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                                                  ABSTRACT    

Probable Maximum Precipitation (PMP) is used for estimating Probable Maximum Flood 

(PMF) which, in turn, is used for design of major hydraulic structures, such as dams and 

spillways, flood protection works, and nuclear power plants. One of the commonly used 

methods for estimating PMP is the statistical method that entails computation of frequency 

factor, adjustment of the frequency factor, construction of an enveloping curve of the 

frequency factor, estimation of PMP, choosing a probability distribution, and 

determination of the return period. This study determined the PMP values for different 

durations using data from the Brazos River basin, Texas. There are, however, uncertainties 

associated with the PMP values estimated using the statistical method. It was found that 

significant uncertainty in the PMP estimates can occur from the use of enveloping curve 

of the frequency factor, and uncertainty in sample mean and sample standard deviation. 

Hershfield’s curve yielded higher PMP estimates, therefore, a basin specific-enveloping 

curve is suggested. The return period of a PMP value was obtained from frequency 

analysis. From 24 commonly used statistical distributions, 5 goodness of fit tests and the 

use of hazard rate, the Burr XII distribution was found to be the best frequency 

distribution. It was observed that the return period was not significantly higher than that 

obtained from the hydrometeorological reports (HMRs) of National Weather Service and 

other studies. For quantifying uncertainty, design risk estimates along with probability 

bounds on the PMP values were determined. The relative contribution of each random 

variable to the total uncertainty was also determined. Then, risk analysis of extreme 

precipitation was also done to assess the damage a PMP event can cause. The damage due 
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to a single PMP event of 12-hour duration can be as high as 2 billion U.S. dollars in Harris 

County, Texas. 
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    NOMENCLATURE 

List of Symbols 

  P       -   Probable maximum precipitation 

  mX   -    Highest annual maximum precipitation values of a given duration 

  X    -       Mean of n annual maximum precipitation 

    n    -     Record length 

   n     -     Standard deviation for a series of n annual maximum precipitation 

   1nX -    Mean excluding the highest value from the series 

   1nS  -      Standard deviation excluding the highest value from the series 

    mk     -      Frequency factor 

     α    -    Significant level 

    nS   -     Sample standard deviation 

        -    Population mean 

         -   Population standard deviation 

  )( nXE -  Expected value of the sample mean 

  )( nSE -  Expected value of the sample standard deviation 

   )(a -    Incomplete gamma function 

   )(PE -    Expected value of the PMP estimate 

  )(PVar -    The variance of the PMP estimator P 
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)( nSVar - Variance of standard deviation 

),( nn SXCov - Covariance of mean and standard deviation 

        -       First shape parameter of Burr distribution 

      -       Second shape parameter of Burr distribution 

        -       Scale parameter of Burr distribution 

   dP     -      Design risk PMP value 

   mHk  -       Hershfield frequency factor value 

   mBk  -       Basin specific frequency factor value 

 
HMRPMP -     PMP values from the HMR documents 

 )(tf   -         Probability density function 
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1. INTRODUCTION AND

 BACKGROUND 

1.1 Introduction 

Probable Maximum Precipitation (PMP) is termed as “theoretically the greatest depth of 

precipitation for a given duration that is physically possible over a given size storm area 

at a particular geographic location at a given time of the year” (U.S National Weather 

Service, 1988). PMP is used for the calculation of Probable Maximum Flood (PMF) which 

is then used for design of hydraulic structures, such as large dams and spillways, flood 

control works, levees, and nuclear power plants. PMF is used to size the hydraulic 

structures such that the risk of their failure is minimized (Hershfield, 1965). There are 

uncertainties involved in PMP estimation regardless of the method used to calculate it. An 

upper bound with zero risk is not realistic, as there have been instances where storms in 

USA have exceeded the PMP estimates (Dooge, 1986) and the recorded floods have 

exceeded the estimated PMFs (Dawdy and Lettenmaier, 1987).  Riedel and Schreiner 

(1978) concluded that the PMP estimates were too high east of 105th meridian where 18 

storms out of 75 exceeded 70% of the PMPs. 

Texas has a history of major floods that have caused huge losses of property and 

life. For example, in 1921 a tropical storm, that formed in the Bay of Campeche, caused 

36.7 inches of precipitation within 36 hours, drenching San Antonio, causing the Thall 

flood in which 51 people were killed. Recently, on November 1st 2015 areas close to and 

near Houston received precipitation close to 12 inches causing damages to buildings, 
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property, and life. Brazos River basin also has a history of major floods due to extreme 

precipitation, like the Flood of 1899 causing damage to property over $9 million and 

killing 284 people.  Under the specter of climate change, such catastrophic precipitation 

events are expected to increase and occur more frequently. 

1.2 Background 

PMP has been used to predict volume, timing, and peak flow of extreme flood events all 

around the world. Originally PMP was defined as Maximum Possible Precipitation (MPP), 

the value of precipitation that could not be exceeded. However, MPP values have been 

exceeded (Benson, 1973) and because of the complex atmospheric interactions 

contributing to extreme precipitation its name was changed to PMP. Since the 1940s, the 

National Weather Service has published a series of Hydrometeorological Reports (HMRs) 

that describe procedures for deriving the PMP values for the majority of United States. 

The generalized PMP studies currently used in the conterminous United States include 

HMR 49 (1977) for the Colorado River basin and Great Basin drainage; HMRs 51 (1978), 

52 (1982) and 53 (1980) for the U.S. east of the 105th meridian; HMR 55A (1988) for the 

area between the Continental Divide and the 103rd meridian; HMR 57 (1994) for the 

Columbia River drainage basin; and HMRs 58 (1998) and 59 (1999) for California. 

Current HMRs and their application region are shown in Figure 1 (National Oceanic and 

Atmospheric Administration, 2012). Figure 2 shows an example of an HMR 51 PMP map 

and its coverage, as it covers all of the U.S east of the Front Range of the Rocky Mountains 

(National Weather Services, 1978). The main assumption in these procedures for PMP 

calculation is that there is the optimum combination of available moisture in the 
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atmosphere and efficiency of the causative mechanism in the storm that will cause 

maximum precipitation.  

  

             
 

       Figure 1. Regions for application for HMR PMP Reports. (http://www.nws.noaa.gov) 

. 
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Figure 2. Example of a HMR 51 PMP map for 24-hour precipitation over 1000 square 

miles (Schreiner and Riedel, 1978) 
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    2. LITRATURE REVIEW 

2.1 Methods of Estimating Probable Maximum Precipitation (PMP) 

There are different methods for PMP estimation which can be categorized as 

hydrometeorological and statistical. Common hydrometeorological methods include 

moisture maximization method, storm transposition method, and generalized method, and 

storm separation method. Statistical methods include Hershfield’s method and multifractal 

method. Depending upon the watershed topography and data availability, some methods 

provide better PMP values in certain regions and other methods in other regions. In 

moisture maximization the storm precipitation is increased to such a value that is 

consistent with the maximum moisture in the atmosphere for the storm location and month 

of occurrence (Schreiner and Riedel, 1978). The basic assumptions in this method are that 

precipitation is linearly related to perceptible water. As the moisture available to the storm 

increases the precipitation efficiency of the storm does not change and the record of 

extreme storms is sufficiently large to represent the most efficient storm mechanisms but 

not the optimum available moisture that would accompany a PMP event (Tomlinson and 

Kappel, 2009).  The efficiency with which storm converts moisture into precipitation and 

the amount of moisture content are considered important atmospheric conditions in most 

PMP studies and the moisture maximization procedure is used to approximate the highest 

moisture potential in the storm. 

Storm transposition is associated with the relocation of storm precipitation within 

a region that is homogeneous relative to terrain and meteorological features important to 

the particular storm rainfall. The basic assumption behind the idea is that a 
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meteorologically homogeneous region exists such that a major storm occurring 

somewhere in the region could occur anywhere else in the region. The storms transported 

to a location could occur under similar meteorological conditions as the original location. 

It involves meteorological analysis of the storm to be transported, the determination of 

transposition limits, and the application of the appropriate adjustments for the change in 

storm location. The maximum observed storm precipitation data that is adjusted for 

moisture maximization is plotted on a map and is analyzed. The analysis allows the largest 

moisture maximized precipitation amounts to control the isolines within meteorologically 

homogeneous regions. This procedure implies transposition of the precipitation value and 

of the storm itself (U.S. Department of Commerce, 1960). 

In the generalized method, maximum recorded rainfall depths of rainstorms over 

a large area and adjustment source are made in applying the maximum recorded rain 

depths to a particular catchment (Kulkarni, 2010). The generalized method has an 

advantage of using the maximum recorded rain depths for all combinations of area and 

duration and allowing for almost free transposition in space (Koutsoyiannis and 

Papalexiou, 2006). Rakhecha and Kennedy (1985) used a generalized method to estimate 

the PMP values for catchments of four large dam basins in India. It was assumed that the 

PMP values would result from the optimum combination of the available moisture in the 

atmosphere and the storm mechanism efficiency which was indirectly measured by 

observed precipitation.  

The storm separation method is used particularly in orographic regions where 

storm transposition methods are inappropriate. It assumes that orographic and 
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convergence rainfall amounts can be explicitly determined. The convergence rainfall is 

referred to as the free-atmospheric forced precipitation (FAFP) (HMR, 57). HMR 36 is 

one of the earliest reports which discusses the development of PMP in terms of orographic 

and convergence components. Convergence precipitation is the product of atmospheric 

mechanisms acting independently from the terrain effect, and orographic precipitation is 

the precipitation that results from the terrain effect. It is recognized that atmosphere is not 

totally free from the terrain feedback, but cases can be found where the terrain feedback 

is either too small or insufficiently varied to explain the storm precipitation patterns, and 

in these cases precipitation is classified as pure convergence or non-orographic 

precipitation (U.S. National Weather Services, 1994). 

Recently, multifractal analysis has been used for PMP estimation. Multifractal, 

also known as multiscaling, is widely used to describe the scaling behavior of precipitation 

and streamflow. Douglas and Barros (2003) used this technique to calculate the physically 

meaningful estimates of maximum precipitation from observations in the eastern United 

States. The multifractal approach has an advantage in that it provides a formal framework 

to infer the magnitude of extreme events, called the fractal maximum precipitation (FMP), 

independently of empirical adjustments, a site specific application of FMP in orographic 

regions. The method is constrained by the length of record, the spatial resolution of 

raingauge network, and the lack of uncertainty estimates.  

Of all the methods, the statistical method, often called Hershfield method (1961), 

is more commonly used and can be applied, if long term precipitation data is available. 

The statistical method due to Hershfield (1961) has been used all over the world for 
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estimating the PMP values and for comparing with other methods and results obtained 

have been quite satisfactory (Casas et al., 2008; Tessier et al., 1992; Rakhecha et al., 1992; 

Srinivas and Chavan, 2015). 

Since the Hersfield method is based on average precipitation and standard 

deviation of precipitation, it is similar to the Chow (1951) frequency factor method 

expressed as: 

nm SkXP                 (1) 

where, n is the number of annual maximum precipitation values corresponding to 

a given duration, X is the sample mean, 
nS  is the sample standard deviation, and 

mk  is the 

frequency factor. Hershfield (1961) used 15 as the maximum value of 
mk  for computing 

PMP. Later Hersfield (1965) found that an upper envelope of 
mk  had a tendency to decrease 

with the increasing precipitation amount. In other words, the frequency factor decreases 

with increasing mean annual maximum precipitation.  The value of 
mk  varies from 5 to 20, 

depending upon the precipitation duration and average precipitation (Casas et al, 2011). 

This method was also used in this study. Hershfield (1965) analyzed over 95,000 station-

years of annual maxima belonging to 2645 stations, about 90% data was from the United 

States and 10% from other parts of the world which included some of the heaviest 

precipitation regions. He then produced an empirical nomograph ranging from 5 minutes 

to 24 hours that have been standardized by WMO (1986) as a basis for estimating PMP 

(Koutsoyiannis, 1999). Figure 3 shows 
mk  as a function of mean annual maximum 

precipitation and duration.   
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Figure 3. mk  as a function of mean annual maximum precipitation and of duration (WMO, 

2009). 

