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ABSTRACT 

 

Measurement invariance testing is prerequisite if meaningful comparisons of 

latent construct across groups are important to the study in social science. If 

measurement invariance is rejected, the result of non-invariance might be from 

unbalanced covariates across groups. Propensity score is one approach to correct 

unbalanced covariates in the data when these unbalanced covariates are the source of 

measurement non-invariance.  

The main purpose of this dissertation is to evaluate propensity score adjustment 

in testing measurement invariance in both empirical data and Monte Carlo simulation 

study. The traditional logistic regression and machine learning estimation method (i.e., 

random forest) were applied to obtain accurate propensity score. 

In empirical study, when propensity score was applied as a new covariate to 

adjust unbalanced covariates across groups, measurement invariance was improved from 

metric invariance to scalar invariance. Weighting by odds method with random forest 

estimation improved the metric invariance to scalar invariance, but weighting with 

logistic regression did not.  

The results of a simulation study indicated a substantial Type I error rate inflation 

if ignoring the unbalanced covariates among groups and using multiple group CFA to 

conduct the measurement invariance test. Type I error rate inflation was also observed if 

logistic regression was applied to adjust measurement invariance. On the other hand, 
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using random forest estimation method to balance covariates across groups gave 

accurate measurement invariance test conclusion.  
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

Measurement invariance has become a common practice before using a 

measurement in social science. We often study latent constructs measured by multiple 

observed items. In order to compare people from different groups (e.g., male vs. female), 

the relationship between the observed items and latent construct should be same across 

groups (Yoon & Millsap, 2007).  For example, in order to compare males and females 

on the depression scale, if males and females are identical on the latent depression 

structure, they should have the same distribution of observed depression items. In this 

case, measurement invariance holds for males and females. If measurement invariance is 

violated at group level, persons with same latent depression construct but from different 

gender groups, will receive different scores on the observed items depending on group 

membership. In this situation, the difference on observed depression scores might not 

represent the true difference on latent depression construct, thus the use of test scores on 

the measurement is inappropriate, and it will not be valid to compare test scores among 

groups. Therefore, measurement invariance is a critical condition before comparing 

group differences on the observed items.  

In practice, sometimes measurement invariance across groups is not well 

established in research (e.g., Hox, De Leeuw, & Zijlmans, 2015; Cham, Hughes, West, 

& Im, 2015). If the comparison of group means is important to the study, failure to 

establish measurement invariance is problematic. Therefore, dealing with measurement 

non-invariance becomes an important topic. Measurement non-invariance might come 
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from some non-invariance items across all items, or other unbalanced covariates across 

groups (Van De Schoot, Schmidt, De Beuckelaer, Lek, & Zondervan-Zwijnenburg, 

2015). If the non-invariance is due to the effect of other covariates that are not balanced 

across groups, measurement non-invariance can be explained and corrected by the 

unbalanced covariates through propensity score method (Hox et al., 2015). Propensity 

score can be used to balance groups on the observed covariates. However, propensity 

score is rarely used in testing measurement invariance.  

The purposes of this dissertation are to review different aspects in measurement 

invariance and propensity scores, and to apply propensity score adjustment in 

measurement invariance test in both empirical data and Monte Carlo simulation study. 

The current literature review consists of two parts: measurement invariance and 

propensity score. The first part consists of four sections to introduce measurement 

invariance: definition of measurement invariance, multiple group CFA under SEM 

framework, and hierarchical procedure of measurement invariance. The second part 

includes the framework of propensity score as a method to deal with the situation when 

violations of measurement invariance exist. The second part consists of four sections: 

logistic regression, machine learning techniques, group equating, and balance check.  

Measurement Invariance 

Measurement invariance is established when the observed score’s probability in a 

test given the identical ability is equivalent across different groups (Mellenbergh, 1989; 

Meredith & Millsap, 1992; Yoon & Millsap, 2007). The formal definition of 

measurement invariance is expressed as follows. 
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( | , ) ( | )P X G P X    ,                                                (1) 

X is the observed score,   is latent construct underlying X , and G is the 

grouping variable. From this formula, the conditional probability of X given   is 

independent of grouping variable. In other words, measurement invariance holds when 

individuals with same latent construct score have the same probability distribution of 

observed scores regardless of grouping variable.  

The commonly used grouping variables are subgroups of population, different 

time points, and different test forms (Meade & Bauer, 2007). Subgroups of population 

may include demographics such as gender, ethnicity and country. In longitudinal studies, 

researchers repeatedly conduct a measurement across time, measurement invariance 

across time should be tested (Millsap, 2010). Measurement invariance can be tested 

across different test forms such as face-to-face interview, online survey, or telephone 

survey (Hox et al., 2015).  

Factorial Invariance 

Measurement invariance in a factor model is defined as factorial invariance, and 

factorial invariance is a special case of measurement invariance (Yoon, 2008). 

Measurement invariance concerns the entire distribution of scores, while factorial 

invariance only considers its means and covariance in factor structures. Therefore, 

measurement invariance has a broader scope than factorial invariance.  

The most common way to conduct measurement invariance is multiple group 

confirmatory factor analysis (MGCFA). Under confirmatory factor analysis framework, 

factorial invariance is examined for the equivalence of parameters specified in the model 
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across groups. In a single unidimensional factor model, the relationship between the 

latent factor   and the continuous observed scores X in the CFA model are represented 

as:  

ij j j j ijX       , (2) 

Where ijX  is an observed score of an individual i on an item j ; j and j are 

intercept and factor loading on an item j; j is the latent factor for an individual j; ij is 

the unique factor score. For the multiple groups, the corresponding measurement model 

is, 

g g g g gX       , (3) 

where g indicates group membership. Given the assumption that   factor score 

and  unique factor scores are uncorrelated with each other (i.e., cov( , ) 0   ) in each 

group, the covariance structure of X  in group is:  

'g g g g g      , (4) 

 where g is a population covariance matrix of X  in group g,   is a variance 

covariance matrix for factors in group g, g is a variance covariance matrix for the 

unique factors in group g.  The expectation of X in each group is  

( )g g g gE X k   , (5) 

where gk is the factor mean in group g . If the highest level of measurement 

invariance (i.e., strict factorial invariance) holds, it follows that same intercepts (i.e.,

g  ), same factor loadings (i.e., g  ) and same unique factors (i.e., g  ) across 

groups. The formula (4) and (5) can be simplified as: 
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'g g     , (6) 

( )g gE X k   , (7) 

The equation 6 reveals that the group difference in covariance structure of 

observed scores ( X ) is due to the difference in covariance structure of latent factors 

( g ). Similarly, in equation 7, the group differences in means of X  are due to factor 

means ( gk ).  

Hierarchical Procedure of Measurement Invariance 

The procedures to test measurement invariance are hierarchically: configural 

invariance, metric invariance, scalar invariance, and strict invariance (Steenkamp & 

Baumgartner, 1998; Vandenberg & Lance, 2000; Yoon & Millsap, 2007). Depending on 

which set of parameters are tested for group equality, different levels of factorial 

invariance are established sequentially, and it is easy to locate at which level of 

invariance is violated. Each level is described in details as follows. 

Configural Invariance  

The first level is the least restrictive model, which merely assuming same 

patterns in factor loadings, same numbers of latent factors in each group, and same 

locations of the zero and nonzero loadings in each group. No other invariance constraints 

are placed on this level. This is the baseline model, after establishing the configural 

invariance we can further test subsequent higher level of factorial invariance.  If the 

configural invariance is violated, the subsequent factorial invariance testing is not 

meaningful. The violation of configural invariance indicates lack of configural 
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invariance across groups, meaning either the number of factors varies across groups or 

the factors are defined by different variables in each group.  

