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ABSTRACT 

 

For many decades, degradation of concrete by freezing actions has been a 

primary interest of research for civil engineers. Past studies mostly relied on expensive 

and time-consuming experimental or semi-empirical investigations to identify the source 

of damage that is attributable to substandard aggregates, inadequate entrained air 

content, highly porous mortar or cement matrix, and use of deicing salts. Theoretical 

works developed in recent years do not incorporate all these factors in one single model. 

Very recently, concrete has gained widespread popularity as a cheap alternative to 

traditional material utilized for containing liquefied natural gas (LNG). Most studies 

documenting concrete behavior at cryogenic temperatures are obscure. Therefore, 

poroelastic theory, capable of incorporating aggregate and mortar properties, pore 

solution characteristics, air void spacing, and environmental exposure has been utilized 

to model damage triggering stresses and strain in concrete used for two purposes: 1) 

concrete pavement exposed to freezing and thawing cycles, and 2) concrete walled tanks 

containing LNG. The solid-liquid phase transformation equilibrium has been 

redeveloped to demonstrate the effect of pore solution speciation and disjoining pressure 

on the deformation of freezing concrete.  

The modeled trends are in good agreement with experimental results obtained 

from literature. It has been found that the damage initiating tensile stresses, exhibited at 

the aggregate-matrix boundary for both the air-entrained and non-air-entrained concrete, 

can be exacerbated by the Mandel-Cryer effect induced by the delayed relaxation of the 
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pore pressure from the aggregate center. The model suggests that high-porosity, low-

permeability aggregates are the most vulnerable to D-cracking. Concrete with low-

porosity, low-permeability mortar matrix, typical of mortar containing supplementary 

cementitious materials and/or low water to cement ratio, can withstand freezing 

deformation even with a spacing factor larger than the recommended value. In addition, 

thermodynamic analysis shows that the disjoining force favors crystal growth, while the 

dissolved ions suppress the freezing point but are still capable of building high hydraulic 

pressure in the pore network. We believe that implementation of these models will help 

practitioners select appropriate combinations and proportions of concrete mixture 

constituents to build safe, economic, and durable concrete structures.   
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NOMENCLATURE 

 

Abbreviation/ Description Unit 

Symbol  

ASTM  American Society for Testing and Material --- 

ACI American Concrete Institute --- 

SCM Supplementary cementitious material --- 

CTE Coefficient of thermal expansion --- 

LNG Liquefied natural gas ---  

ITZ Interfacial transition zone --- 

FHWA Federal Highway Administration --- 

Superscript i  Individual species  --- 

Superscript L  Mixture of liquid or solution --- 

Superscript C  Mixture of crystal --- 

Superscript G  Mixture of gas --- 

Superscript 2H OL-  Liquid water in the solution mixture --- 

Superscript L i-  Individual species in the solution mixture --- 

Superscript L S-  Solute in the solution mixture --- 

Superscript 2H OC-  Liquid water in the crystal mixture --- 

Superscript C i-  Individual species in the crystal mixture --- 

Superscript a  Aggregate --- 
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Superscript p  Cement matrix or mortar --- 

Superscript J  Phase ( L , C , or G ) present in the pore space --- 

Superscript d  Disjoining pressure --- 

Superscript p L-  Pore liquid in the cement or mortar matrix --- 

Superscript a L-  Pore liquid in the aggregate --- 

Subscript app   Applied stress/temperature/pressure --- 

Subscript atm   Atmospheric temperature/pressure --- 

S  Current molar entropy  J/mol/K  

0S  Molar entropy at the reference state J/mol/K  

0*S  Molar entropy of the pure component at the reference J/mol/K  

m  Molar chemical potential  J/mol  

q  Current temperature K  or C   

mq  Melting temperature or reference temperature K  or C  

m      Change in temperature measures with respect to the melting 

temperature K  or C  

V  Current molar volume  3m /mol  

0V  Molar volume at the reference state 3m /mol  

0
C

nV -  Net molar volume of the ice crystal 3m /mol  

SD  Change in molar entropy due to fusion J/mol/K  
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x   Molar fraction of the dissolved species in the liquid mixture

 mol/mol   

N   Molar fraction  mol/mol  

iN   Current number of moles of species i mol  

N   Total number of moles of the mixture mol  

b  Stoichiometric coefficient related to the reaction of crystallization

 --- 

1

n
i

i

B b
=

=å  Summation of stoichiometric coefficients other than H2O  

  --- 

a  Activity --- 

iT  partial Cauchy stress tensor of species I MPa  

T  Total Cauchy stress tensor MPa  

e   Infinitesimal strain tensor  m/m   

Î Current infinitesimal volumetric strain  m/m  

s  Deviatoric stress tensor  MPa  

e  Current infinitesimal deviatoric strain tensor  m/m  

s  Mean stress  MPa  

0s  Mean stress at the reference state MPa  

rs  Principal stress in the radial direction MPa  

ts  Principal stress in the tangential direction MPa  



 

x 

 

, ,x y zs  Principal stresses in the x, y, and z directions MPa  

re  Radial strain m/m  

te  Tangential strain m/m  

kke  bulk strain m/m  

f  Free strain m/m  

p  Pressure MPa  

0p  Pressure at the reference state MPa  

a  Linear coefficient of thermal expansion  1C-  

K  Bulk modulus MPa  

G  Shear modulus MPa  

sK  Bulk modulus of the solid skeleton MPa  

sG  Shear modulus of the solid skeleton MPa  

mS  Melting entropy MPa/°C  

r  Density 3kg/m  

  Poisson’s ratio ---  

  Thermal diffusivity 2m / s  

  Thermal conductivity W/m/K  

pC  Specific heat capacity J/kg/K  

k  Intrinsic permeability 2m  

  Viscosity Pa s  



 

xi 

 

wm  Total mass of water currently present in all forms (both liquid and 

solid) kg  

R  Ideal gas constant J/mol/K  

  Current porosity of the porous material --- 

0  Porosity of the porous material at the reference state --- 

b  Biot’s coefficient --- 

M  Biot’s Modulus MPa  

S  Degree of saturation --- 

  Coefficient related to the thermal expansion of the pore space

 1C-  

iR  Radius of the spherical aggregate core m  

oR   Outer radius of the mortar shell m   

L  Air void spacing m  

u  Deformation m  

r  Radial distance m  

t  Time s  

C  Integration constant --- 

m  Shape factor relating the pore size distribution --- 

*R  Pore radius related to the characteristic cooling μm  

C Lg  water/ice interfacial energy 2J/m  
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( )LSL  Reduction factor accounting for the change in effective pore 

volume due to the change in liquid saturation ---  

rh  Relative humidity %   

G Lr  Current circumferentially averaged radius of curvature of the gas-

liquid interface m   

G L  Surface energy of the gas-liquid interface 2J/m  

d  Thickness of the thin layer of the unfrozen pore solution between 

the crystal and the pore wall 
o

A  or nm  

F  Overall Helmholtz free energy J   

skF  Helmholtz free energy of the skeleton J  

sk  Entropy of the skeleton MPa/°C  
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1 INTRODUCTION  

 

In cold climate regions, the most prevalent form of pavement distress is exhibited 

due to the cyclic freezing and thawing of saturated concrete. For this reason, concrete 

frost damage is still the focus of immense research despite the fact that abundant 

laboratory and field observations and theoretical investigations are present on the 

subject. Due to the complex pore size distribution and composite nature, as water freezes 

in concrete and ice progressively invades smaller pores with decreasing temperature, 

multiple deformation mechanisms take place: high pore pressure builds up due to the 

difference of density between the liquid water and ice; unfrozen water is expelled from 

the frozen pores to the nearest low pressure boundary to relieve the excess pressure; 

crystallization pressure develops due to the interfacial energy effects between different 

phases; supercooled water from small pores are drawn to the ice crystals in big pores by 

cryogenic suction;  and aggregate, cement paste, ice crystals, as well as the supercooled 

liquid water contract or expand with different coefficients of thermal expansion [1]. The 

problem becomes even more complicated when the pore network is saturated with salt 

solution instead of pure water. Therefore, depending on the constituent materials, pore 

characteristics, composition of the pore solution, degree of saturation, and the 

environmental exposure, degradation of concrete by freeze-thaw actions can manifest in 

several forms; among these D-cracking, popouts, surface cracking, and scaling are the 

most common signs of frost deterioration. 
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201.2R based on the maximum size of the coarse aggregate. As high mortar fraction is 

required to coat small aggregates, high air content is prescribed for small aggregates. 

These threshold values were established based on the historical works of Powers [2-4, 8] 

and Klieger [9, 10] performed in the 1950s.  

Since then, development of new materials has widened the choice for concrete 

constituents to a great extent and introduced different types of cement, supplementary 

cementitious materials (SCMs), synthetic aggregates, and a variety of synthetic air-

entraining and other chemical admixtures. Consequently, a diverse variety of hardened 

concrete characteristics is possible, which directly influences the frost damage 

susceptibility of the concrete pavement.  For instance, pore characteristics of both the 

aggregate and mortar play significant role in the freezing deformation of concrete whose 

pore network is completely filled with water [11-17]. Low concrete durability can be 

attributed to the high-porosity, low-permeability aggregates with fine pore structure that 

cause high internal pressure due to delayed relaxation of excess pore water [11-13]. Big 

aggregates further exacerbate the problem by increasing the distance that the expelled 

water has to travel from the frozen capillary pores to the escape boundary (i.e. the air 

void surface) [14, 17]. Importance of coefficient of thermal expansion (CTE) of the 

various phases present in concrete is significant since high differences between the CTEs 

of the different constituents can develop high internal stresses by causing high 

differential strain [18-20].   Furthermore, deterioration due to freezing deformation is 

vastly dependent on the freezing environment to which the concrete pavement is 

exposed [7, 21]. Regardless of these facts, the frost resistance of concrete is commonly 
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evaluated using the air void parameters alone and does not include the effect of material 

properties and environmental exposure in specifying freeze-thaw durability of a certain 

concrete mixture design.  

1.1.2 Inability to predict freezing deformation due to pore solution speciation 

Every year millions of tons of deicing salts are used worldwide to provide safe 

highways as the deicers suppress the freezing point by several degrees and melt the ice 

on the pavement surface. Naturally, one would expect that since deicers can suppress the 

pore water freezing, it would at least delay the progression of frost damage. However, 

the contrary is observed where more expansion and damage are reported for concrete 

specimens saturated with high concentration of NaCl solution than specimens filled with 

pure water [22]. Furthermore, these salts can pose severe threat to the concrete structures 

[13, 20, 23-27]. Foreign species when dissolved in water can transport to the concrete 

interior and react with the cement paste, aggregate, and rebar and form harmful and 

expansive compounds. Therefore, the existing theory needs to be modified to account for 

the presence of dissolved salts and its subsequent effect on the liquid saturation to 

accurately predict concrete deformation at subzero temperatures. 

1.1.3 Erroneous modeling due to the omission of disjoining pressure 

When a spherical crystal nucleates in a pore network, it grows in all directions 

until it approaches the surface of the pore wall. The crystal-pore wall interfacial energy 

is so high that it is always favorable to sustain crystal-liquid and liquid-pore wall 

interfaces in opposition to the direct contact between the crystal and pore wall. 

Consequently, a thin liquid film fills up the gap between the pore wall and the crystal. 
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Across this liquid film, a repulsive force, namely disjoining pressure, remains active that 

allows the crystal to grow and continuously push the pore wall [15, 28]. Due to this 

repulsive force, the liquid film exhibits higher pressure than the bulk liquid a distance 

away from the liquid-crystal interface. Mechanical equilibrium would require this extra 

pore pressure to be alleviated by expelling liquid from the high-pressure zone to a region 

where pressure is low. However, properties of liquid constrained between two solid 

surfaces change drastically: the liquid molecules become more ordered, the liquid 

progressively behaves more solid-like than liquid-like, and the mobility of the film 

reduces by multiple orders [29-33]. The Newtonian viscosity concept no longer holds 

true for such thin film as the liquid can resist shear stress. The classical liquid-crystal 

thermodynamic equation, well known as Thomson’s equation, assumes that spherical 

stress state prevails in both the liquid and the crystal, and thus neglects the elastic energy 

term associated with the shear stresses introduced by the confinement. Applicability of 

the Thomson’s equation to porous materials thus becomes questionable, especially at 

low temperatures (e.g. concrete tanks utilized for LNG storage) where the only liquid is 

found wrapping around the crystals, a few nanometers thick to prevent dry contact with 

the pore wall.  

1.1.4 Inability to utilize concrete for primary containment of LNG 

Concrete, because of its enhanced mechanical properties under cryogenic 

temperatures, as well as its economy, availability, casting simplicity and robustness has 

also gained widespread popularity as a suitable construction material for large scale 

storage tanks of liquefied natural gas (LNG). Much of the previous research 



inv

wh

kno

cry

con

tan

stru

tem

the

add

the

LN

rol

ma

cem

fre

agg

tha

the

 

 

vestigating th

hich is out of

owledge lack

yogenic temp

ncrete walled

Therma

nks because o

ucture go thr

mperature. Si

e other memb

dition, therm

e rate of cool

NG, it is cruc

e of moistur

aterial is coo

Poroela

ment paste c

ezing tempe

gregates with

aw damage m

eoretically va

he cryogenic

f print, and th

ks important

peratures (i.e

d primary co

al deformatio

of the large t

rough while 

ignificant di

bers may dam

mal deformat

ling. Hence, 

cial to be abl

re content an

led from roo

1

astic theory [

haracteristic

eratures [1, 4

hin concrete

mechanisms 

alidate and m

c behavior of

hus no longe

t information

e., temperatu

ontainment t

on of concre

temperature 

being coole

fferences be

mage the str

tion of satura

in order to s

e to accurate

nd effect of c

om temperatu

 Resear.2

[34, 35] has 

cs [36-40], an

41-43], but h

e. Thus, the f

in concrete 

mechanistica

6 

f concrete w

er readily ac

n regarding t

ures 160° 

ank.  

ete is of critic

change that 

d down to cr

etween therm

ructure by de

ated concrete

safely utilize

ely predict c

cooling rate o

ure to cryog

rch scope an

been used su

nd model be

has not been 

focus of this 

due to subst

ally explain e

was published

cessible. Mo

the concrete

°C)  that is e

cal importan

t the various 

ryogenic tem

mal deformat

eveloping hi

e can be sub

e concrete fo

concrete CTE

on the therm

genic temper

nd objective

uccessfully t

ehavior of ce

applied to th

research is t

tandard aggr

experimenta

d in the 1960

oreover, the 

e properties u

essential to d

nce while de

components

mperature fro

tion of concr

igh internal s

bstantially in

or primary co

E, and fully u

mal deformat

rature.  

es 

to analyze co

ement paste e

he problem o

to elucidate 

regates in ord

al findings in

0s and 1970s

available 

under 

design 

signing LNG

s of the 

om room 

rete and that

stresses. In 

nfluenced by 

ontainment o

understand t

tion as the 

oncrete and 

exposed to 

of freezing 

the freeze-

der to 

n the literatur

s 

G 

t of 

of 

the 

re. 



 

7 

 

A simplified poromechanical model is used to predict the destructive tensile stress 

created in the aggregate and/or cement paste or mortar matrix associated with the 

freezing process. This model is developed with the intention to help practitioners select 

appropriate materials (e.g. aggregate type, size, w/c ratio, supplementary cementitious 

materials) for concrete pavements with minimal D-cracking and pop-out damage. The 

theory presented in this work identifies the causes of freeze-thaw damages, and does not 

explain damage mechanism evolving with successive freeze-thaw cycles. 

We also intend to leverage the aforementioned poroelastic model of composite 

concrete to predict the optimum air void system specific to a concrete mixture design 

used for pavement construction without compromising the strength and permeability 

significantly. Significance of the concrete constituent properties and environmental 

exposure on the crack initiating tensile stresses and the efficiency of the air void system 

parameter (precisely the spacing factor) are studied to determine the role of air voids on 

the damage susceptibility of concrete exposed to freezing temperatures. 

And finally, to demonstrate the effect of pore solution speciation and disjoining 

pressure on the liquid-solid phase transition, we have derived the solid-liquid 

thermodynamic equation within the framework of mixture theory adopted by Grasley 

and Rajagopal [44]. Poroelasticity is then utilized to determine deformation of porous 

materials saturated with salt solution and exposed to freezing temperatures. This study, 

however, does no account for the supersaturation of solutes upon the removal of solvent 

from the pore solution as ice deposits. 
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In addition, this study aims to utilize poroelasticity to predict freezing strain of 

saturated cryogenic concrete and demonstrate the effect of cooling rate and the 

subsequent temperature gradient on the deformation of the primary containment concrete 

wall. The unsaturated freezing theory is then presented to include gas as a third phase (in 

addition to liquid and crystal) to model stress and deformation of partially saturated 

freezing concrete to validate the role of moisture content found in the literature. The 

proposed model is believed to help engineer concrete mixture design for successful 

construction of concrete walled LNG tanks along with the choice of optimum cooling 

rate and moisture content. Again, only deformation caused by the cryogenic cooling 

(loading) will be considered in this study. Effect of thawing (unloading) and multiple 

freeze-thaw cycles and the resulting fatigue damage is not considered. 

The primary objectives of this research are summarized in Table 1. 
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Section 1 briefly introduces the problem followed by an itemized list of 

objectives and dissertation outline.  

A concise review of the existing literature related to the problem is depicted in 

section 2. Existing experimental findings on aggregate properties accountable for frost 

deterioration are compiled in section 2.1. The present specifications for the air void 

system established by the code writing bodies and the recent work studying the influence 

of air void parameters on modern concrete are presented in section 2.2. Current practice 

regarding the use of concrete as the primary material for the construction of LNG tanks 

is recapitulated in section  2.3.   

Section 3 proposes a general scheme for modeling pore pressure, stress, strain, 

and temperature fields exhibited by porous material exposed to freezing temperatures. 

The solid-liquid thermodynamic equilibrium equation has been extended in this section 

to assimilate the effect of pore solution speciation and liquid confinement on the 

deformation of freezing porous media.  

