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ABSTRACT 

 

 Global warming and excessive use of depletable energy resources are considered 

as some of the most serious problems that need to be solved. As a response, renewable 

energy sources (RES) have been gaining an increasing importance in recent years. The 

electrical power generated from RES tends to be fluctuating due to intermittency of wind 

speed and solar radiation which may result in frequency and voltage deviations in the 

grid as well as loss of the capacity to serve the load. Distributed generation of wind-

photovoltaic hybrid systems connected to energy storage (ES) is proposed to overcome 

the variability of RES. However, the high cost of the equipment for such systems is also 

a challenge. 

In this dissertation, planning of a hybrid wind-photovoltaic energy system 

combined with ES connected to a distribution system is described. The planning 

procedure is done in two different configurations. In the first one, the objective is to find 

optimal ES size for a wind farm. The objective function measures the economic benefit 

gained from selling of the dispatched power to the grid against the cost of ES. The result 

of the optimization gives the optimal size of ES. A probability distribution function (pdf) 

is created to represent the optimal size of ES for the planning horizon and then a case 

study for one year is conducted to illustrate the proposed method. For the second 

configuration, optimization techniques which use linear programming, two stage 

stochastic programming and scenario aggregation are deployed in order to find the 

optimal plan for the hybrid energy system. The proposed procedure uses historical wind 
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speed, solar radiation, energy market price, and load data to determine the system 

design. The objective function measures the total annual cost of the proposed system. 

The results of the optimization procedure give the optimal size for wind farm, solar 

farm, and ES needed to meet the load requirements, minimize the annual cost, and 

consider system uncertainties and system reliability. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Energy storage  

 Global warming and excessive use of non-renewable energy resources are 

considered as some of the most serious problems that need to be solved. Therefore, 

renewable energy sources (RES) have been gaining an increasing importance in recent 

years. However, the power generated from renewables tends to be fluctuating due to 

intermittency of their resources which varies in unpredictable ways. These fluctuations 

may result in frequency and voltage deviations in the grid as well as inability of the 

system to satisfy the customer loads. In this research effort, hybrid distributed generation 

of wind-photovoltaic connected to energy storage is proposed to overcome the 

intermittency of RES.  

 The electric power grid in the U.S. and other countries are being transformed into 

a more reliable, secure, and economically efficient smart grid. Within this smart gird, 

large scale energy storage is included to smooth out the fluctuations of electrical power 

generated from the renewables. Energy storage has different types and techniques. One 

of these types is the battery energy storage system (BESS) which is more widely used 

these days. BESS has been used for smoothing electrical power output from wind and 

solar farms. Different large scale energy storage technologies are being studied. A 115 

MW compressed air energy storage (CAES) demonstration power plant placed in service 

in the early 1990s has proven to be effective as shown in [1]. CAES systems could to be 
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practical in a power range from above 100 MW up to several thousand MW. The 

Vanadium redox-flow batteries (VRBs) are used as energy storage in addition to a wash 

out filter based scheme in order to smooth out the fluctuation of the power generated 

from wind farms [2]. Control and sizing of Zinc bromine flow batteries for wind farms 

have been proposed and illustrated using optimal control for a generic battery in [3].  

Lead acid batteries have been deployed as energy storage. Lead acid batteries are 

one of the oldest and most commercially mature form of rechargeable battery 

technology. Lead acid battery technologies are being used in wide range of applications 

like automotive, uninterruptible power supplies, and marine. In Figure 1.1, 1280 

advanced lead-acid batteries are used as an energy storage which can store up to 250 

KW or 1 MWh of energy [4]. In Tappi Wind Park installed in 2001 by Hitachi, advanced 

lead acid batteries have been integrated with wind generating farms [5]. Energy storage 

in sizes of 10 to 20 MW has been achieved using lead acid carbon technology [6]. 

 

Figure 1.1 Advanced lead-acid batteries energy storage [4]. 
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The BESS is shown to be a suitable technique for the long term load tracking 

operation because of its higher energy capacity compared to other energy storage 

technologies. Moreover, BESS is found also to be cost effective for use in power 

systems. The optimal size of BESS can be found to be varying due the varying nature of 

power generated from renewables. Thus, the planning of energy storage system 

connected to renewable resources, to smooth its output and dispatch power on hourly 

basis, needs a careful analysis. Hence, a criteria needs to be used to determine the proper 

size that is applicable over the planning horizon.  

In chapter II, a novel procedure is proposed to find the optimal size of lead acid 

BESS connected to a wind farm. Two methods which are the probability of sufficient 

storage method and cost based method, have been developed to find the optimal 

planning of energy storage. In the first one, the optimal size of BESS connected to a 

wind farm, which maximize the benefit from BESS utilization, is found for each day in 

one year. A probability distribution function is then created from the optimal BESS size 

of 365 days. Then, the optimal size is chosen such that it meets the system requirements 

with certain specified probability. In the second one, the overall system cost is 

mathematically formulated as a function of BESS size. Then, optimal BESS size is 

defined as the BESS size that minimizes the overall system cost.  
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1.2 Hybrid energy systems 

 Air pollution due to greenhouse gases released from fossil fuel generators has 

been increasing. Therefore, new approaches towards generating electricity with less use 

of fossil fuel are needed. Hence, renewable resources of energy, such as wind, solar, and 

hydropower have gained much attention as alternatives for electrical power generation in 

recent years. Hybrid energy systems, Figure 1.2, consist of one or more complementary 

renewable resources combined with conventional sources and some types of energy 

storage. The idea of the hybrid energy systems is to combine diversified energy sources 

(renewable and conventional) to deliver reliable electric power to the load.  

 

 

Figure 1.2: Hybrid energy systems [7]. 
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 The integration of renewable energy resources (RES) into the current distribution 

systems is considered a challenging task. The cost of equipment and the variability of the 

generated electrical power make RES integration difficult. Energy storage is proposed to 

overcome the intermittency of RES by smoothing RES output power. Yet, the high cost 

of RES equipment for such systems is also a disadvantage of hybrid energy systems. 

Therefore, a planning procedure which considers capital costs of the system components 

and the uncertainties of RES is needed. Furthermore, system reliability is also a vital 

point in planning such a system.  

Considerable work has been done to find the optimal planning of hybrid energy 

systems. Optimization and planning of the hybrid energy system aim to obtain 

reasonable use of the renewable resources in order to satisfy lowest investment, load 

requirements, system uncertainties and system reliability. In [8], the authors develop a 

procedure to find optimal planning for hybrid energy system which reduces overall 

system cost using Biogeography Based Optimization (BBO).  A stochastic framework, 

using a pattern search-based optimization combined with a sequential Monte Carlo 

simulation, is developed to find optimal planning of hybrid power system which 

minimize the system cost and satisfy the reliability requirements [9]. 

However, in the previous mentioned and other studies, the importance of time 

domain is not considered in the planning of the hybrid energy system. While considering 

renewable resources, load requirements and energy price are highly related with time. 

Wind and solar power typically complement each other in the time domain. Therefore, in 

chapter III, an optimization technique using linear programming which includes one year 
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worth‘s of wind speed, solar radiation, energy market price, and load data in time 

domain is proposed to find the optimal configuration of hybrid energy systems. The 

optimal planning minimizes the overall system cost and meets system constraints. The 

overall system cost includes capital cost of system components, operation and 

maintenance cost, and energy purchased from the market cost. 

In chapter IV, the uncertainties and the reliability of the system suggested in 

chapter III are considered. Two optimization techniques are used to find optimal 

planning of hybrid energy system. One uses two stage stochastic programming in order 

to find the optimal planning strategy for the hybrid system. The other is based on 

scenario aggregation. The stochastic programming procedure uses time correlated 

stochastic distributions for system uncertainties which are wind speed, solar radiation, 

energy market price, and load. The objective function measures the total annual cost of 

the system. The results of the stochastic optimization procedure give the optimal size for 

wind farm, solar farm, and energy storage needed to meet the load requirements, 

improve system reliability, and minimize system cost. The scenario aggregation 

procedure finds the optimal configuration of the proposed system for each scenario. 

