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ABSTRACT 

  

Loblolly pine (Pinus taeda L.) is one of the most widely planted and 

commercially important forest tree species in the USA and worldwide. However, whole 

genome resequencing in loblolly pine is hampered by its size and complexity. 

Additionally, the genetics underlying quantitative traits of loblolly pine remains to be 

discovered. As a valid and more feasible alternative, entire exome sequencing was hence 

employed to identify the gene-associated single nucleotide polymorphisms (SNPs) and 

to genotype the 375 tress in a clonally tested loblolly pine population. Adaptive and 

growth traits were also measured and analyzed on this population.  

 The exome capture efficiency was high. A total of 972,720 high quality SNPs 

were identified after filtering. We found that linkage disequilibrium (LD) decayed very 

rapidly within this population. Two main distinct clusters representing western and 

eastern parts of the loblolly pine range were demonstrated by the population structure 

analysis using unlinked SNPs. Under a relaxed filtering condition, over 2.8 million SNP 

markers were used to test for single locus associations, SNP-SNP interactions and 

correlation of individual heterozygosity with phenotypic traits. Genetic correlations 

between traits as well as geographical variation exist within this population. A total of 36 

SNP-trait associations were found for specific leaf area (5 SNPs), branch angle (2), 

crown width (3), stem diameter (4), total height (9), carbon isotope discrimination (4), 

nitrogen concentration (2), and pitch canker resistance (7). Eleven SNP-SNP interactions 

were found to be associated with branch angle (1 SNP-SNP interaction), crown width 
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(2), total height (2), carbon isotope discrimination (2), nitrogen concentration (1), and 

pitch canker resistance (3). Non-additive effects imposed by dominance and epistasis 

compose a large fraction of the genetic variance for the quantitative traits. Candidate 

genes that underlie these traits have a wide spectrum of functions.  

The obtained results demonstrated the efficiency of exome capture for 

genotyping species such as loblolly pine with a large and complex genome. Multiple 

effects that influence the performance of loblolly pines identified in this study provide 

great resources for understanding the genetic control of complex traits, and have 

potential value for breeding through maker assisted selection and genomic selection. 
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MLM Mixed linear model 



 

 x 

NCBI National Center for Biotechnology Information 

NIFA National Institute of Food and Agriculture  

NIT Nitrogen concentration 

NSF National Science Foundation 

PINEMAP Pine Integrated Network: Education, Mitigation, and Adaptation  

 Project 

RAD-Seq Restriction site associated DNA sequencing 

SLA Specific leaf area 

sHSP Small heat shock protein 

SNP Single nucleotide polymorphism 

SSR Simple sequence repeat 

TS Transition 

TV Transversion 

Ts/Tv Transition to Transversion ratio 

UTRs Untranslated regions 

VPD Vapour pressure deficit  

WUE Water use efficiency 

 

 



 

 xi 

TABLE OF CONTENTS 

 

                                                                                                                                      Page 

ABSTRACT ...................................................................................................................... ii 

DEDICATION .................................................................................................................. iv 

ACKNOWLEDGEMENTS ............................................................................................... v 

CONTRIBUTORS AND FUNDING SOURCES ........................................................... vii 

NOMENCLATURE .......................................................................................................... ix 

TABLE OF CONTENTS .................................................................................................. xi 

LIST OF FIGURES ........................................................................................................ xiii 

LIST OF TABLES ........................................................................................................... xv 

1. INTRODUCTION .......................................................................................................... 1 

2. EXOME GENOTYPING, LINKAGE DISEQUILIBRIUM AND POPULATION 

STRUCTURE IN LOBLOLLY PINE (PINUS TAEDA L.) ............................................ 10 

2.1 Introduction ............................................................................................................ 10 

2.2 Methods .................................................................................................................. 13 

2.2.1 Plant Material and Genomic DNA Extraction ................................................ 13 

2.2.2 Probe Design ................................................................................................... 15 

2.2.3 Sequencing Library Preparation and Target Enrichment ................................ 15 

2.2.4 Sequence Read Alignment and Analysis......................................................... 16 

2.2.5 Population Genetics Metrics ........................................................................... 17 

2.3 Results .................................................................................................................... 18 

2.3.1 Exome Target Enrichment Hybridization Probe Design and Assessment ...... 18 

2.3.2 Exome Capture Sequence Alignment and Efficiency ..................................... 19 

2.3.3 Single Nucleotide Polymorphism (SNP) Discovery ....................................... 22 



 

 xii 

2.3.4 Population Genetics Metrics ........................................................................... 24 

2.3.5 Genome-Wide Linkage Disequilibrium (LD) ................................................. 28 

2.3.6 Population Structure ........................................................................................ 29 

2.4 Discussion .............................................................................................................. 34 

3. ASSOCIATION GENETICS OF QUANTITATVE TRAITS .................................... 38 

3.1 Introduction ............................................................................................................ 38 

3.2 Materials and Methods ........................................................................................... 43 

3.2.1 Plant Material .................................................................................................. 43 

3.2.2 Phenotyping ..................................................................................................... 43 

3.2.3 Phenotypic Data Analyses ............................................................................... 45 

3.2.4 Genotypic Data ................................................................................................ 47 

3.2.5 Association Analyses ...................................................................................... 47 

3.2.6 Individual Exome-Wide Heterozygosity-Trait Correlation (HTC) Analyses . 49 

3.2.7 SNP Interaction Analyses ................................................................................ 49 

3.2.8 Annotation of Genes that Contained SNPs Associated with Traits ................ 49 

3.3 Results .................................................................................................................... 51 

3.3.1 Clonal Repeatability, Genetic Correlations and Geographical Variation ....... 51 

3.3.2 Individual Exome-Wide HTCs ........................................................................ 54 

3.3.3 Marker-Trait Association Analyses................................................................. 55 

3.3.4 Epistasis Analyses ........................................................................................... 62 

3.3.5 Annotation of Genes that Contained SNPs Associated with Traits ................ 67 

3.4 Discussion .............................................................................................................. 72 

3.4.1 Broad Genetic Correlations ............................................................................. 72 

3.4.2 Geographical Variation ................................................................................... 75 

3.4.3 Non-Additive Effects ...................................................................................... 76 

3.4.4 Non-Coding and Rare Variants ....................................................................... 77 

3.4.5 Application of the Identified Variants ............................................................. 78 

3.4.6 Heterozygosity-Trait Correlations ................................................................... 78 

3.4.7 Putative Functions of Genes that Contained SNPs Associated with Traits .... 79 

4. CONCLUSIONS .......................................................................................................... 84 

REFERENCES ................................................................................................................. 87 

 



 

 xiii 

LIST OF FIGURES 

 Page 

Fig. 1.1 Workflow of the Agilent SureSelect Target Enrichment System ......................... 6 

Fig. 1.2 Workflow of the NimbleGen SeqCap EZ system ................................................. 7 

Fig. 2.1 The counties of origin of the maternal trees colored by states............................ 14 

Fig. 2.2 Relationship between reads and capture target bases ......................................... 21 

Fig. 2.3 Cumulative distribution of coverage depth of captured target bases in 375 

trees ................................................................................................................... 22 

Fig. 2.4 MAF distribution among  972,720 SNPs ............................................................ 25 

Fig. 2.5 FIS (left) and heterozygosity (right) distributions among 375 trees .................... 27 

Fig. 2.6 LD decay plot for 375 trees based on 972,720 SNP markers ............................. 30 

Fig. 2.7 FST distribution across all loci ............................................................................. 31 

Fig. 2.8 Summarized admixture proportion distributions for K = 2 and K = 7 ................ 33 

Fig. 3.1 The counties of origin of the studied maternal loblolly pine trees...................... 46 

Fig. 3.2 BLUP estimates distribution for the traits with significant differences (P < 

0.05) among Far-west, Western and Eastern regions ....................................... 54 

Fig. 3.3 Percentage of phenotypic variance for each trait contributed by the SNPs 

detected by association and epistasis ................................................................ 64 

Fig. 3.4 Phenotypic differences between genotype combinations of the loci 

scaffold892137_41285_G_A and scaffold461440_154634_T_A .................... 64 



 

 xv 

LIST OF TABLES 

 Page 

Table 2.1 Number and percent of 972,720 SNPs located in different genomic regions .. 24 

Table 2.2 Ts/Tv ratios for 972,720 SNPs categorized in different genomic regions ....... 25 

Table 2.3 Transition (Ts) and transversion (Tv) nucleotide substitutions summary........ 26 

Table 2.4 Nucleotide diversity (π) in 50 bp step sliding windows for 972,720 SNPs in 

different genomic regions ................................................................................. 28 

Table 3.1 Phenotypic data summary ................................................................................ 52 

Table 3.2 Pearson correlation coefficients between the traits .......................................... 53 

Table 3.3 Significant HTCs .............................................................................................. 55 

Table 3.4 Selection for the best models for maker-trait associations in total, east and 

str populations .................................................................................................. 56 

Table 3.5 SNPs significantly associated with the traits.................................................... 58 

Table 3.6 Additive and dominance effects for the SNP loci detected by association ...... 61 

Table 3.7 Percentage of phenotypic variance explained by the associated SNPs and 

SNP-SNP interactions ....................................................................................... 62 

Table 3.8 SNP-SNP interactions associated with the traits .............................................. 65 

Table 3.9 Nonsynonymous and synonymous SNP substitutions ..................................... 71

 

 



 

 1 

1. INTRODUCTION 

 

Southern forests dominated by pines (genus Pinus) contain one third of the entire 

forest carbon in the contiguous U.S. (Turner et al. 1995). Among the southern pines, 

loblolly pine (P. taeda L.) is the most common native forest tree species, providing great 

economical and ecological value to this area. It comprises nearly one-fourth or 55 

million acres of the southern forest in the U.S. (Smith et al. 2009).The native range of 

loblolly pine extends south from New Jersey to central Florida, and west to central Texas 

(Baker and Langdon 1990). Its amenability to plantation management, high yields and 

fast growth make it one of the most economically important forest species in the world. 

Timber and pulpwood are the primary products. Due to its rapid juvenile growth, 

loblolly pine is the most productive and valuable commercial forest species, comprising 

80% of the planted forestland and over one half of the standing volume in the southern 

U.S. (Huggett et al. 2013). Since forests capture and store carbon dioxide through 

photosynthesis, the widely planted loblolly pines provide great value in offsetting 

atmospheric carbon dioxide and mitigating long-lasting climate changes caused by 

greenhouse gas emissions (Millar et al. 2007; Bolte et al. 2009).  

The climate within the natural loblolly pine range is humid, warm-temperate with 

long, hot summers and mild winters (Baker and Langdon 1990). However, due to 

climate change, it may become more arid and threaten survival and growth, hence 

decreasing the productivity and the economic value of loblolly pine cultivation. Forest 

growth, along with crop yield, can be damaged by changing precipitation and extreme 
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weather, such as heat waves, drought, floods, and high winds (IPCC 2014b). For 

instance, during the severe droughts in 2005 and 2010, the Amazon lost a decade’s 

worth of carbon sequestration (Bellassen and Luyssaert 2014). Heat waves due to 

climate change were attributed as the main reason for longer fire seasons in Russia and 

Alaska. In 2010, 2.3 million hectares of Russian forests were affected by a record heat 

wave with forest fires (Bellassen and Luyssaert 2014). In 2015, over 2 million hectares 

of forests burned in Alaska. Warmer temperatures in Alaska are accelerating the melting 

of permafrost, and tons of carbon may be released (Zhang 2015). On the other hand, 

forests are the primary mechanism for carbon sequestration (Bellassen and Luyssaert 

2014). Thirty percent of annual global anthropogenic CO2 emissions have been absorbed 

by the world’s forest in the past few decades. Moreover, atmospheric records and forest 

inventories show that forests have been taking up more CO2 in the past 50 years with the 

growing trend of anthropogenic emissions (Bellassen and Luyssaert 2014). Therefore, 

adaptive forest management that takes into account the changing environment due to 

climate change could relieve warming and long-lasting climate changes (Millar et al. 

2007; Bolte et al. 2009). 

In the southeastern U.S., climate change poses challenges for pine adaptation. 

According to a 2009 summary from the U.S. Global Change Research program (Global 

climate change impacts in the United States  2009), continued temperature increases, 

high heat in summer and precipitation declines are predicted in the southeastern U.S. It 

is assumed that pine carbon sequestration will be negatively impacted by soil water 

deficits under these conditions (Noormets et al. 2010). Over the past few decades, 



 

 3 

research cooperatives working to improve pine management and genetics have tripled 

the productivity of planted pine (Jokela et al. 2010). In the face of changing climate, the 

development and deployment of improved genetics, seedling culture, and nutrient 

management technology will play important roles in pine adaptation, resilience and 

sustainability. 

In 2011, a grant funding the Pine Integrated Network: Education, Mitigation, and 

Adaptation Project (PINEMAP) was awarded to a large multi-institutional and 

multidisciplinary group of scientists by the USDA National Institute of Food and 

Agriculture (NIFA). The overarching goal of PINEMAP is to integrate research, 

extension, and education and to disseminate knowledge about forestry management, 

fertilizer efficiency and carbon sequestration to southern pine landowners. PINEMAP 

has six aims (http://www.pinemap.org/) including a genetics team that is developing 

guidelines to help growers understand where to plant specific southern pine seed sources 

given future climate scenarios and identify genes controlling traits such as growth, 

nitrogen responsiveness, cold hardiness, water usage, and resistance to southern pine 

beetle and fungal diseases. As part of the genetics group, we have analyzed the genetics 

and genomics of a clonally tested association mapping population to discover alleles in 

genes that control these important adaptation and productivity traits. The population 

consisting of rooted cuttings from unrelated trees (i.e., clones) sampled across the natural 

range of loblolly pine was previously developed and used for association analyses as part 

of the National Science Foundation (NSF) funded Allele Discovery of Economic Pine 

Traits 2 (ADEPT2) project (Eckert et al. 2010; Cumbie et al. 2011). In the spring of 

http://www.pinemap.org/
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2010, 384 of the clones were established at the Harrison Experimental Forest at the 

Southern Institute of Forest Genetics (Saucier, Mississippi) and those trees were utilized 

for this project. 

The goal of this research was to discover single nucleotide polymorphisms 

(SNPs) in the 384 trees in the ADEPT2 population. The genotyped SNPs were used to 

analyze the population genetics and identify the genes and alleles that control adaptive 

and productivity traits. 

Endeavors have been made to improve discovery of genetic markers related to 

genes of interest for loblolly pine in the past. In the ADEPT2 project, 7216 SNPs were 

selected to design an Illumina Infinium middle density SNP genotyping assay for 

association analyses (Eckert et al. 2009a). Approximately 4000 of them provided high 

quality and reliable genotypes that were used to associate SNPs with variation for pitch 

canker resistance, carbon isotope discrimination, nitrogen concentration, height, 

metabolite levels and gene expression (Quesada et al. 2010; Cumbie et al. 2011; Eckert 

et al. 2012; Palle et al. 2013). However, this relatively low number of SNPs was 

insufficient to fully dissect the genetic structure of the complex traits. In addition, the 

complexity of the loblolly pine genome and the lack of a complete reference genome 

created challenges for marker discovery at that time. With the advances in sequencing 

technology, genotyping-by-sequencing (GBS) is now possible in species with high 

diversity and large genomes (Elshire et al. 2011). The advantage of GBS is that genetic 

variation discovery and genotyping can be completed simultaneously, hence saving time 
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and money. In June 2012, the first draft reference assembly of loblolly pine was released 

(Neale et al. 2014), which facilitated marker discovery via GBS.  