 

 

Using this method, enveloping curves were derived for particular areas and 

durations and these have been used to calculate the PMP values (Casas et al, 2008; Tessier 

et al, 1992). The enveloping frequency factor serves the purpose of transposition. Casas 

et al. (2008) used Hershfield’s method to estimate the PMP values for one-day duration 

and their return periods, and spatial resolution over the Catalonia region. The Gumbel 

distribution with parameters estimated by the L-moments method was used to determine 

the return periods of calculated PMP values. They showed that 90% of the PMP values 

had return periods of 104 to 108 years.  
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2.2 Uncertainty in PMP Computations 

Uncertainty with different methods of estimating PMP has been investigated by 

researchers who have been mainly concerned with maximizing and transposing actual 

storms using in-place moisture maximization (Micovic et al, 2014; Koutsoyiannis and 

Papalexiou, 2006). Micovic et al. (2014) identified 5 main sources of uncertainty, 

including horizontal transposition factor, factor for storm efficiency, factor of in-place 

moisture maximization, factor for centering the storm within the basin, and 24-hour 

precipitation for the controlling storm at the location. They found the operational PMP 

estimates to be lower than the theoretical upper limit by some variable deriving the 

estimates. There can occur uncertainty in the PMP estimate due to the way we define 

storm center at the location of storm occurrence. From analysis of atmospheric moisture, 

dewpoint temperature and maximized precipitation, Koutsoyiannis and Papalexiou 

(2006) concluded that no upper bound of PMP estimates was evident, and suggested 

finding the design values of maximum precipitation by using frequency analysis of 

observed data based on the GEV distribution. Uncertainty can also be categorized as 

natural uncertainty which represents the intrinsic variability of the physical system and 

the knowledge uncertainty which is due to insufficient data and lack of understanding of 

the system (NRC, 2000). 

Studies focusing on uncertainties in the PMP estimates using the statistical 

method or Hershfield method have been limited (Salas et al, 2014; Koutsoyiannis, 1999). 

There can be two ways to quantify uncertainty in the PMP estimates using statistical 

method. First, uncertainty can be determined due to uncertainties in frequency factor, 
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and mean and standard deviation of extreme precipitation values.  Second, frequency 

analysis of PMP can be used to quantify uncertainty. There exist uncertainties in the 

frequency factor (
mk ) which is accounted for by using an enveloping function of the 

highest frequency factor values. Koutsoyiannis (1999) pondered whether the extreme 

precipitation data used in the Hershfield method suggested a deterministic upper limit of 

precipitation. He suggested unifying all classes of record length and adding the number 

of occurrences of all classes after ignoring the effect of record length on 
mk .  Considering 

it as a random variable, the probability of its non-exceedance can be estimated using the 

Weibull formula, assuming all records of standardized annual maximum precipitation 
mk  

represented practically the same population. 

There are also uncertainties in the sample mean and sample standard deviation 

which can affect the PMP estimation. Assuming that the extreme precipitation series 

followed the Gumbel distribution, Salas et al. (2014) considered the uncertainty of PMP 

estimates arising from the uncertainty of sample mean and sample standard deviation. 

They calculated the expected value and standard deviation of the PMP values obtained 

from the Hershfield method and then estimated the design risk values of PMP using 

Chebyshev’s inequality.  

2.3 Frequency Analysis of Extreme Precipitation 

On the other hand, the uncertainty of PMP values can be quantified by frequency analysis 

of the annual maximum precipitation series. The first step is to determine the best fit 

probability distribution for the extreme precipitation series and return periods of PMP 

values. The exceedance probability of PMP values can be used to analyze risk. Although 
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the definition of PMP assumes an upper bound of precipitation, there are however no 

assigned probability levels and return periods to ‘probable’ events which might exceed the 

upper limits (Kites, 1988). There is the unknown risk of occurrence of such extreme 

events. However, by selecting an appropriate distribution for extreme precipitation values 

and ignoring the concept of upper limit, the return period can be calculated for the 

estimated PMP value.  

Various probability distributions can be used to calculate the return periods of 

maximum precipitation of different durations or calculate the return period for extreme 

precipitation. The Gumbel distribution has been commonly used for extreme frequency 

analysis, because maximum annual precipitation series are relatively short, especially in 

developing countries, and outliers are observed. The traditional fitting method with the 

conventional moments, such as mean and standard deviation, can result in return periods 

shorter than the ones corresponding to a longer sample containing a large number of years 

(Casas et al, 2008). Adjustment of CV of the annual maximum precipitation series can be 

done to compensate for the effect of outliers (Rakhecha et al., 1992).  

There is a considerable amount of uncertainty associated with finding the best-fit 

distribution for doing frequency analysis. Stations having limited quantity of data for 

frequency analysis introduce sampling uncertainty, in particular due to the presence of 

outliers, which make the estimates of higher order moments (like skewness) become 

unstable  (Rahman and Mamoon, 2014). For daily time series, Koutsoyiannis (2004) found 

that the Generalized Extreme Value (GEV) type II (EV2) better described hydrological 

extremes than did the Gumbel distribution. Assuming the shape parameter of the EV2 
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distribution as constant (= 0.15) across Europe and North America, the distribution fitting 

was simplified. More recently Papalexiou and Koutsoyiannis (2012) used a three-

parameter Generalized Gamma (GG) distribution and a four-parameter Generalized Beta 

distribution of the second order (GB2) to 11519 daily precipitation records across the 

globe. Results showed that these distributions described almost all empirical records 

satisfactorily.  

Determining the best fit probability distribution is important to quantify the 

uncertainty in the PMP estimates. Asquith (1998) analyzed frequencies of annual 

maximum precipitation for durations of 15, 30, and 60 minutes; 1, 2, 3, 6, 12, and 24 

hours; and 1, 2, 3, 5, and 7 days using L-moments like mean, L-scale, L-coefficient of 

variation, L-skew, and L-kurtosis. He found that the generalized logistic distribution, 

using L-moment ratio diagrams, was an appropriate probability distribution for modeling 

the frequency of annual maxima for durations of 15 minutes to 24 hours; whereas the 

generalized extreme-value distribution was appropriate for durations of 1 to 7 days 

(Asquith, 1998). However, the results were only based on the L-moments ratio and 

included only a few distributions like Generalized Logistic distribution and Generalized 

Extreme value (GEV) distribution, Generalized Pareto distribution, and Pearson Type III 

distribution. To our knowledge, the best-fit probability distributions for different durations 

like 2, 3, 6, 12, 24 hours have not been determined for the Brazos River basin.  

2.4 Risk Analysis of Extreme Precipitation  

Flooding from extreme precipitation can vary from upwelling groundwater levels which 

occur frequently to very large inundations (Koks et al, 2012). Large damage due to 
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extreme precipitation occurs in case of large inundations when there is more 

precipitation than the water system in a specific area can handle. For decision making 

the expected damage along with the probability of exceedance of extreme precipitation 

is also vital to quantify the amount of risk associated with PMP. Risk can be defined as 

the expected losses due to a damaging event. It is a combination of the amount of 

damage caused for a particular hazard and the probability associated with this particular 

hazard (Villalta et al, 2014). Assuming the probability of exceedance of a precipitation 

event Ei is pi and the associated loss is Li. The number of precipitation events per year is 

not limited to one and numerous events can occur in a given year. The expected loss for 

a given event, Ei in a given year is simply E(L) = pi × Li (Kunreuther et al, 2004). 

Spekkers et al. (2012) correlated peak precipitation intensity and precipitation volume 

with total damage per 1000 insurance policies for private property owners that were in 

the vicinity of raingauges on pluvial flooding in the Netherlands. They estimated the 

total damage within an assumed radius of the rain gauging location. Koks et al. (2012) 

compared the flood risk in terms of annual expected damage (AED) of inundation due to 

extreme precipitation and large floods from the sea or river. They formed an integrated 

model to compare different types of flood risks and calculated the damage due to 

extreme precipitation for different return periods and different land uses in the area. In 

the United States the depth-damage curves developed by the U.S. Army Corps of 

Engineers have been utilized to determine the impact of floods in monetary terms. The 

curves are a relationship between the depth of water above or below the first floor of the 

building and the amount of damage that can be attributed to that water (David and 
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Skaggs, 1992). Different models like Hydrological Engineering Center’s Flood Damage 

Analysis (HEC-FDA), HAZUS, etc. have been used to study the risk based analysis 

methods for flood damage reduction studies. However, we are only concerned with the 

flooding due to extreme precipitation or pluvial floods. Therefore, the question arises: 

“What are the uncertainties associated with the PMP estimated from the statistical 

method, and what in monetary terms damage a single PMP event can cause?” 
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3. SIGNIFICANCE, STUDY AREA AND  

APPROACH 

3.1 Study Area 

The study area for the study is the Brazos River basin which is the second largest river 

basin by area within Texas. Brazos River is the 11th largest river in the United States. It 

is 2,060 km long with its headwater source at the head of Blackwater Draw, Curry 

County, New Mexico to its mouth at the Gulf of Mexico (Wiki). It has a drainage basin 

area of about 116,000 km2. Within the basin there are different types of climate and 

precipitation producing mechanisms. The climates are subtropical humid close to the 

Gulf of Mexico, continental steppe close to New Mexico or on the western side of the 

basin, and subtropical sub-humid in the middle part of the Basin (Hao and Singh, 2011). 

Figure 4 shows the location of Brazos River basin. 
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                                             Figure 4 Brazos River Basin within Texas 

 

3.2 Significance of the Work 

There is a need to determine the site-specific PMP for the study area which can then be 

used for the calculation of PMF. It is because the site-specific PMP calculation can 

incorporate basin characteristics that are specific to the topography and local climate. 

Therefore, we ask the question: “What are the PMP estimates for Brazos River basin and 

what are the uncertainty and risk associated with those values.” Our study calculated PMP 

for 1, 2, 3, 6, 12, and 24 hour durations and focused on uncertainties due to the use of 

frequency factor, enveloping curve, return period of PMP values, uncertainty in the 
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selection of best fit probability distribution, and uncertainties due to sample mean and 

sample standard deviation of annual maximum precipitation. We calculated the design 

risk estimate of the PMP values and probability bounds on the design PMP values. Such 

a design risk estimate gave a more conservative estimate of the PMP. Risk analysis of 

extreme precipitation was also performed and the total loss that can be expected from PMP 

events was calculated in Harris County. 

It is also important to see how PMP values vary with the given duration and if 

there is any relation between the PMP values and the mean of extreme values, PMP values 

and the highest observed precipitation, or the mean and the standard deviation for different 

stations and durations. If there is any correlation between these statistics, then one statistic 

can be substituted for the other.  

3.3 Objectives 

The objective of this study therefore was to estimate PMP values for different durations 

and locations in the Brazos River basin using the statistical method and determine the 

associated uncertainty along with risk analysis of extreme precipitation. To achieve this 

objective, specific objectives were to:  

(1) construct a basin-specific enveloping curve of frequency factor for the Brazos 

River basin and calculate the PMP values by using it and construct the Isohyetal maps of 

PMP values;  

(2) determine the best-fit probability distribution for extreme precipitation and 

probability of exceedance and return period of PMP values for the Brazos River basin;  
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(3) compute the uncertainties associated which the statistical estimates of PMP values 

arising from the uncertainties from the choice of probability distribution, number of 

stations, and frequency factor, uncertainties in sample mean, sample standard deviation.; 

and 

(4) compute design risk PMP values and probability bounds on the PMP estimates, 

estimate risk and assess the damage. 
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4. APPROACH AND HYPOTHESES 

4.1 Approach  

To fulfill our objectives following approaches were undertaken. 

4.1.1 Estimation of PMP Values 

The nomograph of varying frequency factor with sample mean was constructed and 

PMP values for different durations were estimated using statistical approach for the 

Brazos River basin. Assessment of uncertainty in the PMP estimate due to was 

performed along with comparing the results with the use of Hershfield’s curve of 

frequency factor. 

4.1.2 Frequency Analysis of Extreme Precipitation  

 Frequency analysis of extreme precipitation was performed for different durations. The 

best fit probability distribution was determined for the study area. The exceedance 

probabilities and return periods of PMP values were estimated. The return periods of 

PMP values were compared with the published HMR documents return periods, and the 

uncertainty introduced due to choice of probability distribution was determined.  

4.1.3 Uncertainty Analysis of PMP Values 

With the use of parameter values of best fit probability distribution, the uncertainty 

introduced in the PMP estimates due to sample mean and sample standard deviation was 

accounted for. Design risk estimates of PMP values were determined along with 

probability bounds on the PMP values. Using Taylor series expansion the relative 

contribution of each random variable to the total uncertainty was also determined. 
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4.1.4 Risk Analysis  

Risk analysis of PMP estimates in Harris County was performed. Assessment of damage 

was done along with estimation of risk. The amount of damage that can be expected in a 

PMP event at the location was determined. 

4.2 Hypothesis 

HMR documents provide generalized precipitation values that are not basin specific. 

