacking stress for AFRP is to not exceed 

0.5 ௣݂௨ however, Gar (2012) was able to stress the strands up to 60% of ultimate using a 

different anchoring system. This anchoring system uses 1.9 in. diameter steel pipes with 

0.5 in. thick walls and is 18 in. long. AFRP was then placed through the center of the 

pipe and held by plastic stoppers. A quick setting, expansive grout called Shep Rock was 
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then used to fill the pipe and lock the AFRP strands into place. The 18 in. length was 

sufficient for transferring the prestressing load effectively from the AFRP to the grout 

and therefore to the concrete and the grout was sufficient to prevent pull out of the 

strands. A transfer length of 50 bar diameters (20 in.) has been reported for Arapree 

AFRP bars, but for this research an effective length of 10 in. is deemed the appropriate 

to reach the plastic section of the specimen (Ehsani et al. 1997 and Gar 2012). 

 Even though this new anchor can allow up to 60% jacking stress (14 kips) to be 

applied to the prestress, there were still some breakages that occurred prestressing 

operations. Therefore, a lower initial prestressing load of 11 kips was used. That load 

was used as the transfer load in the design checks, and with the 20% assumed loss, 8.8 

kips was the service load to which the design was based.  

3.5.2 AREMA Based Design 

 This section focuses on the design options that strictly meet the basic AREMA 

load requirements deemed acceptable for this research. These loads are based off a 24 in. 

tie spacing, 75 annual MGT, and 60 mph speed. Design moments were calculated in 

Appendix B. A systematic search for an appropriate layout was made to efficiently use 

the AFRP while maintaining spacing and stress requirements. The spacing requirements 

used are based on AREMA specifications and anchorage necessities. A 0.75 in. cover, as 

specified by AREMA, was needed on all sides of the tie, and a minimum of 2 in. was 

needed between the strands to allow the 1.9 in. diameter anchor to fit on the adjacent 

strands. With those criteria in mind and the desire to have the AFRP centered between 

the neutral axes of the rail seat and center sections, three layouts were found and are 

shown in Appendix B. These layouts are based around a grid and staggered idea to ease 

the prestressing and maintain symmetry about the vertical axis of the cross section.  

Determining how many strands were needed per row and their location was an 

iterative process between finding appropriate spacing for a simple layout, calculating the 

centroid, and checking transfer and service stresses. AFRP centroids were calculated 

using Equation 5. Where ݊ is the number of strands per row, ܣ஺ிோ௉ is the cross section 
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area of each AFRP strand (0.12 in2), and ݕ is the height above the bottom for each row. 

Figure 23 and the table in Appendix B show the basic layout of a tie used in the design 

process and the method of calculating the centroid. A key item that is needed to be 

considered in the tie design and strand placement are embedded shoulders used to fasten 

the steel rail to the tie. The 505S tie uses Pandrol® Safelok III fasteners which were 

donated to the project as a means to best represent full functioning ties used by the 

industry. These embedded shoulders are approximately spaced 3 in. on center, are ¼ in. 

thick, and extend 3.5 in. into the concrete.  

 

 
A AFRP

AFRP

n y
centroid

nA
 


  (5) 

 

 

Figure 23: Basic model to base design 
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 When the ties are put into service they are done so in the orientation as they are 

stored so there is only one stage to consider. However, because external moments are 

now applied, stresses at both the top and bottom of the tie exist under each moment case. 

The four moment cases are of that prescribed by AREMA: positive at the rail seat, 

negative at the rail seat, negative at the center, and positive at the center. Therefore, top 

and bottom stresses for each of the four moments must be checked under service 

stresses.  

 The primary limiting factor was tension at the top of the rail seat under negative 

moment. This occurred because of the combine stress of the eccentric moment plus the 

applied moment at the location with the greatest area. That stress forced changes in the 

location of the strands to decrease that eccentricity to decrease the tension at the rail seat. 

The other area of concern was the bottom of the center under positive stress for the same 

reasons; tensile stresses from the eccentric load and applied moment would over 

compensate the axial compression.  

3.5.3 Final Design 

 After several iterations and adjusting the applied moments to meet manufacturer 

specifications, a final design was adopted which met all spacing and cover requirements. 

The solution utilizes 8 ksi strength concrete; and 11 kips of initial prestress per strand. 

Figure 24 shows this final layout with locations of each layer in relation to the bottom of 

the tie and their spacing off the centerline of the cross section. Also included in the 

layout are approximate size and position of the embedded steel shoulders which also 

played an important role in the geometrical constraints. 
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Figure 24: Final design layout to be used in construction and testing 

 

 This layout has 14 strands set in a staggered style, the centroid and eccentricities 

are calculated in Appendix B, Table 18. Using 14 strands maxes out the allowable 

spacing for the strands to maintain enough room for the anchor to be attached and still be 

over ¾ in. from the wall to maintain cover requirements. The centroid is calculated using 

Equation 3 with the diameter of the AFRP bars equaling 0.39 in. (10 mm). From that the 

eccentricity is simply the difference between the neutral axis of the respective cross 

section and the centroid of the AFRP. A negative eccentricity indicates the centroid is 

above the neutral axis while a positive eccentricity indicates the centroid is below the 

neutral axis. This becomes useful when calculating the stresses due to the AFRP. 
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 Using Equations 1 and 2, the transfer and service stresses were calculated with 

details given in Appendix B. To fully complete the transfer calculations, self-weight 

moment was considered as an applied load. Table 4 shows that applied loads meet the 

stress requirements set forth in ACI 318.  

 

Table 4: Transfer stress calculations 

 

 

 Because moment due to self-weight being so low relative to the service moments, 

it can be neglected when considering the service stresses and strength of the railroad tie. 

Also, since ties are continuously supported on compacted ballast, self-weight does not 

create an internal moment. Therefore the four cases considered under service load are 

based on the applied moments: positive moment at the rail seat and center, and negative 

moment at the rail seat and center. Under these conditions, the top and bottom of the tie 

are under the greatest compressive and tensile stresses so, like with transfer, each is 

checked relative to the applied moment. The fully detailed stress block for the service 

loads is shown in Figure 25 and depicts the positive and negative applied moment at 

each section. With a concrete strength of 8 ksi, and an assumed loss of 20%, Table 5 

demonstrates that these stresses are within the limits for an un-cracked prestressed 

Stress @ Transfer 

 Initial PS Force, Fi = 154 kip 
Initial Tension Stress, σ_ti ≤ 0.208 ksi 

 Initial Compression Stress, σ_ci ≥ -2.88 ksi 

Rail Seat 

Self-Weight Moment = 6.278 kip-in 

Construction Stress @ Top = -2.693 O.K. 

Construction Stress @ Bot = -0.789 O.K. 

Storage Stress @ Top = -0.884 O.K. 

Storage Stress @Bot = -2.601 O.K. 

Center 

Self-Weight Moment = 9.371 kip-in 
Construction Stress @ Top = -2.534 O.K. 

Construction Stress @ Bot = -2.605 O.K. 

Storage Stress @ Top = -2.823 O.K. 
Storage Stress @ Bot = -2.319 O.K. 
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section as stated in ACI 318 (2011). Like with transfer, tensile stresses are labeled as 

positive while compressive stresses are negative. 

 

 

Figure 25: Stress blocks for service loads with positive and negative moments on each section 
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Table 5: Service stress calculations 

Stresses @ Service 

Final Service Stress, F = 123.2 kip 

Service Tension Stress, σ_ts ≤ 0.671 ksi 

Service Compression Stress, σ_cs2 ≥ -4.8 ksi 

Rail Seat 

Positive Moment Stress @ Top = -3.542 O.K. 

Positive Moment Stress @ Bot = 0.640 O.K. 

Negative Moment Stress @ Top = 0.668 O.K. 

Negative Moment Stress @ Bot = -3.401 O.K. 

Center 

Positive Moment Stress @ Top = -3.797 O.K. 

Positive Moment Stress @ Bot = -0.341 O.K. 

Negative Moment Stress @ Top = 0.502 O.K. 

Negative Moment Stress @ Bot = -4.572 O.K. 
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4. CONSTRUCTION 

4.1 Introduction 

 This section discusses the construction of the railroad ties prestressed with 

AFRP. This process involved making a mold of a currently used original tie, designing 

and constructing a stressing bed at the Texas A&M Riverside Campus, stressing the 

AFRP, and pouring the concrete. Four molds were manufactured to produce four replica 

ties of the CXT 505S-50 tie used in the design calculations. Self-consolidating concrete 

was used to replicate the mix chosen for use in the CXT manufacturing plant.  

4.2 Construction 

4.2.1 Mold Development 

 In order to maintain cross sectional properties from the original to the new ties, 

negative polymer molds were cast which into the new concrete was eventually cast. The 

mold material chosen for this project was VytaFlex®-50; a urethane rubber 

manufactured by Smooth-On out of Macungie, PA. The material is formed by mixing 

two liquid parts, Part A and Part B shown in Figure 26, in a 1:1 ratio by weight or 

volume and poured it into a box, surrounding the object the mold is to represent. 

Although there are several different types of urethane rubbers that could have been 

chosen, VytaFlex® was selected due to its performance involving concrete. The 

properties for this material are shown in Table 6. There are also other levels of 

VytaFlex® based on the hardness; they range from 10A-60A. The 50A was selected by 

being the stiffest of the six with the lowest elongation at break percentage, has a 60min 

pot life, takes 16 hours to cure, and has tear strength of 102 pli (pounds per linear inch). 

Having a stiffer material means that it will hold its form better when concrete is poured 

into it. Since the 505S ties have a complicated shape, stiffness plays a significant role.  
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(a) (b) 

Figure 26: VytaFlex-50 Parts A (a) and B (b) 

 

Table 6: Properties of VytaFlex® series (Smooth-On) 

Product Name 
Mix 

Ratio 
Demold 

Time 
Elongation 
at Break 

Mixed 
Viscosity 

Shore A 
Hardness 

Tear 
Strength 

Weight 
(cu.in./lb.) 