The loblolly pine genome with a size of ≈ 23 Gbp is still a challenge for whole 

genome resequencing. Therefore, reduction of the genome complexity is required for 

application of GBS in loblolly pine. There are two major GBS library construction 

methods: target enrichment and restriction enzyme based methods. In the PINEMAP 

project, a team from North Carolina State University constructed GBS libraries based on 

reducing genome complexity using RAD-Seq method (restriction site associated DNA 

sequencing), while our team at Texas A&M University and one from the University of 

Florida utilized target enrichment methods. 

One advantage of target enrichment lies in the reduction of the amount of 

sequencing required and the difficulties in data analyses. Since the loblolly pine genome 

is characterized by divergent and abundant repetitive elements (Kovach et al. 2010; 

Wegrzyn et al. 2014), targeting and genotyping the exome instead of the whole genome 

could save money and time but still uncover a significant amount of variation in most 

coding sequences (CDS) and untranslated regions (UTRs). Different exome capture 

systems have been developed in the past few years. Among them, the Agilent SureSelect 

Target Enrichment (Agilent Technologies, Inc., Santa Clara, CA) and NimbleGen 

SeqCap EZ Systems (Roche NimbleGen, Inc., Madison, WI) support solution-based 

capture of regions of customer interest. As shown in Figures 1.1 and 1.2, both methods 

share a similar procedure. First, genomic DNA is sheared to small fragments, followed 

by end repair, A-tailing, adapter ligation and amplification steps. Second, the sample 
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libraries are hybridized with the designed oligonucleotide probes (baits). Third, the 

captured sequences are pulled down and amplified after wash and recovery steps. 

 

 

Fig. 1.1 Workflow of the Agilent SureSelect Target Enrichment System 

(http://www.genomics.agilent.com/article.jsp?pageId=3083) 

http://www.genomics.agilent.com/article.jsp?pageId=3083
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Fig. 1.2 Workflow of the NimbleGen SeqCap EZ System 

(http://www.nimblegen.com/products/seqcap/ez/choice/index.html) 

http://www.nimblegen.com/products/seqcap/ez/choice/index.html
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There are some dissimilarities between these two methods. First, the 

oligonucleotide probes supplied by NimbleGen are DNA single strands with a flexible 

length of 55-105 bp while Agilent probes are strictly 120 bp long RNA strands. Second, 

the hybridization time for the Agilent system is 24 hours, while the NimbleGen system 

requires 68-72 hours.  

In our pilot experiment, both the Agilent SureSelect Target Enrichment and 

NimbleGen SeqCap EZ Systems were tested to select and capture the loblolly pine 

exome. For the Agilent SureSelect Target Enrichment method, the baits were designed 

using the 35,550 unigenes (available on http://bioinfolab.muohio.edu/txid3352v1) 

assembled by Dr. Chun Liang (Miami University, Oxford, Ohio). These unigenes were 

assembled using the loblolly pine Expressed Sequence Tags (ESTs) deposited in NCBI 

dbEST. For the NimbleGen SeqCap EZ method, we designed the probes using 199,723 

exons identified in the loblolly pine reference genome 

(http://dendrome.ucdavis.edu/ftp/Genome_Data/genome/pinerefseq/Pita/v1.01/) 

(Wegrzyn et al. 2014). The capture efficiency and cost were compared to determine the 

best system to be applied for genotyping of this study.  

From the pilot experiment, we found the capture efficiency with the NimbleGen 

system was higher than with the Agilent system. In addition, the cost was much lower 

with the NimbleGen SeqCap EZ system. Therefore, the NimbleGen SeqCap EZ system 

was selected to genotype the entire population. Afterwards, the genotyped SNPs were 

associated with adaptive and growth traits to discover molecular markers that can be 

used to facilitate future tree breeding.  

http://bioinfolab.muohio.edu/txid3352v1
http://dendrome.ucdavis.edu/ftp/Genome_Data/genome/pinerefseq/Pita/v1.01/
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In the second section, genotyping using NimbleGen SeqCap EZ system, SNP 

discovery and population genetics analyses on a loblolly pine population will be 

presented and discussed. In the third section, genetic correlations between phenotypic 

traits, geographic variation, SNPs and SNP-SNP interactions associated with the 

adaptive and growth traits will be presented and discussed.  
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2. EXOME GENOTYPING, LINKAGE DISEQUILIBRIUM AND POPULATION 

STRUCTURE IN LOBLOLLY PINE (PINUS TAEDA L.) 

 

2.1 Introduction 

Genomic tools and resources that focus on the dissection of complex traits are 

revolutionizing traditional loblolly pine breeding and assist with the breeding and 

deployment of genotypes better adapted to climate change and able to sequester greater 

amount of carbon. Two key prerequisites for development and application of genomics-

assisted breeding are the characterization of the genetic variation and the collection of 

genome-wide molecular markers. A high level of genetic polymorphism is expected in 

loblolly pine due to its life traits, typical for conifer species, such as longevity, wide 

geographic distribution, large effective population size and high outcrossing rate. This 

was confirmed in early studies with isozymes (Adams and Joly 1980; Conkle 1981), 

DNA-based markers (Devey et al. 1994; Harry et al. 1998; Remington et al. 1999), 

especially more recently with SNP (Brown et al. 2004; Eckert et al. 2009b; Chhatre et al. 

2013) markers. About 4000 SNP markers have been genotyped in the previous 

association genetics studies (Eckert et al. 2009b; Cumbie et al. 2011), but many more 

markers are needed for genomic selection (Jannink et al. 2010; Resende Jr et al. 2012; 

Resende et al. 2012; Desta and Ortiz 2014).  

                                                 

 Reprinted with permission from “Exome genotyping, linkage disequilibrium and population structure in loblolly pine 

(Pinus taeda L.)” by Lu M, Krutovsky KV, Nelson CD, Koralewski TE, Byram TD and Loopstra CA, 2016. BMC 

Genomics, DOI: 10.1186/s12864-016-3081-8, Copyright [2016] by Lu et al. 
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In the previous loblolly pine association mapping studies, an Illumina Infinium 

high-throughput SNP genotyping array developed for multiplex genotyping of 7216 SNP 

markers was used to dissect genetic control of diverse phenotypic traits (Eckert et al. 

2009b; Eckert et al. 2010; Quesada et al. 2010; Cumbie et al. 2011; Chhatre et al. 2013; 

Palle et al. 2013). These SNPs were derived originally from amplicon sequencing data 

based on a relatively small, but range-wide sample of 18 loblolly pine 

megagametophytes and using PCR primers that were designed using unigene contig 

sequences assembled from EST sequences. Finally, about 4000 SNPs from this 7K SNP 

array were polymorphic or could be genotyped in the follow-up studies (Eckert et al. 

2009b; Eckert et al. 2010; Quesada et al. 2010; Cumbie et al. 2011; Chhatre et al. 2013; 

Palle et al. 2013). 

Given adequate geographic distribution sampling, the genetic structure 

underlying loblolly pine populations could also be elucidated using SNPs. For instance, 

Eckert et al. (Eckert et al. 2010) analyzed SNP and simple sequence repeat (SSR) 

markers among 907 range-wide loblolly pine trees and found that the population 

structure reflected mainly the Mississippi River discontinuity. 

Efficiency of marker-assisted breeding and genomic selection depends largely on 

genome-wide linkage disequilibrium (LD). Brown et al. (Brown et al. 2004) found 

substantial historic recombination between SNPs in the sampled alleles sequenced in 19 

genes and demonstrated that LD significantly declined within 2 Kbp in loblolly pine. A 

genome-wide study by Chhatre et al. (Chhatre et al. 2013) confirmed rapid LD decay in 

loblolly pine. These studies suggested that a very large number of markers would be 
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required to link phenotypes to genotypes in association mapping studies and in genomic 

selection of this species. Therefore, for a species such as loblolly pine with a large 

genome and rapid LD decay, even thousands of markers cannot meet the requirement of 

identifying all important functional genomic regions. Fortunately, GBS, which enables 

simultaneous marker discovery and genotyping, has facilitated the generation of large 

numbers of molecular markers (Poland and Rife 2012). Nevertheless, the large size and 

complex structure of the loblolly pine genome pose challenges for the whole genome 

resequencing. The loblolly pine genome assembly v. 1.01 spans 23.2 Gbp and contains 

14.4 million scaffolds (Neale et al. 2014). Tentatively, 50,172 putative genes with an 

average length of 2.7 Kbp have been annotated in the current loblolly pine genome 

assembly (Wegrzyn et al. 2014). Moreover, various highly repetitive DNA elements 

compose up to 82% of the loblolly pine genome, among which retrotransposons 

dominate and comprise 62 % of the genome (Neale et al. 2014; Wegrzyn et al. 2014). 

Therefore, reduction of genome complexity is highly desired for application of GBS to 

loblolly pine. 

In our study, we used the entire exome region for target enrichment to limit GBS 

to mostly CDS, which represent only ~40-60 Mbp of sequence space or less than 0.2 % 

of the entire loblolly pine genome. In the previous studies, technologies for solution-

based enrichment of target regions of interest have been developed for loblolly pine 

(Neves et al. 2011; Neves et al. 2013b; Neves et al. 2013a). Capture size has been 

significantly expanded due to the improvement in probe design and capture efficiency, 

making it possible to capture up to 200 Mbp of target sequence with a single design 
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(NimbleGen SeqCap EZ Developer Enrichment Kit). These developments made it 

possible for us to target and enrich the entire loblolly pine exome, thus greatly enlarging 

the available number of molecular polymorphisms in loblolly pine. 

In this study, we describe the probe design and efficiency of the loblolly pine 

exome capture using the NimbleGen SeqCap EZ method in a population sample 

containing 375 clonally-propagated trees from an association mapping population 

generated for the ADEPT 2 project (Cumbie et al. 2011). Counties of origin are known 

for 362 out of 375 maternal trees (Fig. 2.1). SNPs were identified by aligning the exome 

capture sequences to loblolly pine genome assembly v. 1.01 (Zimin et al. 2014). The 

inferred SNP genotypes were then applied to study LD decay and population structure. 

 

2.2 Methods 

2.2.1 Plant Material and Genomic DNA Extraction 

The population studied here was from the ADEPT2 project (Cumbie et al. 2011). 

Maternal parents of the ADEPT2 population were originally sampled across 12 states in 

the southeastern U.S., extending from Virginia to Florida, and west to central Texas 

(Fig. 2.1). Seeds were collected from the maternal trees after open pollination. Trees 

were grown from open-pollinated seeds for one year and then were hedged and 

established for use in the ADEPT2 project. In the spring of 2010, rooted cuttings from 

384 trees (i.e., clones) of the ADEPT2 population were established at the Harrison 

Experimental Forest at the Southern Institute of Forest Genetics, near Saucier, 

Mississippi. Needle samples were collected from 375 surviving clones for extraction of 
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genomic DNA in June 2012 and stored at -20°C. Four needles from each sample were 

ground in liquid nitrogen to a fine powder. DNA was extracted using QIAGEN DNeasy 

Plant Mini Kits following the standard protocol except in the last step, where 1×TE 

buffer with low EDTA was used for elution. Genomic DNA samples with 

OD260/OD280 ratios between 1.7 and 2.0 without signs of degradation were used for 

downstream applications. 

 

 

 

Fig. 2.1 The counties of origin of the maternal trees colored by states. This map shows the sampling sites 

of the 362 out of 375 maternal parents of the ADEPT2 population used in this study 
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2.2.2 Probe Design 

Probes were designed using Gene Annotation v. 2.0 for loblolly pine genome 

assembly v. 1.01 (Neale et al. 2014; Wegrzyn et al. 2014). We submitted the 

49,216,700 bp of sequence that represented 199,723 exons to Roche NimbleGen Inc. for 

sequence capture probe selection. The target regions were inferred using the exon 

coordinates available in the files “ptaeda.v1.01 

scaffolds.trimmed.all.genes.highq_whole.gff3”, which included annotation for 34,059 

full length, high quality genes, and “ptaeda.v1.01 

scaffolds.trimmed.all.genes.highq_partial.gff3”, which included 14,332 partial length, 

high quality genes. Exons shorter than 100 bp in length were extended (padded) to 

100 bp. After screening, a total of 196,068 exons (51,239,342 bp) were selected for 

probe design. A relatively conservative threshold was used to design unique probes that 

could tolerate no more than five single-base indel or single nucleotide substitution 

mismatches with the genome. The length of the probes varied between 50 and 100 bp. 

The average length was 76.5 ± 4.2 bp, with a median of 76 bp. 

 

2.2.3 Sequencing Library Preparation and Target Enrichment 

Each genomic DNA was diluted to 25 ng/μl in 1×TE buffer with low EDTA and 

50 μl of each DNA solution was fragmented to have an average size distribution of 

~180-220 bp using a Covaris sonicator. KAPA Library Preparation Kits (Illumina® 

Platforms) were used to construct a library for each DNA sample. After post-ligation 

cleanup and dual-SPRI size selection, the sample libraries were amplified and checked 
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for quality and quantity using the Agilent 2100 Bioanalyzer and PicoGreen dsDNA 

quantitation assays. The amplified sample library was acceptable if the OD260/OD280 

ratios were between 1.7 and 2.0, respectively, the yield was more than 1.0 μg, and the 

average fragment size was between 150 and 500 bp. 

The Roche NimbleGen SeqCap EZ system was used for hybridization and target 

enrichment. Briefly, equal amounts of each of ten libraries representing uniquely 

individually indexed and amplified trees were mixed in a single exome enrichment and 

sequencing pool with a combined mass of at least 1.25 μg. The multiplexed paired-end 

sequencing libraries were hybridized with the target sequence capture probes and the 

mixture was incubated at 47°C for 72 hours. After wash and recovery steps, the captured 

multiplex DNA samples were amplified and purified. Following quality check, the 

captured multiplex DNA samples were loaded into Illumina HiSeq 2500 flowcells (one 

exome enriched pool of 10 original sample libraries per a single flowcell lane) and 

sequenced using 2×125 cycles at the Texas A&M University Genomics and 

Bioinformatics Service (College Station, Texas, USA). 

 

2.2.4 Sequence Read Alignment and Analysis 

Sequence reads for each of the 375 trees were filtered and demultiplexed. Then, 

the reads were mapped to loblolly pine genome assembly v. 1.01 (Neale et al. 2014; 

Wegrzyn et al. 2014; Zimin et al. 2014) using the “mem” routine in the BWA software 

v. 0.7.12 (Li and Durbin 2009) with the default parameters. The SAM files were 

converted to BAM files using the “view” routine in the SAMtools software v. 1.1 (Li et 
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al. 2009). The “flagstat” routine in the SAMtools software was applied to calculate the 

mapping percentage of reads. The reads were filtered by the “view” and “sort” routines 

in the SAMtools software to acquire only the uniquely mapped and properly paired 

sorted reads. The “rmdup” routine in the SAMtools software was used to remove 

potential PCR duplicates from the filtered reads. The “intersect” routine in the BEDtools 

software v. 2.23.0-20-gada04b62.18 was applied to estimate the percentage of reads on 

target regions and the “coverage” routine was applied to visualize coverage of targeted 

DNA (Quinlan and Hall 2010). 

Raw SNPs were called using the “mpileup” routine in the SAMtools software 

with 20 as the minimum mapping quality threshold for an alignment. The raw SNPs 

were filtered for downstream analyses, and only those that met the following criteria 

were kept: 1) 10× sequencing coverage in no less than 90% of all individuals. 2) bi-

allelic; 3) minor allele frequency greater than 0.05. The VCFtools v. 0.1.12b software 

(Danecek et al. 2011) was applied to classify the SNPs according to their genomic 

regions and their positions relative to capture target regions. The SNP density was 

determined as the number of SNPs in a given region divided by the length of that 

regions. 