Section 4 employs the theory introduced in section 3 to mechanistically identify 

deleterious aggregate properties that may degrade concrete durability under frost actions. 

Section 5 extends the same model to optimize the air void spacing requirement for 

specific concrete mixture design exposed to certain environmental conditions. These 

results are then verified by the experimental findings recounted in section 2. 

Section 6 extends the theory of thermoporoelasticity to simulate the deformation 

of concrete subjected to cryogenic temperatures. Effect of cooling rate and moisture 
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content is also studied in this section to provide suggestions for the safe and durable 

construction of concrete walled LNG tanks.  

A simple solution of NaCl is adopted to demonstrate the effect of pore solution 

speciation on the depression of freezing point and the subsequent changes on the 

deformation of the porous material in section 7. Influence of the disjoining pressure on 

the solid-liquid phase transition and the deformation of the porous media is also 

investigated in this section.  

Finally, section 8 concludes this dissertation with the most important findings 

derived from sections 3 to 7. Some recommendations for practitioner to help them select 

appropriate concrete mixture constituents and proportions to build safe and durable 

concrete structures are also provided in this section. 

A flowchart summarizing the aforestated objectives and the research layout is 

displayed in Figure 1. 
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Figure 1. Flowchart for the performed research tasks. 
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aggregate particle at the bottom of the cavity with the other part sticking to the apex of 

the popout cone.  

Various studies have established that the pore characteristics of aggregates 

significantly influences the frost resistance of concrete [11, 14, 45]. According to 

Verbeck and Landgren, low-porosity and low permeability aggregates, typical of 

quartzites, marbles, and traprocks are strong enough to withstand freezing distress. 

However, high-porosity but low-permeability aggregates, typical of cherts with a fine 

pore structure, can exhibit failure due to high internal pressures within the aggregates 

[11]. In the same study, it was estimated that peak pore pressure generated in low-

permeability chert may be 100 times greater than for the high-permeability dolomite. 

Later, Kaneuji established a correlation between the pore structure of aggregates and 

concrete freeze-thaw durability, and attributed low aggregate durability to high pore 

volume and smaller median pore diameter [12]. It was noted in the study, however, that 

aggregate pores with radii less than 4.5 nm did not appear to contribute to freeze-thaw 

durability problems. Mehta and Monteiro associated D-cracking with coarse aggregates 

that contain high pore volume in the narrow pore size range (0.1 to 1 μm) [13]. Scherer 

also suggested that crystallization stress is lower for larger pores and lower crystal-pore 

wall contact angles [15]. However, as stated by Verbeck and Landgren, the high-

porosity, high-permeability aggregates with coarse pore structure – if covered by mortar 

– can cause failure due to the high external pressure built up in the matrix [11]. 

Examples of such aggregates are limestones, dolomites, and sandstones. In this case, 

failure depends on the rate of temperature drop and the distance water must travel to find 
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Since air void cannot be inserted into aggregates, the functionality of the air void is 

entirely restricted to the cement paste or mortar volume fraction. With this limitation in 

mind, the original theoretical air void spacing requirement was developed based on the 

assumption that only the cement paste becomes completely saturated, and concrete as a 

whole never becomes wet [2]. This hypothesis led to a very simplistic case where 

aggregates never reach full saturation. However, there has been evidence that the 

average capillary pores in aggregates are much larger than the hardened cement paste 

and ice propagates faster in saturated aggregates than the latter [13, 47]. As a 

consequence, supercooled water from the frozen capillaries in aggregates is expelled to 

the nearest paste matrix. If this expelled water is not properly accommodated, significant 

frost damage can be done depending on the cooling rate, saturation degree, and pore 

characteristics of aggregates [11, 47]. Since aggregates constitute around 60 to 80% of 

the total concrete volume, a significant portion of the concrete thus remains unprotected 

even with the specified air content.  

Entrained air bubbles relax the excess pore pressure by accommodating the 

expelled water from the frozen capillaries and freezing it instantly [41, 42, 47]. As a 

result air-entrained cement matrix contracts more than the aggregates that do not contain 

any impregnated air. This excessive contraction of the air-entrained cement or mortar 

matrix compared to the aggregate, which contains minimal air, may cause a differential 

strain gradient between the aggregate and matrix. This strain gradient may lead to 

destructive tensile stresses in the interfacial transition zone (ITZ), making concrete 

vulnerable to freezing damage. Recently, a quantitative image analysis study of crack 
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mechanical and thermal behavior of concrete subjected to freezing temperatures [1-3, 5, 

11, 15, 16, 41, 42, 57-59]. Most of these studies primarily focus on concrete freezing 

down to 30°C . Little is known about the properties of concrete at cryogenic 

temperatures (i.e., temperatures 160°C  ) that are critical for the design of concrete-

walled LNG tanks. 

A comprehensive literature survey of the concrete mechanical and thermal 

properties subjected to single cycle cryogenic freezing has been documented by 

Krstulovic-Opara [60]. Kogbara et al. [61] recently extended this review to include the 

effect of thermal cycles on concrete properties necessary to design concrete tanks for 

direct containment of LNG. All the reviewed studies unanimously reported substantial 

variation of concrete properties at cryogenic temperatures that largely depends on the 

moisture content. For example, dry concrete shows linear contraction with cooling 

whereas saturated non-air-entrained concrete expands up to several hundred 

microstrains. Saturated concrete, because of its complex pore network, can contain 

varying proportion of ice crystals, vapor, and liquid at different temperatures. As a 

result, a complex thermal deformation is observed with high moisture content through 

which concrete contracts at the onset of cooling, expands between 20  to 70°C,  and 

reverts to contraction upon further cooling [62-67]. Several researchers also identified 

that the higher the moisture content, the higher the expansion [60, 68, 69]. A critical 

relative humidity of 86% has been reported below which no expansion is observed [60, 

69]. In the absence of moisture, aggregate type governs the thermal deformation of the 

cryogenic concrete since aggregate constitutes more than 70% of the typical concrete 
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volume [70]. Kogbara et al. investigated the effect of aggregate type on the change in 

microstructure of saturated concrete subjected to cryogenic freezing [71]. They found 

that high-porosity lightweight aggregate concrete is more susceptible to damage than the 

low-porosity traprock and limestone aggregate concrete due to the increased moisture 

movement leading to high internal stresses and successive disruptive volumetric change 

[71]. 

There has been ample evidence that thermal deformation of saturated concrete is 

significantly influenced by the rate of cooling. A slow cooling rate is reported to cause 

underpressure in small pores whereas a high cooling rate triggers overpressurization in 

the larger pores [72]. High cooling rate nucleates ice in the mesopores faster than the 

transfer rate of the excess water to the nearest boundary and leads to overpressurization 

in the pore network. Subsequently, high stresses result in microcracking inducing 

irreversible expansion [69]. Although many published experimental works register 

cooling rates as high as 60 °C/hr [73], 150 °C/hr [62] and 392 °C/hr [67], a much slower 

cooling rate of 0.6 °C/hr to 1.3 °C/hr has been suggested by practitioners to avoid 

overstressing of the primary LNG containment tank [74].  

Thermal deformation of concrete is of critical importance while designing LNG 

tanks because of the large temperature change that the various components of the 

structure go through while being cooled down to cryogenic temperature from ambient 

temperature. In a common composite concrete cryogenic tank, a plane carbon steel 

liquid/vapor barrier is fastened around the concrete wall to prevent leaking, and 9% 

nickel steel plate is used as the bottom of the containment tank that is attached to the 
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concrete wall. It has been reported that the composite concrete wall of a 160,000 m3 

capacity tank can move up to 64 mm inward as temperature drops down to 188°C [74]. 

Therefore, significant differences between thermal deformation of concrete and that of 

the 9% nickel steel and carbon steel may damage the structure by developing high 

internal stresses. Currently, for design purposes, an average CTE of 6 19.9 10 °C   is 

used for both the carbon steel and 9% nickel steel, and a CTE between 67.9 10 to 

6 19.4 10 °C   is used for concrete [74]. However, researchers have showed that CTE of 

concrete may attain a negative value due to high moisture content [3, 75] (depending on 

cooling rate and air bubble spacing) causing cracks and creating internal stresses within 

the structure.  
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i
i N

N
N

= .  (3.2) 

Here, iN  denotes the current number of moles of component i, and N  presents the total 

number of moles of the mixture.  

Now, 0 :
i

i d
V T

d t

e
 can be written in terms of the mean stress, is  and the 

deviatoric stress, is  as 

0 0 0: :
ii i

i i i d ed d
V T V V s

d t d t d t

e
s

Î
= + ,  (3.3) 

where, iÎ  is the current infinitesimal volumetric strain related to species i with respect to 

the reference state and defined as 

0

0

i i
i

i

V V

V

-
Î = ,  (3.4) 

where iV  is the current molar volume of the species i, and ie  is the current 

infinitesimal deviatoric strain tensor. With the help of (3.4), equation (3.3) reduces to  

0
0 0

0

: :
ii i

i i i
i

d ed V d V
V T V s

d t V d t d t

e
s= + .   (3.5) 

Now we apply (3.5) in (3.1) and implement Legendre transform to derive 

0
0

0

: 0
ii i i

i i i i i
i

d sVd d d
N N S V V e

d t d t V d t d t

m q s
+ + + = .  (3.6) 

Here, we also consider that at equilibrium, the rate of energy is zero. For a mixture, we 

can write  
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0
1

: 0
in

i

i

d sd d d
N S V V e

d t d t d t d t

m q s

=

+ + + =å .  (3.7) 

Let us now consider the problem of two chemically dependent phases that 

coexist in equilibrium. This problem could represent, for example, liquid in equilibrium 

with its vapor or liquid in equilibrium with its frozen or solid phase. Since liquids often 

include dissolved species, it is advantageous to consider that we have a mixture that 

exists at two levels: first, the liquid itself is a mixture consisting of water and various 

other dissolved species; second, the presence of liquid and its vapor or solidified phase 

represents a mixture at a higher scale. Thus, we can write for the mixture of ice and salt 

crystal, 

( )
2

2

H O
H O

0 0 0
1

0 0

3

: 0
2

nC C i C C C C
C C i C C C C C C

mC
i

C C C
C C

C

d d d d d
N N V V V

d t d t d t K d t d t

s d s d
V S

G d t d t

m m s s s s
a q q

q

- -
- -

=

+ + + + -

+ + =

å
, 

 (3.8) 

where V , the molar volume of the mixture, is replaced by the relation  

( )0 1 3 mV V
K

s
a q q

é ù
ê ú= + + -
ê úë û

,   (3.9) 

and 

2

s
e

G
=  is used.  (3.10) 

Here, we have constrained the discussion to linearly elastic solids and affixed the 

reference configuration at the melting temperature. In (3.9), a  is the coefficient of 
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thermal expansion of the mixture, and K  and G  are the bulk modulus and shear 

modulus of the mixture, respectively. Equation (3.8) ignores the entropic term related to 

the heat capacity and can be rearranged to read  

( )

2

2 2 2

2 2 2

H O
0 0

H O H O H O
1

0 0 0
H O H O H O

1

3 :
2

n C CC C i C C C
C i

C C C C
i

C CC C CC C
C C C

m C C CC

V Vd d d d
N

d t N d t N d t N K d t

s d sV V Sd d

N d t N G d t N d t

m m s s s

s q
a q q

- -
-

- - -
=

- - -

=- - -

- - - -

å
.  (3.11) 

Let us now consider that the primary phase in the liquid is water. Thus, (3.7) 

takes the form 

2

2

H O
H O

0
1

: 0
LnL L i L L

L L i L L L L

i

d sd d d d
N N S V V e

d t d t d t d t d t

m m q s- -
- -

=

+ + + + =å .  (3.12) 

Now writing (3.9) and (3.10) for liquid and substituting them into (3.12) we obtain 

( )
2

2

H O
H O

0 0 0
1

0 0

3

: 0
2

nL L i L L L L
L L i L L L L L L

mL
i

L L L
L L

L

d d d d d
N N V V V

d t d t d t K d t d t

s d s d
V S

G d t d t

m m s s s s
a q q

q

- -
- -

=

+ + + + -

+ + =

å
. 

 (3.13) 

If we consider a salt with chemical composition of ( )2
1 2 3

H O
2A B C . H O

b b b
b  [28], 

then the chemical potential of the solute ( -L Sm ) in the liquid phase can be written as the 

sum of the chemical potentials of the species forming it 

2 2H O H O-

1

n
L S i L i

i

m b m b m-

=

= +å    (3.14) 

where i represents the species other than H2O (i.e. A, B, and C), and 2H Ob  is the number 

of molecules of water that are chemically bound to the hydrated salt. When the salt 
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concentration in the pore solution reaches supersaturation, these water molecules are 

removed from the solvent with the salt crystal and do not contribute to the ice volume. 

For a non-hydrated salt, e.g. NaCl, 2H O 0.b =  

Equation (3.14) can be rearranged to provide the chemical potentials of the 

dissolved species (excluding the hydrated water molecules) in the liquid phase as 

2 2 2 2H O H O H O H O

1 1

L LL S L S
L i

n n
i i

i i

B B

m b m m b m
m

b b

- -- -
-

= =

= - = -

å å
,  (3.15) 

where 

1

n
i

i

B b
=

=å .   (3.16) 

Substituting  (3.15) into (3.13), we write 

( )

( )

2

2 2

H O
H O H O

0 0

0 0 03 : 0
2

L L S L L L
L L L

L

L LL L
L L L L L L

m L

d d d d
N x x V V

d t d t d t K d t

s d sd d
V V S

d t G d t d t

m m s s s
b

s q
a q q

- -
- - + + + +

- + + =

, (3.17) 

where we introduced, 

1

1

n
L i

L i
i

ni
i

i

N
N

x
b

b

-
-

=

=

= =
å

å
,   (3.18) 

such that 

2H O 1LN B x- = - ,   (3.19) 

Rewriting (3.17) with the help of (3.19), we find 
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( )

( )

2

2

H O
H O

0

0 0 0 0

1

3 : 0
2

L L S L
L

L LL L L L
L L L L L L L

mL L

d d d
B x x x V

d t d t d t

s d sd d d
V V V S

K d t d t G d t d t

m m s
b

s s s q
a q q

- -

- - + +

+ + - + + =

.  (3.20) 

At equilibrium, not only do we consider the rate of energy to be zero, but we will 

also enforce a stronger statement of the second law by forcing the chemical potentials of 

the chemically dependent phases to be equal such that 

2 2H O H OL Cd d

d t d t

m m- -

= .1   (3.21) 

Thus, (3.11) and (3.20) can be combined to yield  

( ) ( )

2 2

2

2 2

2 2

0
H O H O

1

H O 0 0
H O H O

0 0
H O H O

0 0

1

1 3

:
2

n CC i C
C i

C C
i

C CC C C
C C C

mC CC

C CC C C

C CC

L S L L
L L

L

Vd d
N

N d t N d t

V Vd d
B x x

N K d t N d t

s d sV S d

N G d t N d t

d d d
x V V

d t d t K

m s

s s s
b a q q

q

m s s s

-
-

- -
=

- -

- -

-

æ ö÷ç ÷- -ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç- - - - - ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç- - ÷ç ÷çè ø

+ + +

å

( ) 0

0 0

3

: 0
2

L L
L L L L

m

L L L
L L

L

d
V

d t d t

s d s d
V S

G d t d t

s
a q q

q

+ -

+ + =

.  (3.22) 

Now, evaluating the chemical potential of the solute,   

* lnL SL S L Sdd d a
R

dt dt dt

mm
q

-- -

= + ,  (3.23) 

at the same pressure and temperature at the solution, we have 

                                                 

1 The process is considered fully reversible since the rate of change of temperature is assumed to 
be slow enough to maintain a local state of near equilibrium. 
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( )solute solute solute solute
0 0 0solute

solute solute
solute0
0solute

3

ln
:

2

L S L L L L
L L

m

L L L
L

d d d d
V V V

dt d t K d t d t

d sV d d a
s S R

G d t d t dt

m s s s s
a q q

q
q

-

-

=- - - -

- - +

.  (3.24) 

Here, R  is the ideal gas constant. Similarly chemical potential of the salt crystal is given 

by 

( )0 0 0

0
0

3

:
2

C i C C C C
C i C i C i C C C i

mC i

CC i C
C C i

C i

d d d d
V V V

dt d t K d t d t

d sV d
s S

G d t d t

m s s s s
a q q

q

-
- - - -

-

-
-

-

=- - - -

- -

, (3.25) 

where, the activity of the pure salt crystal equals one. Now we impose that the gradient 

in the strain energy or stress power across the crystal is negligible such that no 

preferential dissolution and precipitation occurs. Furthermore, we speculate that the 

normal stresses in the crystal are significantly higher than the deviatoric components. 

Hence, it is justifiable for us to assume that the crystal is subjected to a purely 

hydrostatic state of stress nullifying the shear contribution. However, the same treatment 

cannot be exercised with the liquid water due to the repulsive force originated from the 

crystal-pore wall interface incompatibility. Consequently, crystals can repel the pore 

wall across the thin film and exert an excess pressure. Due to this repulsive force, 

conservation of linear momentum requires shear stresses in the liquid film. Because of 

this shear and owing to the pressure gradient between the film and the bulk liquid, the 

liquid will tend to flow away from the interface to alleviate the excess pressure. 

