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ABSTRACT 

Split manufacturing of integrated circuits reduces vulnerabilities introduced by 

an untrusted foundry by manufacturing only a part of design at an untrusted high-end 

foundry and the remaining part at a trusted low-end foundry. Unfortunately, a naïve spilt 

manufacturing alone does not ensure security. An attacker can use proximity attack to 

undermine the security offered by split manufacturing. However, this attack is applicable 

only to hierarchical designs.   

We propose a physical attack model for split manufacturing for industry-

standard/relevant flattened designs. Our attack uses heuristics of physical design tools, 

which outperform previous attack. We also develop a logic-aware physical attack 

considering logic redundancy, which identifies incorrect connections effectively. The 

effectiveness of proposed techniques is demonstrated by simulations on benchmark 

circuits. Our attack success rate is ∼10× that of the proximity attack; our attack predicts 

80% of the missing BEOL connections correctly, while the proximity attack predicts 

only 8% for flattened designs. 



 

 iii 

ACKNOWLEDGEMENTS 

 

I would first like to thank my advisor Prof. Jiang Hu who enabled me to research 

on this project and guided me with patience all the time. Whenever I ran into a trouble 

spot, he would steer me in the right direction with his insightful suggestions. Without his 

persistent help this thesis would not have been possible.  

I would also thank my committee members, Prof. Kim, and Prof. Li, for their 

valuable comments on this thesis.  

Thanks also go to Dr. Jeyavijayan Rajendran and Yujie, for the helpful 

discussions, and for the sleepless nights we were working together before deadlines.     

Finally, I must express my gratitude to my mother, father for their support and 

encouragement. 

  



 

 iv 

CONTRIBUTORS AND FUNDING SOURCES 

 

Contributors 

This work was supervised by a thesis committee consisting of Professor Jiang Hu 

and Professor Peng Li of the Department of the Electrical & Computer Engineering and 

Professor Eun Jung Kim of the Department of Computer Science.  

 All other work conducted for the thesis was completed by the student 

independently.  

Funding Source 

This work was made possible in part by NSF under Grant Number 1618824. Its 

contents are solely the responsibility of the authors and do not necessarily represent the 

official views of NSF.  



 

 v 

NOMENCLATURE 

 

IC  Integrated Circuit  

IP Intellectual Property  

EDA Electronic Design Automation  

FEOL Front-end-of-line 

BEOL Back-end-of-line 

AT Arrival Time 

RAT Required Arrival Time 

STA Static Timing Analysis 

BDD Binary Decision Diagram 

ROBDD Reduced Ordered Binary Decision Diagram 

ATPG Automatic Test Pattern Generation 

VIA Vertical Interconnect Access 

 



vi 

TABLE OF CONTENTS 

Page 

ABSTRACT ....................................................................................................................... ii 

ACKNOWLEDGEMENTS .............................................................................................. iii 

CONTRIBUTORS AND FUNDING SOURCES ............................................................ iv 

NOMENCLATURE .......................................................................................................... v 

TABLE OF CONTENTS .................................................................................................. vi 

LIST OF FIGURES ........................................................................................................ viii 

LIST OF TABLES ............................................................................................................. x 

CHAPTER I  INTRODUCTION ....................................................................................... 1	

I-A. Motivation .............................................................................................................. 1	
I-B. Threat model ........................................................................................................... 2	
I-C. Previous work ......................................................................................................... 2	
I-D. Contributions .......................................................................................................... 3	

CHAPTER II  BACKGROUND ....................................................................................... 5	

II-A. Split manufacturing ............................................................................................... 5	
II-B. Static timing analysis ............................................................................................ 7	
II-C. Binary decision diagram ....................................................................................... 8	

CHAPTER III  ATTACK IN SPLIT MANUFACTURING ............................................. 9	

III-A. Greedy attack for flattened designs ................................................................... 13	
III-B. Physical attack ................................................................................................... 15	
III-C. Logic-aware physical attack .............................................................................. 24	

CHAPTER IV  EXPERIMENTS .................................................................................... 27	

IV-A. Experimental setup ............................................................................................ 27	
IV-B. Experimental results .......................................................................................... 27	

IV-B.1 Effectiveness of attack ................................................................................. 27	
IV-B.2 Effectiveness of split layer on security ........................................................ 29	
IV-B.3 Effectiveness of logic-aware physical attack ............................................... 30	



 

 vii 

CHAPTER V  CONCLUSION ........................................................................................ 33	

REFERENCES ................................................................................................................ 34	

 



 

 viii 

LIST OF FIGURES 

 Page 

Figure 1: A cross-section of an IC layout consisting of FEOL layers (transistors, 
lower metal layer) and BEOL layers (intermediate, and top metal layers) [2] .. 6	

Figure 2: Split manufacturing-aware design flow [10] ...................................................... 6	

Figure 3: (a) shows timing parameters of a design (b) shows the results after 
performing STA ................................................................................................. 7	

Figure 3 Continued ............................................................................................................ 8	

