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ABSTRACT 

Microbial electrochemical cell systems (MECSs), such as microbial fuel cells (MFCs) 

and microbial electrolysis cells (MECs), are promising clean and renewable energy 

sources. MFCs employ exoelectrogenic bacteria to convert organic matter in wastewater 

into electricity, and biogas (hydrogen, methane) is generated from organic matter by 

applying electricity in MECs. This emerging technology requires better performance by 

decreasing the material cost to bring it into practical application. Therefore, the main 

focuses of this research are fabricating nanomaterial based anode to improve the power 

production and developing micro devices to analyze real-time performance of MECSs. 

Physical and electrochemical interactions between microbes and anode are 

critical to performance. Systematic studies on how different lengths, packing densities, 

and surface conditions of carbon nanotubes (CNTs) affect MFC power output revealed 

that long and loosely packed CNTs without any amorphous carbon show the highest 

power production performance. Furthermore, fabricated 3D sponges composed of 

interconnected CNTs showed better performance compared to commercially available 

carbon felt anode. 

Due to the configuration, monitoring of biofilm development is hard in macro-

sized MFCs. Microfluidic laminar flow MFC with interdigitated anode was fabricated to 

monitor the real-time optical and electrochemical activity of Shewanella oneidensis MR-

1 in situ. Power density and impedance were measured to understand the relation 

between biofilm development and power production of biofilm over time. 
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Expensive and labor intensive equipment such as gas chromatography is 

commonly used to analyze the biogas produced in MECs. A ZnO nanowires based gas 

sensor was fabricated to measure H2 concentration in real-time without using any other 

expensive equipment.  

Low power and low voltage output of MFCs do not allow them to power most 

electrical applications. Proposed power management systems (PMSs) can overcome this 

limitation by boosting the MFC output voltage and managing the power for maximum 

efficiency, regardless of the power and voltage fluctuations from MFCs over time.  

Overall, the limitations of the MECSs technology have been identified and 

possible solutions have been proposed to improve the overall performance of this 

sustainable renewable energy source. 
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1. INTRODUCTION 

 

1.1. Global water and energy demand 

Water and energy are closely interrelated and are basic components of life. Energy and 

water demand will rise as the population rises. The world’s population is estimated to 

double over the next 40 years and reach nine billion people in 2040. [1] Therefore, it has 

been pointed as a major challenge to meet people’s increasing energy and water demands 

in the coming decades. Energy demand for all fuels will continually increase through 

2040. Global oil, coal, and natural gas demand will grow by around 15, 10, and 47%, 

respectively. Electricity demand will also continue to increase by more than 70% by 2040. 

[1]  

Water is a very valuable resource that is essential for life, and only 2.5% of the 

world’s water is freshwater; less than 1% of that is accessible. It is mainly used in 

agriculture (70%), industrial (19%), and municipal (11%) applications.  Global water 

demand is projected to increase 55% by 2050. [2] Water is required in order to produce 

energy. It is needed for all processes of fossil fuel production, including extraction and 

transportation. It is also used in thermal power plants (nuclear, solar) for cooling and to 

generate electricity from hydropower. 

The demand for both energy and water will continue to grow, and almost 75% of 

the fuel will be produced from fossil fuels (oil, coal, and natural gas) by 2040.[1] 

Therefore, burning fossil fuels will continue to impact the environment, including air and 

water pollution, public health and global warming emissions. Since renewable energy 
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resources (wind, solar, hydroelectric, biomass) have less impact on our environment, it is 

ideal to increase their usage to generate energy. 

 

1.2. Bioenergy 

Bioenergy, also called biomass energy, is renewable energy produced from organic 

matters, including wood, manure, sugarcane, and municipal and industrial waste. 

Bioenergy power generation increases every year, and three times more will be produced 

in 2020 compared to 2006. [3] However, biomass conversion—especially into biofuels 

such as bioethanol and biodiesel—creates environmental problems from plants, similar to 

burning fossil fuels.  Moreover, a critical factor of this process is how it affects the supplies 

of food (corn and sugarcane are used to produce bioethanol) and water (a high amount of 

water is required to grow feedstock). Therefore, microbial electrochemical cell system—

another form of bioenergy—has developed great interest. It is able to convert organic 

waste into electricity by using the electrochemical activity of micro-organisms. 

Furthermore, it has the potential to reduce greenhouse gas emissions, so it is advantageous 

compared to biomass conversion and burning fossil fuels. 
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2. MICROBIAL ELECTROCHEMICAL CELL SYSTEMS 

 

2.1. History 

The idea of producing electricity from bacteria (Escherichia coli) was discovered in 1911 

by M. C. Potter.[4] B. Cohen created microbial half fuel cells in 1931 and generated 2 mA 

by connecting the half cells in series.[5] Bennetto et al. developed the original microbial 

fuel cell design and also studied to understand electron transfer mechanism.[6, 7] The most 

important improvement in microbial fuel cell technology was discovered by Kim et al. 

who developed mediator-less microbial fuel cells by eliminating expensive mediator 

molecules used to transport electrons to the anode.[8] Electrochemically active bacteria is 

able to create a biofilm on an anode by enhancing the power production in microbial fuel 

cells. Currently, researchers focus on optimizing electrode materials, different types of 

electrochemical cell systems, scaling up, and electron transfer mechanisms in this 

promising bioenergy technology. Although the idea of energy harvesting from bacteria 

was started almost 100 years ago, it has just recently begun to bring out its potential. 

 

2.2. Components and materials 

 

2.2.1. Electron transfer mechanism 

Electrochemically active bacteria oxidize organic compounds and transfer electrons to the 

anode.[9] Two different electron transfer mechanisms were proposed, which are direct and 

mediated.[10] Direct electron transfer happens through the outer surface of bacteria 
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membrane and biofilm with conductive pili where they physically adhere to the anode. 

Such biofilms are permeable and allow the diffusion of reactants and products, which 

facilitates the transfer of electrons.[11] The second electron transfer mechanism 

(mediated) works with an electron shuttle, which is produced by bacteria and carries 

electrons to the anode. Bacteria are known to produce a range of electron-shuttle 

compounds, such as melanin, phenazines, riboflavins and quinones.[12] 

 

2.2.2. Anode materials 

Anode material is an important component for electron transfer from bacteria and 

conductive biofilm formation, which determines the effectiveness and efficiency of 

electricity generation. Therefore, it must be highly conductive, biocompatible, chemically 

stable and non-corrosive.[13] Conventional carbon based materials, including carbon 

cloth, carbon paper, carbon felt, graphite rod, and reticulated vitreous carbon (RVC), are 

most commonly used as an anode in MFCs.[14, 15] Carbon paper is fragile and both 

carbon felt and RVC have high resistance. Even though graphite rod is a hard material that 

has lower resistance as well as good electrical conductivity, it is difficult to increase the 

surface area for bacteria to release the electrons. Carbon cloth has an advantage over them 

with large porosity for microbial growth. Three dimensional (3D) carbon electrodes—in 

the form of electrospun carbon fiber electrodes [14] or graphite brush [16] electrodes—

are also used in MFCs, as their 3D structures can provide large surface areas for microbial 

attachment. Logan et al in 2007 reported that MFC with a graphite brush anode produced 

a 2400 mW m-2, which was 2.2 fold higher than that of MFC with a carbon cloth anode 
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(1070 mW m-2).[16] Nanomaterials offer exceptionally large surface to volume ratios as 

well as unique electrochemical properties such as strong charge interactions with organic 

matter. Recently, various nanomaterials such as metal nanoparticles [17, 18], graphene 

[19-21], carbon nanotubes (CNTs) [22-27], and polymer composites with embedded 

nanoscale carbon materials [28-30] have been used as additives to MFC anodes. 

  

2.2.3. Cathode materials and electron acceptors 

Platinum-based catalysts have been regarded as optimal for electrochemical reactions 

because they support the four-electron pathway and display low overpotential. However, 

the prohibitively high price of platinum prevents their use in large-scale applications.[31, 

32] Thus, it is essential to develop low-cost ORR catalysts without sacrificing the 

performance of Pt-based catalysts. Recently, CNT-hybrid cathodes containing Pt [33, 34], 

MnO2 [35] have displayed promising properties such as low cost and improved ORR 

activities, mainly due to the large surface area and good conductivity of CNTs. Moreover, 

their high mechanical strength and excellent chemical stability have contributed to the 

development of durable cathodes.[36] 

The electrons released by bacteria move through an external circuit to the cathode 

where the electron acceptors are reduced.[37] Various electron acceptors such as 

ferricyanide and permanganate have been used in the cathode to improve the power 

generation, but they are not considered to be ideal cathode reactants due to their toxicity, 

non-sustainability, and cost issues.[38] Oxygen is a cost-effective, sustainable, nature-

friendly, and scalable electron acceptor for practical applications. However, the slow rate 
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and high overpotential of the oxygen reduction reaction (ORR) are the two critical issues 

[39] that limit the performance of MFCs. There are two different chemical pathways (two-

electron and four-electron) through which oxygen is reduced to hydrogen peroxide or 

water. The two-electron pathway exhibits a high overpotential for ORR, which is less 

efficient than the four-electron pathway normally observed with precious-metal based 

catalysts.[36, 39, 40]  

  

2.2.4. Membrane 

A proton exchange membrane (PEM) is used in two-chamber MFCs to prevent the liquid 

from mixing and in some single chamber microbial fuel cells (MFCs) to stop leaks.[13] It 

also helps with passing protons, which are released during the process of organic 

compounds oxidizing by bacteria, from anode chamber to cathode chamber. Nafion is the 

most commonly used membrane in MFCs, and more specifically it provides conductivity 

for protons which directly affect the performance.[41] The main drawback of using nafion 

is the cost, which is almost half of the total cost. Moreover, high internal resistance results 

in lower efficiency and performance of MFCs. Ultrex, which is called a cation exchange 

membrane (CEM), is also sometimes used in MFCs. Although it is cheaper than nafion, 

the internal resistance is higher. Anion exchange membrane is also another alternative 

which allows proton transfer via phosphate anions.[42, 43] 
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2.3. Microbial electrochemical cell system design 

 

2.3.1. Two chamber MFCs 

Different design configurations are possible for MFCs. Conventional MFCs consist of two 

compartments which employ an anode and a cathode separated by an ion exchange 

membrane such as PEM, CEM, or AEM. The most commonly used two chamber system 

is an H-type MFC, including two bottles connected by a tube containing PEM to keep 

liquids separated. The active size of the PEM is limited in an H-type MFC.[44] A cube-

shape MFC (Figure 2.1), which is composed from two plastic chambers screwed into each 

other, can eliminate the limitation of PEM size. The power generation in a two chamber 

MFC is limited due to high internal resistance. However, they are useful with their simple 

configuration and they can be conducted to examine the power production from different 

electrode or separator materials, and microbial communities.    
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Figure 2.1. Two chamber MFC including anode and cathode chambers separated by PEM. 
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2.3.2. Single chamber MFCs 

An anode and one side of a cathode is placed inside of the electrolyte in a single chamber 

air-cathode MFC where the other side of the cathode is exposed to ambient air.[45] PEM 

is optional in this configuration. When it exists, it prevents a liquid leak, but power density 

is limited due to the usage of PEM that increases the internal resistance. Logan and Liu et 

al found that power density improved almost four times with wastewater when PEM was 

removed.[45] However, the coulombic efficiency decreased because of oxygen diffusion 

into electrolytes. Cheng et al used hydrophobic PTFE layers on the air side of the cathode 

to overcome the diffusion problem. Both power density and coulombic efficiency 

increased when four PTFE layers were applied on the cathode.[46] 

Electricity can be also generated by placing an anode into sediment (in a river, 

lake, sea) that is rich with bacteria and organic substrates, and connecting it to a cathode 

in the overlying aerobic water. This kind of configuration is called a sediment microbial 

fuel cell.[47, 48] It is more practical to self-generate power compared to lab scale MFCs.  

 

2.3.3. Stacked MFCs 

Connecting small MFCs to form a larger stack may be more efficient way to scale up MFC 

systems compared to increasing the size of an individual MFC.[49] Higher voltage or 

current production can be obtained by stacking MFCs in a series or parallel. Aelterman 

2006 et al. stacked six individual MFC units in a series to produce 2 V.[50] Ladezma et 

al. connected 40 identical 20 mL MFCs together in series and parallel which produced 

13.03 V.[51] Wu et al. constructed 72 L stacked MFC which consisted of three anode and 
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cathode chambers. They obtained the power density of ~51 W/m3 in parallel connection 

of MFCs.[52] Although low voltage limitations can be overcomed by connecting MFCs 

in a series, it is not a long-term solution due to the voltage reversal issue. Since voltage 

production varies in each MFC, reverse polarity happens after connecting them over a 

long-term period, and it decreased the overall performance.[53] 

 

2.3.4. Micro scale MFCs 

Micro scale MFCs are advantageous with their easy and flexible configuration for 

fundamental MFC studies such as screening environmental strains or developing new 

materials.[23, 27, 54-61] Although they are limited by low power due to their high internal 

resistance, they offer unique features such as large surface area to volume ratio, short 

electrode distance and fast response time as well as real time analysis of biofilm under the 

microscope.[62] Qian et al. developed a two-chamber microfluidic MFC that consisted 

from 1.5 μL anode and 4 μL cathode chambers. They inoculated the anode chamber with 

Shewanella ondeidensis MR1 and power density of 15 W/m3 was obtained. Uniform 

biofilm growth on gold anode was observed which suggested better biofilm/anode 

interaction in small volume of the chamber.[60] A 5 μl MFC device was also fabricated 

by employing carbon cloth electrodes to enhance power density (62.5 W/m3).[61] Mink 

et al. developed anode containing carbon nanotubes which provided large surface to 

volume ratio for microbial interaction in a 1.25 μl chamber to improve the MFC 

performance.[27] They also developed single chamber air cathode MFCs by eliminating 
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membrane with the volume of 25 μl and 75 μL which maximum power density of  8 

mW/m2 and 19 mW/m2, respectively.[58, 59]  

Using engineering optimized microbes and improving cultivation practices for 

microbial species are important strategies for improving MFC performance. Very limited 

number of microbial strains have been studied for use in MFCs so far. Testing 

electrochemical and power performance of different microbial strains is not feasible with 

conventional MFCs. Therefore, microscale microfluidic MFC array which composed from 

24 wells was introduced to analyze different bacteria’s growth and their power production 

at the same time. Each well worked as a two-chamber MFC and catholyte was able to be 

replenished for all of them.[55] Also, air cathode 24-well MFC array was fabricated by 

eliminating catholyte.[56] In both configuration, the anolyte was lack of replenishment 

when the substate was depleted by the bacteria which prevented long term analysis. 

Therefore, same group designed new version of MFC array which both anolyte and 

catholyte were replenishable microfluidic access for a more long-term and efficient 

analysis.[57] MFC array devices were not only used to analyze different bacterial growth 

performance but also anode materials to show how different carbon nanotube properties 

affect the anode/biofilm interaction and MFC performance. [23]     
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2.4. Application of microbial electrochemical cell system 

 

2.4.1. Wastewater treatment and energy generation 

Electrochemically active bacteria (EAB) has been shown to be capable of releasing and 

transferring electrons to electrodes. Microbial fuel cell is the environmentally friendly 

green technology that converts chemical energy into electrical energy by breaking down 

organic substrates through the catalytic activation of bacteria.[13] The idea of electricity 

production by treating free wastewater makes this technology ideal compared to 

traditional activated sludge systems; however, low voltage and power production as well 

as the high cost of the materials limited them for practical usage.[13, 63, 64] Finding new 

electrode materials and removing separators (membrane-less air cathode MFC) have 

decreased costs and also improved the power generation performance recently. Also, 

developing power management systems has been proposed as promising technology to 

increase the voltage.[65] Moreover, inorganic matters that caused environmental pollution 

such as sulfide and ammonia compounds are rich in brewery, swine, and domestic 

wastewater.[66-68] They can be removed by bacteria in MFC during wastewater treatment 

(Figure 2.2.a). 