However, due to the drastic transition from liquid like to solid like responses, mobility of 

the film reduces by orders of magnitude compared to the diffusion of the bulk water [32, 
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33]. Therefore, the liquid film between the crystal and the pore wall has to be treated as a 

non-Newtonian fluid capable of transmitting shear stresses. The associated strain energy 

term thus cannot be overlooked. With some mathematical manipulation, substitution of 

(3.24) and (3.25) in (3.22) provides  

( )

( )
2

2

solute solute
0 0 0 0

solute
0 0

H O solute

H O
0

0 0
1

1
:

2

ln

1

L L LLC L

C C L
n n

C L

C n
n C C i C i

i

V xV s d sV xVd d

d t V d t V G G d t

S d N x d a
R

V d t dtB x x
V N V

s s

q
q

b

- -

- -

- - -

=

æ ö- ÷ç ÷= + -ç ÷ç ÷çè ø

D
+ +

æ ö - -÷ç ÷-ç ÷ç ÷çè ø
å

,  (3.26) 

where the terms, 

( )2

2

0 0
1H O

0 H O
1

n
C C i C i

iC
n C

V N V

V B x x
N

b

- -

=
- -

æ ö÷ç ÷-ç ÷ç ÷çè ø
= - -

å
 and (3.27) 

( ) ( )2

2

0 0
1H Osolute

0 0 H O
1

n
C C i C i

iL
C

S N S

S S x S B x x
N

b

- -

=

-

æ ö÷ç ÷-ç ÷ç ÷çè ø
D = - - - -

å
  (3.28) 

are used. If no salt precipitates ( 2H O 1CN - =  and 
1

0
n

C i

i

N -

=

=å ) then 

( )2H O
0 01C C

nV B x x Vb- = - -  and ( ) ( )2H Osolute
0 0 01L CS S x S B x x SbD = - - - - . In addition, 

if there is no dissolved salt present in the pore solution, then (3.27) and (3.28) simplify to 

0 0
C C

nV V- =  and 0 0
L CS S SD = - , respectively. Thus, 0

C
nV -  refers to the net molar volume of 

the ice crystal (excluding the molar volume of the salt crystal), and SD  denotes the 

change in molar entropy due to fusion. Here, we ignored the higher order stress terms 

and the entropic term related to the thermal dilation. We also assumed that the liquid and 
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crystal are subjected to the same temperature L Cq q q= = . Equation (3.26) illustrates that 

the mean stress in the crystal varies as a function of stresses in the liquid, temperature, 

and ionic activity in the solution. Now it is convenient for us to select the reference state 

as the state where 0
C Ls s s= = , so that the related temperature is mq q=  and the molar 

fraction of salt is 0x x= . Integrating (3.26) from this reference state to a current state 

where C Ls s¹ ,  q q= , and  fx x=  we find 
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. (3.29) 

Here we also assume that the ice and salt crystals precipitate as pure substances. 

The last term of (3.29) calculates the change in crystal pressure due to the change in salt 

concentration with respect to the reference configuration, 0x x= . In this study we wish 

to calculate pore freezing depression due to the presence of dissolved ions. Thus we 

select the reference state as the state such that it corresponds to the pure water, i.e. 

0 0x = . If one wants to link the crystal pressure to the supersaturation [28, 76, 77], then 

the molar fraction related to the salt solubility could be chosen as the reference state. 

And so, when fx  is greater than 0x , the solution becomes supersaturated, and the 

corresponding crystal pressure accounts for the salt crystallization due to the removal of 

solvent with decreasing temperatures.  
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At this point, it is important to accurately determine the ionic activity in the pore 

solution. One can utilize Pitzer’s equations [78, 79] to analyze ionic activity with a high 

degree of accuracy. However, implementation of such complex relations complicates the 

integral term. At low concentrations, the mixture can be treated as ideal, and the activity 

coefficient approaches to unity. Moreover, most cementitious materials do not contain 

very high concentrations of dissolved species, and ideal solution approximation yields an 

accurate measure of ionic activity for saturations down to 0.5 [80].  Therefore, The ionic 

activity in the last term of (3.29) can be approximated as soluteLa B x- » , such that,  
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As uniform pressure subsists everywhere in the crystal, we state that C Cps =- . 

Furthermore, if we neglect the repulsive force across the thin film around the crystal so 

that spherical stress state is achieved in liquid with L Lps =-  and 0Ls = , (3.30) 

simplifies to 
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where we also assume that the reference state, 0 0ps =- . In addition, if we consider that 

at no point the salt concentration exceeds its solubility, and thus salt precipitation does 

not occur, then 
1

0
n

C i

i

N -

=

=å  and 2H O 1CN - = , such that 
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The last term in (3.32) accounts for the contribution of dissolved ions on the 

freezing point suppression of the pore solution. Furthermore, if we ignore the presence 

of dissolved species, i.e. 0fx = , then (3.32) becomes 

( ) ( )
( )0 00
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L CL
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S SV
p p p p

V V
q q

-
- = - + - ,   (3.33) 

with 0
LS  and 0

CS  now being the molar entropy of pure liquid water and ice, respectively. 

The above equation can be rearranged to read 
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Equation (3.34) is known as the renowned Thomson’s equation, where 

( )0 0

0

L C

m C

S S

V

-
S =    (3.35) 

is the melting entropy. In terms of liquid and crystal densities, (3.34) equivalents to 
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water. For a poroelastic material (with invariant porosity upon pressurization) exposed to 

variable temperature, f  in equation (3.38) can be referred as 

3

L

f

b p

K
     ,   (3.41) 

where   is the linear CTE of the porous body and m      is the change in 

temperature measured with respect to the melting temperature mq , with   being the 

current temperature 2. The term b  is Biot’s coefficient and can be written as  

1 ,
s

K
b

K
    (3.42) 

where sK  is the bulk modulus of the solid phase comprising the skeleton of the porous 

body. If temperature is reduced below the melting point at constant relative humidity, 

solid crystals gradually invade the pore network. For such a case where the pore network 

is partially occupied by the ice crystals, the free strain in (3.41) can be extended to 

3

3

C C L L

f

b p b p K

K

    


,
  (3.43) 

and, according to [1, 41, 42], mass of water per unit initial volume of the porous body 

associated with (3.40) can be quantified as 

 L L
w om         ,   (3.44) 

where o  represents the initial porosity of the porous material while  

                                                 

2 We choose melting temperature as the reference temperature, and do not consider thermal strain 
due to cooling from ambient temperature to the melting temperature. 
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and 
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with 

1 J J J
o o

J J
s

b S S

M K K

 
  , and  (3.47) 

1 1 1
C LM M M

  . (3.48) 

Here, solid crystals and liquid water are referred to by the superscript J C  and 

J L , respectively. The terms Jb , JM , J , and JK  are the Biot’s coefficient, Biot’s 

modulus, density, and bulk modulus of the phase J , respectively. JS  indicates the 

volume fraction of the pores occupied by phase J  satisfying the constraint 

,

1J

J C L

S


 . (3.49) 

The parameter J  stands for the linear CTE of the phase J . Additionally, 

,

J C L

J C L

b b b b


   ,  (3.50) 

along with 

J Jb S b .  Finally, (3.51) 

    J J J
ob S . (3.52) 
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thermodynamic equilibrium relationships and governing equations of 

thermoporoelasticity of porous media exposed to freezing temperatures. Choice of the 

particular form of liquid-crystal thermodynamic equation will vary depending on the 

nature of the problem.  
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Table 2. Summary of equations for thermoporoelasticity of freezing porous 
media. 

 

Description Equation Restriction
Equation 
reference

Solid-liquid 
thermodynamic 

equation 

-- (3.29)

Assumes ideal solution (3.30)

Assumes ideal solution 
Neglects liquid 

confinement
(3.32)

Neglects liquid 
confinement
Ignores presence of 

dissolved ions

(3.34)

Conservation of 
linear 

momentum

Neglects body force and 
inertia (3.37)

Conservation of 
thermal energy

Neglects point source, 
heat flux associated
with pressure gradient, 
latent heat due to 
skeletal and fluid 
expansion and phase 
transition

(3.39)

Conservation of 
pore mass

Neglects point source
and inertial term

(3.40)

Stress strain 
constitutive 

equation 

Assumes linear 
isotropic material

(3.38)

Free strain 
constitutive 

equation

Assumes linear 
isotropic material

(3.43)

Liquid-crystal 
saturation
restriction

--- (3.49)
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of the aggregate (denoted by superscript a) along with the radial (subscript r) and two 

tangential stress and strain components (subscript t)  in the principal directions are 

obtained by solving the conservation of linear momentum equation, (3.37), for spherical 

coordinate system whereby, 

( )
( )

2
12

0

1 1

1

a r r
a a a

r fa
r

u r dr C r
r

n
e

n

=

=

+
= +

- ò , (4.1) 
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( )
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13
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1 11
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1 1

a ar r
a a a a

r f fa a
r

r dr C
r

n n
e e e

n n

=

=

+ +
=- + +

- -ò , (4.2)
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a r r
a a a

t fa
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e e
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6 3
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a r r
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K r dr K C
r

n
s e

n
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=

-
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and 

( )
( )

( )
( )

2
13

0

1 2 1 21
3 3 3

1 1

a ar r
a a a a a a a

t f fa a
r

K r dr K K C
r

n n
s e e

n n

=

=

- -
= - +

- -ò . (4.5) 

where, K and ν are the bulk modulus and the Poisson’s ratio of the isotropic linear elastic 

porous material, and fe  is the free strain and a function of pore pressure and 

temperature. Here we also defined that 11 22 33andr tT T Ts s= = = . For paste or mortar 

matrix, we write , , , , andr r t r tu e e s s  with superscript p as
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2 2
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p r r p
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C
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r r
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The three unknown integration constants, 1
aC  , 1

pC , and 2
pC , are determined using 

the following three boundary conditions:  

 At the aggregate core-matrix shell interface ( ir R=  ), radial displacement and 

radial stress are the same in the matrix and aggregate, so: 

i i

a p
r rr R r R

u u
= =

é ù é ù=ê ú ê úë û ë û  in order to ensure a continuous displacement field, and (4.11) 

i i

a p
r rr R r R

s s
= =

é ù é ù=ê ú ê úë û ë û  to satisfy static, mechanical equilibrium. (4.12) 

 At the outer surface ( or R= ) of the matrix shell, radial stress, p
rs , is equal to the 

applied stress, apps , so: 

o

p
r appr R

s s
=

é ù =ê úë û .  (4.13) 
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Substituting the integration constants in the equation for bulk strain, 

2kk r te e e= + , for the aggregate core, we obtain 

( )
3

3 1 2app oa a a p p
kk f f f p

p R
X W

Z
e e be e c= + + - + , (4.14) 

and for matrix shell 

( )3 2
3

a p p
app op a p p p

kk f f f p

K Kp R
U V

Z K

c
e e b e e

+
= + + - , (4.15) 

where the angle brackets indicate a volumetric average, such that for a sphere or 

spherical shell 

( ) 2
3 3

3
b

a

x x r r dr
b a

=
- ò .  (4.16) 

Superscripts a and p denote aggregate and matrix, respectively. Coefficients β, χ, 

U, V, W, X, and Z are functions of material constitutive properties and are given in 

APPENDIX A. For the aggregate, the lower limit a of the integral is substituted by 0r=

, and upper limit, b is substituted by ir R= . Whereas, for the matrix shell, a and b are 

replaced by ir R=  and or R= , respectively.  

4.1.2 Unsaturated poroelastic materials 

The fundamental equations needed to model the deformations in concrete 

exposed to freezing conditions, including thermal effects, hydraulic pressure, and cryo-

suction have already been developed by Coussy [35] and Coussy and Monteiro [41, 

42].These equations are modified to determine the stress and strain fields in concrete 
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caused by the porous aggregates under freeze-thaw cycles. For simplicity, the following 

assumptions are made: 

 We assume that the rate of thermal equilibration is orders of magnitude faster 

than the fluid flux such that a uniform temperature field in our model is a 

reasonable approximation. As fast cooling will be shown to lead to greater 

stresses, the assumption of rapid thermal equilibration is deemed acceptable for 

the investigation of damage mechanisms, since damage is more likely with faster 

cooling. 

 Damage accretion with each successive freeze-thaw cycle and subsequent 

changes in poromechanical properties (e.g., permeability, Biot’s coefficient and 

modulus, bulk modulus) are also neglected. In this study, the focus is strictly on 

stress magnitude during a single cooling event. 

 The mass conservation law (3.40) for spherical coordinate system takes the form 

2
2

1 1
div(grad ) ,L Lw

L L L

dm k k d d
p r p

dt r dr drr h h
æ ö÷ç= = ÷ç ÷çè ø

 (4.17) 

Equation (4.17) should be solved for Lp  for both the aggregate and matrix. In 

order to solve for pore liquid pressure in the aggregate and matrix, a Lp -  and p Lp - , the 

following initial and boundary conditions are applied: 

 Initially, the total mass, wm , is equal to 0
Lr f , where, 0f  is the initial porosity of 

the porous material. (4.18) 

 Furthermore, the initial pore pressure is uniform and equal to the atmospheric 

pressure ( atmp ), so ( )
0

.p L
atmt

p p-

=
=  (4.19) 
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 Thereafter, the surface can be subjected to arbitrary applied pressure, appp  such 

that 

( ) .
o

p L
appr R

p p-

=
=   (4.20) 

 At the aggregate-matrix interface, continuity of the pressure requires the liquid 

pressure in the aggregate, a
lp , and that in the matrix, p Lp - , to be the same, i.e.  

( ) ( ) .
i i

a L p L

r R r R
p p- -

= =
=  (4.21) 

 Based on the mass conservation, the liquid flow into the matrix must equal the 

liquid flow out of the aggregate (and vice versa). Therefore,  

.
i i

a L p L
a p

r R r R

dp dp
k k

dr dr

- -

= =

æ ö æ ö÷ ÷ç ç÷ ÷=ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
 (4.22) 

 Due to the radial symmetry, no flow condition occurs in the center, which yields 

0

0.
a L

r

dp

dr

-

=

æ ö÷ç ÷ =ç ÷ç ÷çè ø
 (4.23) 

4.1.3 Air entrained versus non-air-entrained concrete 

Previous studies show that an air-entrained void can act as an expansion reservoir 

and cryo-pump and prevent frost damage [3, 42]. This section describes how the 

proposed model can be used to predict the effect of air entrainment on the cryo-

deformation of the model concrete sphere. This is done according to the guidelines 

proposed by Coussy and Monteiro [41, 42]. Entrained air voids, when properly 

distributed in a saturated freezing porous solid, can accommodate the expelled liquid 

water from the freezing sites, and the liquid water freezes instantly upon entering the air 
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void. Thus, the crystal pressure in the air void is roughly in equilibrium with the 

atmospheric pressure, and the liquid depressurizes to a value of m–  +
L

atmC
p

r
q

r
S D  

(using equation (3.36)), owing to the solid-liquid thermodynamic equilibrium condition. 

If air voids are assumed to be uniformly distributed in the matrix shell with a spacing 

distance of L as shown in Figure 2, the maximum distance that water in the matrix has to 

travel to reach the equilibrium is L (instead of o iR R-  in case of non-air-entrained 

matrix). On the other hand, since there is no entrained air void in the aggregate, the 

maximum distance that water in the aggregate needs to flow is i oR L R+ <   (instead of 

oR  in case of non-air-entrained concrete).  The volume fraction of entrained air is 

accounted for through the value assigned to L  ; as the volume fraction of air 

entrainment increases, the distance L  that water must flow through the matrix to reach 

the air bubbles decreases. 

Accordingly, for air-entrained concrete the boundary conditions, (4.13) and (4.20), 

will be     

( ) 0
i

p
r appr R L

s s
= +

= =  (4.24) 

and 

( ) m–  +
i

L
p L

app atmCr R L
p p p

r
q

r
-

= +
= = S D .  (4.25) 

For non-air-entrained concrete the boundary conditions, (4.13) and (4.20), 

become 
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( ) 0
o

p
r appr R

s s
=

= =  (4.26) 

and 

( )
o

p L
atmr R

p p-

=
= . (4.27) 

Boundary conditions (4.26) and (4.27) are particularly valid for concrete with 

poor/no air-void system near pavement joints and corners where water passes down 

through the joint fracture to increase the moisture content in the base material and the 

bottom of the pavement slab in the vicinity of the joint. There are a few situations where, 

at least where the matrix shell intercepts a concrete surface, these boundary conditions 

are feasible. If, for any reason, either the water has dried from a surface or the surface 

water is not frozen, then the boundary condition is essentially atmp . The water on the 

surface of the concrete might not be frozen for a pavement, for example, because the 

surface has a substantially higher concentration of salts due to road salting or because of 

high traffic movement. In many cases, it is true that the boundary for the simple model 

chosen would more appropriately be a zero flux boundary (if representing a 

representative volume element (RVE) of concrete away from the concrete surface), or a 

zero ice pressure boundary if near an ice-coated surface. However, since D-cracking 

typically appears near pavement corners and joints where concrete is exposed to free 

surface, it seems relevant to model such a situation if one is interested in probing failure 

mechanisms. Furthermore, of the three possible boundary conditions (i.e., atmp , zero 

flux, or ice pressure), a boundary condition of atmp  resulting from a boundary of liquid 

water or vapor yields the greatest aggregate stresses among the possible boundary 
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considered to be 1.2 MPa/°C  [1, 24] and liquid degree of saturation, LS , is determined 

using the van Genuchten model [83] according to 

( )
1

11 1
1 1 ,

m

C m
L L

atmL
m

S p p
r

q
r

-

-
é ù

æ öê úæ öæ ö ÷ç ÷ç ÷çê ú÷÷ç ÷= + D - - -ç ç ÷÷÷ç çê úç ÷÷ ÷çç ÷çÁ S è øè øè øê ú
ë û

 (4.28) 

where, m  is the shape factor relating the pore size distribution, and 0 < m < 1. The 

closer m is to 1, the more narrowly banded the pore radius distribution. Also, (3.34) is 

applied here to obtain the capillary pressure. In other words, pore water freezes over a 

narrow range of temperature when m approaches unity. Á  is related to both the porous 

material geometry and the interface properties and can be determined according to 

*

2
,C L

mR

g
Á=

S
  (4.29) 

where, *R  is the pore radius related to the characteristic cooling Á , and C Lg  is the 

water/ice interfacial energy, and is assumed to be 0.0409 2J/m  [1, 24] CS  is then 

calculated from the constraint  

1 .C LS S= -   (4.30) 

When low liquid pressure is generated, and the term associated with Lp  in (4.28) 

is neglected, equation (4.17) can be solved analytically in the Laplace Transformed 

domain. The pore pressure, stress, and strain results obtained in the Laplace transformed 

domain can then be inverted numerically into the time domain with the Stehfest 

Algorithm [84] using the script from [85] in Mathematica. However, such assumption 

also neglects effect of high pore pressure on the suppression of the freezing of pore 
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water [86], and results thus obtained under predict the crack initiating tensile stress. 