VytaFlex®-10 1:1 24 hr. 1000% 3100 cps 10 30 pli 27.9 
VytaFlex®-20 1:1 16 hr. 1000% 1000 cps 20 58 pli 27.7 
VytaFlex®-30 1:1 16 hr. 1000% 1800 cps 30 78 pli 27.3 
VytaFlex®-40 1:1 16 hr. 660% 2000 cps 40 82 pli 26.9 
VytaFlex®-50 1:1 16 hr. 400% 2000 cps 50 102 pli 26.7 
VytaFlex®-60 1:1 16 hr. 480% 2000 cps 60 136 pli 26.6 

  

The procedure that was followed in making the molds was to first to build the 

box the template tie would be placed in. A final design shown in Figure 27 depicts the 

layout of the box with the tie and mold included. The box was designed to allow a 

minimum mold thickness of ¼ in. Therefore, with the widest part of the tie being 11 in, 

the interior width of the coffin was set to 11.5 in. and utilized 2x12 lumber as the walls. 

Since the tallest part of the tie was 9.5 in., the 2x12 lumber was rip sawn to 10 in. width 

to allow a ½ in. thick bottom to the mold. This also allowed for a smoother, more level 

surface to attach to the bottom of the box; which was made of ¾ in. plywood. The end 

pieces were also ripped 2x12 lumber with an added 7 in. to the outside total length so 



 

 

46 

 

that 2x4 lumber could be placed at quarter points along the side walls to act as supports. 

To ensure all wood was as closely connected as possible the plywood was screwed every 

12 in. along the wall and at each 2x4 support. Caulk was used to seal all the interior 

edges to prevent any liquid rubber material from leaking out during the pour. 

 

Figure 27: Plan and profile view of mold box 

 Four boxes were constructed to make four molds to allow for four new ties to be 

cast at the same time. These boxes were then moved indoors where the rubber mold 

could be mixed and cured in a climate controlled environment. Prior to pouring the 

mold, the template tie was coated in three layers of sealant and mold release. Smooth-On 

has a product, One-Step®, which is both a sealant and release agent in one. All sides of 

the tie were coated in this with 15-30min of dry-time left between coats. One hour after 

the final coat was applied, anchor bolts were attached to the underside of the tie 

following what is shown in Figure 28 and, using a crane, was lifted and carefully placed 

in its correct location within the box. The original tie had the imbedded shoulders 

installed in them which were not originally accounted for. Therefore, square holes of 
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approximately 2.5 in. x 1.0 in. were cut out of the bottom plywood and the shoulders 

were placed directly on the floor of the lab. The 1.25 in. height of the shoulders allowed 

for that to take place because once on the floor, the remaining space inside the box was 

the necessary 0.5 in. required to achieve proper thickness. Once the tie was placed in the 

box and properly spaced, Part A and Part B of the VtyaFlex® rubber mold were mixed 

and poured through a funnel into the box to fill the bottom and surround the walls. Each 

box was calculated to require 17 gallons of mixed rubber to fill approximately 3600 in3 

of space. Once the box was filled with the resin, it was cured for a minimum of 24 hours.   

 

 

Figure 28: Original tie with anchor bolts and straps used for lifting in and out of box 

 

 

Figure 29: Tie in wet mold 
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 After the cure time passed, a straight blade was carefully slid around the edge of 

the tie to separate the mold from the tie to allow a simpler demolding process. Straps 

were then reattached to the anchor bolts and the tie was lifted to allow gravity to help 

pull the mold off the tie. After the mold came off a negative of the original tie seen by 

Figure 30 was left. With the tie out, another layer of One-Step® was applied to the tie 

and left to dry. Meanwhile, using a sharp blade, excess rubber was carefully removed 

from the edges of the mold and the next box was prepped. The tie was replaced in the 

new, empty box and the process was repeated.  

 

 

Figure 30: Negative mold of CXT 505S-50 tie 
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4.2.2 Prestressing Bed Design and Construction 

 To enable the construction of the four ties, a prestressing bed needed to be 

constructed. A steel reaction frame was developed using existing steel members at the 

Riverside Campus of Texas A&M University, its design is described in Appendix C. 

4.2.3 Stressing the AFRP 

 The four molds were set up and placed back-to-back to create a long line 

stressing bed. End plates were installed in the setup to be used to stress against. Figure 

32 shows the dead end of the beams. The procedure to stress AFRP was adopted from 

Gar (2012), Medina (2011), and Cummings (2014). Each strand required the use of a 1.5 

in. diameter schedule 80 (0.2 in wall thickness) steel pipe filled with an expansive grout. 

Gar and Medina used 18 in. pipes while Cummings used a 36 in. long pipe in 

conjunction with a threaded rod. For this research, tests were performed using both 18 

in. long pipes and 36 in. long pipes to determine which worked best. It was found that 

tendon slip was experienced just prior to the desired load in the 18 in. pipes while tendon 

slip occurred at near double the load with the use of 36 in. pipes. This test was setup 

with two pipes straddling a center hole jack, Figure 31, and were each filled with the 

grout. After curing, the jack was loaded until failure occurred. This test was also used to 

determine the best ratio for the grout to water mix. The ratio was based on viscosity of 

the grout and its strength.  
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Figure 31: Grout ratio and pipe length test 

 

 After in lab testing of the grout and jacking procedure, the decided mix and 

method were taken to the site. The final mix design chosen was 4 lb. of grout to 16 fl. oz. 

of water and mixed in a Hobart counter mixer. By using the pipe straddling system for 

the live end, 3 pipes were required for each strand: 1 at the dead end, 2 at the live end as 

depicted in Figure 32. This required the use of 42 – 36 in. long x 1.5 in. inner diameter x 

0.2 in. wall thickness pipes and therefore 189 lb. of grout and 756 fl. oz. (5.9 gal) of 

water. To speed up the stressing process, all 14 strands were placed at once and their 

dead ends grouted in one day and they were left to cure for 2 days before grouting and 

stressing the live ends. Through past experience, experimentation, and manufacturer’s 

recommendation, a minimum cure time of 3 hours was required to meet strength to begin 

applying the stress. This requires that grout must be mixed and poured every 3 hours 

around the clock as to prevent as much differential loss as possible; thus requiring 6 

hours of work per strand. Due to the quick setting aspect, the grout would set in 5-10 

min after mixing, ice was used constantly to cool the pipes and water to delay the initial 

set of the grout. 
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(a)

(b)

Figure 32: Pipe and grout set up for (a) dead end, and (b) live end 

 

 Another way the stressing process was sped up was to use two jacks 

simultaneously; an Enerpac RCH206 and a PowerTeam RH306D. Respective 

specifications for the jacks are shown in Table 7 and were used to determine the specific 

stress each jack needed to obtain to achieve proper prestressing force in the AFRP 

strand, and how to properly space them in the layout. Since the strands were spaced 2 in. 

on-center; the PowerTeam jack had geometric constraints because its radius is 2.375 in. 

which is greater than the 2 in. strand spacing. This meant that a new procedure had to be 

developed to best utilize the two jacks while not interfering with one another. A second 

check was done to determine if the jacks had enough extension to reach the desired 

elongation of the AFRP strands. The total free length of each strand was found to be 42 

ft. (504 in.) from the dead end to the grouted live end, pipe B. This span along with the 

11 kips of load and an approximate Modulus of Elasticity of 10000 ksi (Medina 2011), 

the elongation was calculated to be 4.6 in. which is well within the allowable stroke of 

each jack. This elongation was used as an on-site check to determine if the desired stress 

had been reached without relying solely on the gauges on the jacks themselves.  
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Table 7: Specifications of both jacks (Enerpac, SPX) 

Property Enerpac PowerTeam
Capacity 20 Ton 30 Ton 
Diameter 3.88 in. 4.75 in. 
Length 12.05 in. 11 7/16 in. 

Effective Area 4.73 in2 5.89 in2 
Stroke 6.10 in. 6.0 in. 

  

Stressing the strands started at 12:00 PM Sunday, August 2, 2015 and went every 

three hours after until all strands were stressed and grouted. The Enerpac jack was set to 

apply 2350 psi of pressure to achieve the desired 11 kips and the PowerTeam was set to 

1900 psi.  

 Although the strands were eventually stressed and grouted as desired, 3 strands 

fractured early on during the stressing process. These were removed and replaced with 

getting the dead end grouted first and set to cure so the stressing could restart as soon as 

possible. To prevent the replacement strands from breaking, the applied load was 

reduced to 8 kips, and all remaining strands were also reduced the same prevent 

breakage. In the end, only three strands were able to retain the original 11 kip of initial 

force, the remaining had 8 kips of load on them. That reduction resulted in a new overall 

initial prestressing force of 97 kips. The final appearance of the four boxes with the 

stressed AFRP bars is shown in Figure 33 from the live end perspective showing 

everything set and prepared for the concrete pour to follow. 
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Figure 33: Fully stressed AFRP bars just prior to concrete pour 

 

4.2.4 Concrete Casting 

 CXT provided a mix designed used in their Tucson, AZ manufacturing plant, 

Table 2. For construction, the same mix design was used which required a concrete 

specified strength of 8 ksi, and to be a self-consolidating concrete (SCC) mix. Therefore 

the mix had a water-cement ratio of 0.286, with the addition of a High-Range Water 

Reducer (HRWR) agent to ensure adequate workability. The actual batched mix is 

presented in Table 8. To test the mix, a slump test, air test, and spread test were 

performed to judge if the concrete met the fresh property requirements. Test cylinders 

were also cast using 24 standard 4 in. diameter x 8 in. tall cylinders. Results of the 

cylinder compression tests are listed in Table 9 with a strength gain graph plotted in 

Figure 34. 
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Table 8: Batched concrete mix used for construction 

Material Size/Type Weight / yd3 

Cementitious Material
Type I Portland Cement 647 lb. 

Fly Ash 193 lb. 

Aggregate 
Fine Aggregate 867 lb. 

Coarse Aggregate 1027 lb. 
Pea Gravel 787 lb. 

Water - 155 lb. 

Admixtures 
Sika Air 360 8.3 oz. 

Sika 2110 HRWR 68 oz. 