 

2.2.5 Population Genetics Metrics 

The VCFtools software was applied to calculate the minor allele frequency 

(MAF), the ratio of transition to transversion (Ts/Tv), individual heterozygosity and FIS, 

and nucleotide diversity. The histogram graphs were plotted using the ggplot2 v. 2.1.0 
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package in R v. 3.2.3 (Wickham 2009; R Core Team 2015). The squared correlation 

coefficient between genotypes (r2) on the same scaffold was used as an LD measure and 

calculated using the “geno-r2” routine in the VCFtools software. The trendline of LD 

decay along physical distance were fitted by nonlinear regression following Hill and 

Weir (Hill and Weir 1988). R software was applied to display the results (R Core Team 

2015). The FST was estimated using the “weir-fst-pop” routine in the VCFtools software. 

The SNP set was thinned to a single marker within every 1 Mbp distance in each 

scaffold” and converted to the PLINK software format using the “thin” and “plink” 

routines in the VCFtools software. The PLINK format was further converted to the 

PLINK BED format using the “make-bed” routine in the PLINK software v. 1.9 (Chang 

et al. 2015). The fastStructure software with the simple prior was applied to infer the 

most likely population structure by testing different number of potential subpopulations 

or clusters (K) from 2 to 12 (Raj et al. 2014). The recommended algorithm incorporated 

in fastStructure was applied to determine the reasonable choice of K. The admixture 

proportions of each individual were plotted using the Excel and R v. 3.2.3 (R Core Team 

2015). 

 

2.3 Results 

2.3.1 Exome Target Enrichment Hybridization Probe Design and Assessment 

Sequence capture oligonucleotide probes were designed using 199,723 exons in 

48,391 (34,059 full-length and 14,332 partial-length) high quality tentative genes listed 

in gene annotation v. 2.0 for loblolly pine genome assembly v. 1.01 (Wegrzyn et al. 
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2014). The final probe set used in this study is available from Roche NimbleGen as 

custom SeqCap EZ design “140422_Ptaeda_Exome_ML_EZ_HX3”. Approximately 2.1 

million single strand oligonucleotide probes were designed and produced in total that 

covered 90.2 % (46,206,684 bp) of the target regions. The regions not covered (gaps) 

were areas where the probe selection algorithm could not find a valid probe. These gaps 

usually represented repetitive DNA regions that, if included, could be expected to cause 

problems by capturing other homologous regions in the genome and, therefore, decrease 

capture and mapping efficiency. 

 

2.3.2 Exome Capture Sequence Alignment and Efficiency 

We multiplexed ten individually amplified and uniquely barcoded trees per 

library for capture hybridization, enrichment, and sequencing. After demultiplexing and 

filtering, we obtained between 25.25 and 60.55 million sequence reads per tree. The 

reads of each tree were mapped to loblolly pine genome assembly v. 1.01 (Neale et al. 

2014; Wegrzyn et al. 2014; Zimin et al. 2014). Nearly 99 % of the sequence reads were 

mapped to the reference genome assembly. In order to improve the SNP discovery 

accuracy, the mapped reads were further filtered and only the uniquely mapped, properly 

paired (correctly oriented with respect to one another) and non-redundant reads were 

used for downstream analyses. After filtering, 62-75 % of the total reads (71 % per tree 

on average) were used for SNP calling. 

Capture breadth and depth were investigated to examine capture efficiency and 

target specificity. For the uniquely mapped, properly paired, and non-redundant reads for 
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each tree, we calculated the number of reads that mapped to the capture target regions 

using the BEDtools software v. 2.23.0-20-gada04b6 (Quinlan and Hall 2010). On 

average, 67 % of the reads per tree (59-74 %) mapped to the capture target regions. 

Additional non-target captured sequences included those adjacent to target or 

homologous regions. Between 91 % and 95 % of the capture target regions were covered 

by at least one read. The number of covered capture target bases was weakly and 

positively correlated with an increase in sequencing output (Fig. 2.2a; r2 = 0.23, 

P < 0.001). 

Coverage depth among the 375 trees was generally uniform and it was consistent 

across target regions. Among all the trees, at least 83 % of the capture target bases had 

coverage of 5X, 72 % - 10X, and 49 % - 20X (Fig. 2.3). The number of target bases with 

coverage depth of 10X or greater (Fig. 2.2b) seemed to change approximately linearly 

within a limited range of the total number of reads at about 37–55 million. Below this 

range, the number of captured bases increases faster than within the range. But the effect 

of increasing becomes weaker above 55 million. The mean coverage depth (Fig. 2.2c) 

increased linearly as the total sequencing output increased (r2 = 0.72, P < 0.001), 

although the variance seemed slightly increased for the lower numbers of the total 

number of reads.
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Fig. 2.2 Relationship between reads and capture target bases. a Relationship between reads and numbers of covered capture target bases. The numbers 

of captured target nucleotide bases are plotted against total number of sequence reads obtained in 375 trees from exome capture sequencing. The linear 

regression coefficient (r2) is 0.23 (P < 0.001). b Distribution of on-target coverage  ≥ 10X depth  across the 375 trees. The numbers of capture target 

bases with a coverage depth of ten or greater sequence reads per target are plotted against the total number of sequence reads. The relationship seemed 

to change approximately linearly within a limited range of the total number of reads at 37–55 million. c Distribution of mean coverage depth across the 

375 trees. The mean coverage depth is plotted against the total number of sequence reads. The linear regression coefficients (r2) was significant (P < 

0.001) and equaled 0.72
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Fig. 2.3 Cumulative distribution of coverage depth of captured target bases in 375 trees. Each line 

represents a single tree 
 

 

2.3.3 Single Nucleotide Polymorphism (SNP) Discovery 

SNPs were detected in 375 individual trees using the SAMtools software v. 1.1 

(Li et al. 2009). The raw SNPs were filtered using the selection criteria of being bi-

allelic sites with at least 10X sequencing depth in at least 90 % of the individuals, and 

with the MAF ≥ 0.05. A total of 972,720 SNPs were acquired for downstream analyses. 
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These SNPs were located in 38,702 scaffolds of the loblolly pine reference genome 

assembly v. 1.01. A maximum of 854 SNPs were detected in one scaffold. Based on 

annotation of genomic regions, most of the identified SNPs resided in exons, but some 

resided in introns or unclassified regions. Among all the SNPs, 58 % were located in 

exons with an average SNP density of 11.5 SNPs/Kbp (one SNP per 87 bp); 53 % were 

located in CDS; 2 % in 5’ UTR; 3 % in 3’ UTR and 13 % in introns. By position relative 

to capture target region, 51 % of all SNPs were located in capture target regions with an 

average SNP density of 13.2 SNPs/Kbp (one SNP per 76 bp), and 49 % were located in 

off-target regions (Table 2.1). The number of SNPs detected in exons was more than in 

on-target regions because the capture extended to the adjacent area of each target. 

One of the most important goals of exome sequencing is to identify the genetic 

variants that can be used in the association mapping analysis to dissect the phenotypes of 

interest. Such analyses require high quality SNPs, and therefore we focused only on 

those SNPs, both within and outside of exons, that passed the strict filtering criteria 

described above.  
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Table 2.1 Number and percent of 972,720 SNPs located in different genomic regions 

Category SNPs % 

Exon 564932 58.08 

CDS 513652 52.81 

5’ UTR 17693 1.81 

3’ UTR 33587 3.45 

Intron 127863 13.14 

Unclassified 279925 28.78 

On-target 498451 51.24 

Off-target 474269 48.76 

 

 

2.3.4 Population Genetics Metrics 

SNPs with a MAF less than 0.05 were excluded, therefore SNP allele frequencies 

ranged between 0.05 and 0.5 with a median of 0.14 (Fig. 2.4). The average Ts/Tv ratio 

was 1.96 over all regions (Table 2.2 & 2.3). This value was higher in CDS than in UTRs. 

The transition bias could be attributed to natural selection on the nonsynonymous 

transversion, and the even higher ratio for CDS could be caused by the increased 

presence of methylated cytosine in CpG dinucleotides where the methylated cytosine can 

easily undergo deamination and transition to a thymine (Keller et al. 2007). 
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Fig. 2.4 MAF distribution among  972,720 SNPs 

 

 

Table 2.2 Ts/Tv ratios for 972,720 SNPs categorized in different genomic regions 

Total CDS Exon 5’ UTR 3’ UTR 

1.96 1.98 1.93 1.58 1.45 
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Table 2.3 Transition (Ts) and transversion (Tv) nucleotide substitutions summary. Numbers of TS and TV 

for 972,720 SNPs in different genomic regions 

Substitution 

type 

Total CDS Exon 5’ UTR 3’ UTR 

AC 89870 46655 52192 1834 3538 

AG 320946 170211 186063 5388 9913 

AT 63816 31523 36121 1341 3139 

CG 85174 47396 52783 1871 3360 

CT 322874 171247 187210 5438 9983 

GT 90040 46620 52281 1821 3654 

TS 643820 341458 373273 10826 19896 

TV 328900 172194 193377 6867 13691 

 

 

Heterozygosity and FIS were estimated on an individual basis (Fig. 2.5). The 

results indicated a low inbreeding rate and a high level of genetic diversity. Among all 

individuals, the FIS values were generally below zero, ranging between -0.24 and -0.06, 

except in tree 634A, where it was 0.21. Heterozygosity was between 0.29 and 0.33 

except in 634A, where it was 0.21. 
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Fig. 2.5 FIS (left) and heterozygosity (right) distributions among 375 trees 
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After Bonferroni correction (adjusted P-value < 5e-8), 188,072 (19 %) out of 

972,720 SNPs significantly departed from Hardy-Weinberg equilibrium (HWE). 

Nucleotide diversity (π) in different genomic regions was estimated in a sliding window 

of 50 bp with a step of 25 bp (Table 2.4).  

 

 

Table 2.4 Nucleotide diversity (π) in 50 bp step sliding windows for 972,720 SNPs in different genomic 

regions 

Genomic region Range Mean Median 

Total 0.0016 – 0.1204 0.0119 0.0092 

CDS 0.0016 – 0.1204 0.0117 0.0090 

Exon 0.0016 – 0.1204 0.0116 0.0090 

5’ UTR 0.0018 – 0.0787 0.0104 0.0083 

3’ UTR 0.0017 – 0.0827 0.0100 0.0081 

On Annotated Genes 0.0016 – 0.1204 0.0117 0.0090 

Out of Annotated Genes 0.0016 – 0.1087 0.0122 0.0095 

 

 

2.3.5 Genome-Wide Linkage Disequilibrium (LD) 

LD is a non-random association of alleles at different loci and may indicate the 

genetic forces that structure the genome (Slatkin 2008). Investigations of genetic 

diversity and LD are prerequisites for association mapping and help in interpretation of 

results. We calculated the zygotic LD (squared correlation coefficient r2) values for all 

SNP pairs within each scaffold in the genome assembly and plotted them against the 

physical distances between the same SNP pairs in the scaffold (Fig. 2.6). The average 



 

 29 

LD for linked SNPs was inferred from the trendlines of the nonlinear regressions and 

started from 0.44, then decayed by half (0.22) at 55 bp, to 0.10 at 192 bp, and to 0.05 at 

451 bp. The proportion of SNP pairs located within the same scaffold with r2 > 0.1 was 

18 % in this population, and with r2 > 0.8 it was 3 %. 

 

2.3.6 Population Structure 

Evaluation of population structure is crucial for association mapping. If not 

accounted for, population structure may cause spurious associations between markers 

and phenotypes (Kang et al. 2008). The ADEPT2 population trees included in this study 

were the clonally-propagated, open-pollinated progeny of the originally sampled trees. 

The maternal origins were known for 362 out of 375 trees. The 362 trees can be divided 

into two sub-samples based on the geographic location of their maternal parents: 1) the 

sub-sample west of the Mississippi River represented by 55 trees from four states, and 2) 

the sub-sample east of the Mississippi River represented by 307 trees from eight states. 

FST was estimated on a per-site basis following Weir and Cockerham (Weir and 

Cockerham 1984). The FST range was between -0.01 and 0.72, with a median of 0.0087 

(Fig. 2.7). The mean FST was 0.026, and the weighted FST was 0.028. Generally, the 

genetic differentiation between these two sub-samples was relatively low, but 

statistically significant. 
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Fig. 2.6 LD decay plot for 375 trees based on 972,720 SNP markers. LD decay plot for 375 trees based on 972,720 SNP markers. Pairwise LD 

coefficients (r2) calculated for all 375 trees were plotted against the physical distances (bp) between all pairs of SNPs within the same scaffolds (left) 

and between pairs of SNPs within the same scaffolds located within 4000 bp (right). The trendlines of the nonlinear regressions (r2) against physical 

distance between the SNPs are indicated in red
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Fig. 2.7 FST distribution across all loci. The range is between -0.01 and 0.72, with a median of 0.0087. The 

mean FST is 0.026, and the weighted FST is 0.028 

 

 

We then applied the software fastStructure (Raj et al. 2014) to infer the 

admixture proportion using our genotyping data. We thinned the marker set to no more 

than a single marker within 1 Mbp on each scaffold, which resulted in a presumably 
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unlinked set of 30,146 SNPs. After testing a number of potential subpopulations 

(clusters) with fastStructure, ranging from K = 1 to K = 12 (where K is the number of 

subpopulations or clusters), we ran the recommended fastStructure algorithm for 

multiple K to choose the appropriate number of model components that explained 

structure in the dataset. The output showed model complexity that maximized marginal 

likelihood when K = 2, and the model components used to explain structure in data when 

K = 7. Therefore, we considered two and seven clusters as the most likely subpopulation 

clustering explaining the relationship between admixture proportion and geographical 

sites. 

A clear geographical trend could be observed when the admixture proportions of 

each tree across clusters were plotted on a map (Fig. 2.8a & b). The segment in each pie 

chart corresponds to the summarized population assignment inferred by the software. 

We further aligned the admixture proportion of each tree with the longitude from west to 

east (Fig. 2.8c & d). Strong statistical correlations were observed between longitude and 

admixture proportion (r2 = 0.75 when K = 2 and r2 = 0.74 when K = 7). In Fig. 2.8c & d, 

vertical lines arranged from left to right correspond to the individual trees according to 

their original maternal parents’ geographic locations from west (Texas) to east (North 

Carolina) in the southeastern U.S. Each vertical line represents admixture proportions for 

an individual tree partitioned when K = 2 (Fig. 2.8c) or K = 7 (Fig. 2.8d). The left 55 

trees on the X-axis represent the trees west of the Mississippi River, while the other trees 

are from east of the Mississippi River. 
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Fig. 2.8 Summarized admixture proportion distributions for K = 2 and K = 7. a & b Summarized admixture proportions plotted on the map. Each pie 

chart is partitioned via summarized population assignments inferred by fastStructure. c & d Individual tree admixture proportion distributions. The 

trees are aligned on the x-axis according to the longitude from west to east
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2.4 Discussion 

In the first published study of exome capture in loblolly pine, 54,773 probes 

representing 6.57 Mbp of target exome were designed using 14,729 unique transcripts 

derived from the assembly of ESTs (Neves et al. 2013b). However, the unavailability of 

a reference genome and, therefore, lack of information on the exon-intron boundaries, 

negatively affected the probe design. This caused insufficient capture and cross-

hybridization and decreased the capture efficiency. This problem was mitigated in our 

exome capture study, because the probe set covered almost the entire exome and its 

design took into account the exon-intron structure. The designed probe set covered 

~46 Mbp of target exome and included previously uninvestigated genomic regions. The 

risk of capturing pseudogenes was decreased by using only genes classified as “high 

quality” to design the probes. A key concern during the probe design was the exclusion 

of those probes that might cross-hybridize with non-target regions and repetitive 

elements, especially considering that 82 % of the loblolly pine genome consists of the 

highly repetitive sequences (Neale et al. 2014). In this study, the preliminary probes 

were stringently filtered to exclude possible cross-hybridization with non-target regions 

and repetitive elements. Although the capture size could be potentially expanded, if the 

filtering criteria had been relaxed, the stringent filter guaranteed the hybridization 

specificity and prevented cross-hybridization. 