Figure 4: The dangling wire points potential connection from the Source gate towards 
Gate A. ............................................................................................................. 11	

Figure 5: Restoring missing wires by Hint #6 ................................................................. 12	

Figure 6: The VIAs between source gate and sink gate are aligned. ............................... 13	

Figure 7: (a) A circuit with missing connections. (b) Network flow model for 
inferring the missing connections .................................................................... 15	

Figure 8: Input pin 1 and 2 are in output pin 𝑎’s dangling direction. Output pin 𝑎 is in 
pin 2’ dangling direction, but not in pin 1’s dangling direction ....................... 17	

Figure 9: A circuit with FEOL connections only ............................................................. 19	

Figure 10: Reconstructed circuit from the first iteration of physical attack .................... 22	

Figure 11: Reconstructed circuit from the second iteration of physical attack ................ 22	

Figure 12: Logic expression f1 and f2 have identical ROBDD structure ......................... 24	

Figure 13: Correct connection rate on performing greedy attack and the proposed 
physical attack .................................................................................................. 28	

Figure 14: Output error rate on performing greedy attack and the proposed network-
flow attack ........................................................................................................ 29	

Figure 15: Correct connection rate and error rate vs. split layer for “Physical attack” 
on circuits b09 and b11 .................................................................................... 30	

Figure 16: ICDR for “ATPG + Physical” and “ATPG + BDD + Physical” .................... 31	



 

 ix 

Figure 17: Correct connection rate on performing different attack techniques ............... 32	



 

 x 

LIST OF TABLES 

 Page 
 
Table 1: Pin information obtained from the design in Figure 9 ....................................... 20	

Table 2: Costs of edges from output pin vertexes to input pin vertexes in the network .. 21	

Table 3: Updated costs of edges from output pin vertexes to input pin vertexes in the 
network ............................................................................................................. 22	

Table 4: Logic redundancy results from implicant .......................................................... 25	



1 

CHAPTER I  

INTRODUCTION 

I-A. Motivation 

The cost of owning and maintaining a state-of-the-art semiconductor 

manufacturing facility has become enormously expensive, even several billion dollars 

[1]. Consequently, only high-end commercial foundries now manufacture high 

performance, mixed system integrated circuits (ICs), especially at the advanced 

technology nodes [2]. Without the economies of scale, many of the design companies 

cannot afford owning and acquiring expensive foundries; hence, outsourcing their 

fabrication process to these “one- stop-shop” foundries becomes a necessity. 

Globalization of IC production flow has reduced design complexity and fabrication cost, 

but it has introduced several security vulnerabilities [3]. An attacker anywhere in the IC 

supply chain can perform the following attacks: reverse engineering, malicious circuit 

insertion, counterfeiting, and intellectual property (IP) piracy [2,4–8]. Due to these 

attacks, the semiconductor industry loses billions of dollars annually [9]. This is because 

designers have no control over their design in this distributed supply chain, and, more 

importantly, current electronic design automation (EDA) tools do not consider security 

as a design objective.  

Split manufacturing of integrated circuits reduces vulnerabilities introduced by 

an untrusted foundry by manufacturing only the front-end-of-line (FEOL) layers at an 

untrusted high-end foundry and the back-end-of-line (BEOL) layers at a trusted low-end 
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foundry [2,10–13]. An attacker in the untrusted foundry has access only to an incomplete 

design, i.e., the FEOL but not the BEOL. Thus, he can neither pirate nor insert Trojans 

into it. Recently, researchers have successfully fabricated split-manufactured designs 

with ∼0% faults and 5% performance overhead [11,12,14,15], including a 1.3-million-

transistor asynchronous FPGA [15]. Moreover, research from industry has shown that 

split manufacturing can help improve yield [14]. Although promising and feasible, split 

manufacturing still cannot guarantee security. Heuristics of physical design tools can be 

utilized to undermine the security offered by split manufacturing, as demonstrated in 

[9].

I-B. Threat model 

The objective of the attacker is to retrieve the missing BEOL connections from 

the FEOL connections. Since the attacker is in the FEOL foundry, he has access to the 

technology library. Consequently, he can obtain the following information about logic 

gates: layout structure, delay, capacitance load, and wire capacitance. Based on this 

information, an attacker can reverse engineer the FEOL components and thereby, obtains 

the incomplete gate-level netlist (this netlist lacks the BEOL information). For this 

purpose, he can use existing reverse-engineering tools [6]. The attacker neither knows 

the functionality implemented by the design nor has access to an IC that performs that 

function.  

I-C. Previous work 

The semiconductor industry proposed split manufacturing in the early 2000s to 

improve yield by using only defect-free FEOL parts [14]. Recently, Intelligence 
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Advanced Research Project Agency (IARPA) proposed split manufacturing for security 

[2]. Split manufacturing is feasible, as several research groups have successfully 

demonstrated fully functional split-manufactured designs: 32-bit multiplier, DES, and 

SRAM circuits [11,12,16]; asynchronous FPGA [17]; and RRAM-based split 

manufacturing [18]. Split manufacturing for analog designs has been proposed [19].  