 

Table 9: Compression results for concrete cylinders (ksi) 

Specimen 24-hour 5-day 7-day 14-day 28-day 
1 6.29 8.51 9.45 9.65 10.8 
2 6.44 8.21 9.30 9.95 11.4 
3 6.55 9.15 8.83 9.80 10.7 

Average 6.43 8.62 9.19 9.80 10.97 

 

 

 

Figure 34: Compressive strength gain over time 
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Fresh property tests conformed to the requirements set by the American Society 

for Testing and Materials (ASTM). Slump tests were performed in accordance with 

ASTM C143. Because the concrete ordered was a SCC mix, the slump was not useful. 

Therefore a slump flow test was conducted in accordance with ASTM C1611 (2009). 

The design spread was set to be 16.5 in. ± 2.5 in. 

To calculate the quantity of concrete needed, the volume of the tie was calculated 

using the dimensions of the tie shown in in Appendix B. When the concrete arrived on 

the day of the pour, it came with a very low slump of 5 in. and when using self-

consolidating concrete the mix is expected to be far more fluid. Therefore 3 gallons of 

water were added and workability was achieved. However, due to the high heat of the 

day (above 90°F) the concrete began to set more quickly than expected. Therefore light 

vibration was used along the inside and outside the molds in order to ensure the concrete 

flowed into all voids. Figure 35 depicts this action and the method in which the concrete 

was poured into the molds.  

Figure 35: Pouring the concrete into the molds and using light vibration to help flow of concrete 
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Following pouring, the top surface was lightly troweled. Figure 37 shows the 

finished ties that were then covered with burlap mats and kept continuously wet with 

cool water over the next 48 hours to minimize the heat gain from the hydration reaction 

and to also minimize the effect of high ambient (100°F) temperature. After at least 48 

hours passed and the concrete met transfer strength, 4.8 ksi, the AFRP bars were cut and 

the ties were brought to the lab to be removed from their molds. Figure 37 shows a 

finished AFRP railroad tie on complete of the manufacturing process. 

Figure 36: Finished ties 
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(a) (b) 

Figure 37: (a) Plan view of AFRP tie; (b) cross sectional view of tie showing AFRP 
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5. EXPERIMENTAL PROGRAM 

5.1 Vertical Load Test 

 This series of tests are used to determine if the concrete ties meet cracking 

strength. AREMA states that once a crack has occurred in a concrete railroad tie, it is 

deemed failed for service and thus require repair or replacement (AREMA 2014). This is 

because of the potential for water infiltration leading to possible corrosion of the 

prestressing steel within, and loss in strength of the concrete post cracking. To test this, 

AREMA has developed four test procedures for critical sections of the ties. For this 

research, a 100 kip actuator was selected to apply the load onto the tie. The actuator has 

a built in load cell to control the applied force as prescribed by the associated computer 

program. The program also measures time, and deflection by recording the change in 

stroke of the actuator piston. These data will be used in interpreting the results of the 

test.  

 Set up for these tests follows AREMA Chapter 30.4.1 and are described in 

Chapter 2 of this thesis. During testing, some adjustments were made to enable the 

completion of the experiment. First, the 1” x ½” rubber strips supporting the actuator, 

applied load, were replaced with ½” x ½” strips to increase the stability of the load. 

Next, the hardness of both actuator support strips and tie support pads were increase 

from 50A as prescribed by AREMA to a stiffer 70A to be more efficient with the 

materials. 50A rubber would splinter and tear after only a few tests and would need near 

constant replacement.  Using Equations 1, 2, and 3 along with the design moments from 

Table 3 required loads were calculated and shown in Table 10. 

 

Table 10: Applied loads for the vertical load test. 

Applied Loads 
Positive Moment @ RS = 61.8 kip

Negative Moment @ RS = 28.8 kip
Negative Moment @ C = 17.0 kip
Positive Moment @ C = 10.4 kip
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5.2 Instrumentation 

Along with information provided directly from the actuator. Two other sensors 

were used on the tie to obtain data that were used in analysis. Two Linear Variable 

Differential Transducers (LVDTs) were placed along the side of the tie, one at the top 

and one at the bottom. These were used to measure differential displacement along the 

lateral face of the tie to assist in producing an accurate strain profile based on the applied 

load. String Potentiometers (string pots) were placed underneath the tie to measure the 

vertical deflection of the tie under load. Three string pots were used to create the 

deflection profile: two adjacent to the supports and the third at midspan under the load 

and within the constant moment region. Data collected from these sensors were used to 

compare to theoretical values and display the performance under the load and to detect 

whether cracking had occurred during testing. Figure 38 shows the design set up for the 

LVTDs for the rail seat section and center section respectively. LVDT 1 was always 

designated as the top and LVDT 2 the bottom no matter which way the tie was oriented. 

String pots 1-3 were labeled as such from right to left for both rail seat and center 

sections. 

From the experimental test setup shown in Figure 38, the experimentally 

observed curvatures were derived as follows. First a strain profile was created by 

calculating the change in length of the LVDT and dividing by the length of that LVDT. 

௜ߝ ൌ
௅௏೔ି௅௏బ

௫
      (6)  

Each strain then forms a profile and using geometry, curvature is found with 

߶௜ ൌ
ఌ೟ିఌ್
௛

       (7) 

where ܮ ௜ܸ refers to the data collected at time ݅ from that specific LVDT, whether it be a 

top, ݐ, or a bottom, ܾ, sensor. ܮ ଴ܸ then refers to the initial length of the LVDT which is 

typically seen as zero. A typical strain profile of the tie is shown in Figure 39. 
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(a) rail seat 

(b) center section 

Figure 38: Instrumentation layout 
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Figure 39: Typical strain profile for positive moment @ rail seat. 

 

Using the fundamentals of material mechanics equation, 
M

EI
  ,  and integrating 

it over the length of the specimen, angle of deflection and the deflection profile were 

calculated. Because of the varying cross section of the rail tie across its length, a series 

of slices where made to plot the change in moment of inertia across the span. This was 

then used in combination with the bending moment diagram to determine the overall 

curvature diagram at each designated point, followed the deflection angle, and finally the 

displacement of each section. This theoretical deflection profile was then plotted against 

the measured deflection found from the string pots’ data. With this information it was 

concluded that a theoretical deflection was unnecessary in determining adequacy of the 

newly constructed ties reinforced with AFRP. Because of a lack in information regarding 

expected/required deflection from AREMA and the knowledge that in-service ties are 

continuously supported on compacted ballast, only a comparison of deflection was done 

between ties using steel reinforcement and AFRP.  
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5.3 Repeated Load Test 

 The repeated load test is intended to simulate fatigue loading on the tie. Setup for 

this experiment follows AREMA Chapter 30.4.9.1.5 Rail Seat Repeated-Load Test and 

is previously described in Chapter 2 of this thesis. The design cracking moment to be 

used in this experiment was 398 kip-in which follows the manufacturer’s guidelines for 

the rail seat positive test. Following Equation 1 from the previous section, the cracking 

load, Pc is equal to 67.7 kips.  

 The lab set up followed similarly to the setup for the positive rail seat vertical 

load test but with the 2”x1” rubber support strips replaced with 8” x ¼” thick sheets of 

70A rubber. The sheets are far superior to the strips, being able to withstand the 

repetitive load due to the lack of compression seen by the thicker rubber strips. Another 

change that was made was to replace the load supporting rubber with ¼ in. thick birch 

hardwood plywood. Also, to prevent the tie from ‘walking’ while the cycles 

commenced, the two rocker supports were tack welded to the floor a piece of sheet metal 

securely fastened to the strong floor of the lab. The completion of this test was not 

covered in the scope of this research. 

5.4 Ultimate Load Test 

The ultimate load test is intended to determine the failure point and mode of the 

ties and follows AREMA Chapter 30.4.9.1.8 Bond Development, Tendon Anchorage, 

and Ultimate Load Test for the setup and running of the experiment. This procedure was 

described previously in Chapter 2 of this thesis, but the completion of this test was not 

covered in the scope of this research 

5.5 Electrical Resistivity 

 An electrical resistivity test was a non-destructive test performed on the ties. 

Electrical resistivity describes a concrete structure’s ability to resist electrical current 

across the length of the structure. Knowing the resistivity of the concrete can help 

determine if corrosion has occurred or has the potential to occur, and how fast it will 



 

 

63 

 

corrode. Because railroads use a low voltage electrical current through the rails to form 

the train circuits, having a high resistant tie across the two rail seats should prevent any 

false shorts from occurring. These false shorts may cause loss of track occupation. If a 

sufficiently large resistance can be demonstrated with the non-conducting AFRP tendons 

then it may be possible to modify and relax the Pandrol fastening insulation 

requirements between the rails and the Pandrol shoulders. 

 Two methods were used to determine the resistance of the ties: a resistivity meter 

and a MultiMeter. The resistivity meter was a Resipod Proceq© meter which 

incorporates a 4-point Wenner probe to measure the electrical resistance of concrete over 

a known distance. This is done by sending an electrical current into the concrete through 

the outer two probes and the potential difference is read by the inner two, as seen in 

Figure 40. The resistivity is then calculated by the probe using Equation 6  

 2
V

a
I

    (8) 

where ߩ = the resistivity (kΩcm); ܽ = the cross sectional area; ܸ = the potential 

difference (or voltage); and ܫ = the current. It was determined that the larger the 

resistivity the less likely corrosion will occur and the lower the rate corrosion will take 

place if prevalent. 
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Figure 40: Proceq resistivity measurement principle (Proceq SA) 

 

 Using this information, 30 different locations were tested for each tie following 

the pattern laid out in Figure 41. This pattern includes longitudinal measurements (1-17) 

and transverse measurements (18-30) to compare how the reinforcement affects the 

reading of the meter. There were also specific tests within the rail seat area to determine 

if there were significant differences there compared to sections with less steel involved, 

i.e. the center of the tie. These same measurement points were used on both ties with 

AFRP and Steel reinforcement and are labeled as such in documenting the results.  

 

 

Figure 41: Plan view of tie with Proceq© measurement points labeled 1-30 
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 The second method involves using a standard MultiMeter. The positive and 

negative leads of the MultiMeter are attached to the embedded shoulders, seen in Figure 

42 and the resistance is measured and read by the meter. MultiMeters create an electrical 

potential that is sent through the positive lead into the subject from which resistance is 

measured, then picked up by the negative lead which returns the change in electrical 

potential (voltage) to the meter which then calculates, using Ohm’s Law, the resistance 

of the specimen. This method was used primarily as a comparison test to see the 

difference in resistance between the AFRP and steel reinforced ties.  

