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ABSTRACT

This dissertation presents a distributionally robust planning model to determine

the optimal allocation of wind farms in a multi-area power system, so that the ex-

pected energy not served (EENS) is minimized under uncertain conditions of wind

power and generator forced outages. Unlike conventional stochastic programming

approaches that rely on detailed information of the exact probability distribution,

this proposed method attempts to minimize the expectation term over a collection of

distributions characterized by accessible statistical measures, so it is more practical in

cases where the detailed distribution data is unavailable. This planning model is for-

mulated as a two-stage problem, where the wind power capacity allocation decisions

are determined in the first stage, before the observation of uncertainty outcomes,

and operation decisions are made in the second stage under specific uncertainty re-

alizations.

In this dissertation, the second-stage decisions are approximated by linear decision

rule functions, so that the distributionally robust model can be reformulated into a

tractable second-order cone programming problem. Case studies based on a five-area

system are conducted to demonstrate the effectiveness of the proposed method. The

model is extended to deal with the hybrid system by including the solar power as

a third source of uncertainty besides the wind power and conventional generation

forced outages. The correlation between the wind and solar power is investigated to

capture the diversity and the availability of all included power resources.

Capacity credit is calculated to measure the effective load carrying capacity of

the allocated renewable resources. The probabilistic method including Monte Carlo

simulation is used to calculate the loss of load expectation (LOLE) at different peak
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loads and analytically determined the capacity credit of wind and solar power genera-

tion for several installed wind capacities. The penetration factor and the availability

of the renewable power generation are major factors influencing the capacity credit

value, besides the overall power system reliability level.

The results reflect the usefulness of utilizing the distributionally robust optimiza-

tion approach in the data-driven decision making. It positively responds with the

amount of the information provided regarding the uncertain variables in the renew-

able power generation allocation problem and sequentially in the system reliability

and the yielded capacity credit values of the allocated renewable generation units.
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NOMENCLATURE

System Indices

i Indices of areas

j Indices of areas

l Indices of generation capacity levels or wind power levels

s Indices of wind distribution types, e.g. seasons, day or night

t Indices of load segments

System Sets

F Set of all transmission lines

I Set of all areas for wind farms

J f
i Set of areas receiving power from area i by tie lines

J t
i Set of areas delivering power to area i by tie lines

Lα Set of all wind power levels

Lγ Set of all levels of the generation in one area

Lδ Set of all levels of the total generation

S Set of all wind distribution types

T Set of all load segments
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Notations for Uncertain Wind Power Generation

w̃si Random wind power generation as a percentage of the installed capacity, in

area i under distribution type s. The vector of all w̃si is denoted by w̃ww, and a

specific realization of w̃ww is denoted by www

w̄si The mean value of random wind power in area i under wind power

distribution type s (p.u.)

W Uncertainty set of uncertain wind power w̃ww

W s
il The selected level l of random wind power output w̃si (p.u.)

αsil Absolute deviation of w̃si around the selected level W s
il (p.u.)

βsij Mean absolute deviation of the summation of w̃si and w̃sj (p.u.)

λsi The variance of random wind power w̃si (p.u.)

ζsij The covariance value between w̃si and w̃sj (p.u.)
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Notations for Uncertain Generation Capacity

p̃i Random generation capacity in area i. The vector of all p̃i is denoted by p̃pp,

and a specific realization of p̃pp is denoted by ppp (MW)

p̄i The mean value of the uncertain generation capacity in area i (MW)

pmaxi Upper bound of p̃i (MW)

pmini Lower bound of p̃i (MW)

P Uncertainty set of random generation capacity p̃pp

Pil The selected generation level l of random generation capacity p̃i (MW)

Ql The selected generation level l of the total generation capacity ∑
i∈I

p̃i (MW)

γil The expected value of the positive part of Pil − p̃it (MW)

δl The expected value of the positive part of Ql −
∑
i∈I

p̃i (MW)

System Constants

Ds
it The tth segment of load in area i under wind pattern type s (MW)

Fij Capacity of tie line between areas i and j (MW)

T st The duration of the tth segment of load under wind pattern type s (hours)

Πi The maximum wind capacity that can be installed in area i (MW)

Ω Total wind capacity that should be installed (MW)
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Decision Variables

f sijt Power flow from area i to area j for demand segment t under wind

distribution s (MW)

qsit Generation for demand segment t in area i under wind distribution s (MW)

lsit Load loss for demand segment t in area i under wind distribution s (MW)

xi Wind power capacity installed in area i (MW)

Indices for the Mathematical Formulation

k Indices of all functions characterizing the distributions of random variables, it

is equivalent to the indices of auxiliary variables ũuu

m Indices of all first-stage and second-stage constraints

n Indices of all first-stage and second-stage decision variables

r Indices of all constraints that define the extended support set Z̄

v Indices of all random variables z̃zz
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Sets for the Mathematical Formulation

F Ambiguity set defining the distributions of all random variables

F̄ Extended ambiguity set

K Set of all functions characterizing the distributions of random variables,

equivalent to the sets of auxiliary variables ũuu

M1 Set of all first-stage constraints

M2 Set of all second-stage constraints

N1 Set of all first-stage decision variables

N2 Set of all second-stage decision variables

R Set of all constraints that define the extended support set Z̄

V Set of all random variables z̃zz

Z Uncertainty set of random variables z̃zz

Z̄ Extended support set of random variables z̃zz
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Matrices and Vectors of the Mathematical Formulation

AAA Matrix of the coefficients of xxx for first-stage constraints

bbb Right-hand-side vector of the first-stage constraints

CCC(zzz) Uncertain left-hand-side matrix of coefficient of xxx for the second-stage

constraints

DDD Left-hand-side matrix of coefficient of yyy for the second-stage constraints

ddd(zzz) Uncertain right-hand-side vector of the second-stage constraints

HHH Matrix of the coefficients of uuu for the constraints defining the extended

support set Z̄

hhh Right-hand-side vector of the constraints defining extended support set Z̄

uuu Auxiliary variables introduced into the extended ambiguity set F̄

xxx Vector of first-stage decision variables

yyy Vector of second-stage decision variables or decision rules

zzz Vector of random variables
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Others

EP Expected value under distribution P

gk(·) Linear representable functions characterizing the distributions of random

variables zzz

L(·) Function indicating energy not served

P A distribution of all random variables zzz

Q A distribution of all random variables zzz and auxiliary variables uuu

Q0(·) Set of all distributions for random variables with the given dimension

| · | The cardinality of a set or the absolute value of a mathematical expression
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1. INTRODUCTION

1.1 Wind Power Generation

Wind power generation (WPG) is the most widely used and the fastest expand-

ing renewable resource for electric power generation worldwide [1–3]. It shows a

remarkable increase in growth rate over the past two decades [4], and it has become

a primary source for electric power generation in several countries [5]. Furthermore,

besides the issue of the global warming and the depletion of fossil fuels needed to

generate electricity, the trend in the sector of the electric power industry is towards

the investment in renewable energy resources [6], to accomplish goals such as carbon

dioxide emission reduction, energy self-sufficiency, increasing the system reliability,

prevent load curtailment and improving the social welfare [7].

Consequently, the dramatic expansion of WPG poses several challenges in terms

of power system operation, since WPG is intermittent, uncertain and not fully dis-

patchable, which requires extra attention to power system planning and operation

studies with a particular emphasis on modeling the uncertainty of power system, to

ideally perform economic dispatch, unit commitment and spinning reserve, as the

generation should balance the load demand on a moment-by-moment basis keeping

the operational constraints of both generation units and transmission lines networks

with no violation [8–10]. So in long-term power system planning, an optimal de-

cision to efficiently integrate a large-scale WPG into the power system besides the

existing conventional generation has played a significant role in a reliable and eco-

nomical operation for the entire power system [3, 11, 12], which indeed motivates to

more development in planning procedures and techniques to examine a wide range

of uncertainty representation methods [4, 13].
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1.2 Probabilistic Modeling of Uncertainty

Unlike conventional power generation, many renewable energy resources such

as the wind or solar have a maximum power output that varies with time which

is described by random variability [14]. Such uncertain behavior of the renewable

energy resources increases the difficulties of power system operation, in which the

generation should balance the load demand on a moment-by-moment basis keeping

the operational constraints of both generation units and transmission lines networks

with no violation [10]. To accommodate high penetration of variable energy resources

in the power systems generation, the system is required to be more flexible to follow

the variable net demand and deal with the uncertainties to maintain the reliability

and the security of the system within the desired levels [15].

To cope with the uncertain nature imposed by the renewable energy resources

and the electric power components, the application of probabilistic tool is useful

to investigate and represent the uncertain system. [16]. The uncertain arbitrary

variable can be modeled and described by the probability distribution functions

(PDF), which is an important step to deal with the variability issue. The intensive

meteorological observation of the wind and solar pattern to represent it in proper

statistical parameters reduces the problem of uncertainty, and it assures the highest

possible flexibility and availability needed to keep the load-generation balance during

the operation [15]. In the next section, the methods and system models which are

used to deal with system uncertainty are introduced.
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1.3 Optimization Model under Uncertainty

It is important to develop a non-deterministic optimal wind power allocation

framework which includes the uncertain nature of both the wind power availability

and other random power system components. The method should be computa-

tionally tractable and statistically consistent, for finding a flexible solution against

different realizations of uncertainty representation. In power system operation and

planning studies, several methodologies like scenario interpretation and probabilistic

analysis have been developed to deal with the uncertainty of wind power.

Stochastic Programming (SP) [17], represents uncertain variables through scenar-

ios based on the assumption that the exact probability distribution of wind power is

available [11]. A high accuracy probability distribution function representation of the

uncertain nature of variable generation has to be obtained in order to ideally apply

SP, and that requires sufficient historical data which is not always available. The

lack of sufficient data limits the ability of SP and deteriorates its performance [18].

Although this problem has been mitigated by introducing Robust Optimization

(RO) [19,20], which can be used even with no availability of any distributions data pa-

rameters, except some data which can preserve the system against a pre-determined

uncertainty set [21], such approach drives the solution to be conservative [10]. RO

models uncertainty as a deterministic set without any probabilistic information. It

affords a robust solution that is preserved to any possible scenario of the uncertainty

set, which is an essential perspective in the security-constrained electric power sys-

tems planning, however, that would lead to a conservative and sometimes less effec-

tive solution [22]. Furthermore, RO uses bounded intervals to handle a broad range

of uncertainty sources in modeling the uncertain random variables.

As a matter of fact, RO is generally more useful in terms of less frequent un-

3



certainty sources, since it only requires the relative variation intervals of uncertain

variables rather than generating scenarios as applied in SP. Furthermore, RO is more

conservative compared to SP. While the solution of RO is optimal for the worst case

realization of uncertain variables, the solution of SP is optimal on average for a set of

deterministic scenarios which capture the nature of uncertainty [12]. As an interme-

diate methodology, Distributionally Robust Optimization (DRO) [23], is introduced

to mitigate the limitations of SP and RO by providing a tractable approach to proba-

bilistically include the available characteristic information of the uncertain variables

in an ambiguity set [24–26], and it is less conservative by avoiding the extreme de-

cision of totally neglecting the probability distribution of the random variables as

applied in RO. The detailed procedure of the proposed approached is demonstrated

in the following section.

1.4 Distributionally Robust Optimization

DRO has been recently applied in several power system problems to represent the

uncertainty of random variables [10,27]. Its capability in probabilistic interpretation

of the data-driven decision making is the bottom line behind its success [28]. DRO

operates by including certain probabilistic information of the uncertain variables

appropriately in the optimization modeling; it deals with the uncertain parameter

as a random variable that tracks the stochastic nature by involving a family of

probability distributions characteristics defined by an ambiguity set [29].

Compared to SP, which improve the optimal solution by minimizing the expecta-

tion of the energy not served under the scenarios representation of the system uncer-

tainties following one distinct probability distribution, DRO overcomes the critical

assumption in SP regarding the availability of the exact distribution information. Ad-

ditionally, DRO resolves the computational difficulties addressed by the SP scenario

4



representation which requires decomposition and scenario selection algorithms [4,30].

On the other hand, the conventional RO achieves the objective under the worst-

case energy not served over all possible realizations within a deterministic uncertainty

set of the uncertain variables. It solves the issue of the scenarios interpretation

proposed in SP, but it can not model indices in terms of the expected values and leads

to more conservative solution by totally neglecting the probability distribution [20].

So, DRO is primarily the integrated robust practice of the stochastic programming.

[22] which provides a moderate method to represent uncertainty in reliability based

design optimization.

The objective of this research is to allocate a certain amount of renewable power

genration in a multi-area power system to minimize the expected energy not served

under the worst-case probability distribution that is characterized by the ambiguity

set of the renewable power uncertainty and generator forced outages. The linear

decision rule approximation [23, 31, 32] is used to restrict the second-stage recourse

decisions to be affinely dependent on uncertain parameters as well as auxiliary ran-

dom variables where the distributional statistical information of uncertain variables

are represented, so that the overall problem can be solved in a tractable manner [33].

1.5 Monte Carlo Simulation for Generation Adequacy Evaluation

The sampling based Monte Carlo simulation (MCS) is utilized to perform the

sensitivity analysis of the proposed renewable generation expansion design problem.

This practice is widely used in the planning studies due to its simplicity in imple-

menting and effectiveness in evaluating the proposed decisions. It is beneficial with

calculating all required system operation information and reliability indices.

In general, this simulation approach offers more flexibility with handling the

system’s operational conditions, because it allows for the scenarios representation

5



based simulation which should reflect all possible operational system states with

sufficient number of scenarios to secure the convergence and provide accurate results

for a fair evaluation of any stage of reliability analysis. Reliability indices like loss

of load expectation (LOLE) and expected energy not served (EENS) are estimated

using MCS. However, to yield a converged and trusted solution the MCS may need

a long computational time to process such large number of scenarios.

In the sampling technique, the main procedure is to generate random samples of

the system states including the wind power, conventional generation, and all other

random variables of the system components according to their particular probability

distributions. The other fixed information like the system configuration, operational

limits, and the constraints are fixed for every iteration. Then after simulating a

sufficient number of samples which lead to an acceptable value of the coefficient of

variance (COV) for that distinct set of samples or scenarios, the reliability indices

are then analytically calculated from those samples.

The convergence of the simulation occurs when the coefficient of variation of the

calculated index from a set of samples lies within a consistent range, such range

is set to be generally less or equal to 5%. Such convergence is strongly associated

with the loss of load probability (LOLP) since the COV calculation depends on

the events occurring on the power system. In a reliable power system, where the

loss of load events happen relatively rarely, observing the variation requires a long

computational time since the change is small due to the estimation of relatively low

value of the LOLP, which makes the MCS more computationally challenging with a

reliable power system.