Multiplexing individually and uniquely indexed samples before capturing and 

sequencing greatly saves time and money and has become a standard procedure in 

sequence capture experiments. However, sufficient sequencing depth (output) is still 
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needed to guarantee a higher coverage depth on the target regions. Fig. 2.2b & c 

demonstrate that the coverage depth is positively correlated with the sequencing output. 

Therefore, multiplexing should be reasonable and should ensure sufficient on-target 

coverage depth to avoid problems associated with low SNP detection power. In our 

study, uneven numbers of sequencing reads across different individual tree samples 

could be mainly due to multiplexing of unequal amounts of the sample libraries.  

Some of the reads could not be mapped to the reference genome, likely due to 

either incomplete assembly of the reference genome or multiple sequencing errors in the 

reads that exceeded the mismatch tolerance threshold of the mapping parameters. 

Although the probes were filtered for cross-hybridization prior to the actual 

hybridization step, further filtering of the multi- and improperly mapped reads was 

important in order to retain only the high quality mapped reads for downstream analyses. 

Similarly, the redundant reads were also filtered to remove the potential PCR duplicates 

and to correct the coverage depth. 

The read mapping results demonstrate a high level of on-target efficiency in this 

research. This guarantees the target regions have enough coverage depth. Less than 9% 

of the target regions had no matching reads. The main reason for this was that the probes 

covering these regions were filtered out to avoid cross-hybridization. It should also be 

noted that the current reference genome assembly is still under development and the 

target regions with no matching reads could potentially be artifacts or mis-assembled 

parts of the reference genome. 
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The high level of genetic diversity was expected because loblolly pine is a highly 

outcrossing and polymorphic species. In addition, the ADEPT2 population was 

established for association mapping with presumably unrelated trees originally sampled 

from across a wide part of the natural range. Tree 634A may be a progeny from selfing 

or a mating between closely related trees. 

Regions out of annotated genes had higher average nucleotide diversity than in 

annotated genes. This could be due to selection constraints. However, it should be noted 

that the highly diverged sequences could not map to the reference genome, hence biasing 

the diversity estimates. 

Highly outcrossing conifers are expected to have a rapid LD decay. Neale and 

Savolainen (Neale and Savolainen 2004) reported that the r2 decayed to less than 0.20 

within ~1500 bp based on 19 candidate genes in loblolly pine. In spruces, LD displayed 

diverse patterns among different genes or the same genes in different species, declining 

rapidly to half between a few base pairs and 2000 bp (Namroud et al. 2010). In Douglas-

fir (Pseudotsuga menziesii), LD decayed > 50 % over relatively short segments from 

r2 = 0.25 to 0.10 within 2000 bp based on sequencing 18 genes (Krutovsky and Neale 

2005). LD estimates in this study based on the exome-derived sequences indicated an 

even faster decay than previously reported. This could be due to the much larger number 

of gene regions analyzed in this study. The discrepancies can be partly explained also by 

different methods used for estimating LD. The abovementioned studies calculated 

gametic LD statistics r2 using megagametophyte haplotypes, while in this study, zygotic 

LD between genotypes was calculated. However, gametic LD can also be calculated in 
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our study based on the inferred (phased) haplotypes. When we used the phased 

haplotypes inferred by the software Beagle v. 4.1 (Browning and Browning 2007) for the 

972,720 SNPs to calculate gametic LD, a slower decay was observed, with LD decaying 

by half (r2 = 0.22) at 79 bp and to r2 = 0.10 at 280 bp. The rate of LD decay can vary 

between genes and across different genome regions (Namroud et al. 2010). Therefore the 

generality of LD distribution across the entire loblolly pine genome remains to be further 

analyzed because only a relatively small and highly specific part of the entire genome 

was studied here. Our study relied also on the accuracy of contig and scaffold assembly 

in the draft reference genome that should be verified and ordered in the future studies. 

It has been widely recognized that the glacial advance and retreat have altered the 

landscape of the Mississippi Valley and the species became restricted into glacial 

refugia, thus high dissimilarity was formed between refugia populations (Pessino et al. 

2014). A postglacial barrier to dispersal was created between populations located on 

west and east Mississippi River and thus decreased the gene exchange and increased the 

overall genetic variance in some species (Maggs et al. 2008; Pessino et al. 2014). The 

discontinuity is also evident in loblolly pine, as can be concluded from genetic 

differentiation estimated in our study based on ADEPT2 population, and in the earlier 

studies that were based on limited numbers of SNP and SSR markers (Al-Rabab’ah and 

Williams 2002; Eckert et al. 2010). 
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3. ASSOCIATION GENETICS OF QUANTITATIVE TRAITS 

 

3.1 Introduction 

Advanced loblolly pine breeding practice has been implemented over the past 50 

years, creating favorable production economics (McKeand et al. 2006). Appropriate 

breeding strategies rely on an understanding of valuable traits including crown structural 

characteristics, growth, water use efficiency (WUE) and disease resistance. Crown 

structural characteristics such as branch angle, leaf area and crown width affect 

interception of radiation and competition with other trees (Emhart et al. 2007). Larger 

trees tend to display flatter angles and have wider crowns and thus expose more leaf area 

(Lambeth and Hubert 1997; Emhart et al. 2007). The ability to sustain yield and quality 

under adverse conditions such as drought and diseases is also a key consideration for 

loblolly pine breeding. Carbon isotope discrimination (13C) has long been used to 

reflect long-term WUE in forest trees due to the feasibility to screen a large number of 

individuals over a short period of time (Aitken et al. 1995; Baltunis et al. 2008). Plants 

with higher WUE discriminate less against 13C when they are exposed to the same 

fluctuations in environmental conditions (Farquhar et al. 1989; Aitken et al. 1995; Cregg 

and Zhang 2000; Baltunis et al. 2008; Cumbie et al. 2011). Pitch canker disease in 

southern pines caused by the fungus Fusarium circinatum has been a serious problem in 

the last a couple of decades. It endangers loblolly pine via the resinous lesions on stems 

and branches that lead to high seedling mortality and slower growth rates (Kayihan et al. 

2005; Quesada et al. 2010).  
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Association mapping can be used to dissect these traits of interest, identifying 

genes controlling them. Association studies require a mapping population representing a 

wide spectrum of phenotypic variation, phenotypic measurements and abundant 

molecular markers. Environmental conditions drive forest phenotypic adaptation and 

geographic distribution through natural selection. Within the loblolly pine species, trees 

from different provenances have considerable diversity in phenotypic performance 

(Schmidtling 2001). To grasp as much phenotypic variation as possible for our 

association study we selected the loblolly pine clonally propagated population from the 

Allele Discovery of Economic Traits in Pine 2 (ADEPT2) project. It was specifically 

designed for association mapping to represent a range-wide collection from regions with 

different environmental conditions (see Plant material in Materials and methods below 

for details). An array of adaptive traits, namely, specific leaf area, branch angle, crown 

width, stem diameter, height, 13C and nitrogen concentration were measured in this 

population. 

Loblolly pine occurs naturally on both sides of the Mississippi River, and there 

are differences observed between eastern and western sources. This presumably can be 

dated back to the Pleistocene geologic era. During the last glaciation, loblolly pine 

retreated to two refugia, one in southeast Texas and/or northeast Mexico, and the other 

in south Florida and the Caribbean. Isolation prevented pollen dispersal between 

populations and hence resulted in some of the differences observed now (Wells et al. 

1991; Schmidtling 2001; Eckert et al. 2010). The population structure should be taken 

into account in association studies. 
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The abundance of genetic variation in the abovementioned traits and their value 

for adaptation or growth suggest they are potential subjects for artificial selection. With 

advances in molecular and genomics methods, the selection process may be accelerated 

in forest trees breeding by marker-assisted selection and genomic selection 

(Thavamanikumar et al. 2013). However, these methods have not been widely applied in 

the breeding of loblolly pines or other conifers. One reason is that the large and complex 

genome of loblolly pines poses challenges for gene discovery (Neale et al. 2014; 

Wegrzyn et al. 2014), association studies and genomic selection (Resende et al. 2012; 

Isik 2014). The number and identity of the genes controlling productivity and adaptive 

traits are largely unknown (Gonzalez-Martinez et al. 2006). Secondly, high-density SNP 

genotyping assays/platforms remain to be developed although 7K and 9K Illumina 

Infinium SNP genotyping arrays for loblolly (Eckert et al. 2009b) and maritime 

(Plomion et al. 2016) pines, respectively, are available. Due to these problems and a long 

generation time, only traditional family based breeding methods are currently applied to 

these forest trees. 

Association analysis is an efficient method to dissect complex traits using SNPs. 

SNPs are abundant in the loblolly pine genome and their statistical association with 

phenotypes can be detected using association mapping, thus identifying the genes and 

their effects that underlie complex traits (Gonzalez-Martinez et al. 2006). Successful 

association mapping has been implemented within diverse loblolly pine populations and 

produced an array of SNP markers and genes that were connected with various traits. 

Using nearly 4000 SNPs derived from amplicons of 18 megagametophytes with PCR 
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primers designed from unique Expressed Sequence Tag (EST) based contigs (Eckert et 

al. 2009a), 10 SNPs were detected to be associated with pitch canker disease resistance 

(Quesada et al. 2010), 7 SNPs with 13C, 1 SNP with height, 6 SNPs with foliar nitrogen 

concentration (Cumbie et al. 2011), 28 SNPs with metabolites (Eckert et al. 2012), and 

80 SNPs with expression of 33 xylem development genes (Palle et al. 2013). 

Additionally, 101 associations with 27 gene expression phenotypes (Seeve 2010), and 

numerous SNPs with height, diameter at breast height, volume, fusiform rust resistance, 

wood specific gravity and stem forking index (Chhatre et al. 2013) were identified. 

Problems and challenges have emerged with the application of association 

mapping to loblolly pines and other conifer species. First, for most quantitative and 

complex traits, large numbers of alleles explain only a small portion of the genetically 

heritable variation (Quesada et al. 2010; Cumbie et al. 2011). The missing heritability 

might be due to the small number of markers and rare variants that were usually 

excluded from the genotyping chips (Manolio et al. 2009). Second, though most efforts 

were put on the discovery of additive marker associations, non-additive effects imposed 

by dominance and epistasis play important roles in determining the genetic variation and 

need to be further studied (Eckert et al. 2009a; Cumbie et al. 2011). Third, the gene-

based SNP discovery focused primarily on coding sequence (CDS) regions. However, 

regulatory elements in non-coding regions tend to have more polymorphisms with small 

effects associated with quantitative traits (Flint and Mackay 2009). Fourth, epigenetic 

modifications control most phenotypic variation (Cortijo et al. 2014; Kawakatsu et al. 

2016), especially in forest trees that have extensive epigenetic modifications and 
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phenotypic plasticity (Fabbrini et al. 2012; Yakovlev et al. 2012; Brautigam et al. 2013; 

Benomar et al. 2016; Gugger et al. 2016). For instance, C-effects due to clonal 

propagation via rooted cuttings are related to epigenetic modifications and confound 

with phenotypic differences.  

The key steps to addressing the aforementioned problems are genetic variation 

discovery followed by association analyses. Target enrichment combined with 

genotyping by sequencing (GBS) technologies provides opportunities to survey large-

scale populations for ample variants including rare alleles in a cost effective and efficient 

manner (Neves et al. 2013b; Suren et al. 2016). We utilized the NimbleGen SeqCap EZ 

system (Roche NimbleGen, Inc., Madison, WI) for genome target enrichment to 

discover over 2.8 million SNPs using exon-based probes and the DNA of 375 trees from 

a clonally propagated loblolly pine population (Lu et al. 2016). Phenotypic data 

collected from this population was associated with the genotyped SNPs to investigate the 

associations of genetic variation with the traits. The genetic correlations between traits, 

the geographical variation within the traits and exome-wide individual heterozygosity-

trait correlations (HTC) were also examined. The objective of this study was to explore 

the genetic factors that influence adaptive performance of loblolly pines and to 

contribute to future breeding efforts. 

 

 

 

 



 

 43 

3.2 Materials and Methods 

3.2.1 Plant Material 

The loblolly pine population used in this study was originally established for the 

Allele Discovery of Economic Pine Traits 2 (ADEPT2) project (Cumbie et al. 2011). 

Maternal parents of the ADEPT2 population were sampled across the natural range of 

loblolly pine. Trees were grown from open-pollinated seeds for one year and then were 

hedged and established for use in the ADEPT2 project. During the spring of 2010, 

rooted cuttings of 384 trees from the ADEPT2 population were established at the 

Harrison Experimental Forest at the Southern Institute of Forest Genetics (30°63’ N, 

89°06’ W, Saucier, Mississippi). A randomized incomplete block alpha design was used, 

with 3 replications of 24 incomplete blocks of size 16 (r = 3, s = 24, k = 16, 4 trees × 4 

trees in each block). These trees were used for phenotyping and collection of foliage for 

DNA isolation, exome enrichment and genotyping by sequencing. 

 

3.2.2 Phenotyping 

Sample collection and measurement of most traits of interest were conducted 

during the fourth growing season at the Harrison Experimental Forest. Between May 25 

and June 24, 2014, the following traits were measured and recorded for each tree: total 

height was measured using a meter pole; branch angle, represented by the average of 

three branch angles relative to level at the third major whorl from the top, was measured 

using a digital level inclinometer; stem diameter at 18 inches high above the ground was 

measured using a caliper; crown width at the third major whorl from the top was 
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measured using a measuring tape. In addition, total height was measured again in 2015 

before and after the growing season, plus, height growth in 2015 was calculated as the 

difference between total height before and after the growing season. 

South-facing and fully expanded needles from a point half way to the top of each 

tree were collected for assessment of specific leaf area, 13C and nitrogen concentration. 

Specific leaf area was calculated as 20 needles’ leaf area divided by the dry weight of 

these 20 needles. The leaf area was measured using a LAI 3000 scanner (Li-Cor, 

Lincoln, NE). The needles were dried at 65 °C for 72 hours. 

For 13C and nitrogen concentration analyses, 5 or 6 needles from each dried 

needle sample were ground into fine, homogeneous powders with a ball mill (MM400, 

Retsch, Hann, Germany). The samples were weighed in tin capsules and analyzed by 

EA-IRMS (Delta V, Thermo Scientific, Waltham, MA) in the Stable Isotopes for 

Biosphere Science Laboratory at Texas A&M University (http://sibs.tamu.edu; College 

Station, TX). The carbon isotope ratios were reported against VPDB with calibrated 

laboratory standards. We calculated 13C values using the formula 
δa−δp

1+δp
 (Farquhar et al. 

1989), where δa and δp represented the isotope composition of air and leaf tissue, 

respectively (δa was assumed to be -8 ‰). The nitrogen concentration was reported as a 

mass percentage. 

The pitch canker disease resistance data was taken from a published study 

conducted at the University of Florida (Gainesville, FL) (Quesada et al. 2010). The mean 

lesion lengths from 4 replications per clone were available for 317 trees used in this 

study. Therefore, only 317 trees were included for pitch canker resistance analyses. 

http://sibs.tamu.edu/
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3.2.3 Phenotypic Data Analyses 

A mixed model analysis (Mclean et al. 1991) was used in order to assess the 

clonal effects for the measured traits: yijk = µ+ri+bk(ri)+cj+ricj+eijk, where yijk is the 

phenotypic value for the jth clone in the ith replication and kth block, µ is the population 

mean, ri is the fixed variable of replication (i=1-3), cj is the random variable of clone (j = 

1-384, approx. NID(0, σ2
C)), bk(ri) is the random variable of block nested within 

replication (k = 1-24, approx. NID(0, σ2
b(r))), ricj is the random variable for the 

interaction of replication by clone (approx. NID(0, σ2
rc)), and eijk is the error term 

(approx. NID(0, σ2
e)). The best linear unbiased prediction (BLUP) estimates for each 

trait were used as phenotypic values in further analyses. The clonal repeatability was 

estimated using the formula: rclone= 
𝜎𝑐𝑙𝑜𝑛𝑒
2

𝜎𝑐𝑙𝑜𝑛𝑒
2 +

𝜎𝑒
2

𝑟𝑒𝑝

 

The BLUP estimate for mean lesion length induced by pitch canker disease was 

acquired using the model: yij = µ+ri+cj+ricj+eijk, where yij is the phenotypic value for the 

jth clone in the ith replication, µ is the population mean, ri is the fixed variable of 

replication (i=1-4), cj is the random variable of clone (j=1-317, approx. NID(0, σ2
C)), ricj 

is the random variable for the interaction of replication by clone (approx. NID(0, σ2
rc)), 

and eij is the error term (approx. NID(0, σ2
e)). 