Then, the optimal configuration is defined as the average of these scenarios over a 

sufficient number of simulated scenarios. The results from the two procedures are 

compared and some conclusions are pointed out. 
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CHAPTER II 

 SIZING OF AN ENERGY STORAGE IN AN ENERGY BUFFER SYSTEM* 

 

2.1 Introduction  

The dispatching of electrical power, as constant as possible, generated from wind 

farms is important so that wind farm acts like other typical generation resources. The 

electrical power produced from wind farms fluctuates and this variable nature can cause 

voltage and frequency deviations in the grid [10]. Therefore, connecting fluctuating 

power source to a grid can produce challenges [11]. One of the effective solutions 

proposed for the problem of intermittency of electrical power generated from wind farms 

is energy storage. 

 Energy storage has different types and techniques. One of these types is the 

battery energy storage system (BESS) which is now more widely used. In the published 

literature, BESS has been used for smoothing electrical power output from wind farms. 

The Vanadium redox-flow batteries (VRBs) are used as energy storage in addition to a 

wash out filter based scheme in order to smooth out the fluctuation of the power 

generated from wind farms [2]. In [12-14], a simple scheme to charge and discharge the 

BESS by storing extra energy if the wind power goes beyond predetermined threshold is 

proposed. 

_____________________________ 

 *© 2014 IEEE. Reprinted, with permission, from A. Abuelrub and C. Singh, ―Long Term Energy 

Storage Capacity Optimization in Energy Buffer System,‖ IEEE PES General Meeting | Conference & 

Exposition, July, 2014. © 2016 IEEE. Reprinted, with permission, from A. Abuelrub and C. Singh, 

―Sizing of Lead Acid Storage System in an Energy Buffer Connected to a Wind Farm,‖ IEEE International 

Conference on Power Systems Technology (Powercon), September, 2016. 
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 Research is being done to find the optimal size of BESS connected with a wind 

farm in order to make its power output as constant as possible. In [15, 16], the use of 

BESS with wind farm and stand-alone diesel systems is discussed. The utilization of 

BESS with a single wind turbine to reduce the harmful consequences of wind power 

changes is also examined in [17, 18]. Control and sizing of Zinc bromine flow batteries 

for large wind farms have been proposed and illustrated using optimal control for a 

generic battery in [3, 19]. In [20], a BESS design and modeling for 50-MW and 80-MW 

wind farms is discussed. 

 The objective in this work is to find the optimal size of BESS, from economic 

point of view, in order to address its design in an energy buffer system consisting of the 

BESS and a wind farm. In [21], the BESS is shown to be a suitable technique for the 

long term load tracking operation because of its higher energy capacity compared to 

other energy storage media. Moreover, the BESS is found to be cost effective for use in 

power systems as illustrated in [22]. A design method for a flow battery system is 

proposed in [23], however the authors did not provide a procedure to find the required 

capacity for the proposed energy storage system. This work proposes a procedure to find 

the optimal value for BESS capacity such that the BESS can meet the daily load tracking 

requirements and make the maximum economic benefit from the BESS. The calculated 

size of BESS would be capable of meeting the demands of every day in the planning 

horizon. The proposed procedure in this work uses the electrical power profile, 

generated from wind speed data from a wind farm for one year. Then using the optimal 

value of an optimization procedure the optimal value for the steady dispatched power 
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from the wind farm for each day is obtained. The BESS capacity then will be calculated 

from the dispatched power level for each day, provided that the dc voltage across the 

DC-link capacitor and the state of charge (SOC) of the batteries will be kept between 

predefined limits for proper energy buffer operation. A frequency distribution of the 

optimal BESS size for all the days in one year will be created and converted to a 

probability distribution function (pdf). Finally, the optimal size of BESS will be 

calculated from another optimization problem which minimizes the costs related to the 

BESS size as shown in the next sections. The optimal size obtained is expected to be 

valid over the entire planning horizon. 
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2.2 The energy buffer storage system 

In the simple energy buffer system shown in Figure 2.1, taken from [24], the 

function of wind turbine is to generate electrical power (Pw) from wind by converting the 

kinetic energy of the wind to electrical energy using permanent magnet synchronous 

generator (PMSG). The wind power is known to be intermittent and stochastic since it 

depends on wind speed which varies stochastically. Therefore, this wind power can be 

modeled using its statistical mean [25]. In our work, the main goal is to propose a 

procedure to find the optimal size of BESS that is applicable over the entire planning 

horizon and not just one day. Hence wind speed data for one year of wind farm is 

obtained and this data will be used in the procedure to determine the optimal size of the 

BESS in the energy buffer system. 

 

 

Figure 2.1 Interconnection between wind turbine and the main grid [24]. 
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Back-to-back converters along with a dc link capacitor C are used to transfer 

electrical power from wind turbine output to the grid transformer.  The purpose of dc 

link capacitor is to filter out the harmonics of the electrical power and it can also act as 

an energy storage device as shown in [26]. However, the energy stored in the capacitor is 

very small compared to the energy stored in the BESS. Therefore, it can be neglected in 

the calculations. The electrical power lost in the converters is very small compared with 

the generated power, thus it can be also neglected.  The wind power dispatched to the 

grid will be kept constant, as much as possible, during the day. The dispatched wind 

power for a given day will be constant and derived using an economic optimization 

procedure that uses the wind profile for that day. So the dispatched power from the wind 

farm is related to the wind power profile and not the required load as the dispatched 

power is assumed to be much smaller than the required load. In the case of power 

generated from wind farm is more than the required dispatched power, the extra power 

will be stored in the BESS. On the other hand, when the power generated from wind 

farm is less than the required dispatched power, the shortage in Pd will be compensated 

by the energy stored in the BESS. Hence, the quality of the power generated from wind 

farm and dispatched to the electrical grid will be improved by reducing its fluctuation. 

The power convertor CON1 and the BESS together form the power buffer system which 

is suggested to reduce the fluctuation in wind power and make the dispatched power as 

smooth as possible. The operating and control procedures of the power convertors are 

illustrated more in details in [27]. 
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2.3 Determination of BESS power and energy capacities 

 The capital cost of the lead acid battery energy storage system is found to be a 

function of both BESS power capacity and BESS energy capacity [28]. Therefore, the 

power and energy capacities of the BESS need to be determined in order to calculate 

BESS cost. The definition of the power capacity of the battery is the measure of battery 

capability to supply or store electrical power under charging and discharging limitations. 

The energy capacity of the battery is defined as the amount of energy that can be stored 

or supplied from the battery. In this section, the energy capacity of BESS will be 

assumed 8 times its power capacity which is suitable for wind power integration 

application (i.e. if BESS size is found to be 1 MW then its energy capacity is 8 MWH). 

After defining the power and energy capacities of the battery, these capacities will be 

used in calculating the capital cost of the BESS. The capital cost of BESS then will be 

used in the optimization problem to find the optimal size of the BESS based on cost-

benefit analysis, as shown later. 