A combination of optimization schemes incorporating with reliability evaluation

is practiced in many types of planning and design problems. In [34], adequacy deter-

mination of locational generation and transmission lines transfer capacities are eval-
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uated. The optimization procedure is used for a planning investigation of any addi-

tional expansion of both power generation and transmission lines. References [35,36]

discusse an optimization procedure for generation expansion determination based

on a reliability evaluation in multi-area power systems. The global decomposition

approach is utilized to get a proper tradeoff between the cost and the power sys-

tem reliability. The stochastic programming based optimization to represent the

uncertainties in conventional generation, transmission lines and the load demands

to evaluate the power generation expansion problem in the multi-area power system

is introduced in [37–40]. A stochastic programming using Bender’s decomposition

algorithm is used to optimize the transmission lines expansion problem with the high

penetration of the wind power is investigated in [41]. All the above problems usu-

ally seek for the solution that maximizes the system reliability and minimizing the

planning or operational cost. Because of the system uncertainties presence during

the reliability evaluation the system is classified to be a stochastic problem which

requires more attention to probabilistic modeling of their components and find the

optimization approach which takes this particular feature into account.

To construct the probability distribution function or the density function of the

conventional generation availability using MCS, the historical information like failure

rates and repair rates of all generation components have to be available.

1.6 Multi-Area Power System

When realizing a multi-area power system as a wide geographically connected

regions with separated wind farms, the second and minute variations in a single area

can be relieved by the smoothing effect of the other areas wind generation diversity

which is accounted as an advantage in stabilizing the system operation while the

wind power generation is appropriately distributed [15].

7



Multi-area power systems can be modeled as a network flow structure of multiple

areas connected by tie lines where each area represents an electrical power system

consisting of generators, transformers, transmission lines and load buses. Each area

has its particular configuration with different component ratings and reliability based

information like forced outages rate (FOR), mean up time and mean down time which

allows finding the failure and repair rates to conduct the Monte Carlo simulation.

The generation system is modeled based on its discrete probability distribution

function which can be constructed using Monte Carlo simulation or analytically using

Markov chain by knowing its generation units capacities and their forced outage rates

(FOR). In this research the Monte Carlo based simulation to construct the generation

model is used for each area of the system. The load model is formed as load duration

curve (LDC), such model is sufficient in the planning problem studies using non-

sequential Monte Carlo based simulation, whereas the hourly model or chronological

model is preferred in the operational type studies where the analysis at a small time

scale is critical. However, in the planning problem which considers a large set of

historical data to be analyzed, considering the chronological model will make the

study of different realization for multiple case studies in a single year difficult and

not practical due to the high computational time required to do the simulation.

Considerable attention therefore has been given to multi-area system reliability

assessment while allocating wind power generation and which area should be rein-

forced with wind power generation among other areas in the overall system [42]. The

adoption of reliability evaluation and optimization schemes is utilized in many kinds

of system planning and operation problems [43]. These problems usually search for

the optimal solution that maximizes system reliability subjected to the operational

constraints [8].

In this research, the model considers the wind power correlations between the
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areas. Since each area generally follows a different probability distribution comparing

to other far distance areas, such difference would fulfill the shortage of certain areas

by the excess of others, which would enhance the generation adequacy and the overall

power system reliability [9,44]. Moreover, the association of transmission constraints

in the model would impose additional security obligations to ensure system reliability,

since transmission constraints heavily influence the optimal precept for allocating

the wind power generation in each area of the network [13]. The planning problem

determines the percentage of investment committed to each area according to an

overall specific budget that would minimize the expected energy not served in the

entire system, which could mitigate the influence of outages, encourage affordable

and stable market prices, and promote investments in sustain and more efficient

manner [45].

1.7 Organization of the Dissertation

The dissertation is organized as follows. Chapter 2 describes the mathematical

model of DRO based approach for wind farm allocation using the linear represen-

tation of statistical wind power data; the proposed method is validated with a case

study on a five-area power system. Chapter 3 improves the method introduced in

Chapter 2 by applying further effective procedure in representing wind power data

using second-order cone programming. Chapter 4 introduces the DRO based plan-

ning scheme in allocating hybrid (the wind and solar) power generation system and

how the diversity in utilizing the renewable power generation improves the power

system reliability. Chapter 5 address the capacity credit evaluation using the an-

alytical approach to estimate the effective load carrying of the installed renewable

power generation units. The conclusion of the results in this dissertation is given in

Chapter 6. The References and the appendixes are attached at the end.
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2. WIND FARM ALLOCATION PLANNING PROBLEM

2.1 Linear Representation Formulation of Wind Power Statistical Parameters

2.1.1 A Two-Stage Wind Farm Allocation Model

The wind farm allocation model is formulated as a two-stage problem, where

the wind power allocation decisions are made in the first stage, and the operation

decisions are determined as the random wind power w̃ww and the uncertain generator

capacity p̃pp are realized.

The first-stage wind power planning problem is expressed as follows.

min sup
P∈F

EP {L(xxx, w̃ww, p̃pp)} (2.1)

s.t. 0 ≤ xi ≤ Πi (2.2)∑
i∈I

xi = Ω (2.3)

where xxx is the vector of first-stage decision variables, where xi represents the

wind power capacity placed in area i. The constraints (2.2) indicates that the wind

capacity xi in each area is subject to an upper limitation Πi, due to geographic

conditions, environmental or social concerns. The total capacity of installed wind

power for all areas in I is denoted by Ω in (2.3).

The objective function (2.1) minimizes the expected energy not served (EENS)

under the worst-case distribution of w̃ww and p̃pp, which is denoted by P over an ambiguity

set F. The detailed discussion on the ambiguity set F is given in the next subsection.

The expression L(xxx,www,ppp) in (2.1) indicates the amount of energy not served for the

wind farm allocation decision xxx under the wind power outcome www and the generation

capacity realization ppp. It is expressed as the second-stage optimization problem

10



shown below.

L(xxx,www,ppp) = min
∑
s∈S

∑
t∈T

∑
i∈I

T st l
s
it (2.4)

s.t. xiw
s
i + qsit −

∑
j∈J f

i

f sjit +
∑
j∈J t

i

f sijt = Ds
it − lsit,

∀i ∈ I, ∀t ∈ T ,∀s ∈ S (2.5)

− Fij ≤ f sijt ≤ Fij,

∀j ∈ J f
i ,∀i ∈ I,∀t ∈ T ,∀s ∈ S (2.6)

0 ≤ qsit ≤ pi, ∀i ∈ I,∀t ∈ T ,∀s ∈ S (2.7)

lsit ≥ 0 ∀i ∈ I,∀t ∈ T ,∀s ∈ S (2.8)

This formulation considers a set of wind power distributions, denoted by S, in

order to capture the seasonal or day-night differences of wind power patterns [13].

The load duration curve under each wind power distribution type s is approximated

by a segment expression, illustrated by an example in Fig. 2.1. The index of each

load segment is denoted by t, and the set T is the set of all load segments [46–49].

For each time segment t under wind power distribution s, the constant T st denotes

the duration of load segment t under wind power distribution type s, and Ds
it is the

corresponding load in area i. The variables qsit and lsit are the conventional generation

and load loss in area i, respectively, and the power transmitted from area j to area

i is denoted by f sijt. The objective function (2.4) indicates the amount of energy not

served over a year. The power balance in each area is enforced by equation (2.5).

Constraint (2.6) suggests that the power flow from area i to area j should be within

the capacity of transmission lines. The conventional generation qsit should also be

constrained below the available capacity pi, as expressed by (2.7). The last inequality
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Figure 2.1: Illustration of the segment approximation of load duration, as an example
of the RTS-1996 load data in Spring

(2.8) indicates that the loss of load lsit should be nonnegative.

2.1.2 Ambiguity Set

The proposed wind power planning formulation in this research addresses two

types of uncertainties: the random wind power generation and the forced outages of

generators. Unlike the stochastic programming approaches that optimize the expec-

tation based on one underlying distribution, this distributionally robust optimization

model manages system uncertainties by considering a family of distributions, defined

by an ambiguity set [8, 50]. against the incomplete or the lack of accuracy of distri-

bution information.

The following expressions (2.9)-(2.12) are applied in the ambiguity set to define
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a family of wind power distributions.

Pr {w̃ww ∈ W} = 1 (2.9)

EP {w̃si } = w̄si ,∀i ∈ I,∀s ∈ S (2.10)

EP {max{w̃si −W s
il, 0}} ≤ αsil,

∀i ∈ I,∀l ∈ Lα,∀s ∈ S (2.11)

EP

{
max{w̃si + w̃sj − w̄si − w̄sj , 0}

}
≤ βsij,

∀j < i ∈ I,∀s ∈ S (2.12)

The equation (2.9) suggests that the vector of random wind power generation is

constrained within an uncertainty set W , which is designed similarly to that in the

conventional robust optimization problems. In this research, the uncertainty set W

is defined as (2.13).

W =
{
www ∈ R|I|×|S| : 0 ≤ wsi ≤ 1, ∀i ∈ I, ∀s ∈ S

}
(2.13)

The equation (2.10) implies that the expected value of each w̃si is w̄si , and the

next inequality (2.11) incorporates distribution information αsil in terms the absolute

deviation of w̃si around a selected wind power level W s
il into the ambiguity set. Be-

cause the distribution of wind power is typically skewed and long-tailed [51, 52], or

even bimodal [53,54], the expression (2.11) is used for multiple wind power levelsW s
il

in order to capture the variability and skewness of wind power distributions, illus-

trated by the upper plot in Fig. 2.2. As more wind power levels are considered, the

distributions of wind power generation can be represented in a more precise manner

and the worst-case distribution should be less adverse, leading to less conservative

solutions [55, 56]. The last expression (2.12) is used to limit the mean absolute de-
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viation of the generation summation from two wind farms below a constant βsij, as

illustrated by the lower plot in Fig. 2.2. This inequality implicitly incorporates

the information on the correlation between wind farms into the ambiguity set. If

the power output from two wind farms are negatively correlated, the constant βsij is

likely to be smaller, and positive correlation commonly lead to larger βsij. Notice that

unlike the stochastic programming approaches that consider one wind power distri-

bution by the scenario-representation, the proposed uncertainty model addresses a

family of distributions characterized by the parameters w̄si , αsil and βsij, which can be

calculated straightforwardly based on the historical data, thus more practical than

identifying the exact distribution of wind power generation.

The uncertain conventional generation capacities p̃pp can be modeled in a similar

way, as expressed by (2.14)-(2.17).

Pr {p̃pp ∈ P} = 1 (2.14)

EP {p̃i} = p̄i, ∀i ∈ I (2.15)

EP {max{Pil − p̃i, 0}} ≤ γil, ∀i ∈ I,∀l ∈ Lγ (2.16)

EP

{
max

{
Ql −

∑
i∈I

p̃i, 0
}}
≤ δl, ∀l ∈ Lδ (2.17)

The first expression (2.14) implies that the vector of uncertain generation capacity

is constrained within an uncertainty set P , which is defined as follows:

P =
{
ppp ∈ R|I| : pmini ≤ pi ≤ pmaxi , ∀i ∈ I

}
(2.18)

Similar to (2.10), the second equation (2.15) defines the expected value of the

uncertain generation capacity p̃i. The third expression (2.16) selects a set of gen-

eration levels Pil, denoted by Lγ, and enforces the expected value of the positive
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Figure 2.2: Illustration of the expressions that characterize the wind power distribu-
tions, based on an example of California wind farms in Spring

part of Pil − p̃i below a constant γil, as illustrated by the upper plot in Fig. 2.3.

The last expression characterizes the distribution of the total generation capacity

in the same fashion, i.e., the expected value of the positive part of Ql −
∑
i∈I

pi is

constrained below a constant δl, where Ql is the selected generation level, and Lδ

is the set of all selected levels, as shown in the lower plot of Fig. 2.3. Note that

both the expressions (2.16) and (2.17) are utilized to incorporate the information on

distribution patterns of generation capacities into the ambiguity set, and this uncer-
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tainty model is more practical than conventional stochastic programming methods

because there is no need to attain the detailed data on the exact generation capacity

distribution, which is usually inaccessible or too complex to represent. Instead, we

only need to calculate the constants γil and δl based on the historical data and the

selected generation levels. Including more generation levels into the sets Lγ and Lδ

will improve the precision of characterizing the distribution of generation capacities

in the ambiguity set.

By combining the wind power uncertainty model (2.9)-(2.12) and the generation

capacity expressions (2.14)-(2.17), the overall ambiguity set, denoted by F, can be

formulated as (2.19).

Based on the ambiguity set presented above, the proposed wind power allocation

model minimizes the expected energy not serve under the worst-case distribution.

In the next section, this two-stage formulation is reformulated into a tractable linear

programming problem using the linear decision rule approximation.

F =



P ∈ Q0
(
R|I|×|S| × R|I|

)
:

w̃ww ∈ R|I|×|S|

Pr {w̃ww ∈ W} = 1
EP {w̃si } = w̄si
EP {max{w̃si −W s

il, 0}} ≤ αsil,∀i ∈ I
EP
{

max{w̃si + w̃sj − w̄si − w̄sj , 0}
}
≤ βsij

p̃pp ∈ R|I|

Pr {p̃pp ∈ P} = 1
EP {p̃i} = p̄i

EP {max{Pil − p̃i, 0}} ≤ γil

EP

{
max

{
Ql −

∑
i∈I

p̃i, 0
}}
≤ δl



(2.19)
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Figure 2.3: Illustration of the expressions that characterize the generation capacity
distributions, based on an example of the Reliability Test System 1996

2.2 Problem Solving Procedure

2.2.1 Compact Matrix Formulation

The formulation presented in the previous section is expressed in more general

compact matrix forms, in order to facilitate the discussion of the reformulation proce-

dure. In this section, vectors are represented by bold lower case letters, and matrices

are represented by bold capital letters. Elements of vectors or matrices are denoted
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by regular letters with subscripts indicating the indices. The first-stage decisions

are still denoted by xxx, and the set of all first-stage decisions is named as N1. All

second-stage decisions, including qsit, f sijt, and lsit, are represented by a vector yyy, and

the set of all second-stage decision variables is denoted by N2. The random variables

www and ppp are combined as a vector zzz ∈ R|V|, where V is the set of all random variables.

The first-stage problem (2.1)-(2.3) is then expressed as the matrix form (2.20)-

(2.21).

min sup
P∈F

EP {L(xxx, z̃zz)} (2.20)

s.t. AxAxAx ≤ bbb (2.21)

with xxx ∈ R|N1|, AAA ∈ R|M1|×|N1| and bbb ∈ R|M1|, whereM1 is the set of all first-stage

constraints.

The second-stage problem (2.4)-(2.8) used for calculating function L(xxx,zzz) is given

as (2.22)-(2.23).