 

 

Figure 42: MultiMeter setup with positive and negative leads attaching to the inner shoulders 
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6. EXPERIMENTAL RESULTS OF AFRP REINFORCED TIES 

6.1 Introduction 

This chapter focuses on the results of the vertical load test on the newly 

constructed concrete ties utilizing the AFRP reinforcement. Four ties were constructed 

out of the molds made from one of the steel reinforced ties. All four ties were tested in 

accordance with AREMA testing procedure for mono-block ties under static vertical 

load. The primary purpose of the vertical load test was to determine if the tie met service 

load requirements by not cracking under a specified load. Therefore, a theoretical 

cracking load is needed so that a comparison can be made between the physical test 

results and the theory. Using the theoretical cracking load, moment-curvature plots were 

created and used to compare to curvature data recorded during testing. Curvature is 

defined from the relationship  

 M

EI
    (9) 

in which ܫܧ = the flexural stiffness derived from the modulus of elasticity of the 

concrete and the gross section moment of inertia; and ܯ = the applied moment where the 

cracking moment is defined by Equation 10 with ܵ௫,௕௢௧ = the section modulus of the 

cross section at the tension face of the concrete tie. 

 ,
,

x bot
cr t x bot

FS
M f S Fe

A
     (10)  

 6 't cf f   (11) 

Using Equation 10 and substituting into Equation 9, the cracking curvature can now be 

defined as 

 cr
cr

c g

M

E I
    (12) 

The experimental curvature may be found from the sectional strain 

considerations as follows:  
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 1 2

2

LV LV

tx h x h

      (13) 

in which ߝ௅௏ refers to the strain recorded by the LVDT sensor as previously described in 

Chapter 5. This curvature was used to create a moment-curvature plot where a 

comparison was made between the experimentally determined curvatures and the 

theoretical cracking curvatures for each test case. 

A second comparison was made through the deflection profile of the specimen 

measured via the strings pots described previously. To obtain this deflection profile, 

three string pots were placed under the tested section; two adjacent to each support and 

one at midspan under the applied load, Figure 38. To complete the calculations, general 

section properties were calculated based on information provided by the manufacturer 

found in Appendix A. This information is then shown in Figure 43and in Appendix B for 

further detail. With this information and the previously described equations, the cracking 

moment and curvatures were found for each test case and are listed in Table 11. 

 

 

Figure 43: Cross section of rail tie with netural axis and AFRP centroid location 
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Table 11: Theoretical cracking moment and curvature for AFRP reinforced ties 

Section Property 
Rail Seat Center 
+ - + - 

A (in2) 87.57 59.94 
 ௚ (in4) 623.8 324.5ܫ
ܵ௫ (in3) 136.8 131.3 75.68 72.91 
 ௖ (ksi) 5973 5973ܧ

௧݂ (ksi) 0.628 0.628 
 ௖௥ (kip-in) 268.3 137.5 139.0 146.7ܯ

cr (rad/in x 10-6) 72 36.9 83.6 88.2 

 

6.2 Rail Seat Positive 

This section focuses on the results from the rail seat positive moment, RSP, test. 

This test follows the set up described by Section 5.1.1 and AREMA 30.4.9.1.4. Cracking 

moment and curvature were first determined by means of the equations presented 

previously and because the applied load for this test was expected not to cause any 

cracking, the cracking moment and curvature were plotted linearly for comparison to the 

physical results. To accommodate the service moment of 378 kip-in a vertical load of 

61.8kip was applied to the rail seat section as shown previously in Figure 6. The load 

was applied at a rate of 4 kip/min and checked for cracking along the bottom edge. The 

four newly constructed ties reinforced with AFRP were tested and compared to the 

theoretical values. The raw data was collected from a data acquisition system (DAQ). 

The DAQ saved data at one second intervals and collected data provided by the 100 kip 

actuator, and the sensors attached to the specimen. 

It was found that cracking occurred in all four ties under the applied load. This 

can be attributed to the problems during construction. A majority of the AFRP bars were 

not able to be stressed to the design load because of breakages during the stressing 

procedure. Nonetheless, the ties did see noticeable strength that can be comparable to a 

tie with steel assuming similar prestressing levels. Recommendations for improving the 

stressing procedure are outlined in the recommendations section of Chapter 8. Although 

cracking occurred, crack size did not exceed 0.004 in. in width. This indicates that the 
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depth of the crack may not have reached the AFRP bars within and only cracked the 

cover concrete. Figure 44 shows the profile of the tie section under full load with the 

cracks outlined in blue. The location of the cracks falls within the expected region of the 

tie, the constant moment region. 

 

(a) (b) 

(c) (d) 

Figure 44: Fully loaded ties under rail seat positive testing for (a) AFRP 1, (b) AFRP2, (c) AFRP 3, and (d) AFRP 4 
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6.2.1 Moment-Curvature 

Using the cracking moment of Table 11, experimentally observed moment-

curvature relationships were used to check the accuracy of the theoretical equations 

discussed previously. Following the procedure of Chapter 5, moments and curvatures 

were calculated based on the data provided from the installed instrumentation. The 

curvature values were then plotted against the applied moment at the time, ݅ and are 

shown in Figure 45. It can be seen that the theoretical values accurately portray the 

behavior of the specimen under this loading with the cracking moment  = 268.3 kip-in. 

with a curvature = 72x10-6 rad/in.. Even the post cracking moment and curvature has been 

accurately portrayed. 

 

 

Figure 45: Moment-curvature plot for AFRP reinforced ties for rail seat positive testing 
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6.2.2 Deflection Profile 

The deflection of the ties was determined from the string pots placed beneath the 

loaded side of the tie. The string pots were secured by small pieces of plywood glued 

onto the tie with epoxy. A small metal hook was then attached to the wood where the 

line of the string pot was hooked onto. After being zeroed out with no load applied, the 

measured change in length represented the deflection of the tie at that specific point. 

With the full load applied, the deflection was averaged for each string pot and was 

plotted at the location where the hook was placed along the tie. This created the 

deflected profile shape seen in Figure 46. It was noticed that the deflection was more 

linear than the expected symmetric curve. This occurred because of the non-symmetric 

cross section through which testing took place, and therefore non-symmetric stiffness. 

Also, by having one of the supports directly in line with the transition section of the tie, 

applied loads created a small sloping affect which altered the deflection data.  Due to 

compression of the rubber strips at the supports, initial deflection is a non-zero value 

making the actual deflection observed less than what was recorded by the string pots. 

Because of this and the lack of requirements involved with deflection, theoretical values 

were not calculated but direct data was compared to deflection data of ties reinforced 

with steel strands which will be discussed later. 
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Figure 46: Deflection profile for the rail seat positive test 

 

6.3 Rail Seat Negative 

This section focuses on the results from the rail seat negative moment, RSN, test. 

This test follows the set up described by Section 5.1.2 and AREMA 30.4.9.1.4. Cracking 

moment and curvature were first determined by means of the equations presented 

previously and because the applied load for this test was expected not to cause any 

cracking, the cracking moment and curvature were plotted linearly for comparison to the 

physical results. To accommodate the service moment of 157 kip-in a vertical load of 

28.8kip was applied to the rail seat section as shown previously in Figure 7. The load 

was applied at a rate of 4 kip/min and checked for cracking along the bottom edge.  

After completion of the static load testing, data points were plotted similarly to 

the RSP test previously completed. Like the RSP test, all four of the AFRP ties saw 

cracking under the full load. This crack is most likely due to the embedded rail seat; 

cracks initiated and propagated along the inside face of one or both steel shoulders. This 

indicated a stress concentration at the steel shoulder that was larger than the tensile stress 
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at the maximum moment region. Another cause for the cracking is due to the previous 

test; because cracking occurred in the RSP test the specimen became damaged and 

therefore lost strength allowing for a premature cracking. Figure 47 shows these cracks 

and their height; however, none saw a width of more than 0.004 in. which, like the RSP 

test, shows that only cover concrete cracked and there was no loss in development of the 

AFRP bars. 

 

(a) (b) 

(c) (d) 

Figure 47: Fully loaded rail seat negative testing for (a) AFRP 1, (b) AFRP 2, (c) AFRP3, (d) AFRP 4 
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6.3.1 Moment-Curvature 

 With the completion of the RSN testing, data were gathered and interpreted by 

means of the equations discussed previously and a moment curvature plot was 

developed. This plot, Figure 48, was made using the data collected from the LVDTs 

installed on the side of the tie specimen outlined in Figure 38; the increase or decrease in 

length, based on a zero value prior to testing, was used to determine the strain profile of 

the specimen which was then used to calculate the curvature. Positive strain represented 

tension while negative represented compression so by having a positive curvature means 

the underside of the tie is in tension as expected. 

 For this chart, it is clearly seen that the ties accurately follow the theoretical line 

of curvature. However, it can be seen that all four ties cracked around 90 kip-in of 

applied moment which is far below the calculated moment of 139 kip-in. This can be 

attributed to a stress concentration at the embedded shoulders or damage caused by the 

previous test compromising the strength of the tie.  

 

 

Figure 48: Moment-curvature plot for rail seat negative testing of AFRP reinforced ties 
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6.3.2 Deflection Profile 

 As with the RSP test, three string pots were placed underneath the tie specimen 

and were used to measure total deflection of the tie as the load is applied. The string pot 

data under full load was then averaged together and plotted with respect to its specific 

location under the tie to create a profile of the deflected shape. Figure 49 reveals the 

profile of the tie. This profile is slightly more curved than the RSP test because of the 

lower loading applied. The tie’s differential stiffness did not play as large of a role in 

altering the deflection profile. However, like with the RSP test, initial deflection is non-

zero because of the compression of the rubber supports. AFRP 2 had sensor 1 become 

detached during testing resulting in a skewed profile for that tie. 

 

 

Figure 49: Deflection profile for rail seat negative testing with AFRP 
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6.4 Center Positive 

 The center positive, CP, test followed the procedure outlined in Section 5.1.2 

with having supports located 30 in. from the center and an applied load of 10.34 kips. 