Metric or Weak Invariance  

After establishing configural invariance, the second level the factor loading are 

constrained to be equal across all groups ( g  ), but allow differences in intercepts and 

unique factor variances. Metric invariance is essential for most purposes, since factor 

loadings affect the means, variance, and correlations among the measured variables. If 

the metric invariance is violated, the linear relation between factor score and observed 

score is not equal across groups, and one unit change in latent factor will lead to 

different unit change in the observed score in different group.  

Scalar or Strong Invariance  

After establishing metric invariance, further test for the invariance of intercepts is 

conducted. The scalar invariance is defined as the equivalence of intercepts across 

groups (i.e., g  ) in addition to metric invariance. The intercepts will not affect the 

variance or correlations among the measured variables, but they do affect the means. If 

the invariance for intercept is violated across groups, the observed score in one group 

will systematically higher or lower than in another group given same latent factor. 

Therefore, to makes group mean comparisons meaningful, scalar invariance is a required 

step, as seen in equation 7.  

Strict Invariance  

The most restrict invariance level require the unique factors are invariant across 

groups (i.e., g  ),  after the previous conditions of equal factor loading, intercept are 
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established. With strict invariance, observed group differences on means or covariance 

are from true group difference on latent factors. Violations of strict invariance do not 

affect the means, but do affect correlations and covariance among observed variables. It 

may indicate that the reliabilities of at least some measured variables differ across 

groups. This is not a necessary step to compare the latent factor means across groups 

(Widaman & Reise, 1997). In reality, it is difficult to achieve strict invariance. 

Propensity Score 

Propensity score methods are originally proposed by Rosenbaum and Rubin 

(1983), experiencing tremendous increase of interest in many scientific areas including 

the social science. Propensity score is frequently interpreted in the context of causal 

effect. To estimate causal effect, researchers try to equate the treatment and control 

group prior to any treatment (i.e., baseline covariates) by randomization in practice 

(West et al., 2014). When sample size is large enough, randomization guarantees that the 

means of the treatment and control groups are equal on all possible baseline covariates, 

whether measured or unmeasured. In this situation, the average causal effect is 

calculated by average treatment effect, t cATE Y Y   . In social science, it is not always 

practical or ethical to randomly assign participants in control or treatment group, and 

therefore it is difficult to make a strong causal effect conclusion. 

The main purpose of propensity scores is to balance the treatment and 

comparison groups on observed baseline covariates, and therefore propensity score can 

increase researcher’s ability to draw causal inferences. Propensity score e(X) is defined 
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as a conditional probability that an individual is to be assigned to a treatment group 

given a set of observed covariates X at baseline (Rosenbaum and Rubin, 1983): 

( ) Pr( 1| )e X T X   , (8) 

A propensity score reduces the selection bias through balancing groups based on 

the observed covariates. In order to provide causal inference for the outcome, 

assumptions for propensity score analysis (i.e., ignorable treatment assignment) involve 

(Rosenbaum & Rubin, 1983; Cham, 2013): (1) given a set of observed covariates X, the 

potential outcomes of a participant in the treatment and control groups are conditionally 

independent of the treatment assignment; (2) given the covariates X, the participant has 

non-zero probabilities of being assigned to either the treatment or control group. When 

the strong ignorability assumption holds for the covariates, the assumption also holds for 

the propensity score. Balance on participants’ propensity scores e(x) between treatment 

conditions provides unbiased average treatment effect estimate in the non-randomized 

study.   

Covariates Selection  

Before the propensity score is estimated, the selection of a composite set of 

covariates (X) at baseline is the most critical issue in propensity score analysis. Since 

propensity scores are only estimated from the observed covariates, covariates selection 

could seriously affect the accuracy and precision for propensity score (West et al., 2014). 

Only a rich set of covariates can meet the strongly ignorable assumption, and it is critical 

giving detailed information about collecting the covariates (Thoemmes & Kim, 2011). 

West et al. (2014) suggested to use all possible variables that might be related to both 
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treatment (grouping variables) and outcome, and include as many as possible in the 

covariates measured at baseline. That is, any potential confounder that might bias the 

treatment effect must be collected at the baseline in the propensity score estimation.  

There are three types of relationship among the covariates X, the treatment 

condition T, and the outcome variable Y: (1) X is a confounder that causes both T and 

Y; (2) X only causes Y but has no relation with T; (3) X only causes T but has no 

relation to Y. In scenario (1), X acts as a confounder (i.e., influence both the grouping 

variables and the outcome) and must be controlled to achieve an unbiased estimate of the 

causal effect. In scenario (2) and (3), X does not confounder the causal effect, and 

therefore X does not need to be controlled for an unbiased estimate of the causal effect. 

Assuming all potential confounders are collected and successfully balanced, the 

consistent estimates for the average causal effect will be established.  

Sensitivity Analysis  

It should be noted that researchers’ attempt to employ all important covariates 

cannot be empirically tested. Sensitivity analysis is a necessary step to test how the 

current results might be affected if there were one or more unmeasured confounders 

(Rosenbaum, 1986). The unmeasured variables are hidden variables, and they act as 

hidden bias. The adjustment treatment effect is estimated as (West et al., 2014), 

* ( *)d d smd  , (9) 

where d is the treatment effect after controlling observed covariates,   is the 

correlation between unobserved covariate with the outcome, *smd  is the rescaled by 



 

10 

 

using 
2

smd
, ( *)smd together is the hidden bias from unobserved covariates. Thus the 

adjustment treatment effect is calculated by removing the hidden bias due to unmeasured 

covariates from estimated treatment effect. In practice,   and *smd are unknown, we 

need to assume their values either from the observed data or from theory and literature. 

For example, Hong (2004) suggested to use the largest correlation between observed 

covariates and outcome as  , and the largest absolute *smd value among observed 

covariates as *smd  to represent the worst scenario. After obtaining the adjustment 

treatment effect, we can conclude whether this effect remains statistically significant. If 

the adjustment treatment effect remains statistically significant under the worst scenario, 

the hidden bias due to unobserved covariates is ignorable, and the results will not be 

affected by the unobserved covariates.  

After a complex set of covariates are collected, propensity score can be estimated. 

Any statistical model estimating the probability of group membership is propensity score. 

There are two different traditions in propensity score estimation. One is classical 

statistical modeling, assuming the data are generated by a given data model and there are 

nature functions associate the predictors with the outcomes (e.g., logistic regression, or 

discriminant analysis). The other is machine learning algorithms techniques, it treats the 

data mechanism as unknown, and need to use an algorithm to find the relation between 

predictors and outcomes (Breiman, 2001) (e.g., classification and regression trees, 

random forest).   
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Classical Methods  

Logistic Regression  

Logistic regression is the typical method to estimate propensity scores. It is 

estimated with a logistic regression model using treatment group as the dependent 

variable and using all covariates as the independent variables. For example, if we have 

65 covariates without considering their interactions, the equation will be  

0 1 1 2 2 65 65log ...
1

p
b b X b X b X

p

 
    

 
,   (10) 

or 0 1 1 2 2 65 65

0 1 1 2 2 65 65

exp( ... )

1 exp( ... )

b b X b X b X
p

b b X b X b X

  


   
  

where p  is probability of  being in the treatment group,  given the 65 covariates,  

the 0b is the intercept, 1b  to 65b  are the slope for corresponding 65 covariates (West et al., 

2014). Logistic regression is a familiar and well-understood tool of researchers, and it is 

easy to be conducted in most statistical software (e.g., SPSS, SAS, STATA, R) 

(Westreich, Lessler, & Funk, 2010). Logistic regression is the most commonly used 

method in social science to estimate propensity score (Thoemmes & Kim, 2011). 