A total of 362 trees within this population have known maternal origins. This 

population was divided into 3 regions as described by Schmidtling (2001) using 

maternal origins. The eastern region includes states east of the Mississippi River, the 

western region includes the states of Arkansas and Louisiana, and the far west region 
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includes the states of Texas and Oklahoma (Fig. 1). An analysis of variance (ANOVA) 

was applied to compare the BLUP differences of each trait for individuals grouped by 

their regions of maternal origin. All the statistical analyses were conducted using the 

JMP Pro 12 statistical software (SAS Institute, Cary, NC). 

 

 

 

Fig. 3.1 The counties of origin of the studied maternal loblolly pine trees. The range was divided into 3 

regions, Far west (the states of Texas and Oklahoma, highlighted by pink color), Western (the states of 

Arkansas and Louisiana, highlighted by grey color) and Eastern (east of the Mississippi River, highlighted 

by beige color) 
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3.2.4 Genotypic Data 

Genotypic data were obtained by the authors for 375 trees in this ADEPT2 

population (Lu et al. 2016). The NimbleGen SeqCap EZ system (Roche NimbleGen, 

Inc., Madison, WI) was used to capture and enrich the exome of each tree. The detailed 

procedures of probe design, raw SNP detection and genotyping are described in Lu et al. 

(2016). In this study, the raw SNPs were filtered, accepting only bi-allelic sites with at 

least 5Χ sequencing depth for all of the individuals without missing data and a minor 

allele frequency (MAF) ≥ 0.01. A total of 2,822,609 SNPs were retained. Among these 

SNPs, 1,199,938 (43 %) reside in CDS, 36,533 (1 %) in five prime untranslated regions 

(5’ UTR), 70,377 (2 %) in three prime untranslated regions (3’ UTR), 516,268 (18 %) in 

introns and the remaining SNPs (36 %) in unclassified regions, probably unannotated 

regulatory elements of genes or intergenic regions. A total of 94,478 haplotype blocks 

were detected for this population using PLINK 1.9 

(http://pngu.mgh.harvard.edu/purcell/plink/) (Purcell et al. 2007). 

 

3.2.5 Association Analyses 

Association analyses were conducted using TASSEL 5.0 (Bradbury et al. 2007). 

SSR markers that could be used for estimating covariates to adjust for population 

structure were previously genotyped in 249 out of the 375 genotyped trees in this 

population. We identified these 249 trees as an individual population, named the 

structure (str) population. Population structure within this population was mainly due to 

the Mississippi River discontinuity (Lu et al. 2016). We identified the 307 trees from 

http://pngu.mgh.harvard.edu/purcell/plink/
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east of the Mississippi River as an individual population named the east population. The 

three populations: total, east and str populations, were used to perform association 

analyses. For the total and east populations, the simple general linear model (GLM) 

method (S model) and the mixed linear model (MLM) method incorporating a kinship 

matrix (K model) were applied. For the str population, in addition to the S and K models, 

the GLM incorporating the covariate to adjust for population structure (Q model) and the 

MLM incorporating both the kinship matrix and population structure covariate (QK 

model) were applied. Population structure covariate was estimated using the software 

STRUCTURE (Pritchard et al. 2000; Hubisz et al. 2009) and 23 SSR markers as 

described by Eckert et al. (Eckert et al. 2010). A kinship matrix for each population was 

estimated by TASSEL 5.0 (Bradbury et al. 2007) using the SNP markers. Quantile-

quantile plots were generated for observed against expected –log10(P) to examine the 

model fitness, where observed P-values were obtained from association mapping and 

expected P-values from the assumption that no association occurred between marker and 

trait. Significance of associations between loci and traits were determined by the P-

values. The Bonferroni threshold was 0.05/2,822,609=1.77E-8, where 2,822,609 was the 

number of total SNPs. However, this threshold was overly conservative. Instead, a 

corrected Bonferroni threshold 0.05/94,478=5.29E-7, where 94,478 was the number of 

haplotype blocks, was applied to screen for significant loci. 
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3.2.6 Individual Exome-Wide Heterozygosity-Trait Correlation (HTC) Analyses 

The observed individual exome-wide heterozygosity values were calculated for 

each of 375 trees within this population using the 2,822,609 genotyped SNPs and the 

software VCFtools (Danecek et al. 2011). BLUP estimates for each trait were used to 

correlate with the heterozygosity (HTCs). Pearson correlation coefficients (r) were used 

to evaluate the HTCs. Within this population, 362 trees have known maternal origins and 

could be separated accordingly to the two populations on the west and east sides of the 

Mississippi River, respectively. Since distinct geographical and genetic structure patterns 

along the Mississippi River exist within this population, r was calculated separately in 

the total (n = 375), east (n = 307) and west (n = 55) populations. 

 

3.2.7 SNP Interaction Analyses 

The epistatic SNP-SNP interaction test was implemented using PLINK 1.9 

(http://pngu.mgh.harvard.edu/purcell/plink/) (Purcell et al. 2007). A Bonferroni 

threshold of 0.05/3,176,320,469,273=1.57E-14, where 3,176,320,469,273 was the 

number of all SNP pairs, was used to correct the multiple comparisons. 

 

3.2.8 Annotation of Genes that Contained SNPs Associated with Traits 

The information for genes that contained SNPs associated with traits was 

obtained from loblolly pine Gene Annotation v3.0 

(http://dendrome.ucdavis.edu/ftp/Genome_Data/genome/pinerefseq/Pita/v1.01/Pita_Ann

otation_v3.0/) (Wegrzyn et al. 2014). The loblolly pine reference genome assembly and 

http://pngu.mgh.harvard.edu/purcell/plink/
http://dendrome.ucdavis.edu/ftp/Genome_Data/genome/pinerefseq/Pita/v1.01/Pita_Annotation_v3.0/
http://dendrome.ucdavis.edu/ftp/Genome_Data/genome/pinerefseq/Pita/v1.01/Pita_Annotation_v3.0/
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annotation are under active improvement. The regulatory sequences such as promoters, 

enhancers and silencers have not been identified yet. SNPs within 5000 bp downstream 

or upstream of a gene were considered to be within a putative regulatory sequence of the 

gene. If a SNP was located in a region without annotation, the flanking sequence 700 bp 

upstream and downstream of the SNP was used as a query to do a Blastx search against 

the entire National Center for Biotechnology Information (NCBI) nonredundant (nr) 

protein database (http://blast.ncbi.nlm.nih.gov/Blast.cgi).  

The percentage of clonal (clonal values were obtained using BLUP) and 

phenotypic variance explained by the identified SNPs or SNP-SNP interactions were 

estimated by comparing the model incorporating the SNPs or SNP-SNP interactions as 

random effects with the reduced model without SNP effects. To obtain the additive and 

dominance effects for the SNPs detected by association analyses, the loci in Hardy 

Weinberg Equilibrium with all three genotype classes present were treated as fixed 

effects and tested in linear regressions. 

For the identified SNPs located in CDS, the effect of SNP substitution on the 

amino acid was investigated by aligning the sequences with the SNPs and the 

corresponding transcripts from the loblolly pine Gene Annotation v3.0 

(http://dendrome.ucdavis.edu/ftp/Genome_Data/genome/pinerefseq/Pita/v1.01/Pita_Ann

otation_v3.0/) (Wegrzyn et al. 2014) using the Clustal Omega software 

(http://www.ebi.ac.uk/Tools/msa/clustalo/) (Sievers et al. 2011). The software ExPASy 

Translate (http://web.expasy.org/translate/) (Gasteiger et al. 2003) was utilized to 

translate the DNA sequences to amino acid sequences. 

http://dendrome.ucdavis.edu/ftp/Genome_Data/genome/pinerefseq/Pita/v1.01/Pita_Annotation_v3.0/
http://dendrome.ucdavis.edu/ftp/Genome_Data/genome/pinerefseq/Pita/v1.01/Pita_Annotation_v3.0/
http://www.ebi.ac.uk/Tools/msa/clustalo/
http://web.expasy.org/translate/
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3.3 Results  

3.3.1 Clonal Repeatability, Genetic Correlations and Geographical Variation 

Clonal loblolly pines from the ADEPT2 population were measured for traits of 

interest during their fourth growing season at the Harrison Experimental Forest. At the 

time of phenotyping, 78 % of the trees planted in 2010 had survived. For each trait 

measured, we calculated the clonal repeatability within this population (Table 3.1). The 

clonal repeatability value is an overestimate of narrow-sense heritability (Havens 1994), 

it is also a conservative estimate of broad-sense heritability. Clonal repeatability 

calculations indicated that 31 % of the variation in specific leaf area could be attributed 

to genetic effects. For growth and architecture traits, 60 % of the variation in branch 

angle, 62 % in crown width, 56-62 % in total height, 54 % in stem diameter and 11 % in 

2015 height growth could be attributed to genetic effects. Due to the low clonal 

repeatability observed, height growth in 2015 was excluded from further analyses. 

Clonal repeatability values for 13C (85 %) and nitrogen concentration (76 %) were 

higher than for other traits. 

Bivariate Pearson Correlation was conducted to investigate the genetic 

correlations between the traits (Table 3.2). Strong positive correlations were observed 

between total height and crown width, diameter and crown width, and diameter and total 

height. 13C was correlated with branch angle, crown width, total height and nitrogen 

concentration. A small negative correlation existed between crown width and branch 

angle. Nitrogen concentration was positively correlated with specific leaf area, crown 

width and total height. 
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Table 3.1 Phenotypic data summary 

Trait Mean Standard 

deviation 

Maximum Median Minimum Number Clonal 

repeatability 

SLAa, cm2/mg 28.88 5.19 43.38 29.06 14.11 920 0.31 

BAb, ° 35.36 8.75 62.50 35.93 9.30 921 0.60 

CWc, m 1.40 0.34 3.60 1.39 0.43 922 0.62 

DIAd, m 0.05 0.02 0.10 0.05 0.01 922 0.54 

2014He, m 3.25 0.73 5.44 3.30 0.85 922 0.56 

2015HBf, m 3.99 0.93 6.78 4.04 1.07 918 0.61 

2015HA g, m 4.66 0.97 7.44 4.70 1.52 908 0.62 

2015HGh, m 0.67 0.23 2.41 0.65 0.07 908 0.11 

13C i, permil, VPDB 24.28 0.56 25.81 24.30 22.21 920 0.85 

Nj, % 0.93 0.09 1.28 0.94 0.58 920 0.76 

a Specific leaf area; b Branch angle; c Crown width; d Stem diameter; e Total height in 2014; f Total height in 2015 before the growing season; g Total 

height in 2015 after the growing season; h Height growth in 2015; i Carbon isotope discrimination; j Nitrogen concentration
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We compared BLUP estimates of individuals grouped by their regions of 

maternal origin (Fig. 3.1). Significant differences (P < 0.05) were identified for crown 

width (P = 0.002), stem diameter (P = 0.005), nitrogen concentration (P = 0.044) and 

13C (P = 0.004) between eastern, western and far west regions (Fig. 3.2). For the other 

traits, no significant differences were found among different regions. Trees from the 

eastern region showed greater crown width, stem diameter and nitrogen concentration 

than those from the western and far west regions, indicating genotypes from east of the 

Mississippi River tend to have a higher growth rate than those from west. The lower 

13C values of eastern trees indicate higher WUE than that of trees from western and far 

west regions. 

 

 

Table 3.2 Pearson correlation coefficients between the traits 

 SLAa  BAb CWc 2014H e DIAd 13C i Nj 

SLAa  hNS NS NS NS NS 0.140 

BAb   -0.107 NS NS 0.154 NS 

CWc    0.757 0.769 -0.189 0.123 

2014H e     0.897 -0.138 0.113 

DIAd      NS NS 

13C i       -0.251 

Nj        

a Specific leaf area; b Branch angle; c Crown width; d Stem diameter; e Total height in 2014; i Carbon isotope 

discrimination; j Nitrogen concentration; hNon-significant at P < 0.05 
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Fig. 3.2 BLUP estimates distribution for the traits with significant differences (P < 0.05) among Far-west, 

Western and Eastern regions 

 

 

3.3.2 Individual Exome-Wide HTCs 

To test whether gene-based individual exome-wide heterozygosity affects 

adaptive traits, we used exome-based SNPs to calculate individual multi-locus 

heterozygosity and correlated the heterozygosity values with the BLUP estimates of each 

trait within the clonally tested populations. Two significant HTCs were detected in the 

total population, and one HTC in the east population (Table 3.3). No significant 

correlations were detected in the west population. Heterozygosity was negatively 

correlated with 13C (r = -0.173 in the total population and -0.137 in the east 

population). Since a smaller 13C value indicates higher WUE, the negative relationship 

between the heterozygosity and the 13C may indicate that higher heterozygosity is 

positively associated with WUE. The positive correlation between the heterozygosity 
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and the nitrogen concentration (r = 0.124) probably suggests heterozygosity is also 

positively associated with nitrogen concentration. 

 

 

Table 3.3 Significant HTCs 

Population (number of trees) Trait r p 

Total (375) Carbon isotope discrimination -0.173 0.001 

Nitrogen concentration 0.124 0.017 

East (307) Carbon isotope discrimination -0.137 0.017 

r , Person correlation coefficient 

 

 

 

3.3.3 Marker-Trait Association Analyses 

Association analyses were performed using S and K models for the total and east 

populations. S, K, Q and QK models were used for the str population. The quantile-

quantile plots indicated that better fits could be observed with different models. For the 

traits of specific leaf area, branch angle, stem diameter, total height in 2014, total height 

in 2015 before and after the growing season and 13C, the S model was the best fit for 

the east population, but the Q model was better for the str population, and they were 

selected for further analyses. For nitrogen concentration, the K model was the best fit for 

the east population, and the Q model for the str population. Similarly, for crown width, 

the K model for the east population and the QK model for the str population were 

selected. For pitch canker resistance, the K model for the total and east populations, and 

the K and QK models for the str population were selected (Table 3.4). Only the results 

from the selected models are presented below. 
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Table 3.4 Selection for the best models for maker-trait associations in total, east and str populations 
Traits total east str 

Sn Ko Sn Ko Sn Qp Ko QKq 

SLAa   ×   ×   

BAb   ×   ×   

CWc    ×    × 

DIAd   ×   ×   

2014He   ×   ×   

2015HBf   ×   ×   

2015HAg   ×   ×   

13C h   ×   ×   

Ni    ×  ×   

PCj  ×  ×   × × 

The best models are marked by ×; a Specific leaf area; b Branch angle; c Crown width; d Stem diameter; e 

Total height in 2014; f Total height in 2015 before the growing season; g Total height in 2015 after the 

growing season; h Carbon isotope discrimination; i Nitrogen concentration; j Pitch canker resistance; n The 

simple general linear model (GLM); o The mixed linear model (MLM) incorporating kinship matrix; p The 

GLM incorporating population structure covariate; q The MLM incorporating both kinship matrix and 

population structure covariate  

 

 

Associations were identified with specific leaf area (5 SNPs), branch angle (2), 

crown width (3), stem diameter (4), total height in 2014 (4), total height in 2015 before 

the growing season (8), total height in 2015 after the growing season (7), 13C (4), 

nitrogen concentration (2) and pitch canker resistance (7) (Table 3.5). When the height-

related SNPs were combined, 9 different SNPs were associated with total height. Two 

loci were detected for both total height and stem diameter, therefore, a total of 34 

different SNPs were identified as associated. 
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The VCFtools software (Danecek et al. 2011) was used to calculate the MAF and 

to test for Hardy Weinberg Equilibrium (HWE) (Table 3.5). Of the 34 associated SNPs, 

4 (12 %) departed from HWE. Fourteen SNPs (41 %) had a MAF greater than 0.05 with 

a range from 0.07 to 0.32. The MAFs of other SNPs were between 0.01 and 0.04. The 

effects of these SNPs were relatively small, as r2 ranged between 0.08 and 0.14. The 

percentages of clonal and phenotypic variance explained by the SNPs were estimated by 

comparing the full models (including significant SNPs as random variables in the model) 

and reduced models (without the significant SNPs in the model). The percentage of 

clonal and phenotypic variance explained by each locus ranged from 5 % to 27 % and 2 

% to 6 %, respectively (Table 3.5). If the individual SNPs for each trait are applied in the 

models altogether, they can explain 4-18 % of the phenotypic variance (Table 3.7). As 

the phenotypic data used in this study were collected from only one location, the 

percentage of each SNP composing the phenotypic variance might be overestimated. 