L(xxx,zzz) = min qqqTyyy (2.22)

s.t. CCC(zzz) +DyDyDy ≤ ddd(zzz) (2.23)

with qqq ∈ R|N2|, CCC(zzz) ∈ R|M2|×|N1|, DDD ∈ R|M2|×|N2|, and ddd(zzz) ∈ R|M2|, where M2

represents the set of all second-stage constraints. Notice that both the left-hand-side

constraints matrix CCC(zzz) and the right-hand-side coefficient vector ddd(zzz) are affected

by the random variables zzz. They are commonly assumed to be the following linear

18



affine form [33].

CCC(zzz) = CCC0 +
∑
v∈V

CCCvzv (2.24)

ddd(zzz) = ddd0 +
∑
v∈V

dddvzv (2.25)

with constants CCC0,CCCv ∈ R|M2|×|N1|, and ddd0, dddv ∈ R|M2|. The other parameters in

matrix DDD are independent from the random variables, hence is the case of fixed

recourse [17].

The ambiguity set (2.19) is expressed as the compact matrix form below.

F =


P ∈ Q0

(
R|V|

)
:

z̃zz ∈ R|V|

Pr {z̃zz ∈ Z} = 1

EP {z̃v} = z̄v, ∀v ∈ V

EP {gk(z̃zz)} ≤ σk,∀k ∈ K


(2.26)

The second line of (2.26) suggests that the vector of random variables is constrained

within an uncertainty set Z, which is the combination of set W in (2.9) and P in

(2.14). The third line of (2.26) is the generalized form of expressions (2.10) and

(2.15), used to define the expected value of random variables. The last line in (2.26)

is the compact matrix form of the remaining inequalities in (2.19). The function

gk(z̃zz) in (2.26) generalizes the absolute deviation and the positive part expression in

(2.11)-(2.12) and (2.16)-(2.17), and all constants αsil, βsij, γil, and δl are represented

by σk.
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2.2.2 Extended Ambiguity Set

In this subsection, the ambiguity set F in (2.26) is extended in (2.27) by by

introducing auxiliary variables ũk that express the upper bound of each function

gk(z̃zz) into the formulation.

F̄ =


Q ∈ Q0

(
R|V| × R|K|

)
:

(z̃zz, ũuu) ∈ R|V| × R|K|

Pr
{

(z̃zz, ũuu) ∈ Z̄
}

= 1

EP {z̃v} = z̄v,∀v ∈ V

EP {ũk} ≤ σk,∀k ∈ K


(2.27)

where Z̄ is the extended form of the uncertainty set Z, expressed as (2.28).

Z̄ =


(zzz,uuu) ∈ R|V| × R|K| :

zzz ∈ Z

gk(zzz) ≤ uk, ∀k ∈ K

uk ≤ max
zzz∈Z

gk(zzz),∀k ∈ K


(2.28)

Note that the uncertainty set Z are defined by linear constraints (2.9) and (2.14),

and the function gk(zzz) is also linear representable because it is expressed as the

absolute deviation in (2.11)-(2.12) and the positive part in (2.16)-(2.17). As a result,

the extended support set Z̄ in (2.28) can be written as the following linear matrix

form.

Z̄ =
{

(zzz,uuu) ∈ R|V| × R|K| : FzFzFz +HuHuHu ≤ hhh
}

(2.29)

with FFF ∈ R|R|×|V|, HHH ∈ R|R|×|K|, and hhh ∈ R|R|, where R denotes the set of all linear

constraints defining the extended support set Z̄.
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The extended ambiguity set F̄ and the uncertainty set Z̄ are utilized in the

next subsection to transform the two-stage wind power planning problem into a

computationally tractable formulation.

2.2.3 Reformulation with the Generalized Linear Decision Rule

The exact solution for this two-stage optimization problem is generally intractable,

because the expectation of L(xxx, z̃zz) must be calculated by solving the second-stage

recourse problem (2.22)-(2.23) under all realizations of random variables z̃zz. This

difficulty is normally addressed by linear decision rule techniques [32, 33, 57]. In

this approach, we utilize the generalized linear decision rule [32] to approximate the

recourse decision yyy by a linear affine function of some system uncertainties zzz and

auxiliary variables uuu, expressed as equation (2.30).

yn(zzz,uuu) = y0
n +

∑
v∈Vn

yznvzv +
∑
k∈Kn

yunkuk (2.30)

with (zzz,uuu) ∈ Z̄, recalling that Z̄ is the extended support set defined in (2.28). that

affect the recourse decision yn, and similarly, the set Kn is a subset of K, involving

all auxiliary variables that influence decision yn. It is pointed out by [32] that the

problem size can be reduced if fewer random and auxiliary variables are included

in each decision rule, the recourse decision rule thus assumes that decision yn is a

function of the random and auxiliary variables for the same load segment and wind

power distribution type as yn. The sets of all random variables zzz and auxiliary

variables uuu that are incorporated into the decision rule function yn are respectively

denoted by Vn and Kn in (2.30). This assumption should be valid because the

occurrence of load loss under every load segment and wind power distribution type

is independent, e.g., the energy not served at wind nights are unlikely to be affected
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by wind power outcomes during the day time in summer. yn is denoted by Kn.

It has also been shown in reference [32] that the ambiguity set F is equivalent

to the set of marginal distributions of uncertain variables z̃zz under Q, for all Q ∈ F̄,

where F̄ is the extended ambiguity set (2.27) discussed in the previous subsection.

We can hence derive the following equation.

max
P∈F

EP
{
qqqTyyy(z̃zz, ũuu)

}
= max

Q∈F̄
EQ

{
qqqTyyy(z̃zz, ũuu)

}
(2.31)

for some decision rules yyy(zzz,uuu) that are feasible under all realizations of system un-

certainties z̃zz. The original two-stage problem can be therefore transformed into the

following formulation by replacing the recourse decision yyy by the linear decision rule

approximation yyy(zzz,uuu).

min max
Q∈F̄

qqqTyyy(z̃zz, ũuu) (2.32)

s.t AxAxAx ≤ bbb (2.33)

CCC(zzz)xxx+DyDyDy(zzz,uuu) ≤ ddd(zzz), ∀(zzz,uuu) ∈ Z̄ (2.34)

The optimization problem (2.32)-(2.34) is then reformulated into the following robust

optimization problem by taking the dual of the inner maximization of the objective
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(2.32).

min ρ+ z̄zzTηηη + σσσTλλλ (2.35)

s.t. AxAxAx ≤ bbb (2.36)

ρ+ zzzTηηη + uuuTλλλ ≥ qqqTyyy(zzz,uuu), ∀(zzz,uuu) ∈ Z̄ (2.37)

CCC(zzz)xxx+DyDyDy(zzz,uuu) ≤ ddd(zzz), ∀(zzz,uuu) ∈ Z̄ (2.38)

λλλ ≤ 0, ρ ∈ R, ηηη ∈ R|S|,λλλ ∈ R|K| (2.39)

where ρ is the dual variable associated with the underlying implication that the

probability summation is one, and the other dual variables ηηη and λλλ are respectively

associated with the third and fourth line of the ambiguity set F̄ in (2.27).

It can be seen that the problem (2.35)-(2.39) is a typical robust counterpart,

which leads to an equivalent linear programming formulation. Let N z
v denote the

set of recourse decisions that are affected by random variable z̃v, and N u
k be the set

of recourse decisions affected by the auxiliary variable ũk. Both sets can be derived

from the set Vn and set Kn in the decision rule equation (2.30). The equivalent linear
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program can be thus expressed as (2.40)-(2.49).

min ρ+ z̄zzTηηη + σσσTλλλ (2.40)

s.t. AxAxAx ≤ bbb (2.41)

ρ− qqqTyyy0 ≥ hhhTπππ0 (2.42)∑
r∈R

Frvπ
0
r =

∑
n∈N z

v

qny
z
nv − ηv,∀v ∈ V , ∀m ∈M2 (2.43)

∑
r∈R

Hrkπ
0
r =

∑
n∈Nu

k

qny
u
nk − λk,∀k ∈ K,∀m ∈M2 (2.44)

∑
r∈R

hrπ
m
r ≤ d0

m −
∑
n∈N1

C0
mnxn −

∑
n∈N2

Dmnyn,

∀m ∈M2 (2.45)∑
r∈R

Frvπ
m
r =

∑
n∈N1

Cv
mnxn − dvm +

∑
n∈N z

v

Dmny
z
nk,

∀v ∈ V ,∀m ∈M2 (2.46)∑
r∈R

Hrkπ
m
r =

∑
n∈Nu

k

Dmny
u
kn, ∀k ∈ K,∀m ∈M2 (2.47)

λλλ ≤ 0,πππ0 ≤ 0,πππm ≤ 0, ∀m ∈M2 (2.48)

ρ ∈ R, ηηη ∈ R|S|,λλλ ∈ R|K|,

πππ0,πππm ∈ R|R|, ∀m ∈M2 (2.49)
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model. Case studies are presented in the next section to demonstrate the effectiveness

and tractability of the proposed method.

25

The uncertain constraints (2.38) and (2.39) are reformulated into (2.42)-(2.44) and

(2.45)-(2.47), respectively, by considering the dual variable πππ0 and πππm associated

with constraints in the extended support Z̄ in (2.28).

It can be seen that the two-stage wind power planning model is reformulated

into a tractable linear programming problem (2.40)-(2.49). By applying the linear

decision rule approximation, the resultant linear optimization formulation might be

more conservative, but it is much easier to be solved than the original two-stage



2.3 Five-Area System Case Study

To validate the proposed DRO technique on the wind farm allocation planning

problem, a five-area power system (Fig. 2.4) is used to allocate a certain amount of

megawatts, which is formerly determined by the power generation entity according

to their budget. In this case study, 1500 MW of WPG as an example is optimally

1 2

3 4

5

200 MW

250
M
W

300 MW

350
M
W

400
MW

450 MW

500
MW

600 MW

Figure 2.4: Five areas power system configuration and transmission lines transfer
capacities

distributed within the system using the DRO framework to utilize the maximum

obtainable wind power resources so that the minimum EENS is attained. The power

system configuration of each area follows the IEEE RTS system [58] with different

generation and load levels that distinguish the areas from each other. The power

system data and the case study results are shown in the first part of TABLE 2.1. After

assigning the optimal WPG in the system, random sampling Monte Carlo simulation

[46] is performed to validate the results and to calculate the reliability indices for each

area such as loss of load expectation (LOEEi), loss of energy expectation (LOEEi)
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and the entire system reliability index EENS to evaluate the system after WPG

integration.

Table 2.1: Power system data and the results

Power System Data and Reliability Assessment for Distributing 1500 (MW) of Wind Power

Area
(i)

System Data Reliability Indices
Without Wind Power

Reliability Indices
With Wind Power

Peak
Load
(MW)

Conventional
Generation

(MW)

Wind
Generation

(MW)

LOLEi

(hrs/yr)

LOEEi

(GWh/yr)

LOLEi

(hrs/yr)

LOEEi

(GWh/yr)

1 3,536 3,990 0 219.40 57.78 185.76 45.04

2 4,158 4,655 250 223.49 63.98 192.43 56.93

3 4,851 5,985 500 134.33 30.51 126.70 27.99

4 5,544 5,320 500 380.62 142.80 308.73 117.64

5 5,418 5,652 250 145.36 49.40 122.63 45.65

The Results of Optimal Wind Power Allocation for Different Probability Distribution Data Used in DRO

Wind Power Probability
Distribution Data

Wind Generation (MW) Reliability Indices

x1 x2 x3 x4 x5
EENS

(GWh/year)

αsil 0 119 500 500 381 803.57

αsil, βsij 0 250 500 500 250 139.36

The second part of TABLE 2.1 demonstrates how the robustness of the decisions

improves when more probability distribution information about the system variables

is provided. This enhances the results and gives better intuition about the main data

needed to accomplish such planning studies. According to this specific example, the

proposed approach based on the information provided excludes area 1 from any

investment in WPG (x1 = 0) for the given limited budget. Several factors control

the optimization process, like the relative adequacy in conventional generation of
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Figure 2.5: The optimal allocation of WPG when the total wind capacity (Ω) varies
from 0-1500 MW

area 1, which is reflected in better reliability indices compared to other areas with

no wind power. Furthermore, it has the lowest wind power availability among other

areas represented in the wind resources statistical parameters such as w̄s1, αs1l and

βs1j. Moreover, area 1 has 750 MW of transmission transfer capacity from other

neighboring areas, which allows their excess power to be delivered to it in case of

generation shortages. Referring to Fig. 2.5, which illustrates that area 1 is not

assigned with any WPG in all the cases of Ω from 0 MW to 1500 MW, except in a

limited manner when there is no interconnection with other areas Fig. 2.6.

The transmission lines transfer capacities between areas apparently affect the op-

timal planning decisions. Fig. 2.6 explains the relationship between the transmission

transfer capacity and the allocation of the WPG in each area. It shows that with

28



0 10 20 30 40 50 60 70 80 90 100

Optimal Allocation of Wind Power for Diffrent Transmission Lines Transfer Capacity

0

1000

2000

W
in
d
P
ow

er
C
ap

ac
it
y
(Ω

)
in

M
W

xi & EENS vs. the Percentage Increase in TL Transfer Capacity

0

2

4

E
x
p
ec
te
d
E
n
er
gy

N
ot

S
er
ve
rd

(E
E
N
S
)
in

M
W

h
/y
ea
r

×106

x1

x2

x3

x4

x5

EENS

Figure 2.6: The optimal allocation of WPG when the transmission lines transfer
capacity varies from 0% - 100%

a fixed amount of WPG, the EENS decreases as the transfer capacity increases and

the WPG is uniquely distributed with different power transfer capability. Eventually,

the results reveal an extraordinary reliability improvement with the interconnected

power system, and the utilization of the renewable resources is improved, especially

with a negatively correlated wind power availability between areas. Eventually, the

results show an extraordinary reliability improvement in area 1 after installing just

5.85% of the total system’s generation capacity as a WPG to its interconnected areas

by 15.13%, 15.33% and 22.05% decrees in LOLP1, LOLE1 and LOEE1 respectively.

in a nutshell, the multi-area power system gets benefit from the investment in WPG

by decreasing in EENS by around 14.94%, and with the interconnecting system the

utilization of the renewable resources is increased. The wind power statistical param-
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eters αsil and βsij which are used in the problem formulation are linear in order to gain

the advantages of the linear programming optimization which is convex and can be

easily solved using simplex method. However, this technique represents wind data in

an approximate linear formatting which requires a lot of piece-wise data segments to

construct the wind power probability distribution function. As a result, additional

standard wind power parameters such as wind power mean absolute deviation, vari-

ance and covariance are introduced, since the variance and covariance are nonlinear

parameters which convert the problem to a second order cone programming which

is quadratically constrained linear program, it is convex and it can be solved using

interior point method. This approach will be discussed in the next chapter.
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3. NONLINEAR FORMULATION OF WIND FARM ALLOCATION

PLANNING PROBLEM

3.1 Nonlinear Representation of Wind Power Statistical Parameters

3.1.1 A Two-Stage Wind Farm Allocation Model

Similar to the previous chapter, two types of uncertainties are addressed in the

proposed wind power planning formulation: the random wind power generation w̃ww

and the available thermal generation capacity p̃pp. The model is formulated as a two-

stage problem where the wind power allocation decisions are made in the first stage

and the operation decisions are determined as the w̃ww and p̃pp are realized.The first-stage

wind power planning problem is expressed as follows:

min sup
P∈F

EP {L(xxx, w̃ww, p̃pp)} (3.1)

s.t. 0 ≤ xi ≤ Πi (3.2)∑
i∈I

xi = Ω (3.3)

where xxx is the vector of first-stage decision variables and each xi represents the wind

power capacity in area i. The constraints (3.2) indicate that the wind capacity xi

in each area is subject to an upper limitation Πi due to geographic conditions and

environmental or social concerns. The total capacity of installed wind power for

all areas in I is denoted by Ω in (3.3). The objective function (3.1) minimizes the

expected energy not served (EENS) under the worst-case distribution of w̃ww and p̃pp,

which is denoted by P, over an ambiguity set F. The expression L(xxx,www,ppp) in (3.1)

indicates the amount of energy not served for the wind farm allocation decision xxx
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under the wind power outcome www and the available generation capacity realization

ppp. It is expressed as the second-stage optimization problem shown in Section 2.1.1.