 

2.4.2. Hydrogen production 

Hydrogen has great potential as a renewable energy source since burning hydrogen does 

not contribute to greenhouse gas emissions that cause global warming. Microbial 

electrolysis cell (MEC) is a promising new technology for hydrogen production from 
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bacteria that oxidizes organic substrates and generates CO2, electrons and protons in 

anode.[69-71] Different than MFC, electrons don’t flow to the cathode spontaneously. 

Therefore, MECs require an external power supply to produce hydrogen in the cathode. 

MECs also require relatively low energy input (0.2–0.8 V) compared to typical water 

electrolysis (1.23–1.8 V).[72] Therefore, MECs provide an alternative method for 

hydrogen production. A schematic diagram of a two-chamber MEC is shown in Figure 

2.2.b. 

 

2.4.3. Desalination 

Current seawater desalination technologies such as reverse osmosis, electro-dialysis, and 

distillation are costly and energy intensive processes.[73] A modified microbial fuel cell 

configuration, referred to as a microbial desalination cell, can be used to remove dissolved 

salts from seawater without any external power source. It has an additional chamber filled 

with seawater between the anode and cathode chambers separated respectively by an anion 

exchange membrane (AEM) and a cation exchange membrane (CEM). (Figure 2.2.c) 

AEM keeps positively charged species in the anode chamber. Negatively and positively 

charged species move from the middle chamber to the anode and cathode, respectively, to 

maintain the charge balance.[73, 74] In that way, the salt ionic species are removed from 

the seawater. 
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Figure 2.2. Illustration showing the configurations and working principles of a) microbial fuel 

cell (MFC), b) microbial electrolysis cell (MEC), and c) microbial desalination cell (MDC). 
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2.5. Thesis scope and outline 

The overall goal of this research is to enhance the microbial electrochemical cell systems 

by using micro/nano technologies. For this aspect, four different limitations were stated 

and solutions for the limitations were proposed as shown in Figure 2.3. Weak electron 

transfer from bacteria to anode results in low performance. Nanomaterial anodes such as 

CNT grown stainless steel mesh (Chapter 3) and three dimensional CNT sponge (Chapter 

4) improve the performance. Analyzing real-time biofilm development and its 

electrochemical performance is not possible in macro-scale MFCs due to its size. 

Membrane-less microfluidic laminar flow micro-scale MFC was developed to study SO-

MR1 biofilm development and its impedance as well as power production in situ (Chapter 

5). Biogas production from MEC can be analyzed through gas chromatography. However, 

its high cost and labor intensive usage limits them to be practical measurement equipment. 

Low cost hydrogen gas sensor based on ZnO nanowires was fabricated to measure real-

time hydrogen production from MEC (Chapter 6). Low voltage (~400 mV) and power 

production from MFC limits to run small electronic applications. Power management 

systems can solve these limitations by boosting low voltage to required voltage and 

sufficient energy can be stored in super-capacitor which is connected to power 

management systems. Power management system (Chapter 7) run the wireless 

temperature sensor which required 2.5 V and ~85 mW to transmit reading data to 

computer. Lastly, overall research review and conclusions were discussed (Chapter 8). 
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 Figure 2.3. Limitations and proposed solutions on this thesis. 
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3. CONTROL OF GEOMETRICAL PROPERTIES OF CARBON 

NANOTUBE ELECTRODES TOWARDS HIGH-PERFORMANCE 

MICROBIAL FUEL CELLS* 

 

3.1. Introduction 

Carbon cloth is a common electrode material for MFCs because of its relatively low cost 

and biocompatibility [8]. Three-dimensional (3D) carbon electrodes, in the form of 

electrospun carbon fiber electrodes [9] or carbon brush [10] electrodes are also used in 

MFCs, as their 3D structures can provide large surface areas for microbial attachment. 

However, these conventional electrodes have limited surface areas when compared to 

nanomaterial-based electrodes. Nanomaterials offer exceptionally large surface-to-

volume ratios as well as unique electrochemical properties such as strong charge 

interactions with organic matter. Recently, various nanomaterials such as metal 

nanoparticles [17], carbon nanotubes (CNTs) [26, 27, 75-78], and CNT composites [24, 

79] have been used as additives to MFC anodes. For example, multi-wall (MW) CNTs 

were attached to carbon cloth, papers, or textiles by using simple dipping methods in CNT 

solutions to increase the electrical conductivity and surface area of electrodes, resulting in 

20~150% enhancement in power density [26, 75, 77]. The observed improvements in 

power generation with these electrodes were thought to arise as a consequence of better 

                                                 

* Reprinted with permission from “Control of geometrical properties of carbon nanotube electrodes 

towards high-performance microbial fuel cells” by Celal Erbay, Xiong Pu, Woongchul Choi, Mi-Jin Choi, 

Yeontack Ryu, Huijie Hou, Furong Lin, Paul de Figueiredo, Choongho Yu, Arum Han, 2015. Journal of 

Power Sources, 280, 347-354, Copyright [2015] by Elsevier. 
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interactions between EABs and electrodes mainly due to improved electrical conductivity 

and increased surface areas. Nevertheless, the influence of the physical and geometrical 

properties of these nanomaterials on power output has not been systematically studied. 

This analysis is of high importance as nanomaterials can have wide varieties of different 

physical and geometrical properties depending on their synthesis conditions, including 

those of CNT-based electrodes. 

Notwithstanding large surface-to-volume ratios of CNTs, the aforementioned 

relatively low power improvement is likely to come from non-optimal use of 

nanomaterials. For instance, the dipping method makes CNTs lie on the surface of carbon 

cloth rather than stand erect on this substrate [26]. This configuration significantly impairs 

the full utilization of large surface-to-volume ratio of CNTs. In cases where CNTs are 

embedded in polymer composites, CNT surfaces are not fully exposed for charge 

interactions. These electrode designs also require electrically insulating (or poorly 

conducting) matrices (e.g., polymer binders) and/or surfactants for CNT dispersions. 

Thus, electrical contacts between CNTs themselves as well as between CNTs and host 

electrodes are often poor due to the presence of the intervening insulating organic matter.  

Here, we attempt to investigate how different lengths, packing densities, and 

surface conditions of CNTs used as anodes affect MFC power output, as well as propose 

a CNT-decorated anode configuration that maximizes electron transfer. We expect that 

this systematic study will result in design principles for developing next-generation 

nanomaterial electrodes. 
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3.2. Experimental  

 

3.2.1. Synthesis of CNT electrodes  

MWCNTs were grown on stainless steel (SS) meshes by using a water-assisted chemical 

vapor deposition (CVD) method. SS 304 and 316 meshes with 400400 mesh size 

(opening width ~38 µm) and ~25 µm wire diameter (McMaster-Carr) were used as base 

electrodes. In order to control the physical properties of CNTs, different catalyst layers 

were prepared to have five different physical attributes of CNTs (Table 1). For samples S-

LD, M-LD, and L-LD, a 10 nm thick Al film followed by a ~6 nm thick Fe film were 

deposited on SS 304 meshes by using electron-beam deposition. For sample L-HD, the 

thickness of Fe film was reduced to ~5 nm. For sample M-LD-AC, the surface of SS 316 

meshes was roughened by immersing the meshes in 12.4 M HCl for 30 min. This 

pretreatment was performed in order to control the morphology of CNTs.  For typical 

CVD processes, the prepared SS meshes (1 inch by 2 inch) were placed at the center of an 

1 inch diameter furnace tube. The temperature of a tube furnace was then ramped up to 

800 oC in 10 min with 800-sccm dry Ar. The SS mesh was annealed at 800 oC with 80-

sccm wet Ar and 100-sccm dry Ar for 10, 16, 20, 13, and 5 min respectively for samples 

S-LD, M-LD, and L-LD, L-HD, and M-LD-AC. The wet Ar was prepared by passing pure 

Ar (99.999%) through a bubbler containing deionized water. After the annealing process, 

200 sccm H2 (99.999%) and 100 sccm C2H4 (99.999%) were added to grow CNTs at 800 

oC for 30, 30, 60, 30, and 60 min respectively for samples S-LD, M-LD, and L-LD, L-
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HD, and M-LD-AC. All CNT anodes were fabricated by Dr. Yu’s research group in 

Materials Science and Engineering department at Texas A&M University [23]. 

 

3.2.2. MFC setup and operation  

Microfabricated 24-well MFC arrays (Figure 3.1) were used for testing the CNT-SS mesh 

electrodes in parallel. The MFC arrays with 24 independent cells were developed to 

compare different microbial electrochemical activities. The device was prepared with at 

least three replicas for each electrode, and their power densities were averaged with 

standard deviations. The CNT-SS mesh electrodes were punched and attached to gold-

deposited anode-side pads using silver epoxy (MG Chemicals). Platinum-loaded carbon 

paper (0.5 mg cm-2, ElectroChem, Inc) electrodes were also bonded to the cathode-side 

pads with the same method. Subsequently, the epoxy was cured in an oven for 15 min at 

60 ºC to maximize its conductivity and bond strength. Figure 3.1.a shows a 24-well anode 

electrode/chamber layer with the CNT-SS mesh electrodes. The cathode chambers were 

filled with potassium ferricyanide (100 mM) and the anode chambers were inoculated with 

Shewanella Oneidensis (SO) MR-1. SO MR-1 was used as electrochemically active 

bacteria after incubation in tryptic soy broth (TSB). Cells were stored in TSB 

supplemented with 15% glycerol at −80 °C. Cells were streaked onto a TSB agar plate 

from storage upon use. The resultant colonies was inoculated into 5 ml of TSB liquid 

medium and then cultured for 48 h at 30 °C with agitation (180 rpm). The optical densities 

(OD600) for SO-MR1 was measured and adjusted to 1.0.  Finally, all components (Figure 

3.1.b) were assembled into a system (Figure 3.1.c). All parts were sterilized with 70% 
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ethanol right before assembling the device. The assembled device was connected to a 

printed circuit board (PCB) that has a series of 8 different resistors for each of the 24 units 

on the device and controlled by multi-position dip switches (Figure 3.1.c). The switch box 

module was connected to a digital multimeter through a multiplexer (National 

Instruments) for continuous voltage measurements across the different resistors monitored 

via a LabViewTM (National Instruments) interface. The measured voltage was converted 

to current using the Ohm’s law, and power output was calculated by multiplying voltage 

and current. This allowed measurement of power outputs from each of the 24 wells 

continuously at various load resistances, generating polarization curves for each of the 24 

wells as a function of time. 
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Figure 3.1. The 24-well MFC array. (a) The anode electrode/chamber layer of the 24-well MFC 

array loaded with CNT-SS mesh electrodes. (b) Components of the 24-well MFC array device 

before assembly. (c) The assembled 24-well MFC array was composed of resistors and dip 

switches to obtain polarization curves from each of the 24 wells. 
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3.2.3. Two-chamber MFC (100 mL) construction and operation 

The two-chamber MFC was constructed from two 50 ml acrylic chambers separated with 

a proton exchange membrane (PEM) (Nafion 117TM, Ion Power Inc.) that was placed 

between silicon rubber gaskets to prevent liquid leak. The PEM was pretreated by boiling 

in H2O2 (30%) and deionized (DI) water followed by 0.5 M H2SO4 and DI water, each for 

1 hour, and then stored in DI water prior to being used. The L-LD was used as an anode 

electrode with projected surface area of 1 cm2. The cathode (3.5 × 3.5 cm) was carbon 

cloth that has one side catalyst layer (10wt% Pt/C, 0.5 mg Pt cm-2, ElectroChem, Inc). 

One-way plastic valves (Cole-Parmer) were connected to chambers with epoxy glue to 

replenish the solution. The anode and the cathode electrodes (1 cm distance) were 

connected to titanium wire with silver epoxy (MG Chemicals) to provide strong and better 

connection. The anode chamber was filled with an autoclaved nutrient mineral buffer 

(NMB, pH 7.0) solution containing: NH4Cl (530 mg L-1), CaCl2 (150 mg L-1), 

MgCl2·6H2O (200 mg L-1), NaH2PO4 (6 g L-1), KH2PO4 (140 mg L-1), CoCl2·6H2O (2.5 

mg L-1), NaMoO·2H2O (0.05 mg L-1), FeCl2·4H2O (20 mg L-1), NiCl2·4H2O (0.25 mg L-

1), MnCl2·4H2O (0.5 mg L-1), Na2SeO4 (0.25 mg L-1), NaVO3·4H2O (0.05 mg L-1), ZnCl2 

(0.25 mg L-1), and CuCl2 (0.15 mg L-1) in deionized water [80]. Anaerobic activated sludge 

was obtained from Austin Wastewater Plant under an oxygen-free condition at 30 °C and 

used as the inoculum in the anode chamber with acetate (1 g L-1) as an electron donor. 

Additional acetate (0.5 g for 50 ml anolyte) was fed intermittently when the voltage is ~50 

mV (batch-type MFC). Nitrogen was purged after each replenishment for 10 minutes to 

remove the oxygen from anode chamber. The anolyte were mixed by using a magnetic 
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stirrer (400 rpm). The cathode chamber was filled with the ferricyanide solution (100 mM) 

to minimize the cathode limitation.  The anode and cathode were connected with an 

external resistor (3 kΩ), and the voltage across the resistor was monitored. All experiments 

were conducted at room temperature (~24 ºC). The device was connected to a PCB that 

has a series of different resistors and controlled by multi-position dip switches (Figure 

3.1.c). The switch box module was connected to a digital multimeter through a multiplexer 

(National Instruments) for continuous voltage measurements across the different resistors 

monitored via a LabViewTM (National Instruments) interface. For evaluating power 

outputs from MFC, the measured voltage was converted to current using the Ohm’s law, 

and power output was calculated based on the equation 3.1 and 3.2:  

𝐼 = 𝑉 /𝑅                 (3.1) 

𝑃 = 𝐼2  × 𝑅                   (3.2) 

Polarization curve experiment was performed to determine the maximum power 

production generated from MFC. When the voltage output became stable, polarization 

curve was obtained by varying the resistance (100 Ω-20 kΩ) between the electrodes. 
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Table 1. A list of CNT-SS mesh electrodes developed to understand how different attributes of 

CNTs affect MFC power performances. 

Samplea) 

CNT length  

[m]b) 

Packing 

density 

Surface condition 

S-LD 
 

~8 

Low (loosely 

packed) 

- 

M-LD 

 
~13 

Low (loosely 

packed) 

- 

L-LD 

 

~19 

Low (loosely 

packed) 

- 

L-HD 

 

~19 High (aligned) - 

M-LD-AC 

 

~10 

Low (loosely 

packed) 

Amorphous carbon 

layer on CNT surface 

a) Sample name nomenclature: (length; S = short, M = medium, L = long) - (density; LD = low density 

(loosely packed), HD = high density and aligned) - (surface condition; none = pure CNT, AC = CNTs 

covered with amorphous carbon); b) CNT lengths were estimated by measuring the straight distance from 

the surface of mesh wires to the tip of CNTs. Actual lengths of the CNTs are likely to be longer than the 

numbers shown in this table due to the wavy morphology of CNTs. 
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Figure 3.2. As-synthesized CNT-SS mesh electrodes: CNTs were directly grown in the radial 

direction from the cylindrical wires of SS meshes. (a) A bare SS mesh without CNTs for reference. 