Dependence on LS on Lp  makes (4.17) non-linear, which can thus be solved 

numerically (e.g., using the Crank-Nicolson scheme [87]). In this work, since high pore 

fluid pressures were routinely predicted, the problem was solved numerically via finite 

difference using the Crank-Nicolson scheme. 

Intrinsic permeability of the porous media may be approximated by  

( )0
Lk k S= L , (4.31) 

where, 0k  is the constant intrinsic permeability at full liquid saturation, ( )LSL  is a 

reduction factor accounting for the change in effective pore volume due to the change in 

liquid saturation. ( )LSL  can be determined using the classical Kozeny-Carman equation 

pioneered by Kozeny and later refined by Carman [88] for unsaturated and saturated 

media. The Kozeny-Carman model is developed on the basis of a simple assumption of 

uniform pore size, whereby the entire pore network is characterized by a single 

smoothed wall cylindrical tube with a constant cross sectional area [89]. Due to this 

assumption, there have been serious difficulties in applying the theory to materials with 

wide ranges of pore size distribution [89-92]. In order to determine unsaturated 

permeability of a porous medium containing interconnected pores of various radii, 

Mualem [93] proposed an analytical model using the water retention curve. Later, 

Luckner et al. [94] coupled the van Genuchten model with the Mualem’s work to predict  

intrinsic permeability of the unsaturated porous media as  
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( ) ( )( )
2

1/

0 0 1 1
mmL L Lk k S k S S

æ ö÷ç= L = - - ÷ç ÷÷çè ø
.   (4.32) 

The above equation relates k to the same shape factor, m associated with the pore 

size distribution in equation (4.28). Despite the popularity and widespread use, this 

model assumes a randomly connected pore network with a length proportional to the 

pore radius, and therefore does not represent the real material, which has far more 

complex microstructure with a wide range of pore sizes [95, 96]. Researchers have also 

found that the Mualem-van Genuchten model provides reasonable predictions for high-

permeability soils with permeability varying from 12 2 14 210 m to10 m- - , but considerably 

under predicts the measured unsaturated permeability of the low-permeability compacted 

clay soils [96, 97]. This inadequacy limits applicability of the Mualem-van Genuchten 

model to concrete, since both the aggregate and matrix permeability are typically 

reported to be less than the above mentioned value [13, 98].  Thus, equation (4.32) will 

be utilized to approximate the effect of the reduction in permeability associated with ice 

blocking the pores, but with the understanding that while predicted trends might be 

accurate the rates and magnitudes of predicted stresses are likely highly inaccurate when 

using this model.  

Studies have shown that capillary porosity of cement paste may range from 0.22 

to 0.33 for a w/c of 0.47 and can be as high as 0.51 for a w/c of 0.71, depending on the 

degree of hydration [99]. The volume of pores in most natural aggregates is usually 

under 3% and rarely exceeds 10% [13, 18]. For limestone, intrinsic permeability is 

reported to be 21 21.7 10 m-´ [36], and for sandstone, it can be as high as 15 21.28 10 m-´  
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value [13, 98]. Permeability of a hardened cement paste is reported to have an average 

value of about 20 26 10 m-´  value [13, 98]. Microscopic image analysis has shown that 

most capillary pores in a mortar matrix have an average diameter between 0.02 and 50 

μm [100].  

Typical values for aa  for various aggregates are reported to vary from 

6 14 10 C- -´   to 6 113 10 C- -´   [20], whereas for cement paste, 
pa  is reported to be 

6 110 10 C- -´   to 6 120 10 C- -´   [101], and for concrete, it varies from about 6 to 

6 114 10 C- -´  , with an average value of about 6 110 10 C- -´   [18]. pa  is reported to be 

6 17.4 10 C- -´   for Elgin sand mortar and 6 19.9 10 C- -´   for Ottawa sand mortar [102]. 

Callan reported that limestone-sand mortars have coefficients of 6 17.2 10 C- -´    to 

6 19 10 C- -´  , while most natural siliceous-sand mortars have pa  near 6 110.8 10 C- -´   

[19]. Therefore, 
6 1 6 18 10 C and 10 10 Ca pa a- - - -= ´  = ´  are assumed.  

For both concrete and cement paste, bulk modulus of the solid paste matrix, 
p

sK  

may vary from 337 10 MPa´  to 363 10 MPa´ , depending on the water-to-cement mass 

ratio (w/c) and age [36]. a
sK  is stipulated to be 325.4 10 MPa´  for the aggregate and 

313.9 10 MPa´  for the matrix. K  is then approximated in terms of 0f  using 

2(1 )o sK Kf= -  [80, 103]. To reveal the damage mechanism, the limiting case of 

instantaneous freezing of the completely saturated concrete sphere is considered 

whereby temperature is dropped to -15 °C in a single step and kept constant for several 

hours.  
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Resulting plots are shown in Figure 3 and Figure 4 for analysis of elastic, non-

air-entrained and air-entrained concrete, respectively. A high-porosity ( 0 0.1af = ), low-

permeability ( 21 21.7 10 mak -= ´ ), aggregate with wide distribution of fine pore 

structure ( * 0.08μm, 0.5a pR m= = ) is assumed to be covered by a moderate-porosity 

( 0.2)p
of = , low-permeability ( 21 21 10 mpk -= ´ ) mortar matrix with fine pore structure 

*( 0.08μm, 0.5)p pR m= = . When temperature is dropped below the melting point, pore 

water freezes in the bigger pores, and positive pressure builds up due to the volume 

increase associated with the ice formation and the resulting pore volume change. 

Immediately after the temperature drop, pore liquid pressure at the aggregate-matrix 

interface differs from that in the core of the aggregate owing to the continuity 

requirement as provided by (4.21). Furthermore, pressure at the boundary relaxes 

immediately to atmospheric pressure as the excess water is expelled instantly to the 

surrounding free water body (non-air-entrained) or to the air-void system (air-entrained 

concrete) resulting in an immediate pore pressure gradient across the radius. This 

gradient further increases over time since high positive pressure at the center cannot 

dissipate at once because of the distance that the excess water must travel to the 

boundary to relax it. Moreover, the poroelastic relaxation time can be on the order of 

hours for a material with a very low permeability. This is shown in Figure 3 (a) and 

Figure 4 (a) for non-air-entrained and air-entrained concrete, respectively. As 

temperature is held constant, pore pressure dissipates from the outer part of the body, 

and the boundary contracts. Consequently, the entire body contracts owing to the strain 
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compatibility, and pore pressure increases more than the initial value before it starts to 

decay. This phenomenon by which additional pressure builds up at the center is called 

the Mandel-Cryer effect [104] and is shown in Figure 3 (b) and Figure 4 (b). With time, 

the excess water from inside the body is expelled to the outer periphery to relieve the 

gradient, and the pressure equilibrates everywhere. The over pressurized center takes 

longer to equilibrate (Figure 3 (c) and Figure 4 (c)) and exerts delayed increased tensile 

tangential stress (Figure 3 (d) and Figure 4 (d)) at the boundary of the aggregate.  
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Figure 3. Pore liquid pressure (a) and (b), bulk strain (c), and tangential 
stress (d) distribution in non-air-entrained concrete due to a step change of 
temperature to 15 C-  . Center exhibits over pressurization (b) and subsequent 
expansion (c) due to the Mandel-Cryer effect. As a result, delayed tensile tangential 
stress (d) is developed at the contracting aggregate boundary.  
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Figure 4. Pore liquid pressure (a) and (b), bulk strain (c), and tangential 
stress (d) distribution in air-entrained concrete due to a step change of temperature 
to 15 C-  . As the drained boundary contracts (c), the center over pressurizes itself 
(b) and exhibits delayed expansion (c) and subsequently exerts peak tensile 
tangential stress at the boundary (d). However, with time, as the equilibrium is 
established and the pore water depressurizes, the air-entrained concrete contracts 
(c) as opposed to the non-air-entrained concrete (Figure 3 (c)). 

 

 Water in concrete freezes at a temperature below 0 °C depending on the radius 

of curvature of the air-water interface, which is in turn dependent on the pore diameter 

[105]. This (along with a suppression of the pore water chemical potential associated 
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unfrozen water under freezing temperatures. When the temperature drops, various 

deformations occur for different phases (solid skeleton, ice, and unfrozen water) and 

affect the dimensional change of the body. Water shows highly complex and anomalous 

behavior due to its intra-molecular hydrogen bonding [106]. Water has a nonlinear CTE, 

which reduces increasingly at low temperatures and becomes negative below 0 °C [106]. 

As a result, when water freezes at 0 °C, its volume increases by about 9% under 

atmospheric pressure. Moreover, while cooling at below 0 °C, unfrozen water expands 

whereas the frozen ice contracts. Coussy [1] attributed volumetric freezing deformation 

of a porous material to the following mechanisms: (i) the difference of density between 

the liquid water and the ice crystal, which results in the initial build-up of an in-pore 

pressure at the onset of crystallization; (ii) the interfacial effects arising between the 

different constituents, which eventually govern the crystallization process in connection 

with the pore access radius distribution; (iii) the drainage of the liquid water expelled 

from the freezing sites towards the air voids; (iv) the cryo-suction process, which drives 

liquid water towards the already frozen pores as the temperature further decreases; and 

(v) the thermomechanical coupling between the solid matrix, the liquid water, and the 

ice crystal. As a combined action of all these mechanisms, the porous body may exhibit 

dilation caused by the hydraulic pressure and micro-cryo-suction process, and 

contraction caused by the thermal deformation [1, 41, 42]. Which deformation 

mechanism dominates over the others is dictated by the physical and poromechanical 

properties of the aggregate and matrix, as well as the cooling rate and temperatures. In 

the model considered in this work, initial contraction caused by the thermal deformation 
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is offset by the dilation resulting from the hydraulic pressure and the micro-cryo-suction 

process, and hence expansion is observed. The matrix shell expands more than the 

aggregate due to higher pore volume fraction. However, the outermost fiber of the 

matrix shell contracts due to the immediate equilibration of the pore pressure. As a 

result, a strain differential develops throughout the model concrete sphere. With time, 

dilation disappears as the excess of pore water dissipates and the hydraulic pressure 

decays to reach equilibrium, resulting in a net contraction/expansion in the non-air-

entrained concrete contributed by the competitive action of thermal deformation 

(contraction) and the micro-cryo-suction process (expansion) (Figure 3 (c)). For air-

entrained concrete on the other hand, mortar matrix depressurizes due to the presence of 

air voids which act as cryo-pumps. Therefore, air-entrained concrete shows a net 

contraction (Figure 4 (c)).  

Figure 3 (d) and Figure 4 (d) provide the tangential stress distribution for the 

non-air-entrained and air-entrained concrete, respectively. As water solidifies to ice, the 

crystal sustains a water film between the pore wall and the crystal, allowing it to grow 

and push the wall away. The pressure that ice generates this way creates tensile hoop 

stress and is called crystallization stress [16]. Moreover, the pore pressure gradient 

(Figure 3 (a-b) and Figure 4 (a-b)) created by the various deformations of the constituent 

materials results in strain differential (Figure 3 (c) and Figure 4 (c)), which in turn 

generates a tangential stress gradient in the body. This gradient occurs because the center 

has the peak positive pressure and dilates more than the boundary. The boundary, which 

is at equilibrium with the boundary pressure, on the other hand, does not dilate and thus 
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exerts compression on the center. Similarly, higher dilation at the center than the 

boundary exerts tensile stress at the surface. With time, as the matrix shell starts to 

contract more than the aggregate core due to the pore water dissipation, over-

pressurization occurs at the center, induced by the Mandel-Cryer effect. This in turn 

results in high tensile stress at the aggregate-matrix interface and high compressive 

stress at the center. An initial peak stress of around 20 MPa (Figure 3 (d)) is predicted by 

the model at the outermost fiber of the matrix by the instantaneous cooling of the 

material to 15 C-  , which is unlikely to occur in reality. In reality, the cooling rate is 

much slower than the rate assumed here (0.8~0.9 ºC/hr [45]) and is incapable of 

developing this high stress. To better represent realistic cooling conditions, temperature 

is reduced gradually to 15 C-   at a rate of 1 ºC/hr, and the resulting plots are shown in 

Figure 5 and Figure 6 for non-air-entrained and air-entrained concrete, respectively. At 

time 3 hrt »  (Figure 5 (a) and Figure 6 (a)), at which point a significant amount of pore 

water pressure is dissipated from the matrix shell, over-pressurization at the center may 

still sustain delayed  tensile tangential stresses (Figure 5 (d) and Figure 6 (d)) in the 

aggregate-matrix interface, which appears as a hump in the plots before 5 C-   is 

reached. This hump vanishes when high-permeability and/or low-porosity aggregates are 

used.
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Figure 5. Pore liquid pressure (a) & (b), bulk strain (c), and tangential stress (d) distribution for non-air-
entrained concrete for a gradual change of temperature at a rate of 1 C/hr-  . Peak tensile stress (short dashed line in 
(d)) is developed at the aggregate boundary due to the Mandel-Cryer effect induced by over pressurization (long 
dashed line in (b)) and delayed expansion of the center (long dashed line in (a)). 
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Figure 6. Pore liquid pressure (a) & (b), bulk strain (c), and tangential stress (d) distribution for air-entrained 
concrete for a gradual change of temperature at a rate of 1 C/hr-  . Peak tensile stress (dotted line and solid line in (d)) 
is developed at the matrix due to the Mandel-Cryer effect induced by over pressurization (long dashed line in (b)) and 
delayed expansion of the center (long dashed line in (c)) which is analogous to the behavior of non-air-entrained 
concrete. For air-entrained concrete, water can reach the escape boundary faster than the non-air-entrained concrete 
because of the air-void system. Consequently, air-entrained matrix shrinks more than the non-air-entrained matrix, 
and causes tensile stress in the mortar that may initiate cracks in the interfacial transition zone (ITZ) over successive 
freeze-thaw cycles.
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Table 3. Material properties used for sensitivity analysis where, 0f  is the porosity, m  is the shape factor in the 

van Genuchten model [27] relating to the pore size distribution, k  is the permeability, a  is the coefficient of thermal 
expansion, and *R   is the pore radius related to the characteristic cooling. Superscripts, a  and p  denote aggregate 

and matrix, respectively. 

Effect of: 

Aggregate Matrix 
Max. 
agg. 
size 

0
af  am  ak  aa  *

aR  0
pf  pm  pk  pa  *

pR  

m (in) m2 °C-1 μm m2 °C-1 μm 

Agg. pore 
proper-ties 

0.025 
(1) 

0.1 0.5 1.7×10-21 

8×10-6 

0.08 

0.2 0.5 1×10-21 

10×10-6 

0.08 

0.1 0.4 1.7×10-21 0.08 
0.1 0.5 1.7×10-21 0.1 

0.003 0.5 1.7×10-21 0.1 
0.003 0.5 1.7×10-18 0.1 

0.1 0.5 1.7×10-18 0.1 

Agg. size 

0.025 
(1) 

0.1 0.5 1.7×10-21 0.08 
0.019 
(0.75) 
0.012 
(0.5) 

Paste pore 
proper-ties 

0.025 
(1) 

0.1 0.5 1.7×10-21 0.08 

0.2 0.5 1×10-21 0.2 
0.3 0.5 1×10-21 0.2 
0.3 0.5 1×10-21 0.08 
0.3 0.5 1×10-19 0.5 

CTE 
0.012 
(0.5) 

0.1 0.4 1.7×10-21 
8×10-6 

0.08 0.2 0.5 1×10-21 0.08 
6×10-6 

Cooling rate 
0.025 

(1) 
0.1 0.5 1.7×10-21 8×10-6 0.04 0.2 0.5 1×10-21 0.04 
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4.4.1 Effect of aggregate pore structure 

Based on the previous studies on the aggregate response under freezing 

conditions, the following classes of aggregates are considered for analyzing the proposed 

model: 

 High-porosity ( 0 0.1af = ), low-permeability ( 21 21.7 10 mak -= ´ ) aggregate with 

fine pores and narrow pore size distribution ( * 0.08μm and 0.5a aR m= = ).  

 High-porosity ( 0 0.1af = ), low-permeability ( 21 21.7 10 mak -= ´ ) aggregate with 

fine pores and relatively wide pore size distribution ( * 0.08μmaR =  and 

0.4am = ).  

 High-porosity ( 0 0.1af = ), low-permeability ( 21 21.7 10 mak -= ´ ) aggregate with 

coarse pores and narrow pore size distribution ( * 0.1μm and 0.5a aR m= = ).  

 Low-porosity ( 0 0.003af = ), low-permeability ( 21 21.7 10 mak -= ´ ) aggregate 

with coarse pores and narrow pore size distribution ( * 0.1μm and 0.5a aR m= = ).  

 Low-porosity ( 0 0.003af = ), moderate-permeability ( 18 21.23 10 mak -= ´ ) 

aggregate with coarse pores and narrow pore size distribution ( * 0.1μm andaR =

0.5am = ).  

 High-porosity ( 0 0.1af = ), moderate-permeability ( 18 21.23 10 mak -= ´ ) 

aggregate with coarse pores and narrow pore size distribution ( * 0.1μm andaR =

0.5am = ).  

 



 

66 

 

For the above six cases, a 0.0254 m (1 inch) diameter aggregate is assumed to be 

embedded in a cement paste matrix with fine pore structure ( * 0.08pR mm= and 

0.5pm = ), porosity of 0 0.2pf = , and permeability of 21 21 10 mpk -= ´ . Both air and 

non-air entrained concrete are considered. In addition, the following material properties 

are assumed: 3 325.4 10 MPa, 13.9 10 MPaa p
s sK K= ´ = ´ , 6 18 10 Caa - -= ´  , 

6 110 10 Cpa - -= ´  and 0.2a pv v= = . Temperature is decreased to -15 °C at a cooling 

rate of 1 °C/hr. The resulting plots are provided in Figure 8. 