3.1.2 Ambiguity Set

The DRO model address system uncertainties by considering a family of distribu-

tions, defined by an ambiguity set F [8, 50]. In this section, the power distributions

are represented using some standard statistical data representation. The expres-

sions (3.4)-(3.8) are applied in the ambiguity set to define a family of wind power

distributions.

P {w̃ww ∈ W} = 1 (3.4)

EP {w̃si } = w̄si ,∀i ∈ I,∀s ∈ S (3.5)

EP {|w̃si − w̄si |} ≤ φsi ,∀i ∈ I,∀s ∈ S (3.6)

EP

{
(w̃si − w̄si )2

}
≤ λsi , ∀i ∈ I,∀s ∈ S (3.7)

EP

{
(w̃si + w̃sj − w̄si − w̄sj)2

}
≤ λsi + λsj + 2ζsij,

∀j < i ∈ I,∀s ∈ S (3.8)

Equation (3.4) suggests that the vector of random wind power generation is con-

strained within a support set W , which is designed similarly to that in the con-

ventional RO problems. In this research, the support set W is defined by equation

(3.9):

W =
{
www ∈ R|I|×|S| : 0 ≤ wsi ≤ 1, ∀i ∈ I,∀s ∈ S

}
(3.9)

Equation (3.5) implies that the expected value of each w̃si is w̄si , and the next

inequality (3.6) suggests that the mean absolute deviation of w̃si is less than or equal
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to φis. Similarly, constraints (3.7) suggest that the variance of w̃si is no higher

than the constant λsi . The last expression (3.8) implies that the covariance between

w̃si and w̃sj is limited below ζsij. It can be seen that constraints (3.4)-(3.8) in the

ambiguity set attempts to capture the location, spread, and dependence of random

wind power generation in terms of basic statistical measures, such as expectations,

mean absolute deviations, variances and covariances. Such parameters should be

much easier to estimate than the exact probability distribution.

The available conventional generation capacity p̃pp is modeled exactly as applied

in the previous chapter, by the equations (3.10)-(3.13):

P {p̃pp ∈ P} = 1 (3.10)

EP {p̃i} = p̄i, ∀i ∈ I (3.11)

EP {max{Pil − p̃i, 0}} ≤ γil, ∀i ∈ I,∀l ∈ Lγ (3.12)

EP

{
max

{
Ql −

∑
i∈I

p̃i, 0
}}
≤ δl, ∀l ∈ Lδ (3.13)

The first expression (3.10) implies that the vector of uncertain generation capacity

is constrained within a support set P , which is defined as follows:

P =
{
ppp ∈ R|I| : pmini ≤ pi ≤ pmaxi , ∀i ∈ I

}
(3.14)

By combining the wind power uncertainty model (3.4)-(3.8) and the generation

capacity expressions (3.10)-(3.13), the overall F can be formulated as (3.15). In the

next section, this two-stage formulation is reformulated into a tractable second-order

cone programming problem using linear decision rule approximations.
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F =



P ∈ Q0
(
R|I|×|S| × R|I|

)
:

w̃ww ∈ R|I|×|S|

P {w̃ww ∈ W} = 1
EP {w̃si } = w̄si
EP {|w̃si − w̄si |} ≤ φsi
EP {(w̃si − w̄si )2} ≤ λsi
EP
{

(w̃si + w̃sj − w̄si − w̄sj)2
}
≤ λsi + λsj + 2ζsij

p̃pp ∈ R|I|

P {p̃pp ∈ P} = 1
EP {p̃i} = p̄i

EP {max{Pil − p̃i, 0}} ≤ γil

EP

{
max

{
Ql −

∑
i∈I

p̃i, 0
}}
≤ δl


(3.15)

3.2 Problem Reformulation

3.2.1 Compact Matrix Formulation

The formulation presented in the previous section is expressed in more general

compact matrix forms in order to facilitate the discussion of the reformulation proce-

dure. In this section, vectors and matrices are represented by bold lowercase letters.

Entries of vectors or matrices are denoted by regular letters with subscripts indicat-

ing the indices. The first-stage decisions are still denoted by xxx ∈ R|N1|, where N1

is the set of all first-stage decisions. All second-stage decisions, including qsit, f sijt,

and lsit, are represented by a vector yyy ∈ R|N2|, where N2 is the set of all second-stage

decisions. Random variables www and ppp are combined as a vector zzz ∈ R|V|, where V is

the set of all random variables. The first-stage problem (3.1)-(3.3) is then expressed
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in the matrix form (3.16)-(3.17).

min sup
P∈F

EP {L(xxx, z̃zz)} (3.16)

s.t. AxAxAx ≤ bbb (3.17)

with AAA ∈ R|M1|×|N1| and bbb ∈ R|M1|; whereM1 is the set of all first-stage constraints.

The second-stage problem used for calculating function L(xxx,zzz) is given as (3.18)-

(3.19):

L(xxx,zzz) = min qqqTyyy (3.18)

s.t. CCC(zzz) +DyDyDy ≤ ddd(zzz) (3.19)

with qqq ∈ R|N2|, CCC(zzz) ∈ R|M2|×|N1|, DDD ∈ R|M2|×|N2|, and ddd(zzz) ∈ R|M2|; where M2

represents the set of all second-stage constraints. Notice that both the left-hand-side

constraints matrix CCC(zzz) and the right-hand-side coefficient vector ddd(zzz) are affected

by the random variables zzz. They are commonly assumed to be the following linear

affine form:

CCC(zzz) = CCC0 +
∑
v∈V

CCCvzv (3.20)

ddd(zzz) = ddd0 +
∑
v∈V

dddvzv (3.21)

with constants CCC0,CCCv ∈ R|M2|×|N1|, and ddd0, dddv ∈ R|M2|. The other parameters in

matrix DDD are independent from the random variables; hence, this is the case of fixed

recourse. [17]. The ambiguity set (3.15) is expressed as the compact matrix form
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below:

F =


P ∈ Q0

(
R|V|

)
:

z̃zz ∈ R|V|

P {z̃zz ∈ Z} = 1

EP {z̃v} = z̄v, ∀v ∈ V

EP {gk(z̃zz)} ≤ σk,∀k ∈ K


(3.22)

The second line of (3.22) suggests that the vector of random variables is constrained

within a support set Z, which is the combination of set W in (3.4) and P in (3.10).

The set of all random variables is denoted by V . The third line of (3.22) is the

generalized form of expressions (3.5) and (3.11), used to define the expected value of

random variables. The last line in (3.22) is the compact matrix form of the remaining

inequalities in (3.15). The function gk(z̃zz) in (3.22) generalizes the absolute deviation,

variance, covariance and the positive part expression in (3.6)-(3.8) and (3.12)-(3.13),

and K is the set of all constraints involving the expected value of function gk(z̃zz). All

constants φsi , λsi , ζsij, γil, and δl in the ambiguity set are represented by σk.

3.2.2 Extended Ambiguity Set

The proposed two-stage problem is challenging to solve due to the complex form

of function gk(z̃zz) and recourse decisions yyy that are determined after the realization of

system uncertainties. In order to derive a tractable formulation, we follow previous

studies [23,31,32] to extend the ambiguity set into a lifted form F̄ in equation (3.23)

by introducing a set of auxiliary variables uuu to express the upper bound of each
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function gk(z̃zz).

F̄ =


Q ∈ Q0

(
R|V| × R|K|

)
:

(z̃zz, ũuu) ∈ R|V| × R|K|

Q
{

(z̃zz, ũuu) ∈ Z̄
}

= 1

EQ {z̃v} = z̄v,∀v ∈ V

EQ {ũk} ≤ σk,∀k ∈ K


(3.23)

where Z̄ is the extended form of the support set Z, expressed as (3.24).

Z̄ =


(zzz,uuu) ∈ R|V| × R|K| :

zzz ∈ Z

gk(zzz) ≤ uk, ∀k ∈ K

uk ≤ sup
zzz∈Z

gk(zzz),∀k ∈ K


(3.24)

Besides enforcing the support set of random variables z̃zz, the extended set also sug-

gest that the upper limits of function gk(zzz) are bounded by vector uuu. Note that

the support set Z is defined by linear constraints (3.4) and (3.10), and the function

gk(zzz) is quadratic or linear for expressing various distribution information in equa-

tion (3.15). According to reference [59], all inequalities involving function gk(zzz) are

transformed into the following second-order cone constraints, so that we can derive

the dual formulation easily in the subsequent subsection.

Z̄ =

(zzz,uuu) ∈ R|V| × R|K| :
‖FFF rzzz +HHHruuu ≤ hhhr‖

≤ aaaTr zzz + cccTr uuu+ er, r ∈ R

 (3.25)

with FFF r ∈ RMr×|V|, HHHr ∈ RMr×|K|, and hhhr ∈ RMr , where Mr is the row number for

the rth constraint, and R denotes the set of all constraints defining the extended
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support set Z̄. The extended ambiguity set F̄ and the support set Z̄ are utilized in

the next subsection to transform the two-stage wind power planning problem into a

computationally tractable formulation.

3.2.3 Reformulation with the Generalized Linear Decision Rule

The exact solution for this two-stage optimization problem is generally intractable

because the expectation of L(xxx, z̃zz) must be calculated by solving the second-stage

recourse problem (3.18)-(3.19) under all realizations of uncertaitny z̃zz. This diffi-

culty is normally addressed by linear decision rule approximations [32, 33, 57]. In

this method, the decision rule function is defined to be dependent on some random

variables zzz as well as some auxiliary variables uuu, expressed as function ȳn in equation

(3.26)

ȳn(zzz,uuu) = y0
n +

∑
v∈Vn

yznvzv +
∑
k∈Kn

yunkuk, ∀n ∈ N2 (3.26)

with (zzz,uuu) ∈ Z̄, recalling that Z̄ is the extended support set defined in (3.24). In

the equation (3.26), the set Vn, as a subset of V , consists of all random variables

affects the recourse decision ȳn. Similarly, the set Kn is a subset of K, involving

all auxiliary variables that influence decision ȳn. In this approach, it is assumed

that the decision rule ȳn depends on random variables and auxiliary variables for the

same load segment and wind power distribution type as ȳn. The linear decision rule

function is further generalized into the following matrix form.

ȳyy = yyy0 + YYY zzzz + YYY uuuu (3.27)

where yyy0 ∈ R|N |2 indicates the constant term coefficients, and entries of matrices

YYY z ∈ R|N2|×|V| and YYY u ∈ R|N2|×|K|, specified by (3.28) and (3.29), are the linear term
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coefficients associated with zzz and uuu, respectively.

Y z
nv =


yznv, if v ∈ Vn

0, if v ∈ V \ Vn
∀n ∈ N2 (3.28)

Y u
nk =


yunk, if k ∈ Kn

0, if k ∈ K \ Kn
∀n ∈ N2 (3.29)

By replacing the actual recourse decision yyy for each uncertainty realization by

the decision rule function, an approximated formulation can be derived as follows.

min sup
Q∈F̄

EQ

{
qqqTyyy(z̃zz, ũuu)

}
(3.30)

s.t. AxAxAx ≤ bbb (3.31)

CCC(zzz) +DDDȳyy(zzz,uuu) ≤ ddd(zzz), ∀(zzz,uuu) ∈ Z̄ (3.32)

Apparently, the decision rule may not be the optimal case under all uncertainty

realizations, so the problem above is a conservative approximation which gives an

upper bound of the expected energy not served. Note that the inner supremum

expression can be written as the semi-infinite problem below.

sup
∫
Z̄
qqqT ȳ(zzz,uuu)df(zzz,uuu) (3.33)

s.t.
∫
Z̄
zvdf(zzz,uuu) = z̄v, ∀v ∈ V (3.34)∫

Z̄
ukdf(zzz,uuu) ≤ σk, ∀k ∈ K (3.35)∫

Z̄
f(zzz,uuu) = 1 (3.36)

f(zzz,uuu) ≥ 0, ∀(zzz,uuu) ∈ Z̄ (3.37)
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By taking the dual of the semi-infinite formulation (3.33)-(3.37), the problem (3.30)-

(3.32) is then reformulated into the following robust optimization problem.

min ρ+ z̄zzTηηη + σσσTβββ (3.38)

s.t. AxAxAx ≤ bbb (3.39)

ρ+ zzzTηηη + uuuTβββ ≥ qqqT ȳyy(zzz,uuu), ∀(zzz,uuu) ∈ Z̄ (3.40)

CCC(zzz)xxx+DDDȳyy(zzz,uuu) ≤ ddd(zzz), ∀(zzz,uuu) ∈ Z̄ (3.41)

ρ ∈ R, ηηη ∈ R|V|,βββ ∈ R|K|− (3.42)

where ηηη and βββ are dual variables associated with constraints (3.34) and (3.35), respec-

tively, and ρ is the dual variable associated with (3.36). The problem (3.38)-(3.42)

is a typical robust optimization problem with a tractable uncertainty set Z̄, which

leads to the robust counterpart (3.43)-(3.55).

min ρ+ z̄zzTηηη + σσσTβββ (3.43)

s.t. AxAxAx ≤ bbb (3.44)

ρ− qqqTyyy0 +
∑
r∈R

(
hhhTr πππ

0
r + erµ

0
r

)
≥ 0 (3.45)

∑
r∈R

(
FFF T
r πππ

0
r − µ0

raaar
)

= ηηη − YYY zqqq (3.46)
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∑
r∈R

(
HHHT

r πππ
0
r − µ0

rcccr
)

= βββ − YYY uqqq (3.47)

‖πππ0
r‖ ≤ µ0

r, ∀r ∈ R (3.48)

πππ0
r ∈ RMr , µ0

r ∈ R+, ∀r ∈ R (3.49)(
CCC0xxx+DyDyDy0

)
m
≤ d0

m +
∑
r∈R

(
hhhTr πππ

m
r + erµ

m
r

)
,

∀m ∈M2 (3.50)∑
r∈R

(
FFF T
r πππ

m
r − µmr aaar

)
v

= (dddv −CCCvxxx)m − (DYDYDY z)mv ,

∀v ∈ V ,∀m ∈M2 (3.51)∑
r∈R

(
HHHT

r πππ
m
r − µmr cccr

)
v

= − (DYDYDY z)mv ,

∀v ∈ V ,∀m ∈M2 (3.52)

‖πππ0
r‖ ≤ µ0

r, ∀r ∈ R (3.53)

πππmr ∈ RMr , µmr ∈ R+, ∀r ∈ R,∀m ∈M2 (3.54)

ρ ∈ R, ηηη ∈ R|V|,βββ ∈ R|K|− (3.55)

The uncertain constraints (3.40) are reformulated into constraints (3.45)-(3.49) by

taking the dual of the extended uncertainty set Z̄. The dual variables are denoted

by πππ0
r and µ0

r. Similarly, the mth constraint of (3.41) are transformed into expression

(3.50)-(3.54) by considering dual variables πππmr and µmr . It can be seen that the ro-

bust counterpart of the proposed two-stage wind power planning model is a tractable

second-order cone programming problem (3.43)-(3.54). By applying the linear deci-

sion rule approximation, the resultant linear optimization formulation might be more

conservative, but it is much easier to be solved than the original two-stage model.