(b) CNTs on a SS mesh partially scratched off to expose both the SS mesh and CNTs to show the 

physical contacts between them. The average lengths of CNTs for S-LD (c), M-LD (d), and L-LD 

(e) were respectively short (~8 μm), intermediate (~13 μm), and long (~19 μm). The length of the 

CNTs were measured based on the size of the open area between the SS mesh wires (see the 

decreasing rectangular open areas between the mesh wires in (ce) compared to the bare SS mesh 

in (a). The holes of the SS mesh in L-LD were almost filled by CNTs, compared to ~38 μm square 

opening without CNTs in (a). (f) L-HD showing aligned and densely packed CNTs compared to 

the other CNTs. (g) M-LD-AC showing amorphous carbon layers intentionally deposited to alter 

the electrical contacts between CNTs and microbes. (h) The diameter of CNTs with amorphous 

carbon layers in M-LD-AC is larger than that of S-LD shown in the inset of (c). Scale bars of (a) 

and (cg) indicate 20 μm; (b) 2 μm; and the inset of (c) and (h) 200 nm.  
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3.3. The properties and the performance of CNT-SS anodes 

The SS mesh was selected to serves as a backbone of the 3D electrode material. CNTs 

grown in the radial direction from the wires of the meshes can provide extremely large 

surface areas and thus have the potential to maximize contact between EABs and the 

electrodes, facilitating the transfer of electrons from EABs to the anodes. CNTs were 

directly synthesized on the SS wires to ensure minimal ohmic loss between CNTs and SS 

meshes compared to attaching CNTs on electrodes with binders as conventionally done. 

Table 1 lists five different types of CNT SS mesh electrodes developed in this study. 

Figure 3.2.a shows a bare SS mesh as a reference. Figure 3.2.b shows CNTs grown on a 

wire of a SS mesh after scratching off a row of CNTs along the axis of the mesh wire, so 

as to clearly display excellent physical contacts between the SS mesh and CNTs. CNTs of 

different lengths (8, 13, and 19 μm, Figure 3.2.c, 3.2.d, and 3.2.e, respectively), all being 

relatively low-density and loosely packed, were synthetized by controlling the catalyst 

activation time and moisture level.  

 

3.3.1. Effect of CNT lengths on MFC performance 

Comparison of power densities from the electrodes with CNTs of different lengths 

(Samples S-LD, M-LD, and L-LD) and that from a bare SS mesh (control) showed not 

only significant improvement, but also significant variations depending on the CNT 

lengths (Figure 3.3.a). As schematically shown in Figure 3.3.b, with longer CNTs, it is 

expected that the number of microbes interacting with the CNT electrode increases along 

the stem of CNTs. Microbial attachment throughout the length of the CNTs like tentacles 
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capturing microbes was confirmed by SEMs (Figure 3.3.c showing side view; Figure 3.3.d 

showing top view). On the contrary, only a small number of microbes (cylindrical slender 

objects shown in the inset of Figure 3.3.e) can be laid on the limited two-dimensional wire 

surface of a bare SS mesh, resulting in low power output. This reflects the significantly 

higher (~940% improvement) power density with the longest CNTs (~19 µm; sample L-

LD; ~450 mW m-2 at ~3600 mA m-2) compared to that of the bare SS mesh control (~0.48 

mW m-2).  

SEM images in Figure 3.3.e, 3.3.f, 3.3.g, and 3.3.h, which respectively depict bare 

mesh, short, medium and long CNTs (samples S-LD, M-LD, and L-LD) showed 

significantly more microbes on the electrode with the longest CNTs than their shorter 

counterparts. This finding correlates well with the significant differences in power 

densities, as the power density from the long CNTs (L-LD; ~19 µm; 450 mW m-2) was 

28% higher than that from the short CNTs (S-LD; ~8 µm; 350 mW m-2). However the 

power improvement was limited compared to that from the medium-length CNTs (sample 

L-LD showing only 5% higher power than sample M-LD; ~13 µm; 425 mW m-2). Overall, 

this result supports the idea that the larger surface areas provided by long CNTs gives 

higher power output due to the increased numbers of sites for EABs to attach on the 

electrodes. 
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Figure 3.3. Power performance and CNT-SS mesh electrodes with different CNT lengths after 

MFC runs. (a) Power densities against current density of S-LD, M-LD, L-LD, and a bare SS mesh 

elucidate the effect of the CNT length. (b) Illustration of the interactions between microbes and 

the CNT-SS mesh electrodes. For a bare mesh, the number of microbes responsible for transferring 

electrons is limited (upper left pane). Even the electrode with relatively short CNTs (lower left 

pane) has more microbes than the bare SS mesh electrode. For the electrode with long CNTs, a 

large number of microbes can interact with CNTs along the stem of CNTs (right pane). This was 

confirmed by a SEM (c), showing microbes captured by CNTs like tentacles. A row of CNTs were 

scratched off along the axis of the mesh wire for visualization. An enlarged view from a different 

angle (d) shows that microbes were entangled in CNTs, providing excellent conduits for 

transferring electrons. (e) In comparison to the CNT-SS mesh electrodes, a bare mesh with 

microbes laying on the surface of the mesh wire is shown. S-LD, M-LD, and L-LD after testing 

are respectively shown in (f), (g), and (h). The scale bars in (c), (d), and the inset of (e) indicate 2 

μm and those in (e-h) indicate 20 μm. 
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3.3.2. Effect of CNT packing density on MFC power 

Another key aspect influencing the MFC power output is the accessibility of microbes to 

the CNT surfaces. To investigate this effect, the packing density of CNTs was varied by 

depositing a thin catalyst layer (< 5 nm Fe) for the densely packed (aligned) CNTs (sample 

L-HD), compared to a thick catalyst layer (> 5 nm Fe) used for the loosely packed CNTs 

(samples S-LD, M-LD, and L-LD). Since thinner layers often result in smaller and more 

sites for initiating CNT growth, this resulted in high-density highly aligned CNTs (Figure 

3.2.f; L-HD). As schematically shown in Figure 3.4.a, when CNTs are highly aligned and 

densely packed, the limited space between CNTs is expected to prevent microbes from 

intercalating into the CNT forest. Indeed, microbes were observed mainly at the tips of the 

CNTs but not associated with the underlining CNTs (Figure 3.4.b), most likely due to the 

lack of physical space between the CNTs. The reduced number of microbes, in turn, 

significantly lowered the maximum power density to 43% (193 mW m-2 for L-HD) of 

that from the low-density CNT electrode (450 mW m-2 for L-LD) (Figure 3.4.c). Mink et 

al. also used MWCNTs grown through a plasma enhanced CVD method on Cr/Ni 

catalysts. However this approach showed a power improvement of only 26% compared to 

bare carbon cloth, probably because microbial growth inside the CNT forest was limited 

due to the densely packed CNTs and relatively small surface areas due to the large 

diameters (200~400 nm) of the CNTs used in their experiments [27]. The microbial 

colonization of only the top part of the CNTs does not significantly improve the 

performance, thus the loosely packed CNTs contribute to higher power output than 

densely packed CNTs. 
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Figure 3.4. Characteristics of aligned and densely packed CNT-SS mesh electrode. (a) Microbes 

are difficult to get into the CNT forest, making microbes sit on the tip of CNTs. (b) A top view of 

L-HD after testing, showing microbes only on the top surface of the CNT electrode but not inside 

the CNT forest, as can be seen through the cracks of the biofilm. The scale bar indicates 2 μm. (c) 

The power density of L-HD in comparison to that of L-LD whose CNT lengths were similar. 
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3.3.3. Effect of amorphous carbon on CNTs 

As non-optimal growth of CNTs can easily result in a layer of amorphous carbon on CNTs, 

we investigated how electrical contacts between microbes and CNTs influence the MFC 

power output by preparing a CNT electrode having amorphous carbon layers. The CNT 

surface condition was altered by etching SS meshes with an aqueous HCl solution. The 

etching process roughens the surface of SS meshes, revealing relatively large catalytic Fe 

sites for CNT growth. This resulted in CNTs covered intentionally with a thick layer of 

amorphous carbon (Figure 3.2.g) that was responsible for the uneven surfaces and larger 

diameters of CNTs (Figure 3.2.h) as opposed to the other samples (no amorphous carbon 

layers) displaying smooth surfaces and smaller diameters (inset of Figure 3.2.c). The 

power density of the amorphous carbon-coated CNT electrode (M-LD-AC) resulted in 

50% reduction in power to ~210 mW m-2, compared to that of similar length and density 

containing a negligible amount of amorphous carbon (M-LD; ~425 mW m-2) (Figure 

3.5.a). A transmission electron micrograph (TEM) shows that a thick carbon layer 

wrapped around the CNTs (outer walls of CNTs are marked by arrows in Figure 3.5.b). 

This coating layer made the overall diameter of these CNTs thicker (100 nm) compared 

to M-LD samples (30~60 nm; Figure 3.5.c). The graphitic layer of CNTs often makes 

relatively strong bonding with organic molecules due to dangling bonds and - 

interactions [81]. Electrochemically active bacteria can transfer electrons through their 

microbial nanowires though - interchain stacking and delocalization of charges [82-85], 

suggesting intimate interactions between microbial nanowires and CNTs. Therefore, the 

amorphous carbon layer would result in a weaker bonding and thereby a large ohmic loss. 
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Figure 3.5. Characteristics of CNT-SS mesh electrode with amorphous carbon coating. (a) The 

power density of M-LD-AC (amorphous carbon coating layer) in comparison to that of M-LD, 

whose CNT lengths were similar. (b) Amorphous carbon coating layers were clearly observed 

from M-LD-AC outside of the CNT. The arrows mark an individual MWCNT. (c) L-LD had only 

graphitic carbons. 
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3.3.4. Long-term performance of L-LD in 100 mL MFC 

Based on these systematic studies, the CNT electrode having long, loosely-packed, and 

low-density CNTs without any amorphous carbon showed the highest power improvement 

during the short-term studies. Therefore, this electrode was selected for testing its long-

term performance in a two-chamber MFC (100 mL). The MFC anode chamber (50 mL) 

was inoculated with anaerobic wastewater and fed with acetate. After 4-5 days of 

operation, MFC voltage increased to greater than 0.6 V (Figure 3.6.a). Polarization curves 

was obtained after the fresh acetate medium addition, and showed maximum power 

density of 3360 mW m-2. This power density is 7.4-times higher than that from a bare 

carbon cloth electrode (456 mW m-2) (Figure 3.6.b), which is the largest percentage 

increase with CNT-modified anode reported so far, to the best of our knowledge. The 

absolute power density from this result is also amongst the highest power densities 

reported so far, however direct comparison of power densities across different MFC 

platforms and wastewater substrates remains a challenge. Electrochemical impedance 

spectroscopy (EIS) tests were conducted at open circuit voltage and the Nyquist curves 

are shown in Figure 3.6.c. The charge transfer resistance of the electrode after microbial 

biofilm was lower than that of bare carbon cloth, demonstrating that the CNT-grown SS 

mesh has better performance due to the larger surface area and enhanced biofilm formation 

which is shown in the SEM image taken after 3 months of MFC operation (Figure 3.6.d).  
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Figure 3.6. Long-term performance of L-LD in a two-chamber MFC device (100 mL). (a) 

Voltage generation over time showing a sharp increase in voltage after acetate inoculation (arrow 

marks) and short start-up time (4-5 days). (b) Polarization curves of L-LD and bare carbon cloth 

(control) showing the maximum power densities achieved with wastewater and acetate and the 

maximum power density generated by the L-LD anode is 7.4 times that of the bare carbon cloth 

(3360 mW m-2 vs 456 mW m-2). (c) Nyquist curves for the microbial fuel cells equipped with the 

L-LD and bare carbon cloth. Full curves are shown in an inset graph. (d) SEM image of the 

microbial growth, where cross section of the L-LD after 3 months of operation shows microbial 

colonization inside of the CNT forest. The scale bar indicates 10 μm.  
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3.4. Discussion 

Overall, the large performance improvement was probably facilitated by the excellent 

electrical conductivity of CNTs (105~107 S m-1) [33, 86], which provides excellent charge 

pathways with minimal ohmic loss throughout the multiple layers of microbes. For typical 

two-dimensional electrodes, thick biofilms generally contribute to higher electricity 

generation but their electron transfer efficiency is low due to significant ohmic loss caused 

by the low electrical conductivity of biofilms (e.g., Geobacter sulfurreducens biofilms 

was measured to be ~5×10-3 S cm-1) [84]. In this case, only a few layers of microbes near 

electrodes have good charge interactions. Several groups utilized CNT dipping methods, 

including Xie et al. who fabricated the CNT-textile by dipping a piece of non-conductive 

textile in CNT ink and improved the power density 68% compared to carbon cloth [77]. 

The dipping method does not provide strong connection between the CNTs and the base 

material and thus limits the electron transfer from microbes. Similar methods were also 

used in several other works [27, 75, 76] but the power improvements compared to control 

electrodes were limited, presumably due to the same reason. The CVD method to directly 

grow CNTs on the base electrode materials as presented here can increase the efficiency 

of charge transfer due to the stronger attachment of CNTs. As such, the CVD method used 

on graphite felt showed 5 times improvement compared to bare electrode [78]. Indeed, the 

current-voltage sweeping measurements using out electrodes revealed that the contacts 

between the SS wires and CNTs are ohmic. The stainless steel mesh in our experiment 

appears to be stable in a short term such as several months. This could be due to direct 

synthesis of CNTs on SS meshes that coats the meshes with carbon, improving corrosion 
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resistance. However the long-term stability of more than one year for stainless steel still 

need to be investigated. The use of SS mesh, which can be several times cheaper than the 

graphite felt, has thus strong potential towards low-cost high-performance MFC anode 

materials. 

 

3.5. Conclusion 

In summary, we synthesized tentacle-like CNTs directly grown from SS meshes in the 

radial direction of mesh wires, providing microbes with three-dimensional and large 

surface areas. CNTs captured microbes like tentacles, resulting in excellent charge transfer 

characteristics presumably due to π-π stacking between the graphitic carbon rings of CNTs 

and the pili of microbes. Another key feature of our new electrodes is their minimal ohmic 

loss due to the direct growth of CNTs from SS meshes. The systematic variation of CNT 

length, density, and surface condition elucidated the contribution of each parameter to the 

power performance. It was found that the longer CNTs provided more sites for microbes 

to transfer charge, resulting in higher power output. It was also important to maintain large 

enough spaces between CNTs for microbes to be intercalated in between. We also found 

that the graphitic layer of CNTs with minimum amorphous carbon provided an excellent 

substrate for charge interaction. The CNT-SSM electrode that showed the best 

performance during short-term testing (long, loosely-packed, and no amorphous carbon) 

was further tested with wastewater and its long-term performance showed maximum 

power density of 3360 mW m-2, 7.4-times higher than that from carbon cloth, being 

amongst the highest power improvements in nanomaterial-based MFC anodes. Here, we 
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fabricated a highly efficient nanomaterial-based electrode that offer great potential for 

advancing the development of microbial electrochemical systems. 
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4. THREE-DIMENSIONAL POROUS CARBON NANOTUBE SPONGES 

FOR HIGH PERFORMANCE ANODES OF MICROBIAL FUEL CELLS* 

  

4.1. Introduction 

While most commonly used anode materials are carbon cloth, carbon felt, and carbon 

paper [87, 88], it has been found that 3D carbon brush structures can significantly increase 

power output by maximizing the contact of EABs to anode, and are now also broadly used 

[89]. In carbon brushes, straight long carbon fibers whose diameters are 7-10 micrometers 

are arranged in the radial direction that allows EABs to be attached throughout the brush 

electrode. This brush design is superior to 2D electrodes (eg. carbon cloth, carbon paper) 

because of the large surface area per volume. However the large spacing between the 

carbon fibers (typically in several tens to hundreds of micrometers) and relatively high 

ohmic resistance of this material leave further room for significant improvement.    