For the aggregates with high volume of fine pores with low permeability, the 

tangential stress developed at the outermost fiber of the aggregate adopts a hump shape 

imposed by the Mandel-Cryer effect, and therefore exhibits a high value before -5 °C is 

reached. Therefore, high-porosity, low-permeability aggregate is found to be susceptible 

to D-cracking for small temperature cycles, which is in accord with previous findings 

[11, 13]. On the other hand, for the aggregates with low porosity and/or high 

permeability, peak tensile stress reduces significantly, because low aggregate porosity 

creates less hydraulic pressure, and high permeability allows quick dissipation of pore 

pressure. It should be added here that high-porosity, high-permeability aggregates with 

open pore structure resemble lightweight aggregates, which proved beneficial under 

freeze-thaw cycles with improved durability [108, 109].  
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Figure 8. Effect of aggregate pore properties on the peak tensile stress. At a 

temperature above -5 °C, due to Mandel-Cryer effect, high-porosity, low-
permeability aggregates exhibit peak tensile tangential stress at the boundary. 
Whereas, low-porosity and/or high-permeability aggregates do not show such peak 
stress because high permeability allows quick pore pressure relaxation to the 
escape boundary, and low-porosity reduces the impact of the hydraulic pressure. 
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4.4.2 Effect of aggregate size 

To investigate the role of maximum aggregate size on damage propensity, high-

porosity ( 0 0.1af = ), low-permeability ( 21 21.7 10 mak -= ´ ) aggregate with fine pores 

and wide pore size distribution ( * 0.08μm and 0.5a aR m= = ), which is expected to be 

vulnerable to D-cracking is considered.  The diameter of the aggregate is changed to 

0.013 m (0.5 inch) and 0.019 m (0.75 inches) to examine if it improves or deteriorates 

the aggregate performance under freezing temperatures. The comparative effect of the 

aggregate size reduction on the peak stress in the aggregate-matrix interface is shown in 

Figure 9. It is seen that reducing the aggregate size proves beneficial and reduces 

damage propensity by dissipating the Mandel-Cryer effect quickly. This result agrees 

well with the previous empirical model and experimental findings [11, 17]. Larger 

aggregates with high porosity and high permeability delay the pore pressure relaxation 

time, and thus exhibit high stress at the aggregate-matrix interface. This may in turn 

create cracks in the matrix shell, where fatigue tensile stress exceeds the fatigue 

resistance of the matrix. Although such freeze-thaw damage originating in the cement 

matrix resembles the cracking caused by nondurable coarse aggregates, it is not 

considered D-cracking [45]. However, development of cracks in the matrix may alter the 

stress state and help initiate and accelerate D-cracking during the successive freeze-thaw 

cycles when unsound aggregates are present in the concrete. In general, it can be 

concluded that the use of a small aggregate is beneficial because the harmful tensile 

tangential stresses at the boundary of the aggregate and the matrix are relaxed quickly 

due to the short travel path to the escape boundary.  
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Figure 9. Effect of aggregate maximum size on the peak tensile stress. 
Reduction in aggregate size from 0.0254 m (1 inches) to 0.0127 m (0.5 inches) 
proves beneficial for a high-porosity, low-permeability aggregate and likely reduces 
damage propensity, which agrees well with the previous empirical findings [11].   
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4.4.3 Effect of paste or mortar pore structure 

Matrix pore properties such as porosity, permeability, and pore size distribution 

contribute significantly towards the freezing damage of concrete. It is seen from Figure 8 

and Figure 9 that at very low temperatures, an air-entrained matrix can undergo tensile 

stress at the ITZ (interfacial transition zone) owing to thermal contraction, and provoked 

by the pore liquid depressurization. To investigate the effect of the matrix properties on 

the tensile stress development, several combinations of matrix pore properties are 

considered and resulting plots are shown in Figure 10. It is observed that matrix pore 

properties do not have a substantial influence on the tensile stress at the aggregate 

boundary. However, tensile stress at the ITZ increases with time as porosity increases 

and pore size decreases. High porosity of the matrix creates high pore pressure at the 

beginning. As a result, matrix boundary that contracts due to the presence of the air 

voids initially exerts compressive stress at the ITZ, which quickly turns into tensile 

stress triggered by the over pressurization of the aggregate center. Tensile stress is 

reduced when a majority of the pores have large diameter, and pore water freezes over a 

narrow range of temperature. Although large pores with uniform pore size distribution 

expedite pore water freezing and creates high hydraulic pressure at the beginning, such 

pores also reduce the amount of expelled water (Figure 11), and moderate the damaging 

tensile tangential stress at the ITZ at a lower temperatures. Analogous results are 

obtained by Scherer [15] where crystallization stress is reported to be low for large 

pores. In contrast, as documented by Jackson and Chalmers [110],  severity of frost 

heave increases for fine soils with small pores. 



 

71 

 

4.4.4 Effect of coefficient of thermal expansion (CTE) 

High-porosity ( 0 0.1af = ), low-permeability ( 21 21.7 10 mak -= ´ ), fine-pore-

structured ( * 0.08μm and 0.4a aR m= = ) 0.013 m (0.5 inch) diameter aggregates with two 

different thermal expansion coefficients 6 1 6 16 10 C and 8 10 C- - - -´  ´   are considered for 

simulations on the effect of CTE on stress development. pa  of the air-entrained mortar 

matrix is assumed to be 6 110 10 C- -´  . Other material properties are prescribed as 

following: * 0.08 , 0.5,p pR m mm= = 0 0.2,pf =  21 21 10 m ,pk -= ´  

3 325.4 10 MPa, 13.9 10 MPaa p
s sK K= ´ = ´ , and 0.2a pv v= = . As shown in Figure 12, 

due to high CTE difference between aggregate and matrix, the much greater contraction 

of the matrix versus the aggregate results in high tensile stress at the ITZ4. Similarly, 

peak tensile tangential stress can be found at the aggregate boundary if the aggregate has 

a greater CTE than the matrix shell. Analogous results were shown by Callan [19] for 

spherical inclusions with the maximum stress being generated at the aggregate-matrix 

interface. Therefore, increase in the difference between CTE of the matrix and aggregate 

(matrix CTE is higher than aggregate) may substantially reduce concrete durability due 

to increasing tensile tangential stress in the ITZ. In the same way, severe D-cracking is 

expected if aggregate CTE is significantly higher than the matrix. 

                                                 

4 At lower temperatures, for air-entrained concrete, because the matrix cover is so thin almost 
uniform stress is developed everywhere. 
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Figure 10. Effect of matrix pore properties on the maximum tensile stress in 
the ITZ for air-entrained concrete. Tensile tangential stress decreases if the matrix 
pore size increases, and porosity decreases.  
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Figure 11. Effect of pore characteristics on liquid saturation. Large pores 
with uniform pore size distribution reduce the amount of expelled water. The closer 
mp is to 1, the more narrow-banded the pore radius distribution. In other words, 
pore water freezes over a narrow range of temperature when mp approaches unity. 
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Figure 12. Effect of different CTE on the peak tensile tangential stress in the 
ITZ for air-entrained concrete. High difference in the CTE between the aggregate 
and the matrix may cause high tangential stress in the ITZ, with the stress 
magnitude progressively increasing as temperature decreases below the melting 
point. 

4.4.5 Effect of cooling rate 

Studies have shown that the freezing rate has a major influence on the severity of 
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6 1 6 16 10 C , 10 10 Ca pa a- - - -= ´  = ´  , and 0.2a pv v= = . The resulting plots are 

shown in Figure 13. It is found that the high cooling rate correlates with high initial 

dilation. This higher initial dilation occurs because the higher the cooling rate the slower 

the pore pressure dissipation, and thus the greater the Mandel-Cryer effect. Therefore, 

rapid cooling is expected to cause more damage than the slow freezing of the material, 

which is in accord with the findings of [111, 112], where reduced freeze-thaw durability 

was found for rapid freezing and thawing laboratory tests.  

At very low temperatures, the model concrete sphere shows constant contraction 

regardless of the cooling rate, probably because at such low temperatures, the hydraulic 

pressure is entirely dissipated, and the resulting contraction is caused by the thermal 

contraction (non-air-entrained) or cryo-pumps (air-entrained), and depends solely on the 

material properties. For the air-entrained concrete, a high thermal contraction is seen 

with time. A recent study by Liu et al. found identical results for a concrete specimen 

containing 3% entrained air voids exposed to surface water without any salt. High 

thermal contraction in the air-entrained concrete can be attributed to the liquid 

depressurization induced by the air voids, which act as expansion reservoirs and cryo-

pumps [42]. However, as aggregates do not have entrained air voids, high contraction in 

the matrix may cause a high differential strain gradient in the concrete composite 

resulting in high tensile tangential stress in the matrix. This high stress in the matrix may 

in turn initiate cracks in the ITZ making air-entrained concrete susceptible to thermal 

cracking, at least when cooled to very low temperatures. Although numerous researchers 

have proved that air-entrained voids are beneficial against freezing damage, this result is 
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unfrozen water. The model trends agree well with experimental findings obtained from 

literature. The most relevant results found from this study are: 

 The model indicates that for both air-entrained and non-air-entrained concrete, 

destructive tensile stress may be triggered at the aggregate-matrix boundary, and 

the damaging stresses are enhanced by the Mandel-Cryer effect.  

 The high-porosity, low-permeability aggregates are the most susceptible to 

freezing damage.  

 An increase in aggregate size intensifies the damage propensity by increasing the 

tensile tangential stresses developed in the aggregate boundary. 

 Since aggregates do not contain any entrained air bubbles, excessive contraction 

of the air-entrained mortar matrix compared to the aggregate may cause high 

tensile stresses in the aggregate matrix boundary. 

 The higher the cooling rate, the greater the hydraulic pressure developed in the 

aggregate core. 

 Significant tensile stresses may also be exhibited in the aggregate-matrix 

interface if the difference between the CTEs of the aggregate and matrix is high.  

.  
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5 DETERMINING OPTIMUM AIR VOID PARAMETER5 

 

The frost resistance of concrete is a function of the concrete constituent 

properties, entrained air void system parameters, and environmental exposure history. 

However, only a single maximum value for the void spacing factor is specified for all 

types of concrete by code writing bodies for successful protection against freezing 

damage. The advent and utilization of new materials over the recent years warrant 

reevaluation of the validity of this single pass/fail criteria established more than 50 years 

ago. In this section, the poromechanical model developed in section 4.1, has been used 

to predict efficiency of the air void system in various concrete mixture designs involving 

modern materials, such as light weight aggregate (section 5.1.2), low w/c, and 

supplementary cementitious materials (SCMs) (section 5.1.3). Effect of environmental 

exposure has also been investigated and presented in section 5.1.4. 

For the non-air entrained concrete, the thickness of the mortar cover (Ro − Ri) 

covering the aggregate particle (radius Ri) (Figure 2) is determined as described in 

section 4.2 using the ACI 211.1 mixture design specification of the required dry rodded 

aggregate volume fraction and the assumption of spherical aggregate geometry. To be 

more specific, the radius of the aggregate core, Ri in Figure 2, corresponds to half of the 

maximum aggregate size used in the concrete mixture. Once the aggregate volume 

fraction is known, the mortar volume fraction can be determined by subtracting the 

                                                 

5 Reprinted with permission from Rahman, S. and Z. Grasley, Determining optimum air-void 
spacing requirement for a given concrete mixture design using poromechanics. International Journal of 
Pavement Engineering, 2016: p. 1-10. Copyright 2016 Taylor & Francis. 
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various aggregates are reported to vary from 6 14 10 C    to 6 113 10 C    [20], whereas 

for cement paste, 
p  is reported to be 6 110 10 C    to 6 120 10 C    [114] and for 

concrete, it varies from about 6 to 6 114 10 C   , with an average value of about 

6 110 10 C    [18]. For siliceous sand mortars CTE can vary from 10 to 6 112 10 C   , 

whereas for the limestone sand mortar this value can range from 10 to 6 15 10 C    [19, 

20]. Since the aim of this study is to evaluate the significance of concrete material 

properties on the effectiveness of the air void spacing factor a CTE of 6 17 10 C    has 

been stipulated for both the aggregate and mortar matrix. If there is a significant 

difference in the CTEs of the aggregate and that of mortar, high tensile stress is expected 

to develop in the aggregate boundary or ITZ. A detail discussion is dedicated to this 

issue in section 4.4.4. In addition, bulk moduli of the solid aggregate and sand mortar 

matrix are considered to be 340 10 MPa  and 330 10 MPa , respectively. The mixture 

designs and other related input parameters studied in this section are listed in Table 4. 
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Table 4. Mixture design input parameters and the related material properties. 

Mix 
Design 

Aggregate Mortar 

Air-void 
system 

input para-
meter 

Environ-
mental 

exposure 

MD 

Max. 
agg. 
size 
(in) 

0
af  ak  am  *

aR  Agg. 
type 

0
pf  pk  pm  *

pR  
Mortar type 

Spacing 
factor 

Cooling 
rate °C/h 

in  m2  μm  m2  μm mm °C/h 

MD1 

0.75 0.1 1E-21 0.51 10 
Lime-
stone 

0.2 1E-21 0.51 0.1 Moderate w/c 

No air 

2 MD2 0.8 

MD3 0.2 

MD4 

0.75 0.2 1E-19 0.51 0.1 
Light 

weight 
agg. 

0.35 1E-20 0.51 0.08 High w/c 

0.2 

 
MD5 0.8 

MD6 No air 

MD7 0.75 0.05 1E-20 0.51 0.1 

Trap rock 0.2 1E-21 0.51 0.05 Moderate w/c 

0.2 
2, 5, & 

10 

MD8 0.35 0.05 1E-20 0.51 0.1 0.2 10 

MD9 0.75 0.05 1E-18 0.51 0.1 0.2 10 
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Table 4. Continued 

Mix 
Design 

Aggregate Mortar 

Air-void 
system 

input para-
meter 

Environ-
mental 

exposure 

MD 

Max. 
agg. 
size 
(in) 

0
af  ak  am  *

aR  Agg. 
type 

0
pf  pk  pm  *

pR  
Mortar type 

Spacing 
factor 

Cooling 
rate °C/h 

in  m2  μm  m2  μm mm °C/h 

MD10 

1.25 0.01 1E-21 0.51 0.04 
Lime-
stone 

0.1 5E-21 0.51 0.05 
MN1: MnDot 

standard, 15% Fly 
ash, 4% air 

0.228 

2 

MD11 0.1 5E-21 0.51 0.05 
MN2: Same as 

MN1, 15% fly ash, 
2.7% air 

0.306 

MD12 0.1 5E-21 0.51 0.05 
MN3: Same as to 

MN1, 15% fly ash, 
2.5% air 

0.78 

MD13 0.2 1E-20 0.51 0.1 
MN4: Same as 

MN1, no fly ash, 
2.5% air 

0.344 

MD14 0.05 1E-21 0.51 0.03 
MN6: Similar to 
MN1, 30% C fly 

ash, 2.5% air 
0.261 

MD15 0.05 1E-21 0.51 0.01 
MN6-finer pores: 

Same as MN1, 30% 
C fly ash, 2.5% air 

0.261 
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5.1.1 Effect of air entrainment 

Figure 14 illustrates the simulated pore liquid pressure (a) –  (c), bulk strain (d) –  

(f), and tangential stresses (g) – (i)  for three mixture designs containing variable air 

contents: 1) 0 % air content, 2) marginal air entrainment system with spacing factor of 

0.8 mm and 3) recommended air entrainment system with a spacing factor of 0.2 mm. 

The concrete sphere is cooled to –10 °C at a rate of 2 °C/h. It is evident that the decrease 

in bubble spacing decreases damage propensity by quickly relaxing the pore pressure 

and reducing the magnitude of the peak tensile tangential stresses developed at the 

matrix outer boundary. In the non-air-entrained concrete, since there are no air voids 

present in the mortar matrix, high hydraulic pore pressure of around 9 MPa is developed 

at the aggregate center resulting in dilation of the aggregate, a phenomenon known as 

Mandel-Cryer effect in oil and gas industries (see section 4.2 for a detailed discussion). 

The pore pressure in this case is determined by the atmospheric pressure at the concrete 

boundary. As a result, the mortar squeezes the expansive aggregate particle, and peak 

tensile tangential stress of about 0.6 MPa is developed at the outer boundary of the 

mortar matrix. This tangential stress, over successive freeze thaw cycles, can cause 

damage to the concrete pavement. The hydraulic pore pressure can be reduced if air 

voids are provided in the mortar matrix where the expelled water from the frozen 

capillary pores is relieved and freezes instantaneously without inducing crystal growth 

pressure. The magnitude of the hydraulic pressure can be significantly reduced by 

lowering the air void spacing and reducing the distance that the water has to travel from 

the expelled sites. A reduction of around 4 MPa of hydraulic pressure can reduce the 
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crack initiating tensile stresses from 0.6 MPa (non-air-entrained concrete Figure 14 (g))  

to around 0.3 MPa (Figure 14 (i)) if a spacing factor of 0.2 mm can be attained. It is also 

seen that the reduction in the spacing factor accompanies decreased expansion at the 

aggregate core and a slight increase in contraction as concrete is cooled to −10 °C. 