Case studies are presented in the next section to demonstrate the effectiveness and

tractability of the proposed method.
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3.3 Case Studies on DRO Based Wind Power Generation

To examine the proposed DRO technique on the wind farm allocation problem,

the factors which primarily influence the performance of the DRO model on the

objective and the WPG decisions are investigated. These factors are mainly associ-

ated with the power system configuration and the system uncertainties which exist

in the wind power and conventional generation forced outages. A five-area power

1 2

3 4

5

200 MW

250
M
W

300 MW

350
M
W

400
MW

450 MW

500
MW

600 MW

Figure 3.1: Five areas power system configuration

system with its areas interconnected by tie-lines of different transfer capacities as

shown in Fig. 3.1 is used to allocate certain megawatts of WPG. The power sys-

tem configuration of each area follows the IEEE-RTS system with various generation

and load levels that distinguish the areas from each other. The conventional gen-

eration installed capacities and the peak loads of each area in the system are listed

in TABLE 3.1. The historical wind power data used in this study are available in

NREL/3TIER website as explained in [60]. The wind power profiles of five distinct

locations are used to represent the wind power pattern of the five-area power sys-
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tem. The statistical parameters w̄si , φsi , λsi and ζsij, for each area i and for the eight

wind power distributions s which represent the seasonal and day-night wind pattern,

are determined and provided to the DRO by incorporating them into the ambiguity

sets. Similarly, the statistical information of conventional power generation γil and

δl are calculated from its probability distribution of the five-area system to include

them into the ambiguity set for the forced outages uncertainties representation. The

IBM ILOG CPLEX solver is used to solve the second-order cone programming of

the DRO problem. The computer used for this numerical experiment has a 3.10GHz

Intel Core processor and 32GB memory, and the average solution time is approxi-

mately 3 minutes. In this example, the proposed method optimally allocates 5000

MW of WPG within the five-area system, so that the EENS over the ambiguity set is

minimized. Detailed system data and the solution are provided in TABLE 3.1. More

tests are conducted to explore the influence of the statistical data of wind power and

generator outages.

Table 3.1: Power system data and the DRO results

Five-Area Power System Data & DRO Results

Area
(i)

System Data Wind Data DRO Results

Peak
Load
(MW)

Installed
Capacity
(MW)

Mean

(%)

Variance

(%)

WPG

(MW)

EENS

(GWh/yr)

1 3,465 3,485 28.23 11.70 985

664.54

2 4,158 4,306 29.85 9.25 435
3 4,851 5,578 32.74 9.92 1295
4 5,544 4,972 29.46 9.27 1025
5 5,418 5,322 31.92 10.40 1260
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3.3.1 The Influence of Wind Power Statistical Data

The proposed method is capable of incorporating statistical data of wind power,

in terms of the mean absolute deviation, the variance, and the covariance between

two wind sources into the formulation, so that the EENS is minimized with consid-

eration of such ambiguous distribution information. The influence of the wind power

uncertainty represented by the statistical parameters φsi , λsi and ζsij, which are in-

corporated in the ambiguity set is illustrated. The assessment has two perspectives;

the first perspective examines the performance of the DRO as more distribution in-

formation about the wind power is provided. The second perspective measures the

sensitivity of a specific governing parameter comparing to the others by changing its

magnitude back and forth from its original value by 50% on the EENS and on the

Decisions. Case studies in this subsection are therefore conducted to examine how

the wind allocation decisions are affected by considering different types of statistical

data and by varying the values of specific statistical parameters. Table 3.2 shows the

results of the proposed DRO model as different types of statistical data are consid-

ered in the ambiguity set to capture the distribution of wind power. It can be seen

that the EENS decreases as more statistical data is taken into consideration, and

the lowest EENS is achieved when all types of parameters φsi , λsi , and ζsij are taken

into consideration. This is because the distribution of wind power can be captured

with higher accuracy with more information. If some of these parameters are un-

available, the solution tends to be more conservative in order to protect the system

against more adverse wind power distributions. It is also observed that area 1 is

excluded from any WPG if only mean absolute deviation φsi is provided. Whereas it

is considered with 171 MW when the variance λsi is included, and it is heavily inte-

grated by 985 MW when the information about the correlation ζsij is incorporated.
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So the decision-making procedure is affected by the information of distributions in

an efficient manner as more useful information about the uncertainty is provided.

Table 3.2: DRO results of different wind statistical data

The Results of Optimal Wind Power Allocation
for Different Probability Distribution Data Used in DRO

Wind
Power
Data

Wind Power Generation
(MW)

Objective
Value

x1 x2 x3 x4 x5
EENS

(GWh/year)

φsi 0 1030 1410 1115 1445 696.90
λsi 171 462 1746 1040 1581 754.06

φsi , λsi 261 624 1446 1204 1465 695.96
λsi , ζsij 994 471 1080 1103 1352 671.52

φsi , λsi , ζsij 985 435 1295 1025 1260 664.54

Fig. 3.2 shows how the reliability of the system with wind power generation

is enhanced when the global variance of the system is minimized. The figure also

indicates as more statistical data are exercised in DRO the more confident and less

conservative solution are proposed with optimal worse case expected objective is

introduced.
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Figure 3.2: The effect of incorporating the wind power statistical data in DRO

The following numerical studies are utilized to demonstrate the impact of chang-

ing parameter values on DRO solutions. Fig. 3.3 displays the wind allocation de-

cisions as well as the resultant EENS under various values of φs1, which indicates

the mean absolute deviation of wind power at area 1. It is observed that as φs1 de-

creases, more wind capacity is deployed from other areas to area 1, so that the total

fluctuation of wind power is reduced, leading to lower EENS.

Similar pattern can be observed in Fig. 3.4, which shows the wind allocation

decisions and EENS under different values of λs1, which implies the variance of wind

power. It is noted that more wind power is committed to area 1 due to the reduction

of its wind power variance. Such improvement in λs1 results in less wind uncertainty

and consequently the lower value of EENS is achieved.

The results above suggest that the proposed method is capable of incorporating
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Figure 3.3: The effect of φs1 variation on WPG

statistical data, such as mean absolute deviations and variances, into the optimal

planning model. The wind allocation decisions, therefore, can well adapt to the

change of wind power variations.

The proposed method is also able to capture the correlation between two areas

implicitly by the parameter ζsij, which denotes the covariance of wind power between

area i and j. In the subsequent tests, the covariance between two areas is expressed

by equation (3.56).

ζsij = ξij
√
λsiλ

s
j , ∀j < i ∈ I, s ∈ S (3.56)

where ξij is a varying constant indicating the correlation coefficient. The wind power

covariance ζsij provides information about the wind power diversification in means

of the correlation between the areas. Fig. 3.5 shows the ζsij, changing effects on the
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Figure 3.4: The effect of λ1 variation on WPG

EENS and the decisions when the φsi and λsi are used but fixed as their original values.

It is clear that the EENS improves when the correlation is more likely to be negatively

correlated which provides more diversification in the wind power availability.

Fig. 3.6, shows the wind capacity allocation, in terms of the total wind power

capacities in area 2 and 4, and the overall EENS as the correlation factor between

area 2 and 4 changes. The results suggest that as the coefficient ξs24 goes to -1,

implying that wind power generation in these two areas are negatively correlated,

the total wind capacity in these two areas steadily increases, as a measure to reduce

the overall wind power uncertainty for the system, and apparently a lower level of

wind uncertainty can greatly reduce the EENS.
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Figure 3.5: The response of ζsij change on WPG

3.3.2 The Effect of Power System Configuration

Many Indicators assist the system planner in evaluating the decisions and explain

which areas are more likely preferred to be installed with wind power generation,

like looking at the mean wind power w̄si of each area i to inspect the availability

and checking the wind power’s mean absolute deviation, variance and covariance to

evaluate the variability and uncertainty. Nevertheless, these useful data alone are

not sufficient to decide the decisions, the optimal WPG distribution changes in each

case due to several factors that govern it besides the wind power statistical analysis,

there are also the system’s configuration and the system’s reliability status which are

taken in the account during the DRO optimization process.
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Figure 3.6: The effect of ξs24 variation on WPG

3.3.2.1 The Impact of the Total Wind Power Capacity Ω

In Fig. 3.7, a range of total wind power capacity Ω varies from 0-5000 MW in step

of 500 MW are allocated in the five-area system, the results show the improvement

in the EENS as the total wind power capacity is increased.

3.3.2.2 The Assessment of the Transmission Lines Effect on the WPG allocation

In this subsection, the effectiveness of the tie-lines interconnection between the

areas, on the WPG allocation is evaluated in the five-area power system example.

Fig. 3.8 indicates the decisions and their associated EENS for different transmission

lines levels from 0% to 120% of the installed transfer capacities. At the isolated

scenario, x4 is assigned to have 2744 MW of WPG which is 54.88% of the total

budget, the worst case EENS for this particular realization is 2029 GWh/yr. On
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Figure 3.7: The optimal allocation of WPG

the other hand, the EENS reduces gradually if the areas are allowed to deliver some

of their electric power to the neighboring areas, whether it is from conventional

generation or Wind. This privilege assists in rearranging the decisions in such a way

that EENS is improved. x4, for instance, is not dominating the wind power allocation

anymore when the tie-lines are at 60% or more of their capacities, at this realization,

the EENS is 672 GWh/yr which is reduced by 33% comparing to the isolated case.

It is also remarked, that the EENS saturated 666 GWh/yr and the expansion of the

tie-lines transfer capacities beyond 60% is unbeneficial for the WPG budget used in

this example.
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Figure 3.8: The optimal allocation of WPG with diffrent transmission lines transfer
capacity

3.3.2.3 The Impact of the Conventional Power Generation Forced Outages

Parameters

The following case studies are conducted to show how the reliability of generators

affects the wind allocation decisions. It is assumed that the failure rates of generators

in area 1 are changed from 50% to 150% of the original values, while the other pa-

rameters remain unchanged. The increase of failure rates can be effectively captured

by parameters γil and δl in the ambiguity set, so the resultant DRO solutions can

well adapt to various levels of system reliability. The figure shows that as generators

in area 1 becomes less reliable, the wind capacity allocated in area 1 only increases

slightly, while much more wind capacities are added to the neighboring area 3. This

is probably because area 3 is connected to area 1 with sufficient transmission capac-
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Figure 3.9: The effect of the generation failure rates on WPG

ity, and the wind power profile in area 3 has the highest mean value and a lower

variation compared with area 1, as shown in Table 3.1. Therefore, wind power with

higher efficiency and better availability can be delivered from area 3 to area 1 to

prevent load loss caused by generator outages.
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4. HYBRID WIND AND SOLAR POWER GENERATION ALLOCATION

USING DISTRIBUTIONALLY ROBUST OPTIMIZATION

4.1 Introduction

Power grids are accepting higher integration of the large-scale renewable energy

resources including wind and solar power generation plants. The variability and

uncertainty issues that accompany the sustainable energy resources emphasize the

research efforts on the hybrid systems where both wind and solar power resources

are collaboratively employed for improving the system reliability by increasing the

availability and reducing the variability.

Analyzing the hybrid system in the planning stage of the power generation ex-

pansion design needs more understanding of the correlation between the wind and

solar energy. Such information is crucial to find a better approach to operating them

once they are integrated, to maintain or improve the reliability and the security of

the system while reducing the conventional generation by the renewable energy with

assuring the power generation adequacy.

Studying the hybrid scheme in a multi-area system allows for more flexibility

in distributing these resources in all around different areas, which depends on the

particular characteristics of the resources specifications and patterns of each location.

Such a system would provide as performance or better than the wind power or solar

power alone as it creates more diversity in renewable energy deployment.

In [61], a decision support technique was developed to enable decision makers

to study all factors (mainly political, social, technological and economic) influencing

the design of hybrid wind solar power systems for the interconnected power grid.

They used an analytic hierarchy process to identify robust and inferior plans, and
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to identify riskier vs. less risky designs. They took into account previous work

that had sought to minimize production cost while still meeting load requirements,

choose the optimal size of generating units, and work that had integrated prediction

of maximized reliability and minimized cost under uncertain future circumstances.

Recognizing the potential advantages of combining two renewable energy sources to

obtain more reliable and efficient energy, [62] presented a probabilistic planning sys-

tem of integrating wind and solar power. They used probability density functions

to model megawatt power output random variables. They were thus aiming to as-

sess the sites with their potential available renewable energy resources in termos of

wind or solar power generation. They used the probabilistic approach due to the

stochastic nature of wind/solar power sources. They called their model for assessing

sites the megawatt resource assessment model (MWRAM). In a related study, [63]

analyzed the relationship between large-scale solar and wind power, including correla-

tions between different units, aggregate production smoothing and combined output

variability. Noting that unpredicted generation must be taken care of with system

reserves, it is found that a generation which was more widely dispersed led to a more

smooth output profile when the two power sources were combined. The intermit-

tence of solar power is caused by clouds and the earth's movement and tilt, while

wind power is dependent upon wind speed, which varies from time to time. A larger

proportion of solar power led to greater hour-to-hour variability, largely due to the

vast difference in production between days and nights, but that combining the two

forms of sustainable power generation reduced the total variations in terms of stan-

dard deviation. Solar and wind power were found to be negatively correlated, but

the smaller the time-scale, the less this correlation could be observed.