However, when the covariates are a large set (e.g., more than 10 covariates), and the 

relations among these covariates are complex (e.g., involving interactions, nonlinear 

quadratic relation, the estimation will lead to a great bias (Cham et al., 2015; Lee, 

Lessler, & Stuart, 2010). In this situation, covariance balance may not be achieved by 

conditioning on the impropriate estimated propensity score, and therefore lead to biased 

effect estimate (Cham, 2013).  
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Discrimination Analysis  

Discriminant analysis is mainly used when more than two groups membership to 

estimate (Hox et al., 2015). Several discriminant functions will be produced, and the 

number of functions is the number of group minus 1 or equal to the number of predictor 

variables, whichever is smaller (Tabachnick & Fidell, 2013). The first discriminant 

function provides the maximum discrimination among groups. The second discriminant 

function also maximally separates groups, but on the basis that the second function is 

uncorrelated with the first. This procedure will continue until all possible function is 

built. Typically, only the first or two functions is used, remaining functions will provide 

no additional information about group membership. After the discriminant function is 

selected, the probability in each group membership will be computed as propensity 

score.   

Machine Learning Techniques 

Contrary to strong assumptions in logistic model, machine learning techniques 

try to extract the relations between the outcome and predictors by a learning algorithm 

without a priori data model (Breiman, 2001). Machine learning techniques can 

outperform classical statistical techniques (e.g., logistic regression), especially when 

dealing with high-dimension data with large amount of covariates (Breiman, 2001), and 

they can give better predictive accuracy than data models, and provide better information 

about the underlying mechanism. Classification and regression trees (CART), bagged 

CART, and random forests are commonly used as machine learning techniques.  
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 Lee et al. (2010) compared different machine learning techniques (i.e., CART 

methods, random forests) to logistic regression for propensity score estimation, and 

found random forests provided consistently superior performance than logistic model. 

More and more researches have applied machine learning techniques to estimate 

propensity score (Cham et al., 2015; Lee et al., 2010). Although machine learning 

techniques are sometimes criticized for lack of easy etiologic interpretation in the output 

of the machine learning classifiers, the “black box” nature of these techniques does not 

rule out them as potentially useful tools for propensity score analysis (Westreich, 

Lessler, & Funk, 2010).  

Classification and Regression Tree (CART)  

CART is also called as decision trees, it is a method to partition a data set into 

regions such that each region is as homogeneous as possible. The purpose of this method 

is Decision trees are referred to as classification trees if the predicted outcome is 

categorical, or as regression trees if the predicted outcome is continuous. In this study, 

since grouping membership is categorical, we refer CART as classification tree. It is the 

earliest machine learning method, and provides foundation for other new methods (e.g., 

bagged CART, random forests). CART is very useful in dealing with large amount of 

covariates, and can be used to identify important variables and interactions (Sutton, 

2005). CART has been widely used among data mining community, and it also can be 

applied in imputation of missing values (Harrell, 2001; Cham & West, 2016). 
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Steps  

In Classification Tree model, it will estimate the tree model recursively from top 

to bottom. At each step, a covariate is selected with a split value, and then participants 

are classified into two nodes at the next level.  

To illustrate these steps, an example is shown in Figure 1. We use 5 covariates 

(i.e., age, income, gender, education level and GPA) to estimate propensity score. The 

first covariate (i.e., age) is selected with its cuts-off value (i.e., 30), and participants are 

classified into two nodes (age > 30 and age < 30). In the next level, participants in the 

left node (age > 30) are classified into two groups on income (income > 5000 and 

income < 5000), and participants in the right node (age < 30) are classified into two 

groups on gender. This process will continue to the terminal node, and the propensity 

score will be the percentage of participants in the treatment group for each terminal 

node. 

Covariate and Cut-off Value Selection  

The most important procedure is to select the covariate and its cut-off value to 

maximize the reduction of the impurity measure after splitting. To achieve this purpose, 

researches frequently use Gini index for each node: 

 
2

1

1
levels

i

i

G p


    , (11) 

where p is the proportion of participants in group i  (Hastie, Tibshirani, & 

Friedman, 2009). For example, in Figure 1, to obtain the Gini for Age,  

2 2_ 1 50% 50% 0.5G parent      for the starting point,     
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Figure 1. Classification Tree model. 50%:50% is percent of the participants in treatment 

vs. control group. Propensity score is the percent of participants in treatment across each 

final splitting group.  
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2 2_ 1 30% 70% 0.42G left      for the next left branch, 

2 2_ 1 20% 80% 0.32G right      for the right branch.  

Then we can estimate the Gini worth,  

1 2_ _ _ _
n n

G worth G parent G left G right
N N

   
     

   
  , (12) 

where n1, n2 and N are the total number of participants in left, right branch and 

the starting point, respectively.  In this example,

200 800
_ 0.5 0.42 0.32 0.16

1000 1000
G worth

   
      

   
.  

After we obtain all Gini worth index for each covariate, we pick the covariate 

with maximum Gini worth. However, this method tends to select continuous or multi-

nominal covariates, and ignores binary covariates (Berk, 2008; Hastie et al., 2009). An 

alternative approach is the conditional significance test for each covariate. This test is 

recommended since it reduces the covariate selection bias (Cham & West, 2016; 

Hothorn, Hornik, & Zeileis, 2006). After testing whether each covariate is associated 

with the treatment group given all other covariates, the covariate with smallest p value 

will be selected as the first node.  

Tree Size  

Tree may turn out to be of very high complexity with hundreds of levels, 

therefore it need to be optimized before applying to a new data. Optimization by 

minimum number of points in each node method is widely used. The splitting will stop 

when the number of observations in the node is less than a required minimum number. 
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In practice this required number is usually set to 10% of the sample size. This method 

works fast and easy to use.  

Bagged CART  

By incorporating bootstrapping subsamples of the observations into traditional 

CART, and then averaging over subsamples, scientists developed an advanced method -

bootstrap CART or bagged CART. Bagged CART is a technique combining many 

classification trees to reduce the variance associated with predictions and improve 

prediction process. The first step is to draw many bootstrap samples from the original 

data. Some studies recommend use 25 to 50 bootstrap samples, and over 25 bootstrap 

samples will not lead to much additional improvement (Sutton, 2005). Others suggest 

some additional improvement may occur when bootstrap samples increase from 50 to 

100 (Hastie et al., 2009). Observations not drawn in the bootstrap samples are called 

“out-of-bag” observations, we will discuss it later in random forests. The second step is 

to produce a tree from each bootstrap sample, for example, if we draw 25 bootstrap 

samples, we will build 25 different trees. These trees may differ from each other 

dramatically, so interpretations based on one single tree might be risky (Sutton, 2005). In 

the third, assign each observation to a group membership based on the probability over 

different trees. In other word, if one observation is classified in treatment group during 

51% of the time over different trees, then it is assigned to the treatment group.  