Various nanomaterials have been explored to overcome such limitations, such as 

metal nanoparticles [17], graphene [21, 88, 90-92], carbon nanotubes (CNTs) [22, 23, 25-

27, 77, 79], and polymer composites with embedded nanoscale carbon materials [30, 78, 

93], all providing orders of magnitude higher surface areas than that of 2D electrodes (< 

1 m2 g-1 ) and 3D brush electrodes (~0.7 m2 g-1). However these nanomaterials generally 

require some sort of 2D or 3D support substrates such as carbon paper [26], carbon cloth 

                                                 

* Reprinted with permission from “Three-dimensional porous carbon nanotube sponges for high-

performance anodes of microbial fuel cells” by Celal Erbay, Gang Yang, Paul de Figueiredo, Reza Sadr, 

Choongho Yu, Arum Han, 2015. Journal of Power Sources, 298, 177-183, Copyright [2015] by Elsevier. 
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[79], textile [77], and stainless steel mesh [23], which contains less conductive materials 

and/or limits thickness of nanomaterial layers to have 3D structures. Recent development 

in 3D nanostructures may alleviate such drawbacks. For instance, a graphene coated 

sponge [91] with stainless steel as a current collector, a graphene modified nickel foam 

[21], a graphene foam coated with polyaniline (PANI) [93] all have shown high 

performances by allowing efficient electron transfer and mass transport by combining 

highly conductive nanomaterials with 3D structures. Nonetheless, most of these high-

performance 3D structured electrodes typically require complicated synthesis processes 

such as carbonization and reoxidation [30, 90]. This complexity significantly increases the 

cost of the electrodes as well as are difficult to scale-up, which makes these high 

performance electrodes impractical for most MFC applications.    

Here, porous and flexible 3D CNT sponges were synthesized by using a simple 

and facile one-step process without the need for any substrates or base/sacrificial 

materials. One-step synthesis that does not require any pre and post processes to make the 

CNT sponges such as catalyst deposition on substrates or removal of unwanted materials 

was advantageous to fabricate them in a short time. The spontaneously formed sponge is 

also scalable, which makes it suitable for low-cost bulk manufacturing. The 3D CNT 

sponge anodes were tested in various MFC sizes to characterize their power density. 

 

 

 

 



 

41 

 

4.2. Experimental 

 

4.2.1. Preparation and characterization of CNT sponge electrode 

To synthesize the CNT sponge, a chemical vapor deposition (CVD) method was 

employed. A three-zone furnace (Lindberg/Blue M STF55346C) equipped with a quartz 

tube (1 inch in diameter) was used to individually control the temperature of the reaction 

zones. After a 30-min growth reaction, a CNT sponge with ~10 cm in length and 22 mm 

in diameter was formed. As-synthesized CNT sponge shows highly porous structure 

(~98% porosity), and is comprised of randomly oriented and entangled CNTs. The CNT 

sponges were fabricated by Dr. Yu’s research group in Materials Science and Engineering 

department at Texas A&M University [94]. 

 

4.2.2. MFC setup and operation  

The synthesized CNT sponge as anode along with carbon felt (Morgan, UK) for 

comparison was tested in three different sizes of two-chamber MFCs. Three different 

chamber sizes were used to fully characterize the CNT sponge anode performances at 

various size scales. Small (SMFC), medium (MMFC), and large MFC (LMFC) have two 

chambers (anode and cathode chambers) of 0.5, 20, and 120 mL, respectively. The two 

chambers were separated by a proton exchange membrane (PEM) (Nafion 117TM, Ion 

Power Inc.; 1 cm2 for SMFC; 7 cm2 for MMFC; 19.6 cm2 for LMFC) that was placed 

between silicon rubber gaskets to prevent liquid leak. CNT sponge anodes (110.3 cm3; 

same for all MFCs) and carbon cloth cathodes (11 cm2 for SMFC; 22 cm2 for MMFC; 
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34 cm2 for LMFC) having platinum catalysts on one side (10 wt% Pt/C, 0.5 mg of Pt per 

cm2, ElectroChem, Inc.) were used. Titanium wires were used to hook the electrodes for 

electrical connection.  

The anode chambers were inoculated with anaerobically activated sludge (Austin 

Wastewater Plant). The anode chambers were fed with a medium containing sodium 

acetate (1.5 g L-1) and autoclaved anaerobic nutrient mineral buffer (NMB, pH 7.0) 

solution [95]. The MFCs were operated in a batch mode and acetate was inoculated after 

the voltage dropped below 50 mV. Nitrogen was purged for 15 min to make the chambers 

anaerobic after each inoculation. The medium was mixed by using a magnetic stirrer at 

350 rpm during the experiment (only for the MMFC and LMFC due to the size limitation). 

The cathode chambers were filled with 100 mM ferricyanide ([Fe(CN)6]
3-). 

Cell voltage across a load resistor (1 kΩ) was recorded every 120 sec using a 

multiplexer (NI PXI-2575, National Instruments) for continuous voltage measurements 

via a LabViewTM (National Instruments) interface [57]. Polarization curves were obtained 

by varying the load resistor from 10 kΩ to 100 Ω when voltage was stable after several 

operation cycles. Power (P) was calculated by P=V2 R-1 based on the recorded voltage (V) 

and load resistance (R). The current and power densities were normalized by the volume 

of anode (0.3 mL) or anode chambers (0.5, 20, 120 mL) for each case.  

 

4.2.3. Biofilm characterization 

To inspect the biofilms on the CNT sponge and carbon felt, the anode was first rinsed with 

phosphate buffered saline (PBS), and then microbes were fixed using 4% glutaraldehyde 
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and 4% formaldehyde for 5 hours. The samples were carefully rinsed three times in PBS 

(pH 7.0) and then once in deionized water, followed by a series of dehydration steps using 

increasing concentrations of ethanol (25, 50, 75, and 95 wt%; 10 min for each stage with 

very gentle periodic agitation) and then thorough drying at room temperature overnight. 

The samples were coated with ~5-nm thick Pt/Pd for inspection under the SEM. 

4.3. CNT sponge as the anode in MFC 

We first tested the CNT anode in SMFC. The voltage increased to ~250 mV over a 1 kΩ 

load resistor in about one day, as shown in Figure 4.1.a. Meanwhile carbon felt anode 

produced a slightly lower voltage of 170 mV. The volumetric maximum power density 

(normalized to the anode chamber volume of the SMFC) generated by the CNT sponge 

anode was ~170 W m-3, which was approximately 1.4 times higher than that of a 

commercial carbon felt (~120 W m-3), as shown in Figure 4.1.b. Here the CNT sponge and 

carbon felt electrodes filled approximately 60% of the anode chambers. 

In order to evaluate the long-term performance of the CNT sponge anode, MMFC 

whose anode chamber volume is 40-times larger (20 mL) was used. After 5 days from 

inoculation with wastewater, voltage over a 1 kΩ load resistor reached a higher voltage of 

~550 mV (Figure 4.2.a), which was maintained for more than 50 days, indicating its high 

stability. The maximum volumetric power density (normalized to the anode chamber 

volume) of the MMFC with the CNT sponge anode (14.1 W m-3) was 1.3 times higher 

than that of the MMFC with carbon felt (10.8 W m-3), as shown in Figure 4.2.b. This long-

term test result shows that porous 3D CNT sponge anode developed here has better 
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performance compared to commercial carbon felt frequently used as 3D anode materials 

in MFCs. This improved performance could be attributed to more uniform biofilm growth 

on the CNT sponge compared to that of the carbon felt, based on the SEM images after 50 

days of operation (Figure 4.2.c,d for the CNT sponge anode; Figure 4.2.e,f for the carbon 

felt). CNTs were not observed in the CNT sponge anode, suggesting that microbes 

completely and uniformly covered the entire surface of the CNT sponge anode. On the 

contrary, microbes on the carbon felt were mainly attached to the carbon fibers, resulting 

in non-uniform and less dense biofilm. This difference suggests a substantially improved 

contact between the anode and the biofilm in the case of CNT sponge, which can be due 

to high surface area of the CNT sponge as well as the - interactions between the 

graphitic layers of the CNTs and the attached microbes. 
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Figure 4.1. Performance of the SMFCs equipped with different anode electrode materials (CNT 

sponge and carbon felt). (a) Voltage output over time of the MFCs with a 1 kΩ load resistor. 

Arrows indicate media replenishment. (b) Polarization curve comparing the volumetric power 

density (based on anode chamber volume, 0.5 ml) of the MFC with CNT sponge anode compared 

to that with carbon felt anode. 
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Figure 4.2. (a) Performance of the MMFC (20 ml anode chamber volume) with CNT sponge 

anode operating in batch mode with a 1 kΩ load resistor. The arrows indicate the replenishment 

of the media (acetate). (b) Polarization curves of the CNT sponge anode MMFC compared to that 

of the carbon felt anode MMFC. The volumetric power densities were calculated based on the 

volume of anode chamber (20 mL). (c, d) SEM images of the biofilm grown on the CNT sponge 

anode at low and high resolutions. (e, f)  SEM images of the biofilm grown on the carbon felt 

anode at low and high resolutions. 
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4.4. Discussion 

The CNT sponge anode was also tested in the LMFC having 6 times larger anode volume 

compared to the MMFC. The power densities of the CNT sponge anodes in the SMFC, 

MMFC, and LMFC cases were compared by normalizing against the sponge anode 

volume (Figure 4.3.a) and the anode chamber volume (Figure 4.3.b). Both normalization 

methods were used to be able to compare to literature, as some report power densities 

based on the anode chamber volume and some based on the anode volume. It should be 

noted that the volume of the CNT sponge anode is identical for all experiments in this 

study. With larger chamber volumes, the power density per volume of the CNT sponge 

anode was highest, reaching 2150 W m-3 for LMFC, which is 2.3 and 7.6 times higher 

than those of the MMFC (943 W m-3) and of the SMFC (283 W m-3) (Figure 4.3.a). This 

increment can be ascribed to more microbes in the larger MFC chamber, suggesting that 

active surface area of the CNT sponge is sufficiently large as to not saturate the power 

generation. On the other hand, the power density normalized to the anode chamber volume 

was highest (170 W m-3) from the SMFC (Figure 4.3.b), which has a significantly higher 

volume percentage (60%) of anode chamber occupied by the anode, compared to the cases 

of MMFC (1.5%) and LMFC (0.25%). These results suggest that it is better to have a large 

chamber volume to obtain high power generation, at the same time filling a significant 

portion of the chamber volume with anode will be ideal to effectively utilize the total 

volume of the cell. We also expect that further study with single-chamber air-cathode 

MFCs may improve the maximum power density of two-chamber MFCs in this work, 

which we plan to do as a follow-up study. 
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Figure 4.3. Performance comparison of the CNT sponge anode loaded in MFCs having three 

different anode chamber volumes. (a) Volumetric power densities normalized to the anode volume 

(0.3 cm3). (b) Volumetric power densities normalized to the volume of the anode chamber. 
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As shown in Table 2, reported power densities in literature greatly vary not only 

depending on the MFC configurations (e.g., the number of chambers, the size of electrodes 

and PEM) and operating conditions (e.g., microorganisms and substrates used), but also 

depending on the size/volume of electrodes used to calculate the power densities and the 

volume ratio of the chamber to electrode. Table 2 compares the power density of our CNT 

sponge anode with previously reported nanomaterial based 3D anodes in MFCs. Among 

these representative results, our LMFC and SMFC was the best in terms of the power 

density per anode volume and per anode chamber volume, respectively. For example, 

when anodes were made of insulating polyurethane sponges decorated with commercially 

available CNTs [22] or graphene [91] by a dipping method, their power density per 

chamber volume was, respectively, measured to be only 0.66 W m-3 and 1.05 W m-3, 

significantly lower than our values presumably due to poor electrical contact between the 

nanomaterials due to the insulating surfactants and/or binders. Test using the 3D graphene 

sponge anode tested in a two-chamber MFC [90] resulted in a volumetric power density 

(per chamber volume) of 3.41 W m-3, showing only 8% increase compared to that of 

carbon felt anode, potentially due to the small pore sizes in the graphene sponge anode.  

Overall, most importantly, the synthesis process for the CNT sponges presented 

here is scalable, simple, facile, and inexpensive, compared to those in literature. For 

instance, longer and complicated processes such as polymerization and carbonization were 

necessary to obtain 3D nitrogen-enriched carbon nanoparticle coated anode that resulted 

from the carbonization of PANI and natural fibrous loofah sponge [30]. Graphene oxide 

anode required very long (> 2 days) processes with expensive nickel foams as substrates 
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[21]. Our one-step processing method has a very low production cost about ~$0.1/gCNT or 

~$4.7/L, whose density is ~47 mg/cm3, which is much lower than those of previously 

reported methods [96-101]. The calculated cost here is based on using 0.3 g of ferrocene 

($108/500g), 2.4 L of C2H4 ($22 for/300 ft3), 7.8 L of H2 ($45 for 300 ft3), and 2.4 L of 

Ar ($48 for 300 ft3) for the 30min synthesis time. The total cost was then normalized to 

the current production rate of ~3.6 g/h. This production rate was also orders of magnitude 

higher (~3.6 g/h, representing 20 cm/h of a 2.2 cm diameter CNT sponge) compared to 

other nanomaterial-based anode synthesis (~0.02 g/h) [96, 97, 99, 100]. The process is 

also scalable, where the diameter of the CNT sponge is controlled by the diameter of the 

furnace tube used and the length is controlled by the synthesis time (currently 1 h to obtain 

a 20 cm long and 2 cm diameter CNT sponge). Thus simply using a larger-diameter 

furnace tube and longer synthesis time can easily result in scaled-up production of the 

presented 3D CNT sponge electrode materials. Here, the presented CNT sponge anode 

shows not only high power density in MFC applications, but also low cost and scalability, 

which will have broad applicability in microbial electrochemical cell systems (e.g., MFC, 

microbial electrolysis cells, and microbial desalination cells) in general. 
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Table 2. Performance summary of 3D nanomaterial anodes in MFCs. 

*Calculated values based on the reported data.

Anode (mL) 

Anode 

chamber 

(mL) 

Power density per 

anode volume 

(W/m3)  

Power density per 

anode chamber volume 

(W/m3)  

Ref. 