Hence, they tend to represent the largest PMP values across broad regions. Many site-

specific studies in the past have produced different PMP values compared to HMR 

published values (Tomlinson and Kappel, 2009). The hypothesis is therefore as follows: 

By incorporating uncertainty in the PMP estimates the PMP values will differ widely from 

using Hershfield’s method and published HMR documents. For a small number of stations 

in Brazos River basin as compared to 2645 stations used by Hershfield, the frequency 

factor will depend heavily on particular stations. Hence, we will get different PMP values 

when using Hershfield’s original enveloping curve. Within Brazos River basin there exist 

different climate producing mechanisms for different areas. For example, in the eastern 

part of Texas or near the Gulf of Mexico there is fairly uniform seasonal precipitation, 

with slight maxima occurring in the summer season because the influence of the Gulf of 

Mexico is dominant (National Fibers Information Centre, 1987). In northwestern part of 

Texas the precipitation amount increases steadily through spring and reaches maximum 

in May and June, while thunderstorms are also high during spring (National Fibers 

Information Centre, 1987). Hence, for finding the best fit probability distribution it may 

not be possible to describe the whole data by a single best distribution. The best 



  

22 
 

distribution may vary depending upon the time duration, climatic zone, and distance from 

the gulf. 
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                         5. ESTIMATING PMP VALUES USING 

                                   STATISTICAL APPROACH 

5.1 Data Collection 

Precipitation data for 1-hour duration were taken from the NCDC NOAA website 

(https://www.ncdc.noaa.gov/cdo-web/). Shapefiles of raingauging stations to be imported 

into GIS were prepared using the latitude and longitude of stations. Using the locations of 

stations and boundary of Brazos River basin it was found that the basin had more than 90 

stations. The stations were selected based on the criteria of having at least 30 years of 

record length and having at least 9-month observations for each year (Singh and Hao, 

2013). 39 stations were selected having an average record length of 50 years. Figure 5 

shows the locations of 1-hour duration rain gauges. The recording time varied from 1940 

to 2013. 17 stations had record lengths of more than 60 years. From the data of 1-hour 

duration the data for other durations 2, 3, 6, 12, and 24 hours were generated. Time series 

of stations with different durations were plotted to see if there was any trend in the 

precipitation records as a function of time. No time series plot showed any significant non-

stationarity. Then, annual maximum precipitation series based on different durations were 

compiled for each station.  

                                

 

https://www.ncdc.noaa.gov/cdo-web/
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                     Figure 5. 1-hour durations rain gauge station locations 

 

 

5.2 Estimation of Frequency Factor 

The values of mean, standard deviation, and highest observed precipitation were 

calculated for annual maximum series of each station corresponding to each duration. 

Mean and standard deviation were adjusted for sample size and maximum observed event. 

Adjustments were made based on Figure A.1 and A.2 (Appendix) (WMO, 2009).  The 

mean and standard deviation of the annual maximum series tend to increase with the length 

of record, because the frequency distribution of precipitation extremes is skewed to the 

right so that there is a greater chance of getting a larger than a small extreme as the length 
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of record increases. Hence, for smaller series of extreme precipitation n, adjustments were 

made to the mean and standard deviation for the length of record based on Figure A.3 

(Appendix) (WMO, 2009). It may be pointed out that Hershfield (1965) derived his 

enveloping curve based on 204 stations (for 1-, 2-hour durations) and 2,700 stations (for 

24-hour duration), whereas we used only 39 stations. The coefficient of variation (CV), 

the ratio of standard deviation, and mean of the annual maximum series was calculated for 

each station. Sometimes the inclusion of an outlier or an extraordinary extreme 

precipitation event, with a recurrence period much longer than the series, could cause an 

anomalous effect in the calculated mean and standard deviation values (Hershfield, 1961). 

The CV for each station was calculated and checked weather it did not differ too much 

from that of the neighboring stations. For stations whose CV value found to be too much 

different from the neighboring stations, it was adjusted to the nearest value as compared 

to the neighboring stations (Rakhecha et al., 1992). 

The frequency factor 
mk  was calculated as: 

1

1






n

nm
m

S

XX
k                                                                                                                                        (2) 

The highest value of frequency factor for 1 hour duration was found to be 10.1 at 

Santa Anna, Texas. This value of 10.1 is the single highest value but it cannot be used for 

the whole basin as value of frequency factor will vary depending upon the location of 

stations corresponding to climatic regions and different geographic locations. A similar 

procedure was applied for other durations of maximum precipitation series. Table 1 shows 

the maximum observed along with the station name for different durations. Histograms of 
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were also plotted for different durations (Appendix B, Figure B.1 to B.6) Since each 

station had its own frequency factor value, depending upon the magnitude of the mean, 

the values of 39 stations were plotted against the adjusted mean X  in order to consider an 

appropriate enveloping curve that would give reliable estimates of 1-hour PMP rather than 

using the observed highest value.  

 

Table 1 Maximum observed frequency factor for different stations and durations 

Stations Duration 

1-hour 2-hour 3-hour 6-hour 12-hour 24-hour 

  

Albine 2.3 3.3 3.37 3.31 3.36 3.32 

Bay City 9.1 5.4 4.68 3.58 4.06 4.15 

Belton 3.7 2.8 3.51 4.91 4.1 3.9 

Bertnam 4.8 3.9 3.92 3.28 3.54 3.09 

Briggs 8.3 9.9 10.2 4.94 4.34 3.52 

Burleson 3.8 3.33 3.42 3.24 2.7 2.22 

Clovis 2.9 3.45 3.46 2.92 3.82 3.29 

Coryell 6.3 6.18 5.63 5.32 4.06 5.87 

Cranfills 4.08 3.65 3.27 2.69 3.76 4.17 

Cherroke 3.47 3.28 2.68 6.06 5.43 5.43 

       

Cresson 

Eastland 

4.51 

4.36 

4.24 

3.14 

3.68 

2.89 

3.61 

4.14 

5.83 

3.59 

4.46 

3.79 
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Table 1Continued 

Stations 

 

Duration 

     

 1-hour 2-hour 3-hour 6-hour 12-hour 24-hour 

       

       

Evant 6.55 6.8 7.6 7.1 5.89 5.52 

Santa Anna 10.1 10.9 11.4 11.4 10.5 4.9 

Flat 2.9 3.65 4.07 3.5 2.97 2.71 

Galveston 4.24 2.5 3.1 3.3 3.47 5.12 

Gorman 6.53 4.55 3.62 3.52 3.69 3.4 

Groesbeck 3.84 3.02 2.82 2.81 3.28 2.42 

Houston Addicts 4.06 3.16 4 3.96 3.45 3.41 

Houston Alife 4.5 3.52 3.09 3.97 6.28 5.25 

Indian gap 2.8 3.31 3.06 2.46 3.7 5.97 

Iredell 3.7 2.52 2.66 2.95 3.1 2.53 

Jayton 7.9 7.56 7.48 8.9 5.23 4.52 

Jewett 4.8 4.79 4.62 4.59 3.98 5.11 

Kopperl 4.4 3.78 3.68 3.6 3.77 4.01 

Lexington 9.01 6.01 4.91 3.64 4.61 6.02 

Loraine 2.8 3.03 5.4 5.02 4.61 3.52 

Lubbock 5.5 4.44 3.69 3.15 2.53 2.66 

Moline 5.05 4.09 4.09 3.54 3.4 4.18 

Pep 6 4.56 4.11 3.75 3.47 2.74 

Richmond 2.7 2.84 2.33 4.94 3.39 3.09 

Spicewood 3.4 2.94 2.88 4.24 5.09 4.81 
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An enveloping curve was drawn with the help of upper points for different 

durations. Figure 6 shows the enveloping curves for different durations. The curve seemed 

to be more sensitive for lower durations of precipitation, meaning changing the mean 

changed the value of the corresponding frequency factor by a considerable amount. 

However, all of the curves followed the same trend.  

 

             

    Series 1- 1-hour, Series 2- 3-hour, Series 3- 6-hour, Series 4- 12-hour, Series 5- 24-hour 

    Figure 6. Enveloping curve of mk  for all durations 
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5.3 Uncertainty in Frequency Factor 

Figure 7 to 11 shows the enveloping curve of frequency factor based on 39 stations in the 

Brazos River basin and the enveloping curve provided by Hershfield for computing PMP 

based on different durations.  

 

            

Figure 7 Comparison of Hershfield’s enveloping curve of frequency factor with Brazos 

River basin enveloping curve based on 1 hour duration 

 

                     

     Series 1 – Basin-specific curve, Series 2- Hershfield curve 

Figure 8 Comparison of Hershfield’s enveloping curve of frequency factorwith Brazos 

River basin enveloping curve based on 2 hour duration. 
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                           Series 1 – Basin-specific curve, Series 2- Hershfield curve 

Figure 9 Comparison of Hershfield’s enveloping curve of frequency factor with Brazos 

River basin enveloping curve based on 3 hour duration. 

 

 

 

 

                

                             Series 1 – Basin-specific curve, Series 2- Hershfield curve 

Figure 10 Comparison of Hershfield’s enveloping curve of frequency factor with Brazos 

River basin enveloping curve based on 12 hour duration. 
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                               Series 1 – Basin-specific curve, Series 2- Hershfield curve 

Figure 11 Comparison of Hershfield’s enveloping curve of frequency factor with Brazos 

River basin enveloping curve based on 24 hour duration. 

 

 

 

  From the Figure, it is seen that both curves generally followed the same trends but 

did not match. Brazos River basin has a smaller number of stations than the 2645 stations 

that Hershfield (1965) used, hence the frequency factor markedly depends on the number 

of stations. The enveloping curve specific for the Brazos River basin is lower than the 

Hershfield curve, which was constructed using some of the highest precipitation producing 

regions with long term records. The Hershfield enveloping curve seems to give higher 

values of frequency factor as the mean increases. Figure B.7 to B.11 shows the algebraic 
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dimensionless terms. The relationship for different durations was based on the equations: 
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106.00025.0  xy            (3)  

1289.00031.0  xy           (4)         

1435.00036.0  xy            (5) 

159.00045.0  xy            (6) 

1328.00056.0  xy                               (7) 

where, y is the Difference between the frequency factor from both the methods and 

x is the mean of annual maximum series. Hence, it is more conservative than the basic-

specific one for different durations.  

Figure 12 shows the difference between the frequency factor values for each 

station for 1-hour duration in dimensionless terms based on the formula: 

mH

mBmH

k

kk 

                              (8)    

              

            

Figure 12 Uncertainty in the values of frequency factor in dimensionless terms 
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where 
mHk  is the Hershfield frequency factor value and 

mBk  is the basin specific 

frequency factor value. This difference is an indication of uncertainty that can be 

introduced when using the Hershfield curve rather than the basin-specific curve. The same 

procedure was applied for other durations and the same trend was observed. Using 

Hershfield’s curve rather than basin specific can increase frequency factor 16% for 1 hour 

duration, 16.4% for 2 hour duration, 17.3% for 3 hour duration, 18.9% for 6 hour duration 

and 22.1% for 24 hour duration. 
mk  was also calculated by using the PMP values published 

in HMR documents (HMR, 51). The range of PMP values varied from 863.6 mm (station 

at Pep) to 1198.8 mm (station at Houston Alife) for 24-hour duration. The value of 
mk  was 

calculated as: 

)(
n

HMR
m

S

XPMP
k


                                                                             (9) 

where 
HMRPMP  is the PMP values from the HMR documents. Using the PMP 

values and the mean and standard deviation of stations, the range of frequency factor was 

from 22.2 to 26.6. It was too high with a narrow difference between the highest and lowest 

values. It was because the PMP values published in HMR are too high as compared to the 

average precipitation amount and the PMP estimated using basic-specific enveloping 

curve. This shows the significance of constructing the basin-specific enveloping curve and 

then calculating PMP. 

In order to quantify the uncertainty due to the number of stations, the enveloping 

curve was constructed by removing the top two stations (Lexington and Briggs) on an 

hourly basis. The curve changed, giving lower values of frequency factor that gave lower 
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PMP values (Figure 13).  The frequency factor, on an average basis, decreased by 8.1%. 

Curve was also fitted by nondimensionalizing and calculating the difference between both 

curves. Figure 14 shows the curve and it was observed that the difference was more for 

stations having less mean. The difference can be calculated by the equation:  

2088.00055.0  xy                                           (10) 

where, x is the mean (mm) for stations and y is the difference in dimensionless 

terms. Uncertainty can be introduced in the curve. Also, the inclusion of any outlier can 

increase the value of frequency factor which can change the shape of the curve. 

 

 

              

Series 1- Original enveloping curve, Series 2- Curve made upon removing top two stations 

Figure 13 Comparison of the original enveloping curve and the curve made upon 

removing top two stations 
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Figure 14 Difference between the original enveloping curve and the curve made upon 

removing top two stations in dimensionless terms 

 

 

5.4 Computation of PMP 

Then the PMP values for each station and duration was calculated based on equation (1): 

nm SkXP                 (1) 

 The calculated PMP values were adjusted for the fixed observational time interval. 

As precipitation data are usually given for fixed time intervals, for example 3 AM to 4 

AM (hourly data), 6 AM to noon (6-hourly), or 8 AM to 8 PM (daily). The adjustment 

will yield values closely approximating those to be obtained from an analysis based on 

true maxima (Hershfield, 1961a, WMO, 2009). However, less adjustment is required 

when maximum observed amounts for various durations are determined from two or more 

fixed time intervals (Weiss, 1968; Miller, 1964). Recent studies indicate little higher 

values for the correction factor (Casas et al, 2008), but we used Figure A.4 (Appendix), as 

it is mostly used and has been generalized by WMO (2009). Table 2 shows the PMP values 
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for the study area using basin-specific enveloping curve. Histograms of PMP values were 

also plotted for different durations (Appendix B, Figure B.12 to B17). 