By averaging over the results from a large number of bootstrap samples, bagging 

can reduce the variance of unstable procedures and without increasing the bias, leading 

to improved performance. Bagging CART can improve both the stability and estimates 
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of the class probabilities (Hastie et al., 2009). However, interpreting the classification 

tree would be difficult, since bagging procedure will build more than a single tree.  

Random Forests  

Random forests method is a substantial modification of bagged CART that builds 

different trees on bootstrapping observations and then average them (Breiman, 2001). 

Random forests method uses similar bootstrap method to select subsamples of 

observations (similar to bagged CART), but it also selects a random sample of 

predictors/covariates before splitting each node. Random forests are implemented using 

the R package randomForest, and this method performs most accurate and interpretable 

results in estimating group membership (Hastie et al., 2009; Liaw & Wiener, 2002). 

Steps  

Random forests use similar way in CART to build each classification tree model, 

but it incorporates more steps in random sample of observations and covariates. Four 

steps in random forest are proposed to estimate propensity score.  

The first step is to draw multiple random sub-samples from the data to build 

trees. Three issues are considered during this step. (1) Out-of-bag samples. An important 

feature of random forests is the use of out-of-bag samples. The sample is selected only 

from the not used observations in the classification trees model, rather than from all 

participations in original data. By this method, the estimation is less biased in propensity 

score variability and ATE estimation (Berk, 2008; Strobl, Malley, & Tutz, 2009; Cham, 

2013). (2) The number of sub-samples. In practice, 500 sub-samples is a good option, 

and 500 trees will be built for each sub-sample later. (3) Sub-sample size. For each tree, 
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different subsample size is suggested to minimize the covariate selection bias, for 

instance, 63.2% (Strobl, Boulesteix, Zeileis, & Hothorn, 2007), 50% (Friedman & Hall, 

2007) of the original sample size.  

 The second step is to build a Classification Tree model for each bootstrap 

sample. Two important features are unique to random forests. (1) The number of 

covariates. A random number of covariates (number of covariates=m) is drawn from all 

original covariates (number of covariates = k), which can stabilize the propensity score 

estimation across repeated sampling. Researchers proposed different suggestions on sub-

sample of covariates (m), for instance, m = √𝑘 (Strobl, Boulesteix, Kneib, Augustin, 

Zeileis, 2008), or m=k (Cham et al., 2015). The default value is set as m = √𝑘  in the 

package. The optimal choice may depend on the original sample size, and further study 

need to clarify this option. (2) The node size. The number of observations in terminal 

node of each tree could be very small, and the node size can be very large, so the tree 

will be of high complexity to make the tree as less bias as possible. In the final step, 

propensity scores will be estimated from all classification trees, and the average scores 

across all trees are the final propensity scores.  

Random forest is an advanced version of bagged CART by randomly draw both 

samples and covariates.  It can reduce the variance, since it can substantially improve 

stability by averaging over trees. In addition, it can reduce bias, since a very large 

number of covariates can be considered. Due to the splitting rule, a few covariates will 

more likely to be selected, whereas many other competitive covariates (perform a little 

bit worse than those selected covariates) are rarely selected as splitting covariate. With 
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random forests, each covariate will have opportunities to be selected as splitting 

covariate, and thus the bias will be reduced. By randomly draw covariates at each 

possible split, the fitted values across trees are more independent, and benefit from 

averaging many trees will be more dramatic (Sutton, 2005).  

Equating Propensity Scores among Groups 

After propensity scores are estimated, next step is to equate the estimated 

propensity score distributions between the treatment and the control groups. Various 

equating methods are frequently applied, such as matching, weighting, Analysis of 

Covariance (Thoemmes & Kim, 2011; West et al., 2014).   

Matching  

Matching is frequently used and has complex procedures. Matching can be 

distinguished by several different dimensions: (1) Proportions between treated units 

match to control units (e.g., 1:1 or 1: many), it can be achieved by matching each 

participant to a fixed or variable number of participants in the other group. (2) Matching 

algorithms (exact or approximate): exact matching requires identical propensity score 

among groups and it is hard to achieve in practice, whereas approximate matching 

involves nearest neighbor matching. A caliper of one quarter of a standard deviation of 

the logit of the propensity score is suggested to avoid bad matches (Rosenbaum & 

Rubin, 1985). (3) Whether match to minimize average absolute distance on all sample 

(optimal matching) or whether a single match is formed with the best available unit one 

at a time (greedy matching). In practice, researches can combine different options in 

each dimensions and find a most appropriate matching method for their study. 
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Limitations include that a large portion of participants may be deleted during matching 

procedure.  

Weighting  

This weighting procedure reflects survey sampling weighting procedures to 

estimate parameters and their associated standard errors (Asparouhov, 2005). The 

advantages of this method includes: (1) it can utilize full sample of participants; (2) This 

procedure weights both the treatment group and control group, and it can obtain both the 

average treatment effect (ATE) over the population and average treatment effect in 

treatment group (ATT). Two weighting schemes have been applied to weight groups 

(treatment vs control) in researches. One is inverse weighting method: participants in 

treatment group is weighted by of  
1

 𝜋̂
, whereas control group is weighted by of  

1

1− 𝜋̂
, 

where  𝜋̂ refers to an individual’s estimated propensity score. An alternative is odds 

method: participants in treatment group are weighted by 1, whereas control group is 

weighted by of  
𝜋̂

1− 𝜋̂
 . With this procedure, participants in control group but are more 

similar to the treatment group, will have a large propensity score (close to 1) and large 

weights. Similarly, participants in treatment group but are more similar to the control 

group, will have a small propensity score (close to 0) and small weights. The limitation 

includes that the weights may be highly influenced by the propensity score close to 0 or 

1 (Kang & Schafer, 2007).  

ANCOVA  

Analysis of covariance (ANCOVA) can be conducted using the propensity score 

as a new covariate in the treatment effect model (or regression adjustment). This method 
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replaces the complex set of covariates with estimated propensity score as the only 

covariate in the model. The ANCOVA method is used when the propensity score and the 

outcome is in a linear relation, and no interaction exists between propensity score by the 

grouping variable (Themmes & Kim, 2011; West et al., 2014). This method is applied in 

some empirical studies (Hox et al., 2015; Weitzen, Lapane, Toledano, Hume, & Mor, 

2004). 

Covariates Balance Checks 

After equating, we need to check the performance of equated propensity score by 

assessing whether the distribution of propensity score between treatment group and 

control group overlap perfectly (e.g., kernel density plots or boxplots) (West et al., 2014). 

Further check on the balance each covariate’s distribution between treatment and control 

group is even more important. Two indexes are used to check the balance: absolute 

standardized mean difference (SMD) and variance ratio (VR). SMD is closely related to 

Cohen’s d, except using the denominator as treatment group SD, which can standardize 

the equated and unequated mean difference (Stuart, 2010). A SMD of 0 indicates perfect 

balance, and any covariate with large SMD (i.e., SMD>.25) indicates a substantial lack 

of balance (Ho, Imai, King, and Stuart, 2007), it usually ranges from 0 to 1 in empirical 

study (Cham et al., 2015).  The ratio of the variance in the treatment group and control 

group is also used to check the balance. A value of 1 indicates perfect balance and large 

VR indicates lack of balance (e.g., VR> 2.0, Rubin, 2001), it usually ranges from 1 to 2.  
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Research Purpose 

Although failure to achieve measurement invariance happens in practice, few 

studies focus on how to deal with measurement non-invariance. Measurement non-

invariance might come from two sources: some non-invariance items across all items, or 

other unbalanced covariates across groups (Van De Schoot et al., 2015). If non-

invariance is due to some non-invariance items, Bayesian restricted latent factor analysis 

(RFA) method is applied to detect those non-invariance items (Barendse, Albers, Oort, 

& Timmerman, 2014). If the non-invariance is due to the artificial effect of other 

covariates that are not balanced across groups, propensity score can be applied to adjust 

the unbalanced covariates. For example, Hox et al. (2015) demonstrate how the 

measurement non-invariance across different mode groups (e.g., web survey, telephone 

survey, face-to-face interview) can be explained and corrected by other unbalanced 

covariates such as demographics and baseline scales. They found measurement 

invariance can be improved from metric invariance to scalar invariance after adding the 

propensity score as a covariate into the multiple group CFA. Therefore, once the 

potential unbalanced covariates are balanced through propensity scores, and factorial 

invariance test will be more accurate.  