Graphene-sponge SSM as 

electron collector (0.4) 

150 394 1.05* [91] 

CNT coated sponge (0.2) 150 990* 0.66 [22] 

CNT coated sponge (0.2) 0.2 325* 325 [22] 

Graphene-sponge 

(0.8) 

100 427 3.41* [90] 

N-enriched carbon 

nanoparticle modified 

loofah sponge (1.5) 

28 509* 27.2* [30] 

Reduced Graphene Oxide 

Nickel Foam (1) 

25 661 27 [21] 

CNT sponge (0.3) 0.5 283 170 

This 

work 

CNT sponge (0.3) 20 943 14.1 

This 

work 

CNT sponge (0.3) 120 2150 5.3 

This 

work 
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4.5. Conclusion 

We fabricated a 3D sponge-like anode consisting of self-assembled, interconnected CNTs 

by using facile and inexpensive one-step CVD method without substrates. The highly 

porous, flexible, and light-weight sponge anode generated higher power densities of 2150 

W m-3 per anode volume and 170 W m-3 per anode chamber volume, compared to those 

in literature. These power densities were also higher than those of commercial carbon felt 

electrode tested with the same configuration. This improved performance can be attributed 

to enhanced charge transfer between the CNT sponge anode and microbial biofilm based 

on the EIS results, in addition to large surface areas and favorable - interactions between 

microbial nanowires and CNTs. The low cost simple to fabricate 3D CNT sponge anode 

presented here provides a new concept for designing MFC anodes as well as promising 

approach to generate electricity from wastewater in large scale applications at 

economically viable cost. 
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5. LAMINAR FLOW MICROFLUIDIC MICROBIAL FUEL CELL FOR 

OPTICAL AND ELECTROCHEMICAL MONITORING OF 

SHEWANELLA ONEIDENSIS MR-1 BIOFILM  

 

5.1. Introduction 

Microbial fuel cells (MFCs) are promising bioelectricity generation and wastewater 

treatment technology from organic biomass and waste which are rich with 

electrochemically active bacteria such as Shewanella oneidensis, Geobacter 

sulfurreducens.[13, 102] Biofilm formation and development on anode surface plays 

important role on the performance of the MFCs. However, the relation between the 

performance and real-time biofilm growth was not studied before in situ. Macro-scale MFCs 

are not suitable for analyzing with microscopes due to their large size. Although micro-

scale MFCs are mainly considered as a micro power sources [59, 61, 103], developing 

micro-scale MFCs has great potential to understand the relation between biofilm growth 

and power production, and electron transfer mechanism between bacteria and electrode. 

However, high cost, fabrication complexity and moreover elastic properties (bending, 

swelling) of membrane caused significant issues in micro-scale chamber volume make 

them challenging with a separator.[62] Therefore, membrane-less laminar flow MFC can 

be considered as an experimental tool for studying microbial biofilm development in MFCs. 

In laminar flow MFC configuration, both anolyte and catholyte introduce into a 

microchannel proceed in parallel due to the laminar nature of the flows prevents turbulent 
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mixing which create natural boundary between anode and cathode chambers same like 

PEM.[104, 105] 

Here, we developed a microfluidic laminar flow MFC with interdigitated anode to 

analyze the real time electrochemical activity of Shewanella oneidensis MR1. The device 

allowed us to investigate biofilm behavior and flow streams under the fluorescent 

microscope. Furthermore, the changes of biofilm growth was studied by the analysis of 

impedance measured from interdigitated anode. This device provides an excellent real-

time analytical tool to understand the correlation between biofilm growth and impedance 

as well as power production. To best of our knowledge, it is the first study to analyze 

biofilm impedance in situ in MFCs. 

Interdigitated anode are used for growth monitoring of biofilms in laminar flow 

MFC. In order to understand the impedance monitoring system with interdigitated anode, 

an equivalent electrical circuit is introduced and fit to the impedance spectrum. This 

method provides better understanding of meaningful physical parameters of biofilm 

development such biofilm thickness and biomass rather than conventional electrochemical 

impedance spectroscopy which provides internal resistances of MFCs. Impedance 

spectroscopy analysis is a powerful technique for detecting and monitoring bacterial 

growth based on electrical changes on the interdigitated electrode which was previously 

used to detect pathogenic bacterias such as Salmonella thphimurium [106] and 

Escherichia coli [107].   
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5.2. Materials and methods 

5.2.1. Cell culture 

S. oneidensis MR-1 transformed with plasmid p519ngfp (expressed green fluorescent 

protein, provided by Dr. M. Y. El-Naggar from University of Southern California) stored 

in tryptic soy broth (TSB) supplemented with 15% glycerol at -80 oC. Cells were streaked 

onto a tryptic soy agar (TSA) plate. The resultant colonies were inoculated into 3 ml of 

TSB liquid medium with 50 µg/mL kanamycin, and then cultured for 24 h at 30°C at 150 

rpm in shaker incubator. The optical densities (OD600) were measured and adjusted to 1.0 

before using in laminar flow MFC. 
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length of microelectrode is 300 μm and 4000 μm, respectively. The microchannel has 100 

μm height which allows biofilm to grow over time (Figure 5.1.c). The width of the 

microchannel is 1000 μm and the gap between interdigitated anode and cathode is 400 μm 

where anolyte and catholyte doesn’t cause crossover on the electrodes. It is explained in 

section 5.3.1 in detail. 

5.2.2. Laminar flow MFC design 

Microsized microfluidic laminar flow MFC device is composed of a microelectrode layer 

and microchannel layer. Microchannel length is 5 mm and microelectrode length is 4 mm 

as shown in Figure 5.1.a. It has two inlets (for anloyte and catholyte) and two outputs for 

effluent. Laminar nature of flows prevents them to mix and create boundary layer between 

anolyte and catholyte. The boundary layer works as PEM in laminar flow MFC. 

Microelectrode layer is composed of cathode and anode which is interdigitated electrode. 

After biofilm grow on interdigitated anode, impedance spectroscopy can be connected to 

directly on the interdigitated anode to measure its impedance values. It is composed of 50 

finger pairs through the microchannel. The gap between fingers on interdigitated anode is 

20 μm and the finger width is 25 μm as shown in Figure 5.1.b. The overall width and 
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Figure 5.1. Microfluidic laminar flow MFC device specifications. a) Top view of the device. b) 

Interdigitated anode specifications. c) Cross sectional view of the microfluidic channel. 
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5.2.3. Device fabrication and assembly 

Glass substrate was cleaned in piranha solution (1:3 concentrated hydrogen peroxide to 

sulfuric acid) for 30 min, rinsed with deionized (DI) water and dried with N2 blow.  

Titanium (Ti) (20 nm) and gold (Au) (200 nm) were sequentially deposited on clean glass 

using electron beam evaporation (Lesker PVD 75). Shipley 1818 was spin-coated on 

Ti/Au coated glass substrate at 3500 rpm, and then baked before exposed to UV light 

through a patterned photomask using a mask aligner (MA6). After photoresist developing 

process, the exposed part of the gold and titanium layers were removed in gold etchant 

and titanium etchant (1:500 concentrated hydrofluoric acid to DI water), respectively. 

Polydimethylsiloxane (PDMS, 10:1 mixture, Sylgard 184, Dow Corning, Inc.) 

microchannel was fabricated using the softlithography technique. PDMS was poured onto 

the silicon master that was first spin-coated with SU-8 2050 (MicroChem) at 3000 rpm 

and exposed to UV light by using MA6 after baking processes to obtain microchannel 

pattern. PDMS was then peeled from the silicon master. Schematic fabrication steps for 

both electrode and microchannel are shown in Figure 5.2. Glass substrate with electrodes 

and PDMS microchannel layers were aligned and bonded each other after oxygen plasma 

treatment (Harrick Plasma). For sterilization, assembled device (Figure 5.2.c) was treated 

with ultra-violet (UV) light for 30 min before bacteria inoculation. 
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Figure 5.2. Microfluidic laminar flow MFC fabrication process. a) Photolithography and etching 

techniques were employed for fabrication of the gold electrodes. b) The microfluidic channel was 

fabricated using conventional soft lithography techniques. c) Photographic picture of the 

assembled device. 
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5.2.4. Inoculation and device operation 

S. oneidensis MR-1 was first inoculated into microchannel and the flow was stopped for 

4 hours to allow initial bacterial growth. Then, both anolyte (TSB, autoclaved at 121 oC 

for 15 min) and catholyte (100 mM ferricyanide in 100 mM phosphate buffer saline) were 

flowed continuously at a flow rate of 20 µL/min by a syringe pump (Chemyx Fusion 200). 

Open circuit voltage (OCV) was measured between anode and cathode using data 

acquisition equipment (Agilent 34970A). Interdigitated fingers of anode were connected 

during OCV measurement (Figure 5.3.a) and disconnected during biofilm imaging and 

impedance measurement (Figure 5.3.b). Polarization curves were obtained by varying the 

external resistor from 400 MΩ to 1 MΩ. Power (P) was calculated by P=V2 R-1 (Ohm’s 

low) based on the recorded voltage (V) and external resistor (R). The current and power 

densities were normalized by the area of anode (0.8 mm2).  

 

5.2.5. Biofilm imaging 

Biofilm imaging was performed by using Zeiss Axio Observer Z1 inverted microscope 

equipped with both Hamamatsu (used for GFP fluorescent images) camera.  
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Figure 5.3. Entire experimental setup a) Open circuit measurement b) Impedance measurements.    
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5.2.6. Impedance measurement 

Impedance measurements were recorded using an impedance spectroscope (HF2IS, 

Zurich Instruments) equipped with a current amplifier (HF2CA). A sweep frequency 

between 100 Hz and 100 kHz was applied to biofilm on the interdigitated electrodes with 

an amplitude of ±10 mV. The interdigitated anode had 1 mm width and 4 mm length. It 

possessed 50 pairs of finger electrodes with 25 μm width and 20 μm space between fingers 

as seen in Figure 5.2.c. To perform the simulation, proper equivalent circuits were 

proposed, then data points were automatically selected by the software as inputs to the 

equivalent circuit to generate a fitting spectrum. 

 

5.3. Results 

 

5.3.1. Laminar flow characterization 

The flow streams must be laminar to prevent turbulent mixing which provided by low 

Reynolds number (Re < 2100), Re = ρvDh/μ, where ρ is the density, v is the velocity, Dh 

is the hydraulic diameter of the channel, and μ is the dynamic viscosity. Both anolyte and 

catholyte were maintained at the same flow rate (20 µL/min) which resulted low Reynolds 

number as shown in Figure 5.4 (Re = 1.21). This result is well below to guarantee laminar 

flow in the microfluidic MFC. Observing the diffusion of both streams is also possible 

based on the flow rate. It can cause crossover mixing on the electrodes that affects biofilm 

growth on anode adversely. The maximum mixing region width (δmix) at the end of the 

microchannel is defined as (DHL/v) 1/3, where D is the diffusion coefficient, H is the height 
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of the microchannel, and L is the channel length.[108] Based on the calculation, mixing 

region width was 56.4 μm in the device. (Figure 5.4) Since the gap between anode and the 

cathode was 400 μm, the diffusion didn’t have an impact on the biofilm growth. Fraiwan 

et al. design three electrode pairs placed closed to inlet, outlet and middle of the 

microchannel in laminar flow MFC.[109] Due to catholyte crossover on anode near outlet, 

the current production was lower than other electrode pairs. The electrode distance must 

be considered based on the diffusion width to prevent catholyte inhibition and electrolytes 

crossover. 
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Figure 5.4. Diffusion width and Reynolds number values based the different flow rates.   

 

 

 

 

 

 

 

 

 

 

 

 



 

65 

 

5.3.2. Open circuit voltage and power generation from laminar flow MFC 

The performance of the laminar flow MFC was evaluated by measuring the open circuit 

voltage and obtaining the polarization curves at various time points. After initial growth 

of S. oneidensis MR-1 on anode, TSB was started to flow continuously for further biofilm 

growth and it resulted increasing on both open circuit voltage (Figure 5.5.a) and power 

density (Figure 5.5.b). The open circuit potential reached maximum around 700 mV in 

four days. Qian et al. measured it to ~600 mV in dual chamber micro scale MFC with 

separator in batch mode.[61] Furthermore, Fraiwan et al. obtained the open circuit 

voltages generated by same strain (S. oneidensis MR-1) were around 500 and 600 mV by 

using microfiber and carbon nanotube anode, respectively.[110] Vigolo et al. reported the 

highest open circuit potential measured to 770 mV in micro scale MFC (with membrane) 

that were inoculated with same bacteria.[111] The electrolytes were flowed in continuous 

mode (20 μL min-1) instead of batch-fed mode resulted in high performance. They also 

performed different flow rates (between 0.5-60 μL min-1) to analyze the effect of flow rate 

on power density It decreased sharply when the flow rate was higher than 45 μL min-1) 

due to very high shear stress (3 Pa) which is unfavorable for biofilms and cause loosing 

or dispersing of them.[111, 112]    

 

 

 

 

 



 

66 

 

 

Figure 5.5. a) Open circuit voltage and b) Power density over time. Arrows indicated the 

measurement time points.    
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The power density in the laminar flow MFC gradually increased until ~60 hours 

from 0.36 mW m-2 to 0.68 mW m-2 then there was sharp increment and it reached to 2.74 

mW m-2 at ~110 hour as shown in Figure 5.6. The voltage across each resistor were 

recorded after it was stable as shown in Figure 5.7 at ~110 hour. To our best knowledge, 

the power density was calculated first-time from the laminar flow MFC with gold 

electrode materials by inoculating single strain bacteria. Gold is the common electrode 

material in micro scale MFCs due to its biocompatibility, high conductivity properties as 

well as easy microfabrication processes. The performance of MFC with gold anode is 

lower than carbon based materials such as carbon cloth, carbon paper which provides 

better interaction between bacteria and the anode. However, they are not ideal in laminar 

flow MFC configuration since they have non-uniform shape and it is hard to place them. 