Like the prior tests, the load was increased at a rate of 4 kip/min and was subsequently 

checked for cracking. It should also be noted that this was the only load condition that 

did not alter based on information provided by the manufacturers. Figure 50 shows the 

four tested ties under the full load displaying the lack of cracking. Like the rail seat tests, 

LVDTs and string pots were used to measure relative deflections and used to determine 

moment-curvature plots and deflection profiles for each specimen.  

 

(a) (b) 

(c) (d) 

Figure 50: Fully loaded center positive testing for (a) AFRP 1, (b) AFRP 2, (c) AFRP3, (d) AFRP 4 
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6.4.1 Moment-Curvature 

 With the completion of the CP testing, data were gathered and interpreted by 

means of the equations discussed previously and a moment curvature plot was 

developed. Figure 51 was made using the data collected from the LVDTs installed on the 

side of the tie specimen outlined in Figure 38; the increase or decrease in length, based 

on a zero value prior to testing was used to determine the strain profile of the specimen 

which was then converted into a curvature. All four ties had curvature slopes parallel to 

the theoretical line and it is seen that testing concluded before any could reach cracking 

which met the expected value. The initial spike in moment with no increase in curvature 

is simply due to the compression of the rubber supports prior to bending of the tie.  

 

 

Figure 51: Moment-curvature plot for center positive testing of AFRP reinforced ties 
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6.4.2 Deflection Profile 

 As with the other previous tests, three string pots were placed underneath the tie 

specimen and were used to measure total deflection of the tie as the load was applied. 

The string pot data under full load was then averaged together and plotted with respect to 

its specific location under the tie to create a profile of the deflected shape. AFRP 3 and 4 

have smaller deflections because during testing, the rubber support strips were switched 

from 50A rubber to 70A rubber. The increased hardness did not allow as much initial 

compression allowing the tie to show a smaller deflection. However, the profiles for all 

four are similar enough to draw accurate conclusions about the test as a whole. 

 

 

Figure 52: Deflection profile for center positive testing with AFRP 

 

6.5 Center Negative 

 The final test performed on the newly constructed concrete ties was the center 

negative, CN, test. Similarly to the center positive test, supports were placed 30 in. on 

center and the load applied to a plate that was supported on ½ in. x ½ in. rubber strips 

spaced 6 in. on center. A load of 17 kips was then applied to the tie at a rate of 4 

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0
0 10 20 30 40 50 60

D
ef

le
ct

io
n 

(i
n)

String Pot Location (in)

AFRP1

AFRP2

AFRP3

AFRP4



 

 

79 

 

kips/min and the tie was then checked for cracks. Figure 53 shows each fully loaded 

specimen and any cracking seen in that tie. Three out of the four tested specimens saw 

cracking under the full load, however, cracking occurred at approximately 15 kips and 

their respective widths were no more than 0.004 in.  

 

(a) (b) 

(c) (d) 

Figure 53: Fully loaded center negative testing for (a) AFRP 1, (b) AFRP 2, (c) AFRP3, (d) AFRP 4 
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6.5.1 Moment-Curvature 

 As with the CP test, LVDTs were placed along the side of the specimen to track 

the strain changes at the top and bottom as the load increased. Strain was calculated via 

the ratio of measure length change over the original length. Negative strain indicates 

compression while positive strain indicates tension. These strain values were then used 

to calculate the curvature of the specimen at the point of loading. Data points converted 

to curvature points were then plotted against the increasing moment applied at this 

location laid out in Figure 54. Collected data follows closely with the slope of the 

theoretical line until approximately 160 kip-in moment where a slight change in slope 

occurs. This depicts the cracking in the ties that experienced cracks during testing. The 

line for AFRP 2 was cut short due to a programming error in the actuator causing the test 

to stop before the full load was applied, but based on the projection of the curvature, 

similar results should have been attained. 

 

 

Figure 54: Moment-curvature plot for center negative testing with AFRP 
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6.5.2 Deflection Profile 

 String pots were placed under the tie specimen at three different locations: two 

adjacent to the supports, and one directly under the load. These sensors measure 

deflection of the tie and can be used to plot a deflection profile of the tie. To obtain the 

deflection profile, data from the string pots at the point of full load were compiled 

together to create an average deflection at the location of the string pot. These data 

points were then plotted in Figure 55 against their location relative to the end of the tie 

creating the deflection profile. Clean symmetric curves were seen in nearly all tested 

ties. AFRP 2 had a shallower curve due to an error in testing, and AFRP 4 had stiffer 

support rubber preventing the large initial deflection seen by the others. 

 

 

Figure 55: Deflection profile for center negative testing of AFRP ties 
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7. COMPARISON OF AFRP AND STEEL REINFORCED TIES 

7.1 Introduction 

 This chapter looks at the results of the tested concrete ties with AFRP 

reinforcement laid out in Chapter 6 and compares them to an assumed steel result based 

on geometry and data provided by the tie manufacturer. Using the geometry and design 

moment, theoretical material property equations were used to estimate the moment-

curvature and deflection profile of a tie reinforced with steel strands to compare to the 

AFRP bars that were used in construction and experimentation.  

 The other comparison that was made was for the electrical conductivity of the 

ties. Since no major theoretical values were provided or calculated, this was a direct 

comparison between the resistance found in the ties reinforced with steel and the ties 

reinforced with AFRP. As described in Chapter 5, a MultiMeter was used to measure the 

resistance across the ties. The positive lead and negative leads were attached to the inner 

steel shoulders and the resistance provided by the tie was read. Ties with higher 

resistance values have a lower chance of corroding or experiencing accidental shorting 

during its service life. 

7.2 Electrical Conductivity Results 

 When conducting the electrical conductivity tests using the Proceq resistivity 

meter, a plan of measurement was made utilizing both longitudinal and transverse data. 

The longitudinal data were taken in parallel with the reinforcement along the edge of the 

tie and at the centerline, Figure 41. This was done to compare how concrete cover 

affected the results and the location of the reinforcement. On average, resistivity was 

greatest at the edges of the tie in the longitudinal direction. These data points are laid out 

in greater detail in Appendix D. Because the concrete in the AFRP reinforced ties was 

still curing, resistivity increased over time. Therefore measurements were taken each 

week in the same pattern to compare how concrete curing affected the results and are 

listed in Table 12. The fact that the concrete was young relative to the ties with steel 

reinforcement meant that there was still a good amount of moisture remaining within the 
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concrete. This moisture makes the concrete tie much more conductive than its steel 

reinforced counterpart which is proved by the results. It can be assumed that over a 

much longer period of time and with proper drying of the cured concrete, resistivity 

results are expected to be more comparable to the manufactured ties. 

 

Table 12: Proceq measured resistivity averages and standard deviations (kΩcm) 

Testing Date 
AFRP_1 AFRP_2 AFRP_3 AFRP_4 

Mean Std. Dev Mean Std. Dev Mean Std. Dev Mean Std. Dev

8/23/2015 15.3 2.9 15.8 2.7 16.5 3.6 26.6 42.8 
9/1/2015 20.8 4.5 20.1 4.5 19.6 4.1 36.8 58.5 
9/8/2015 23.6 5.1 23 5.2 22.3 4.7 44.6 74.3 

9/14/2015 26.1 6.8 25.8 5.3 25.9 6.9 52 88 

STEEL_1 STEEL_2 STEEL_3 STEEL_4 
Mean Std. Dev Mean Std. Dev Mean Std. Dev Mean Std. Dev
497.4 143.1 476.8 146.6 471.3 171.2 440.6 125.5 

 

 This inconsistency created the need for a more sound and repeatable testing 

procedure. Therefore the use of the MultiMeter was adopted. Resistance measurement 

was used for this experiment. The two leads were attached to the two inside steel 

shoulders to measure the resistance through the concrete. The MultiMeter was able to 

output far more consistent values that required no further conversion to become proper 

data points. Since there was no available method to calculate the theoretical resistance in 

a concrete tie with either steel or AFRP reinforcement, a straight comparison was made 

between the two. This comparison is mapped out in Table 13. Data points were taken 

over the course of one week to map any changes that may have occurred due to curing. 

The table shows that the AFRP reinforced ties had an average resistance of 2.42 MΩ 

while the steel reinforced ties had an average of 1.11 MΩ. Although, on average, AFRP 

reinforced ties show to have better resistance compared to steel, some overlap does exist 

where AFRP 3 has a lower resistance than STEEL 2 and therefore makes an 

inconclusive result which requires further testing. 



 

 

84 

 

 

Table 13: MultiMeter measured resistance (MΩ) 

TEST # 1 2 3 4 5 6 Average 

AFRP Tie 

1 2.00 1.80 1.80 1.80 1.80 1.80 1.833 

2 2.00 2.20 2.20 2.20 2.00 2.20 2.133 

3 1.00 0.80 0.80 1.80 0.80 0.60 0.967 

4 4.60 4.60 4.80 4.80 4.80 4.80 4.733 

STEEL Tie 

1 0.80 0.40 0.60 0.60 1.00 0.80 0.700 

2 3.00 2.40 2.60 2.40 3.00 2.20 2.600 

3 0.60 0.60 0.40 0.20 0.20 0.20 0.367 

4 1.40 0.40 0.60 0.40 0.40 1.40 0.767 

 

7.3 Moment – Curvature 

 Like the Chapter 6 which compared the moment-curvature of the experimentally 

tested ties with AFRP reinforcement to the calculated values for the AFRP reinforced 

ties, this section will compare that calculated result to what a tie reinforced with steel 

strands would be. Those calculations follow the same procedure as before but use the 

information provided by the manufactures to provide accurate information about strand 

location, size, and prestressing force which can be found in Appendix A. This data was 

used to determine a theoretical curvature for the design cracking moment based on the 

service strength required. Like with the AFRP theoretical tie the steel ties’ curvature was 

assumed to linearly increase until cracking due to the elasticity of the specimen. Plotting 

the results comes down to the four primary testing locations: RSP, RSN, CP, and CN. 