In previous studies, logistic regression is the most frequently used method in 

estimating propensity score, however, this method will give increasing bias especially in 

dealing with a composite set of covariates (Lee et al., 2010). This study will incorporate 

a relatively new propensity score estimation method (i.e., random forests) to test 



 

24 

 

measurement invariance, and provide a practical guide to researchers in dealing with 

measurement non-invariance.  

The purpose of this study is to achieve accuracy in measurement invariance test 

by applying propensity score to adjust the potential unbalanced covariates across groups. 

This study will address several research questions. First, this study will demonstrate how 

propensity score adjustment is applied to factorial invariance test using empirical data. 

Second, this study will investigate the effects of propensity score adjustment on factor 

invariance tests. Third, this study will compare logistic regression with random forest for 

propensity score estimation, since both methods are commonly applied in education area. 

Fourth, this study will compare ANCOVA with constraining across groups for equating 

groups to check which method will give more accurate conclusion about measurement 

invariance.   
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CHAPTER II  

STUDY ONE: EMPIRICAL STUDY 

This dissertation will include two studies. First study will use an empirical data 

to demonstrate how propensity score adjustment is applied in measurement invariance. 

Second study will use Monte Carlo simulation method to examine the performance of 

different propensity score estimation, different equating method in measurement 

invariance.  

Method 

Data Source  

To demonstrate the proposed propensity score analysis for testing measurement 

invariance, we analyzed the data from a previously published study (Cham et al., 2015). 

The study examined the effect of retention status in elementary school on grade 9 

motivation for educational attainment. The retained and promoted students were equated 

on 67 covariates observed at baseline (i.e., grade 1). Participants were 561 students 

(54.37% boys), who recruited in the fall of 2000 or 2001 into a larger longitudinal study 

(N=784) when they were in grade 1. The ethnic composition of the participants was 

35.29% Caucasian, 24.24% African American, 36.36% Hispanic, and 4.11% other. The 

students were from one of three school districts (one urban and two small city districts) 

in Texas. The criterion of selecting participants was that their scores were below the 

median on a district-administered test of literacy in the spring of kindergarten or the fall 

of grade 1. They also conducted measurement invariance test between the retained and 

promoted students in the bifactor model, and Chi-square difference test showed 
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configural invariance. However, using propensity score in measurement invariance test 

was not discussed in their study. 

Measures 

Retention Status  

Students were considered retained in a given grade if they were in the same grade 

for two consecutive years. In this study, 177 students (31.55%) retained, and 384 

students (68.45%) continuously promoted in elementary school.   

Teacher Educational Expectations  

The Teacher Educational Expectations subscale (5 items) is from a 32-item 

measuring adolescents’ motivation for educational attainment (Cham, Hughes, West, & 

Im, 2014). The students at grade 9 responded the 5-point Likert scale (1 = strongly 

disagree; 5 = strongly agree). Example items include “My teachers expect that I will do 

well in the future”, “I am one of the students teachers believe will be successful” and 

“My teachers believe that I will graduate from high school”. The reliability coefficient 

for this subscale was reported satisfactory (ω=0.8) (Reise, 2012; Cham et al., 2015). 

Covariates for Propensity Score Analysis  

To estimate propensity scores of the retained and promoted students, a total of 67 

covariates (potential confounders) were measured at baseline (i.e., grade 1). These 67 

covariates were selected based on the associations with grade retention or academic 

achievement (Cham et al., 2015). 
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Analysis 

Hox et al. (2015) mentioned two ways to conduct propensity score adjustment in 

measurement invariance: 1) regress the propensity score on items, 2) and use propensity 

score as a weighting variable. To compare how the propensity score analysis can adjust 

measurement invariance test, we test measurement invariance in three different models: 

baseline model, regression model, and weighting model.  

In baseline model, no propensity score was considered in the multiple group CFA 

analysis. In Model 1, the propensity score loading on the corresponding five items (i.e., 

λ1 to λ5) were constrained same across two groups (i.e., retained and promoted groups). 

In model 2, the weighting by the odds method was applied to equate the estimated 

propensity score distributions between two groups. Logistic regression and random 

forest method were both used to estimate propensity scores. Maximum likelihood 

MLMV estimation and DIFFTEST option in Mplus were applied to compute the χ
2 

test, 

and χ
2 

difference test (Muthén & Muthén, 1998-2014). This method can correct for both 

the sampling weights and the non-normal distributions of the items (Bentler & Dudgeon, 

1996).  

Results 

As discussed in Cham et al. (2015), the propensity score balanced the retained 

and promoted group students on the set of observed 67 covariates at baseline.  

Table 1 shows the results of measurement invariance in three different models 

with considering two propensity score estimation (i.e., logistic regression and random 

forest). This table listed the values of χ
2 

test statistics, RMSEA, CFI and SRMR. The χ
2 
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Table 1. Empirical results for measurement invariance in baseline model and propensity scores adjustment model 

      χ
2
  df p RMSEA CFI SRMR Δχ

2
 
a
 df p Invariance Test 

Without PS 

        Baseline 1 configural 17.18 10 0.07 0.05 0.99 0.03 

    

 

2 metric 21.98 14 0.08 0.05 0.99 0.04 5.33 4 0.25 

 

 

3 scalar 31.23 18 0.03 0.06 0.98 0.05 12.41 4 0.01 Metric invariance 

Panel A. PS with Logistic Regression  

        Model 1 1 configural 21.70 15 0.12 0.04 0.99 0.04 

    

 

2 metric 26.33 19 0.12 0.04 0.99 0.05 5.23 4 0.26 

 

 

3 scalar 32.77 23 0.09 0.04 0.98 0.05 6.99 4 0.14 Scalar invariance 

Model 2 1 configural 17.23 10 0.07 0.06 0.94 0.04 

    

 

2 metric 30.12 14 0.01 0.07 0.87 0.11 17.00 4 <.01 

 

 

3 scalar 50.08 18 0.00 0.09 0.74 0.16 39.04 4 <.01 Configural invariance 

Panel B. PS with Random Forest 

        Model 1 1 configural 22.10 15 0.11 0.04 0.99 0.03 

    

 

2 metric 27.59 19 0.09 0.04 0.99 0.05 6.23 4 0.18 

 

 

3 scalar 35.36 23 0.05 0.05 0.98 0.05 9.35 4 0.05 Scalar invariance 

Model 2 1 configural 13.22 10 0.21 0.04 0.96 0.05 

    

 

2 metric 19.11 14 0.16 0.04 0.94 0.09 8.40 4 0.08 

   3 scalar 23.23 18 0.18 0.04 0.94 0.10 5.88 4 0.21 Scalar invariance 

Note: PS is propensity score. In baseline model, no PS adjustment is applied. In Model 1, PS is constrained same 

loading across groups; In Model 2, the weighting by the odds method is applied. 
a
 DIFFTEST option in Mplus is applied to 

conduct chi-square difference test. 
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difference test of the models that investigate same factor pattern, factor loading and 

latent intercepts in a sequential order (i.e., configural vs. metric, metric vs. scalar). 