Qian et al. produced 1.5 mW m-2 from two chamber micro-sized MFC (1.5 μL anode 

volume) by having gold anode.[60] They used the same bacterial strain, anolyte (TSB) 

and catholyte (ferricyanide) solutions. Although, the power density is two times lower, its 

actual power generation is much higher than our laminar flow MFC. The power production 

is limited in laminar flow MFC since gold electrode materials provides high internal 

resistance. More importantly, oxygen can diffuse into the anode and it prevents efficient 

electron transfer from bacteria. Li et al. achieved a current density 25.42 mA m-2 from 

laminar flow MFC.[113] They didn’t report the voltage data to calculate power density 

but the actual current was calculated to 35 nA which is very low compared to all other two 

chamber micro-sized MFCs.[62] Therefore, the laminar flow MFC is not ideal option for 

practical on-chip power applications. 
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Figure 5.6. Power performance of the laminar flow MFC over time. The power density increased 

slowly until ~60 hours, then it doubled and continue to increase sharply.  
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Figure 5.7. Open circuit voltage generation from different resistors at 110 hour. After each 

change, the voltage production was stable.   
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5.3.3. Biofilm development on anode in laminar flow MFC 

In order to understand the performance, biofilm formation on anode was investigated 

under the fluorescence microscope. This experimental approach provided real time 

fluorescent images of the biofilm to show how it developed during power production 

which reflected the natural environment for the bacteria without disturbing with staining 

or taking it out from MFC chamber for imaging. Figure 5.8.a displays representative 

biofilm formation images in different time points. Attached bacteria and initial phase of 

the biofilm formation was started to observe around 12 hours. It continuously grew and 

became very uniform all over the anode by 55 hours. The power density was only 

increased 1.7-fold between these two time points. After that, the biofilm started to be 

thicker and larger until 110 hours which resulted in 4.5 and 7.6-fold higher power density 

compared to 55 and 12 hours, respectively. Biofilm development was previously studied 

with techniques such as SEM [23, 94], and confocal scanning laser microscopy [114] but 

it required removing the anode from MFC that resulted loss of viability during the fixing 

procedures to prepare the biofilm for imaging. The device used here not only produce 

electricity but also provided great tool to examine biofilm formation and development in 

situ. Furthermore, the flow streams of the electrolytes were observed with the bright field 

images. In the beginning of the laminar flow (12 hours), it was clearly seen that boundary 

layer was in the middle of the microchannel between the electrolytes. However, it started 

to move the cathode chamber side due to biofilm growth on the anode and the flow streams 

was not in parallel to each other anymore as shown in Figure 5.8.b. Nevertheless, it didn’t 

affect the power production since the catholyte still flowed on cathode. 
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Figure 5.8. a) In situ biofilm development on anode over time. It gets thicker and larger after 

~60 hours. b) Flow streams changing by the growth of biofilm in laminar flow MFC.   
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5.3.4. Impedance measurement of biofilm on interdigitated anode 

Bacterial attachment, and biofilm formation on the anode surface are crucial for the 

efficient biological transfer of electrons produced by the bacteria. In this study, we also 

used impedance spectroscopy to analyze the real-time biofilm activities on interdigitated 

anode and correlated the result with power production. The electrochemical impedance 

performance of the biofilm development was presented by an equivalent circuit model 

proposed in Figure 5.9. In this model, two identical double layer capacitance (Cdl) were 

connected to the medium resistance (Rs) in series, and biofilm capacitance (Cb) and 

resistance (Rb) was introduced in parallel with these series components. The total 

impedance could be expressed with the following equations.[115-117] 

|𝑍𝑠| = √𝑅𝑠
2 + 1 (𝜋𝑓𝐶𝑑𝑙)2⁄         (5.1) 

|𝑍𝑏| = √𝑅𝑏
2 + 1 (2𝜋𝑓𝐶𝑏)2⁄         (5.2) 

1 |𝑍| = 1 |𝑍𝑠| + 1 |𝑍𝑏|⁄⁄⁄          (5.3) 

where ƒ is the frequency in Hz. 

 Continuous or repeatable impedance measurement without disturbing the biofilm 

growth over a period of time is advantageous in laminar flow MFC which allow us to 

obtain the impedance in situ. Figure 5.10.a and Figure 5.11.a shows the Bode plots of the 

biofilm on the interdigitated anode surface over a period of ~110 hours through the 

frequency range between 100 Hz and 100 kHz. The most obvious change was observed in 

the frequency range 3 kHz to 30 kHz, where both capacitance and resistance dominated 

the impedance response. The impedance magnitude and the phase decreased over time 

(Figure 5.10.b and 5.11.b). It might be directly related with biofilm development on the 
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anode surface. Larger and thicker biofilm at 110 h resulted in lower impedance compared 

to thin biofilm at 13 h. Impedance and power density correlation also showed that highest 

power density was obtained when the impedance and phase were lowest (Figure 5.11). 

Four different frequencies (5, 10, 25, 50 kHz) were selected to show how it changed. Both 

impedance and power density were not changed significantly until ~56 h, then they both 

changed greatly which was due to thicker biofilm observed at that time under the 

microscope. 
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Figure 5.9. Electrical equivalent circuit of the biofilm impedance.   
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Figure 5.10. a) Impedance values between the frequency range of 100 Hz and 100 kHz. b) 

Impedance decreases over time by the growth of biofilm on interdigitated anode. 

 



 

76 

 

 

Figure 5.11. a) Phase values between the frequency range of 100 Hz and 100 kHz. b) Phase 

decreases over time. 
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Figure 5.12. a) Correlation between power density and impedance for different frequencies (5, 

10, 25, 50 kHz) b) Correlation between power density and phase for different frequencies.   
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5.4. Discussion 

Developing new tools to understand the electron transfer mechanism in biofilm is essential 

for micro electrochemical cell systems and real-time biofilm imaging could help to find 

out relation between power production and biofilm development on anode. However, most 

studies have been done ex situ by taking out the anode to analyze under the microscope 

due to size of the MFC configuration which doesn’t provide real time imaging.  

Micro-sized devices could give better option due to their suitable small size for 

optical microscopes and transparent materials such as PDMS and glass. Franks et al. 

developed micro MFC for 3D real time imaging of the biofilm to monitor the inhibitory 

effects of proton accumulation and its effect on current production.[118] They 

successfully placed the MFC under the confocal scanning laser microscope to visualize 

biofilm in real time and accurately measured both pH gradients within the biofilm formed 

by G. sulfurreducens and the performance in situ. Mclean et al. reported the quantification 

of electron transfer rates for S. oneidensis MR-1 on anode surface in commercially 

available modified MFC and changes in the potential through the biofilm development 

stages.[119] Inglesby et al. also developed a photosynthetic MFC platform for 

fluorescence and electrochemical monitoring of an Arthrospira maxima biofilm.[120] The 

effects of the temperature and light intensity on the performance were demonstrated both 

optically and electrochemically in real time.  

Existence of the membrane and complicated device configuration limited their 

usage therefore laminar flow MFC could be considered as an ideal device to analyze both 

power/current production performance and the biofilm development as well as 
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electrochemical activities simultaneously. The specifications and performance of the 

laminar flow MFC works reported to date were summarized in Table 3. Li et al. introduced 

the first laminar flow MFC and the current generation of G. sulfurreducens and S. 

oneidensis were compared.[113] SEM images of the anode was presented ex situ to show 

mature biofilm thickness at the end of the experiment. It was mainly considered as 

biological power device. Angenent et al. demonstrated the laminar flow MFC inoculated 

with G. sulfurreducens to monitor the effect of various chemical stimuli such as 

anthraquinone disulfide (AQDS), fumarate, riboflavin, pyocyanin on electrical current 

production and determined that AQDS is a good redox mediator for G. 

sulfurreducens.[104] Gupta et al. flowed anaerobic pathogenic bacteria (Klebsiella 

pneumoniae, Kp6) as anolyte and bacteriophage as catholyte to generate potential with 

their interaction.[121] Wang et al. obtained 246 mV by flowing microflora as anolyte to 

prove its electroactivity in laminar flow MFC.[105] They also compared the performance 

of different flow rates and found the maximum performance at 500 μL/min where Re was 

8.39. Fraiwan et al. used laminar flow MFC for real time visualization of the effects of 

electrolytes crossover on G. sulfurreducens biofilm.[109] They placed three electrode 

pairs through the microchannel and measured the highest current density from the 

electrode pair near inlets.     
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Table 3. Performance summary of previously reported laminar flow MFC works. 

 

Inoculation 

 

Anode 

area 

(mm2) 

Total 

volume 

(µL)  

Catholyte Re 

Flow rate 

(µL/min) 
Performance Ref. 

Geobacter 

sulfurreducens 

1.4 0.3 

O2 saturated 

PBS 

4.62 45 18.4 mA/m2 [113] 

Shewanella 

oneidensis 

1.4 0.3 

O2 saturated 

PBS 

4.62 45  25.42 mA/m2 [113] 

Geobacter 

sulfurreducens 

4 0.5 

O2 saturated 

PBS 

0.2-1.1 1-10  2500 mA/m2 a [104] 

Microflora 7.5 0.36 

O2 saturated 

PBS 

8.39 500  246 mV OCV [105] 

Klebsiella 

pneumoniae 

30 45 Phage 0.2-6 20-600  290 mV OCV [121] 

Geobacter 

sulfurreducens 

0.85 0.72 Ferricyanide 3 50 65 mA/m2 [109] 

Shewanella 

oneidensis 

0.8 0.5 Ferricyanide 1.21 20  2.74 mW/ m2 

This 

work 

a Hydrogen was used as electron donor 

 

 

 

 

 

 

 



 

81 

 

5.5. Conclusion 

A microfluidic laminar flow MFC without membrane was fabricated to monitor S. 

oneidensis MR-1 biofilm development in situ. Thick biofilm was started to visualize after 

55 hours and the power density was also increased significantly after that time and reached 

2.74 mW m-2 at 110 h. Also, the electrochemical impedance of biofilm was measured on 

interdigitated anode in real time. The result showed that decrease on impedance resulted 

in increase on power density. It can be explained with size of the biofilm which expanded 

by time. Laminar flow MFCs could be able to produce power however it is several fold 

lower than dual-chamber microscale MFCs. Therefore, it is not practical for on-chip power 

applications. Real time in situ imaging is essential to understand electron transfer 

mechanism in MFCs and it seems possible to visualize with laminar flow MFC which is 

ideal analytical tool to analyze both optical and electrochemical monitoring of biofilm 

development. 
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6. REAL-TIME H2/CH4 MONITORING FROM MICROBIAL 

ELECTROLYSIS CELL WITH ZNO NANOWIRES BASED GAS 

SENSOR 

 

6.1. Motivation 

Microbial electrolysis cells are sustainable electrochemical devices that produce bio-

hydrogen gas by applying external power [69] as shown in Figure 2.2.b. Produced gas in 

cathode is collected into gas bag that is connected to glass vial on cathode through needle. 

Gas chromatography is used for the gas analysis. The H2 production rate can be reached 

17.8 m3/d/m3 in single chamber MECs [122]. The elimination of PEM significantly 

increase H2 generation rate, but the produced H2 is more likely consumed by 

methanogenesis to generate CH4. Real time gas analysis device is needed to detect both 

H2 and CH4 gases. ZnO nanowires are ideal for the gas detection, it responds the both 

hydrogen and methane gases. They are ideal materials to monitor the gas concentration in 

real time. Also, they can be easily fabricated with low cost. 

 

6.2. Hydrogen sensing mechanism 

The resistance-based sensing mechanism of ZnO is based on the variation of the surface 

electron depletion region due to the reaction between hydrogen and the chemisorbed oxygen 

on the surface [123]. Oxygen molecules in air can get adsorbed on the surface of the ZnO and 

extracts electrons to form oxygen ions. That creates an electron depletion region, which can 

greatly increase the resistance. When the sensor is exposed to a hydrogen, its molecules react 
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with the adsorbed oxygen species by releasing electrons which reduce the thickness of the 

depletion region, and decrease the resistance of the ZnO. An accumulation layer of electrons 

is created and results in a metalized region near the surface, which decrease the ZnO 

resistance.[116] 

 

6.3. Device fabrication and nanowire alignment 

The electrode was fabricated with lithography progress (Figure 6.1.a).  Interdigitated electrode 

which has 95 fingers in each side as shown in Figure 6.1.b. ZnO nanowires were grown on 

Zn foil, then it was placed in glass vial having 1 mL IPA solution. The solution including Zn 

foil was sonicated for five seconds to disperse nanowires from foil. 100 µL nanowire 

suspension was applied to interdigitated device (Figure 6.2.a) and nanowires were aligned by 

connecting function generator to device. Dielectrophoresis (DEP) method creates force on 

nanowires to align between each electrode fingers (Figure 6.2.b) [124]. Then the device was 

placed into furnace and strong connection between nanowires and electrode was achieved 

(Figure 6.2.c). Alinged nanowires can be seen in Figure 6.2.d and e. 
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Figure 6.1. a) Photolithography and etching processes for fabrication of the gold electrodes. b) 

Top view of the gas sensor. 
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6.4. Hydrogen gas calibration and measurement from MEC 

After multiple sensors were fabricated, they were placed into gas tight calibration chamber 

as shown in Figure 6.3.a. Heaters for the gas sensor were set to 200 oC then hydrogen gas 

with different concentration (between 10-99%) was connected into chamber to measure 

the resistor value from gas sensor. After each measurement, hydrogen gas was vacuumed 

to remove it from the chamber and next hydrogen gas was connected. Figure 6.3.b and 

Figure 6.3.c shows how the resistor value of the nanowires aligned on gas sensors change 

with different hydrogen gas concentration. Average percentage resistor change on sensors 

was shown in Figure 6.3.d. The resistor value of the sensors was linearly decreased with 

higher hydrogen concentration. The experimental setup was shown in Figure 6.4.a. First 

of all, hydrogen concentration was measured by using conventional method. The gas bag 

was connected to the MEC and hydrogen gas was accumulated in the bag. The hydrogen 

gas concentration was measured through gas chromatography (SRI 8610C) during ~80 

hours as seen in Figure 6.4.b. It increased to ~80 % at the end of the cycle (substrate for 

bacteria in anode was depleted).  
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Figure 6.2. Sensor alignment processes. a) 10 µL drop was applied, b) DEP method was used 

for nanowire alignment, c) Annealing process for strong connection between nanowires and gold 

electrode, d-e) aligned nanowires. 
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Figure 6.3. a) Gas calibration chamber. b) Resistor values of nanowires on the sensors with 

different hydrogen concentration. c) Equation and R-squared values of the sensors on linear 

trendline. d) Average percentage resistor change of the sensors. 
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Figure 6.4. a) Experimental setup, b) Hydrogen production measure by gas chromatography 

(SRI 8610C). 
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6.5. Conclusions and future work 

The hydrogen gas sensors were fabricated and calibrated. Hydrogen gas production from 

MEC over time was obtained with conventional method (using gas chromatography). The 

gas sensor will be tested with same MEC and it will be placed between MEC and gas bag. 

The produced gas will be collected in the gas bag and at the same time, the gas 

concentration value on the gas sensor will be measured to confirm it works same like 

conventional method.  

 ZnO nanowires based gas sensor was used to detect hydrogen gas but ZnO 

nanowires were not sensitive to methane in this work. Therefore, methane gas sensor will 

be fabricated by employing different nanowires such as SnO2, GaN which are sensitive to 

methane. After sensor fabrication, it will be calibrated by connecting different methane 

gas concentration to gas calibration chamber. It can be either used in MEC to detect 

methanogenesis or another type of fuel cell which converts CO2 to methane. 

 Nanowire based gas sensors provide real time biogas measurement device which 

is easy to detect methanogenesis in MEC applications when it starts to occur. It doesn’t 

require any expensive and labor intensive equipment such as gas chromatography. 