Average bulk strain of these three mixture designs are simulated and presented in Figure 

14 (j). For the non-air-entrained concrete, initial contraction caused by the thermal 

deformation of various phases (ice, water, aggregate and mortar matrix) is offset by the 

dilation resulting from the hydraulic pressure and the micro-cryo-suction process, and 

hence expansion is observed everywhere in the sphere. However, due to the 

instantaneous equilibration of the pore pressure at the outermost boundary, the mortar 

shell starts contracting and a strain gradient develops across the concrete sphere. As the 

excess of supercooled water dissipates to the surface of the sphere (non-air-entrained 

concrete) or that of the air void (air-entrained), a net contraction is observed. For air-

entrained concrete, due to the presence of uniformly distributed air bubbles, which 

freeze the expelled water immediately, mortar matrix depressurizes itself and adds to the 

overall contraction of the constituent phases. Consequently, a decrease in air-void 

spacing reduces the dilation of the saturated concrete which is consistent with the results 

published by Kang et al. [27]. A reduction in air void spacing also increases the ultimate 

contraction of the concrete composite as shown in Figure 14 (j). 
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Figure 14. Modeled pore pressure ( )Lp , bulk strain ( )kke , and tangential stresses ( )ts   for non-air-entrained 

concrete (mixture design 1 (MD1)), and air-entrained concrete with 0.8 mm (MD2) and 0.2 mm (MD3) spacing factor. 
Superscripts a and p denote aggregate and mortar matrix, respectively. qD  is the change in temperature and measured 
as mq q-   . Here, mq  is the melting temperature (i.e., 0 °C), and q  is the current temperature. 
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5.1.2 Effect of light weight aggregate on freezing stresses with variable spacing factors 

Tangential stress distributions in concrete containing high-porosity, high-

permeability,  aggregates (characteristics of light weight aggregates), for three different 

scenarios (concrete with 0.2 mm spacing factor (MD4), 0.8 mm spacing factor (MD5), 

and non-air-entrained concrete (MD6)) are presented in Figure 15. It has been observed 

that, although non-air-entrained light weight aggregate concrete can sustain mild winter 

where temperature drops to around – 5 °C Figure 15 (a), it can cause high tensile stresses 

at the aggregate center if used in very harsh winters where temperature decreases below 

– 10 °C Figure 15(b). Similar results are demonstrated by several studies performed on 

light weight aggregate concrete exposed to severe freezing suggested by the ASTM 

C666 procedure [115, 116]. The peak tensile stresses expected in harsh winters can be 

mitigated using air entrainment. However, for small freeze-thaw cycles, with 

temperature above – 5 °C, air voids can cause high tensile tangential stress at the matrix 

outer boundary, and may prove less efficient than the non-air-entrained concrete in 

mitigating freezing damage. Since the air entrained mortar depressurizes as the air voids 

act as expansion reservoirs and cryo pumps [42], the mortar shell contracts. 

Subsequently, the mortar shell experiences tensile tangential stress as it constrains the 

aggregate that does not contain any air filled pores. The resulting high stress may 

propagate to the ITZ if the spacing factor is further reduced (Figure 15(a)) and may in 

turn initiate cracks in the ITZ, making air-entrained concrete susceptible to thermal 

cracking. A similar conclusion was deduced by Verbeck and Landgren (1960), who 

hypothesized that high-porosity, high-permeability aggregates with coarse pore structure 
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can cause failure to the surrounding mortar by building high external pressure 

[11].Development of high stress in the aggregate center, as shown in Figure 15 (b), is 

also in good agreement with the experimental studies performed by Mao et al (2009). 

Their work on the damage analysis of lightweight aggregate concrete shows that micro-

cracks originate in the aggregate particle and spread to the nearby mortar when exposed 

to harsh freeze-thaw tests [116]. The modeling also suggests that to effectively protect 

light weight aggregate concrete in harsh winters, it is crucial to achieve the 

recommended air void spacing factor since high spacing factor will cause high tensile 

tangential stresses at the aggregate center.  

5.1.3 Effect of SCM and low w/c on freezing stress with variable bubble spacing factor 

SCMs are widely used in the majority of the concrete mixtures in highway 

pavements, and there is evidence that SCMs adversely react with some air entraining 

admixtures, thus affecting the air void system parameters. A high dosage of SCM tends 

to induce higher spacing factor than the air-entrained concrete without any SCM [117]. 

The mixture designs selected for this study are adopted from the Strategic Highway 

Research Program (SHRP) report that highlighted the durability responses of several 

concrete specimens with varying amount of SCMs (added as a partial replacement of 

cement by mass) and marginal air content [107]. The corresponding mixture design 

parameters are listed in Table 4 for MD10-15. All these specimens showed a minimum 

durability factor of 95 despite of exhibiting spacing factor more than the maximum 

requirement [107]. The resulting stress analyses for these mixture designs are shown in 

Figure 16. A cooling rate of −2 °C/h is used to reduce the temperature to –20 °C. It is 
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seen that the mixture designs MD10 – MD14 showed similar peak tensile stresses at the 

paste inner and outer boundaries, which is consistent with the findings of the original 

report. However, MD15 was predicted to exhibit twice as much stress as the other 

mixture designs, suggesting that very fine pores (pore radii < 0.05 μm for both the 

aggregate and mortar matrix, Table 4, MD15) may adversely affect durability of 

concrete by inducing high crystallization pressure for prolonged period and causing 

extended peak tensile stresses. Similar projections of durability are also possible for high 

contents of SCMs, which implies that there is an optimum amount of SCMs that 

provides good durability. This optimum SCM content is reported to be 15%, above 

which further increases in SCMs were claimed to reduce durability unfavorably by 

adversely affecting the moisture movement within the pore space [107, 117]. Numerous 

studies [50, 51, 53-55] on high strength concrete with low w/c ratio also confirmed the 

modeled trends presented herein; i.e. the required spacing factor for low-porosity, low-

permeability mortar or cement matrix with fine pores may be higher than the durability 

requirement of a maximum spacing of 0.2 mm. Thus, the ACI 318 specification of 

minimum air content may be overly conservative for low w/c, high strength concrete 

with or without the addition of SCMs. 
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Figure 15. Effect of light weight aggregate and air entrainment on the tangential stresses ( )ts   for MD4, MD5, 

and MD6. 
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Figure 16. Effect of SCMs and the air void spacing factor on the tangential 
stresses ( )ts   developed in the concrete sphere (MD10 −15). Superscripts a and p 

denote aggregate and mortar matrix, respectively. 
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5.1.4 Effect of environmental exposure  

To study the significance of the magnitude and duration of the minimum 

temperature to which concrete is exposed, three different cooling rates have been 

studied: 2 °C/h, 5 °C/h, and 10 °C/h. The resulting average bulk strain, maximum pore 

liquid pressure generated at the aggregate center, and the peak tensile stress developed at 

the mortar outermost boundary are reported in Figure 17. The spacing factor of 0.2 mm 

is maintained for all three mixtures. As seen in the figure, a slight expansion is observed 

for high cooling rates as the concrete sphere is cooled to −5 °C. This expansion is due to 

the limited time available for pressurized water to travel to the nearest air void 

associated with the faster cooling rate. At very low temperatures, a constant contraction 

is observed that is independent of the cooling rate. The reason behind this uniform 

contraction is probably that at low temperatures all excess pore pressure is completely 

dissipated, and the resulting contraction caused by the thermal deformation of various 

phases and depressurization of the expelled water in the air voids is a function of 

material constituent properties, and does not depend on the cooling rate. This 

observation substantiates the claim that existing, standardized laboratory tests that 

incorporate very high cooling rates in assessing concrete durability are overly severe and 

thus may under predict durability of certain concrete mixture designs. Furthermore, the 

results depict that the maximum recommended spacing factor may not be adequate for 

cold regions where temperature drops at a very high rate. An efficient way to mitigate 

this problem would be to adopt a concrete mixture design that utilizes high permeability 

aggregates and/or smaller sized aggregate particles that would quickly dissipate the 
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Figure 17. Effect of cooling rate on the average bulk strain ( )kke , pore 

pressure at the aggregate center ( )a Lp - , and peak tangential stresses ( )p
ts

developed at the matrix outer boundary for the mixture designs, MD7 with cooling 
rate of 2 °C/h, 5 °C/h, and 10 °C/h. 
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Figure 18. Effect of aggregate size and permeability on the average bulk 
strain( )kke , pore pressure at the aggregate center ( )a Lp - , and peak tangential 

stresses developed at the matrix outer boundary ( )p
ts  exposed to a cooling rate of 

10 °C/h (MD7, MD8, MD9, & MD10).  
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along with 

1C G L

s

K
b b b b

K
     .  (6.2) 

Determination of Cb , Gb  and Lb  is provided along with the state equations 

associated with unsaturated thermo-poro-elastic material in APPENDIX B. For a porous 

material partially saturated with a gaseous phase and partially saturated with liquid 

water, the pore liquid pressure provoked by the gas-liquid interface may be expressed by 

the Laplace equation, 

2 G LG L

G L

p p
r


  ,   (6.3) 

where G Lr  denotes the current circumferentially averaged radius of curvature of the gas-

liquid interface formed by the evaporation process, and G L  is the surface energy of the 

gas-liquid interface. Kelvin’s law relates the isothermal pore liquid pressure to the 

current relative humidity, rh  as 

 lnG L
rL

R
p p h

V


  .   (6.4) 

Here, R  represents the ideal gas constant, LV  is the molar volume of the pore liquid. 

Equations. (6.3) and (6.4) combine to give 

 1
ln

2 rL
G L G L

R
h

r V




 .   (6.5) 

Consequently, the liquid saturation, LS , which is the function of the largest pores 

having the approximate entry radius G Lr  can be specified as 
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 L L
G LS S r .  (6.6) 

Once the temperature is reduced below the melting point and pore radius is large 

enough to accommodate crystallization, the capillary pressure on the crystal is dictated 

by the Laplace equation, 

2 C LC L

C L

p p
r


  .  (6.7) 

Therefore, along with the thermodynamic equilibrium between the solid and 

liquid phases governed by (3.36), radius of the crystal-liquid interface, C Lr , can be 

expressed as 

     1 1
1

2
C L L

m m atm
C L C L

p p
r

   


      . (6.8) 

The current liquid saturation can then be determined as the function of the largest 

pores with the entry radius C Lr  that are still filled with liquid water. Thus, 

 L L
C LS S r .  (6.9) 

Crystal saturation can be calculated from the conservation of the overall mass of 

water in all forms (e.g., crystal and liquid, and assuming that the rate of evaporation is 

much slower than the rate of crystallization). If the current liquid mass is 

0
L L L L

t tS    , the current ice mass is 0
C C
tS  ,  the liquid mass at the previous time 

step is 0 1
L L
tS  , and the ice mass at the previous time step is 0 1

C C
tS  , mass 

conservation of water allows us to write 

0 0 0 1 0 1
L L C C L L C C
t t t tS S S S            , (6.10) 



 

wh

res

C
tS

Cu

G
tS

flow

(6.

wa

ent

con

dic

we

pri

wa

liqu

Fig

dep

onl

 

here subscrip

spectively. R

1
C C L

t tS S  

urrent gas sat

1G C L
t tS S  

When c

w towards th

11). Upon en

ater evaporat

tire freezing 

nsidered to b

ctated by the 

et air.   

6

Concre

mary contain

all is directly

uid and vapo

gure 20 (a). T

picted in Fig

ly one direct

pt t  and 1t 

Rearranging (

1

L
L
t C

S



 . 

turation can 

L
t . 

concrete is p

he empty po

ntering these

tes from the b

mechanism 

be bounded b

ice-liquid in

 Concr6.2

te can under

nment of LN

y exposed to 

or barrier an

The appropri

gure 20 (b). S

tion with a st

 denote the 

(6.10), the cu

 

then be dete

artially satur

ores allowing

e empty pore

biggest pore

is shown in 

by ice on all 

nterface as g

rete tank su

rgo significa

NG. In comp

LNG on the

d perlite insu

iate boundar

Such a probl

tress free sur

98 

current time

urrent ice sa

ermined as 

rated, expell

g the expansi

es with bigg

e as dictated 

Figure 19. T

sides and th

given by (3.3

bjected to c

ant drop in te

posite concre

e inside surfa

ulator on the

ry conditions

lem can be m

rface which 

e step and the

aturation can

led water fro

ion caused b

er radius tha

by (6.5), wa

Therefore, th

he equilibriu

36), where ic

cryogenic te

emperature w

ete LNG tank

ace, and wra

e outside sur

s pertaining 

modeled con

gives 

e previous ti

n be written i

om the freezi

by the densit

an the freezin

ater freezes i

he pore liqui

um pressure o

ce is in conta

emperatures

when it is us

ks the prima

apped with c

rface [118] a

to this probl

nsidering def

ime step, 

in the form 

(6.1

(6.1

ing sites can

ty change in 

ng sites, sinc

instantly. Th

id can be 

of the liquid

act with the 

s 

ed as the 

ary concrete 

arbon-steel 

as shown in 

lem are 

formation in 

11) 

12) 

n 

ce 

his 

d is 



 

99 

 

0yy zz   ,  (6.13) 

and 8 

11 0x T   .   (6.14) 

Thus, the nonzero stresses and strains can be determined as 

 
 22 23

1 2
3

1y z fT T K


  



   


  (6.15) 

and 

 
 
1

1kk xx f


  




 


.  (6.16) 

Here,   and   stand for stress and strain, respectively, with subscripts x, y and z 

denoting the three orthogonal directions. The term kk  denotes the bulk (volumetric) 

strain. For the inside surface exposed to cryogenic temperatures, if the temperature 

induced by the cryogenic liquid is termed as cryo  and the reference temperature is 

chosen as 273K (0 C)m   , we can write that 

 0, cryox t   .  (6.17) 

The other side of the wall, on the other hand, assumes limited heat transfer due to 

the perlite insulator such that 

   , ,

P

x d t x d t
x x

 

 

          
,  (6.18) 

                                                 

8 Here, we’ve presumed that the pressure exerted by the LNG on the inner side of the tank is 
negligible. Depending on the depth of the LNG in the tank, this presumption may only apply nearer to the 
top of the tank. 
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where, P  is the temperature in the perlite layer, and d  stands for the thickness of the 

primary concrete containment wall. On the outer boundary of the perlite layer, 

temperature is assumed to be fixed at the reference temperature. 

 

 

Figure 19. Schematics of freezing mechanisms in partially saturated 
concrete 

6.2.1 Pore pressure in the fully saturated concrete 

For the fully saturated non-air-entrained concrete, initial pore liquid pressure is in 

equilibrium with the atmospheric pressure ( atmp ), 

gas water

gas/liquid interface 
with entry radius rGL

gas water
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with entry radius rCL
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expansion of the frozen water

ice

gas waterice
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instantly upon entering the bigger 
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 , 0x t

L
atmp p


 .   (6.19) 

When the temperature is dropped below the melting point, water on the surface will 

freeze immediately setting ice in equilibrium with the atmospheric pressure so that 

 0 ,x t

C
atmp p


 .  (6.20) 

Pore liquid pressure at the interior boundary can therefore be given by the water-ice 

thermodynamic condition (3.36) 

   0,

L
L

m m cryo atmx t C
p p

  
     .    (6.21) 

On the outer surface where the concrete wall is water tight due to the carbon steel liner  

 ,

0
L

x d t

p

x


 
  

.  (6.22) 

In addition to the above mentioned boundary conditions, for the air-entrained 

concrete, due to the presence of the air bubbles, pore liquid pressure is relieved at a 

distance equivalent to the aggregate radius (ri) plus the air bubble spacing ( L  ), and 

therefore can be written as 

 ,iC atmx r L tp p   ,   (6.23) 

such that, to meet the liquid-crystal thermodynamic equilibrium, 

   ,i

L
L

m m atmx r L t C
p p

  
      ,  (6.24) 

with  denoting the temperature at  the air bubble surface. Condition (6.23) implies that 

the displaced unfrozen water freezes instantaneously upon entering the air-voids, and 
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i.e. at 0x  in Figure 20 (b), is reduced at a rate of 0.5 °C/hr [74]down to 150°C  from 

the reference temperature, m ,  taken as 0 C . As a design requirement practiced in field, 

we also consider that the primary concrete wall is insulated by a 1 m thick perlite layer 

[74]. Thermal properties of concrete and perlite used in this simulation are 

1 12W m K ,c     1 10.04W m K ,p     1 10.75 J kg K ,c
pC   1 1J k K87 ,3 gp

pC    

with superscripts c and p denoting concrete and perlite, respectively. In addition, we let 

32400kg m ,c  3100kg mp   as well as * 0.05μm, 0.5,R m  0 0.15,   

19 21.7 10 m ,k    345 10 MPa,sK   6 16 10 C     , and 0.2v  . Furthermore, 

31.79 10 Pa sL    at 0 °C, 31.79 10 MPaLK    and 6 198.77 10 CL       at 10°C  

for supercooled water, and 37.81 10 MPaCK    and 6 151.67 10 CC      at 10°C  

for ice crystals are adopted [1]. Liquid density, L , and crystal density, C , are 

assumed to be 3999.8kg m and 3916.7 kg m  at 0°C, respectively [1]. Additionally, m  

is considered to be 11.2MPa C [1, 16], and liquid degree of saturation, LS , is 

determined using the van Genuchten model [83] as described in section 4.2.  

Intrinsic permeability, being a dominant material characteristic that governs the 

fluid transport in a porous body, affects the pore pressure and the tensile stresses 

substantially, as the liquid in pores transforms into crystals at freezing temperatures 

[119] or gas at constant or elevated temperatures [120, 121]. Relative permeability 

models [88, 93, 94] of unsaturated porous body, whose pore network is gradually 

invaded by solid crystals blocking the pore entry, are based on simple pore geometry and 
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do not represent the complex pore network of real materials, especially those with 

permeability less than 10-14 m2 [90-92, 95-97]. In addition, it is very likely that the 

extensive cooling to cryogenic temperatures, targeted in this work, will induce freezing 

damage creating macropores and lead to much more complex pore network, especially in 

partially saturated concrete where relative permeability is already a function of three 

phases coexisting in the pore network- water, ice, and humid air. Such complex 

permeability cannot be captured accurately using the simple models that are originally 

developed to model two-phase flow, and hence a constant permeability is used in this 

work knowing that the modeled results may inaccurately predict the pore pressure and 

tensile stresses (see section 4.3) obtained with the relative permeability functions 

available in literature. However, as claimed by Powers and Willis [2], ice blockage has 

negligible effect on permeability since the pore blocking effect may be offset by 

microcracking induced during the freezing process. 