 In the energy buffer system shown in Figure 2.1, the BESS power Pb(t) can be 

calculated easily, neglecting the power losses in the power convertors as illustrated 

earlier, as the difference between the power generated from wind farm and the power 

level dispatched to the grid as in  Equation (2.1), 

 

d
P

w
Pt

b
P )(

 
(2.1) 
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Now, assuming the dispatched power Pd to be constant, the BESS power profile 

will be the same as the wind power profile but shifted by constant value Pd. The power 

capacity of the BESS (Pb,max) can be calculated from the BESS power Pb(t) and it is 

equal to the maximum of the absolute value of Pb(t) as in Equation (2.2), 

 

)(maxmax, t
b

PPb 
 

(2.2) 

 

The energy profile of the BESS Eb(t) can be found by integrating its power profile Pb(t) 

over the period of time as shown in Equation (2.3), 

 

dtt
b

PE tb  )()(

 
(2.3) 

 

And then the energy capacity of BESS (Eb,max) can be found from Equation (2.3) since it 

is equal to the maximum of the absolute value of Eb(t) and it is shown in Equation (2.4), 

 

)(maxmax, t
b

EEb 
 

(2.4) 

 

From the previous analysis and equations, one can note that for different values 

of dispatched power to the grid Pd, there are corresponding power and energy capacities 

of BESS Pb,max and Eb,max which will be used in the optimization problem as shown later. 
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2.4 Optimization to determine dispatched power 

The optimization formulation has an objective function which measures the 

economic benefit from selling the electrical power generated from wind farm to the grid 

against the amortized BESS capital cost per hour for period T. The optimal solution of 

this optimization problem gives the level of dispatched power to the grid in order to 

maximize the objective function, taken from [24] and shown in Equation (2.5), 

 

max,max, b
E

b
P

d
PB  

 
(2.5) 

 

Where B is the benefit from energy buffer system in $, α is the unit price of the wind 

power sold to the grid (in $/KW), 𝛽 (in $/KW) and 𝛾 (in $/KWh) are the amortized 

BESS capital costs for BESS power and energy capacities. From the objective function 

represented by Equation (2.5), it can be shown that the value of the objective function 

depends only on the level of dispatched power Pd, since it has been proofed in the 

previous discussion that Pb,max and Eb,max are related to the value of Pd (i.e. for each value 

of Pd there is a corresponding values for Pb,max and Eb,max respectively). Hence, the 

solution of this optimization problem, for given values of 𝛼, 𝛽, and 𝛾, gives the optimal 

value of Pd (Pd
*
) that maximizes the objective function B. Thus, the optimal size of the 

BESS that maximizes the economic benefit from BESS for a given wind profile can be 

calculated using this optimal value of Pd. 
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2.5 Optimization problem constraints 

 2.5.1 DC-link voltage constraint 

 The DC-link voltage (Vdc) across the DC-link capacitor must be kept between 

certain limits so that the power convertor can operate properly. Therefore, a verification 

of BESS capacity is required in order to determine if this capacity is sufficient to 

maintain the Vdc between these limits as wind power changes. A mathematical method to 

calculate Vdc, using circuit analysis of lead acid battery model, will be used as illustrated 

in the following discussion. 

 

A) Battery model 

In Figure 2.2, a third order lead acid battery model, taken from [29], is shown. 

However, the circuit components of this model are nonlinear, therefore the following 

assumptions are used to simplify the lead acid battery model and make it linear in order 

to ease circuit analysis of the model. 

1) The current passes through the parasitic branch Ip is around 0.5% as shown in 

[19], therefore the parasitic branch will be neglected in the linear model. 

2) The time varying component values of the third order model will be averaged 

over the time to obtain constant component values. 
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Figure 2.2 Third-order lead-acid battery model [29]. 

 

 

Figure 2.3 Linear battery model [3]. 

 

After the simplification of the third order model using the previous mentioned 

assumptions, the linear model is obtained and it is shown in Figure 2.3. In order to 

justify the use of this linear model, a simulation for the two models (third order and 

linear) has been done in [3]. The results of the simulation showed that error in 
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calculating SOC, battery input current, and voltage across the battery can be neglected, 

since it is less than 5% between the two models. 

 

B) Calculating the DC-link voltage Vdc 

The DC-link voltage (Vdc) calculation is done using the linear lead acid battery 

model shown in Figure 2.3. One can note that, the DC-link voltage Vdc is a result of two 

main factors, the first one is the battery electromagnetic force EMF (Em) and the other 

one is the battery terminal input current (I). Since the battery model is linear, the 

superposition theory can be applied to obtain the value of Vdc using basic circuit theories. 

A complete circuit analysis, with all required details, is done in [24] to calculate the Vdc 

and it has been found that Vdc can be written as in Equation (2.6), 
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Where ℷ1-ℷ4, τ1, and τ2 are function of the circuit elements. 

 A numerical procedure to calculate the value of Vdc using iterative approach is 

presented in [24]. This numerical procedure takes into account the varying value of the 

wind power. The calculation of Vdc using this iterative approach can be done using 

Equations (2.7) and (2.8). 
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Where N is the number of time intervals during period T, 
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 2.5.2 State of charge 

The SOC of a battery is defined as the ratio of the battery available capacity with 

respect to its rated capacity. The SOC of the battery gives a good indication of the time 

the battery will still be capable to continue working before it needs to be recharged 

again. If the SOC goes lower than certain limits then the battery will be depleted, on the 

other hand if SOC goes beyond certain limit then the battery will be overcharged, and in 

both cases the life time of the battery will be reduced. Therefore, the SOC must be kept 

between proper upper and lower limits. In [24], the authors did not suggest any 

procedure to control the SOC, therefore an approach to control SOC is proposed in this 

work. The target of this control mechanism is to keep SOC between 100% as an upper 

limit and 30% as a lower limit so it does not affect the life time of the battery. 

 

1) In case of SOC goes beyond 100% then the excess in the power generated from 

wind farm will be determined and sold to the grid at a cheaper price (e.g. the 

extra power will be sold for 10% of its value). 

 

2) In case of SOC goes under 30% then the BESS will not supply power to the grid 

(i.e. the dispatched power to the grid will be less than Pd
*
) and this shortage in 

the power supplied to the grid will be compensated by other sources (e.g. fuel 

generator) and also will be penalized in the objective function of the optimization 

problem, by subtracting the price of this shortage in the dispatched power from 

the benefit function. 
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The calculation of state of charge can be done using Equations (2.9) and (2.10), taken 

from [29], 

 

*

1

oc

e

CK

Q
SOC 

 

(2.9) 

 

Where Kc and Co* are empirical coefficients and Qe is the discharged charge from the 

battery and it can be found using Equation (2.10), 
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2.6 Determination of BESS capacity 

The use of previously described procedure to determine the size of BESS will 

give different BESS size on different days as it depends on the wind power profile which 

changes daily. However, it is obvious that once the BESS is installed, for a wind farm, 

its capacity is fixed and it is hard to change it. The challenge then is to find a method to 

determine the BESS size which is optimal over the planning horizon. In this work, two 

methods are proposed to determine the size of BESS. The first one is based on 

calculating the optimal BESS size for every day of the year then creating a probability 

distribution function of the optimal BESS size. The decision of BESS size then will be 

taken so that the power can be dispatched at the required level with a certain probability. 

This will ensure that the BESS can satisfy the needs with a high probability. The other 

one will be by creating cost function including the cost of power generation using typical 

fuel generator along with a wind farm connected to BESS then obtaining the BESS size 

which minimizes the cost function.  
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2.7 Descriptions of methods and results 

In this section the two methods will be described using an example system. In 

this example, one year (2014) worth of wind speed data averaged over 5-minute 

intervals is obtained from Abernathy, TX, US to illustrate the BESS design [8]. The 

wind power profile is calculated from wind speed data using Equation (2.11) taken from 

[30]. The wind farm capacity is equal to 19 MW. 

 

 CAVPw
3

2

1
  (2.11) 

 

Where ρ is air density in (kg/m
3
), A is the swept area of wind turbine in (m

2
), V is the 

wind speed in (m/s), and Cρ is the power coefficient. One year (2014) load data is 

obtained from Electric Reliability Council of Texas (ERCOT) and this data used in the 

second method to determine BESS size. The peak load is 62.127 MW and average load 

is 30.34 MW. 