Fabrication cost of the sensor device is only a few dollars which provides low cost gas 

sensor device. It has great potential with broad applicability to microbial electrochemical 

cell systems. 
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7. HIGH PERFORMANCE MONOLITHIC POWER MANAGEMENT 

SYSTEM WITH DYNAMIC MAXIMUM POWER POINT TRACKING 

FOR MICROBIAL FUEL CELLS* 

 

7.1. Introduction 

Microbial fuel cells (MFCs) use electrochemically active bacteria (EAB) to convert 

organic substrates such as wastewater into electrical energy, and have been considered as 

a clean and promising renewable energy generation source.[13, 125, 126] However their 

low power output per anode electrode surface area (100 - 2000 mW/m2 at maximum power 

point (MPP)) and low voltage output (300 - 600 mV at MPP) make it difficult to directly 

power most electrical systems.[87] Fluctuating voltage and power level over time is 

another challenge for maximizing power extraction from MFCs. Large-scale MFCs can 

be built to overcome the low-power generation problem, however power output typically 

do not improve linearly due to scaling up issues[127], and the low-voltage problem still 

persists. Connecting multiple MFCs in series has been demonstrated to increase the output 

voltage, however voltage reversal problems over time make such strategy inefficient 

beyond connecting about 2 - 3 MFCs in series, still limiting the voltage level that can be 

achieved.[53] Direct connection of capacitors in parallel or series to the MFC has been 

also tried, but this method does not allow dynamic matching of MFC internal resistance 

                                                 

* Reprinted with permission from “High Performance Monolithic Power Management System with 

Dynamic Maximum Power Point Tracking for Microbial Fuel Cells” by Celal Erbay, Salvador Carreon-

Bautista, Edgar Sanchez-Sinencio, and Arum Han, 2014. Environmental Science & Technology, 48 (23), 

13992-13999, Copyright [2014] by American Chemical Society. 
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(𝑅𝑀𝐹𝐶) and input impedance (𝑍𝑖𝑛) for maximum power extraction, and thus is inherently 

inefficient.[128]  

The use of power management systems (PMS) are probably the most promising 

strategy in extracting maximum power from MFCs, as well as boosting the MFC output 

voltage level to a directly usable level.[129-137] PMSs are capable of increasing the MFC 

output voltage to an adequate level typically using DC-DC boost converter circuits [129-

134] or charge pump circuits [135-137]. Such PMSs are commonly used in energy 

harvesting systems that generate low levels of power and voltage, such as for 

thermoelectric energy harvesting systems [138-140] and vibrational-energy harvesting 

systems.[141-143] For MFCs, charge pump circuits have been used as a voltage 

booster.[135-137] However, they require high MFC output voltage (~ 600 mV) to directly 

operate the charge pump efficiently due to its current limitation[133], and the 

charging/discharging times are typically very long (more than 10 times) compared to boost 

converter.[136, 137] DC-DC boost converters can overcome these limitations, and have 

been successfully integrated into PMSs managing MFC power.[129-134]  

However most PMSs used for MFC power management lack dynamic maximum 

power point tracking (MPPT) capabilities that allow continuously matching the load 

impedances of the PMSs to extract maximum power from MFCs, an important feature for 

MFCs as their power output typically changes over time. Woodward et al. showed that 

more than 50% of power may be lost across the internal resistance of an MFC if the load 

impedance is not matched.[144] An MFC can be viewed as a voltage source with internal 

resistance and capacitance (~160 µF). All three parameters (voltages, internal resistance, 
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and internal capacitance) can change over time due to biofilm growth and fluctuations in 

operating conditions such as pH, temperature, and carbon substrate concentrations.[145, 

146] Thus, dynamically tracking the MPP is an essential scheme in PMSs for MFCs to 

maximize the power extraction efficiency. Wang et al. has presented an MPPT scheme for 

MFCs, however their system is composed of multiple external and discrete components 

that requires external power to operate the PMS itself, resulting in low efficiency.[133] 

Yang et al. demonstrated an integrated circuit (IC) PMS, however due to the lack of MPPT 

feature, resulted in low system efficiency (4.29%) and long charging time (~2.3 hours) of 

the super-capacitor used in the PMS.[133] A super-capacitor, also known as ultra-

capacitors or electric double layer capacitors, is an electrochemical capacitor and 

possesses a much higher capacitance value compared to conventional capacitors. Super-

capacitors have much shorter charge/discharge cycles than rechargeable batteries, and can 

also tolerate more charge/discharge cycles.[147] These features make super-capacitors 

ideal for energy-harvesting systems, and thus will be used in our application to store 

energy harvested from MFCs through the PMS. 

Here, highly efficient boost converter circuit was presented with an MPPT scheme 

that can continuously detect the MPP of the MFC and match the load impedance of the 

PMS without using any external resistors by dynamically modulating the switching 

frequency of the boost converter and thus minimizing the time and power consumption 

for MPPT. The PMS circuit was fabricated in 0.5 µm CMOS technology, making this 

monolithic PMS IC chip system extremely power efficient so that the PMS could be 

operated using only the power from the MFC itself. Using this PMS and a super- capacitor, 
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maximum energy was extracted at all times at an elevated voltage of 2.5 V, and was 

successfully used to periodically run a wireless temperature sensor. 

 

7.2. Materials and methods 

 

7.2.1. Power management system (PMS) 

The PMS implemented here is an integrated synchronous DC-DC boost converter circuit 

in 0.5 µm CMOS technology, with dynamic MPPT capabilities (Figure 7.1). The boost 

converter block steps up the input voltage (𝑉𝑖𝑛) from the MFC to a higher output voltage 

(𝑉𝑜𝑢𝑡, set to 2.5 V here), where the output voltage (𝑉𝑜𝑢𝑡) charges a 100 mF super-capacitor 

(𝐶𝑠𝑢𝑝𝑒𝑟) until it has sufficient power to operate a wireless temperature sensor. The MPPT 

block continuously measures 1/2 of the MFC open circuit voltage (1/2 𝑉𝑀𝐹𝐶) and uses this 

information to control the switching frequency of the boost converter to match the load 

impedance (𝑍𝑖𝑛) of the PMS to be equal to the internal resistance of the MFC (𝑅𝑀𝐹𝐶), thus 

assuring maximum power transfer. Details can be found on our published journal articles. 

(2 references that we published)  

 

7.2.2. PMS system efficiency 

The overall system efficiency of the PMS (η) was calculated based on the ratio of the 

output energy stored on the super-capacitor (𝐸𝑜𝑢𝑡) and input energy generated by the MFC 

(𝐸𝑖𝑛), as shown in the following equations (7.1-7.4): 

𝐸𝑜𝑢𝑡  =  
1

2
× 𝐶𝑠𝑢𝑝𝑒𝑟 × 𝑉𝐶

2        (7.1) 
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𝐸𝑖𝑛 = 𝑃𝑀𝐹𝐶  × 𝑇𝑀𝐹𝐶         (7.2) 

𝑃𝑀𝐹𝐶 =  𝑉𝑀𝐹𝐶
2 /4𝑅𝑀𝐹𝐶          (7.3) 

η = 
𝐸𝑜𝑢𝑡

𝐸𝑖𝑛
× 100 (%)         (7.4) 

where 𝐶𝑠𝑢𝑝𝑒𝑟 is the capacitance of the super-capacitor (a 100 mF super-capacitor was used 

here), 𝑉𝐶 is the voltage on the super-capacitor, 𝑃𝑀𝐹𝐶  is the maximum power from the MFC, 

and 𝑇𝑀𝐹𝐶  is the time duration. The voltage across the super-capacitor (𝑉𝐶) and across the 

MFCs were recorded using an oscilloscope (DS1104B, Rigol Technologies Inc.).  

The overall system efficiency strongly depends on the amount of power extracted 

from the MFC. The more power available, the lower the MFC internal resistance and lower 

MFC internal capacitance. Since the converter typically operates in steady state, the MFC 

capacitance does not come into consideration. 

 

7.2.3. Using the PMS-controlled MFC to power a wireless temperature sensor 

The developed PMS controlling the MFC power/voltage output was tested to power a 

wireless temperature sensor (Monnit, Inc.) that uses a thermistor to accurately measure the 

temperature. The wireless temperature sensor required an operating voltage of 2 - 3.6 V 

(900 MHz operating frequency for wireless transmission) and power of 85 mW. The on-

board lithium battery was removed before testing so that the sensor was powered 

completely by the PMS-controlled MFC itself. The measured temperature is transmitted 

to a base station up to 250 feet away. The receiver base station was connected to a laptop 

computer.  
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7.2.4. MFC construction and operation 

A two-chamber MFC was constructed from two 120 ml acrylic chambers separated with 

a PEM (Nafion 117TM, Ion Power Inc.). Carbon felt (Morgan, UK) was used as the anode 

(3 × 4 cm) and carbon cloth with Pt catalyst on one side (10wt% Pt/C, 0.5 mg Pt/cm2, 

ElectroChem, Inc.) was used as the cathode (3 × 4 cm). The anode chamber was inoculated 

with an anaerobic activated sludge (Austin Wastewater Plant). Autoclaved anaerobic 

nutrient mineral buffer (NMB, pH 7.0) solution[80] with acetate (1 g/L) was used as the 

carbon substrate containing media. To be able to test the developed PMS with MFCs 

showing different power output level, two MFC configurations were used. For the low-

power output MFC (LPMFC) configuration, the cathode chamber was filled with 

phosphate buffer solution (PBS) (100 mM, pH 7.0) and continuously sparged with air. For 

the high-power output MFC (HPMFC) configuration, the catholyte was replaced with 

potassium ferricyanide (100mM) to generate higher power. During the startup phase, the 

MFC was connected with an external resistor (1 kΩ) and the voltage across the resistor 

was monitored through a multiplexer (National Instruments) for continuous voltage 

measurements via a LabViewTM (National Instruments) interface.[55, 57, 87] Polarization 

curve was obtained by varying the load resistances (100 Ω-10 kΩ). 
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Figure 7.1. Proposed PMS for managing MFC power composed of a DC-DC boost converter 

block and a MPPT block. The circuit is designed by Salvador Carreon from Prof. Edgar 

Sanchez-Sinencio’s research group at Texas A&M University [95]. 
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7.3. Results 

 

7.3.1. PMS correctly determines maximum power point (MPP) of the MFC 

The polarization curve from the LPMFC after 6 months of operation showed a maximum 

power output of 328 µW at a current of 0.9 mA and a voltage of 360 mV (open circuit 

voltage of 720 mV) (Figure 7.2.A). The maximum power from the HPMFC was 512 µW 

at a voltage of 400 mV (open circuit voltage of 800 mV) (Figure 7.2.B). This is in line 

with a typical two-chamber MFC power performance when using wastewater inoculum 

and acetate as the carbon substrate.[148, 149] These two MFCs were used to test how the 

developed PMS performs at two different MFC voltage and power levels.  

The PMS circuit successfully identified the output voltage of the LPMFC at 

maximum power point as 360 mV (𝑉𝑀𝑃𝑃), which was half of the LPMFC open circuit 

voltage (Figure 7.2.C). This identified voltage was same as the MPP voltage obtained 

through a polarization curve that required varying the load resistors to find the MPP. The 

same successful result was accomplished when connecting the PMS to the HPMFC, which 

detected the correct 𝑉𝑀𝑃𝑃 of 400 mV through the PMS circuit (Figure 7.2.D). The 

screenshots show the MPPT capabilities of obtaining VMPP when no load demand (PMS 

off) on the MFC is present. Once the PMS begins to extract power, the periods for 𝑇𝑋 of 

1.8 seconds and sampling periods of 200 ms are externally set through the one-shot circuit. 

The sensing period was made by setting a maximum ratio of disconnection to extraction 

period to no greater than 1/8. This limit would allow for minimum disruption on the power 

extraction from the PMS towards the MFC. Larger ratios would be possible but more 
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considerations would have to be taken on sampling capacitor charge leakage and input 

buffer capacitor size. The developed MPPT function of the PMS continuously refreshes 

and corrects the optimum operating point for maximum power extraction, while 

minimizing power consumption. Thus, this dynamic MPPT scheme would be able to take 

into account any power variations of the MFC over time, resulting in maximum power 

efficiency. 

 

7.3.2. Overall system efficiency of the PMS 

The overall system efficiency (η) is an important indicator to show the performance of the 

PMS and how much energy from the MFC is lost in the PMS circuit. The input energy(𝐸𝑖𝑛) 

from the MFC and the output energy stored in the super-capacitor were measured over 

time until the voltage of the super-capacitor reached 2.5 V. When using the HPMFC (512 

µW), the super-capacitor was charged to 2.5 V in 30 minutes and the average system 

efficiency was 30% over time (Figure 7.3.A). System efficiency was slightly lower in the 

beginning due to the slow charging of the super-capacitor during the initial dynamic MPPT 

detection, however after detecting the MPP, increased over time and reached 33%. When 

using the LPMFC producing 328 µW, the system efficiency was 17% and the super-

capacitor charging time to 2.5 V was initially 87.5 minutes (Figure 7.3.B). In general, the 

PMS system efficiency has a direct correlation to the power output level, and thus higher 

system efficiencies were observed when the power output of the MFCs were higher. 
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Figure 7.2. (A) Polarization curve obtained from the low-power MFC (LPMFC), showing 

power output of 328 µW and voltage output of 360 mV at MPP. (B) MPP voltage of 360 mV 

was successfully detected by the PMS when connected to the LPMFC having an open circuit 

voltage of 720 mV. (C) Polarization curve obtained from high-power MFC (HPMFC), showing 

power output of 512 µW and voltage output of 400 mV at MPP. D) MPP voltage (400 mV) was 

detected by the PMS when connected to the HPMFC having an open circuit voltage of 800 mV. 
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Figure 7.3. (A) The overall system efficiency of the PMS determined by the ratio of energy of 

the MFC and the energy stored in the super-capacitor (100 mF) when connected to a high-power 

MFC. Measurements were taken over the duration of the initial charging of the super-capacitor 

and periodic operating of the wireless temperature sensor. (B) System efficiency, energy from 

MFC, and energy stored in the super-capacitor during the initial charging stage of the super-

capacitor when connected to a low-power MFC. 



 

101 

 

7.3.3. Demonstration with wireless sensor applications 

Due to the low power production of most small-scale MFCs, it is quite difficult to run 

electronic devices directly and continuously. Wireless sensors or sensor nodes are ideal 

electronic applications that can be powered by MFCs, however even those low-power 

electronic devices require a PMS for voltage boosting and maximizing the utility of the 

power output. The wireless temperature sensor connected to the output of the PMS was 

successfully powered by the MFC periodically. The super-capacitor (100 mF) was first 

charged to 2.5 V, and then the wireless sensor was operated and the data transmitted to a 

base station connected to a laptop. Charging time of the super-capacitor to 2.5 V initially 

took 30 minutes and the MPPT voltage (400 mV) was linear all the time as shown in 

Figure 7.4.A when using the HPMFC. Since the wireless sensor consumes around 85 mW, 

the super-capacitor voltage dropped to 2 V from 2.5 V each time a temperature reading 

was transmitted wirelessly. Then, it was recharged again to 2.5 V in 7.5 minutes to run the 

wireless temperature sensor again. Figure 7.4.B shows the periodic wireless temperature 

reading from our laboratory.  

When testing our PMS with the LPMFC that produces lower power, it can be seen 

that the power production is directly related to charging time, where it took a significantly 

longer 87.5 minutes to initially charge the super-capacitor to 2.5 V. The time interval 

between measurements was 12.5 minute, almost 3 times longer compared to the case when 

using the HPMFC (Figure 7.4.C). The periodic wireless temperature measurement result 

is shown in Figure 7.4.D.  
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Figure 7.4. (A) The MPP voltage detected by the PMS and the super-capacitor voltage being 

charged to 2.5 V to directly power the wireless temperature sensor, when using the high-power 

MFC. (B) Wirelessly transmitted temperature data when using the high-power MFC. (C) Using 

the PMS with the low-power MFC. (D) Wireless temperature result when using the low-power 

MFC. 
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7.4. Discussions  

The high efficiency of the presented PMS is directly correlated with the dynamic MPPT 

scheme developed here. Alaraj et al. estimated the overall system efficiency to be 33.5% 

and 46.1% by using diode and transformer-based boost converters, respectively.[130] 

However, when calculating their system efficiency, the external power required to power 

their PMS was not considered. Donovan et al. showed a higher maximum efficiency 

(~60%) using the ratio of PMS output power and input power, but in the absence of the 

actual load used (wireless temperature sensor)[131]. Similar measurement was also used 

in a dual cascaded DC-DC converter-based PMS, with efficiency was calculated to be 

56.4% with fixed output loads, but again without considering the real load used for running 

their electronic applications.[132] Yang et al. utilized a commercially available DC-DC 

boost converter (LTC3108, Linear Technologies) and showed an overall system efficiency 

of 4.29% considering all losses due to PMS itself (thus being the most realistic case), 

however did not used any MPP.[133] We believe that the significantly higher overall 

system efficiency (7 times higher) achieved in the presented PMS (30%) under real load 

situation was due to the MPPT feature, integrated monolithic IC chip approach (versus 

commercially available discrete components), and the low-power CMOS chip design 

implemented in our PMS. Overall summary of efficiencies is summarized in Table 4. 
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Table 4. Comparison of properties and efficiencies of different PMSs. 