Since a high magnitude of pore pressure is expected to be developed as the 

temperature is dropped to 150°C , and pore pressure and liquid saturation are 

interdependent, the Crank-Nicolson [122] scheme is used to numerically solve (3.40) for 

the pore fluid pressure field. For a fully saturated non-air-entrained concrete, boundary 

conditions (6.19) to (6.22) are utilized and the resulting temperature gradient, pore liquid 

pressure field, pore liquid saturation, bulk strains and vertical stress distributions are 

plotted in Figure 21. As we can see from Figure 21 (a), temperature gradient gradually 

increases as concrete is cooled to 150°C,  exhibiting higher temperature at the outer 

boundary than the surface directly exposed to the cryogenic temperature. When water 
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progressively transforms to ice, high hydraulic pressure is developed by the displaced 

unfrozen water due to the volume expansion of ice (Figure 21 (b)). This hydraulic 

pressure increases towards the outer boundary as the distance that the expelled water has 

to travel to the escape boundary increases. Consequently, the freezing temperature for 

ice crystallization at the outermost surface is suppressed by several degrees as shown in 

Figure 21 (c). Maximum expansion is therefore observed at the outer surface, developing 

peak compression. Once this hydraulic pressure dissipates at around  32°C,  almost 

90% of the pore liquid freezes and uniform pore pressure is established everywhere. At 

this point, as most pores contain frozen ice, deformation caused by the thermal 

contraction of the ice and solid matrix surpasses the swelling caused by cryo-suction and 

the thermal expansion of liquid water on cooling (note the negative coefficient for 

supercooled water), and creates a strain gradient with a steady decrease towards the 

outer boundary. This strain gradient presented in Figure 21 (d) is mainly caused by the 

temperature gradient across the concrete wall shown in Figure 21 (a). Accordingly, peak 

tensile stress is developed in the vertical direction at the innermost surface directly 

exposed to cryogenic liquid (Figure 21 (e)).  

For air-entrained concrete, in addition to the boundary conditions applied at the 

two outer surfaces, we assume that air bubbles are uniformly distributed with a spacing 

of 250μm, and equilibrium is locally achieved by the ice boundary pressure at the air 

void surface governed by (6.24).  Due to the presence of air voids, excess pore water 

quickly escapes to these air voids relieving the pore pressure (Figure 22 (a)), and freezes 

instantly. The resulting suction (Figure 22 (b)) draws water from the unfrozen pores to 
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the air-void surface, and expedites crystallization (Figure 22 (c)). Consequently, a 

gradual contraction (Figure 22 (d)) is observed, resulting in steady increase in stresses 

(Figure 22 (e)) along the Y and Z directions.  

6.3.1 Effect of cooling rate 

In order to demonstrate the effect of cooling rate the following material 

properties are assumed: * 0.05μm, 0.5,R m  0 0.15,   19 21.7 10 m ,k    

345 10 MPa,sK   6 16 10 C      and 0.2v  . LNG temperature is reduced at a rate of 

0.5, 1, and 2 °C/hr. Values obtained at the innermost surface ( 0mx ) directly exposed 

to LNG are shown by the solid black lines in Figure 23. Plots with triangular, circular, 

and square markers show results at the reverse side ( 0.4mx ). As expected, identical 

temperature values are obtained for both the non-air-entrained and air-entrained concrete 

for the same cooling rate (Figure 23 (a)). However, high hydraulic pressure (Figure 23 

(b)) is generated for the non-air-entrained concrete because pore liquid has to travel 

greater distance than the air-entrained concrete to relieve the pressure. This high pressure 

suppresses pore liquid freezing temperature (Figure 23 (c)) by several degrees. This 

suppression of crystallization is further elevated by higher cooling rate. Consequently, 

higher expansion is observed for higher cooling rate in non-air-entrained concrete as 

shown in (Figure 23 (d)). Therefore, high pore pressure is expected to develop for high 

cooling rate making concrete vulnerable to compressive failure. Once water in most 

pores freezes, and hydraulic pressure disappears, the porous body starts to contract at an 

accelerated rate. For faster cooling rate, high temperature gradient and high pore 
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Figure 21. (a) Temperature, (b) pore liquid pressure, (c) liquid saturation, 
(d) bulk strain, and (e) stresses in the Y and Z directions in a 0.4 m thick concrete 
(non-air-entrained) wall directly exposed to cryogenic temperature at 0mx . The 
concrete wall is simulated as liquid tight and insulated with perlite layer on the 
reverse side. 
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Figure 22. (a) Temperature, (b) pore liquid pressure, (c) liquid saturation, 
(d) bulk strain, and (e) stresses in the Y and Z directions in a 0.4 m thick concrete 
(air-entrained) wall directly exposed to cryogenic temperature at 0mx . The 
concrete wall is liquid tight and insulated with perlite layer on the reverse side. 
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Figure 23. Effect of cooling rate on  (a) temperature profile, (b) pore liquid 
pressure, (c) liquid saturation, (d) bulk strain, and (e) stresses for non-air-entrained 
and air-entrained primary containment concrete wall. Plots with markers (solid 
and empty triangular, circular and square) represent variables at the reverse side 
of the wall ( 0.4mx ). Solid line shows values at the innermost surface directly in 

contact with the LNG ( 0mx ). 
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6.3.2 Effect of moisture content 

In the preceding section a completely saturated concrete wall is considered, 

which seldom represents the field condition. In reality, when exposed to the surrounding 

environment, a fully saturated concrete body dries out on the surface through 

evaporation of the pore liquid due to the decrease in relative humidity. In order to 

simulate this internal moisture gradient that arises through surface drying, a fully 

saturated concrete strip ( 1LS  ) is considered to be bounded by unsaturated strips with 

0.8LS   on both sides (as shown in Figure 24) such that the initial spatial mean liquid 

saturation is calculated to be 0.90. Furthermore, we assume the same concrete properties 

as before so that * 0.05μm, 0.5,R m  0 0.15,   19 21.7 10 m ,k    

345 10 MPa,sK    6 16 10 C      and 0.2v  . For the unsaturated strips, pore 

pressure is determined as prescribed in section 6.2.2, and for the middle saturated strip, 

pore pressure is determined the same way described in section 6.2.1 with the boundary 

values obtained from that calculated for the adjacent unsaturated strip. The resulting 

plots are shown in Figure 25. At the unsaturated zones, no hydraulic pore pressure is 

developed since the excess water is accommodated by the bigger pores emptied by 

drying. The saturated strip in the middle, however, showed slight increase in the pore 

pressure due to hydraulic expansion. Once this pore pressure is dissipated, and almost all 

pore water freezes, similar pore pressure profile, strain, and stresses to that for air-

entrained concrete are observed. The comparative results for the mean (spatial average) 

pore liquid pressure, liquid saturation, bulk strain, and stresses (along the Y and Z 
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directions) of the partially and fully saturated non-air-entrained concrete and fully 

saturated air-entrained concrete are shown in Figure 26. The mean of a function,  f , is 

obtained through 

0

1 x d
f f dx

d


    .  (6.27) 

Here, d  represents the thickness of the wall. As we can see, the mean peak 

hydraulic pore pressure is partially alleviated by the unsaturated concrete strips on both 

sides, and fully alleviated by the entrained air-bubbles in the air-entrained concrete. 

Also, air-entrained concrete shows less mean contraction than the fully saturated non-

air-entrained concrete developing less mean stress along Y and Z directions. The 

predicted trend of constant rate of contraction for the air entrained concrete follows the 

same trend as experimental data (down to about −55 °C) presented by [113]. However, 

Sun and Scherer [123] observed a significant deviation of the predicted results from the 

experimental data for air entrained mortar cooled below −25 °C. Below this temperature, 

the measured strain was observed to plateau, whereas the calculated strain kept 

increasing as shown in Figure 26 (c). The authors [123] ascribed this discrepancy to 

rupturing of liquid water pockets, reduced suction of the air voids caused by blockage of 

the surface pores on the air voids and/or to the high hydraulic pressure triggered by the 

gradual propagation of macroscopic ice into the mesopores. However, as previously 

mentioned, the modeled strain qualitatively agrees with the measured strain reported by 

[113], indicating that the poroelastic theory adopted in this work is adequate in modeling 

the deformation of saturated air-entrained concrete cooled to cryogenic temperatures. 
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Figure 25. (a) Temperature, (b) pore liquid pressure, (c) liquid saturation, 
(d) bulk strain, and (e) stresses in the Y and Z directions in a 0.4 m thick partially 
saturated non-air-entrained concrete wall. 
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Figure 26. (a) Spatial mean pore liquid pressure, (b) spatial mean liquid 
saturation, (c) spatial mean bulk strain, and (d) spatial mean stresses for fully and 
partially saturated non-air-entrained, and air-entrained primary containment 
concrete wall. 
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6.3.3 Effect of cryogenic swelling 

Several researchers have suggested that there has to be a liquid film separating 

the solid crystal and solid matrix wall to establish the thermodynamic equilibrium 

governed by the Thomson’s equation (3.36) [77, 124-127]. For a continuous drop in 

temperature, equilibrium condition (3.36) requires the pressure difference 
C

C L
L

p p



  

( atmp being taken as zero reference pressure) to increase, which is attained by drawing 

some extra liquid from the surrounding. In the already solidified pores at a temperature 

well below the bulk melting point, where there is no source of bulk liquid water or the 

entry channels are blocked by the frozen ice, this extra liquid is supplied by a premelted 

liquid film obtained from the solidified crystal itself [77, 127, 128]. This phenomenon, 

where liquid water is driven towards the already frozen pores, is known as cryo-suction, 

and the successive increase in the pressure difference results in cryogenic swelling of the 

porous body. Consequently, liquid saturation is constantly adjusted by this cryo-suction 

process to sustain the premelted liquid film around the solid crystal [42]. It has been 

proposed that the pressure associated with this liquid film is greater than the pressure of 

the bulk fluid located a long distance away from the interface[77]. The extra pressure 

associated with this thin film is referred to as disjoining pressure. The mobility of this 

thin film is reported to be significantly lower than the diffusion of the bulk water [32, 

33]. Furthermore, due to the short travel distance, tortuous pore network, and mass of 

transported liquid being very limited, the assumption that the film remains static is fairly 

justifiable.  
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The poromechanical approach, as outlined by Coussy  and applied in this work, 

hypothesizes that the pressure on the pore wall of the solid skeleton can safely be 

adopted as the crystal pressure, Cp , thus neglecting the effect of the disjoining pressure 

[77]. However, as pointed out by Scherer and shown later in section 7.2, this disjoining 

pressure provides an upper bound on the crystallization pressure [15], introducing 

discrepancies between the modeled results (that do not include the effect of disjoining 

pressure) and experimental data.  

For a low-porosity porous material, cryoswelling and thermal expansion of the 

supercooled water may be offset by the thermal contraction of the solid matrix and the 

solid crystal as presented in Figure 21 (d). However, the opposite phenomenon can be 

observed if higher porosity material is considered (which is shown in Figure 27). For this 

simulation, we let * 0.05μm, 0.5,R m  0 0.35,   19 21.7 10 m ,k    

345 10 MPa,sK   6 16 10 C     , and 0.2v  . Unlike the strain profile in Figure 21 

(d), when temperature is dropped below 40°C , and the pore pressure is uniform 

everywhere, the interior surface contracts less in spite of exhibiting lower temperature 

than the outer boundary. In this case, the effect of cryo-swelling is intensified by the 

high porosity, surpassing thermal contraction of the solid matrix and ice crystal. As a 

result, peak tensile stress is observed at the outer boundary of the concrete wall, which is 

contrary to what we find for a low porosity material. It is worth noting that a maximum 

hydraulic pore pressure of about 118MPa  and a thermal contraction of about 0.2%  

are developed at the outer boundary for the high porosity ( 0 0.35  ) concrete (Figure 27 
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(b)), which is much higher than that (about 65MPa and 0.135% ) obtained for the low 

porosity ( 0 0.15  ) concrete (Figure 21 (b)). On the other hand, at 150°C , a 

maximum tensile stress of around 67 MPa  (Figure 21 (e)) is observed at the interior 

surface of the wall directly exposed to the cryogenic liquid for the low porosity (

0 0.15  ) concrete, while a tensile stress of about 38MPa  (Figure 27 (e)) is calculated 

for the high porosity ( 0 0.35  ) concrete with a peak tensile stress of 56MPa at the 

outermost surface. This reduced stress coupled with high deformation can be linked to 

the reduction in bulk modulus of the porous body (K) due to the increase in porosity. The 

high stress values reported in this work may be due to the fact that the current model 

does not include the viscoelastic relaxation and therefore over predicts the actual values 

encountered in the field. Furthermore, the creation of new macropores induced by the 

freezing damage may increase permeability and may considerably diminish the 

destructive tensile stresses at cryogenic temperatures.  
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Figure 27. Effect of cryo-swelling on the deformation of cryogenic concrete. 
The wall surface in contact with the cryogenic fluid contracts less than the outer 
boundary (d) because of the cryo-swelling induced by the thermodynamic 
equilibrium and the subsequent cryo-suction. 
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The resulting saturation degree, pore pressure, and the strain diagrams are shown 

in Figure 28. It can be seen that an increase in the salt concentration decreases pore 

water freezing temperature and limits the crystal saturation, CS . However, high pore 

pressure still builds up resulting in high expansion for concrete specimens saturated with 

high concentration NaCl solutions. This contradicting phenomenon, where higher 

expansion is observed for lower ice volume fraction, can be attributed to the reduction in 

liquid volume due to the increase in salt concentration. For this particular problem, this 

dependency of volume on the salt concentration is defined by the following function 

fitted to the experimental data [28] 

2-H O 1
0 0

21
LL m x

V V
m x

= +
+

,   (7.2) 

where 1 20.618m =-  and 2 4.215m =  for NaCl solution. Furthermore, we assume, 

2-H O 3
0 18.07 cm /molLV =  and 2-H O 3

0 19.73cm /molCV = .  

According to this relation, an increase in molar fraction of the dissolved ions, x, 

results in a net decrease in the molar volume of the pore solution. The dependency of the 

molar fraction on the liquid saturation is obtained using the formula  

2

1

H O

1 1

n
i

i

n n
i i

L
i i

N

x

N N Sb

=

= =

=
æ ö÷ç ÷+ç ÷ç ÷çè ø

å

å å
.   (7.3) 

As ice crystallizes in the pore network, more solvent (i.e. liquid water) is taken 

away from the solution, and thus the molar fraction of the salt increases with the 

diminishing liquid saturation. For modeling purposes, we determined LS  using an 
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empirical constitutive relation proposed by van Genuchten, [83].  Figure 29 graphically 

illustrates how the decreasing molar volume of the solution contributes to the hydraulic 

pressure as the temperature drops below the melting point. The ratio, 0

0

C

L

V

V
 defines the 

density differences between the pore solution and the crystal. Due to this density 

discrepancy, expansive hydraulic pressure builds up in the pore network. When 0

0

1
L

C

V

V
  

is unity, no hydraulic pressure is generated (note that (3.45) becomes null). For pure 

liquid water and pure ice crystals, 0

0

1.09
L

C

V

V
 . In contrast, for a mixture of saltwater and 

pure ice, 0

0

1.09
L

C

V

V
 , with the magnitude increasing as more pure ice precipitates out of 

the salt solution, which increases the molar concentration of salt (and thus the overall 

liquid density) in the remaining solution. The more 0

0

L

C

V

V
 deviates from unity, the higher 

the magnitude of hydraulic pore pressure. As a result, as the salt concentration increases 

with decreasing liquid volume, elevated expansion is observed making the material more 

susceptible to freezing damage. In a very recent study, acoustic emission activities were 

detected for mortar specimens saturated with high concentration NaCl solutions [129]. 

The expansive hydraulic pressure might be the reason why even with the suppressed ice 

growth, higher concentration NaCl solutions cause more damage than the pure water. It 

is also interesting to note that the magnitude of the maximum strain and pore pressure 

not only depends on the solute concentration but also on the lowest temperature to which 
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the specimen is exposed. Figure 28 shows that concrete filled with pure water exhibits 

the maximum expansion below 15°C- , whereas between 15°C-  to 20°C- , 3% or 

6% salt solution seem to be the most detrimental. Concrete saturated with 15% NaCl 

solution, on the other hand, develops the maximum damaging expansion when the 

temperature is dropped further below 20°C- . It is therefore possible to obtain an 

optimum salt concentration for which the maximum damaging expansion can occur for 

saturated concrete exposed to a certain minimum temperature.  

Another set of data are plotted in Figure 30 where all the parameters used to 

model Figure 28 were utilized, except a finer pore size distribution is simulated in this 

case. Here we see that because of the finer pore sizes, the crystal saturation is suppressed 

so much that the influence of the hydraulic pressure is overcome resulting in less 

expansion for concrete specimens with high salt concentration than for those with pure 

water. Thence, whether the specimen saturated with salt concentration will expand more 

or less than that filled with pure water depends on multiple factors: hydraulic pressure 

due to the density differences between the pore solution and ice crystals, amount of ice 

in the pore volume, thermal expansion and contraction of the various constituents, 

suction of pore liquid to the already frozen pores, and the interfacial interactions 

between the various phases. Which of these mechanisms will dominate is dictated by the 

constituent properties, the pore characteristics of the porous body, solute concentration 

in the pore solution, and the lowest temperature applied to the concrete. An example of 

the significance of properties of material constituents on the deformation of the porous 

body is presented in Figure 31. Figure 31 shows that despite generation of the same pore  
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Figure 28. Effect of salt concentrations in pore solution on the liquid 
saturation, pore pressure, and strain of a sealed concrete specimen. Depending on 
the minimum temperature to which concrete is exposed, an optimum salt 
concentration is possible to achieve that causes maximum strains. 
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Figure 29. Change in volume of the pore solution with temperature for 
varying salt concentrations. 

pressure for materials with two different porosities ( 0 0.26   and 0 0.13  ), reducing 

the porosity by half can reduce the effect of hydraulic pressure and cause contraction 

rather than expansion of the porous body. Hence, reduction in porosity by lowering the 

water to cement mass ratio or by using supplementary cementitious materials will not 

only safeguard concrete from harmful substances invading the pore network, but also 

reduce the damage susceptibility by lowering the expansion. One should note here that 

both Figure 30 and Figure 31 consider the influence of disjoining pressure (which is 

discussed in the following section) in addition to the effects of pore solution speciation 

in determining the liquid-crystal phase transition. 
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Figure 30. Effect of salt concentrations in pore solution on the liquid 
saturation, pore pressure, and strain of a sealed concrete specimen with fine pore 
structures.  
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Scherer [15] presented a comprehensive study of crystal growth and the 

associated crystallization pressure in porous materials. He stressed that the 

crystallization pressure is extensive when crystals grow in small pores. When a spherical 

crystal approaches the inner surface of the pore wall, the crystal-pore wall interface 

energy will prohibit it from making direct contact with the solid pore surface. It is this 

energy incompatibility between the solid wall and ice crystal interface that contributes to 

crystallization pressure and extracts liquid into the gap between them. As a result, 

crystals can continuously push the pore wall across the thin liquid film and grow. This 

liquid film, when a few nanometers thick, can amplify the magnitude of repulsion by 

generating hydration forces related to the electrostatic repulsion or ordered layering of 

solvent molecules. Big pores, on the other hand, can accommodate this crystal growth 

without generating such damaging stress. If the energy mismatch between the pore wall 

and the crystal is surmounted, direct contact occurs between the pore wall and the 

crystal, and the crystal ceases to grow.  