An attack called proximity attack has been in proposed [10]. This attack aims to recover 

the missing BEOL connections using the physical proximity of the FEOL components 

and the heuristics of the physical design tools. To thwart this attack, a pin-swapping 

technique is proposed to swap the block pins in the layout such that the Hamming 

distance between the outputs of the original design and the design recovered by 

proximity attack is close to 50% [10]. The disadvantages of this work is that it is 

applicable only to hierarchical designs, while most designs used by industry are flattened 

designs.  

I-D. Contributions  

In this work, we develop a physical attack for flattened designs using a network-

flow model. In addition to the proximity heuristic, our framework considers timing 

constraint, load capacitance constraint and dangling wire hint. Note that most of the hints 

described in [10] are for hierarchical designs and cannot be used for flattened designs. 

Apart from that, we develop a logic-aware physical attack by incorporating logic 

redundancy detection into our network-flow model. Experiments on ISCAS-85 and ITC-

99 benchmark circuits demonstrate that our physical attack outperforms proximity attack 
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[10] for flattened designs by ∼10× and the proposed logic-aware physical attack 

effectively identifies incorrect connections. 
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CHAPTER II  

BACKGROUND 

II-A. Split manufacturing 

A chip layout can be split into FEOL part, which includes transistor and lower 

metal layers, and BEOL part, which includes intermediate and top metal layers, as 

illustrated by Figure 1. A possible split manufacturing-aware IC design flow is shown in 

Figure 2. A gate level netlist is partitioned into blocks which are then floorplanned and 

placed. Wires are assigned to different metal layers and routed so that wiring delay and 

routing congestion are minimized. The layout of the entire design is split into two: one 

containing only the FEOL layers and the other containing only the BEOL layers. The 

FEOL part is first manufactured at an untrusted, high-end foundry. Its wafer is then 

transported to a trusted, relatively low-end foundry, where the BEOL part is 

manufactured [2]. 

Split manufacturing aims to improve the security of an IC, by preventing the 

FEOL foundry from gaining full control of the IC. For instance, without the BEOL 

layers, it is very difficult for an attacker in the FEOL foundry to identify the “safe” 

places to insert Trojans or pirate the designs [2], [10] – [13].  
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Figure 1: A cross-section of an IC layout consisting of FEOL layers (transistors, lower 
metal layer) and BEOL layers (intermediate, and top metal layers) [2] 

Figure 2: Split manufacturing-aware design flow [10] 
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Static timing analysis (STA) is a simulation method to perform timing 

measurement for a circuit. Instead of simulating the logical operation of the circuit, it 

determines the worst-case condition of signals at all pins of the circuit. 

Two essential concepts associated with STA are arrival time (AT) and required 

arrival time (RAT). AT is the time when a signal arrives at a certain point and is 

propagated in topological order. RAT is the latest time at which a signal can arrive 

without affecting the overall delay of the design and is propagated in reversed 

topological order. Figure 3 show an example of delay calculation using STA. 

(a) 

Figure 3: (a) shows timing parameters of a design (b) shows the results after performing 
STA 

II-B. Static timing analysis 
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(b) 

Figure 3 Continued 

II-C. Binary decision diagram 

Binary decision diagram (BDD) [20] is a compressed representation of Boolean 

function.  It is a data structure consisting of several decision nodes and terminal nodes. A 

BDD is “ordered” if different decision variables appear in same order. A BDD is 

“reduced” if it merges isomorphic subgraph and eliminates isomorphic children. 

Reduced ordered binary decision diagram (ROBDD) is useful in functional equivalence 

checking because it is canonical.  
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CHAPTER III  

ATTACK IN SPLIT MANUFACTURING 

 

In a common embodiment of split manufacturing, FEOL layers are manufactured 

by an offshore high-end foundry while BEOL manufacturing and the final integration 

are conducted in a trusted foundry. The security risk in this scenario arises from the 

attacker in the offshore foundry.  

The objective of the attacker is to retrieve the missing BEOL connections from 

the FEOL connections. Since the attacker is in the foundry, he has access to the 

technology library. Consequently, he can obtain the following information about logic 

gates: layout structure, delay, capacitance load, and wire capacitance. Based on this 

information, an attacker can reverse engineer the FEOL components and thereby obtains 

the incomplete gate-level netlist (this netlist lacks the BEOL information). For this 

purpose, he can use existing tools [21]. The attacker neither knows the functionality 

implemented by the design nor has access to an IC that performs that function.  

An attacker has the disadvantage that the solution space can be astronomically 

large. If k gate output pins miss their connections, there are 2k2 possible connections in 

the worst case. An attacker can tremendously reduce this large solution space based on 

the knowledge that the designer used conventional physical design tools to design the 

target IC, which has been depicted in [10]. An attacker can take advantage of the 

following hints, which are public knowledge.  
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Hint 1: Physical proximity. Physical design tools aim to minimize wirelength, 

thereby improving performance and reducing power consumption. Therefore, a 

connection between two pins is rarely very long. Hence, an attacker will prefer to 

connect two pins that are close to each other rather than the ones that are far apart.  