A generation expansion planning model of electric systems using renewable en-

ergy sources as well as conventional sources is developed in [64]. This model, called
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MMGEP, (multiperiod multiobjective generation expansion planning) could simulta-

neously optimize several factors, including maximization of system reliability. They

used mixed integer linear programming for optimization, and they used an efficient

linearization technique for converting non-linear reliability metrics to a set of linear

expressions. Fuzzy decision making was used to choose the best from among Pareto

solutions, in order to meet the goals of decision makers. Major goals included mini-

mizing costs and environmental impacts and maximizing reliability. A desired level

of reliability must be obtained, which can be measured by loss of load probability

(LOLP) and expected energy not served (EENS).

In [65], wind turbine, photovoltaic panel and battery were modeled to calculate

the energy generated over one year. The objective function was selected using loss

of power supply probability (LPSP) and total owning cost in order to meet the

requirements of the power system economy and reliability. A particle swarm algo-

rithm was used to find the optimal solution and obtain the capacity allocation of

a wind/solar/battery hybrid system. The optimization is important because it en-

ables a trade off between cost and reliability. Exploring the optimal sizing balance

of components of these hybrid renewable energy power generation systems, [66] used

different multicriteria decision analysis (MCDA) optimization approaches. Different

weighting criteria techniques were considered with different wind and solar fluctua-

tion scenarios; and so the pros and cons of different optimal sizing approaches were

able to be analyzed. In their approach, different criteria were able to be applied with-

out being converted into a single unit, and algorithm sensitivities were analyzed. Like

many of the others studies listed here, the intent of the study was to give decision

makers a tool to optimize their designs based on their goals.

A genetic algorithm-based optimization approach and a 2PEM to examine differ-

ent scenarios to evaluate system efficiency considering different load shifting percent-
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ages is explained in [67]. Maximum capacity and excess energy were calculated for

each system, and these were considered to be the most important indices of efficiency.

In [68] the benefits of placing solar power and wind power generating systems to-

gether in the same location and sharing transmission resources were explored. They

found that doing so can improve the capacity factor of the power plant and can also

improve the transmission investment, especially given the often remote location of

the higher quality renewable resources. A model was developed to optimize the dis-

patch of the combined plants. Different deployment configurations connected to the

grid by radial transmission lines were examined using historical market and weather

data. A negative correlation between wind and solar power was demonstrated, and it

was also shown that solar power with thermal energy storage increased the flexibility

of the system, allowing excess transmission capacity to be filled in during times of

less resource. It was found that adding transmission constraints reduced the perfor-

mance as well as the ability of solar power to produce during periods of high demand

and high wind.

A mathematical model to propose a probabilistic power flow (PPF) methodology

called 2PEM (two point estimation method) is demonstrated in [69], so that it would

apply to hybrid wind/solar power systems. This method considers correlation be-

tween uncertainty parameters. Looking at trends that could shape the future of the

power grid, [70] noted that there will be the need to find new ways to manage voltage

and loading of photovoltaic power distribution systems as they grow in usage. While

solar has historically been used at a small scale, the authors stated that in recent

years there is a shift to larger scale solar power systems. They also noted that more

than 50 GW of wind power is operating in the United States. It is possible for solar

integration into the grid to follow the model of wind power integration into the grid,

in which the variability of the power source has been addressed. While high penetra-
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tions at the local level are recognized as being potentially disruptive to operations,

the power variability due to cloud shading is not mentioned to be of concern because

at the transmission level, the energy balance is achieved at a wider basis.

Reference [71] proposes a methodology for applying smart metering technology

to abate CO2 at the distribution level, in a system that uses wind, solar energy,

and gas turbines. They developed a nodal based demand response to enable low-

carbon planning that highlights the fading effect during load recovery of demand

response activities. They were able to evaluate demand response benefits using a

real-time pricing model, which takes into account the variation and uncertainty in

wind and the behaviors of customers. This methodology is related to a central

planning context, is aimed at minimizing both carbon emission and economic cost.

An efficient hybrid algorithm is used for this purpose. In [72], an integration scheme

of solar power and large capacity doubly excited induction generator-based wind

energy system was presented. This system is able to introduce a large amount of

solar power into the grid compared to conventional PV-grid systems. Prevention of

circulating power during subsynchronous operation is accomplished with this scheme,

enhancing system efficiency. Turbine inertia augments system stability, and this

facilitates high solar power penetration into the grid. The complementary nature

of wind and solar energy leads to increased utilization in this scheme. A PV power

control algorithm is able to deal with any rare environmental glitches. Looking at

the scheduling of a power system that incorporates traditional sources that can be

dispatched and renewable sources that are based on environmental conditions, [73]

inquired into a realistic optimum day-ahead schedule for such a hybrid system, with

its uncertainties. This work provided a best-fit day ahead schedule, using an optimal

scheduling strategy that takes into account the uncertainties in wind, solar, and load

forecasts. A genetic algorithm-based scheduling is used, and genetic algorithm and
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Monte Carlo simulations are chosen for testing the strategy.

Reference [74] presents a scheme for analyzing the statistical properties and sizing

the storage for hybrid wind-photovoltaic-storage hybrid power systems, with concern

for system optimization. A partial Fourier transform was obtained for spectrum

analysis using solar data periodic sparse properties, and storage for stabilizing power

variance due to fluctuation in wind and solar power was sized, using a system adviser

model. Real wind speed, solar radiation and grid load data from South Eastern

Australia were used to design and validate the scheme.

In [75], an algorithm for dispatching a utility-scale photovoltaic power plant with

a hybrid energy storage system is presented. This algorithm regulated instantaneous

power of the plant with the same level of dispatchability as traditional power plants.

The algorithm is robust under large forecasting errors of solar irradiance, making

it easily implemented in real-world scenarios; the algorithm only takes seconds to

execute, even with worst-case scenarios of forecasting errors yielded good results.

More insight about the feasibility of incorporating wind and solar power pene-

tration into a the power system is discussed in [76]. Several sensitivity analysis are

carried out on interest and inflation rates, wind power law exponent, annual average

daily energy demand, and fuel price in order to test system robustness.

In this chapter, the planning problem of allocating the renewable energy resources

using DRO is extended to deal with a hybrid wind solar power generation (HWSPG)

system to minimize the expected energy not served. The uncertainty of these two

variable energy resources is investigated and represented by proper statistical param-

eters. The correlation between them is introduced to better allocate them under the

interconnected multi-area environment to provide more flexibility between the areas

and to reduce the global variability all over the system.
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4.2 Formulation - Nonlinear Representation of Hybrid Wind and Solar Power

Statistical Parameters

4.2.1 A Two-Stage Hybrid Wind and Solar Farms Allocation Model

Three types of uncertainties are introduced in the proposed hybrid wind and

solar power generation (HWSPG) planning formulation: the random wind power

generation w̃ww, the random solar power generation ẽee and the available conventional

generation capacity p̃pp. The model is mathematically expressed as a two-stage formu-

lation where the wind and solar power allocation decisions are made in the first stage

and the operational decisions are optimally decided as the w̃ww, ẽee and p̃pp are realized.The

first-stage hybrid power planning problem is described as follows:

min sup
P∈F

EP {L(xxx, w̃ww, ẽee, p̃pp)} (4.1)

s.t. 0 ≤ xwi ≤ Πw
i (4.2)

0 ≤ xei ≤ Πe
i (4.3)∑

i∈I
xi =

∑
i∈Iw

xwi +
∑
i∈Ie

xei = Ω (4.4)

where xxx is the vector of first-stage decision variables and each xi represents the

summation of wind power capacity xwi and solar power capacity xei of each area i.

The constraint (4.2) indicates that the wind capacity xwi in area i belonging to the

set Iw is subjected to an upper limitation Πw
i and (4.3) represents the solar capacity

xei in each area i belonging to the set Ie is subjected to an upper limitation Πe
i . The

total capacity of installed renewable power for all areas in I is denoted by Ω in (4.4).

The objective function (4.1) minimizes the expected energy not served (EENS) under

the worst-case distribution of w̃ww, ẽee and p̃pp, which is denoted by P, over an ambiguity set
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F. The expression L(xxx,www,eee,ppp) in (4.1) indicates the amount of energy not served for

the hybrid wind and solar farm allocation decision xxx under the wind and solar power

outcome www and eee respectively, with the available conventional generation capacity

realization ppp. Similarly, the solar power is incorporated in the second stage model,

which represents the optimal power flow equation and its constraints, as shown in

(4.5)-(4.9).

L(xxx,www,eee,ppp) = min
∑
s∈S

∑
t∈T

∑
i∈I

T st l
s
it (4.5)

s.t. xwi w
s
i + xeie

s
i + qsit −

∑
j∈J f

i

f sjit +
∑
j∈J t

i

f sijt = Ds
it − lsit,

∀i ∈ I,∀t ∈ T ,∀s ∈ S (4.6)

− Fij ≤ f sijt ≤ Fij,

∀j ∈ J f
i , ∀i ∈ I,∀t ∈ T ,∀s ∈ S (4.7)

0 ≤ qsit ≤ pi, ∀i ∈ I,∀t ∈ T ,∀s ∈ S (4.8)

lsit ≥ 0 ∀i ∈ I,∀t ∈ T ,∀s ∈ S (4.9)

4.2.2 Ambiguity Set of the Hybrid System

The DRO model of the hybrid system addresses the system uncertainties by

considering a family of probability distributions, that are defined by an ambiguity

set F. In this section, the renewable power distributions are represented using useful

standard statistical parameters of data representation. The expressions (4.10)-(4.14)
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are applied in the ambiguity set to define a family of wind power distributions.

P {w̃ww ∈ W} = 1 (4.10)

EP {w̃si } = w̄si , ∀i ∈ Iw,∀s ∈ S (4.11)

EP {|w̃si − w̄si |} ≤ φwsi ,∀i ∈ Iw,∀s ∈ S (4.12)

EP
{

(w̃si − w̄si )2
}
≤ λwsi ,∀i ∈ Iw,∀s ∈ S (4.13)

EP
{

(w̃si + w̃sj − w̄si − w̄sj)2
}
≤ λwsi + λwsj + 2ζwsij ,

∀j < i ∈ Iw,∀s ∈ S (4.14)

Equation (4.10) suggests that the vector of random wind power generation is

constrained within a support set W . The support set W is defined by equation

(4.15):

W =
{
www ∈ R|Iw|×|S| : 0 ≤ wsi ≤ 1, ∀i ∈ Iw, ∀s ∈ S

}
(4.15)

Equation (4.11) suggests that the expected value of random wind power w̃si is w̄si ,

and the next inequality (4.12) implies that the mean absolute deviation of w̃si is less

than or equal to φwsi . Similarly, constraints (4.13) suggest that the variance of w̃si
does not exceed the constant λwsi . The expression (4.14) denotes that the covariance

between w̃si and w̃sj is constrained below ζwsij . The constraints (4.10)-(4.14) in the

ambiguity set try to capture the location, range, and dependence of random wind

power generation regarding primary statistical measures, such as expectations, mean

absolute deviations, variances and covariances. Such parameters should be more

straightforward to measure than the exact probability distribution.
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The expressions (4.16)-(4.20) are practiced in the ambiguity set to define a family

of solar power distributions representations.

P {ẽee ∈ E} = 1 (4.16)

EP {ẽsi} = ēsi ,∀i ∈ Ie,∀s ∈ S (4.17)

EP {|ẽsi − ēsi |} ≤ φesi ,∀i ∈ Ie,∀s ∈ S (4.18)

EP
{

(ẽsi − ēsi )2
}
≤ λesi ,∀i ∈ Ie,∀s ∈ S (4.19)

EP
{

(ẽsi + ẽsj − ēsi − ēsj)2
}
≤ λesi + λesj + 2ζesij ,

∀j < i ∈ Ie,∀s ∈ S (4.20)

Equation (4.16) suggests that the vector of random wind power generation is

limited within a support set E , which is expressed by equation (4.21):

E =
{
eee ∈ R|Ie|×|S| : 0 ≤ esi ≤ 1, ∀i ∈ Ie,∀s ∈ S

}
(4.21)

Equation (4.17) indicates that the expected value of random solar power ẽsi is

ēsi , and the next inequality (4.18) implies that the mean absolute deviation of solar

power ẽsi is less than or equal to φesi . Additionally, constraints (4.19) propose that

the variance of ẽsi does not exceed the constant λesi . The expression (4.20) expresses

that the covariance between ẽsi and ẽsj is reserved below ζesij . The constraints (4.16)-

(4.20) in the ambiguity set attempt to obtain direct and useful information about

probability distribution of the solar power generation.
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To utilize the variety of the hybrid system, the covariance between the wind and

solar power farms ζwesij is expressed in (4.22). Such expression is useful to determine

the correlation between different renewable energy resources.

EP
{

(w̃si + ẽsj − w̄si − ēsj)2
}
≤ λwsi + λesj + 2ζwesij ,

∀i ∈ Iw,∀j ∈ Ie,∀s ∈ S (4.22)

The covariance matrix of the entire included resources in the model is given in

the (4.23),

Covariance =





w̃



w̃︷ ︸︸ ︷
ζws11 · · · ζws1i

ẽ︷ ︸︸ ︷
ζwes11 · · · ζwes1j

ζws21 · · · ζws2i ζwes21 · · · ζwes2j
... . . . ... ... . . . ...
ζwsi1 · · · ζwsii ζwesi1 · · · ζwesij

ẽ



ζwes11 · · · ζwesj1 ζes11 · · · ζes1j

ζwes21 · · · ζwesj2 ζes21 · · · ζes2j
... . . . ... ... . . . ...