To analyze the additive and dominance effects of the associated SNPs, only the 

six SNP loci in HWE with all three genotype classes represented were tested using linear 

regressions (Table 3.6). Additive and dominance effects were significant for all the 

tested SNP loci at P < 0.05, but the estimate for additive effect of locus 

tscaffold8954_1999_T_G for specific leaf area was not precise as the standard error was 

greater than half the value of the estimate. Among the six tested loci, the ratio of 

dominance to additive effects showed the dominance effect was larger in magnitude than 

the additive effect at four loci. Among them, locus scaffold894573_84188_C_T had the  
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Table 3.5 SNPs significantly associated with the traits 

Trait SNPq r2 p-value MAFj PCVk PPVi Location Candidate gene Annotation 

SLAa scaffold585302_58207_A_G 0.10 2.13E-08 0.02 26.89 2.69 intron PITA_000065619 Auxin-responsive protein IAA13 

SLAa scaffold901438_87380_A_G 0.08 2.24E-07 0.02 22.73 2.28 CDSr PITA_000046166 Predicted, importin subunit alpha-like 

SLAa tscaffold7553_225423_C_T 0.09 1.94E-07 0.07 27.27 2.73 CDSr PITA_000013301 Predicted, E3 ubiquitin-protein ligase UPL3 

SLAa tscaffold9126_24299_G_A 0.09 9.28E-08 0.03 27.27 2.73 CDSr PITA_000025957 Leucine-rich repeat 

SLAa tscaffold8954_1999_T_G 0.09 5.28E-07 0.08 26.14 2.62 P5’RSn PITA_000030967 Putative copper-transporting ATPase HMA5-like 

isoform X1 

BAb scaffold744759_88802_A_G 0.10 4.21E-07 0.08 7.59 2.47 CDSr PITA_000043049 Putative disease resistance protein 

BAb scaffold886562_42033_C_T 0.09 1.73E-07 0.02 11.72 3.81 CDSr PITA_000057448 RNA editing factor OTP81 

CWc C32326948_8323_G_C 0.12 1.19E-07 0.02 8.05 2.79 UNCu UNCu Kinesin heavy chainm 

CWc C32326948_24090_G_C 0.12 1.19E-07 0.02 8.05 2.79 3'UTRt PITA_000078936 Putative ATP-dependent RNA helicase 

CWc scaffold900647.1_1652_T_C 0.12 1.19E-07 0.01 12.25 4.24 CDSr PITA_000085365 Sec-independent protein translocase protein TatA 

DIAd scaffold4572_62040_G_C 0.10 3.67E-07 0.32 13.56 3.72 P5’RSn PITA_000055333 Probable disease resistance protein At4g33300 

DIAd scaffold869612_10751_C_T 0.08 2.92E-07 0.04 10.45 2.88 CDSr PITA_000078887 Putative RNA-binding protein 

DIAd scaffold894573_84188_C_T 0.09 2.78E-07 0.04 22.57 6.20 CDSr PITA_000057281 Voltage-dependent anion channel 

DIAd tscaffold5105_261867_C_T 0.08 5.03E-07 0.02 18.44 5.06 CDSr PITA_000008001 Probable receptor-like serine/threonine-protein 

kinase At5g57670 isoform X2 

THe C32139602_5870_A_G 0.08 2.60E-07 0.03 11.54 3.45 CDSr PITA_000087565 Predicted, eukaryotic translation initiation factor 

5-like 

THe C32495018_13991_T_C 0.11 7.64E-08 0.21 7.69 2.30 P5’RSn PITA_000063143 Glycoside hydrolase family 
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Table 3.5 Continued 

Trait SNPq r2 p-value MAFj PCVk PPVi Location Candidate gene Annotation 

THe scaffold4572_62040_G_C 0.12 1.81E-08 0.32 12.50 3.70 P5’RSn PITA_000055333 Probable disease resistance protein At4g33300 

THe scaffold802276_312_C_A 0.09 5.15E-07 0.09 18.75 5.56 UNCu UNCu Bifunctional pinoresinol-lariciresinol reductasem 

THe scaffold887377_18672_C_T 0.12 8.75E-08 0.26 6.25 1.85 CDSr PITA_000087672 Unknown 

THe scaffold898261_152482_C_T 0.08 2.50E-07 0.02 18.75 5.56 5'UTRt PITA_000028701 Rab family GTPase; Small GTPase 

superfamily,Ras 

THe tscaffold5847_116012_T_C 0.08 3.96E-07 0.01 15.38 4.60 CDSr PITA_000020895 Predicted, lysosomal beta glucosidase 

THe tscaffold5105_261867_C_T 0.08 2.24E-07 0.02 15.38 4.60 CDSr PITA_000008001 Probable receptor-like serine/threonine-protein 

kinase At5g57670 isoform X2 

THe tscaffold7910_321796_C_T 0.11 1.77E-07 0.13 7.69 2.30 intron PITA_000014254 Copia-type polyprotein,putative 

13C f scaffold17165_86468_G_A 0.09 1.71E-07 0.01 10.00 6.25 UNCu UNCu Polyadenylate binding proteinm 

 13C f scaffold75093.3_123328_G_A 0.09 1.79E-07 0.01 10.00 6.25 CDSr PITA_000037598 Predicted,histone-lysine N-methyltransferase 

13C f scaffold109938_8086_T_C 0.09 1.78E-07 0.01 5.28 3.13 UNCu UNCu Organic cation/carnitine transporterm 

13C f tscaffold4948_129087_G_A 0.10 3.99E-07 0.01 5.00 3.13 CDSr PITAhm_003076 Predicted, small heat shock protein, chloroplastic,  

Ng C31890840_9044_C_T 0.10 1.76E-07 0.14 9.12 4.20 UNCu UNCu F-box/kelch-repeat protein At3g06240-likem 

Ng C32008620_13926_T_C 0.11 4.70E-07 0.12 8.95 4.12 CDSr PITA_000091703 C3H4 type zinc finger protein 

PCh C32571366_88829_G_A 0.14 3.67E-07 0.19 8.82 3.42 CDSr PITA_000019796 Predicted, Leucine-rich repeat  

PCh scaffold394991_238149_C_A 0.12 3.98E-07 0.09 7.44 2.89 UNCu UNCu Probable quinone oxidoreductasem 
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Table 3.5 Continued 

Trait SNPq r2 p-value MAFj PCVk PPVi Location Candidate gene Annotation 

PCh scaffold490830_154983_T_A 0.14 1.31E-08 0.01 14.84 5.77 CDSr PITA_000030834 Predicted, probable peptide/nitrate transporter 

At3g53960-like 

PCh scaffold771268_7109_G_A 0.13 2.01E-07 0.08 13.14 5.10 P3’RSo PITA_000095986 Predicted, probable aminotransferase TAT2-like 

PCh tscaffold758_520984_C_T 0.12 2.98E-07 0.17 7.14 2.85 CDSr PITA_000009116 Unknown 

PCh tscaffold1272_36798_C_T 0.11 3.31E-07 0.01 8.47 3.29 intron PITAhm_002502 Unknown 

PCh tscaffold5506_305141_G_A 0.11 2.07E-07 0.01 11.49 4.46 CDSr PITA_000020926 Predicted, dehydration-responsive protein 

RD22-like isoform 2 

a Specific leaf area; b Branch angle; c Crown width; d Stem diameter; e Total height; f Carbon isotope discrimination; g Nitrogen concentration; h Pitch canker resistance; i 

The percentage of phenotypic variance accounted for by each SNP; j Minor allele frequency; k The percentage of clonal variance accounted for by each SNP; m SNPs 

that were not located on annotated sequences, instead, the flanking sequences around SNPs were used to query against the NCBI Genbank non-redundant protein 

database using Blastx; n Putative 5’ regulatory sequence; o Putative 3’ regulatory sequence; q SNPs were named using scaffold names with the SNP position number in 

the nucleotide sequence followed by the major and minor SNP alleles; r Coding sequences; t Untranslated sequences; u Unclassified  
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Table 3.6 Additive and dominance effects for the SNP loci detected by association 

SNPa Trait Additive effectb Standard error of the 

additive effect 

Dominance effectb Standard error of 

the dominance effect 

Dominance/

additive 

scaffold894573_84188_C_T DIAc 0.006 0.001 0.027 0.007 4.500 

scaffold887377_18672_C_T 2015HAd 0.093 0.032 0.11 0.039 1.183 

scaffold887377_18672_C_T 2015HBe 0.094 0.034 0.114 0.041 1.213 

scaffold802276_312_C_A 2014Hf -0.185 0.032 -0.364 0.105 1.968 

C32008620_13926_T_C Ng 0.016 0.006 -0.035 0.02 -2.188 

tscaffold8954_1999_T_G SLAh -0.11 0.105 -0.256 0.108 2.327 

C32571366_88829_G_A PCi 0.132 0.031 0.158 0.036 1.197 

a SNPs were named using scaffold names with the SNP position number in the nucleotide sequence followed by the major and minor SNP alleles; b Additive and 

dominance effects were significantly different from zero based on ANOVA (P < 0.05); c Stem diameter; d Total height in 2015 after the growing season; e Total height 

in 2015 before the growing season; f Total height in 2014; g Nitrogen concentration; h Specific leaf area; i Pitch canker resistance
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Table 3.7 Percentage of phenotypic variance explained by the associated SNPs and SNP-SNP interactions 
Trait Number of 

associated 

SNPs 

Phenotypic 

variance explained 

by all the associated 

SNPs, % 

Number of epistatic 

SNP-SNP 

interactions 

Phenotypic variance 

explained by all the 

epistatic SNP-SNP 

interactions, % 

Phenotypic 

variance explained 

by SNPs from 

association and 

epistasis, % 

SLAa 5 6.03 NA NA NA 

BAb 2 6.43 1 9.08 14.08 

CWc 3 3.67 2 16.32 17.18 

DIAd 4 11.73 NA NA NA 

2014He 4 12.96 2 11.11 14.81 

2015HBf 7 12.64 NA NA NA 

2015HAg 6 8.55 NA NA NA 

13C h 4 12.50 2 15.63 21.88 

Ni 2 6.39 1 9.65 13.93 

PCj 7 17.52 3 13.82 23.36 

a Specific leaf area; b Branch angle; c Crown width; d Stem diameter; e Total height in 2014; f Total height in 2015 

before the growing season; g Total height in 2015 after the growing season; h Carbon isotope discrimination; i Nitrogen 

concentration; j Pitch canker resistance 

 

 

largest dominance effect resulting in an increase in stem diameter. At the remaining loci, 

dominance effects showed a similar magnitude to additive effects. 

 

3.3.4 Epistasis Analyses 

Eleven SNP-SNP interactions were identified in associations with branch angle 

(1 SNP-SNP interaction), crown width (2), total height in 2014 (2), 13C (2), nitrogen 

concentration (1), and pitch canker resistance (3) (Table 3.8). None of the epistatic loci 
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were detected in the marker-trait association test. All the identified SNPs were in HWE. 

The loci scaffold901027_91326_G_C and tscaffold6745_463233_G_A were found to be 

involved in two identified interactions. Sixteen SNPs (80 %) had a MAF greater than 

0.05. 

Each SNP-SNP interaction accounted for 15-30 % of the clonal variance and 8-

10 % of the phenotypic variance for the associated trait (Table 3.8). The combined SNP 

interaction effects for each trait accounted for 9-16 % of the phenotypic variance (Table 

3.7). The addition of these epistatic loci to the associated loci increased the explained 

proportion of phenotypic variance by 2-14 % (Fig. 3.3). All the identified interactions 

were between SNPs located on different scaffolds. The most significant SNP-SNP 

interaction was observed between the scaffold892137_41285_G_A and 

scaffold461440_154634_T_A loci. Their interaction was related to branch angle. The 

genotype combination of these two loci showed distinct phenotypic differences (Fig. 

3.4). 
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Fig. 3.3 Percentage of phenotypic variance for each trait contributed by the SNPs detected by association 

and epistasis. The numbers of the identified SNPs (association) or SNP-SNP interactions (epistasis) are 

presented above the bars. SLA - specific leaf area, BA - branch angle, CW - crown width, DIA - stem 

diameter, 2014H - total height in 2014, 2015HB and 2015HA - total height in 2015 before and after the 

growing season, respectively, 13C - carbon isotope discrimination, N - nitrogen concentration, and PC - 

pitch canker resistance 

 

 

 

 

 

Fig. 3.4 Phenotypic differences between genotype combinations of the loci scaffold892137_41285_G_A 

and scaffold461440_154634_T_A. The interaction of these two loci is in association with branch angle. 