Those plots are represented by Figure 56-59 respectfully. It can be seen that all four test 

results follow a similar line to their steel counter-part, but the steel ties had larger 

moment capacities over the AFRP. This is because of the construction woes mentioned 

previously and how that caused the as-built specimens to not have the strength as what 

was originally designed for. Therefore, by having all four plots remain in close company 

to the steel values, a more properly constructed tie may match the strength of the steel 

reinforced ties. 
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Figure 56: Theoretical moment curvature plots steel and AFRP reinforced ties (rail seat positive) 
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Figure 57: Theoretical moment curvature plots steel and AFRP reinforced ties (rail seat negative) 

 

 

Figure 58: Theoretical moment curvature plots steel and AFRP reinforced ties (center positive) 
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Figure 59: Theoretical moment curvature plots steel and AFRP reinforced ties (center negative) 
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8. SUMMARY, RECOMMENDATIONS, AND FUTURE WORK 

8.1 Summary 

 Concrete railroad ties have been becoming increasingly popular amongst railroad 

industrialists compared to their timber counterpart. Because of this, newer, more durable, 

cheaper, and safer ties have to be researched and developed in order to keep industry 

moving in the right direction. One of these developments has been the use of a new 

prestressing material than can replace the corrosive and electrically conducting steel 

whilst maintain design strength. Aramid Fiber-Reinforced Polymer bars (AFRP) was the 

subject of this research. Its ability to resist corrosion by being electrically insulating was 

paramount to the decision on its use over other fibrous materials, glass and carbon. The 

AFRP bars were pre-tensioned and cast into a concrete tie. The railroad tie the research 

was based around was the CXT 505S-50 which is typically used by Union Pacific on 

their main heavy haul lines. The design parameters followed the American Railroad 

Engineering and Maintenance-of-Way Association (AREMA) guidelines for load 

calculation and testing procedures, and the American Concrete Institute (ACI) for stress 

design and analysis for both the concrete and AFRP bars. 

 Four tests were conducted on the built up concrete tie specimens each involving a 

3-point bending analysis at separate locations. These locations were deemed critical in 

determining the strength of the tie and include the rail seat section and the center of the 

tie. These are critical because as the train rolls over the cross ties, the load travels 

directly from the wheel into the rail seat which causes a bending moment at that point 

and due to the same load applied at the opposite side, an inverse moment is caused at the 

center of the tie. This creates two critical load cases: the wheel directly over the tie and 

the wheel between ties. Those two load cases create four moments which are needed to 

be designed for and tested: rail seat positive, center negative, rail seat negative and 

center positive. A static load of 61.8 kip, 17.0 kip, 28.8 kip, and 10.3 kip was applied to 

those locations respectively and the deflection and strain was measured using string pots 

and LVDTs. Based on the data resulting from the experiments and the calculated 
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theoretical values expected, it can be concluded that AFRP show promise as a material 

to replace steel in prestressed concrete railroad ties. Further research is needed to be 

conducted before a final recommendation can be made. 

8.2 Recommendations 

 Throughout this research several recommendations can be made to better further 

experimentation and in-practice testing. The primary testing recommendation is to 

replace the rubber strips used to support the tie and the load plate for the static testing. It 

was seen that the rubber would become nearly useless after only 4 or 5 tests. A 

replacement idea is to use birch plywood to completely replace the load supporting 

rubber. Birch, has a strong splitting resistance and can be used several times without 

losing any strength. A second idea is to use small metal stubs resting on a much thinner 

strip of rubber. The presence of the rubber still allows for the load to be distributed 

evenly across an uneven surface but without the extra compression that causes deflection 

differentials and splitting of the rubber. 

 Another area where recommendations for improvements were found was through 

the stressing procedure for the AFRP. During the construction of the new ties, AFRP 

bars had to be stressed using a 3-pipe system. These pipes were 36 in. long and filled 

with a quick setting, expansive grout. The primary problem was not with the grout but 

with the application of stress. Stressing one strand at a time leads to a very long and 

uneconomical use of time to construct a tie using AFRP. By developing a system to 

stress all the strands simultaneously, not only will construction time and costs be 

reduced, accuracy and consistency of stress will be achieved across every strand.  

 It was found during construction that contact with the embedded shoulders 

caused some of the strands to rupture due to the friction that occurred during stressing. It 

is hence recommended that both more precision be placed in locating the strands as to 

avoid contact all together, and that temporary plastic covers be placed on the shoulders 

during stressing to reduce any possible friction that may occur. Beyond construction 

woes, causes for insufficient strength can be due to bond length. This can be mitigated 
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by decreasing the bar diameter, or installing a head onto the ends of the bars to act as an 

anchoring point. 

A final recommendation is to use a different material other than the urethane 

rubber as a mold making material. It was found that after sitting in the hot sun for 

several days, the rubber began to soften and lose grip to the wood box holding it. This 

resulted in warping which effected the AFRP hole locations between adjacent molds 

causing possible bending of the AFRP during stressing which results in a loss in stress 

and possible rupture. 

8.3 Future Work 

With the completion of this work on design and testing of concrete railroad ties 

pretensioned with AFRP bars, more research opportunities have arose. These are derived 

from objectives that this thesis could not cover nor had the resources to complete. Some 

further investigations into this research include: 

1. Complete fatigue and ultimate strength testing 

2. Use the design in a full-scale field test 

3. Observe the long term effects on the crosstie including corrosion effects 

8.3.1 Creating a Finite Element Model 

As a research objective, one could develop the FEM that incorporates AFRP as a 

material option for prestressed concrete analysis. That would include a creep model and 

take long term losses into consideration. Without the improved FEM, one could still 

develop the model of the crosstie using traditional steel in place of the AFRP to create a 

comparison between experimental results using AFRP and FEM results using steel.  

8.3.2 Field Test 

Due to constraints on funding and materials for this research project, only four 

ties were able to be constructed. This means that only laboratory experiments were 

performed on the ties to determine their strengths. However, when placed into in-track 
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service, the results may vary. This would require constructing many more ties, designing 

an appropriate ballast and sub ballast, and using a fully loaded rail car and locomotive to 

travel across the ties repeatedly over a number of years. During that time, checks for 

fatigue cracking will need to be done along with stress checks within the concrete using 

strain gauges. This experiment may also require the use of non-destructive testing 

techniques, currently in development, to locate cracks within the concrete. By being 

exposed to the elements, this experimentation can also show the durability of the ties in 

the presence of moisture. 

8.3.3 Long Term Effects 

Along with experimenting on the physical strength of the crosstie under real-life 

load conditions, performance should be investigated under natural weathering 

conditions. Therefore, testing should be done on the effect corrosion has on the AFRP 

reinforced crosstie and compared to that of a traditional steel tie. Along with corrosion 

testing, long term losses come into effect and should be analyzed and the electrical 

resistivity should be measured over that time as well. That information can be used not 

only for more accurate crosstie design, but general AFRP material properties.  

Two different environmental conditions should be used to assess the performance 

of the ties: a well-drained ballast and mud surrounding the ties. By having mud 

consistently interacting with the concrete, chemical reactions may take place affecting 

either the concrete or the reinforcement within. Also, having the ties in the presence of 

large daily temperature swings similar to that of an arid climate may show the long term 

durability of the reinforcement to resist the constantly changing temperature induced 

stresses on the tie and how it affects in-service performance.  
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APPENDIX A: PLANS OF ORIGINAL TIE 

 This appendix includes the manufacture’s drawings of the original CXT 505S-50 

heavy haul concrete railroad tie with steel strand reinforcement. This was used to 

calculate the properties of the ties and redesign using AFRP as a replacement for steel. 
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Figure 60: Detail of concrete railroad tie used as model 
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Figure 61: Cross section of tie used as comparison and model 
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APPENDIX B: TIE PROPERTIES AND DESIGN 

 This appendix details geometry of the tie, the process taken when using AREMA 

to calculate the design moments at the critical sections, the spreadsheet used in designing 

the tie with prestressed AFRP as the reinforcement, and three options that meet the 

criteria but were not used because they did not satisfy the more stringent manufacturers 

requirements. By using ACI 318-11 code for uncracked, prestressed concrete, this 

spreadsheet has the capability to assess the adequacy of the design based on the concrete 

strength, location of reinforcement, and the initial prestressing force.  

B.1 Tie Geometry and Section Properties 

Table 14: Cross section properties of the rail seat and center sections 

Rail Seat 

Section 
Height, 
h (in.) 

Width, 
b (in.) 

Area, 
A (in2) 

Centroid, 
y (in.) 

Moment 
of Inertia, 

I (in4) 

Centroid 
Difference, 

d (in.) 

Parallel Axis 
Theorem 

I+Ad2 (in4) 

A 8.59 9.1 78.17 4.295 480.66 0.26 485.99 
B 8.59 0.39 1.68 2.863 6.87 1.69 11.67 
C 8.59 0.39 1.68 2.863 6.87 1.69 11.67 
D 0.71 7.68 5.45 8.945 0.23 -4.39 105.26 
E 0.71 0.71 0.25 8.827 0.01 -4.27 4.60 

F 0.71 0.71 0.25 8.827 0.01 -4.27 4.60 

Sum     87.48       623.79 

ybar 4.56     
Center 

Section 
Height, 
h (in.) 

Width, 
b (in.) 

Area, 
A (in2) 

Centroid, 
y (in.) 

Moment 
of Inertia, 

I (in4) 

Centroid 
Difference, 

d (in.) 

Parallel Axis 
Theorem 

I+Ad2 (in4) 

A 6.88 7.75 53.32 3.44 210.32 1.12 276.75 
B 6.88 0.31 1.07 2.293 2.80 2.26 8.26 
C 6.88 0.31 1.07 2.293 2.80 2.26 8.26 
D 0.63 6.5 4.10 7.195 0.14 -2.64 28.65 
E 0.63 0.63 0.20 7.090 0.00 -2.53 1.28 

F 0.63 0.63 0.20 7.090 0.00 -2.53 1.28 

Sum     59.94       324.48 

ybar 3.68 
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The total volume of one tie was found to be about 8200 in3 or 4.75 ft3; this requires 19 ft3 

or 0.703 yd3 of concrete to fill all four ties. Because the mix plant involved with 

providing the concrete could not batch such a small mix and maintain accuracy with the 

design, 3 yd3 were ordered and excess would be dumped in a single spot to be removed 

at a later date. This also provided plenty of extra to perform all necessary tests on the 

wet mix and make all the required cylinders. 