ζwesj1 · · · ζwesji ζesj1 · · · ζesjj (Iw + Ie)× (Iw + Ie)

(4.23)

The available conventional generation capacity p̃pp is modeled exactly as applied
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in the previous chapter, by the equations (4.24)-(4.27):

P {p̃pp ∈ P} = 1 (4.24)

EP {p̃i} = p̄i, ∀i ∈ I (4.25)

EP {max{Pil − p̃i, 0}} ≤ γil, ∀i ∈ I,∀l ∈ Lγ (4.26)

EP

{
max

{
Ql −

∑
i∈I

p̃i, 0
}}
≤ δl, ∀l ∈ Lδ (4.27)

The first expression (4.24) implies that the vector of uncertain generation capacity

is constrained within a support set P , which is defined as follows:

P =
{
ppp ∈ R|I| : pmini ≤ pi ≤ pmaxi , ∀i ∈ I

}
(4.28)

By combining the wind power uncertainty model (4.10)-(4.14) and the generation

capacity expressions (4.24)-(4.27), the overall F can be formulated as (4.29). The

proposed two-stage formulation is reformulated into a tractable second-order cone

programming problem using linear decision rule approximations as applied in section

3.2. A case study which considers the hybrid system is discussed in the next section.
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F =



P ∈ Q0
(
R|I|×|S| × R|I|

)
:

w̃ww ∈ R|Iw|×|S|

P {w̃ww ∈ W} = 1
EP {w̃si } = w̄si ,∀i ∈ Iw

EP {|w̃si − w̄si |} ≤ φwsi
EP {(w̃si − w̄si )2} ≤ λwsi
EP

{
(w̃si + w̃sj − w̄si − w̄sj)2

}
≤ λwsi + λwsj + 2ζwsij

ẽee ∈ R|Ie|×|S|

P {ẽee ∈ E} = 1
EP {ẽsi} = ēsi , ∀i ∈ Ie

EP {|ẽsi − ēsi |} ≤ φesi ,∀i ∈ Ie

EP {(ẽsi − ēsi )2} ≤ λesi ,∀i ∈ Ie

EP

{
(ẽsi + ẽsj − ēsi − ēsj)2

}
≤ λesi + λesj + 2ζesij

p̃pp ∈ R|I|

P {p̃pp ∈ P} = 1
EP {p̃i} = p̄i

EP {max{Pil − p̃i, 0}} ≤ γil

EP

{
max

{
Ql −

∑
i∈I

p̃i, 0
}}
≤ δl


(4.29)
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4.3 Case Study on Hybrid (Wind and Solar) Power Generation

In this case study, the DRO approach is employed to distribute 5000 MW of

HWSPG in the five-area power system, so the worst cases expected energy not served

is minimized. The power system considered in this test follows the same system

specification as explained in section 2.3. The wind and solar power data for each area

are collected and classified for several distribution types to obtain the fundamental

statistical parameters such as the mean, absolute deviation, variance and covariance.

The primary system data is shown in TABLE 4.1.

Table 4.1: The power system data

Five-Area Power System Data

Area
(i)

System Data Wind Data Solar Data

Peak
Load
(MW)

Installed
Capacity
(MW)

Mean
w̃i
(%)

Variance
λwi
(%)

Mean
ẽi
(%)

Variance
λei
(%)

1 3,465 3,485 29.38 10.83 37.81 10.71
2 4,158 4,306 31.04 8.68 36.31 9.98
3 4,851 5,578 34.40 9.49 33.54 10.12
4 5,544 4,972 30.71 9.03 33.43 8.94
5 5,418 5,322 32.36 9.75 34.26 9.47

To adequately evaluate the hybrid system, the case study considers solving the

allocation problem for WPG and SPG individually. Then, the HWSPG is examined

and compared with the other two schemes. The DRO results of the three cases

are given in TABLE 4.2. The worst case EENS of the wind is better than the

solar by 6.22%, however, the hybrid system shows the best performance over the
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other systems, which provides an improvement by 24.23% compared to solar power.

Although, the designed DRO framework enables the renewable power generation

budget to be allocated entirely to any single area, the decisions, on the other hand,

are distributed all over the system to reduce the global variance, fulfill the load

demand requirements and to provide the flexibility in supplying power.

Table 4.2: The DRO results

DRO Results

Area
(i)

WPG-DRO Results SPG-DRO Results HWSPG-DRO Results

WPG

(MW)

EENS

(GWh/yr)

SPG

(MW)

EENS

(GWh/yr)

WPG

(MW)

SPG

(MW)

EENS

(GWh/yr)

1 800

542.04

1021

578.06

1190 766

438.60

2 1015 522 175 0
3 1005 1062 916 0
4 950 1088 0 1188
5 1230 1307 765 0

Fig. 4.1 demonstrates the wind and solar power generation decisions in MW

which are allocated in the hybrid system for different installed generation capacities.

The figure apparently indicates that area 3 is implemented with wind power and

area 4 with solar power in all cases with a significant amount. This observation can

be explained by looking at statistical data in TABLE 4.1, which shows that area

3 has the largest wind expectation and a relatively low variance comparing to the

other areas which make this particular area is preferred to be engaged with wind

power. Likewise, area 4 has the lowest solar power variance and fair mean value that
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Figure 4.1: Optimal wind and solar power allocation for different capacities in the
five-area system

makes it a favored candidate to be utilized with solar power. However, this general

information is useful but not the only data that are used by the DRO to drive the

decisions, since there are so many factors related to the system configuration and to

the statistical information as explained in the modeling part.

Fig. 4.2 demonstrates the EENS of the three schemes under the isolated and

interconnected system, to evaluate the effect of deploying different capacities of re-

newable power generation on the power system reliability.
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Figure 4.2: Overall EENS evaluation comparison

In general, the interconnected systems are more reliable in all cases. However,

the impact of renewable power installation is captured in all cases with different

influential level. The trend shows an improvement in the EENS as more renewable

power generation is increased, and significantly with the hybrid system in the iso-

lated system. As a result, the influence of incorporating renewable power generation

is apparently captured in the isolated areas, and this is understandable since the iso-

lated area has no assistance from neighboring areas in case of generation shortages

or outages.

Furthermore, the advantage of combining both the wind and solar in a hybrid

power system is because it allows for more availability and flexibility which is ex-

tremely crucial in such an intermittent source of power to ensure the reliability and

the security.
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5. CAPACITY CREDIT ANALYSIS OF RENEWABLE POWER

GENERATION

5.1 Introduction

As renewable power generation is significantly variable and stochastic compared

with other thermal energy sources, developing an appropriate means of calculating

the capacity credit value of wind power or any variable electrical power generation

resource is essential for assessing the effective load carrying capability during plan-

ning studies [77]. The unpredictability of wind makes it challenging to determine the

capacity credit of wind energy systems, and so utility companies tend to assign wind

power a discounted economic value in regards to its actual load carrying capacity.

The capacity credit provides essential information to the independent system opera-

tor (ISO) about the amount of additional load that can be served while not violating

the system reliability. Such information is useful for developing efficient long-term

planning strategies to undertake the increase in load demand [78,79].

As there are different definitions of capacity credit, the chosen definition can influ-

ence the value obtained. From the electric power market point of view, the capacity

credit is the amount of resources contributed by the market-oriented sector that could

replace the most conventional energy in a dependable manner. Therefore, defining an

accurate capacity credit value of renewable power generation is an important plan-

ning factor for the feasibility determination of renewable energy integration and for

understanding the exact load carrying capacity of the added generation units [80].

So from the generation expansion planning point of view, the capacity credit of gen-

erators is how much the generator (or group of generators) contributes to a power

system’s generation adequacy, which determines the difference between the installed
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peak capacity and the equivalent load carrying capacity yield from the installed wind

power generation. [81]. Accordingly, to determine the adequacy of wind power sys-

tems, the loss of load expectation (LOLE), which is the amount of time that the

load won’t be met over a given period of time (in hours per year or days per year),

and the loss of load probability (LOLP), which is defined as the probability that the

load will exceed available generation, can be utilized to calculate the capacity credit.

Wind farms do not contribute as much to generation adequacy as conventional power

plants with equivalent energy output; this necessitates backup power alternatives as

wind farms replace power plants.

While wind power capacity credit has gained much attention for the past several

decades, no standard definition of capacity credit exists [81]. As a result, so many

different computing methods have been used, causing results to vary widely. In [82],

a probabilistic method to evaluate the loss of load expectation of the combined total

generating system is used by taking into account maintenance scheduling, uncer-

tainty of load forecast, and interconnection with other utility systems. Outages were

defined as either outage that was forced or outage from scheduled maintenance. A

distribution function was introduced for the load since it cannot be accurately pre-

dicted to enable a realistic LOLE calculation. In this work, the wind power capacity

factor means the average amount of electricity produced by wind energy, and it is

calculated by subtracting it from the hourly utility load before calculating the loss of

load expectation. This method is appropriate when the capacity of wind generators

is small compared to the conventional means of generating power. With this concept,

loss of load expectation is first calculated for a baseline scenario without wind power

generation.

Probabilistic methods using nonsequential Monte Carlo simulation are widely

used to calculate the capacity credit in planning studies; they are computationally

72



straightforward and rather fast and accurate. In [83], chronological and probabilistic

methods of estimating capacity credit of wind power are compared. The chronolog-

ical or sequential approach is based on the ratio between average and total output

computation, which is identified as the wind energy capacity factor. Under the

chronological approach, it is necessary to understand the proper time-scale relation-

ship between load and wind power output generated. They found that chronological

methods were best for use by system operators, and system planners best use prob-

abilistic methods.

In [84], a probabilistic method to determine capacity credit of the wind power

generators is used. Their probabilistic approach used reliability aspects of electrical

power systems, and Monte Carlo simulations were used due to the stochastic nature of

the simulations. They acknowledged that amount of wind energy depends on aspects

including wind nature, landscape, and wind obstacles. Also, they acknowledged the

importance of benchmarking a base case reliability of the network, voltage levels at

which wind turbines are connected, and distance from load centers. The authors

used a wind power series model to simulate the wind and a Monte Carlo reliability

model to simulate the larger amount of potential interactions.

Determining wind capacity credit using a reliability index is particularly useful

for system strategical planning, to dependably increase efficiency. Reliability indices,

which are used to calculate capacity credit, can be obtained from either the analytical

approach or the simulation approach. While analytical methods have been used

effectively in the past, the need for more information on system reliability indices

necessitates Monte Carlo simulations [85]. Though Monte Carlo is more flexible, it

also needs longer simulation time than the analytical methods, and thousands of

simulations for each year to get accurate results.

A rigorous model for obtaining wind power capacity credit that is based on the
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definition of reliability functions is proposed in [86]. The model doesn’t require strong

hypotheses and can be used when the standard evaluation techniques are likely to

err, such as when wind power and load profile are not statistically independent.

This model explains how statistical characteristics of load and wind power relate to

capacity credit, from statistical and chronological perspectives. The authors state

that capacity credit was first used to estimate load carrying capability of conventional

power generation. They divide the methods of evaluating capacity credit into four

realms: Monte Carlo, peak-period capacity factors, convolution, and analytical.

Extending to the previous literature, the evaluation of capacity credit from just

looking at power generation is developed to consider the electrical energy storage

and demand response is introduced in [87]. Using electrical energy storage supplies

additional load and improves the demand response while maintaining or improving

the reliability. Taking these factors into account enables more accurate understanding

of capacity credit.

Capacity credit of wind power is a function of many different parameters; it is

proportional to the availability of renewable energy wind power generation and the

increase in load demand. Other parameters include thermal generation schedules

and import-export schedules, as adding any generator increases the capacity value

and the adequacy of a system. If maintenance is needed at a time when it would

have a significant impact on LOLP and at periods of significant wind, then this

is a factor as well. Penetration factor is also important for the capacity credit of

wind power, which is defined as the ratio of the capacity of the single unit added to

the capacity of all existing units plus the new unit [81]. Transmission line transfer

capacities between the areas are also an important factor that affects the wind power

penetration factor and, as a result, the wind power capacity credit.

A target reliability level can be selected, which will have a significant impact
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on the capacity value. To find the capacity credit, chronological or probabilistic

methods can be employed. An auto-regressive moving average model of wind power

has been applied, along with sequential Monte Carlo simulation to obtain capacity

credit value. This capacity credit is influenced by the overall adequacy of generation

and power plant generation factor. It is of interest to determine how adding another

generator unit affects generation adequacy. Loss of load probability is also changed

by adding a new generator. Each new generating unit in a system allows for the

greater load while maintaining generation adequacy.
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5.2 Analytical Approach for Capacity Credit Evaluation

The capacity credit evaluation of the renewable power generation planning de-

cisions is assessed in this section using the analytical approach. The assessment

discusses the actual load carrying capacities while adding WPG, SPG and HWSPG

for both isolated and interconnected power systems. Fig. 5.1 explains the procedure

of capacity credit estimation criteria, which measure the improvement in the genera-

tion adequacy by investigating the system reliability at a particular reliability index

due to the integration of the new renewable power generation. Such test indicates the

secured allowable increase in load demand while maintaining the targeted reliability

level.

LOLE (hr/yr)

Load (MW)

Original reliability curve

With additional generation

C.C.(MW)

Target reliability level

Figure 5.1: Graphical example of capacity credit evaluation

The random sampling Monte Carlo simulation (MCS) is used to estimate the

LOLE for different load levels to construct the curves with and without additional
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renewable power generation units. A sufficient number of sample years has to be

simulated to reach an acceptable level of coefficient of variation (COV), which is 5%

or lower for this kind of planning study. In this test, after conducting one thousand

sample years of simulation, the resultant COV is 4.8983 %, which provides confidence

about the estimated reliability index.

5.2.1 Capacity Credit Evaluation of Wind Power Generation

The MCS is performed to estimate the LOLE for several load levels at different

WPG capacities. Fig. shows 11 overall LOLE curves of the five area system example,

each curve is calculated at a particular total wind power capacities Ω that varies

between 0 MW and 5000 MW. It shows the improvement of LOLE as more generation

is added. Equation (5.1) explains how to analytically extract the capacity credit of

500 MW of wind power at chosen LOLE of 100 hr/yr.

CC(Ω = 500) = D(LOLEΩ=500 = 100)−D(LOLEΩ=0 = 100) (5.1)

Where CC(Ω) is the capacity credit at a total wind power capacity Ω. D(LOLEΩ)

is the load in MW at a targeted LOLE in hr/yr with installed wind power capacity

Ω. In the next section 5.2.1.1, the LOLE vs. Load curves are estimated for different

wind power capacities, in order to calculate the capacity credit and capture its trend

as the wind power generation increases. The same procedure is carried out for SPG

and HWSPG as well.
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5.2.1.1 Capacity Credit Analysis of Wind Power Generation

The purpose of this evaluation is to find the effective load caring capacity of

the suggested DRO planning decisions of wind power generation in isolated and

interconnected power systems. Fig. 5.2 shows the LOLE results for the isolated

system with a base case that has no wind power and the other cases are produced

with installed wind power generation from 500 MW up to 5000 MW in 500 MW steps.