Baseline model. The null hypothesis of the χ
2 

difference test is that the more 

restricted invariance model fits the data equally well as the less restricted invariance 

model. Before considering propensity score adjustment, the model comparison test (i.e., 

configural vs. metric, metric vs. scalar in Model 1) showed metric invariance, χ
2 

(4) 

=12.41, p < .05, CFI = .99, RMSEA = .05, SRMR = .04.  

Logistic regression. Panel A is the logistic regression estimation for propensity 

score. After constraining same loading across groups (Model 1), the model comparison 

test (i.e., metric vs. scalar) showed scalar invariance, χ
2 

(4) =6.99, p = .14, CFI = .98, 

RMSEA = .04, SRMR = .05. The regression adjustment improved metric invariance to 

scalar invariance. In Model 2, after applying weighting by odds method across groups, 

the model comparison test showed configural invariance, χ
2 

(4) = 17.00, p < .01, CFI = 

.94, RMSEA = .06, SRMR = .04. The weighting by odds method did not improve 

measurement invariance test under logistic regression estimation. The measurement 

invariance decreased from metric invariance to configural invariance. 

Random Forest. Panel B shows the random forest estimation for propensity 

score. After constraining same loading across groups (Model 1), the model comparison 

test (i.e., metric vs. scalar) showed scalar invariance, χ
2 

(4) = 9.35, p = .053, CFI = .98, 

RMSEA = .05, SRMR = .05. The regression adjustment did improve metric invariance 

to scalar invariance. In Model 2, after applying weighting by odds method across groups, 

the model comparison test (metric vs. scalar) showed scalar invariance, χ
2 

(4) = 5.88, p = 
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.21, CFI = .94, RMSEA = .04, SRMR = .10. Chi-square difference test showed that 

weighting by odds method improved measurement invariance test under random forest 

estimation, but the fit index (i.e., SRMR) did not show good fit for scalar invariance. 
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CHAPTER III 

STUDY TWO: MONTE CARLO SIMULATION STUDY 

Method 

Data Generation 

Following simulation structure in published papers (Lee et al., 2010; Setoguchi, 

Schneeweiss, Brookhart, Glynn, & Cook, 2008), we generate 10 covariates as standard 

normal random variables (see Figure 2). Six among these 10 covariates are binary, and 

others are continuous variables. Four covariates are associated with both grouping 

variable and outcome (i.e., confounders, W1 to W4), three covariates are associated with 

grouping variable only (i.e., exposure predictors, W5 through W7), and four covariates 

are associated with outcome only (i.e., outcome predictors, W8 through W10). The 

binary grouping variable was generated from confounders and exposure predictors, and 

the continuous outcome was generated from grouping variable, four confounding 

variables and three outcome predictors (Lee et al., 2010; Setoguchi et al., 2008). Equal 

size of two groups were generated.   

After outcome and the grouping variable was generated from the 10 covariates, 

we use the outcome variable as the latent factor in the MGCFA model. A single factor 

model with six observed variables (i.e., X1 to X6) was used to generate data for each 

simulation condition. The population model we generated was scalar invariance with the 

propensity score adjustment. For the population parameters, we referred previous 

simulation studies on measurement invariance to generate scalar invariance model 

(Yoon& Kim, 2014; Yoon & Millsap, 2007). Propensity score loadings were constrained  
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Figure 2. Covariates relations in simulation data structure (Reprint from Lee, Lessler, & Stuart, 2009). 
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same between group 1 and group 2, ranged from -0.4 through 0.2, which were based on 

empirical study propensity score loadings. Factor loadings were constrained same across 

two groups, ranged from 0.6 through 0.9 (see Figure 3). The intercepts were set same 

across two groups, ranged from -0.25 through 0.25. The residual variance of X1 through 

X6 were all set to 0.3 for group 1 and group 2.  

Simulation Conditions 

We conducted a Monte Carlo simulation study using R package and Mplus for 

data generation and analysis. Two simulation conditions were investigated: (1) degree of 

non-linearity with grouping variable and interaction among covariates; (2) Sample size.  

Degree of Non-linearity and Interaction among Covariates  

Three scenarios differed in the degrees of non-linearity (i.e., quadratic) and 

interaction among covariates are generated in the true propensity score model (Lee et al., 

2010): (1) linearity (main effects only); (2) mild interactions and non-linearity (three 

two-way interaction terms and one quadratic term); (3) and moderate interactions and 

non-linearity (10 two-way interaction terms and three quadratic terms).  

Sample Size  

Sample sizes were simulated as 500 (small), 1000 (medium) and 2000 (large). 

The selected levels of sample size are frequently used in propensity score simulation 

studies (e.g., Lee et al., 2010; Setoguchi et al., 2008), and measurement invariance 

studies (e.g., Yoon & Kim, 2014; Yoon & Millsap, 2007).  

In sum, the scalar invariance model was generated for each of 9 conditions:  3 

(degree of non-linearity and interaction among covariates) × 3 (sample size). Since 1000  
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Figure 3. Multiple group CFA for group 1 with population parameters. The factor 

loadings, propensity score loadings and intercepts in group 2 were constrained same as 

group 1.  
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replications were frequently used in previous propensity score studies, this study will 

generate 1000 replications for each condition using R software.  

Analysis 

After generating multiple group data, we used multiple-group CFA to conduct 

the analysis without the propensity score adjustment and with propensity score 

adjustment. Maximum Likelihood parameter estimation was used for model estimation. 

For all analyses, cases that had any improper solutions such as non-convergence model 

or negative unique variance were dropped from results.   

Propensity Score Estimation  

First, propensity score estimated from logistic regression with main effect only 

for each covariate. Second, propensity score estimated by Random forests, using the 

randomForest package with default parameters (i.e., ntree = 1000, mtry = 2). (3) No 

propensity score was considered in the model. 

Model Evaluation  

Several fit statistics were examined at various simulation conditions. Chi-square 

statistics were used to check rejection rates of correctly specified or misspecified 

models. Measurement invariance under the SEM framework is typically tested through 

the chi-square difference test for comparing two competing nested models (i.e., the less 

invariant model with sequentially the more invariant model) at the significance level of α 

≤ 0.05. That is, all competing models: configural vs. metric, metric vs. scalar, were 

tested sequentially. 
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In addition to Chi-square difference test, the comparative fit index (CFI), Root 

Mean Square Error of Approximation (RMSEA) and Standardized Root Mean Square 

Residual (SRMR) were used as alternative fit index, they were evaluated by looking at 

means. Larger value of CFI indicated a better fit, and the value of > .95 is considered as 

a good fit. Smaller value of RMSEA indicates a better fit, and a value of < .06 is 

considered as good fit. Smaller value of SRMR indicates a better fit, and a value of < .08 

is considered as good fit (Hu & Bentler, 1999). 

First, admissible solutions were checked. Inadmissible models include the cases 

in which parameter estimates and standard errors were not provided or not within a 

plausible range (e.g., negative variance). 