 

Table 2 Adjusted PMP values for different Stations and Durations (mm) 

Station Duration 

1-hour 

PMP 

2-hour 

PMP 

3-hour 

PMP 

6-hour 

PMP 

12-hour 

PMP 

24-hour 

PMP 

Albine 192.2 242.9 271.1 314.1 364.06 421.8 

Bay City 296.8 310.2 336.5 354.8 372.7 414.9 

Belton 270.1 276.8 326.7 356.3 394.9 443.7 

Bertnam 301.9 324.5 344.7 380.6 381.2 428.9 

Briggs 341.02 344.6 355.6 385.4 390.5 447.3 

Burleson 240.8 251.9 287.8 405.7 410.8 468.3 

Clovis 219.6 240.1 265.6 284.09 323.6 374.1 

Coryell 264.5 286.9 321.8 316.05 350.1 420.5 

Cranfills 268.2 288.5 320.9 342.02 358.9 431.3 

Cherroke 241.1 264.1 300.8 311.1 351.3 401.3 

Cresson 270.1 282.1 307.2 339.8 365.3 408.2 

Eastland 264.8 299.1 339.2 378.2 392.07 439.8 

Evant 282.9 317.6 350.5 358.6 401.4 450.06 

Santa Anna 351.6 358.4 374.8 369.8 371.9 419.5 

Flat 246.03 325.5 350.8 393.2 392.9 425.8 

Galveston 209.4 266.8 315.09 402.7 411.02 384.09 
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5.5 Uncertainty in PMP Values Due to Frequency Factor 

To quantify the uncertainty that can be introduced in the PMP estimates by using 

Hershfield’s curve, basin-specific PMP values were also calculated using Hershfield’s 

enveloping curve. Figure 15 compares the PMP values based on both methods and shows 

that PMP from the Hershfield enveloping curve was higher than the basin-specific curve. 

For 1-hour duration the PMP values were 16.8% higher using Hershfield’s curve rather 

than basin-specific, 17.2% for 2 hour duration, 17.7% for 3 hour duration, 18.5% for 6- 

hour duration, 20.9% for 12 hour duration and 23.4% for 24-hour duration.  

 

 

                   

                 Series 1 – Hershfield’s PMP,  Series 2- Own PMP 

Figure 15 Comparison of Hershfield’s PMP estimates against PMP estimates for Brazos 

River basin based on 1-hour duration (mm) 
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increasing correlation between mean and standard deviation, highest observed 

precipitation and PMP but not that significant. However, there was no significant 

correlation between the mean and PMP for different stations. It may be because the 

frequency factor comes in the multiplication with standard deviation which has a more 

effect on the values of PMP. Plots were also made for different durations for Eastland 

station (Figure 16 to 18), showing increasing correlation between PMP values and the 

mean of extreme values, PMP values and the highest observed precipitation, and the mean 

and standard deviation. The increasing correlation was based on the regression equations: 

593.986077.1  xy                                 (11) 

where, y  is the PMP values and x is highest observed precipitation. 

4566.33647.1  xy                                            (12) 

where, y  is the standard deviation and x is mean of annual maximum series. 

86.1148075.3  xy                                                               (13) 

where, y  is the standard deviation and x is mean of annual maximum series. 

However, it may be noted that a highest observed precipitation for one duration 

can be the same for another duration. 
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Figure 16 Plots between PMP values and mean of extreme precipitation 

 

 

     

Figure 17 Plot between mean and the standard deviation of extreme 

precipitation 
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             Figure 18 Plot between PMP values and the highest observed precipitation 
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6. FREQUENCY ANALYSIS OF 

                                 EXTREME PRECIPITATION 

6.1 Frequency Analysis 

6.1.1 Probability Distributions 

For frequency analysis of extreme precipitation for all durations and stations the same 39 

stations were used as for calculating the PMP values along with 24 probability 

distributions that were: Generalized Extreme Value distribution, Burr XII distribution, 

Dagum, Log-logistics (3 parameter), Pearson 5 (3 parameter), Generalized Gamma (4 

parameter), Pearson 6 (4 parameter), Log-normal (3 parameter), Generalized Gamma (3 

parameter), Burr (4 parameter), Fretchet (3 parameter), Pearson 6 (2 parameter), 

Generalized Beat of the second order (4 parameter), Gumbel max, Log-Pearson 3, Log 

Gamma, Johnson SB, Inverse Gaussian (3 parameter), Dagum (4 parameter), Inverse 

Gaussian (2 parameter), Log-logistics (2 parameter), Frechet (2 parameter), Pearson 5 (2 

parameter), and Log-normal (2 parameter). Table 3 shows probability distributions with 

Probability density function and Cumulative density function of distributions. 

6.1.2 Goodness of Fit (GOF) Tests 

Three goodness of fit tests (GOF), including Kolmogorov-Smirnov test, Anderson-

Darling test, Chi-square test, were employed to check whether the hypothesized 

distribution function fitted the sample data (Chakravarti et al., 1967). The hypothesis of 

the GOF tests was: 

H0 = the precipitation data followed the specific distribution 
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H1 = the precipitation data did not follow the specific distribution. 

Kolmogorov-Smirnov (K-S) Test 

The K-S test calculates the maximum difference D  between the hypothesized distribution 

function and the empirical distribution. Let  

Z(i) = F( ix ,θ) (where ix represents the order data and θ is the parameter sets) and Fn( ix ) 

=empirical cumulative distribution function. Then,  

)(max
i

i
Zn

i
D




                      (14) 

)
)1(

(max
n

i
D i


                     (15) 

where ),max( DDD   

For small samples, the K-S test is preferable to the chi-square test. This test is used 

to decide if a sample comes from a hypothesized continuous distribution. 

Anderson-Darling (A-D) Test 

The A-D test calculates the weighted square difference between the hypothesized 

distribution Z(i) = F(
ix ,θ) and empirical distribution Fn(

ix ). The weight function is 

described by {F(
ix ,θ)[1-F(

ix ,θ]}-1. The test static (A) can be defined as: 





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ini xFxFi
n

nA
1

1

2 )(1ln[)(){ln12(
1

                                 (16) 

This test gives more weight to the tails than the K-S or chi-square test (Stephens, 

1977).  
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Chi-Square (C-S) Test 

The C-S test is based on the assumption that the number of observations is large enough 

so that the C-S distribution gives a good approximation to the distribution of the test static. 

It is defined as: 







k

i i

ii

E

EO

1

2
2 )(

                                                                             (17) 

where 
iO  is the observed frequency, and

iE  is the expected frequency (calculated by F )( 2x

- F )( 1x ). F is the CDF of the probability distribution that is being used. 

The observed number of observations (k) in interval “I” is computed from the 

equation: 

k = 1 + log2n                                                                                             (18) 

where n is the sample size. 

This test is used for continuous sample data only and is used to determine if a 

sample comes from a population with a specific distribution (Sharma and Singh, 2010).  

These tests were performed at the significant level (α = 0.05) for choosing the best 

fit probability distribution (Sharma and Singh, 2010). Q-Q plot and Root Mean Square 

Error (RMSE) were also used to find the best fit probability distribution.  

Q-Q Plot 

It is a quantile-quantile plot of the input (observed) data values and theoretical (fitted) 

distribution quantiles against each other. It is based on the estimates of the quantiles. The 

pattern of points in the plot is used to compare the two distributions. In this the observed 

data
ix  are ranked in ascending order ( nx :1  to 

mnx :
). A plotting position of the non-
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exceedance probability (G( nix : )) is computed for each nix : . There are many plotting 

positions in the literature but Cunnane (1978) plotting position formula yields 

approximately unbiased quantiles for a wide range of distributions: 

)2.0(

)4.0(
:






n

i
G ni                                                                       (19) 

The set of points from both the observed values and fitted quantiles is plotted on a 

normal graph with a 1:1 straight line extending from the origin. Theoretically, all points 

should fall on the 1:1 line if the assumed CDF is the true distribution (Tao et al., 2002). 

Root Mean Square Error (RMSE) 

It represents the sample standard deviation between the observed data and estimated 

quantiles. The RMSE serves to aggregate the magnitudes of the errors in the predictions 

for various times into a single measure of predictive power. It is given by 






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n

i

ii xy
n

RMSE
1

2)(
1

1
                                                      (20) 

where ix  is the observed data, iy is the estimated quantile based on empirically 

derived CDF. 

All the distributions were fitted to extreme precipitation data and parameters of the 

distributions were estimated by the maximum likelihood estimation. The probability 

density function (PDFs) were determined and plotted. Matlab and R-statistics were 

employed for fitting the probability distributions. 

 

 



  

45 
 

6.2 Frequency Analysis of Extreme Precipitation 

To find the best fit probability distribution for each station and different durations, a three 

step process similar to Olofintoye et al. (2009) was used. It may be noted that our focus is 

on the right tail of the distribution where extreme precipitation occurs. 

6.2.1 Step 1: Initial Processing 

All 24 common statistical distributions were used in this step. For each station and 

duration the test statistic values of Kolmogorov Smirnov, Anderson Darling, and chi-

square were calculated for every distribution. For each of the three tests the distributions 

were ranked according to the lowest test statistic value. The distribution having the 1st rank 

was assigned a score of 24, 2nd rank distribution a score of 23 and so on. The total scores 

from the three tests of each distribution were added to see which distribution had the 

highest score, the second highest, and so on. Then, the distributions having the 1st rank by 

each goodness of fit test were further analyzed. With that 2 or 3 distributions that had the 

highest total scores were also further analyzed. If the 1st rank distribution from a particular 

test also had the highest total score, then other distributions which had lower scores than 

the highest score distribution were considered. In any case, at least 5 to 6 distributions 

were considered for further analysis. The probability density function graph for the 

selected distribution was also compared with other remaining distributions to see that our 

results were legitimate. In most of the cases 3 parameter distributions were in the top 

distributions for different stations and durations. 
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6.2.2 Step 2: Using RMSE and Q-Q Plots 

After selecting 5 to 6 best distributions for each station and duration, the Q-Q plots were 

considered and the Root Mean Square Error (RMSE) values for the selected distributions 

were determined. The stations were ranked according to the least RMSE value and best 

Q-Q plot (Here best means Q-Q plot will be linear or specified theoretical distribution is 

the correct model.). The PDFs of the selected 5 or 6 distributions were compared to see if 

our results were consistent with the PDF graph or not. We won’t expect much difference 

between the selected distributions in fitting the data or visualizing the PDF graphs. We 

also tested the legitimacy of the two tests. If a particular distribution was clearly fitting the 

extreme precipitation data the best as seen from the PDF, then quantiles of the selected 

best distribution were compared with other distributions. If still the selected best fit 

distribution performed well, then it was selected as the best fit distribution. If not, then 

further analysis was done in which an average values of all test static were used to see 

which is the overall best distribution. 

6.2.3 Step 3: Finding Best-fit Probability Distribution 

In the last step, for those stations and durations for which there was not too much 

difference in the PDF graphs of selected distributions or there were contradicting results 

by observing the quantiles of the distributions with the observed values against the MSE 

and Q-Q plot results, the ranking system was used again. The top 5 or 6 distributions from 

step 1 were taken. The distributions were ranked according to the test statistic value from 

K-S, A-D, C-S, RMSE tests and visually seeing Q-Q plots. A score of 5 or 6 was assigned 

to the best distribution for a particular test and so on. The distribution having the highest 
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combined score from the 5 tests was regarded as the best distribution. In some cases more 

than 5 or 6 distributions were also taken depending upon the closeness of the test static 

values. After the best distribution was selected, it was analyzed which distribution fitted 

most of the stations and different durations overall. Other important things were also 

analyzed like is there a particular trend in the best fit distributions? What is the meaning 

of best distribution based on different climatic characteristics in the upstream, midstream 

and, downstream parts of the Brazos River basin?  