 

 2.7.1 First method: probability of sufficient storage method 

The optimal BESS size needed to dispatch the required level of dispatched power 

for each day is found using the optimization procedure described earlier. The 

coefficients (𝛼, 𝛽, and 𝛾) of Equation (2.5) are taken from [24]. 𝛼=0.065 $/kWh, 

𝛽=0.0116 $/kW/h and 𝛾=0.0099 $/kWh/h. The frequency distribution for optimal 

capacity of BESS is created from optimal BESS size for each day and it is shown in 

Figure 2.4 [31]. The corresponding frequency distribution for the daily dispatched power 
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is shown in Figure 2.5 for illustration. The frequency distribution of BESS optimal is 

then replaced by a probability distribution function (pdf) proposed in the preceding 

section. A chi-square test is used to verify whether the suggested pdf is a good fit for this 

frequency distribution. The details of pdf generation and chi-square test are presented in 

the following discussion. 

 

 

Figure 2.4 Frequency distribution of optimal BESS size. 

 

Figure 2.5 Frequency distribution of optimal Pd level. 
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2.7.1.1 Chi-square test 

The frequency distribution of the optimal BESS size, shown in Figure 2.4, is 

represented by Table number 2.1. 

 

Table 2.1: Frequency distribution for optimal BESS size 

OS(MW) 0-0.5 0.5-1 1-1.5 1.5-2 

Freq 178 87 42 20 

OS(MW) 2-2.5 2.5-3 3-3.5 3.5-4 

Freq 14 11 5 2 

OS(MW) 4-4.5 4.5-5 5-5.5 5.5-6 

Freq 1 2 1 0 

OS(MW) 6-6.5 6.5-7 7-7.5 7.5-8 

Freq 1 0 0 1 

 

In Table 2.1 OS stands for optimal BESS size in MW and freq stands for the number of 

days that optimal BESS is found to be needed. A chi-square test is performed in order to 

verify if this frequency distribution can be replaced by a pdf. From the shape of the 

frequency distribution, an exponential probability distribution function is suggested to 

replace the frequency distribution. The pdf of an exponential probability distribution 

function is shown in Equation (2.12), 
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Where ℷ-1
 is the mean of the readings. Therefore the sample mean can be used as an 

estimate of ℷ, hence we have
avgx

1
  . 

Now, 

865.0
365

75.317





f

fx
xavg , then ℷ=1.156. 

Thus the suggested pdf in replacement of frequency distribution is given in Equation 

(2.13), 

 

xexf 156.1156.1)(   (2.13) 

 

Using the characteristics of pdf function the probability of the BESS size to be less than 

some value (a) is given in Equation (2.14), 

 


 

a

ax edxeaxP

0

156.1156.1 1156.1)(  (2.14) 

 

Now using Equation (2.14), the probabilities and expected frequencies of BESS optimal 

size values using the pdf are calculated and shown in Table 2.2. 
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Table 2.2: The probabilities and expected frequencies using pdf model 

OS(MW) 0-0.5 0.5-1 1-1.5 1.5-2 

P 0.439 0.2463 0.0776 0.043 

E 160.2 89.9 50.4 28.3 

OS(MW) 2-2.5 2.5-3 3-3.5 3.5-4 

P 0.0248 0.0142 0.007 0.0045 

E 15.7 9 5.2 2.6 

OS(MW) 4-4.5 4.5-5 5-5.5 5.5-6 

P 0.0025 0.0013 0.0007 0.0005 

E 1.6 0.9 0.5 0.3 

OS(MW) 6-6.5 6.5-7 7-7.5 7.5-8 

P 0.0002 .0001 0.0001 0.00001 

E 0.2 0.1 0.05 0.05 

 

In Table 2.2 OS is the optimal size, P is the probability obtained from pdf, and E 

is the expected frequency found by multiplying P by the total number of samples (i.e. 

number of days in one year).  Applying chi-square test procedure which is require to find 

the summation of normalized squared error between expected frequencies and real 

frequencies after adding the classes such that expected frequencies for each class is more 

than 5 we get data shown in Table 2.3. 
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Table 2.3: Normalized error squared for Chi-Square test 

OS(MW) Oi (real frequencies) Ei (expected frequencies) 

i

ii

E

EO 2)( 
 

0-.5 178 160.2 1.98 

0.5-1 87 89.9 0.09 

1-1.5 42 50.4 1.4 

1.5-2 20 28.3 2.43 

2-2.5 14 15.7 0.18 

2.5-3 11 9 0.44 

3-3.5 5 5.2 0.0077 

3.5-inf 8 6.2 0.46 

 

Thus, two hypotheses are suggested, 

 

1) H0 : exponential distribution is appropriate fitting. 

 

2) H1 : exponential distribution is not appropriate fitting. 

 

 

Since the summation of normalized squared error is equal to seven and from 

tables of chi-square test, for 6 degree of freedom (number of classes – number of 

conditions) and for 5% significance level we get X2>12.592>7, therefore, there is no 
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evidence at the 5% significance level to suggest that an exponential distribution is not 

appropriate.  

Once the probability density function is known, the size of the BESS which is 

good for 90% of the days, for example, can be found using Equation (2.14),  

((i.e., 0.9 = ae 156.1156.11  )  , This gives a= 1.99). So a BESS of size 1.99 MW will be 

able to be optimum size for 90% of the days. It should be noted that in this procedure the 

optimal dispatched power is derived for a given day and then optimal BESS calculated. 

If more refinement is needed, the optimal dispatched power can be calculated for shorter 

intervals than a day and then corresponding optimal BESS determined. 
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 2.7.2 Second method: cost based method 

The system shown in Figure 2.6 is used to formulate the cost function which then 

is used in an optimization problem to find the optimal BESS size. In this system, the 

load is fed from two main power sources which are a wind farm connected to a BESS in 

addition to a typical fuel generator. The load data taken from ERCOT website [32] and 

wind farm data is the same as used in the first method. The cost function measuring the 

total costs related to the BESS size is mathematically formulated in this method. The 

cost function has two major components which are related directly to the BESS size. The 

first component represents the BESS installation capital cost as a function of its size. The 

relationship between BESS capital cost installation and its size, taken from [33], is 

shown in Figure 2.7. From Figure 2.7, reader can note that the BESS capital cost 

increases as the BESS size increases which is as expected. The second one measures the 

cost of the fuel used in the typical fuel generator to meet load requirements. The fuel 

cost function for fuel generator is a quadratic function of generator output power and it 

shown in Equation (2.15) [34]. 

 

2

cos ** ggt PcPbaF 
 

(2.15) 

 

Where a,b, and c are the fuel cost coefficients and Pg is the power output of the 

generator. The following values for the coefficients are used: a=190 $, b=12 $/MW and 

c=0.0075 $/MW
2
. The fuel cost is found to be influenced by BESS size as shown in the 

following two different cases: 
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1) If wind power is less than BESS size then power generated from the fuel 

generator will be equal to the difference between load and wind power. 

2) If wind power is more than BESS size then power generated from the fuel 

generator will be equal to the difference between load and BESS size in addition 

to wind power lost which is equal to difference between wind power and BESS 

size. 

 

Figure 2.6 System used in the second method. 

 

Figure 2.7 Relationship between BESS size and capital cost of BESS in $. 
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The Mathematical formula of the cost function is shown in Equation (2.16), 
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Where a,b and c are the fuel cost coefficients, L is the Load, Pw is the wind power, Bs is 

the BESS size and δ is the cost of BESS per kilowatt and equal to 700 $/kW. The 

relationship between the second component of cost function and BESS size is shown in 

Figure 2.8. Total cost against BESS size is shown in Figure 2.9. From Figure 2.9, it is 

found that optimal size of BESS that minimizes the cost function is equal to 2.1 MW. 

 

 

Figure 2.8 Relationship between BESS size and fuel cost per year in $. 
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Figure 2.9 Relationship between BESS size and system cost per year in $. 