Hint 2: Acyclic combinational logic circuit. With the exception of ring 

oscillators, flip-flops, and latches, combinational loops are rare in a design. 	

Hint 3: Load capacitance constraint. A gate can drive only a limited load 

capacitance to honor slew constraints. The maximum load capacitance of a gate can be 

obtained from the physical design library, which is public information. Hence, an 

attacker will consider only connections that will not violate the load capacitance 

constraints.  

Hint 4: Directionality of dangling wires. Physical design tools route wires from 

a source gate to the sink node along the latter’s direction. Hence, the directionality 

dangling wires at lower metal layers indicates the direction of their destination cell. An 

attacker can disregard components in the other directions.  

Consider the example in Figure 4. There is a dangling metal pointing towards 

gate A in the FEOL design available to the attacker. Intuitively, the missing upper metal 

is most likely to be connected with gate A instead of gate B.  

Hint 5: Timing constraint. If a connection violates the timing constraints, then 

this connection can be excluded. An attacker can at least obtain a conservative estimate 

on timing constraints through educated guess on clock period.  
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Figure 4: The dangling wire points potential connection from the Source gate towards 
Gate A. 

Hint 6: Logic redundancy. Logic synthesis tools tend to avoid logic 

redundancy. An attacker can use this heuristic to disregard connections that result in 

redundant logic.  

In Figure 5, the dashed lines indicate the BEOL information, which is not 

available to the attacker. If one connects the output of G3 to G6, function 𝑓# = 	𝑎𝑏 +

𝑏(𝑐 + 𝑎𝑐 = 𝑎𝑏 + 𝑏(𝑐 is redundant. Such a connection will not exist, if the design is 

Source
gate

Gate B

Gate A
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generated by a reasonable logic synthesis tool. Consequently, an attacker will connect 

the output of G3 to f2, thus deducing the correct connection.  

Figure 5: Restoring missing wires by Hint #6 

Hint 7: Physical alignment. A Vertical Interconnect Access (VIA) is a small 

insulating oxide layer that connects different metal layers. Physical design tools tend to 

align the VIAs, as illustrated in Figure 6. An attacker can use this heuristic to favor 

connections between aligned VIAs.    

G2

G5G1

G3

G4

G6

a

b

c

d
e

ab

b'c

ac

de

ab+b'c f1

f2
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Figure 6: The VIAs between source gate and sink gate are aligned. 

III-A. Greedy attack for flattened designs 

 The greedy attack mainly follows the proximity hint (Hint #1) and the acyclic 

combinational logic hint (Hint #2) [10]. Unlike in hierarchical designs [10], where each 

missing net has only 2 pins, the net in flat designs may have multiple fanouts, i.e., more 

than 2 pins. In the greedy attack, we iteratively connect a gate input pin to its nearest 

gate output pin. After each connection, we check if that connection results in a 

combinational loop. If a loop is found, this connection is reverted, the input pin is tried 

to connect with the next nearest output pin that does not result in a combinational loop. 
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This procedure is repeated till all gate input pins are connected. At the end, if there is a 

dangling output (i.e., the output of a gate that is not connected to any input), we find its 

nearest multi-fanout net and connect the nearest input pin in this net to the dangling 

output pin. Algorithm 1 describes the steps involves in the greedy attack.  

 

Input: FEOL layers 

Output: Netlist with BEOL connections 

Reverse engineer FEOL layers 

while Unassigned pins exist do 

 Select an arbitrary unassigned input pin as a TargetPin 

 ListOfCandidatePins = BuildCandidatePinsList(TargetPin) 

Select the output pin from ListOfCandidatePins that is closest to TargetPin as a 

CandidatePin 

 Connect TargetPin and CandidatePin 

 Update netlist 

end 

return netlist                                                                              

BuildCandidatePinsList(TargetPin) 

Input: TargetPin  

Output: Candidate pins for TargetPin 

CandidatePins = Output pins 

for each PinI Î CandidatePins do 
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if CombinationalLoop(TargetPin, PinI) then 

CandidatePins -= PinI 

end 

end 

return CandidatePins 

Algorithm 1: Greedy attack on flattened design 

We describe a network-flow based physical attack that considers Hints #1—#5, 

and Hint #7 of aforementioned hints in a holistic manner. This is illustrated by an 

example in Figure 7, where the attack needs to infer the connections between output pins 

{𝑎, 𝑏} and input pins {1, 2, 3}.  