Table 3 shows the overall best distributions for each station and 1-, 6-, and 24-hour 

durations, based on different GOF tests. For other durations Table C.2 (Appendix) shows 

the overall best fit distributions for other durations. Table C.3 to C.9 (Appendix) shows 

percentage coverage for different durations. The Anderson-darling GOF test performed 

better than did the other tests. It is because it focusses more on the tail of the distribution 

than the K-S test. The K-S test is distribution free in a sense that the critical values do not 

depend on the specific distribution being tested. The Anderson-Darling test makes use of 

the specific distribution in calculating critical values. The log-logistic (3 parameter) 

distribution performed good in the right tail for higher quantiles for 1-, 2-, 3-, and 6-hour 

durations. But overall it did not perform as well as Burr XII or GEV for 2-, 3-, and 6 hour 

durations. For 12 and 24-hour durations of extreme precipitation, the generalized gamma 

(4 parameter) and Johnson SB performed better in the right tail. 
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Table 3 Overall best-fit distribution for different stations and durations 

Station                                           Duration 

1-hour                               6-hour                                24-hour 

 

Albine               Log-logistics 3                          GEV                                  Burr 

Bay City            Log-logistics 3                     Pearson 6 4p                          Burr 

Belton                 Johnson SB                      Log-Pearson 3                     Johnson SB 

Bertnam                  GEV                           Inverse-Gaussian 3             Inverse-Gaussian 3 

Briggs               Log-logistics 3                    Log-logistics 3                    Log-logistics 3 

Burleson                 Burr                                   GEV                                Log-Pearson 3 

Clovis                     GEV                                  GEV                                Log-Pearson 3 

Coryell                    GEV                                  Burr                                      Burr 

Cranfills                  GEV                                  Burr                                      Burr 

Cherroke                 Burr                             Log-logistics 3                            Burr 

Cresson                   Burr                             Log-logistics 3                            Burr 

Eastland            Log-logistics 3                     Johnson SB                           Johnson SB 

Evant                      Burr                                    Burr                                        Burr 

Santa Anna        Log-logistics 3                        Burr                                        Burr 

Flat                  Inverse-Gaussian 3                    Burr                               Inverse-Gaussian  

Galveston              Burr 4p                            Johnson SB                      Inverse-Gaussian  

Gorman                  Burr                                Johnson SB                           Johnson SB 

Groesbeck           Log-logistics 3                       Burr                                       Burr 

Houston Addict  Log-logistics 3                       GEV                                      GEV 

Indian Gap            Johnson SB                          GEV                                Log-logistics 3 

Iredell                       Burr                                  GEV                                       GEV 

Jayton                   Log-logistics 3                     GEV                                       Burr 3 
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Table 3 Continued 

Station                                           Duration 

1-hour                               6-hour                                24-hour 

 

Houston alife            GEV                            Log-Pearson 3                                Burr 

Jewett                       GEV                                  Dagum 4                                   Burr 

Kopperl                    Beta                                    GEV                                         Burr 

Lexington                Burr                             Gen Gamma 4p                         Pearson 5 3p 

Loraine               Log-logistics 3                         GEV                                 Gumbel Max 

Lubbock             Log-Pearson 3                     Johnson SB                           Log-Pearson 3 

Moline                     Burr                                    GEV                                         GEV 

Pep                         Dagum                                   Burr                                 Inverse-Gaussian 

3 

Richmond          Log-logistics 3                      Log-Pearson 3                        Johnson SB 

Spicewood       Inverse-Gaussian 3                    Burr                                           Burr 

Stamphord         Log-logistics 3                         Burr                                           GEV 

Stephenville            Burr                                 Log-logistics 3                      Log-logistics 3 

Still house         Log-logistics 3                          Burr                                           Burr 

Thompson              Burr                                      GEV                                     Johnson SB 

Waco                Log-logistics 3                       Log-Pearson 3                               Burr 

Washington          GEV                                      GEV                                           GEV 

Wheelock         Log-logistics 3                         Johnson SB                                  Burr 

*GEV = Generalized Extreme Value 
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6.3 Factors Affecting Frequency Distributions  

Next, the effect of duration and distance from the Gulf on the histogram and best fit 

distribution was analyzed. It was observed that there was a general tendency for higher 

skewness for shorter durations of precipitation than for longer durations, as shown in 

Figure 19 to 23 for station at Evant TX for different durations. It is because for short 

durations such as 1-hour, a large amount of precipitation may occur within a short time in 

certain cases exhibiting large skewness, while for long durations, such as 24-hour, 

precipitation is averaged and thus exhibits less skewness.  

                                        

 

                                                 
                            Figure 19 Histogram at Evant, TX for 2-hour duration 
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Figure 20 Histogram at Evant, TX for 3-hour duration 

 

                                

                                       
Figure 21 Histogram at Evant, TX for 6-hour duration 
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Figure 22 Histogram at Evant, TX for 12-hour duration 

 

 

                                           
                               Figure 23 Histogram at Evant, TX for 24-hour duration 
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The Burr XII distribution performed better for less skewed distributions and log-

logistic (3 parameter) performed better for more skewed distributions. Within Brazos 

River basin there exist different climate producing mechanisms for different areas. For 

example, in the eastern part of Texas or near the Gulf of Mexico there is fairly uniform 

seasonal precipitation, with slight maxima occurring in the summer season, because the 

influence of the Gulf of Mexico is dominant (National Fibers Information Centre, 1987). 

Hence, the effect of the distance from Gulf was analyzed. There was no systematic pattern 

but still it was observed that for stations close to the Gulf of Mexico, the histogram was 

smooth but had more variation. As the distance from the gulf increased the histogram 

began to become sharp with less variation. Figure 24 to 29 shows histograms for stations 

at Thompson and Lubbock for different durations. Thompson lies close to the gulf, 

whereas Lubbock lies in the north-western part of Texas. The reason for this pattern may 

be due to the moderating influence of the Gulf of Mexico. As we go farther from the gulf, 

in the northwest direction we come close to regions of High Plain division in which 

maximum precipitation comes from thunderstorms during the summer season. However, 

there was no preferable distribution which performed best near the Gulf or far away from 

it. However, Burr XII and GEV performed better for smooth histograms. Overall the Burr 

XII covered 30 to 40% of the stations for different durations. For other stations also, it was 

in most of the cases one of the top three best distributions.  

 



  

54 
 

                                 
                        Figure 24 Histogram at Thompson, TX, for 2 hour duration 

 

 

                                       
Figure 25 Histogram at Thompson, TX, for 3 hour duration 
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                          Figure 26 Histogram at Thompson, TX, for 6 hour duration 

 

 

                                         
Figure 27 Histogram at Lubbock, TX, for 2 hour duration 
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                       Figure 28 Histogram at Lubbock, TX, for 3 hour duration 

 

 

                                        

                                      Figure 29 Histogram at Lubbock, TX, for 6 hour duration 
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6.4 Hazard Rate  

Hazard rate is defined as the instantaneous rate of failure for the survivors to time t during 

the next instant of time. In flood frequency analysis it can be defined as the probability of 

extreme flooding in an infinitesimally small time period between t and  t+dt given that no 

flooding has occurred till time t or the rate of an event occurrence per unit of time. In 

choosing the best fit probability distribution it has more physical significance rather than 

just determining the best fit distribution based on different GOF tests as it is not a density 

or probability but a measure of risk. It was therefore decided to calculate the hazard rate 

for different distributions and durations to determine which distributions performed better.  

The hazard rate (h(t)) was calculated as: 

)(1

)(
)(

tF

tf
th


                                      (21) 

where )(tf is the probability density function or the probability that the value will 

fall in a specific interval and )(tF is the cumulative distribution function. )(1 tF  can be 

defined as a survival function or the probability that something will survive up to a certain 

time t. 

 Based on equation (20), the hazard rate was calculated for different distributions 

and durations. For distributions with 2 parameters there was a general trend of increasing 

hazard rate. Figure 30 shows hazard rate for 5 common distributions for 2 hour duration 

at station Flat.        
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Figure 30 Hazard rate for different distributions for 2-hour duration at 

station Flat 

 

 

It was observed that Gumbel Max and Inverse Gaussian (2 parameter) had an 

increasing hazard rate which then tended to become constant. While the Burr XII, log-

logistics (3 parameter), and GEV had an increasing hazard rate which then became 

constant and started decreasing. It makes sense physically, as station at Flat lies in Post 

Oak Belt in Texas where Prairie grasslands are scattered throughout the area, hence, the 

damage rate due to flooding will increase to a certain extent and then will become constant 

and start decreasing. To know how the hazard rate was changing it was differentiated with 

respect to extreme precipitation x. Using the probability density function (PDF) and 

cumulative distribution function (CDF) of the distributions d(h(x))/dx was calculated. 
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Figure 31 shows the rate of change of hazard rate for the same 2 hour duration at station 

Flat. 

 

                       

Series 1 – Burr, Series 2- Log logistics (3P), Series 3 – GEV, Series 4 – Gumbel max. 

Figure 31 Rate of change of hazard rate for different distributions for 2-hour duration at 

station Flat 

 

 The rate of change of hazard rate generally followed the same trend for all four 

distributions, except that the rate of change was non-negative for Gumbel distribution. It 

shows how quickly hazard rate is increasing or decreasing with respect to extreme 

precipitation. To further study these characteristics it was also determined how hazard rate 

and rate of change of hazard rate varied according to different climatic regions in Brazos 

River basin. There was not any significant pattern but it was observed that as we moved 

near to the Gulf of Mexico there was an increasing hazard rate for most of the distributions.  

For stations away from the gulf, the hazard rate followed the trend of increasing first, 

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 200 400 600 800

d
(h

(x
))

/d
x

x

Series1

Series2

Series3

Series4



  

60 
 

becoming constant and then decreasing. The increasing hazard rate is due to the fact that 

near the gulf or Costal Plains region damage is mostly urban but as we move away from 

the gulf close to High Plains which is a major farming area damage is mainly agricultural 

which saturates after a certain point of time. In Coastal Plains Regions where two thirds 

of the population lives and urban development is more the hazard rate was more as 

compared to Great Plains where urban development is less. Figure 32 to 34 shows the 

hazard rate for different distributions at three stations Lubbock (Upstream), Coryell 

(Middle) and Houston Addicts (Downstream) for 24-hour duration of precipitation. Figure 

C.1 to C.12 (Appendix) shows the hazard rate for other durations. For higher durations of 

precipitation the GEV distribution also began to reach a constant hazard rate. The rate of 

change of hazard rate was also calculated for the same distributions and durations. The 

log-logistic distribution consistently gave higher rate of change and Gumbel distribution 

gave non-negative rate of change. Figure 35 to 37 shows the rate of change of hazard rate 

for the same distributions and stations as above. Figure C.13 to C.22 shows the rate of 

change of hazard rate for other durations for the same stations. 
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Figure 32 Hazard rate for different distributions for 24 hour duration at station 

Coryell 

 

                             

Figure 33 Hazard rate for different distributions for 24-hour duration at station 

Houston Alife  
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Figure 34 Hazard rate for different distributions for 24-hour duration at station Lubbock 

 

 

                

Series 1 – Burr, Series 2 - Gumbel max, Series 3 – - Log logistics (3P), Series 4 – GEV 

Figure 35 Rate of change of hazard rate for different distributions for 24-hour duration at 

station Houston Alife 
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       Series 1 – Burr, Series 2 - Gumbel max, Series 3 – - Log logistics (3P), Series 4 – 

GEV. 

Figure 36 Rate of change of hazard rate for different distributions for 24-hour duration at 

station Coryell 

 

 

                

Series 1 – Burr, Series 2 - Gumbel max, Series 3 – - Log logistics (3P), Series 4 – GEV. 

Figure 37 Rate of change of hazard rate for different distributions for 24 hour duration at 

station Lubbock 
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The pattern varied across the study area but Burr XII and GEV distribution 

performed better except in regions close to High Plain division in which the maximum 

precipitation comes from thunderstorms during the summer season.  

6.5 Return Period of Estimated PMP Values 

For quantifying uncertainty, return periods of the PMP values were determined for each 

duration (Table C.1, Appendix). For our study we used the PMP values derived from 

basin-specific enveloping curve of mk  as it was made only by using the data for the Brazos 

River basin and is more accurate. The return period was less than expected. For most of 

the Brazos River basin the return period of the PMP values was in the range of 1000 to 

3000 years which was less than the range of 103 to 106 years reported in HMR 51. It shows 

the amount of risk associated with the PMP values. The difference between the two sets 

of values points to the uncertainty associated with the PMP values. To evaluate the 

uncertainty in the return period due to the choice of distribution, return periods for stations 

and durations were also calculated from the 4th best distribution. Table 4 shows the return 

period from the best and the 4th best distribution for 24 hour duration. Table C.10 and C.11 

shows the return period from the best and the 4th best distribution for other durations. On 

an average basis the return period from the 4th best distribution was 55.1% lower than from 

the best distribution. Figure 38 shows the difference between the return periods of the 24-

hour PMP values for selected stations from the best and the 4th best distribution in 

dimensionless terms as: 

best

thbestbest

T

TT 4

                                                               (22) 
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where bestT  is the return period from the best distribution, and thbestT4  is the return 

period from the 4th best distribution. As can be seen from the figure return periods were 

different, showing the importance of accurately determining the best-fit probability 

distribution. Figures 39 and 40 show the spatial distribution of the 1- hour PMP values 

and return period for those values calculated, based on the best fit probability distribution. 

The GIS spatial interpolation tool was employed for performing it. The spatial 

interpolation was done on the basis of inverse distance weighted interpolation. 