 

Table 15: Concrete volume calculations 

Location Cross Section (in2) Length (in) Volume (in3) 
Rail Seat (x2) 87.5 29.4 5145 

Center 60 24 1440 
Transition (x2) 1/2*(9.5+7.5)*9.6 = 81.6 10 1632 

  Total 8217 

 

B.2 AREMA Service Moment Calculations 

To determine the typical loading the ties will undergo during their design life, the 

AREMA manual for concrete railroad tie design was consulted. The manual states that 

the positive rail seat moment is a function of the length of the tie and the center to center 

spacing of the ties which is plotted in a chart shown in Figure 62. In this research, a 

spacing of 24 in. is used with a tie length of 8’-6” which reveals a positive rail seat 

moment of 300 kip-in. This moment is then factored using speed and tonnage 

coefficients. These coefficients are found using a chart, Figure 63, where the annual 

tonnage and average speed are selected, and then the intersection is found on the relative 

plotted line to indicate the appropriate coefficient to use. An average speed of 60 mph 

was selected to best represent typical speeds on main line heavy haul track; this speed 

corresponds to a factor of 0.9. An annual tonnage of 75 MGT was also selected to best 

represent the loading a freight line would experience each year; this then corresponds to 

a factor of 1.1. Following the AREMA equation for positive rail seat moment, ܯ ൌ  ܸܶܤ

where ܤ is the moment from Figure 62 and ܸ & ܶ are the speed and tonnage 



 

 

100 

 

coefficients, the tie is expected to sustain a moment of 297 kip-in. From there, the 

moments in the negative rail seat, positive center, and negative center are found using 

the pre-determined factors shown in Table 16.  

 

Table 16: Moment factors (AREMA 2014) 

Tie Length Rail Seat 
Negative 

Center 
Negative 

Center 
Positive 

7’-9” 0.72 1.13 ܯ 0.61 ܯ  ܯ

8’-0” 0.64 0.92 ܯ 0.56 ܯ  ܯ

8’-3” 0.58 0.77 ܯ 0.51 ܯ  ܯ

8’-6” 0.53 0.67 ܯ 0.47 ܯ  ܯ

9’-0” 0.46 0.57 ܯ 0.40 ܯ  ܯ
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Figure 62: Positive rail seat bending moment based on tie spacing 
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Figure 63: Speed and tonnage factors 

 

 With an 8’-6” tie length, the rail seat negative moment is 0.53ܯ or 157 kip-in, 

the center negative moment is 0.67ܯ or 199 kip-in, and the center positive moment is 

 or 140 kip-in. These moments are used to determine the point load that is applied ܯ	0.47

to the tie during testing and as a comparison for adequacy. Although these loads meet 

AREMA requirements, Union Pacific requires the 505S tie to withstand larger loads. 

These new loads will serve as the basis for the design and testing requirements. 
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B.3 AFRP Centroid Tables 

 

Table 17: General centroid calculation table 

Layer No. Tendons Area (in2) y Ay 
1 2 0.24 y1 0.24y1 
2 3 0.36 y2 0.36y2 
3 4 0.48 y3 0.48y3 
4 3 0.36 y4 0.36y4 

Totals: 12 1.44 - 1.44(y1+y2+y3+y4) 
   Centroid 1.44(y1+y2+y3+y4)/1.44 

 

Table 18: AFRP centroid and eccentricity calculations relative to the bottom face of tie 

Prestressing Centroid Calculations 
Layer No. Strands Area (in2) ȳ (in) A ȳ 

1 4 0.478 1.25 0.597 
2 3 0.358 3 1.075 
3 4 0.478 4.75 2.270 

4 3 0.358 6.55 2.347 
5 0 0.000 0 0.000 
6 0 0.000 0 0.000 

Totals: 14 1.672 - 6.290 

Centroid 3.761 

Eccentricity Calculations 

Section ȳ (in) e (in) 

RS 4.55 0.789 

C 3.68 -0.081 
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Figure 64: Spead sheet of stress calculations at transfer and service 
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Figure 65: Option A; 11 strands and 9ksi concrete 
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Figure 66: Option B; 11 strands with 9 ksi concrete 
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Figure 67: Option C; 12 strands with 7 ksi concrete 
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APPENDIX C: PRESTRESSING BED 

 This appendix provides construction details for the prestressing bed used in 

construction of the ties: a full plan & profile of the bed, and cross section details of the 

connection and location of the boxes on top of the flange. The connection followed the 

guidelines of AISC 14th edition using factored loadings. To counter the flexural moment 

caused by the prestressing load, a dywidag bar was placed under the beam and made 

snug tight.  

 With the molds complete, a location was needed to place the molds, stress the 

AFRP and pour the concrete. Texas A&M Riverside Campus has an area where used 

structural materials are located after being replaced in labs. At this site, two 26 ft. long, 

steel I-beams were discovered and selected as the base for making a prestressing bed. 

These I-beams, Figure 68, are known to have adequate strength to resist the loads 

required for the needed prestressing. However, the length of just one was not enough to 

hold all four molds plus room the stressing mechanism. This meant that a connection 

design had to be made to join the two beams together. Alongside the beam were four 

built up C-shapes with bolt holes matching the beams to a point to where it was 

discovered that they were made purposefully to be attached to said beams. It was then 

decided to use these as connectors to combine the two beams together.  
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Figure 68: I-Beams to be used for prestressing frame 

 

 Each shape was 36 in. long, 12 in. tall, with 6 in. long flanges, and 1 in. thick 

steel. The hole diameter was found to be 13/16 in. which would allow for a ¾ in. bolt to be 

used in the connection. AISC guidelines were used to design the connection and check if 

these plates would work to withstand the 154 kip load applied through stressing the 

AFRP strands. A spreadsheet was developed to assess the adequacy of the design by 

allowing the size of each plate to be altered and the bolt hole size to alter as well. The 

beams were subjected to a series of checks complying with the guidelines set by AISC: 

buckling, flexure (both yielding and lateral torsional buckling), and combined loading. It 

was determined that compression was the controlling failure mode, yet the beams have a 

strength of approximately 645 kips meeting the requirements for stressing. From there 

the connection was checked using the design chapter of AISC. Using a spacing of 3 in. 

and assuming that threads were included in a double shear loading; the shear strength 

was found to be 35.8 kip/bolt (AISC Table 7-1).  

The connection was broken up into 4 plate groups: Plates A, B, C, and D with A 

being the top plate. Figure 69 shows the plate groups and how they were designed to 

attach to the beam. Plates B and C were single C-shapes that were flame cut through its 

centerline to make 2 independent angles. This was done because the web height (13 in.) 

was larger than the depth of the C-shape (12 in.). For Plate A, a different I-beam was 
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found to have the same bolt hole size and pattern on its flange, therefore that part of the 

flange was cut off and used in the frame connection. 

 

 

Figure 69: Connection setup 

 

 The controlling design parameter for the connection came from compression in 

the top plates (Plates A and B) where approximately 400 kips of load are applied from 

both direct prestressing compression and the flexure caused by the eccentricity of the 

AFRP strands on the frame. To help mitigate this compression load, a 1.75 in. diameter 

Dwyidag bar was installed under the frame at the same height as the AFRP centroid 

above. The bar was made snug tight with the expectation that the eccentric load of the 

AFRP would tension it more. The use of the Dwyidag bar was also found to help reduce 

losses in the AFRP from deflection of the end plates and frame as a whole. Figure 70 

shows the completed connection as both design and as built.  
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 Due to the thickness of the top plate and bolt head, the molds cannot sit flush on 

the frame. If they did, over 3 ft. of AFRP would be wasted by spanning the connection. 

To avoid this, the molds were placed on 1.5 in. shims made simply out of 2x4 lumber, 

and that allowed a mold to be place on top of the connection, therefore wasting as little 

AFRP as possible. The next pages show an entire plan and profile view of the 

prestressing frame with the molds included and an approximation of the pipe locations 

for stressing.  

 

(a) (b) 

Figure 70: (a) Complete cross section of the connection; (b) profile view of constructed connection 
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Figure 71: Detail of the prestressing bed at section A 
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Figure 72: Section B 
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Figure 73: Section C 
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Figure 74: Cross section of frame at end and connection 
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Figure 75: Cross section of frame and end plate and mold sections 
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APPENDIX D: PROCEQ RESISTIVITY METER READINGS 

This appendix provides a comprehensive set of tables and charts documenting the 

data collected by the Proceq Resipod Resistivity Meter for both AFRP and STEEL 

concrete railroad ties. Longitudinal and transverse measurements switch between points 

17 and 18 respectively. The location points are based on Figure 48 where longitudinal 

refers to measurements taken in parallel to the reinforcement while transverse refers to 

perpendicular to reinforcement. Due to the width of the tie, three longitudinal 

measurements were taken at each major section of the tie: 2 at the edges and 1 at the 

center. The transverse measurements were taken such that the center of the meter was 

along the centerline of the tie. Charts presented in this appendix map the data points in 

total then separate longitudinal and transverse charts are presented to provide a closer 

look at the effect of that specific orientation for the AFRP reinforced ties. 