Input power from 

MFC (mW) 

MPPT 

Output  

super-capacitor 

Overall system 

efficiency (%) 

Reference 

~5.1 Yes  1 F 46.1* [130] 

~2.4 No - 60** [131] 

~3.4 No - 56.4** [132] 

~0.8 No  50 mF 4.29 [133] 

~0.5 Yes 100 mF 30 This work 

* External power was used, however not included in efficiency calculation. 

** Efficiency of PMS only, not overall system efficiency. 
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In a similar MFC application for wireless temperature sensor operation presented 

by Yang et al.,[133] it took initially 2.28 hours to charge a super-capacitor (50 mF) to 3.3 

V (wireless temperature sensor that consumes around 95 mW and operates at 3.3V). 

During each sensor data transmission, the voltage dropped to 2.5 V, after which it took 1 

hour to reach back the 3.3 V. The main reason of this significantly longer charging time 

compared to our result can be explained by the lack of dynamically controlled MPPT, 

causing lower system efficiency (7 times lower than the PMS presented here). A 

significantly shorter charging/discharging cycle is advantageous in this kind of sensor 

applications. 

Power consumption by the sensor is important in reducing the charge/discharge 

cycle time. Donowan et al. tested a wireless temperature sensor consuming only ~5mW 

of power during data transmission (17 times lower power requirement) with a sediment 

MFC (SMFC)[131]. The power production of the SMFC was 2.4 mW, which was 4.7 

times higher than the MFC presented in this work. SMFC power production is normally 

larger than lab-scale two-chamber or one-chamber MFCs due to usage of significantly 

larger electrodes. Although using an MFC with significantly higher power output and 

using a low-power wireless temperature sensor compared to the ones used in this work, 

the interval of temperature measurement was ~20 minutes, longer than what the presented 

PMS-MFC achieved. Thus the presented low-power PMS IC circuit with dynamic MPPT 

feature presents a promising solution towards highly efficient MFC power management, 

as well as be broadly used for managing power of other low-power energy harvesting 

systems such as from thermoelectric or piezoelectric-based energy harvesting systems. 
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Although the presented PMS enable maximum power extraction from MFCs, 

further improvement in the absolute MFC power output by improving and optimizing the 

numerous factors influencing MFC power output is still necessary for MFCs to be used in 

practice in the future.[150, 151] While the proposed PMS here considers extracting power 

from a single MFC, the PMS has the potential to be used with stacks of MFCs.  The MPPT 

in the developed PMS will only consider the equivalent resistor and equivalent capacitance 

from the arrayed MFC when calculating the maximum power extraction point, so array 

type implementations are possible with the presented PMS. A particular future work of 

interest is to implement a dynamically reconfigurable MFC stack, where the PMS 

constantly measures power production from each individual MFC units within the stack. 

With each sensing/measuring step, the stack can be reconfigured to deliver maximum 

power to the electronic load/storage unit. Another potential future works with the 

presented PMS is whether the MPPT scheme can be beneficial during the start-up phase 

of an MFC. The use of different load resistances has been shown to change the MFC start-

up time [152], thus the use of MPPT that matches the internal resistance of a MFC 

dynamically may reduce the start-up time for MFC to reach a steady-state voltage.  

 

7.5. Conclusion 

MFCs can produce only limited power and low voltages, typically not sufficient to directly 

power electronic systems. The monolithic PMS IC chip system presented here has the 

capability to boost the voltage output level to a directly usable level and continuously track 

the maximum power point through dynamic impedance matching circuitry to maximize 
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the extracted power from the MFCs. The extracted power was stored into a super-capacitor 

and could periodically run electronic applications such as a wireless temperature sensor 

with short intervals. The PMS was operated by utilizing the power from the MFC without 

the need for any external power, and demonstrated an overall system efficiency of 30%. 

We expect that the developed low-power high-efficiency PMS system will be critical in 

managing power output of MFCs, as well as broadly utilized in other low-power low-

voltage energy harvesting systems. 
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8. OVERALL REVIEW AND CONCLUSIONS 

 

The aim of the work is to eliminate significant limitations of microbial electrochemical 

cell systems and improve the overall performance with new electrode materials and 

analyzing tools. Here, MFC performance was improved with nanomaterial modified 

anodes (CNT grown SS mesh and CNT sponge) and membrane-less microfluidic MFC 

device was fabricated to analyze real-time biofilm anode interaction in situ. Moreover, 

ZnO nanowire based gas sensor was developed to detect real-time hydrogen concentration 

from MEC. Power management system was used to boost input voltage from MFC to run 

wireless temperature sensor which requires 2.5 V to transmit reading data. These 

improvements will help other researchers to make this technology practically available in 

future. The main achievements are as following: 

 

8.1. Improving MFC performance with CNT modified anodes 

Long and loosely packed CNTs without any amorphous carbon showed the highest power 

production performance. The power density was 7.4-fold higher compared to bare carbon 

cloth, which is the highest reported improvement for MFCs with nanomaterial-decorated 

electrodes. This study offers great potential for advancing the development of microbial 

electrochemical cell systems by providing a highly efficient nanomaterial-based electrode 

that delivers large surface area, high electrochemical activity, and minimum ohmic loss, 

as well as provide design principles for next-generation nanomaterial-based electrodes that 

can be broadly applicable for highly efficient microbial electrochemical cells.  
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Furthermore, highly-porous, light-weight, and inexpensive three-dimensional 

(3D) sponges consisting of interconnected carbon nanotubes (CNTs) without base 

materials are synthesized with a facile and scalable one-step chemical vapor deposition 

process as anode of microbial fuel cells (MFCs). The one-step synthesis method allowing 

self-assembly of 3D CNT sponges as they grow is low cost and scalable, making this a 

promising method for manufacturing high-performance anodes of MFCs, with broad 

applicability to microbial electrochemical systems in general.  

 

8.2. Real-time biofilm development analytical device 

Membrane-less microfluidic laminar flow MFC was fabricated for better understanding 

the real-time biofilm anode interaction in situ. Biofilm development was observed under 

the fluorescent microscope. Both power density and biofilm impedance were measured to 

integrate with biofilm growth over time. The results of this study offer great potential to 

analyze different bacterial strains and their electrochemical properties as well as power 

generation in real time in a short time (~ 4 days). This tool may also help to develop anode 

materials based on bacterial growth properties which can be broadly applicable for 

MECSs. 

 

8.3. Biogas monitoring device 

Hydrogen gas sensor was developed based on ZnO nanowires that responds to different 

hydrogen concentrations. The sensor detected the real-time hydrogen concentration from 

microbial electrolysis cell without additional equipment such as gas chromatography. This 
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sensor offer great potential to analyze biogas production with broad applicability to 

microbial electrochemical cell systems which generates biogas (hydrogen, methane) in 

general.  

 

8.4. Efficient energy harvesting from MFC with PMS  

This study presented a monolithic low-power consuming PMS integrated circuit (IC) chip 

capable of dynamic maximum power point tracking (MPPT) to maximize the extracted 

power from MFCs, regardless of the power and voltage fluctuations from MFCs over time. 

The developed low-power high-efficiency PMS system will be critical in managing power 

output of MFCs, as well as broadly utilized in other low-power and low-voltage energy 

harvesting systems. 
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 APPENDIX A 

 

Film Masks 

 

Figure 1. Laminar flow MFC microelectrode film mask. 5 x 7.5 cm design includes 9 device. 
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Figure 2. Single laminar flow MFC design. 
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Figure 3. Laminar flow MFC cathode design. 
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Figure 4. Laminar flow MFC interdigitated anode design. 
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Figure 5. Laminar flow MFC microchannel design. 
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Figure 6. Laminar flow MFC single microchannel design. 
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APPENDIX B 

 

Protocols 

 

1) Priranha cleaning 

 Mix sulfiric acid with hydrogen peroxide (ratio of 3:1) 

 Place 5 x 7.5 cm glass slides into mixed solution with Teflon wafer holder 

 After keeping inside for 15 min, remove them to clean with DI water 

 Dry with N2 gas 

 

2) Laminar flow MFC electrode fabrication 

 Ti/Au deposition on cleaned glass slides (Ti:20 nm, Au:200 nm) 

 Spin coating on deposited glass slide with Shipley 1818 (4000 rpm for 30 seconds 

with 10 accelaration) 

 Soft baking for 10 minute on hot plate (95 oC) 

 Exposure (85 mJ) with mask aligner 

 Developing for 30 seconds with MF 319 

 Au etching for 30 seconds with gold etchant 

 Ti etching for 30 seconds with mixture of HF and DI water (ratio of 1:200) 

 Photoresist removal with acetone, IPA, DI water and N2 gas 
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3) Laminar flow MFC microchannel silicon master mold fabrication 

 Clean the wafer with acetone, IPA, DI water and N2 gas 

 Spin coating on wafer with SU-8 2050 (3000 rpm for 30 seconds with 10 

accelaration) 

 Soft baking for 10 minute on hot plate (65 oC) + 20 minute on hot plate (95 oC) 

 Exposure (150 mJ) with mask aligner 

 Post exposure baking for 10 minute on hot plate (65 oC) + 20 minute on hot plate 

(95 oC) 

 Developing in Thinner P 

 

4) Silicon master mold surface coating 

 

 Coating PDMS soft-lithography master mold with trichlorosilane (tridecafluoro-

1,1,2,2-tetrahydrooctyl) inside a vacuum chamber for 15 min. 

 Rinse the coated sample with IPA and dry with N2 gas. 

 

 

5) Laminar flow MFC PDMS microchannel fabrication 

 Mix PDMS base with curing agent (ratio of 10:1) 

 Pour PDMS mixture over the silicon master mold 

 Remove bubbles by degassing inside a vacuum chamber 

 Place the degassed PDMS into oven (80 oC) for an hour 

 Peel of the PDMS that has microchannel structure from silicon master mold 
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6) Preparing bacterial glycerol stocks 

 Reagent 

 Shewanella oneidensis MR-1 

 Equipment: 

 TSA 

(http://www.sigmaaldrich.com/catalog/product/fluka/22091?lang=en&reg

ion=US) 

 TSB 

(http://www.sigmaaldrich.com/catalog/product/fluka/22092?lang=en&reg

ion=US) 

 Glycerol 

(http://www.sigmaaldrich.com/catalog/product/sigma/g5516?lang=en&re

gion=US) 

 Petridish 

(http://www.sigmaaldrich.com/catalog/product/sigma/p5606?lang=en&re

gion=US) 

 Pick a single colony of a plate and grow an overnight in the appropriate selectable 

liquid medium (TSB) (3-5ml). 

 Add 0.4 ml of 50% glycerol in H2O (100% glycerol is near the weighing balance, 

add water to it in equal amount, vortex to get 50% glycerol) to a cryogenic vial 

and autoclave.  

 Add 0.8 ml sample from the culture of bacteria to be stored. 
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 Gently vortex the cryogenic vial to ensure the culture and glycerol is well-mixed. 

 Freeze glycerol stock in liquid nitrogen and store in a -80 oC freezer. 

 

7) Preparing bacterial culture solution 

 Cells are streaked onto a TSA plate from storage. Then grown it in incubator (30 

oC) for a day. 

 Inoculate the colonies into 5 ml of TSB liquid medium, and then shaken at 180 

rpm for 24 h at 30 ˚C. 

 If large amount is needed, inoculate 1 ml of bacterial solution into 100 mL (or 

desired amount) of TSB liquid medium, and then shaken at 180 rpm for 24 h at 30 

˚C. 

 Adjust the optical densities (OD600) to 1 by measuring from cell density meter (or 

desired) before using. 

 

8) Preparing TSB solution 

 Place 15 gram of TSB powder in 1 L flask and add 0.5 L DI water. 

 Mix by using magnetic stirrer for 10 min. 

 Cover the flash with aluminum foil. 

 Autoclave for 15 min at 121 oC. 

 After autoclave is over, keep in waterbath to cool it down. 
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9) Preparing TSA plate 

 Place 20 gram of TSA powder in 1 L flask and add 0.5 L DI water. 

 Mix by using magnetic stirrer for 10 min. 

 Cover the flash with aluminum foil. 

 Autoclave for 15 min at 121 oC. 

 After autoclave is over, allow the flask to cool in the 50 degree bath for 30 minutes 

before pouring. 

 Pour it gently inside the plates. 
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APPENDIX C 

 

Nutrient/Mineral/Buffer preparation [1] 

The NMB solution as an anode growth medium consisted of 10 mL each of Mineral 

Base I, Mineral Base II, and Nutrient Base stock solution of Table A.1 to 1 L of 

phosphate buffer solution. This leads to the final concentration as shown in Table A.2.  

Table A.1. Nutrient Mineral Buffer (NMB) stock solution 

Nutrient and Buffer Compositions 

Mineral Base I 

a. Add the following to 600 mL of distilled water 

CoCl2∙ 6H2O     0.25 g      NaMoO4∙ 2H2O      0.005 g 

FeCl2∙ 4H2O      2.0 g        NiCl2∙ 6H2O           0.025 g 

MnCl2∙ 4H2O     0.05 g      NaSeO4                  0.025g 

H3BO3               0.05 g       ZnCl2                     0.025 g 

CuCl2                0.015 g      NaVO3∙ 4H2O       0.005 g  

b. Dilute to 1.0 L (this mixture may form a light precipitate and 

should be agitated vigorously before transferring) 

Mineral Base II 

a.  Add the following to 600 mL distilled water 

             CaCl2                 15 g 

             MgCl2∙ 6H2O     20 g 

        b.  Dilute to 1.0 L 

Nutrient Base 

a. Add the following to 600 mL distilled water 

             NH4Cl                53 g 

        b.  Dilute to 1.0 L 

Buffer 

a. Add the following to 900 mL distilled water 

             NaH2PO4           6 g 

b. Titrate to pH 6.99 with monovalent strong base or acid  

c. Dilute  to 1.0 L 
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Table A.2. Nutrient Mineral Buffer composition in final concentration for anodic 

microorganism growth medium 

Nutrient and Buffer Compound Concentration (mg/L) 

Mineral Base Ⅰ 

CoCl2∙ 6H2O 

NaMoO4∙ 2H2O 

FeCl2∙ 4H2O 

NiCl2∙ 6H2O 

MnCl2∙ 4H2O 

NaSeO4 

H3BO3 

ZnCl2 

CuCl2 

NaVO3∙ 4H2O 

2.5 

0.05 

20 

0.25 

0.5 

0.25 

0.25 

0.25 

0.15 

0.05 

Mineral Base Ⅱ 
CaCl2 

MgCl2∙ 6H2O 

150 

200 

Nutrient Base NH4Cl 530 

Buffer Base NaH2PO4 6000 

 

[1] Chae, K.J. et al. Mass Transport through a Proton Exchange Membrane (Nafion) in 

Microbial Fuel Cells. Energy Fuels 22, 169-176 (2008). 

 

Wastewater and NMB solution mix with each other (ratio of 1:5 v) to use as startup 

solution to grow bacteria on anode in conventional MFCs. 