 

 

Table 4 Return periods of PMP values from the best and the 4th best distribution for 24-

hour duration 

      Return Period (years)                                      Return Period (years) from  

         Best Distribution                                               4th Best Distribution          

 

    1111.1                                                                                 7142.8 

    6579.8                                                                                 3950.2 

   4347.8                                                                                  1333.3 

   16666.6                                                                                3703.7 

   2222.2                                                                                  2500 

   16666.6                                                                                25000 

   232552.7                                                                              20000 

   6136.4                                                                                  6840.9 

   1886.7                                                                                  16666.6 

   50796.6                                                                                1265.8 

 



  

66 
 

Table 4 Continued 

Return Period (years)                                      Return Period (years) from  

         Best Distribution                                               4th Best Distribution          

 

    

   33333.3                                                                                9090.9 

   12500                                                                                   12500 

   1870.4                                                                                  1149.4 

   1282                                                                                     970.8 

 

 

              

 

Figure 38 Difference between the return period of the 24-hour PMP values for selected 

stations from the best and the 4th best distributions in dimensionless terms 
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Figure 39 Spatial distribution of the PMP values in Brazos River Basin for 1-hour duration 
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            Figure 40 Spatial distribution of the Return period of 1-hour PMP values in Brazos 

River basin 

 

 The depth-duration-frequency curve was also constructed for PMP values. Log of 

1, 2, 3, 6, 12, and 24 hour of precipitation and log of PMP values of different return period 

was taken. Figure 41 below shows the relation between PMP values and duration on log-

log paper. It was observed that there was an increasing correlation between log of PMP 

values and log of duration for different return periods. The chosen return was the return 

period of different duration PMP values and for the same return period the depth of rainfall 

was calculated for different durations. The equation fitted to the regression line were: 

34.20976.0  xy                    (1 hour duration)                  (23) 
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3874.20909.0  xy               (2 hour duration)            (24) 

4942.20654.0  xy               (3 hour duration)             (25) 

5205.20513.0  xy               (6 hour duration)            (26) 

501.20635.0  xy     (12 hour duration)            (27) 

5385.20589.0  xy        (24 hour duration)           (28) 

 

 

 

                  Figure 41 Depth-Duration-Frequency curve of PMP values 
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 7. UNCERTAINTY ANALYSIS OF  

                                               PMP ESTIMATES 

7.1 Uncertainty Due to Mean and Standard Deviation 

To quantify uncertainty due to sample mean and sample standard deviation the procedure 

similar to Salas et al. (2014) was followed. To quantify uncertainty one of the requirements 

was the calculation of Variance ( )(PVar ) of PMP estimate which can be calculated by 

(Mood et al, 1974): 

),(2)()()(
2

nnnmn SXKCovSVarkXVarPVar 
                           (29) 

where )( nXVar  is the variance of the mean, )( nSVar  is the variance of standard 

deviation and ),( nn SXCov  is the covariance of mean and standard deviation. The requirement 

was to calculate )( nSVar  and ),( nn SXCov . Salas et al. (2014) used Gumbel distribution as the 

underlying distribution by assuming the location parameter value to 1 and calculating a 

correction factor for Gumbel to normal approximation for the calculation of )( nSVar  and 

),( nn SXCov  using Monte Carlo analysis which is more generalized and can be used 

anywhere. However, for Brazos River basin using precipitation data the best fit 

distribution was Burr XII, hence, a different methodology was developed which would 

only be suitable for the study area.  

 The values of Burr XII distribution first shape parameter , second shape 

parameter  and scale parameter   were used along with Monte Carlo analysis. Matlab 

was used to simulate the results. The value of the first shape parameter   was in the range 
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of 3.5 to 6.5 and the value of the second shape parameter  was in the range of 0.5 to 1.5 

with a few exceptions like for 24-hour duration extreme precipitation at Groesbeck the 

value was 3.16, and for 1-hour of extreme precipitation at Jeweet the value was 3.33. Such 

values also shows that because of the unpexted high or low rainfall the value of the 

parameters can vary. But the value of scale parameter varied readily from 150 to 400. It 

was around 500 in a few cases. The value of  tended to increase for higher durations of 

extreme precipitation. Since the values of shape parameters had narrower ranges, an 

average values of  = 4.8 and  = 1 were used by taking the average of all the values. 1000 

samples of different sizes of n = 30, 50, 70, 100 and different scale parameter values of 

150, 200, 300 and 400 were simulated and then the values of )(iX  and )(iSn
, i = 1,...,1000, 

were computed. )( nSVar  and ),( nn SXCov  were estimated based on the pair of 1000 values , as 

shown in Table 5. The procedure was similar to Salas et al.(2014) method but we used 

different lengths of records and also simulated the values based on different values of scale 

parameter. It was observed that with increasing scale parameter )( nSVar  and ),( nn SXCov

increased, but decreased with increasing record length (n).  It can be expected because by 

increasing the scale parameter the spread increases, hence that leads to a large variance. 

Which leads to larger standard deviation in the results. The results are just an estimate but 

gives a good idea about the parameters of Burr distribution. 
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Table 5 Values of parameters for different record lengths and scale parameters 

Record length (n)   )( nSVar  ),( nnXCov   

30 150 250 110 

50 150 140 45 

70 150 70 28 

100 150 45 22 

30 200 400 178 

50 200 290 97 

70 200 150 74 

100 200 108 56 

30 300 510 269 

50 300 373 147 

70 300 243 120 

100 300 170 96 

30 400 580 327 

50 400 440 219 

70 400 325 157 

100 400 218 122 

 

  

To check whether the values of  = 4.8 and  = 1 would give reliable results, 

simulations were also run for shape parameter values = 5.3 and  = 0.8. These values were 

the average values for 24 hour duration extreme precipitation. The scale parameter value 

of 150 for the first simulation and 300 for the second simulation were used. It was because 

150 was the least scale parameter value and 300 was the average value for 24-hour 

duration extreme precipitation series. The results for different record lengths of 30, 50, 70, 

and 100 were not very different from the one using the values of  = 4.8 and  = 1, as 

shown in Table 6. Hence, it was decided to use the values of  = 4.8 and  = 1 as the 

average values for calculating  )( nSVar  and ),( nn SXCov . Then, a nomograph of varying 
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scale parameter  and varying record length was constructed, as shown in Figures 42 & 

43. The equation fitted to different curves of different scale parameters for the estimation 

of variance were: 

y = 0.052x2 - 9.6983x + 494.29       for  = 400                        (30)        

y = 0.052x2 - 9.6983x + 494.29       for  = 300         (31) 

y = 0.0533x2 - 11.868x + 822.09      for  = 200             (32)    

y = 0.0389x2 - 10.239x + 852.86      for  = 150         (33)    

and for the estimation of covariance the equation were: 

y = 0.0312x2 - 5.2541x + 236.98 for  = 400         (34)    

y = 0.0348x2 - 6.1915x + 329.06 for  = 300         (35) 

y = 0.0527x2 - 9.1902x + 491.38 for  = 200         (36) 

y = 0.046x2 - 8.8797x + 551  for  = 150         (37)

  

 

Table 6 Simulation results by changing record length and scale parameter 

Record length   )( nSVar
 

),( nnXCov 
 

30 150 263 121 

50 150 168 51 

70 150 87 32 

90 150 56 25 
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               Series 1:  = 150, Series 2:  = 200, Series 3:  = 300, Series 4:  = 400 

                    Figure 42 Variance of standard deviation as a function of record length 

 

 

                

               Series 1:  = 150, Series 2:  = 200, Series 3:  = 300, Series 4:  = 400 

Figure 43 Covariance of mean and standard deviation as a function of record 

length 
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From these Figures the values of )( nSVar  and ),( nn SXCov  were determined for all the 

stations with different durations having the Burr XII distribution as the best distribution. 

Then, )(PVar  was determined based on equation (28). The expected values of PMP 

estimates )(PE were calculated by using the relationships shown below: 

)()()( nmn SEkXEPE                                                          (38) 

where, )( nXE  is the expected value of the sample mean and )( nSE  is the expected 

value of the sample standard deviation. It can also be shown that: 


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[)(                                     (39) 

and, 


2/)1(]2/)1[(
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)(






nn

n
SE n     (Kendall and Stuart, 1963)              (40) 

where   and   are the population mean and standard deviation, )(a is the 

incomplete gamma function with argument a, and n is the record length. Using equation 

(39) and (40) the expected value of PMP value were calculated by: 


2/)1(2/)1(

)2/(
)(






nn

n
PE                                           (41) 

where   and   are the population mean and standard deviation which were are 

replaced by the corresponding sample estimates after appropriate adjustments for outliers 

as needed. )(a is the incomplete gamma function given as:  






0

1 dtet ta
                                                          (42) 
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where a is the argument and n is the record 

 Following Salas et al. (2014) the design risk PMP values  
dP  were calculated by: 

)()( PcPEPd                        (43) 

where )(P  is the standard deviation of PMP estimates and c>1 is the parameter. 

dP  is the value of uncertain PMP value P whose distribution is not known but only the 

estimates of its mean )(PE and standard deviation )(P are known. Table 7 compares 1-

hour PMP values at Thompson, Texas, obtained using the statistical method and the 

method considering the Burr XII distribution for calculating )( nSVar  and ),( nn SXCov . 

 

 

Table 7 Comparison of Hershfield PMP and Design Risk PMP values at Thompson, TX, 

for 1-hour duration (mm) 

Hershfield PMP Design Risk PMP using )()( PcPEPd   

c= 1 c= 2 c = 3 

253.45 251.88 280.4 309.06 

 

 

The best-fit distribution at the station was the Burr XII distribution with scale 

parameter   = 165.43 and record length (n) = 52. From figures 23 & 24, the values of 

)( nSVar  and ),( nn SXCov were obtained as 190 and 50. Using equations (40) and (28) )(PE
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and )(PVar  were 223.29 mm and 3218.1 mm, respectively. )(P  was calculated by taking 

the square root of )(PVar . For different values of c the design risk PMP 
dP  were 

calculated. With c = 1 and +sign )()( PcPEPd  gave 
dP = 251.88 mm. The value of c 

= 3 which was a more conservative estimate than using c = 1  gave 
dP  309.06 mm. Using 

Hershfield’s original method along with basin-specific enveloping curve the PMP estimate 

P was 253.45 mm after multiplying the PMP value with 1.13 for fixed observational time 

interval. The PMP values were also calculated using the Salas et al. (2014) method. It gave 

a PMP value of 241.2 mm and using normal distribution and it gave PMP value of 231.65 

mm. The lower value of PMP using the Salas et al. method may be because of the use of 

Gumbel distribution which was found inappropriate for modelling the annual maximum 

precipitation series (Koutsoyiannis, 2004). Results showed major differences between 

PMP values using all the three methods in terms of value. It can be concluded that a bigger 

value of PMP must be selected, considering the associated exceedance probabilities (risk) 

of PMP. The analysis was performed for other durations and stations having the Burr XII 

distribution as the best distribution. Design risk values were obtained for different 

durations. Table 8 shows the 24 hour design risk values for different values of c. Figure 

44 shows the comparison of original PMP values using Hershfield’s method and method 

with takes into account the uncertainty due to mean and standard deviation with different 

values of c. 
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Table 8 24-hour design risk PMP values (mm) values up to two decimal places 

Station Original PMP Design risk PMP 

c = 1 c = 2 c = 3 

Albine 421.81 462.52 504.54 546.57 

Cherroke 401.33 457.07 515.71 574.34 

Coryell 420.5 470.26 522.05 573.85 

Cranfills 432.35 470.78 511.43 552.08 

Cresson 408.29 454.25 501.61 548.98 

Evant 450.06 510.11 571.94 633.76 

Groesbeck 364.26 410.80 459.53 508.25 

Jayton 470.2 507.18 545.68 584.19 

Jeweet 447.98 491.33 536.74 582.15 

 

 

 

Series 1 – Original PMP values, Series 2 – design risk PMP values using c = 1, Series 3 – 

design risk PMP values using c = 2, Series 4 – design risk PMP values using c = 4. 

Figure 44 Design risk PMP values for different values of c for 24 hour duration 
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Chebyshev’s inequality (Mood et al., 1974) was used to have a bound of the 

probability on the PMP estimates using equation (18): 

2

1
1)}()()()({(

c
PcPEPMPPcPEP        (44) 

Using the same data for 1-hour PMP values at Thompson, Texas, it can be shown 

that:  

                     For c = 1    0.0}88.25170.194{  PP  

                      For c = 2   75.0}47.28011.166{  PP  

                       For c = 3     89.0}06.30952.137{  PP  

It shows that there is a less than 11% probability that the PMP estimate P was 

bigger than 309.06 mm and smaller than 137.52 for c = 3. The probability bound suggested 

that the value of 251.88 mm had a higher chance to be exceeded because of the uncertainty 

associated with the estimates of X , 
nS  and record length of 52. The value of 309.06 mm 

corresponded to a more conservative estimate that was less likely to be exceeded because 

of the uncertainty associated with X  and
nS . It took into account the effect of uncertainty 

and the associated probability of exceedance.  

7.2 Uncertainty in PMP Estimates Using Taylor Series Expansion  

The Taylor series expansion was used to propagate the uncertainty introduced in the PMP 

estimates due to various parameters.  Considering PMP as a function of mean, standard 

deviation and frequency it can be shown that  

)(xgPMP  ,         321 ,,(: xxxx ) 

In terms of PMP formula, )(xg  can be shown as: 
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321)( xxxxg                               (45) 

where 
1x = the mean of PMP estimates, 

2x  = the standard deviation of PMP 

estimates, and 
3x = the frequency factor of PMP estimates.  