Numbers of individuals with the genotype combinations are at the bottom of the bars. The y-axis 

represents the BLUP estimates of branch angle for the individuals within the population 
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Table 3.8 SNP-SNP interactions associated with the traits 
Trait SNP1 (MAF)g Location Candidate gene / Annotation SNP2 (MAF)g Location Candidate gene / Annotation PCVh PPVi p-value 

BAa scaffold892137_41

285_G_A (0.09) 

CDSj PITA_000033000 / Predicted, 

kinesin-like protein KIF18B 

scaffold461440_15

4634_T_A (0.14) 

intron PITA_000021259 / Unknown 27.97 9.09 7.74E-17 

CWb scaffold845670_72

9_G_A (0.09) 

UNCu unclassified / Bark storage protein 

A-likel 

C32549530_11780

1_G_T (0.04) 

P3’RSh PITA_000046419 / Predicted, 

wound-induced protein 1-like 

28.52 9.87 1.45E-14 

CWb scaffold892370.2_3

8187_G_A (0.16) 

CDSj PITA_000068396 / Disease 

resistance-like protein 

scaffold893009.2_4

2867_G_C (0.19) 

CDSj PITA_000068998 / Unknown 23.01 7.97 1.41E-14 

2014Hc C32560776_5010_

G_A (0.09) 

CDSj PITA_000038233 / TIR/NBS/LRR 

disease resistance protein 

tscaffold6745_4632

33_G_A (0.12) 

intron PITA_000009136 / ADP-

ribosylation factor 

29.53 8.62 9.93E-16 

2014Hc C32560776_5095_

A_G (0.09) 

intron PITA_000038233 / TIR/NBS/LRR 

disease resistance protein 

tscaffold6745_4632

33_G_A (0.12) 

intron PITA_000009136 / ADP-

ribosylation factor 

27.21 7.94 6.02E-15 

13C d tscaffold488_11868

_C_T (0.03) 

CDSj PITA_000007619 / Indole-3-acetic 

acid-amido synthetase GH3.6 (GH3 

auxin-responsive promoter) 

scaffold894878_57

816_T_C (0.48) 

intron PITA_000057030 / Beta-1,3-n-

acetylglucosaminyltransferase 

radical fringe 

15.53 9.81 9.22E-15 

 13C d scaffold117762.1_7

4566_C_G (0.04) 

CDSj PITA_000056667 / Predicted, 

cytochrome c oxidase subunit 6b-1-

like isoform X2 

tscaffold2954_1072

87_G_A (0.10) 

intron PITA_000004221 / Predicted, 

probable phosphoinositide 

phosphatase SAC9 

16.67 10.53 1.52E-14 

Ne scaffold90489_768

1_G_A (0.08) 

UNCu unclassified / Leucine-rich repeat 

receptor-like serine/threonine-

protein kinase BAM2l 

scaffold807725_59

239_A_T (0.28) 

CDSj PITA_000043336 / Predicted, 

uncharacterized zinc finger 

protein At4g06634 isoform X2 

20.95 9.65 3.69E-15 
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Table 3.8 Continued 

Trait SNP1 (MAF)g Location Candidate gene / Annotation SNP2 (MAF)g Location Candidate gene / Annotation PCVh PPVi p-value 

PCf C31644976_3483_

C_T (0.03) 

UNCu unclassified / Putative leucine-rich 

repeat receptor-like 

serine/threonine-protein kinasel 

scaffold898450_46

698_G_T (0.21) 

intron PITA_000069402 / 

Pentatricopeptide repeat-

containing protein At1g12300, 

mitochondrial-like 

22.81 8.86 2.69E-15 

PCf scaffold901027_91

326_G_C (0.05) 

CDSj PITA_000045299 / Transcription 

factor  

tscaffold2366_1654

30_C_T (0.14) 

3’UTRi PITA_000012460 / Unknown 23.19 9.01 7.75E-15 

PCf scaffold901027_91

326_G_C (0.05) 

CDSj PITA_000045299 / Transcription 

factor 

tscaffold362_11457

64_A_T (0.14) 

Intron PITAhm_003320 / Mitochondrial 

processing peptidase subunit beta; 

GBFi nteracting protein 1-like 

22.60 8.78 4.57E-15 

a Branch angle; b Crown width; c Total height in 2014; d Carbon isotope discrimination; e Nitrogen concentration; f Pitch canker resistance; g SNPs were named using scaffold 

names with the SNP position number in the nucleotide sequence followed by the major and minor SNP alleles; h The percentage of clonal variance accounted for by each SNP; i 

The percentage of phenotypic variance accounted for by each SNP; j Coding sequences; h Putative 3’ regulatory sequence; i Untranslated sequences; l SNPs that were not located 

on annotated sequences, instead, the flanking sequences around SNPs were used to query against the NCBI Genbank non-redundant protein database using Blastx; u Unclassified
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3.3.5 Annotation of Genes that Contained SNPs Associated with Traits 

The loci with the identified SNPs were annotated using the loblolly pine Gene 

Annotation 3.0 

(http://dendrome.ucdavis.edu/ftp/Genome_Data/genome/pinerefseq/Pita/v1.01/Pita_Ann

otation_v3.0/) (Wegrzyn et al. 2014). Of the 34 SNPs identified by association, 19 

resided in CDS, 2 in UTRs, 3 in introns, 4 in putative regulatory sequences and 6 in 

unannotated (unclassified) regions (Table 3.5). Of the 20 SNPs identified in the epistasis 

analysis, 8 resided in CDS, 7 in introns, 1 in a UTR, 1 in a putative regulatory sequence, 

and 3 in unannotated regions (Table 3.8). 

For the identified SNPs located in tentative genes, the function annotation was 

done and presented in Tables 3.5 and 3.8. Otherwise, the flanking sequences around the 

SNPs were used for a Blastx search to identify the functions of genes that contained 

SNPs associated with traits. Associations between crown structure traits and genes 

related to developmental regulation, transport and stress response were detected. Genes 

involved in RNA editing (RNA editing factor OTP81) and disease resistance (putative 

disease resistance protein) were found to be associated with branch angle. An interaction 

between genes encoding a microtubule dynamics regulation protein (kinesin-like protein 

KIF18B) (Tanenbaum et al. 2011) and an unknown protein may also affect branch angle. 

Genes involved in auxin-mediated development (auxin-responsive protein IAA13), 

pathogen-recognizing disease resistance and cell wall developmental processes (leucine-

rich repeat) (Draeger et al. 2015), nuclear protein import mediation (importin subunit 

alpha-like)(Hübner et al. 1999), ubiquitin transfer (E3 ubiquitin-protein ligase UPL3) 

http://dendrome.ucdavis.edu/ftp/Genome_Data/genome/pinerefseq/Pita/v1.01/Pita_Annotation_v3.0/
http://dendrome.ucdavis.edu/ftp/Genome_Data/genome/pinerefseq/Pita/v1.01/Pita_Annotation_v3.0/
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(Berndsen and Wolberger 2014) and copper transport (copper-transporting ATPase 

HMA5), were associated with specific leaf area. Genes encoding products involved in 

cell division (kinesin heavy chain) (Yang et al. 1989), unwinding of the RNA helix 

(putative ATP-dependent RNA helicase) and protein transport (sec-independent protein 

translocase protein TATA) were associated with crown width. An interaction between 

genes encoding a bark storage protein (bark storage protein A-like) and a wound-

induced protein, and an interaction between genes encoding a disease resistance protein 

and an unknown protein were detected to be associated with crown width. 

One interesting association with total height was found for the locus 

scaffold802276_312_C_A. The SNP was found in a gene encoding a bifunctional 

pinoresinol-lariciresinol reductase, which is involved in lignan biosynthesis (Renouard et 

al. 2014). Additionally, a broad spectrum of genes, encoding regulation and defense 

functions were also associated with height, including the genes related to vesicle 

trafficking (Rab family GTPase; Small GTPase superfamily, Ras), disease resistance 

(probable receptor-like serine/threonine-protein kinase At5g57670 isoform X2; probable 

disease resistance protein At4g33300), biosynthesis and degradation of glycogen 

(glycoside hydrolase family), retrotransposition (putative copia-type polyprotein), and 

translation initiation (probable eukaryotic translation initiation factor 5-1). An 

interaction between a plant resistance R-gene (putative TIR/NBS/LRR disease resistance 

protein) and a regulator gene of vesicular traffic and actin remodeling (ADP-ribosylation 

factor) (Pasqualato et al. 2002) was also found to affect height. 
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Some of the genes associated with total height were also associated with stem 

diameter, including genes involved in disease resistance (probable disease resistance 

protein At4g33300; probable receptor-like serine/threonine-protein kinase At5g57670 

isoform X2). In addition, genes encoding voltage-dependent anion channels and RNA-

binding protein were also associated with stem diameter. 

For 13C, one interesting associated SNP was tscaffold4948_129087_G_A, 

which located in a gene encoding a small heat shock protein (sHSP), suggesting that a 

stress response mechanism might participate in the regulation of WUE. Genes encoding 

proteins involved in RNA–protein complexes (polyadenylate binding protein), 

epigenetic regulation (histone-lysine N-methyltransferase) and transportation of organic 

cations and carnitine (organic cation/carnitine transporter) were also associated with 

13C. An interaction between genes encoding an IAA-amido synthase that conjugates 

aspartic acid and other amino acids to auxin (indole-3-acetic acid-amido synthetase 

GH3.6) and a transferase (beta-1,3-n-acetylglucosaminyltransferase radical fringe) was 

found to also contribute to 13C. In addition, interaction between genes involved in 

electron transport chain (cytochrome c oxidase subunit 6b-1-like isoform X2) and 

degradation of phosphoinositide signals (phosphoinositide phosphatase SAC9) was also 

associated with 13C. 

Genes encoding a F-box/kelch-repeat protein and a zinc finger protein were 

found to associate with nitrogen concentration. A plant meristem and organ 

developmental gene (leucine-rich repeat receptor-like serine/threonine-protein kinase 

BAM2 or LRR RLK BAM2) and a zinc finger protein gene were found to interact. 
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For pitch canker resistance, transporter (probable peptide/nitrate transporter 

At3g53960-like), metabolism (probable quinone oxidoreductase; probable 

aminotransferase TAT2-like), and stress-induced genes (leucine-rich repeat; 

dehydration-responsive protein RD22-like isoform 2) were found to be associated. 

Genes related to disease resistance (putative leucine-rich repeat receptor-like 

serine/threonine-protein kinase), transcription factor, organelle gene expression 

regulation (pentatricopeptide repeat-containing protein At1g12300, mitochondrial-like; 

mitochondrial processing peptidase subunit beta) were found in the interactions 

associated with pitch canker resistance. 

We investigated the effect of SNP substitution on amino acid sequence by 

aligning and comparing the amino acid sequences translated from the sequences with the 

different alleles and the corresponding transcripts (Table 3.9). Of the 27 SNPs resided in 

CDS, 19 (70 %) caused nonsynonymous substitutions. Two nonsynonymous 

substitutions generated stop codon and caused premature truncation of the coding 

sequences, while the others resulted in amino acid replacements. One nonsynonymous 

substitution resulting in premature truncation occurs on the SNP locus associated with 

branch angle. It is located in a gene that encodes a RNA editing factor. Another one 

occurs on the locus associated with stem diameter and total height. It is located in a gene 

encoding a receptor-like serine/threonine-protein kinase. 
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Table 3.9 Nonsynonymous and synonymous SNP substitutions 
Trait SNPk Substitution type 

Detected from association 

SLAa scaffold901438_87380_A_G I to V 

SLAa tscaffold7553_225423_C_T S to L 

SLAa tscaffold9126_24299_G_A E to K 

BAb scaffold886562_42033_C_T Q to stop 

BAb scaffold744759_88802_A_G synonymous 

CWd scaffold900647.1_1652_T_C P to L 

DIAe scaffold869612_10751_C_T S to L 

DIAe scaffold894573_84188_C_T T to I 

DIA/TH tscaffold5105_261867_C_T R to stop 

THf scaffold887377_18672_C_T A to V 

THf C32139602_5870_A_G K to R 

THf tscaffold5847_116012_T_C W to R 

13C g scaffold75093.3_123328_G_A synonymous 

13C g tscaffold4948_129087_G_A synonymous 

Nh C32008620_13926_T_C synonymous 

PCi C32571366_88829_G_A synonymous 

PCi scaffold490830_154983_T_A I to K 

PCi tscaffold758_520984_C_T A to V 

PCi tscaffold5506_305141_G_A synonymous 

Detected from epistasis 

BAb scaffold892137_41285_G_A synonymous 

CWd scaffold892370.2_38187_G_A synonymous 

CWd scaffold893009.2_42867_G_C A to P 

2014Hj C32560776_5010_G_A D to G 

13C g tscaffold488_11868_C_T V to A 

13C g scaffold117762.1_74566_C_G L to V 
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Table 3.9 Continued 
Trait SNPk Substitution type 

Nh scaffold807725_59239_A_T N to Y 

PCi scaffold901027_91326_G_C R to T 

a Specific leaf area; b Branch angle; d crown width; e Stem diameter; f Total height;  
g Carbon isotope discrimination; h Nitrogen concentration; i Pitch canker resistance;  
j Total height in 2014; k SNPs were named using scaffold names with the SNP position number in the nucleotide 

sequence followed by the major and minor SNP allele 

 

 

3.4 Discussion 

3.4.1 Broad Genetic Correlations 

The clonal repeatability was high for all the measured traits except for height 

growth. However, with the exception of total height, the traits in this study were only 

measured on one population in one year and in one location, and therefore, the clonal 

repeatability estimates were up-biased. Nonetheless, previous studies have shown these 

traits to be heritable in loblolly pine. Emhart et al. (2007) determined the broad-sense 

heritabilities of crown radius, leaf area and branch angle in loblolly pine to be 0.20, 0.25 

and 0.26, respectively, when estimated from a combined analysis across families. 

Baltunis et al. (2008) reported that the across-site estimate of broad-sense heritability for 

13C was 0.19 and Emhart (2005) reported similar estimates 0.23 and 0.17 based on two 

separate years of sampling. For nitrogen concentration, Cumbie et al. (2011) reported 

that the broad-sense clone mean heritability was 0.42. Pitch canker resistance in loblolly 

pine is also a heritable and complex trait with a continuous distribution across clones 

(Kayihan et al. 2005). Quesada et al. (2010) estimated 30-40 % of the disease variation 

could be attributed to genetic effects. The clonal repeatability and the considerable 
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phenotypic variation suggested the population used in this study was suitable for 

association mapping. The lower clonal repeatability for height growth during the 2015 

growing season agrees with previous conclusions that growth rate has low heritability 

(White et al. 2007; Shmulsky and Jones 2011) and is more affected by environmental 

effects, such as availability of light, water and nutrition rather than the genetic 

components. Therefore, height growth in 2015 was excluded from further analyses. 

Strong positive correlations between crown width, height and stem diameter and 

a weak negative correlation between crown width and branch angle indicated that bigger 

trees tended to have wider crowns and flatter branches, which is in agreement with 

previous progeny tests of loblolly pine measuring nine or ten year old trees on four sites 

(Lambeth and Hubert 1997). The wider crown and flatter branches enabled the trees to 

capture light better and to be more competitive than other trees, thus accumulating more 

biomass. The genetic correlations of crown width with other growth traits along with its 

medium to high heritability as reported in the previous studies suggested crown width 

could be a key component of productivity, and selection for crown width could favor 

growth traits (Lambeth and Hubert 1997; Emhart et al. 2007). Genes affecting crown 

structure in loblolly pine have been rarely explored in the past. Considering heritability 

of crown structure and growth traits, molecular markers associated with these traits 

could be valuable in marker assisted selection (MAS). 

Due to a changing climate, forest trees with better adaptive characteristics such 

as superior photosynthetic and water use abilities will be needed in the future (IPCC 

2014a). In this study, slight positive correlations existed between nitrogen concentration 
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and specific leaf area, crown width and total height, suggesting a higher nitrogen 

concentration may have increased the leaf area and tree size through a promoted 

photosynthetic ability since nitrogen is indispensable for Rubisco, a key enzyme of the 

Calvin cycle (Bloomfield et al. 2014). It should be noted that the correlations shown here 

for nitrogen concentration as well as 13C were subtle, possibly because the trees 

contained in this population were originally from a broad geographic range, and these 

different genotypes may display distinct photosynthetic and water use strategies 

depending upon environments (Flanagan and Johnsen 1995). 

Stable 13C in plants reflects the balance between photosynthetic ability and 

stomatal conductance. It has long been used as a measure for WUE in forest trees as less 

discrimination is associated with higher WUE (Aitken et al. 1995; Baltunis et al. 2008). 

The trees with flatter branch angles, wider crowns, greater heights and higher nitrogen 

concentrations tended to have lower 13C, suggesting the fast-growing trees with higher 

light capture and photosynthetic ability have a better WUE. It is worth noting that these 

trees may also exhibit greater stomatal closure under high vapour pressure deficit (VPD) 

or limiting soil moisture since they are deploying large canopies and have greater 

nitrogen concentration. These canopies are perhaps more productive over some time 

period, but would be (perhaps) more vulnerable to hydraulic failure.  

The empirical relationship between 13C and growth can be negative, positive or 

uncorrelated depending on the specific environment or species (Orians and Solbrig 1977; 

Aitken et al. 1995; Flanagan and Johnsen 1995; Li et al. 2013). It can be hypothetically 

explained by a hypothesis that high WUE could be at the expense of growth (Orians and 
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Solbrig 1977). However, neither our study, which was conducted in seasons with normal 

precipitation, nor the study conducted by Cumbie et al. (2011) during seasons with 

drought supported this hypothesis for loblolly pine. It should be noted that in both 

studies, relatively young samples were measured. Our trees were measured in their 

fourth growing season, and those in the Cumbie et al. study in their second growing 

season. It is possible that young trees may use a different WUE strategy (Aitken et al. 