Figure 7: (a) A circuit with missing connections. (b) Network flow model for inferring 
the missing connections 

�

�

�

�

�

� �

a

b

1

2

3

(a) (b)

III-B. Physical attack 
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The network is a directed graph 𝐺	 = 	 (𝑉, 𝐸), where 𝑉 is a set of vertices and 𝐸 is 

a set of edges. The set 𝑉 is composed by a set of vertices corresponding to the output 

pins (𝑉5), a set of vertices corresponding to the input pins (𝑉6), the source vertex (𝑆) and 

the target vertex (𝑇). The set 𝐸 consists of 𝐸𝑆𝑜, edges from 𝑆 to every output pin vertex, 

𝐸𝑜𝑖, edges from output pin vertices to input pin vertices, and 𝐸6;  , which includes edges 

from every input pin vertex to the target vertex. The network for Figure 7(a) is shown in 

Figure 7(b). In a network flow solution, certain amount of flow emerges from 𝑆, goes 

through network edges and finally arrives 𝑇. The flow through edge (𝑎, 𝑖) ∈ 	𝐸𝑜𝑖 infers 

wire connection between output pin 𝑎 and input pin 𝑖.  

The six hints are addressed by edge construction for 𝐸𝑜𝑖, edge capacities, edge 

costs and dynamic use of the network flow model. A necessary condition for including 

an edge (𝑎, 𝑖) 	 ∈ 	𝐸𝑜𝑖 is that output pin 𝑎 is along the direction of input pin 𝑖’s dangling 

wire and vice-versa. For the example in Figure 8, edge (𝑎, 2) is included in 𝐸𝑜𝑖, but 

(𝑎, 1) is not. Another condition is that the connection between 𝑎 and 𝑖 would not result 

in timing violation. We can estimate the slack at 𝑎 by subtracting the arrival time (AT) at 

𝑎 from the required arrival time (RAT) at 𝑖. This is an optimistic estimation without 

considering the delay from 𝑎 to 𝑖. If this optimistic slack is less than zero, then including 

the delay from 𝑎 to 𝑖 would make the violation even worse. Then, the connection 

between 𝑎 and 𝑖 is disallowed, i.e., there is no (𝑎, 𝑖) in 𝐸𝑜𝑖. Sometimes the AT and RAT 

are not available due to wire disconnections, then we replace AT with lower bound, 

which is the AT at the primary input, and replace RAT with upper bound, which is the 

RAT at the primary output. The estimate obtained as such provides an upper bound for 
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the slack. By constructing 𝐸𝑜𝑖 as such, the hint of directionality of dangling wire (Hint 

#4) and timing constraints (Hint #5) are followed.  

The capacity 𝑐𝑆𝑎 for each edge in 𝐸𝑆𝑜 is defined as the load capacitance constraint 

for output pin 𝑎. The capacity 𝑐𝑎𝑖 for each edge in 𝐸𝑜𝑖 is infinity. The capacity 𝑐𝑖𝑇 for each 

edge in 𝐸𝑖𝑇 is the input capacitance for pin 𝑖. A flow solution that satisfies the edge 

capacity constraints follows the hint of load capacitance constraint (Hint #3).  

The cost 𝑤𝑎𝑖

	

for each edge in 𝐸𝑜𝑖 is the wirelength in connecting pin 𝑎 and 𝑖. The other 

edge costs are set to 0. If we run min-cost flow algorithm on this network, the solution 

minimizes the total flow cost, which is the total wirelength for all connections. This edge 

cost definition addresses the proximity hint (Hint #1).  

 

 

Figure 8: Input pin 1 and 2 are in output pin 𝑎’s dangling direction. Output pin 𝑎 is in 
pin 2’ dangling direction, but not in pin 1’s dangling direction 

The hint of acyclic combinational logic circuit (Hint #2) is difficult, if not 

impossible, to be handled in a one-shot network flow solution, because a loop can be 

a

1

2
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detected only after the connection solution is obtained. To solve this issue, we used an 

iterative network-flow approach. After connections are inferred from a network flow 

solution, a circuit traversal is performed to check if any loop exists. If so, the longest 

inferred connection is picked. This connection must correspond to an edge in 𝐸𝑜𝑖. The 

min-cost flow algorithm is conducted again after removing this edge from the network. 

This procedure is repeated until no loop is detected.  

In the min-cost network flow problem, the decision variables are the flow 𝑥𝑖

,

𝑗 

going through each edge 𝑖, 𝑗	 ∈ 𝐸 Then the problem is formally formulated as follows.  

𝑀𝑖𝑛																													Σ 6,C ∈D𝑤6,C ∙ 	𝑥6,C																																															 1  

𝑠. 𝑡. 					Σ6|(6,C)∈D𝑥6,C = 	 ΣJ|(C,J)∈D𝑥C,J, 𝑗 ∈ 𝑉5 ∪	𝑉#																			(2) 

Σ 6,; ∈DLM𝑥6,; = 	Σ 6,; ∈DLM𝑐6,;																																																															(3) 

Σ N,6 ∈DOP
𝑥N,6 = 	 Σ 6,; ∈DLM𝑐6,;																																																															 4  

𝑥6,C 	≤ 	 𝑐6,C, ∀ 𝑖, 𝑗 ∈ 𝐸																																																																		(5)	 

This problem can be solved by off-the-shelf algorithms, e.g., the Edmonds-Karp 

algorithm [22], which can obtain the optimal solution in polynomial time.  