Second, Type I error occurs when the hypothesis of scalar invariance is rejected, 

resulting in incorrect identification of configural or metric invariance. In current study, 

Type I error rate was defined as the proportion of replications in which scalar invariance 

is incorrectly rejected. In other words, any model did not have fair fit (i.e., CFI < .95, 

RMSEA > .06, or SRMR > .08) was Type I error. Type I error rates were considered 

acceptable when they did not exceed the sampling error rates (i.e., 5%). 

Finally, the examination of Type I error rate, analysis of variance (ANOVA) was 

conducted to entangle the factors influencing Type I error in factorial invariance testing. 

Eta-square of two design factors effects (i.e., sample size, degree of non-linearity) on 

Type I error was computed.  
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Results 

In current study, no replication had any improper solutions such as non-

convergence model or negative unique variance.  All models converged successfully 

across different conditions, and therefore all models had full admissible solutions.  

Multiple Group CFA without Propensity Score Adjustment 

 Type I error rates referred to the proportion of the replications in which the null 

hypothesis (i.e., scalar invariance) was incorrectly detected as non-invariance (i.e., CFI < 

.95, RMSEA > .06, SRMR > .08 for scalar invariance model). As shown in Table 2, 

when the propensity score was completely ignored in multiple group CFA, Type I error 

rates became seriously inflated, ranging from 82.9% to 92.4%. In other words, the null 

hypothesis was overly rejected when propensity score was not applied to adjust 

unbalanced covariates. Therefore, the null hypothesis of scalar invariance was 

incorrectly rejected when the propensity score adjustment was completely ignored.  

The one-way ANOVA test showed that sample size had a statistical significant 

effect on Type I error rates (η
2 

= 64.60%), but not significant for nonlinearity. As sample 

size increased, Type I error rates increased as well. Nonlinearity did not affect Type I 

error rate as much as sample size did (η
2 

= 26.65%). 

CFI had means from 0.958 to 0.966. For N=500 or 1000, 8.9% to 29.2% of the 

replications correctly identified the model as inadequate good fit, using the cutoff value 

of .95 (Hu & Bentler, 1999). However, as sample size increased to 2000, small percent 

of the replications (0.8% to 2.3%) failed the cutoff of .95, incorrectly identified the 

model as adequate good fit. 
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Table 2. Simulation results without propensity score adjustment 

        CFI   RMSEA   SRMR   Δχ
2
 

Nonlinearity N Error  

 

Mean % < .95
a
 

 

Mean % > .06
a
 

 

Mean % > .08
a
 

 

Mean % sig
b
 

Low 500 82.9 

 

0.959 25.6 

 

0.074 82.7 

 

0.067 15.5 

 

44.170 100.0 

 

1000 86.0 

 

0.963 8.9 

 

0.071 86.0 

 

0.056 0.6 

 

75.990 100.0 

 

2000 85.9 

 

0.966 0.8 

 

0.067 85.9 

 

0.049 0.0 

 

133.420 100.0 

Medium 500 84.1 

 

0.958 28.0 

 

0.075 84.0 

 

0.067 14.6 

 

45.046 100.0 

 

1000 88.9 

 

0.960 11.6 

 

0.072 88.9 

 

0.056 0.4 

 

79.140 100.0 

 

2000 92.4 

 

0.964 2.3 

 

0.069 92.4 

 

0.048 0.0 

 

140.357 100.0 

High 500 84.0 

 

0.958 29.2 

 

0.074 83.8 

 

0.066 13.9 

 

44.570 100.0 

 

1000 88.6 

 

0.962 12.2 

 

0.072 88.6 

 

0.055 0.4 

 

78.439 100.0 

  2000 89.9   0.965 0.9   0.069 89.9   0.047 0.0   137.467 100.0 
a
 percent of replications with the fit index smaller or larger than the specified value. 

b
 percent of replications with Δχ

2
 being statistically significant at p < .05. 
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RMSEA had means from 0.067 to 0.075. Among all conditions, 82.7% to 92.4% 

of the replications failed the cutoff of .06 (Hu & Bentler, 1999), correctly identified the 

model as inadequate good fit among all conditions.  

SRMR had means from .047 to .067. For N=500, 13.9% to 15.5% of the 

replications failed the cutoff of .08 (Hu & Bentler, 1999), correctly identified the model 

as inadequate good fit. As sample size increase, SRMR did not identify inadequate good 

fit model (ranged from 0% to 0.6%). SRMR was more sensitive to non-invariance when 

sample size was small.  

Chi square difference test (Δχ
2
) detected all the non-invariance, it flagged 100% 

of the replications as non-invariance of intercepts.  

Multiple Group CFA with Random Forest Adjustment  

As shown in Table 3, after applying random forest propensity score adjustment, 

Type I error rates reasonably ranged from 0 to 3.7%, which were within the acceptable 

range of Type I error rate (i.e., 0-5%). That is, after applying random forest propensity 

score to adjust unbalanced covariates, multiple group CFA measurement invariance 

became acceptable under the null hypothesis conditions.  

Non-linearity or sample size did not have statistical significant effect on Type I 

error rates based on ANOVA test. 

CFI had means from 0.994 to 0.999. None of the replications detect the model as 

inadequate good fit, passing the cutoff value of .95.  

RMSEA had means from 0.007 to 0.020. Small percent of replications (ranged 

from 0% to 1%) identified the model as inadequate good fit among all conditions, using   
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Table 3. Simulation results for random forest 

        CFI   RMSEA   SRMR   Δχ
2
 

Nonlinearity N Error  

 

Mean % < .95
a
 

 

Mean % > .06
a
 

 

Mean % > .08
a
 

 

Mean % sig
b
 

Low 500 0.4 

 

0.996 0.0 

 

0.013 0.4 

 

0.046 0.0 

 

4.960 6.3 

 

1000 0.0 

 

0.998 0.0 

 

0.010 0.0 

 

0.033 0.0 

 

5.130 5.1 

 

2000 0.0 

 

0.999 0.0 

 

0.007 0.0 

 

0.024 0.0 

 

4.993 5.8 

Medium 500 1.6 

 

0.995 0.0 

 

0.016 0.6 

 

0.049 1.0 

 

4.962 4.6 

 

1000 0.0 

 

0.997 0.0 

 

0.013 0.0 

 

0.037 0.0 

 

5.036 4.9 

 

2000 0.0 

 

0.998 0.0 

 

0.011 0.0 

 

0.029 0.0 

 

4.797 3.6 

High 500 3.7 

 

0.994 0.0 

 

0.020 1.0 

 

0.054 3.3 

 

5.026 4.7 

 

1000 0.3 

 

0.995 0.0 

 

0.019 0.1 

 

0.044 0.3 

 

5.115 5.6 

  2000 0.0   0.996 0.0   0.020 0.0   0.038 0.0   5.073 6.2 
a
 percent of replications with the fit index smaller or larger than the specified value. 

b
 percent of replications with Δχ

2
 being statistically significant at p < .05. 
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the cutoff value of 0.06.  

SRMR had means from .024 to .054. Small percent of replications (ranged from 

0% to 3.3%) identified the model as inadequate good fit, using the cutoff value of .08.  

Δχ
2
 detected small percent of replications, it flagged 3.6% to 6.3% of the 

replications as non-invariance.   

Multiple Group CFA with Logistic Regression Adjustment  

As shown in Table 4, after logistic regression adjustment, Type I error rates 

ranged from 20.6% to 35.9% when N = 500, which were off the acceptable range of 

Type I error rate (i.e., 0% to 5%). As sample size increased, Type I error rates decreased. 