1995). 

 

3.4.2 Geographical Variation 

Environmental heterogeneity and gradients drive the adaptation of forest trees, 

thus creating geographical variation within the natural range. Through adaptive and 

selectively neutral processes, loblolly pine developed geographic differences between 

populations east and west of the Mississippi River due to the 100,000-year refugia 

isolation. Reports have shown that loblolly pines from west of the Mississippi River are 

slower growing but more resistant to aridity and crowding (Schmidtling 2001). Our 

study demonstrated that genotypes with eastern origins tended to grow faster and have a 

better WUE than western and far west genotypes. The growth rate difference was 

consistent with previous results (Schmidtling 2001), but the drought tolerance within this 

population is difficult to judge since relatively young trees were measured and were 

under normal precipitation conditions during the growing seasons of sampling. 

Additionally, the studied trees in our population were grown from open pollinated seeds, 

and only the maternal origins can be determined, with the paternal origins uncertain. 
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Therefore, the measured trees may have different drought tolerance phenotypes from the 

originally selected maternal parents. 

 

3.4.3 Non-Additive Effects 

Most robustly associated SNPs detected in loblolly pine association studies 

account for only a fraction of the total genetic variance in a trait (González-Martínez et 

al. 2007; Quesada et al. 2010). Similarly, in our study, only 5-27 % of the clonal 

variance and 2-6 % of the phenotypic variance could be explained by the associated 

SNPs. This agrees with the hypothesis that most quantitative traits are affected by many 

genes with small effects (Flint and Mackay 2009) as well as previous evidence in 

loblolly pine (Emhart et al. 2007; Quesada et al. 2010; Cumbie et al. 2011). It is also 

possible that genes with major effects remain undetected. However, in this study, we 

analyzed 2,822,609 SNPs in or near 48,391 high quality tentative genes, so it seems 

unlikely that we would have missed the genes with major effects for every trait if they 

exist. Dissecting these quantitative traits and revealing their genetic control remain 

challenging. To better examine these traits, we extended our investigation beyond 

additive to non-additive effects, namely, dominance and epistasis. Though only a few 

SNP-SNP interactions were determined to be associated, they generally contributed 

more to the clonal and phenotypic variance than the additive loci (Fig. 3.3). None of the 

epistatic loci were discovered in association studies, indicating the additive and epistasis 

effects may determine the traits using independent networks (Zhang et al. 2015). The 

dominance effects are similar or larger in magnitude than additive effects. Although the 
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additive effects are the main focus for loblolly pine breeding, the results from this 

research as well as previous studies indicated that both the dominance and epistasis 

effects should be considered in MAS of loblolly pine, since they might play important 

roles in capturing desirable traits (Eckert et al. 2009a; Cumbie et al. 2011). Additionally, 

only SNPs were investigated in this study, however, other kinds of polymorphisms such 

as indels, copy number variations, transposable elements and stable epigenetic 

modifications could also explain the phenotypic variation. 

 

3.4.4 Non-Coding and Rare Variants 

The non-coding and rare variants were also used to address quantitative trait 

dissection problems. In this study, we used exome sequencing to identify over 2.8 

million SNPs when filtering conditions were relaxed to include SNPs with a MAF 

greater than 0.01, assuring a broad spectrum of SNPs containing the rare alleles to be 

investigated. Moreover, in exome sequencing, the capture often extends to non-target 

regions, and therefore, variants adjacent to CDS and UTRs, including introns and 

putative regulatory elements were also identified. Among the loci detected by the 

association analyses, more than half had a MAF smaller than 0.05 and 44 % resided in 

non-CDS (Table 3.5). These low frequency and non-CDS variants are important 

resources for exploring the quantitative traits of loblolly pine. As the reference assembly 

and gene annotation for the loblolly pine genome are under active improvement, the 

variant locations and annotations might be revised in the future. 

 



 

 78 

3.4.5 Application of the Identified Variants 

MAS utilizing the identified alleles and those that will be discovered in the future 

using the SNPs identified in this project, may facilitate loblolly pine breeding. For 

instance, within this population, tree 276B contained the most desired alleles at 18 

additive and 2 epistatic loci, which were associated with the traits of total height, stem 

diameter, 13C, nitrogen concentration and pitch canker resistance. This corresponded to 

its superior performance indicated by its above median values of measurement on 

growth traits. The height-related loci, which were detected multiple times using 

measurements at different times, and two alleles detected in association with both stem 

diameter and total height can be regarded with higher validity than the other loci. 

However, before these loci can be applied for breeding, they need to be verified using 

more samples at different ages and with replications in different locations. 

 

3.4.6 Heterozygosity-Trait Correlations 

It is hypothesized that individual heterozygosity may correlate with individual 

fitness and superior trait performance due to dominance or overdominance (heterosis) 

(Charlesworth and Willis 2009; Ruiz-Lopez et al. 2012; Rodríguez-Quilón et al. 2015). 

Correlating individual heterozygosity measured using genetic markers with individual 

fitness related or adaptation-associated traits (heterozygosity-trait correlations or HTCs) 

could test this. Forest trees have been used to test for HTCs. Ledig et al. (1983) reported 

a significant correlation between mean annual basal area increment and heterozygosity 

in pitch pine suggesting that the growth may be positively associated with isozyme 
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heterozygosity. Using a maritime pine (Pinus pinaster Ait.) population, no significant 

correlation was found between survival and genome-wide heterozygosity (Rodríguez-

Quilón et al. 2015), nonetheless, the authors suggested the heterozygosity of specific 

candidate genes was of great importance to increase fitness. In another study focusing on 

a Siberian larch (Larix sibirica Ledeb.) population, no relationship was found between 

individual heterozygosity and radial growth (Babushkina et al. 2016), but the authors 

pointed that relationships could be rather complex depending on the tree age, and more 

markers and samples are needed to address it. In this study, individual heterozygosity 

was found to be associated with 13C and nitrogen concentration within a clonally tested 

loblolly pine population. Different correlation results detected using different 

populations may be due to population size and as the size gets smaller, significance goes 

down. To verify the effects of heterozygosity on the traits, a population including more 

samples with all three genotypes present should be tested for the correlation. 

Additionally, it would be interesting to calculate and compare the HTCs using individual 

heterozygosity based on supposedly neutral markers and loci under selection in the 

loblolly pine genome separately. 

 

3.4.7 Putative Functions of Genes that Contained SNPs Associated with Traits 

In this study, exome-derived probes were used for sequence capture, hence the 

SNPs were identified mostly in the gene spaces or very close to them. Since linkage 

disequilibrium decays rapidly within this population (Lu et al. 2016), the identified SNPs 

are likely to be within or close to the genes controlling the phenotypic traits. Previous 
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studies have used nearly 4000 SNPs to identify loci associated with height, 13C, 

nitrogen concentration, pitch canker disease resistance and other important traits 

(Quesada et al. 2010; Cumbie et al. 2011). To validate the SNPs identified in this study, 

we mapped those sequences with previously identified SNPs to loblolly pine reference 

assembly v1.01 

(http://dendrome.ucdavis.edu/ftp/Genome_Data/genome/pinerefseq/Pita/v1.01) using the 

software GMAP (Wu and Watanabe 2005). However, none of them could be mapped to 

the genes or flanking sequences that contained SNPs associated with traits reported in 

this study. Nonetheless, genes reported in this study provide valuable clues to understand 

the genetic architecture of complex traits.  

Discovery of an associated RNA editing factor gene implies that RNA editing 

influences branch angle, possibly through providing RNA edited proteins to incorporate 

into polypeptide complexes (Brennicke et al. 1999). The association of a bark storage 

protein gene suggests nitrogen resorption is involved in the development of crown width 

(Zhu and Coleman 2001). 

Genes encoding an auxin-responsive protein and a copper-transporting ATPase 

were found to be associated with specific leaf area. Discoveries of these genes suggest 

the auxin-regulation participates in the process of leaf meristem growth and determine 

its size and shape (Zgurski et al. 2005); copper is an essential element for leaf growth 

since copper deficiency defects in plants include a general reduced growth rate, 

chlorosis, especially in young leaves, curling of leaf margins (Puig 2014).  

http://dendrome.ucdavis.edu/ftp/Genome_Data/genome/pinerefseq/Pita/v1.01/


 

 81 

One interesting gene that contained SNPs associated with total height encodes 

bifunctional pinoresinol-lariciresinol reductase. This gene is involved in lignan 

biosynthesis (Renouard et al. 2014). In trees, lignans are synthesized and deposited in 

significant amounts in the heartwood region, probably preventing heart rot caused by 

fungi (Suzuki and Umezawa 2007).  

Two interesting genes that contained SNPs associated with 13C encode histone-

lysine N-methyltransferase and a small heat shock protein (sHSP), respectively. 13C 

reflects the water use efficiency of plants, which is regulated by stomatal responses to 

changes in VPD. Phytohormone abscisic acid (ABA) was found to be the means by 

which angiosperm stomata respond to natural changes in VPD (McAdam et al. 2016). As 

reported by Zheng et al. (2012), a histone methyltransferase expression is regulated by 

ABA; also, Sun et al. (2016) reported a sHSPs may function as a protein chaperone to 

modulates ABA biosynthesis and ABA signaling. It is possible that these two genes are 

on the pathway of ABA biosynthesis and signaling, hence impacting the stomatal 

responses and water use in loblolly pines.  

One gene that contained SNPs associated with nitrogen concentration encodes a 

F-box/kelch-repeat protein. An Arabidopsis F-box/kelch protein is involved in timing of 

flowering and phenylpropanoid biosynthesis (Zhang et al. 2013). Its association with 

nitrogen concentration suggests flowering and phenylpropanoid biosynthesis may be 

under the control of nitrogen concentration. The LRR RLK BAM2 gene was also found 

to be associated with nitrogen concentration. BAM2 has been recognized for its role in 

the development of vascular strands within leaves and a correlated control of leaf shape, 
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size and symmetry. A similar receptor-like protein kinase-like protein (RLK) was 

reported by Cumbie et al. (2011) as a candidate gene for regulation of nitrogen 

concentration. 

For pitch canker resistance, two SNPs located on resistance related genes were 

identified, one is on a leucine-rich repeat gene, and the other is on a dehydration-

responsive protein gene. The leucine-rich repeat domain and the nucleotide-binding site 

domain are the major parts that compose the main class of R-genes (Leister and Katagiri 

2000). When encountered by disease, plants produce R proteins to detect the presence of 

pathogen effectors, resulting in activation of multiple signaling pathways and 

transcription of specific genes that limit pathogen proliferation and disease symptom 

expression (Arango-Velez et al. 2014). A dehydration-responsive gene often acts to 

suppress the drought stress response (Yamaguchi-Shinozaki and Shinozaki 1993). One 

syndrome of pitch canker disease infection is the wilt of tips of girdled branches due to 

obstructed water flow. The association of a dehydration-responsive protein RD22-like 

gene suggests that water deficit resistance has also been induced as part of the defense 

mechanism against pitch canker disease. As pointed out before, pitch canker resistance is 

a quantitative trait influenced by many genes with relatively small effects (Quesada et al. 

2010). In this study, the identified resistance related SNPs explain a small proportion of 

clonal and phenotypic variation, but SNP-SNP interaction analyses explain a higher 

proportion. A transcription factor gene was identified to interact with a gene encoding a 

mitochondrial processing peptidase subunit beta. Another interaction was also found to 

be related to mitochondria. It’s between a gene encoding a leucine-rich repeat receptor-
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like serine/threonine-protein kinase and a gene encoding a mitochondrial-like 

pentatricopeptide repeat-containing protein. The latter gene is one of the major 

mediators for mitochondrial post-transcriptional regulation (Manna 2015). Both above-

mentioned interactions imply regulation of mitochondrial gene expression is involved in 

pitch canker resistance. However, it remains unclear how the mitochondrial gene 

products perform their functions in the resistance pathway. It does offer new ideas to 

explore genes related to pitch canker resistance. 
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4. CONCLUSIONS 

 

Loblolly pine’s characteristics such as amenability to plantation management, 

high yields and fast growth make it one of the most economically important forest 

species in the world. Timber and pulpwood are the primary products. Loblolly pine is 

also a promising tool in efforts to relieve warming and long-lasting climate changes 

caused by greenhouse gas emissions. However, the large and complex genome of 

loblolly pine poses challenges for tree improvement through gene discovery, association 

studies, and genomic selection. Genotyping-by-sequencing facilitates the process of 

genetic variation discovery and the collection of genome-wide molecular markers in an 

efficient and budget-wise manner. The availability of molecular markers can assist with 

the characterization of linkage disequilibrium and genomic structure of the population. 

Additionally, molecular markers including rare and non-coding variants provide great 

opportunity to dissect complex traits using association mapping and identify the genes 

and their effects that underlie complex traits. 

In Chapter II, exome-sequencing was conducted to discover genetic variation in 

the clonally tested ADEPT2 loblolly pine population that included clones of 375 loblolly 

pine trees originally sampled across a wide range. Sequence capture oligonucleotide 

probes were designed using 199,723 exons in 48,391 high quality tentative genes listed 

in gene annotation v. 2.0 for loblolly pine genome assembly v. 1.01. The Illumina HiSeq 

2500 platform was used to sequence the captured and enriched libraries for each tree. 

Nearly 99 % of the sequence reads were mapped to the reference genome assembly. The 
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capture efficiency and specificity were high as 67 % of the reads per tree mapped to the 

capture target regions. Among all the trees, at least 83 % of the capture target bases had 

coverage of 5X, 72 % - 10X, and 49 % - 20X. With the filtering condition of being bi-

allelic sites with at least 10X sequencing depth in at least 90% of the individuals and 

with the MAF ≥ 0.05, a total of 972,720 SNPs were acquired for downstream analyses. 

Analyses of heterozygosity and FIS indicated this population is highly heterozygous with 

a low inbreeding rate and a high level of genetic diversity. The average LD for linked 

SNPs was inferred from the trendlines of the nonlinear regressions and started from 0.44, 

then decayed by half (0.22) at 55 bp, and to 0.10 at 192 bp. LD decayed faster than 

previously reported suggesting that a great number of markers will be required for 

association mapping. Genomic structure analyses showed this population consists of two 

distinct subpopulations (genetic clusters), west and east of the Mississippi River. 

In Chapter III, over 2.8 million SNP markers identified and genotyped by exome 

capture and sequencing were used to test for correlations of individual heterozygosity, 

single locus associations, and SNP-SNP interactions with phenotypic traits. Within the 

tested loblolly pine population, numerous genetic correlations between traits were 

detected as well as geographical variation. Individual heterozygosity was found to 

potentially correlate with 13C and nitrogen concentration. Thirty-four SNPs and eleven 

SNP interactions were associated with crown structure, growth, physiology and disease 

resistance traits among more than 2.8 million SNPs identified and genotyped by exome 

capture and sequencing. Dominance and epistatic effects were substantial complements 

to additive effects. These results provide direction for loblolly pine breeding strategy 
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improvement through MAS and genomic selection. Candidate genes with a broad 

spectrum of functions were identified. 

Our results demonstrated the efficiency of exome capture for genotyping a 

species with a large, complex genome. The highly diverse genetic variation reported in 

this study provides a valuable resource for loblolly pine breeding through MAS and 

genomic selection. Association studies and the functional analyses of the promising 

candidate genes will facilitate elucidation of the genetic architecture of the loblolly pine 

traits and contribute molecular tools for selection of loblolly pine genotypes adapted to 

changing climate scenarios. 
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