Because of this repulsive force, (often referred to as disjoining pressure [15, 28]) 

the liquid film exhibits higher pressure than that in the bulk liquid (e.g. the point E in 

Figure 32(a)). As a result, this pressure gradient will expel liquid from the gap between 

the pore-wall and crystal to the bulk liquid. Since the mobility of this thin film is orders 

of magnitude lower than the bulk liquid, the liquid has to respond as a shear resistant 

material rather than a Newtonian or Navier-Stokes liquid. The resulting stress 

components L
ijT  in the liquid film thus can be presented as (Figure 32(b)) 

L d
rrT p p=- -  and L

zzT T pqq = =- .   (7.5) 
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The mean stress, Ls , and the deviatoric stress components, L
ijs ,  respectively, can 

be written as 

3

d
L L p

ps =- -  , 
2

3
L d
rrs p=- , and 

1

3
L L d

zzs s pqq = =  (7.6) 

As uniform pressure is approximated to exist everywhere in the crystal, the mean 

stress in the crystal can be given as 

C Cps =-  with 0C
ijs = . (7.7) 

Substitution of (7.6) and (7.7) in (7.4) gives 

( ) ( ) ( ) ( )2

0 0 0
0

0 0 0

1
3 6

dL L Ld
C L L

m m C C C L

pV V Vp
p p p p

V V V G
q q

æ ö÷ç ÷S - = - + - - - +ç ÷ç ÷çè ø
  (7.8) 

Thus the repulsive force across the liquid film plays an important role in shifting 

the freezing point of pore liquid. Earlier in the derivation of equation (3.29) we 

neglected the elastic energy associated with higher order stress terms. Here, however we 

cannot do the same as studies showed  that the elastic shear modulus of nanoconfined 

water can be at least three orders of magnitude smaller than the shear modulus of silicon 

(50 GPa) [130]. The third term on the right hand side of (7.8) stimulates crystal growth 

whereas the fourth term subdues the freezing point. As a net effect, disjoining pressure 

would always promote crystal propagation as long as the condition, ( )2
2 L d dG p p>  is 

satisfied.   
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authors used poroelasticity to determine deformation of concrete specimens, and 

documented the relevant input parameters that are also employed by our analysis. Liquid 

saturation data were also presented as function of temperature. We used the same liquid 

saturation profile to simulate the results. The resulting simulations are plotted in Figure 

34 and Figure 35. Parameters used to plot Figure 34 are 0 0.26,   331.8 10 MPa,sK    

6 114.5 10 C      and 0.2v  . For Figure 35, 0 0.13,   331.8 10 MPa,sK    

6 117.7 10 C      and 0.2v   are adopted. It has been found that the model deviates 

from the experimental results for the high porosity material (Figure 34) but matches well 

with that for the low porosity, fine pore structured specimen (Figure 35). One plausible 

reason that the model predictions deviate from the experimental data is that the model is 

very sensitive to the liquid saturation and pore characteristics. For both sets of data, 

liquid saturation was estimated from the pore size distribution obtained from the 

mercury intrusion porosimetry (MIP) test. MIP falsely estimates macropores by 

characterizing them by the size of their largest entry radius [133], and therefore could 

cause the discrepancies between the modeled strains and strains obtained from 

experimentation. Overall, however, the model predictions herein – which consider the 

simultaneous effects of pore solution speciation and disjoining pressure – improve upon 

past modeling efforts that do not fully consider such effects.
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Figure 34. Comparison of the modeled results with the experimental data found in [132]. Material properties 
used for simulation are 0 0.26,   331.8 10 MPa,sK    6 114.5 10 C      and 0.2v  . 
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Figure 35. Comparison of the modeled results with the experimental data found in [132]. Simulation was 
performed for 0 0.13,   331.8 10 MPa,sK    6 117.7 10 C      and 0.2v  .
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8 CONCLUSIONS 

 

Concrete, due to its widespread availability, casting simplicity, and economy, is 

the most used construction material in the world. Because of its very diverse 

constituents, concrete responses to environmental stimuli are also very versatile. As a 

result, when concrete is cooled from room temperature to cryogenic temperatures,  

depending on the constituent properties and environmental exposure, different forms of 

deformation and damage can be manifested. Testing of concrete responses to freezing 

temperatures is expensive, time consuming, and requires rigorous maintenance. A model 

capable of simulating stresses and strains in concrete cooled to freezing temperatures, 

that can incorporate concrete constituent properties and pore solution characteristics to 

mimic the experimental findings, is attractive. Thus, poroealsticity is utilized to model 

concrete for two purposes: 1) concrete pavement exposed to freezing and thawing 

actions and 2) concrete used for building containment tanks for storing cryogenic liquids 

such as LNG. Furthermore, the solid-liquid thermodynamic equation has been developed 

to incorporate the effect of pore solution speciation and disjoining pressure on the pore 

liquid freezing and the subsequent deformation of freezing concrete. Sensitivity analysis 

has been performed to identify the key constituents and factors that affect the magnitude 

of the damage initiating tensile stresses and strain induced in concrete by freezing 

actions. The most important conclusions derived from this study can be categorized into 

the following divisions: 

 Identifying deleterious aggregates susceptible to frost damage 
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 Reduction in aggregate size was found to be effective in quickly relaxing the 

tensile tangential stress, which would likely reduce the probability of D-cracking 

of concrete under freezing temperatures.  

 Although air-entrainment reduces concrete expansion upon cooling, excessive 

thermal contraction of the matrix compared to the aggregate may generate tensile 

stress in the matrix, and create cracks over successive freeze-thaw cycles.  

 Difference between CTEs of coarse aggregate and matrix in which they are 

embedded should not be too high since it may cause tensile stress at the 

aggregate boundary or ITZ.  

 Increase in cooling rate likely leads to increased cracking propensity through the 

reduction in time available to relax pore pressure buildup and the related 

tangential stresses in the aggregate and matrix. 

The model developed in this work predicts the transient stress and strain fields 

within concrete containing substandard aggregates exposed to freezing conditions. All 

the aforementioned results confirm with experimental findings previously done in this 

area. Such affirmation of the simulated results gives confidence to the model, and hence 

this model can be used as a tool to provide optimum concrete mixture design facilitating 

the use of substandard aggregates that would otherwise be deemed as waste materials. It 

is expected that consideration of the model results will help with selecting appropriate 

materials, which in turn will improve the durability of concrete infrastructure. The model 

is appropriate for saturated air-entrained and non-air-entrained concrete, and therefore 

may over predict the stress in real concrete infrastructure because concrete is seldom in 
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the model-predicted pore liquid pressure, stress, and strain distributions of the various 

mixture designs evaluated: 

 Requirement of maximum spacing factor depends on the concrete constituent 

properties, rate of cooling, and the minimum temperature reached and thus is 

specific to a specific concrete mixture design and the climatic region to which 

concrete pavement is exposed. This maximum spacing value can range from a 

fraction of a millimeter to several millimeters depending on the mixture design 

and environmental exposure.  

 Reduction in the interconnected porosity by reducing volume fraction of coarse 

pores of mortar achieved with low w/c or addition of SCMs may increase the 

maximum spacing factor requirement. However, too much SCM may hamper the 

concrete durability by reducing the pore sizes drastically, yielding high 

crystallization pressure. 

 Concrete containing high-porosity, high-permeability aggregates (typical of 

lightweight aggregates) may perform satisfactorily with or without entrained air 

for low amplitude freeze-thaw cycles, which is typical of Texas weather. Such 

concrete, if exposed to harsh winters with very low temperatures (for instance, if 

used for paving highways in Minnesota) requires entrained air with the lowest 

maximum spacing factor to reduce the tensile tangential stress developed in the 

aggregate center. 

The model utilized here takes into account the concrete constituent properties, air 

void spacing factor, the lowest temperature to which pavement is exposed, and cooling 
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developing in the nanoconfined liquid that separates ice crystals from the pore walls in 

freezing, porous media. Furthermore, the effect of the pore solution speciation on pore 

water chemical potential was simultaneously considered. The following conclusions are 

drawn from the model simulations and analysis: 

 The presence of dissolved species suppresses the freezing temperature of the pore 

solution. The higher the concentration of the solute, the greater the suppression 

of the freezing point. 

 The magnitude of the damage-inducing pore pressure and expansion depends on 

the salt concentration, material properties, pore characteristics, and the minimum 

temperature attained. Depending on the lowest temperature and pore 

characteristics, an optimum salt concentration can be attained that can cause the 

most damaging strain.   

 We have shown that, thermodynamically, it is favorable for disjoining pressure to 

promote ice propagation. An upper bound was obtained for liquid pressure and 

strain in a freezing porous body. 

 Poroelasticity can demonstrate why the destructive expansion and hydraulic pore 

pressure develop in concrete even when the freezing point is suppressed by the 

dissolved ions. This expansion is due to the fact that when ice forms, more 

solvent is removed from the solution causing an increase in the solute 

concentration which in turn enhances density differences between the pore 

solution and the pure ice crystals.  
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 Air-entrainment can relieve the hydraulic pore pressure caused by the volume 

expansion of the pore liquid during phase transition. Consequently, air-entrained 

concrete contracts with a continuous drop in temperature. 

 Air-entrained concrete ultimately shows less contraction than the high-porosity, 

non-air-entrained concrete, and thus exhibits less stress than the high-porosity, 

non-air-entrained concrete. 

 High cooling rate can escalate pore pressure build up by reducing time for the 

expelled water to escape from the freezing site increasing expansion and the 

subsequent compressive stress in the direction transverse to the wall thickness. 

 Reducing moisture content by drying helps alleviate the pore pressure, but may 

not prove as efficient as the air-entrained concrete.  

It is believed that the proposed model can be applied to tailor concrete mixture 

design towards successful construction of primary concrete LNG containment wall with 

minimal deformation and crack initiating internal stresses. Simulated results imply that 

air-entrainment can favorably be used to mitigate compressive failure by relieving the 

high pore pressure exerted by the high porosity concrete along with high cooling rate. 

Likewise, low porosity concrete that can be attained by adopting low water cement ratio, 

adding supplementary cementitious materials, and/or using low porosity aggregate (such 

as trap rock), can also prove beneficial in reducing the ultimate movement of the primary 

containment wall upon cryogenic cooling. 

While the modeled strain results obtained from this study are in qualitative 

agreement with the experimental data published in the literature, experimental validation 
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must be carried out to investigate the effect of excess pressure in the supercooled liquid 

film that wraps around the solid crystals on the deformation of porous solid, especially 

when cooled to cryogenic temperatures. The effect of microcracking on permeability and 

viscoelastic stress relaxation should also be incorporated to accurately predict tensile 

stresses developed at very low temperatures. Other limitations associated with this 

model include use of constant material properties and highly simplified energy balance 

equation for heat transfer. This model can be further improved to include the presence of 

dissolved salts in pore liquid and its effect on the concrete deformation subjected to 

cryogenic cooling. Furthermore, if the temperature was dropped below 200°C , 

change in air pressure (assumed atmospheric in this study) due to the liquefaction of 

nitrogen gas present in the air would need to be considered in the analysis. This theory 

does not account for the effect of the air bubble size on the deformation of air-entrained 

concrete and assumes that the air bubbles can accommodate indefinite growth of crystal. 

However, this limitation can be reasonably overlooked [42], as the air void spacing is 

established to be the most important air void system parameter [2, 7] regarding the frost 

resistance of concrete.   
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APPENDIX A 

 

Coefficients A, C, U, V, W, X, and Z are given by 

( ) ( )( )a L a a a C a C a C a C a a a L a L a LA Z M K b b M M K b b Mb r b r- - - - - -= + + + , (A1) 
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APPENDIX B 

 

Thermodynamics of partially saturated freezing concrete 

The theory presented here is an application of the model proposed by Coussy 

[76] for isothermal drying induced crystallization, allowing for the thermal expansion 

induced by the temperature change. Let us consider a porous material whose pore space 

is occupied by three phases: a gas referred to by index J = G, a liquid referred to by 

index J = L, and a solid crystal referred to by index J = C. If 0dV  is the initial volume of 

an infinitesimal representative element from the porous solid, 0  and   are the initial 

and current porosity, respectively, the reference porous volume of the element is given 

by 0 0dV
  and the current porous volume is 0dV .  The porous solid and any of its 

phases are capable of exhibiting infinitesimal deformation gradients.  Furthermore, 
J  if 

the current volume occupied by the phase J  , the current overall porosity,   can be 

written as 

C G L       (B1) 

If the current number of moles of phase J  per unit initial volume is JN , 

temperature T, the current molar entropy is Js , and the current molar chemical potential 

J , the  Gibbs-Duhem equality for each phase J  can be written in the form 

d d d 0J J J J J Jp N s T N      (B2) 

such that 
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d d d d d ,

d d d ,  and

d d d .

G G a a a a v v v v
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 (B3) 

When no dissipation occurs, the first and second laws of thermodynamics 

combine to provide a Clausius-Duhem equality (for equilibrium) for a poroelastic 

material as given by 

d d d d d d d 0,C C a a v v L L
ij ij MT N N N N F              (B4) 

where ij  is the current overall stress components, ij  is the current overall strain 

component, m  is the entropy of the open element per unit of its initial volume, and F  

is the overall Helmholtz free energy. Superscripts a  and v  represent air and vapor, 

respectively. 

Let skF  and sk  be the Helmholtz free energy and entropy per unit initial 

volume of the skeleton. The term skeleton includes interfaces between the solid matrix 

and the phases present in the pore network, and excludes the bulk phases in the pores. 

Due to the additive characteristics of free energy, skF  and sk  can be written as 

 
 and

.

C C a a v v L L
sk

C C C C v v a a G G L L L L
sk

N s N s N s N s

F F N s p N s N s p N s p  

    

       
  (B5) 

With the help of (B5), (B4) gives us the free energy balance related to the 

poroelastic skeleton as 

d d d d d d 0C C G G L L
ij ij sk skT p p p F           . (B6) 

Therefore, the unsaturated poroelastic state equations can be written as 
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  (B7) 

Change in partial porosities J  results from the change in saturation, JS  and 

skeletal deformation, J  resulting from the action of pressure on phases, Jp . Therefore, 

J  can be given in the form 

0
J J JS       (B8) 

with the constraint  

1C G LS S S   .   (B9) 

Therefore, the current overall porosity is 

0
C G L        .   (B10) 

State equations (B7) account for both the energy required for skeletal 

deformation and energy required to create new interfaces. Using (B8) with (B7), these 

two energy variables are separated as 

   , , , , , ,J J C G
sk ij sk ijF S S       .   (B11) 

Substituting (B8) and (B11) into (B6) and applying the constraint (B9), we find 

   0 0

d d d d

d d d d 0

C C G G L L
ij ij

C L C G L G
sk sk

T p p p

p p S p p S

   

   

   

     
,  (B12) 

which leads to the following- equations 
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   (B13) 

skF  can be divided into two parts: elastic free energy, W of the porous solid 

excluding the interfaces, and the interface energy, U per unit of initial porous volume 

0 0dV . Assuming that U does not significantly vary with the skeletal deformation for 

constant saturation SJ, we find 

   0 0, , , , ,J C G C G
sk ijp W S S U S S        .  (B14) 

Substituting (B14) into state equations (B13), we obtain 
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   (B15) 

Introducing the Legendre-Frenchel transform *W  of W  with respect to J  such 

that 
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results in 

 

*

*

0

*

,

,  and

.

ij
ij

J

J

sk

W
T

W

p p

W














 


 



   (B17) 

Equations (B17) are the generalized state equations of unsaturated 

thermoporoelasticity. For a linear, isotropic thermoporoelastic material 

 

     
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0 0 0

2
2 3

3ij kk ij ij s ij
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 (B18) 

and 
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Here,  J  is the linear coefficient of thermal expansion of the pore volume occupied by 

the phase J , and JKN  is the generalized Biot coupling moduli, with JK KJN N  owing 

to the Maxwell’s symmetry relations, such that, 

0

, ,

1
and

J J

K C G L JK s

b S

N K


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
    (B20) 
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s
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b b b b

K
        (B21) 

Here a link between the macroscopic and the microscopic properties needs to be 

established to determine Jb  separately. This link can be set based on the micro-

poromechanics considerations presented by [134], and applied by [76]. As at any stage 

of the freezing process, the gaseous phase and the ice crystals occupy the largest pores, 

and the remaining smaller pores are still filled up by the liquid water, the crystal and gas 

filled pores can presumably act roughly the same as if they were enclosed in a porous 

body whose pore network was only constituted of liquid filled pores. Accordingly,  

1 ,C G

s

K
b b

K
  


   (B22) 

where K  is the bulk modulus of the newly defined porous body such that, 
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4 1
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3 4
s s
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G K
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K G





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 
   (B23) 

The matrix bulk and shear moduli, sK and sG  are intrinsic properties and do not 

depend on the properties of the pore network. The porosity 0 of this porous solid is 

given by 

 
0

0

01

L

C G

S

S S




 
 

.   (B24) 

Similarly, since the largest pores are occupied by the gas only, and the remaining 

smaller pores are filled with ice crystals and liquid water, it is therefore reasonable to 

assume that the wet air filled pores are embedded in a porous matrix whose porous 
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volume includes both the liquid filled pores and the ice filled pores. Accordingly, 

analogous to (B22) to (B24),  
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where   
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and  
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