Consider the BEOL connections of a combinational logic circuit shown in Figure 

9. This design has two primary inputs (𝑁1, 𝑁2), one primary output (𝑁3), and four gates 

(𝐺𝑎𝑡𝑒	1-4). 𝑃XYZ[,\[Z  denotes a pin where net 𝑋, net 𝑌 are the inputs of the gate and net 

𝑍 is the output of the gate. The RAT at the primary output of this design is requested to 

be less than 9. The gate delays of gate 1 - 4 are 1, 2, 1, 2.5 respectively. The wire delays 



 

 19 

from 𝑃#,` to 𝑃a,b, from 𝑁2 to 𝑃c,b, and from 𝑃c,` to 𝑃d,e are equal to 2, and the wire delay 

from 𝑃d,` to 𝑁3 is 0.2. 

 

 

Figure 9: A circuit with FEOL connections only 

Table 1 demonstrates the locations, timing parameters and capacitance 

information of each pin an attacker obtains from the design in Figure 9. The location 

fields are the X-Y coordinates of the pins in the design. The coordinates are shown in 

absolute unite for ease of understanding. The direction fields are the directionalities of 

pins, where E, W, N, and S denote east, west, north, and south respectively. Since the 

AT at 𝑃#,b, 𝑃a,e, 𝑃d,b and the RAT at 𝑃a,f	are not available due to the wire 

disconnections, the AT at those pins are replaced with the AT at primary input, which is 

equal to 0. The RAT at 𝑁1 and 𝑃a,f are replaced with the RAT at primary output, which 

is equal to 9.  
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Table 1: Pin information obtained from the design in Figure 9 
Pin Location Direction Input capacitance/ load 

capacitance constraint 

AT RAT 

𝑁1 (0,0) E N/A 0 13 

𝑁2 (55,120) N N/A 0 0.3 

𝑁3 (155,0) S N/A 8.7 9 

𝑃#,b (30,20) N 1 0 5 

𝑃#,f (30,15) N 5 1 6 

𝑃c,b (55,115) W, S 1 2 2.3 

𝑃c,f (50,115) N, E 5 4 4.3 

𝑃a,b (45,15) E 1 3 8 

𝑃a,e (50,15) N, S, W 1 0 8 

𝑃a,f (50,10) N, S, E 5 4 9 

𝑃d,b (150,10) W, N 1 0 6.3 

𝑃d,e (150,5) E, S 1 6 6.3 

𝑃d,f (155,5) W, N 5 8.5 8.8 

 

Table 2 shows the costs of each edge in the network flow model. The cost of 

edges between 𝑃#,b and 𝑃#,f, between 𝑃a,e and 𝑃a,f, and between 𝑃d,b and 𝑃d,f are 

infinite because a gate’s output will not be connected with its input. The cost of edges 

between 𝑃#,f and 𝑃a,e, and between 𝑃c,f and 𝑃d,b are infinite because the output of one 

gate will not be connected to both inputs of another gate.  The cost of edges between 𝑃#,b 
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and 𝑃d,f,, and between 𝑃a,e and 𝑃d,f are infinite because those connections result in 

timing violation.  The capacity of each edge in the network is equal to the pin 

wirelength, except for the edge between 𝑃a,f and 𝑃d,b, and the edge between 𝑃c,f and 

𝑃a,e, where the square root of pin distances are used to favor physical alignment.  

Table 2: Costs of edges from output pin vertexes to input pin vertexes in the network  
 𝑁1 𝑁2 𝑃#,f 𝑃c,f 𝑃a,f 𝑃d,f 

𝑃#,b 50  125 ∞ 115 30 ∞ 

𝑃a,e 65 110 ∞ 10 ∞ ∞ 

𝑃d,b 160 205 125 ∞ 10 ∞ 

 

Figure 10 is the circuit reconstructed by the attacker with performing Edmonds-

Karp algorithm once. As one can see, pin 𝑁1 is still unsigned, and the connection from 

𝑃a,f to 𝑃#,b results in a loop in the circuit. Thus, the attacker decreases the costs of edges 

inferred with 𝑁1, increases the cost of the edge between 𝑃a,f and 𝑃#,b, then performs the 

second iteration of attack. The updated cost of each edge in the network is demonstrated 

in Table 3 where the costs of edges inferred with 𝑁1 are decreased by 30%, while the 

cost of the edge between 𝑃a,f and 𝑃#,b is increased by 30%. The reconstructed circuit is 

shown in Figure 11.  
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Table 3: Updated costs of edges from output pin vertexes to input pin vertexes in the 
network 

𝑁1 𝑁2 𝑃#,f 𝑃c,f 𝑃a,f 𝑃d,f 

𝑃#,b 35 125 ∞ 115 39 ∞ 

𝑃a,e 45 110 ∞ 10 ∞ ∞ 

𝑃d,b 112 205 125 ∞ 10 ∞ 

Figure 10: Reconstructed circuit from the first iteration of physical attack 

Figure 11: Reconstructed circuit from the second iteration of physical attack 

Algorithm 2 illustrates each step involved in physical attack. 