D.1 AFRP1 

Table 19: Resistivity of AFRP1 

Location 
Resistivity (kΩcm) 

8/23/2015 9/1/2015 9/9/2015 9/14/2015 
1 14.3 22.8 23.5 29.8 
2 14.9 18.8 19.4 19.7 
3 13.6 26.3 27.4 33 
4 12.6 16.7 20.2 19.4 
5 19.0 27.9 30.4 32.2 
6 15.9 18.6 20.9 24 
7 19.8 27.5 24.1 33.5 
8 17.6 27.5 32.1 38.3 
9 13.6 20.9 21.6 23.9 
10 20.5 26.4 32.7 37.2 
11 20.0 29.2 33.1 34 
12 13.2 19.3 22.2 23.3 
13 19.8 27.1 31.1 36.4 
14 12.7 13.5 16.2 20 
15 18.9 19.0 27.1 30.4 
16 14.2 16.0 22.8 23.7 
17 20.2 27.8 30.4 33.1 
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Table 20 Continued: Resistivity of AFRP1 

Location 
Resistivity (kΩcm) 

8/23/2015 9/1/2015 9/9/2015 9/14/2015 
18 14.3 21.3 24.5 32.1 
19 13.8 18.6 16.4 22.5 
20 13.0 15.7 13.7 12.7 
21 12.7 16.3 21.3 21.3 
22 14.5 19.4 22.4 23.3 
23 13.6 19.4 22.5 24.7 
24 17.7 21.1 23.1 26.3 
25 13.6 19.3 21.8 26.1 
26 15.4 17.3 21.9 20.5 
27 13.0 15.8 16.8 19.2 
28 11.7 17.7 21.9 13.9 
29 11.8 17.4 19.6 21.2 
30 12.3 20.9 27.8 28 

Average 15.3 20.9 23.6 26.1 
Std Dev 2.826 4.429 5.055 6.643 

 

 

Figure 76: Overall plot of resistivity points of AFRP1 
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Figure 77: Center points in the longitudinal direction, AFRP1 

 

 

Figure 78: Transverse resistivity points, AFRP1 
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D.2 AFRP2 

Table 21: Resistivity points for AFRP2 

Location 
Resistivity (kΩcm) 

8/23/2015 9/1/2015 9/8/2015 9/14/2015 
1 15 18.9 25.8 30.5 
2 13.6 16.2 19.2 21.2 
3 16.1 15.9 25 28.7 
4 12.3 15.3 17.6 21 
5 22.5 25 28.8 20.6 
6 14.7 19 18.5 25.1 
7 17.8 24.9 25.8 33.1 
8 17.1 29.6 29.5 30.4 
9 15.6 16.8 19.9 24.4 
10 19.2 25.8 28.5 36.1 
11 20.5 24.1 32.7 33 
12 14.8 17.7 20.2 22.9 
13 19.7 25.8 31.5 34.6 
14 11.8 15.7 19.7 19.8 
15 16 25.4 31.2 33.6 
16 13.4 18 23.2 24.4 
17 20.9 28.5 32.9 30.4 
18 17.3 23.2 22.2 28.2 
19 14 16.5 19.4 22.5 
20 13.6 14.5 14.7 16.6 
21 14.7 15.9 17.8 19.6 
22 16.1 20.9 24.6 23.6 
23 16.3 18.6 20.4 22.5 
24 14.3 19.2 21.2 25.1 
25 15.2 18.9 19.6 21.7 
26 15.4 19.1 21.3 24.2 
27 14.3 15.6 18.6 20.9 
28 11.4 16.3 17.8 21.7 
29 14.5 14.4 16.7 18.2 
30 15.7 26.2 25.2 28.6 

Average 15.79 20.06 22.98 25.44 
Std Dev 2.616 4.464 5.090 5.229 
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Figure 79: Resistivity plot points for AFRP2 

 

 

Figure 80: Center points in longitudinal direction, AFRP2 
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Figure 81: Transverse resistivity points, AFRP2 

 

D.3 AFRP3 

Table 22: Resistivity points for AFRP3 

Location 
Resistivity (kΩcm) 

8/23/2015 9/1/2015 9/8/2015 9/14/2015 
1 18.6 21.4 27.1 32 
2 10.5 16.8 21.8 22.9 
3 18.6 25.2 25.9 29.8 
4 14.8 15.8 17.1 20.7 
5 19.9 22.8 26.8 39.2 
6 14.5 18 19.6 21.7 
7 21.9 26 29.4 31.1 
8 22.3 22.9 27.4 31.3 
9 16.6 19.9 22.7 22.8 
10 19.2 28.9 26.5 36.9 
11 24.1 24.9 31.1 36.4 
12 15.6 19.9 19.4 27.8 
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Table 23 Continued: Resistivity points for AFRP3 

Location 
Resistivity (kΩcm) 

8/23/2015 9/1/2015 9/8/2015 9/14/2015 
13 22.7 25.1 29.3 29 
14 13 16.6 15 22.2 
15 15.9 22.9 28.2 36.8 
16 13.9 14.7 18.5 22.9 
17 18.6 21.2 27.9 36.7 
18 17.2 19.9 19.9 27.1 
19 13.3 16.6 22.4 21.9 
20 12 10.9 14.3 12.3 
21 13.9 17.4 17.4 21.3 
22 17.3 19.9 22.4 25.7 
23 14.7 22.2 22.5 23.4 
24 16.8 17.2 21.5 22.5 
25 16.9 17.7 20.2 22.3 
26 13.8 17.3 21.6 21.2 
27 11.9 17 20.5 21.5 
28 11.5 11.7 14.4 13.2 
29 15.3 18 17.8 18.6 
30 20.9 20.2 21.2 25.5 

Average 16.54 19.63 22.33 25.89 
Std Dev 3.513 4.067 4.620 6.738 
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Figure 82: Overall plot of resistivity points for AFRP3 

 

 

Figure 83: Resistivity points for center section in longitudinal direction, AFRP3 
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Figure 84: Transverse resistivity points, AFRP3 

 

D.4 AFRP4 

Table 24: Resistivity points for AFRP4 

Location 
Resistivity (kΩcm) 

8/23/2015 9/1/2015 9/8/2015 9/14/2015 
1 18.2 24.5 26.6 29.7 
2 13.3 14.5 16.2 21.6 
3 20.1 22.2 24.5 24.7 
4 12 18.6 17.7 19.8 
5 16.1 30.8 24.5 27.6 
6 14.7 16.3 21.2 24.1 
7 16.1 22.1 28.6 26.2 
8 21.3 25.9 28.4 38.3 
9 15.8 18.7 22.9 20.5 
10 19 26.2 29.6 39.7 
11 17.9 26.5 34.5 35.3 
12 15 16.4 20.9 20.3 
13 22.5 20.3 31.5 38.5 
14 12 14.9 15.6 21.4 
15 9.2 14.7 14.7 58.4 
16 5.4 26.1 32.3 36.3 
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Table 25 Continued: Resistivity points for AFRP4 

Location 
Resistivity (kΩcm) 

8/23/2015 9/1/2015 9/8/2015 9/14/2015 
17 9.2 25.4 65.9 54.8 
18 194.3 271 336 401 
19 177.5 229 303 356 
20 20.5 22.3 28 28.2 
21 29.8 46.1 55.8 54.2 
22 12.5 16.4 19.2 23.2 
23 13 22.6 18.3 20.2 
24 15.3 20.5 21.3 25.7 
25 19 26.5 28.7 28.7 
26 16 17.8 22.2 22.3 
27 12.7 17.8 21 22 
28 13.2 15.2 17.6 22.5 
29 13.8 19.4 16.3 19.1 
30 12.6 16.5 19.9 21.1 
31 17.9 18.2 19.6 21.9 

Average 26.64 36.24 44.60 51.72 
Std Dev 42.119 56.724 73.098 86.645 

 

 

Figure 85: Overall plot of resistivity points for AFRP4 
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Figure 86: Resistivity points for center section in longitudinal direction, AFRP4 

 

 

Figure 87: Transverse resistivity points, AFRP4 
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D.5 STEEL1 

Table 26: Resistivity points for Steel1 

Location 
Resistivity (kΩcm) 

9/1/2015 9/9/2015 9/10/2015 9/14/2015 
1 670 641 659 797 
2 424 365 412 387 
3 404 626 633 854 
4 393 365 342 395 
5 607 599 723 717 
6 403 353 350 356 
7 630 640 616 697 
8 620 585 595 675 
9 340 279 208 312 
10 871 765 696 832 
11 515 532 521 552 
12 381 380 356 364 
13 639 611 617 742 
14 398 375 363 422 
15 610 584 697 623 
16 375 374 384 385 
17 677 690 679 749 
18 602 669 591 675 
19 402 422 378 402 
20 486 405 410 437 
21 419 488 391 374 
22 431 395 396 457 
23 408 435 430 404 
24 407 389 392 373 
25 399 428 366 376 
26 402 418 408 458 
27 436 457 401 426 
28 444 367 326 450 
29 428 425 413 373 
30 484 674 631 805 

Average 490.2 491.2 479.5 529.0 
Std Dev 122.76 127.58 139.18 172.50 
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Figure 88: Overall plot of resistivity points for Steel1 

 

D.6 STEEL2 

Table 27: Resistivity points for Steel2 

Location 
Resistivity (kΩcm) 
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Table 28 Continued: Resistivity points for Steel2 

Location 
Resistivity (kΩcm) 

9/1/2015 9/9/2015 9/10/2015 9/14/2015 
15 625 631 594 567 
16 378 364 318 331 
17 634 559 654 691 
18 508 531 510 465 
19 430 406 341 310 
20 427 401 329 418 
21 405 477 378 378 
22 416 426 358 416 
23 420 361 326 369 
24 407 369 341 367 
25 379 402 288 360 
26 356 397 326 339 
27 427 405 364 393 
28 394 368 308 385 
29 417 396 380 389 
30 530 691 637 597 

Average 490.0 493.5 448.8 474.9 
Std Dev 124.04 145.76 153.07 157.21 
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Figure 89: Overall plot of resistivity points for Steel2: 
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Table 30 Continued: Resistivity points for Steel3 

Location
Resistivity (kΩcm) 

9/1/2015 9/14/2015
15 316 727 
16 393 394 
17 690 585 
18 438 825 
19 307 378 
20 377 372 
21 359 338 
22 316 365 
23 299 415 
24 311 435 
25 292 362 
26 268 357 
27 338 416 
28 214 420 
29 347 389 
30 439 614 

Average 425.3 517.3 
Std Dev 142.65 184.46 

 

 

Figure 90: Overall plot of resistivity points for Steel3 
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D.8 STEEL4 

Table 31: Resistivity points for Steel4 

Location
Resistivity (kΩcm) 

9/1/2015 9/14/2015
1 588 587 
2 362 300 
3 710 580 
4 301 362 
5 467 573 
6 329 347 
7 505 701 
8 638 772 
9 323 322 
10 486 611 
11 577 644 
12 352 359 
13 554 563 
14 326 317 
15 564 652 
16 370 361 
17 539 619 
18 444 446 
19 358 401 
20 244 397 
21 368 378 
22 368 351 
23 380 353 
24 339 325 
25 344 368 
26 376 382 
27 369 353 
28 314 386 
29 338 341 
30 506 544 

Average 424.6 456.5 
Std Dev 113.48 134.64 
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Figure 91: Overall plot of resistivity points for Steel4 
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