The optimization procedure developed in the previous sections is summarized by 

the flow chart shown in Figure 2.10. 

 

Figure 2.10 Optimization procedure flow chart. 
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The verification of meeting constraints requirement can be done by taking one 

day wind power profile, shown in Figure 2.11, and applying it to the simulation. In 

Figure 2.12, the BESS power is shown and as expected  it is a shifted version of wind 

power profile by Pd optimal which is equal to 0.48 (p.u.) for this day. For SOC 

constraint, the SOC of the battery, without control strategy, is shown in Figure 2.13 

(blue line). The initial state of the battery SOC is considered to be 50% (for example), 

and it is observed that SOC goes under the lower limit (i.e. 0.3) at hour 19, because of 

the shortage in wind power compared to the required level of dispatched power. After 

applying the control strategy for SOC mentioned earlier, the new SOC is shown in 

Figure 2.13 (red line) and it satisfies the predetermined thresholds. 

 

 

Figure 2.11 Wind power profile for one day. 
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Figure 2.12 Battery power profile. 

 

 

Figure 2.13 SOC of the battery with and without control. 

 

In order to show the effect of the SOC control on BESS power, the BESS power 

profile after applying SOC control strategy is shown in Figure 2.14. One can note that, it 

is the same as the battery power profile of no control case before hour 19, since the SOC 

still above the lower limit then it becomes zero since the SOC is at its lowest level and 
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no more power can be supplied from BESS to the grid (same thing happened before hour 

5 for short period). 
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Figure 2.14 Battery power profile with controlled SOC. 

The same procedure mentioned in [24] was used to control the DC-link voltage. 

In Figure 2.15, the DC-link voltage with controlled SOC is shown and it meets the 

predetermined limits (i.e. between 0.9 and 1.1 (p.u.)). 

 

Figure 2.15 DC-link voltage with controlled SOC. 
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2.8 Summary 

The planning of energy storage system for a wind farm, to smooth its output and 

dispatch power on hourly basis, needs a careful analysis. The optimal size of BESS can 

be found to be varying due the varying nature of wind power. Therefore a criteria needs 

to be used to determine the proper size that is applicable over the planning horizon. Two 

approaches are proposed using different philosophies. One approach suggested is to 

meet the needs of dispatched power with a certain level of probability or equivalently to 

be able to do so for a certain percentage of days of the year. This approach is done by 

finding the frequency distribution of the optimal BESS size for all days of one year. A 

probability distribution function pdf then will be created to represent the frequency 

distribution. The validity of this pdf is checked by chi-square test. It should be pointed 

out, if needed, the optimal size can be based on smaller intervals than a day. The other 

approach suggested is to develop a cost benefit relationship that measures the cost of 

complete system with varying BESS size and find the optimal size which minimizes the 

overall cost. The SOC and DC-link voltage are important constraints in order to 

guarantee a proper operation for converters and BESS ability to dispatch the required 

power respectively. 
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CHAPTER III 

PLANNING OF A HYBRID ENERGY SYSTEM 

 

3.1 Introduction 

 Atmospheric pollution due to emission of greenhouse gases has been increasing. 

Therefore, developed countries made an agreement to reduce these emissions in 2012 by 

5.2% compared with 1990 as stated in the Kyoto Protocol [35]. New approaches towards 

generating electricity with less use of fossil fuel are thus needed. Hence, renewable 

resources of energy, such as wind, solar, and hydropower have gained much attention as 

alternatives for electrical power generation. When properly planned, energy systems 

which use renewables can not only mitigate the greenhouse effect, but also can be 

economically efficient. However, renewable sources tend to be intermittent and thus they 

can be combined with conventional ones to make the overall operation uninterruptable. 

Hybrid energy systems consist of one or more complementary renewable resources 

combined with conventional sources like diesel generators [36]. Generally, some form of 

energy storage is a vital component for most of the current hybrid systems [37]. 

 Renewable energy usage has increased recently, e.g., PV installed capacity 

increased 60% between 2004 and 2009 and 80% in 2011 [38]. Distributed renewable 

energy sources combined with energy storage can be integrated with point of use energy 

systems using DC distribution systems [19, 39, 40]. This research effort develops a 

model for a hybrid energy system with renewable energy sources (PV and wind) 

combined with energy storage connected through a distribution system. The combination 
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of the two types of renewable energy sources is dependent on the local availability of the 

resources in each geographical area. Therefore, optimal sizing and planning of such a 

system needs careful analysis by evaluating natural sources available in that area. 

 The main goal for optimizing the hybrid energy system is to obtain reasonable 

use of the renewable energies along with the lowest investment in order to satisfy load 

requirements. In the published literature, different optimization techniques have been 

used to find the optimal size for such a system. In [41], the authors propose an improved 

optimal sizing for the hybrid power system in stand-alone and grid connected modes. 

The optimization is based on higher power supply reliability with optimal battery 

capacity. Nevertheless, the energy market price has not been considered in the planning 

criteria. Biogeography Based Optimization (BBO) has been developed to evaluate 

optimal component sizes of a hybrid power system which reduce overall system cost in 

[8]. Yet, the correlation between renewable energy production and time is missing. A 

stochastic framework, using a pattern search-based optimization combined with a 

sequential Monte Carlo simulation, is developed to find optimal planning of hybrid 

power system which minimize the system cost and satisfy the reliability requirements 

[9]. However, the energy price has not been modeled in the proposed system. In [42], a 

techno economic analysis has been used to find optimal hybrid system configuration by 

considering different scenarios and choosing scenario with minimum cost while meeting 

load requirements. But the economic modeling of the system is not explained properly. 

The feasibility and cost benefit analysis of PV-wind system connected to a conventional 

grid has been investigated in [43]. In [44], an optimization of the hybrid system using 
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wind speed and solar irradiance data is proposed, but the energy constraints are not 

applied to the sizing procedure. The control and management of the islanded PV-wind 

and storage systems have been proposed in [40, 45-47]. In [48] and [49], genetic 

algorithm and neural networks have been used to find optimum sizing for hybrid energy 

systems. 

 However, in the previous mentioned studies, the importance of time domain is 

not considered in the planning of the hybrid energy system. While considering 

renewable resources, load requirements and energy price are highly related with time. 

Therefore, an optimization technique using linear programming which includes all these 

data in time domain is suggested to plan the hybrid energy system. It should be noted 

that by considering data over sufficiently long time like a year, the uncertainty inherent 

in the variables and their correlations is included as the time representations of variables 

represent a realization of the underlying distributions and their correlations. Energy 

market price data has been included to strengthen the planning of the distributed hybrid 

energy system. The planning will be more robust by considering energy price which is 

changing over time, since most renewable resources (wind and solar energy) are also 

highly correlated with time. Hence, the maximum benefit of using available renewable 

energy sources can be achieved. 
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3.2 Hybrid energy system description 

 The proposed hybrid distribution system, Figure 3.1, consists of wind and solar 

farms as renewable power sources, energy storage for storing excess energy and to 

reduce overall system cost by storing energy when it is cheap and discharging during 

peak energy price. Load profile represents distribution system load data. The energy 

market is used to purchase required energy needed to satisfy load requirements in case of 

renewable energy output is not sufficient, thus the overall system reliability increases. 

Power electronic devices are used to connect system components with the grid. In this 

chapter i is the index for i‘th day and j is the index for j‘th time step. 

 

 

Figure 3.1 Proposed hybrid energy system connected to distribution system. 