Taking the first-order approximation, the expected value of PMP estimates were 

determined based on (Ang and Tang, 1975):  

)()( xgPMPE 
  

where x  = ),,( 321 xxx  and 
1x  is the mean value of mean of PMP estimates, 

2x  is 

the mean value of standard deviation, and 
3x  is the mean value of frequency factor. The 

variance of PMP due to each random component around the mean was calculated based 

on: 

2

2

1

)
)(

()( i

ki

i idx

xdg
PMPVar 





                                 (46) 

where i = 1…k are the random variables, and 
i  is the standard deviation of each 

component. The expected value of PMP estimates was 276 mm for 1-hour duration with 

the variance of 32 mm due to mean, 22 mm due to frequency factor and 16 mm due to 

standard deviation. For the 6-hour duration the expected value was 346 mm with the 

variance of 39 mm due to mean 26.2 mm due to frequency factor and 17.9 mm due to 

standard deviation. For 24-hour duration the expected value was 423 mm with the variance 

of 45.3 due to mean 29.4 mm due to frequency factor and 21.4 mm due to standard 

deviation. To determine the relative contribution of each random component to the total 

uncertainty of PMP coefficient of variation was calculated based on: 
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It was observed that for 1-hour duration 58% uncertainty was introduced due to 

mean, 27% due to frequency factor and 14% due to standard deviation. For 6 hour duration 

it was 60.4% due to mean, 27.2% due to frequency factor and 12.5% due to standard 

deviation. For 24-hour it was 60.95 due to mean, 25.5% due to frequency factor and 13.5% 

due to standard deviation (Figure 45).  

 

 

          Series 1- Mean, Series 2 – Standard deviation, Series 3- Frequency factor   

Figure 45 Relative uncertainty of each component to the total uncertainty in PMP 

estimates 
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8. RISK ANALYSIS OF EXTREME PRECIPITATION

8.1 Data 

In the United States National Flood Insurance Program (NFIP) was established in 1968, 

in response to a lack of private sector availability of flood coverage (Kousky and Kerjan, 

2015). Flood data for the Harris County was requested from FEMA which maintains the 

NFIP. The data comprised the flood event, amount of damage in dollars for a particular 

flood event in a particular area which was characterized by 5 digit zip code, the date of the 

event and the amount paid by NFIP. The flood events were from the period of year 1978 

to 2002. Table 9 shows the flood events and the start date of the events. 

Table 9 Flood events in Harris County with the start date 

Event name Start date 

TX FLOOD APRIL 1979 4/18/1979 

TX FLOOD SEPTEMBER 1979 9/19/1979 

TX FLOOD MAY 1981 5/3/1981 

TX FLOOD EVENT JUNE 1981 6/5/1981 

TX FLOOD AUGUST 1981 8/31/1981 

TX FLOOD MAY 1983 5/20/1983 

TX FLOOD SEPTEMBER 1983 9/6/1983 

TX FLOOD EVENT OCTOBER 1984 10/19/1984 
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In the Harris County there were two rain gauges Houston Alife and Houston 

Addicts. For gathering precipitation events at the two stations associated with flood events 

hourly precipitation data from NCDC NOAA was used. To compensate for the effect of 

wet catchment before a storm, the antecedent precipitation index (API) was used. Wet 

catchment and heavy rain can lead to flooding. API was calculated as (Ball et al, 2016): 

...2

2

1   nnnn PkkPPAPI                              (48) 

where nAPI  is the Antecedent Precipitation Index for day n, k is the empirical decay 

factor less than one, and 
nP  is the precipitation for day n. The catchment wetness declines 

each day by the factor k. API increases again due any rain. A value of 0.90 was used for k 

(U.S. Department of Commerce, 1977). 

Precipitation events associated with the flood date were selected. It may be noted 

that two precipitation events were considered independent when there was a certain dry 

period in between without or with minor precipitation. Urban drainage systems have a 

lagged response to precipitation and need a certain time to restore the equilibrium state. 

The flood damage can be completely related to a particular precipitation event if systems 

are in the equilibrium state before a precipitation event. A typical time for sewer systems 

to restore equilibrium state is between 10 and 20 hours (Spekkers et al, 2012). Hence, the 

precipitation events were selected that had at least a 10- to 12-hour difference between 

them. Also, the precipitation amount less than 1 mm/hour was treated as no precipitation. 

That prevented unrealistic long precipitation events to exist because of very small 

precipitation volumes between precipitation events. The damage amounts in dollars for 
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the flood events were arranged and adjusted for Consumer Price Index Inflation (Smith 

and Matthews, 2015). The damage data was given for zip areas in Harris County, hence 

for calculating the total damage due to a precipitation event the damages in all the zip 

areas up to which the event extended needed to be added. A weighted average function 

was developed, depending upon the amount of precipitation in both the rain gauges, the 

duration of precipitation and the closeness of zip area to the rain gauge. The total damage 

values were distributed among the zip areas for precipitation events occurring at both the 

stations and were added to have the total damage due to particular precipitation event.  

8.2 Risk Analysis and Assessment of Damage 

The exceedance probability was calculated for precipitation events associated with flood 

events from frequency analysis. The expected loss or risk associated with the precipitation 

events was calculated based on the formula: 

E(L) = pi × Li                                                                                           (49) 

where Ei is the expected loss for a given event, pi is the probability of exceedance 

of a precipitation event, and Li is the associated loss. Table 10 shows the exceedance 

probability of precipitation events, total damage and the expected loss or the associated 

risk in a given year for Houston Alife station. As can be seen, the expected loss due to 

precipitation events was very high. Figure 46 shows the correlation between the total 

damage and exceedance probability along with confidence bounds. The total damage was 

related to the exceedance probability by the power equation: 

817.0491351  xy                         (50) 

where, y is the total damage in U.S dollars and x is the exceedance probability. 
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Table 10 Expected loss due to precipitation events 

Total Damage 

(Dollars) 

Exceedance 

Probability 

Expected Loss 

(Dollars) 

   

5273021 0.047 247832 

2786696 0.063 175561.8 

74343336 0.0026 193292.7 

16499400 0.02395 395160.6 

7264661 0.02798 203265.2 

27063964 0.00795 215158.5 

1194753 0.1598 190921.5 

1691062 0.07746 130989.6 

31907133 0.009 287164.2 

268499.5 0.0705 18929.2 

9214725 0.00808 74454.9 

5260444 0.0231 121516.3 

40911349 0.0029 118642.9 

45063692 0.00226 101843.9 

6356198 0.01782 113267.5 
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Figure 46 Plot between total damage and exceedance probability along with probability 

bound 

 

Due to the limitation of data there were not many precipitation events of different 

durations so that the probability of exceedance can be correlated with damage amount. 

The exceedance probability was plotted against the total damage for 12-hour flood events 

at Houston Addicts station and 6-hour flood events at Houston Alife station. Figures 47 

and 48 show the correlation curves for both stations along with the fitted regression 

equation and confidence bounds. The power equation fitted to both the curves were: 

817.0491351  xy              (51)    
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where, y is the total damage in U.S dollars and x is the exceedance probability. The 

exceedance probability of PMP was fitted to the equations for both stations. Table 11 

shows the exceedance probability of PMP values and total damage. As can be seen, the 

total damage amount is very high. The damage due to a single PMP event of 12-hour 

duration can be as high as 2 billion. It shows how much damage a single PMP event can 

cause. It may be noted that more events would have given better results. 

 

                                          

 

Figure 47 Correlation curve between exceedance probability of PMP and total damage 

for 12 hour duration precipitation at Houston Alife 
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Figure 48 Correlation curve between exceedance probability of PMP and total damage 

for 6 hour duration precipitation at Houston Addicts 

. 

Table 11 Expected damage due to PMP events in both stations 

Station Duration (hour) and 

exceedance probability of 

PMP event 

Expected Damage 

(Dollars) 

Duration Probability 

Houston Alife 12 0.0000300 2425829620 

Houston Addicts 6 0.00064 202684515 
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8.3 Limitations 

The damage amount from PMP is just an expected value which we got by correlating a 

few precipitation events and amount of damage. More events would have given better 

results. In quantifying risk vulnerability is also an important term which involves damage 

cost functions of GDP (assets), population density, etc. Normalizing flood loss should also 

include GDP deflator, population, wealth per capita, etc. However, our focus was more on 

quantifying the uncertainty in the PMP estimates. These things were omitted in performing 

risk analysis. The amount of damage due to PMP is an approximate amount to show the 

hazardous nature of flooding.         
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9. CONCLUSION 

9.1 Conclusion 

It can be seen from our study that the PMP values are highly uncertain. The key 

conclusions from the study were: 

(1) The PMP estimates derived from the statistical method depend largely on the 

frequency factor. Removing or adding any one station can change the shape of the 

curve which can result in highly uncertain PMP values. 

(2) Hershfield enveloping curve yielded higher values of mk  compared to basin-

specific curve which resulted in higher PMP estimates. Hershfield’s statistical 

method can approximate the PMP values generally but for a specific area priority 

should be given to use the specific precipitation data for the area and derive the 

enveloping curve for the specific area. 

(3) Frequency analysis was done using 24 commonly used probability distributions, 5 

GOF tests, hazard rate and also using the PDFs of the distributions. The Burr XII 

performed better for less skewed distributions and the log-logistic distribution (3 

parameter) performed better for more skewed distributions. On an average basis 

Burr type XII came out to be the best distribution for the study area.  

(4) The return period of the PMP values was in the range of 1000 to 3000 years which 

was less than the range of 103 to 106 years reported in HMR 51. Considerable 

uncertainty can be introduced in return period of the PMP values because of the 

choice of probability distribution 
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(5) Design risk estimates were also calculated using Burr XII distribution parameters 

which gave a more conservative estimate of PMP by incorporating uncertainty. 

Probability bounds on PMP estimates suggested that PMP values had higher 

chance of being exceeded considering the uncertainty due to sample mean and 

standard deviation. It was also found that mean of extreme precipitation series has 

more relative effect on the combined uncertainty of PMP estimates. 

(6) The expected damage due to a single PMP event of 12-hour duration can be as 

high as 2 billion in Harris County, Texas 

9.2 Recommendation for Future 

As can be seen from the study the PMP values derived from the basin-specific enveloping 

curve should be given higher priority than Hershfield’s method or the published HMR 

documents PMP’s. Quantifying uncertainty due to mean and standard deviation was 

possible because shape parameters of Burr XII distribution had narrower ranges hence 

construction of nomograph was possible by taking the average of both shape parameters 

and varying the record length and scale parameter. It may not be possible for other 

distributions. It would be interesting to see how the )( nSVar  and ),( nn SXCov will vary for 

other distributions. 
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  APPENDIX A 

 INFORMATION FOR ESTIMATING PMP VALUES 

Figure A-1 Adjustment of mean of annual series for maximum observed precipitation 

(Hershfield, 1961b) 
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Figure A-2 Adjustment of standard deviation of annual series for maximum observed 

precipitation (Hershfield, 1961b) 

 

                                            
Figure A.3 Adjustment of mean and standard deviation of annual maximum series for 

length of record (Hershfield, 1961b) where Xn-m corresponds to the mean of the annual 

maximum series excluding the highest observation Xn is the mean of the annual maximum 

series, Sn-m is the standard deviation of the annual maximum series excluding the highest 

observation, and Sn is the standard deviation of the annual maximum series.  
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Figure A.4 Adjustment of fixed-interval precipitation amounts for a number of 

observational units within the interval (Weiss, 1968) 
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 APPENDIX B 

 PMP ESTIMATION 

Figure B.1 Histogram of observed mk  for 1 hour duration of precipitation

Figure B.2 Histogram of observed mk  for 2 hour duration of precipitation
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                   Figure B.3 Histogram of observed mk  for 3 hour duration of precipitation 

 

 

                  

                   Figure B.4 Histogram of observed mk  for 6 hour duration of precipitation 
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              Figure B.5 Histogram of observed mk  for 12 hour duration of precipitation 

 

 

              

              Figure B.6 Histogram of observed mk  for 24 hour duration of precipitation 
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Figure B.7 Difference between the Hershfield enveloping curve and Basin-specific curve 

for 24 hour duration in dimensionless terms. 

 

 

                               

Figure B.8 Difference between the Hershfield enveloping curve and Basin-specific curve 

for 12 hour duration in dimensionless terms. 
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Figure B.9 Difference between the Hershfield enveloping curve and Basin-specific curve 

for 6 hour duration in dimensionless terms. 

 

                      

Figure B.10 Difference between the Hershfield enveloping curve and Basin-specific 

curve for 3 hour duration in dimensionless terms. 
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Figure B.11 Difference between the Hershfield enveloping curve and Basin-specific 

curve for 1 hour duration in dimensionless terms. 