The plot clearly indicates that LOLE increases as the load demand increases. Also

there is improvement in reliability as more wind power is installed, as the expected

time period of not supplying the load is reduced as more power generation units are

added to the grid.
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Figure 5.2: Capacity credit analysis of WPG in isolated system
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Similarly, the LOLE study is conducted on the interconnected system as explained

in Fig. 5.3, which definitely has better reliability level since the transmission lines

allow for feeding the neighboring areas with the excess power, whether it is from

conventional or renewable generation units, which contribute positively in the system

generation adequacy.
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Figure 5.3: Capacity credit analysis of WPG in interconnected system

The capacity credited is calculated using the equation (5.1) and the results of this

case study are listed in TABLE 5.1. The TABLE includes the percentage penetration

factor of the WPG compared to the peak load in isolated and interconnected system

for each installed wind power capacity. The capacity credit is introduced as its

effective load carrying capacity in MW and also as a percentage of Nominal WPG

installed in each case.
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Table 5.1: Capacity credit relation to the WPG penetration factor

Capacity Credit Analysis of WPG

Isolated System Interconnected System

Installed
Capacity
WPG
(MW)

Installed
Penet. Factor

WPG
(%)

Effective
Penet. Factor

WPG
(%)

Capacity Credit Effective
Penet. Factor

WPG
(%)

Capacity Credit

(MW)
% of

Nominal
WPG

(MW)
% of

Nominal
WPG

500 2.11 0.72 379 75.79 0.50 149 29.95

1000 4.22 1.16 595 59.57 0.75 284 28.48

1500 6.33 1.42 708 47.20 0.90 402 26.85

2000 8.45 1.60 815 40.74 1.48 556 27.80

2500 10.56 1.80 918 36.73 1.88 697 27.90

3000 12.67 1.95 979 32.64 2.19 828 27.60

3500 14.79 2.08 1029 29.41 2.41 940 26.86

4000 16.90 2.16 1083 27.09 2.71 1131 28.28

4500 19.02 2.24 1111 24.69 3.17 1393 30.97

5000 21.13 2.32 1151 23.03 3.58 1550 31.00

The capacity credit is mainly affected by two important factors which are the

penetration factor of the new generation units and the generation adequacy repre-

sented in this case study by the LOLE. The capacity credit of the wind power is

smaller compared to the total installed capacity. This is understandable since the

wind power is a variable source of power generation. Moreover, the ratio of the ca-

pacity credit to the installed WPG is generally reduced as the installed wind power

capacity increases. This observation is quite clear in the isolated system, however,

in the interconnected system the ratio is relatively constant and it is higher than the

isolated system in case of large wind power penetration, which is accounted as an

advantage for the interconnected power system with a high wind power deployment.
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5.2.1.2 Capacity Credit Analysis of Solar Power Generation

The capacity credit evaluation procedure of the Solar power generation follows

the same steps as the wind power. This assessment enables the system planners

to distinguish the differences between these two sustainable energy resources, and

decide which one fulfills their requirements. Fig 5.4 shows the LOLE estimation for

different peak load levels using Monte Carlo simulation at each solar power capacity

for the isolated system.
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Figure 5.4: Capacity credit analysis of SPG in isolated system
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The interconnected system LOLE evaluation is demonstrated in Fig. 5.5. It

clearly shows how the tie-lines between areas improve tremendously the reliability of

the system. The LOLE is dropped around 85% just for using the transmission lines.
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Figure 5.5: Capacity credit analysis of SPG in interconnected system

On the other hand, the effect of transmission lines has different aspect when

it comes to capacity credit, that can be seen in TABLE 5.2, where the capacity

credit values of different installed capacity of solar power generation are listed. The

capacity credit of 500 MW of solar power is 422 MW in isolated system whereas it

is only 197 MW in interconnected, this is because the areas have other reliable and

less uncertain source of power, which is the conventional power generation, which

is delivered from other neighboring ares in case of excess power are available. The

conventional power generation in this case reduces the penetration factor of solar
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power in the interconnected power system. With higher penetration of solar power,

the capacity credit in term of MW increases but the ratio of the capacity credit

to the installed capacity reduces and this is mentioned in many literature [88, 89],

as it is inversely proportional to the solar power penetration factor. The capacity

credit ratio drops sharply in the isolated system from 84.53% to 22.74%, also in the

interconnected system the ratio is only 21.52%, such percentage is preferred to be

increased and such observation motivates the investigation in the effect of renewable

resources diversity in this kind of assessment.

Table 5.2: Capacity credit relation to the SPG penetration factor

Capacity Credit Analysis of SPG

Isolated System Interconnected System

Installed
Capacity
SPG
(MW)

Installed
Penet. Factor

SPG
(%)

Effective
Penet. Factor

SPG
(%)

Capacity Credit Effective
Penet. Factor

SPG
(%)

Capacity Credit

(MW)
% of

Nominal
SPG

(MW)
% of

Nominal
SPG

500 2.11 0.81 422 84.53 0.55 197 39.49

1000 4.22 1.28 662 66.22 0.61 357 35.76

1500 6.33 1.57 789 52.62 1.33 615 41.04

2000 8.45 1.79 900 45.03 1.88 694 34.70

2500 10.56 1.93 947 37.89 2.19 808 32.35

3000 12.67 2.05 1007 33.58 2.47 883 29.43

3500 14.79 2.18 1069 30.55 2.54 917 26.21

4000 16.90 2.26 1104 27.61 2.89 988 24.71

4500 19.02 2.35 1111 24.69 3.25 1031 22.91

5000 21.13 2.46 1137 22.74 3.58 1076 21.52
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5.2.1.3 Capacity Credit Analysis of Hybrid Power Generation

The results of the hybrid power generation allocation problem using DRO tech-

nique are applied in the five-area power system. The performance of this approach

can be evaluated by finding the capacity credit of the new added HWSPG units

which are compared with the cases of WPG and SPG alone systems.
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Figure 5.6: Capacity credit analysis of HWSPG in isolated system

The Monte Carlo simulation is used to find the LOLE for several peak load

values for isolated and interconnected systems as explained in Fig. 5.6 and Fig. 5.7

respectively.
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Figure 5.7: Capacity credit analysis of HWSPG in interconnected system

The capacity credit values which reflect the effective load carrying capacities are

calculated with their associated penetration factors of WPG, SPG and HWSPG for

both Isolated and interconnected system as explained in TABLE 5.3. The capacity

credit results show better performance compared to the wind or solar power gen-

eration alone, since the hybrid system provides more diversity which increases the

availability and as a result reduces the uncertainty of renewable power generation.

For instance, at 5000 MW of HWSPG, the capacity credit is 1804 MW whereas it

is 1550 MW in WPG and 1076 MW in SPG. For more insight on the differences

between the three proposed schemes, a comparisons are carried out in the the next

subsection 5.8.
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5.2.1.4 Capacity Credit Analysis Comparison

The factors which influence the capacity credit value of different renewable en-

ergy resources are introduced. These factors are mainly related to the penetration

factors, the availability of the renewable energy resources and the existence of the

transmission lines connecting the areas with each other. The optimal power flow,

which is impeded inside the Monte Carlo simulation, optimally find the operational

decisions and commit the generation unites to feed the load so the EENS is mini-

mized. Fig. 5.8 shows the LOLE curves of the system with 5000 MW of WPG, SPG

and HWSPG for isolated and interconnected systems.
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Figure 5.8: Capacity credit analysis comparison
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The general trend indicates that the interconnected systems are more reliable

since the generation adequacy is improved by utilizing the tie-lines to support the

shortage in electric power from the excess power of neighboring areas. The hybrid

systems in both isolated and interconnected schemes preform better compared to the

single renewable source systems. The capacity credit for the proposed systems are

calculated for the installed capacities upto 5000 MW in 500 MW steps as explained

in Fig. 5.9.
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Figure 5.9: Capacity credit analysis evaluation

The results show that at low renewable installed capacities the capacity credit has

higher value in isolated systems compared to the interconnected systems, however,

it is the opposite when the installed capacity is high. for example, at 500 MW of

renewable power generation, the capacity credit value is approximately 200 MW in
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the interconnected system whereas it is around 400 MW in the isolated systems.

In contrast, for high renewable power installed capacity the interconnected system

perform better than isolated system with around 1800 MW capacity credit when the

hybrid system is considered in the interconnected environment while it is 1473 MW

in isolated power system. A likewise trend can be observed in Fig. 5.10, which proves

that the percentage of the effective penetration factor has a direct impact and it is

proportional related to the capacity credit values.
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Figure 5.10: Penetration factor analysis Comparison

There are several factors governing the behavior of the capacity credit. The most

influential factor is the renewable power availability since the low availability leads to

a limited renewable power generation which is more likely consumed within the area,

and that is why it has a high capacity credit in the isolated system for only small
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installed capacity. Whereas, at the interconnected system, the low renewable power

generation has no significant effect compared to the conventional electricity that is

generated within the area or transmitted from the neighboring areas, which gives

low credit to the low generated renewable power. Therefore, the issue of renewable

power uncertainty is degraded by the hybrid system which improves the availability

and increases the capacity credit of installing renewable power generation which

ultimately assists to enhances the reliability of the electrical power system.
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Figure 5.11: Capacity credit relation to the renewable power penetration

Fig. 5.11 demonstrates the ratio of the capacity credit to the installed capacity,

which reflects the effective usage of the installed renewable energy capacity. The

ratio shows a high rate in the isolated system for low penetration of renewable gen-

eration and it decreases at the high penetration, while the interconnected system
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shows a relatively stable performance on the ratio due to the increase in the renew-

able installed capacities. The hybrid system shows the best performance for both

interconnected and isolated systems by generally securing the highest rate compared

to the WPG and SPG alone.
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6. CONCLUSION

6.1 The Contributions of the Dissertation

This dissertation proposes a DRO based wind power allocation model for multi-

area power systems. The objective of the proposed method is to pursue the highest

power system reliability and the generation adequacy, indicating the lowest EENS

for the overall system, considering wind power uncertainties and the forced outages

of generators. The stochastic nature of the uncertainty factors is represented by

an ambiguity set model, without assuming the knowledge of the exact underlying

distributions. The statistical information about the uncertain variables is expressed

in the ambiguity set to enable data-driven approach decision-making.

The generalized linear decision rules approach is used to represent the second

stage recourse decisions as affinely related to the uncertain parameters to introduce

distributional statistical information of uncertain variables in a tractable optimiza-

tion system model. The mathematical representation of the statistical data parame-

ters are described linearly using piece wise representation which is linear and incor-

porated in the model using linear programming. The approximation in the linear

model is mitigated using the standard statistical representation of the wind power

data using expectation, mean absolute deviation, variance and covariance. The non-

linearity presented in the variance and covariance requires the development of the

DRO model to handle the nonlinear constraints by utilizing the second order-cone

programming.

The decision-making procedure is improved by providing more statistical data

about the wind power availability which enables the DRO technique to better op-

timize the decisions that provide more wind power diversity and reduces the global
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wind power variance. Extensive case studies have been conducted on a five-area

system, demonstrating the effectiveness of this method in capturing various ambigu-

ous distribution data of wind power outputs, as well as the failure probabilities of

generators.

To investigate the benefits of the renewable energy diversification on the renew-

able power generation allocation problem, the hybrid system is introduced to include

both wind and solar power in the generation distribution problem to obtain the min-

imum EENS. The covariance between the wind and solar power is introduced to

capture the correlation and to better allocate the resources. The results show better

performance in the hybrid system compared to the other two schemes due to the

availability of the different sources at different times and locations which is repre-

sented by the negatively correlated relation between the renewable energy resources.

The capacity credit analysis is applied to indicate the effective load carrying ca-

pacity of the installed wind and solar power generation units at designated reliability

level. Calculating the capacity credit values assists the decision makers to better

manage the operation and planning of the electrical power system. The probabilis-

tic method including Monte Carlo simulation is employed to calculate the LOLE at

different peak loads and then the capacity credit of wind power generation is analyti-

cally determined for several installed power capacities. The results demonstrate that

the penetration factor of the renewable power generation units and its availability

are the two main factors effecting the capacity credit value.
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6.2 Future work

The DRO renewable generation planning framework could be improved by in-

cluding the cost minimization beside the reliability improvement in the objective

function. The energy storage could be further allocated along with the renewable

power generation to accomplish the objective of planning and operation perspective.

As a next step after the renewable power generation allocation, the operational stud-

ies like unit commitment and economic dispatch could be carried out after modifying

the load model to be chronological. The capacity credit can be considered in the ob-

jective by distributing the renewable generation that achieves the higher capacity

credit value.
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APPENDIX A

POWER SYSTEM RELIABILITY INDICES

A.1 Loss of Load Probability (LOLPi)

LOLPi = LOEEi
8736

(A.1)

A.2 Loss of Load Expectation (LOLEi)

LOLEi =
∑N
y=1 LLDiy

N
; (hr/yr) (A.2)

where LLDi is the loss of load duration in (h) for each area i and N is the number

of sample years.

A.3 Loss of Energy Expectation (LOEEi)

LOEEi =
∑N
y=1ENSiy

N
; (MWh/yr) (A.3)

where ENSi is the energy not served in (MWh) for each area i.
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APPENDIX B

DATA FORMAT

The data on random wind power w̃ww and uncertain generation capacities p̃pp is or-

ganized as structures shown in Table B.1 and Table B.2, respectively. Table B.3

provides the data structure of the load segment model, and the other system param-

eters are organized as the format in Table B.4.

B.1 Wind Data

Table B.1: Wind data structure
Structure Fields Data Dimension

Wind(s), ∀s ∈ S

Mean w̄si |I| × 1
Level W s

il |I| × |Lα|
Alpha αsil |I| × |Lα|
Beta βsij ((|I| × (|I − 1|)/2))× 3
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B.2 Generation Data

Table B.2: Generation capacity data structure
Structure Fields Data Dimension

Gen

Mean p̄i |I × 1|
Bounds [pmini , pmaxi ] |I × 1| × 2
Level Pil |I| × |Lγ|
SumLevel Ql 1× |Lδ|
Gamma γil |I| × |Lγ|
Delta δsl 1× |Lδ|

B.3 Load Data

Table B.3: Load data structure
Structure Fields Data Dimension

Load(s), ∀s ∈ S Segment Ds
it |I| × |T |

Duration T st 1× |T |

B.4 System Data

Table B.4: System data structure
Structure Fields Data Dimension

System
Line [area i, area j, Fij] |F| × 3
MaxCap Πi |I| × 1
TotalCap Ω 1× 1
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APPENDIX C

DERIVING THE UNCERTAIN WIND POWER GENERATION STATISTICAL

EXPRESSIONS

C.1 Deriving the Covariance and the Correlation Coefficient Expression

EP

{
[(w̃si − w̄si ) + (w̃sj − w̄sj)]2

}
≤ EP

{
(w̃si − w̄si )2 + (w̃sj − w̄sj)2 + 2(w̃si − w̄si )(w̃sj − w̄sj)

}
≤ EP

{
(w̃si − w̄si )2

}
+ EP

{
(w̃sj − w̄sj)2

}
+ EP

{
2(w̃si − w̄si )(w̃sj − w̄sj)

}
≤ EP

{
(w̃si − w̄si )2

}
+ EP

{
(w̃sj − w̄sj)2

}
+ 2EP

{
(w̃si − w̄si )(w̃sj − w̄sj)

}
≤ λsi + λsj + 2ζsij,∀j < i ∈ I,∀s ∈ S

≤ λsi + λsj + 2
{√

λsi
√
λsjξ

s
ij

}
,∀j < i ∈ I,∀s ∈ S
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