Type I error rates were inflated especially under high degree of non-linearity condition.  

Sample size had a statistical significant effect on Type I error rates, but not 

significant for degree of nonlinearity. The factor related to Type I error rate was mainly 

sample size (η
2 

= 83.68%). Nonlinearity did not affect the Type I error rate as much as 

sample size did (η
2 

= 11.67%). 

CFI had means from 0.973 to 0.985. Small percent of the replications (ranged 

from 0% to 5.4%) failed to pass the cutoff value of .95, identifying the model as 

inadequate good fit.  

RMSEA had means from 0.041 to 0.054. For N=500, 20.2% to 35.1% of the 

replications correctly identified the model as inadequate good fit. However, as sample 

size increased to 2000, small percent of the replications (0% to 1.3%) identified the 

model as inadequate good fit.  



 

42 

 

Table 4. Simulation results for logistic regression 

        CFI   RMSEA   SRMR   Δχ2 

Nonlinearity N Error  

 

Mean % < .95
a
 

 

Mean % > .06
a
 

 

Mean % > .08
a
 

 

Mean % sig
b
 

Low 500 20.6 

 

0.978 2.3 

 

0.047 20.2 

 

0.054 1.1 

 

26.110 97.1 

 

1000 4.9 

 

0.982 0 

 

0.045 4.9 

 

0.042 0 

 

40.800 100.0 

 

2000 0.0 

 

0.985 0.0 

 

0.041 0.0 

 

0.033 0.0 

 

62.268 100.0 

Medium 500 23.4 

 

0.978 1.8 

 

0.048 23.2 

 

0.055 1.8 

 

25.670 96.2 

 

1000 5.4 

 

0.981 0.0 

 

0.046 5.4 

 

0.043 0.0 

 

40.269 100.0 

 

2000 0.1 

 

0.985 0.0 

 

0.041 0.1 

 

0.034 0.0 

 

60.965 100.0 

High 500 35.9 

 

0.973 5.4 

 

0.054 35.1 

 

0.060 5.3 

 

28.890 97.7 

 

1000 15.8 

 

0.976 0.0 

 

0.052 15.8 

 

0.050 0.3 

 

47.365 99.9 

  2000 1.3   0.980 0.0   0.048 1.3   0.042 0.0   73.710 100.0 
a
 percent of replications with the fit index smaller or larger than the specified value. 

b
 percent of replications with Δχ

2
 being statistically significant at p < .05. 
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SRMR had means from .033 to .060. Small percent of replications (ranged from 

0% to 5.3%) identified the model as inadequate good fit (i.e., fail to pass the cutoff value 

of .08).  

Chi-square difference test (Δχ
2
) detected almost all replications (ranged from 

96.2% to 100.0%) as non-invariance. 
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CHAPTER IV  

DISCUSSION AND CONCLUSIONS 

Discussion 

In educational psychology field, latent constructs were measured by multiple 

observed items. The relation between observed items and latent construct should be 

same across groups. Measurement invariance is critical before comparing group 

difference on the observed items. In practice, measurement invariance across groups 

might not be well established (i.e., measurement non-invariance), which is problematic if 

comparison of group means is of research interest. Propensity score is one approach to 

correct unbalanced covariates across groups if these unbalanced covariates are the source 

of measurement non-invariance (Hox et al., 2015).    

The main purpose of this dissertation is to evaluate propensity score adjustment 

in testing measurement invariance in both empirical data and Monte Carlo simulation 

study. Empirical study demonstrated how to conduct propensity score adjustment in 

measurement invariance test. Monte Carlo simulation considered different conditions, 

including sample size, degree of non-linearity and propensity score estimation methods. 

Specifically, Type I error rates were defined as the proportion of the replications in 

which the null hypothesis of scalar invariance was incorrectly detected as non-invariance 

(i.e., CFI < .95, RMSEA > .06, or SRMR > .08). Chi-square difference test were also 

presented in the study. Multiple group confirmatory factor analysis was conducted to test 

measurement invariance in both empirical data and Monte Carlo simulation study.  
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In empirical study, when propensity score was estimated by logistic regression or 

random forest, and applied as a new covariate to adjust unbalanced covariates across 

groups, measurement invariance was improved from metric invariance to scalar 

invariance. The improvement after applying propensity score adjustment was consistent 

with previous study (Hox et al., 2015).Weighting by odds method with random forest 

estimation improved the metric invariance to scalar invariance, but weighting with 

logistic regression did not. One possible reason is that logistic regression estimation is 

not as accurate as random forest estimation, especially when the empirical data included 

67 observed covariates to estimate propensity score. In this situation, weighting the 

propensity score may enlarge the estimation bias.  

However, the empirical study did not tell which estimation method was better, 

and how the result may differ if inappropriate method was applied. The Monte Carlo 

simulation study can answer this question and give guidelines for using propensity score 

estimation method under different conditions. 

In the Monte Carlo simulation study, one of the most salient findings is that 

substantial Type I error rate inflation occurred when propensity score adjustment in 

unbalanced covariates was ignored and multiple group CFA was applied in measurement 

invariance test. That is, the invariant model is more likely to be rejected and misleading 

concluded to be non-invariant when the unbalanced covariates are not taken into account 

for the analysis.  Therefore, multiple group CFA without propensity score adjustment is 

not recommended for measurement invariance test if unbalanced covariates exist in the 

data given the considerable inflation in the Type I error rates.  
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In addition, Type I error rate was within the acceptable range when random 

forest propensity score adjustment was employed in measurement invariance test. In 

other words, the invariant model is more likely to fail to reject and correctly conclude to 

be invariant after the unbalanced covariates are taken into account in the measurement 

invariance test. Therefore, propensity score adjustment with random forest estimation is 

recommend in measurement invariance test if unbalanced covariates exist in the data.  

Finally, substantial Type I error rate inflation was also observed if logistic 

regression was applied to adjust the unbalanced covariates. This inflation was not as 

serious as completely ignoring the propensity score adjustment. As degree of non-

linearity became high (including high level of interactions and quadratic terms), the 

inflation became more serious. This indicates that logistic regression could not 

successfully estimate propensity score when the covariates have complex interaction. As 

sample size was large (i.e., 2000), Type I error rate inflation was minimized.  

Limitation and Future Research 

In this study, only a limited number of conditions were considered, for example, 

one single factor and two groups were included in simulation study. In empirical cases, 

measurement invariance often involves more than one single factor. Current study aimed 

to examine how different propensity score estimation methods would perform differently 

in the simplest cases. In future research, more conditions can be considered such as 

multiple groups and factors. 

Another limitation of current study is that weighting method was not used to 

simulate the data since simulation in Mplus or R is not suitable for this specific data. 
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Weighting method is another promising method to balance group (Hox et al., 2015). In 

future study, more flexible software can facilitate simulation data and will give 

interesting results.   

Conclusions 

In conclusion, when ignoring the unbalanced covariates among groups and using 

multiple group CFA to conduct the measurement invariance test, large Type I error rate 

inflation was observed. Therefore, the invariant models were overly rejected and 

concluded to be non-invariant when unbalanced covariates were not adjusted by 

propensity score in measurement invariance test. Therefore, when unbalanced covariates 

exist in the data, an appropriate method that can balance covariates is required before 

conducting measurement invariance test. The current study combined the empirical data 

and Monte Carlo simulation study to evaluate propensity score adjustment in testing 

measurement invariance. The latest machine learning estimation method (i.e., random 

forest) was applied to obtain accurate propensity score.  
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