 

 3.2.1 Wind farm model 

 Cost of energy is typically calculated based on an annual basis, therefore a 

levelized cost model that converts the total capital cost for a wind farm to present annual 
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value is included. The total capital cost of a wind farm which includes turbine system 

cost and balance of the station cost is levelized over the lifespan of the wind farm. The 

annual operating and maintenance costs include land lease cost, maintenance cost, and 

replacement cost. Wind farm size is assumed to be a continuous function, since the 

capacity of a utility scale wind farm is much larger than turbine rated power. This is a 

reasonable assumption given that the wind farm is much bigger than a single turbine 

rating and can ease solving the optimization problem. Electrical power generated from 

wind turbine depends on wind speed.  The relationship between electrical power 

generated from wind turbine (pwi,j) and wind speed is shown in Equation 3.1, 
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 Where ρ is air density in Kg/m
3
, vi,j is wind speed in m/s, d is wind turbine 

diameter in m, Cρ is wind turbine efficiency, vin is cut-in speed for wind turbine in m/s, 

vr is rated speed for wind turbine in m/s, voff is cut-off speed for wind turbine in m/s, and 

Pr is rated power for wind turbine in MW. Thus, the total power generated from wind 

farm (wind farm utilization) can be calculated using Equations 3.2 and 3.3, 

 

wjwijwi Scp *,,   (3.2) 
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Where cwi,j is wind farm utilization factor, and Sw is wind farm size in MW. 

 

3.2.2 Solar farm model 

 PV system pricing has gone through rapid changes in the recent years. The cost 

of PV systems tends to drop with the advancement of PV panel technology. According 

to the most recent report from the Department of Energy in the United States, the 

averaged capital cost of PV projects for utility scale solar farm is around 1820$/KW and 

the total operation and maintenance cost is 12$/KW/year [50]. The electrical power 

output from PV panel depends on solar radiation. The output power of PV panels can be 

calculated using Equation 3.4 [51], 

 

PVPVjijsi Asp **,,   (3.4) 

 

Where psi,j is electrical power generated from PV panel in W, si,j is global horizontal 

irradiance in W/m
2
, APV is PV panel area in m

2
, and εPV is efficiency of PV module. 

Total solar farm power output (i.e. solar farm utilization) can be found using Equations 

3.5 and 3.6, 
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Where csi,j is solar farm utilization factor, Ss is solar farm size in MW, and s(STC) is 

global horizontal irradiance at slandered test condition which is 1000 W/m
2
. 

 

 3.2.3 Energy storage model 

 Lead acid energy storage has been used in the suggested model. Lead acid 

batteries are the oldest and the most commercially mature form of rechargeable battery 

technology in the world. Variety of applications like automotive, uninterruptible power 

supplies, and marine are using lead acid battery technologies. Energy storage in sizes of 

10 to 20 MW has been achieved in lead acid carbon technology [6]. Advanced lead acid 

batteries have been integrated with wind generating sites as in Tappi Wind Park installed 

in 2001 by Hitachi [5]. 

 Lead-acid life cycle cost analysis is used in this study. The cost estimates are 

based on capital cost, operation and maintenance cost, and battery replacement cost. Life 

cycle is estimated with 365 cycles annually for 15 years. The handbook from Sandia 

Labs describes different lead-acid energy storage systems [5]. The average present value 

of installed energy storage system cost is 4000 $/KW for energy storage power capacity 

and 400 $/MWh for energy storage energy capacity. 
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 Power and energy capacities of the energy storage must be defined in order to 

determine the cost of the system. In the proposed model, the main function of the energy 

storage is to store energy when it is cheap and discharge the stored energy when energy 

price is high. However, the power charged/discharged and energy stored must satisfy 

power and energy capacities given in Equations 3.7 and 3.8, 
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Where P
*
and E

*
 are power and energy capacities of energy storage, pci,j and pdi,j are 

power charged/discharged to/from energy storage, εc and εd are charging/discharging 

efficiencies of energy storage, ∆t is time step, and ei,j is energy stored in energy storage. 

 

3.2.4 Energy market model 

 The energy market is assumed to supply load requirements in the case that power 

generated from renewable sources is not enough. Incorporating energy market price data 

into the optimization problem will make the planning of the hybrid energy system more 

practical, since energy price changes during the day and renewable energy generation is 

also highly correlated with time. Therefore, maximum benefit from renewables can be 
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achieved. The total energy price purchased from energy market can be calculated using 

Equation 3.9, 

 

 
i j

jijpi tp ,,   (3.9) 

 

Where ppi,j is power purchased from energy market in MW, πi,j is energy market price in 

$/MWh and ∆t is time step in hours. 

 

 3.2.5 Load model 

 Distribution system load data is used to create the load profile. The load is fully 

supplied from the hybrid energy system and the energy market. The load demand at each 

time step is di,j. 
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3.3 Problem formulation 

 In this part, a mathematical formulation of the proposed system will be presented 

for optimization. The objective is to minimize the annual cost of the overall planned 

system while satisfying load requirements. The load is assumed to be supplied by the 

renewable sources and energy market. The result will give the optimal sizes of systems 

needed to minimize the overall annual cost of the system and meet problem constraints. 

The optimization is formulated as a linear programming problem as shown in the 

following discussion. 

 

3.3.1 Objective function 

 Objective function measures the total system annual cost in ($/year) which 

includes the initial capital cost and operational and maintenance cost. Major components 

of the system cost come from wind turbines, PV panels, energy storage, and energy 

purchased from the market. The capital cost for each component will be levelized over 

its timespan using Equation 3.10 [52],  

 





 *

1)1(

)1(






N

N

 (3.10) 

 

Where δ is the levelized capital cost in $/year, ε is discount rate of the investment in 

terms of annual interest per year, N is lifespan of system component in years, and γ is 

capital cost in $. 
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 From the previous discussion, the objective function can be mathematically 

formulated as in Equation 3.11, 
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Where δw is levelized total capital wind farm expenditures in $/MW/year, δs is levelized 

total capital solar farm expenditures in $/MW/year, Sw is wind farm size in MW, Ss is 

solar farm size in MW, βw is total operational wind farm expenditures in $/MW/year, βs 

is total operational solar farm expenditures in $/MW/year, δe1 is levelized capital cost 

and operational costs for energy storage power capacity in $/MW/year, δe2 is levelized 

capital cost and operational costs for energy storage energy capacity in $/MWh/year, P
*
 

and E
*
are power and energy capacities of energy storage in MW and MWh respectively. 
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48
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i j

jijpi tp  is total cost of energy purchased from energy market in $/year where 

∆t*ppi,j is energy purchased in MWh and πi,j is energy price from the market in $/MWh. 

 

3.3.2 Problem constraints 

 1) Power balance to insure that power generated and purchased is sufficient to 

meet the load demand as shown in Equation 3.12. 

 

DPPPPP cdpsw   (3.12) 
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Where Pw is power generated from wind farm for one year in matrix form in MW 

calculated using Equation 3.2, 

 

www SCP *  



















48,3651,365

48,11,1

ww

ww

w

cc

cc

C







 

 

cwi,j is the wind farm utilization factor at day i and time step j. 

Ps is power generated from solar farm for one year in matrix form in MW calculated 

using Equation 3.5, 
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csi,j is the solar farm utilization factor at day i and time step j. 

Pp is power purchased from energy market for one year in matrix form in MW which 

can be controlled. 
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ppi,j is the energy purchased from energy market at day i and time step j. 

Pd is power discharged from energy storage for one year in matrix form in MW which 

can be controlled. 
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pdi,j is the power discharged from energy storage at day i and time step j. 

Pc is power charged into energy storage for one year in matrix form in MW which can 

be controlled. 
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pci,j is the power charged into energy storage at day i and time step j. 

D is load demand for one year in matrix form in MW. 
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di,j is the load demand at day i and time step j. 
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 2) Energy storage constraints 

Energy storage has two capacities that limit its operation. 

a) Power capacity constraint: power charged/discharged into/from energy storage 

must be less than its power capacity. 
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b) Energy capacity constraint: energy stored into energy storage must be less than 

its energy capacity. 
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From the objective function, it can be noticed that the optimization variables can be 

classified into two major sets, 

1) Decision variables: Sw, Ss, P
*
, E

*
, Pp, Pc, Pd which can be controlled. 