Input: FEOL layers 

Output: Netlist with BEOL connections 

Reverse engineer FEOL layers 
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Build network for unsigned pins 

for each edge 𝐸𝑠𝑜 where pin 𝑜 is an unassigned output pin 

Set capacity 𝐶𝑠𝑜 for 𝐸𝑠𝑜 to the load capacitance constraint for pin 𝑜 

end 

for each edge 𝐸6Z where pin 𝑖 is an unassigned input pin 

Set capacity 𝐶6Z for 𝐸6Z to the input capacitance constraint for pin 𝑖	 

end 

for each edge 𝐸i6 where pin 𝑜 is an unassigned output pin and pin 𝑖 is an 

unassigned input pin 

Set capacities 𝐶i6 for 𝐸i6 that violates dangling wires hint or timing 

constraints to 0  

Set cost 𝜔i6 for 𝐸i6 to the wirelength in connecting pin 𝑜 to pin 𝑖 

end 

Run Edmonds-Karp algorithm 

while Unassigned pins exist or loop exists do 

Update flow cost of inferred edges 

Run Edmonds-Karp algorithm 

end 

return netlist 

Algorithm 2: Physical attack 
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We develop a logic-aware physical attack by incorporating logic redundancy 

(Hint #6) into our network-flow framework with using Automatic Test Pattern 

Generation (ATPG) [23] and BDD [20]. We utilize ATPG to recognize redundant wires 

within a design [24], which are potential incorrect connections made by a physical 

attack. However, ATPG alone is not sufficient since limited untestable faults are allowed 

in commercial logic synthesis tools, which satisfy testability to achieve the optimal area-

delay-testability trade-off instead of optimizing testability individually. Thus, we 

integrate BDD into our logic-aware physical attack.  

Along with the circuit traversal, BDD for the visited part is constructed. We use 

this BDD to detect following logic redundancies:  

(i) A restored circuit with BDD nodes corresponding to constant ’0’ or ’1’ 

indicates that input-independent computing is performed.  

(ii) If two circuit pins are mapped to the same BDD node, there exists logic 

redundancy since ROBDD is canonical [20], as illustrated in Figure 12. 

Figure 12: Logic expression f1 and f2 have identical ROBDD structure 

III-C. Logic-aware physical attack 
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(iii) For a multiple-input logic gate, if the BDD node of one input pin is an 

implicant of the BDD node of another input pin, the circuit can be 

simplified. Without loss of generality, we illustrate this case in Table 4 

with two-input basic logic gates as all compound multiple-input logic 

gates function as the combination of a few basic logic gates. In case of 

XOR, 𝑓# ∙ 𝑓c ⊆ 𝑓# ∙ 𝑓# ⊆ ∅. In case of XNOR, 𝑓# ∙ 𝑓c = 𝑓# + 𝑓c = 𝑓c. 

Table 4: Logic redundancy results from implicant  
Type Input Output 

AND 𝑓# 𝑓c 𝑓 = 𝑓# ∙ 𝑓c = 𝑓# 

OR 𝑓# 𝑓c 𝑓 = 𝑓# + 𝑓c = 𝑓c 

XOR 𝑓# 𝑓c 𝑓 = 𝑓# ∙ 𝑓c + 𝑓# ∙ 𝑓c = 𝑓# ∙ 𝑓c 

XNOR 𝑓# 𝑓c 𝑓 = 𝑓# ∙ 𝑓c + 𝑓# ∙ 𝑓c = 𝑓# ∙ 𝑓c 

 

The logic redundancies detected by BDD is not allowed, because they 

unnecessarily increase the cost of implementation, i.e., the size of physical 

implementation, the complexity of Boolean network, and the delay of the design. To 

prevent a logic redundancy from propagating, we divide a design into several stages 

where each stage is determined at the point BDD detects redundancy. Algorithm 3 

demonstrates the logic-aware physical attack.  

 
Input: FEOL layers 

Output: Netlist with BEOL connections 
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Reverse engineer FEOL layers 

Apply Physical attack 

Build BDD of the reconstructed circuit and divide the circuit into stages 

if logic redundancy exists  

  Locate redundant wires using ATPG 

 Update inferred edges in network 

end 

return netlist; 

Algorithm 3: Logic-redundancy-aware network-flow attack 
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CHAPTER IV  

EXPERIMENTS 

IV-A. Experimental setup 

We evaluate our techniques using ISCAS-85 combinational benchmark circuits 

[25] and ITC-99 benchmark [26]. Each circuit was synthesised by Synopsys Design 

Compiler tool [27]. Placement and routing were performed using Cadence SoC 

Encounter tool [28] for 180nm CMOS technology [29].  