 

 

 

           Figure B.12 Histogram of adjusted PMP values for 1 hour duration 
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       Figure B.13 Histogram of adjusted PMP values for 2 hour duration 

 

              

       Figure B.14 Histogram of adjusted PMP values for 3 hour duration 
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       Figure B.15 Histogram of adjusted PMP values for 6 hour duration 

 

                    

       Figure B.16 Histogram of adjusted PMP values for 12 hour duration 
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    Figure B.17 Histogram of adjusted PMP values for 12 hour duration 
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                             APPENDIX C  

FREQUENCY ANALYSIS OF EXTREME PRECIPITATION       

RESULTS 

 

Table C.1 Return Periods for all stations and durations in Brazos River basin 

Station Name 1-hour 2-hour 3-hour 6-hour 12-hour 24-hour 

Abilene  6666.667 1265.823 76923.08 5921364 33333.33 1111.111 

Bay city  14285.71 2083.333 1538.462 14285.71 20000 6579.895 

Belton  2557414 100000 100000 7142.857 2040.816 4347.826 

Bertnam 6320.911 4505.45 8190.672 14285.71 33333.33 16666.67 

Briggs 3125 6666.667 6250 1818.182 2941.176 2222.222 

Burleson 7891.25 1306.986 3557.872 2127.66 3225.806 16666.67 

Clovis 2564.103 1333.333 16666.67 12500 33333.33 232552.7 

Coryell 568.1818 3448.276 2380.952 2631.579 1075.269 6136.497 

Cranfills 2325.581 16666.67 125000 50000 5263.158 1886.792 

Cherokee 24631.55 25000 353319.4 64551.16 70989.22 50796.61 

Cressson 3 NW  66296.25 58842.35 25000 10000 50000 33333.33 

Eastland 1265.823 5626.316 2941.176 9090.909 50000 12500 

Evant 1 SSW 3500.877 3757.94 9710.874 1886.792 1470.588 1870.49 

Santa anna 4761.905 2222.222 5000 2857.143 3333.333 1282.051 
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Table C.2. Overall best-fit distribution for different stations and durations  

Station                                           Duration 

 

2-hour                               3-hour                                12-hour 

Albine                  Burr                                      GEV                                  GEV 

Bay City            Log-logistics 3                        Burr              Gen Gamma (4p) 

Belton               Log-Pearson 3                 Inverse-Gaussian 3                    GEV 

Bertnam               GEV                                    GEV                           Gen Gamma (4p) 

Briggs               Dagum                                    Burr                               Log-logistics 3 

Burleson               Burr                                     GEV                               Johnson SB 

Clovis                   GEV                                Pearson 5 (3p)                         GEV 

Coryell             Gen Gamma (4p)                     GEV                                    Burr 

Cranfills          Inverse Gussain (3p)                 GEV         Log-logistics 3 

Cherroke         Inverse Gussain (3p)          Inverse-Gaussian 3               Log-logistics 3 

Cresson                    Burr                           Log-logistics 3                            Burr 

Eastland                   Burr                                GEV                                 Johnson SB 

Evant                       Burr                                 Dagum                                  Burr 

Santa Anna         Gen Gamma (4p)              Burr                                      Burr 

Flat                    Inverse-Gaussian 3                Burr                                      GEV  

Galveston               Burr 4p                           Johnson SB                     Inverse-Gaussian 3 

Gorman                   Burr                                 Burr                       Johnson SB 

Groesbeck              GEV               GEV                                      Burr 

Houston Addicts    GEV                               Log-pearson3                        Frechet (3p) 

Houston alife         Burr                                   GEV                   Gen Gamma (4p) 

Indian Gap            GEV                                   GEV                                  Log-logistics 3 
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Table C.2 Continued 

Station                                           Duration 

 

2-hour                               3-hour                                12-hour 

 

Iredell                Johnson SB                          Johnson SB                     Inverse Gussain (3p) 

Jayton                   Burr                                      Burr                                      GEV 

Jewett                   Burr                                      Burr                                       Burr 

Kopperl                GEV                                      Burr                                      GEV 

Lexington          Gen Gamma (4p)                     GEV                               Log-pearson3 

Loraine              Gen Gamma (4p)                  Gen Gamma (4p)                    GEV 

Lubbock              GEV     Frechet (3p)                    Gen Gamma (4p)                             

Moline                  Burr                                       Burr                                     GEV 

Pep                       GEV                                       Burr                                     Burr 

Richmond          Johnson SB      Johnson SB                       Frechet (3p) 

Spicewood           GEV         Burr                                   Burr 

Stamphord        Log-logistics 3                        Log-logistics 3                       GEV 

Stephenville      Log-logistics 3                        Log-logistics 3                  Log-logistics 3 

Still house            Burr                                           Burr                                   Burr 

Thompson         Pearson 5 (3p)                      Inverse Gussain (3p)                 GEV 

Waco                    GEV                                         GEV                              Log-logistics 3 

Washington     Log-logistics 3                              Burr                                     Burr 

Wheelock        Dagum (4p)         GEV                                 Gen Gamma  

*GEV = Generalized Extreme Value 
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Table C.3 Best probability distribution coverage for 1-hour duration in Brazos River 

basin 

 

 

 

 

 

 

 

 

 

Table C.4 Comparison of test static values for different GOF tests at Iredell, TX for 3-

hour duration 

Distribution Goodness of fit test 

K-S A-D C-S RMSE 

Burr 0.0705 0.32 1.527 8.25 

GEV 0.0691 0.24 0.631 8.21 

Log-Pearson 3 0.0758 0.27 1.318 9.14 

Johnson SB 0.0644 0.19 0.871 7.39 

 

Table C.5 Test Static values for different GOF tests for 3-hour duration at Thompson, TX 

Distribution Goodness of fit test 

K-S A-D C-S RMSE 

GEV 0.053 0.178 0.261 19.17 

Log-logistics 0.091 0.597 1.41 33 

 

Distribution % Coverage 

GEV 17.95 

Burr 23.08 

log-logistic(3p) 38.46 

Burr (4p) 2.56 

Beta 2.56 

log pearson 3 2.56 

Johnson Sb 5.13 

Inv Gussian (3p) 5.13 

Dagum 2.56 

Frechet (3p) 2.56 
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Table C.6 Best probability distribution coverage for 2-hour duration in Brazos River 

basin 

 

 

 

 

 

 

 

 

 

 

Table C.7 Best probability distribution coverage for 3-hour duration in Brazos River 

basin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Distribution % Coverage 

Gev 28.21 

Burr 30.77 

Log-logistics 3 7.69 

Dagum 2.56 

Pearson 5 (3p) 2.56 

Gen Gamma (4p) 10.26 

Log-pearson3 2.56 

Johnson SB 5.13 

Inverse Gussain (3p) 7.69 

Dagum (4p) 2.56 

Distribution % Coverage 

Gev 33.33 

Burr 33.33 

Log-logistics 3 5.13 

Dagum 2.56 

Pearson 5 (3p) 2.56 

Gen Gamma (4p) 2.56 

Log-pearson3 2.56 

Johnson SB 7.69 

Inverse Gussain (3p) 7.69 

Frechet (3p) 2.56 
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Table C.8 Best probability distribution coverage for 12-hour duration in Brazos River 

basin 

 

 

 

 

 

 

 

 

 

 

Table C.9 Best probability distribution coverage for 24-hour duration in Brazos River 

basin 

Distribution % Coverage of stations 

GEV 12.8 

Burr 43.6 

Log-Logistics 3 7.69 

Log-Pearson 3 7.69 

Johnson SB 12.8 

Inverse Gaussian (3p) 10.3 

Pearson 5 (3p) 2.56 

Gumble Max 2.56 

 

 

 

Distribution % Coverage 

Gev 25.64 

Burr 23.08 

Log-logistics 3 17.95 

Gen Gamma (4p) 12.82 

Log-pearson3 2.56 

Johnson SB 7.69 

Inverse Gussain (3p) 5.13 

Frechet (3p) 5.13 

Pearson 6 (4p) 2.56 

Frechet (3p) 2.56 
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Figure C.1 Hazard rate for different distributions for 2 hour duration at 

station Coryell 
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Figure C.2 Hazard rate for different distributions for 3 hour duration at 

station Coryell 
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Figure C.3 Hazard rate for different distributions for 6 hour duration at 

station Coryell 
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Figure C.4 Hazard rate for different distributions for 12 hour duration at 

station Coryell 
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Figure C.5 Hazard rate for different distributions for 2 hour duration at 

station Houston Alife 
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Figure C.6 Hazard rate for different distributions for 3 hour duration at 

station Houston Alife 
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Figure C.7 Hazard rate for different distributions for 6 hour duration at 

station Houston Alife 
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Figure C.8 Hazard rate for different distributions for 12 hour duration at 

station Houston Alife 
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Figure C.9 Hazard rate for different distributions for 2 hour duration at 

station Lubbock 
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Figure C.10 Hazard rate for different distributions for 3 hour duration at 

station Houston Alife 
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Figure C.11 Hazard rate for different distributions for 6 hour duration at 

station Houston Alife 
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Figure C.12 Hazard rate for different distributions for 24 hour duration at 

station Houston Alife 

 

 

 

       Series 1 – Burr, Series 2 - Gumbel max, Series 3 – Log logistics (3P), Series 4 – GEV 

Figure C.13. Rate of change of hazard rate for different distributions for 2 hour duration 

at station Coryell 
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Series 1 – Burr, Series 2 - Gumbel max, Series 3 – Log logistics (3P), Series 4 GEV. 

Figure C.14. Rate of change of hazard rate for different distributions for 3 hour duration 

at station Coryell 

 

            

Series 1 – Burr, Series 2 - Gumbel max, Series 3 – Log logistics (3P), Series 4 – GEV. 

Figure C.15. Rate of change of hazard rate for different distributions for 6 hour duration 

at station Coryell 
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Series 1 – Burr, Series 2 - Gumbel max, Series 3 – Log logistics (3P), Series 4 – GEV. 

Figure C.16. Rate of change of hazard rate for different distributions for 2 hour duration 

at station Lubbock 

 

           

Series 1 – Burr, Series 2 - Gumbel max, Series 3 – Log logistics (3P), Series 4 – GEV. 

Figure C.17. Rate of change of hazard rate for different distributions for 3 hour duration 

at station Lubbock 
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Series 1 – Burr, Series 2 - Gumbel max, Series 3 – Log logistics (3P), Series 4 – GEV. 

Figure C.18. Rate of change of hazard rate for different distributions for 6 hour duration 

at station Lubbock 

 

                

Series 1 – Burr, Series 2 - Gumbel max, Series 3 – Log logistics (3P), Series 4 – GEV. 

Figure C.19. Rate of change of hazard rate for different distributions for 12 hour duration 

at station Lubbock 
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Series 1 – Burr, Series 2 - Gumbel max, Series 3 – Log logistics (3P), Series 4 – GEV. 

Figure C.20. Rate of change of hazard rate for different distributions for 2 hour duration 

at station Houston Alife 

 

                     

Series 1 – Burr, Series 2 - Gumbel max, Series 3 – Log logistics (3P), Series 4 – GEV. 

Figure C.20. Rate of change of hazard rate for different distributions for 3 hour duration 

at station Houston Alife 
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Series 1 – Burr, Series 2 - Gumbel max, Series 3 – Log logistics (3P), Series 4 – GEV. 

Figure C.21. Rate of change of hazard rate for different distributions for 6 hour duration 

at station Houston Alife 

 

                    

     Series 1 – Burr, Series 2 - Gumbel max, Series 3 – Log logistics (3P), Series 4 – GEV. 

Figure C.22. Rate of change of hazard rate for different distributions for 12 hour duration 

at station Houston Alife. 
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Table C.10 Return periods of PMP values from the best and the 4th best distribution for 

1-hour duration  

      Return Period (years)                                      Return Period (years) from  

         Best Distribution                                               4th Best Distribution          

 

   16666.6                                                                                  15247.2 

   58842.3                                                                                  45896.2 

   18586.7                                                                                  17895 

   100000                                                                                   965874 

   50000                                                                                     50000 

   4398.5                                                                                    3692.3 

   7693.2                                                                                    4136.1 

   100000                                                                                   845693.5 

   12500                                                                                     11457.4 

   14285.7                                                                                  1000 

   26588.1                                                                                  19751.9 

   20000                                                                                     18524 

   166666.7                                                                                25000 
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Table C.11 Return periods of PMP values from the best and the 4th best distribution for 

2-hour duration  

      Return Period (years)                                      Return Period (years) from  

         Best Distribution                                               4th Best Distribution          

 

    76923.8                                                                                85426.3 

    100000                                                                                 853241.2 

    8190.6                                                                                  7412.6 

   16666.6                                                                                 13325.6 

   125000                                                                                  136548.9 

   353319.4                                                                               201355 

   9710.8                                                                                   9882.2 

   76929.3                                                                                 76125.3 

   10519450                                                                               96547812 

   3448.2                                                                                     6547.2 

   2068851                                                                                  1698752 

   55157198                                                                                49875421 

   14285.7                                                                                   13698 

   392834.7                                                                                 336874      

       250000                                                                                   225487.2 

 