2) Given data: Cw, Cs, D, π which are historical data or forecast data based on 

historical trends. 

Total number of decision variables is given in Table 3.1. 
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Table 3.1: Decision variables summary 

Decision variable Variable type Total number 

Sw Design  1 

Ss Design  1 

P
*
 Design  1 

E
*
 Design  1 

ppi,j Controlled 365*48=17520 

pci,j Controlled 365*48=17520 

pdi,j Controlled 365*48=17520 

 

 Solving the optimization problem gives the optimal wind farm size, solar farm 

size, energy storage power capacity, and energy storage energy capacity needed to plan 

the hybrid energy system. Since in practical design there is an area limitation for 

wind/solar farm which limits the installed capacity of both of them, an upper limit to the 

design variables (i.e. Sw, Ss, P*, E*) can be added into the optimization constraints. 
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3.4 Case study 

The case study is based on a grid tied distribution system in north Texas. The 

case study employs one year‘s worth of data for wind speed, global horizontal 

irradiance, energy market price, and load data in the north Texas area. The wind speed 

data is taken from the Electric Reliability Council of Texas (ERCOT) for the northern 

area distribution system [53].  The wind farm cost model is developed based on the 2014 

wind technologies market report disseminated by the U.S. Department of Energy (DOE) 

[54]. The average capital cost for utility scale wind farm projects is 1550 $/KW, and the 

annual operating and maintenance cost is 15$/KW/year. 

 The wind farm uses the NREL wind turbine design cost and scaling model which 

has the specifications shown in Table 3.2 [55], and is assumed to have a lifespan of 25 

years. One year‘s worth of wind speed data averaged over 30 minute time intervals for 

the north Texas distribution area is obtained from NREL [27]. The wind speed is 

measured using anemometer at 50 m height, therefore the impact of the roughness of the 

earth‘s surface on wind speed is found using Equation 3.13, 

 




























oo

ji

H

H

v

v ,  (3.13) 

 

Where ℴ is the friction coefficient, vi,j is wind speed at hub height (82.5 m) in m/s, vo is 

wind speed at anemometer height (50 m) in m/s, H is turbine hub height (82.5 m), and 

Ho anemometer height (50 m). 
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 The wind farm utilization factor (cwi,j) for four different days in different seasons, 

as an example, is shown in Figure 3.2. One can note that wind farm electrical power 

production is related to time. The wind power during the day time is most likely less 

than the wind power during the night (i.e. wind speed during night is higher than wind 

speed during day time). 

Table 3.2: Wind turbine characteristics 

Turbine rated power (MW) 1.91 

Turbine rotor diameter (m) 96.7 

Turbine hub height (m) 82.5 

Rotor peak power coefficient (Cp) 0.47 

Cut in wind speed (m/s) 2.5  

Cut off wind speed (m/s) 25.0 

Rated wind speed (m/s) 9.6 

 

 

Figure 3.2 Wind farm utilization factor. 
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One year of global horizontal irradiance data averaged over 30 minute time 

intervals is obtained from NREL [27]. The averaged capital cost of PV projects for 

utility scale is 1820$/KW and the total operation and maintenance cost is 12$/KW/year 

[50]. The lifespan of the solar farm in this work is assumed to be 33 years, which is 

around the typical lifespan of solar farm projects. The solar farm utilization factor (csi,j) 

for the same four days is shown in Figure 3.3. The reader can observe that solar farm 

electrical power production is related to time. Solar power is generated during the day 

time only, since it depends on solar radiation. 

 

Figure 3.3 Solar farm utilization factor. 

 

 Energy market price is collected from ERCOT. The spot market in Texas, where 

the study is based, is cleared every 15 minute. One year of energy price data is obtained. 

The energy price for four different days, as an example, is shown in Figure 3.4. The 

energy price during the day time is most likely more than energy price during the night 

time. 
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Figure 3.4 Energy price over the time. 

  

The load profile for north Texas distribution system is obtained from ERCOT. 

One year of load data over one hour time step is obtained. The average load value is 

925.2516 MW while the load peak value is 1689.9 MW. Four days load data over the 

time, for example, is shown in Figure 3.5. The load during the day time is most likely 

more than the load during the night. 

 

Figure 3.5 Averaged load over the time. 
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 The simulation time step is 30 minute, therefore all collected data is averaged 

over 30 minute. System components cost is formulated as mentioned earlier. MATLAB 

tool box Xprog is used to solve the linear programming optimization problem [56]. The 

results of case study simulation are given in Table 3.3. 

 

Table 3.3: Results for case study 

Wind farm size (Sw) 429.77 MW 

Solar farm size (Ss) 38.89 MW 

Storage power capacity (Pe) 16.31 MW 

Storage energy capacity (Ee) 179.48 MWh 

Overall system annual cost (J) 2.6395*10
8
 ($/year) 

  

For this optimal configuration, the levelized cost of energy produced from the 

wind farm is found to be 27.3882 $/MWh, and the levelized cost of energy generated 

from solar farm is 35.0625 $/MWh. The levelized cost of energy for wind farm is less 

than the levelized cost of energy for solar farm since the wind energy is available 

throughout the day as compared to solar irradiance which is available during day time 

only. However, it is still economically efficient to use solar energy since it is highly 

available during day time at which load and energy price are usually high and wind 

power generation is low as concluded from the previous discussion. 

 In case of a system consisting of an energy market only, the annual cost is found 

to be 2.6422*10
8
 ($/year). Thus, the annual cost of the proposed system is less than the 
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annual cost of energy purchased from the energy market by only 270 K$/year. Although 

the annual economic benefit from using the proposed system is small as compared to 

overall annual system cost, it is still encouraging to adopt such a system because it uses 

clean energy sources. Thus, the traditional ways of generating electrical energy, which 

cause a great deal of pollution, can be reduced. Furthermore, the wind and solar 

technologies, used in generating electrical power, are advancing. It is therefore expected 

that their capital costs will decrease with time as shown in Figures 3.6 and 3.7 [50], [57]. 

Consequently, the suggested system will be more economically efficient for adoption in 

the coming years. 

 

 

Figure 3.6 Estimated range of wind LCOE projections across 18 scenarios [57]. 

 



 

58 

 

 

 

Figure 3.7 Estimated solar farm capital cost projections for utility scale [50]. 

 

 The energy storage and energy market operation is illustrated in Figures 3.8 

through 3.10. It can be noticed that, the power capacity constraint for the energy storage 

has been satisfied. The energy storage tends to charge power during night time (i.e when 

energy price and the load are low). On the other hand, the energy storage discharges 

during day time, since the energy price and load requirements tend to be high. The 

power purchased from the energy market follows the load demand since power 

generated from renewable resources is not enough to satisfy the load.  
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Figure 3.8 Power charged into energy storage. 

 

 

Figure 3.9 Power discharged from energy storage. 
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Figure 3.10 Power purchased from energy market. 

 

 3.4.1 Sensitivity analysis 

 In this study, four scenarios for sensitivity analysis are considered. In the first 

one, the load demand is changed between 80% and 120% of its value. For the second 

one, four hours of peak load are increased by 10% to 30% (i.e. load profile is made more 

sharp) then four hours of off peak load are increased by the same amount (i.e. load 

profile is more flat). For the third one, the hybrid energy system is assumed to have 

either wind farm or solar farm as the only renewable resource with energy storage. In the 

fourth scenario, the hybrid system will have renewable sources only without storage. 

The four scenarios are studied using the same optimization procedure described earlier 

with some modifications to satisfy each scenario condition. The effect of load changing 

on the system design is illustrated in Figures 3.11 through 3.14, the results for scenario 

two are given in Table 3.4 and the results for scenarios two and three are given in Table 

3.5. 
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Figure 3.11 Optimal wind farm size Vs. load factor. 