We assess the effectiveness of the attack model by identifying the number of 

correct connections it makes. An attacker always tries to make as many correct 

connections as possible. In addition, we can evaluate the performance of attack 

techniques through error rate, the number of wrong outputs produced on applying a 

specific number of inputs [11–13,16]. The objective of the attacker is to minimize the 

error rate of the recovered design. The error rate between the outputs of the original 

design and the design reconstructed using the attack was determined by applying 50,000 

random input patterns.  

IV-B. Experimental results 

IV-B.1 Effectiveness of attack  

For each benchmark circuit, we performed greedy attack and physical attack 

respectively. Figure 13 shows the percentage of pins that are correctly connected by 

using different attack techniques. In case of “Greedy attack,” the average number of 
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correct connections is around 8%, lower than that of “Physical attack.” This verifies that 

the greedy attack is not applicable to flattened designs while physical attack is effective.  

 

 

Figure 13: Correct connection rate on performing greedy attack and the proposed 
physical attack 

Figure 14 depicts the error rate of primary output ports between the original 

design and the design subject to different attack techniques. The error rate of “Physical 

attack” is 64.36%, lower than that of “Greedy attack,” highlighting the effectiveness of 

the proposed physical attack.  
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Figure 14: Output error rate on performing greedy attack and the proposed network-flow 
attack 

IV-B.2 Effectiveness of split layer on security 

The layer at which the BEOL and FEOL split occurs is called the split layer. If 

the split layer is M2 or M3, it may guarantee security, but it demands a relatively high-

end BEOL facility, and thus increasing its cost. Contrarily, if the split layer is M5 or M6, 

it may not guarantee security, but it does not demand a relatively high-end BEOL 

facility, and thus decreasing its cost. Thus, it is necessary to find the effect of split layer 

on the proposed attack.  

Figure 15 shows the correct connection rate and error rate for b09 and b11 on 

allowing different split layers. It can be seen that when M5 or M6 is the split layer, the 

proposed attack is highly effective, because there are less number of candidate solutions. 

It can be seen that when M3 or M4 is the split layer, the proposed attack is ineffective 

because there are more number of candidate solutions.  
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Figure 15: Correct connection rate and error rate vs. split layer for “Physical attack” on 
circuits b09 and b11 

IV-B.3 Effectiveness of logic-aware physical attack 

In order to evaluate the effectiveness of the proposed logic-aware physical attack, 

the physical attack is compared with following logic-aware physical attack techniques: 

• ATPG + Physical Logic-aware physical attack to circuits with detecting logic 

redundancy via ATPG alone. 

• ATPG + BDD + Physical Logic-aware physical attack to circuits with detecting 

logic redundancy via both ATPG and BDD.      

 We access the effectiveness of the proposed logic-aware physical attack by 

identifying the number of incorrect connections detected by “ATPG + Physical” and 

“ATPG + BDD + Physical” respectively. Figures 16 shows the results of incorrect-

connection detection rate (ICDR), which is the number of incorrect connections detected 
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by logic redundancy detector over all the incorrect connections a physical attack makes. 

The average ICDR of “ATPG + Physical” is 70.9%, higher than 50%. This demonstrates 

that ATPG is an effective way to recognize incorrect connections. Meanwhile, the 

average ICDR of “ATPG + BDD” is 73.9%, higher than that of “ATPG”, which verifies 

that BDD enhances the ability of identifying incorrect connections. 

 

 

Figure 16: ICDR for “ATPG + Physical” and “ATPG + BDD + Physical” 

Figure 17 shows the results of correct connection rate subject to different attack 

techniques. In case of “Physical,” the average correct connection rate is reduced to 

around 43%, this is because the split layer in this experiment is lower than before.  One 

can see that, for each benchmark circuit, the average connection rate of “ATPG + 

Physical” and “ATPG + BDD + Physical” are close to each other, and both of them are 

lower than that of “Physical.”  
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Figure 17: Correct connection rate on performing different attack techniques 

 Although effectively detecting incorrect connections, the proposed logic-aware 

physical attack cannot ensure the improve the attack performance. This is because our 

logic-aware physical attack lacks intelligence to handle incorrect connections. Simply 

increasing the cost of incorrect connections in the network-flow model is not sufficient.  
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CHAPTER V  

CONCLUSION 

 
Split manufacturing, though not a universal solution for all security problems, it 

can protect commercial designs from rogue elements in the FEOL foundry. While state-

of-the-art attack is applicable only to hierarchical designs [10], we have proposed an 

attack for industry-relevant flattened designs, using the heuristics of physical designs 

tools. Our attack success rate is ∼10× that of the state-of-the-art algorithm [10]; our 

attack predicts 80% of the missing BEOL connections correctly, while the state-of-the-

art predicts only 8% for flattened designs.  

While the logic-aware attack fails to further increase the correct connection rate, 

we showed that it can identify incorrect connections effectively.  
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