 

Figure 3.12 Optimal solar farm size Vs. load factor. 

 

 

Figure 3.13 Optimal energy storage power capacity Vs. load factor. 
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Figure 3.14 Optimal energy storage energy capacity Vs. load factor. 

 

Table 3.4: Results for scenarios two 

Dmax +% Sw (MW) Ss (MW) Pe (MW) Ee (MWH) J (m$/yr) 

10% 465.5 50.5 17.65 194.2 270 

20% 465.3 101.1 17.53 192.9 278 

30% 465.1 125.3 17.42 191.6 285 

Dmin +% Sw Ss Pe Ee J 

10% 429.7 38.89 16.31 179.48 266 

20% 429.7 38.89 16.31 179.48 268 

30% 429.7 38.89 16.31 179.48 271 
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Table 3.5: Results for scenarios three and four 

Scenario Wind farm only Solar farm only Without storage 

Wind farm size (MW) 430.51 0.0  26.77  

Solar farm size (MW) 0.0  482.23  460.10  

Storage power capacity (MW) 16.34  0.0  0.0  

Energy capacity (MWh) 179.81 0.0  0.0 

Annual cost ($/year) 2.6396*10
8
  2.6419*10

8
  2.6397*10

8
  

% Annual increase  0.0038% 0.0909% 0.0076% 

 

 Some observations can be made from sensitivity analysis. As load demand 

changes, the optimal sizes for hybrid system components change proportionally in a 

linear fashion. However, when the peak load increased the solar farm size increased 

drastically. This can be justified by the fact that the peak load is usually during the day 

time at which the solar energy is highly available. On the other hand, when the off peak 

load increased there was no change in the original optimal system, since the change in 

the demand is slight and the original system is already capable to meet this slight 

change. In case wind farm is the only available renewable resource, the optimal size for 

system components has not changed much, since the solar farm size is small compared 

to wind farm size in the original system. On the other hand, when solar farm is the only 

available renewable resource, the optimal size for solar farm has increased dramatically 

to meet load demand, since it is the only available renewable resource and to compensate 

wind farm power generation in the original system. On the other hand, energy storage is 
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not needed anymore, since the solar irradiance is available during day time only at which 

the load demand and energy price are high, thus there is no benefit to store energy. 

When the energy storage is not included in the hybrid system, wind farm size has 

considerably declined and solar farm size has increased. This can be justified by 

considering the fact that, wind energy production is high when the load demand and 

energy price are low and this energy cannot be stored, while the solar farm size 

increased to substitute the shortage in energy production from wind farm. 
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3.5 Summary  

 A general hybrid energy system planning model has been proposed to consider 

cost of renewables, energy storage and energy market price. An important feature is a 

hybrid energy system sizing model that maximizes the benefit from using renewable 

sources which are highly correlated with time by considering real time energy market 

price which changes with time as well. Thus the hybrid system planning will be more 

robust and able to take maximum advantage of available renewable resources. 

 In this model wind speed, solar irradiance, energy market price, and load data are 

used to optimize hybrid energy system planning using linear programming. The linear 

programming is used to get values of design parameters which will meet load 

requirements, practical problem constraints, and reduce overall annual system cost. A 

case study has been conducted using real data of north Texas distribution system to 

illustrate the feasibility of the suggested system. Sensitivity analysis which considers 

changes in load demand and hybrid system configuration has been performed. From the 

sensitivity analysis, a strong relationship between wind farm and energy storage is 

indicated. 

 Costs for wind and PV farms have declined over the recent years and this 

phenomenon is expected to continue, because of the advancement in the technology used 

in generating electrical power from renewable resources. This work shows that it is 

efficient to use renewable energy system even from economical point of view. 

Therefore, in the next few years this topic will gain more importance since the energy 
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generated from renewable resources will be more competitive with current traditional air 

polluting ways to generate energy. 
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CHAPTER IV 

PLANNING OF A HYBRID WIND-PV DISTRIBUTION SYSTEM 

CONSIDERING SYSTEM UNCERTAINTIES 

 

4.1 Introduction 

 Traditional ways of electricity generation which use fossil fuel are a major 

contributor of atmospheric emissions. New approaches towards generating electricity 

using clean sources of energy, such as wind, solar, and hydropower are thus needed. 

With proper planning of hybrid energy systems which use renewables, hybrid systems 

can mitigate the greenhouse effect, and be economically efficient as well. However, 

renewable sources are intermittent and unpredictable thus conventional generators, like 

diesel generators, can be added to the system in order to make the overall operation 

reliable.  

Hybrid energy systems combine conventional sources with one or more 

renewable resources [36]. Generally, energy storage is usually considered as a vital 

component for most of the hybrid systems [37]. 

 Renewable energy installed capacity has increased recently, e.g., PV usage 

increased 60% between 2004 and 2009 and 80% in 2011 [38]. The present study 

proposes a planning procedure for a hybrid energy systems which use wind and PV 

combined with energy storage connected through a distribution system.  
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The proposed procedure considers system cost, uncertainties, and reliability in 

the planning procedure. Renewable energy sources are dependent on the local 

availability of the renewable resources in the geographical area (wind energy depends on 

wind speed and solar energy depends on solar radiation). Therefore, natural sources 

availability in that area should be carefully considered in the planning of such a system. 

 Optimizing and planning of the hybrid energy system aims to obtain reasonable 

use of the renewable resources in order to satisfy lowest investment, load requirements, 

system uncertainties and system reliability. However, planning such a system, which has 

large number of random variables, makes its optimal configuration more difficult [58]. 

Cost benefit analysis to find the financial feasibility of PV-wind hybrid energy system 

connected to a grid has been investigated in [43]. In [40, 45-47], the control and 

management of the islanded hybrid energy systems have been proposed.  

In the published literature, many optimization procedures have been developed to 

find the optimal planning for such a system. In [8], the authors develop a procedure to 

find optimal planning for hybrid energy system which reduces overall system cost using 

Biogeography Based Optimization (BBO). Yet, the time correlation between renewable 

energy sources has not been considered. In [44], wind speed and solar irradiance data 

have been used to find optimal configuration of the hybrid system, but the energy 

storage constraints are not applied to the sizing procedure. Wind speed and solar 

irradiance data have been used to find optimal configuration of the hybrid system, but 

the energy storage constraints are not applied to the sizing procedure. In [41], an 

improved optimal sizing for the hybrid power system has been proposed for both stand-
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alone and grid connected modes. The optimization uses optimal battery capacity and 

higher power supply reliability. Nevertheless, the uncertainties of renewable resources 

and the reliability of system components are not applied to system planning. In [59, 60], 

optimization procedures are developed to plan and control the hybrid energy system. 

However, the reliability of a system for the grid independent applications is not 

evaluated. The authors of [9] suggest a pattern search-based optimization combined with 

a sequential Monte Carlo Simulation to plan hybrid power system which minimizes the 

system cost and satisfy the reliability requirements. However, the time correlation 

between renewables has not been covered considering that all of hybrid energy system 

components are highly related with time.  In [42], different scenarios have been 

considered and the scenario which meets load requirements with minimum cost has been 

chosen using a techno economic analysis. But the system uncertainties and components 

reliability have not been modeled. 

 However, in the previous mentioned and other different studies, the importance 

of the time correlation between system components (wind speed, solar radiation, energy 

market price, and load) is not considered in the planning of the hybrid energy system. 

While considering renewable resources, load requirements and energy price are highly 

related with time. The uncertainties in wind speed, solar radiation, energy market price 

and load as well as hardware components reliability are also important in designing such 

a system. Therefore, an optimization technique which includes time correlated 

distributions of system uncertainties and adequate models for system components 

reliability is proposed. By considering time correlation and components reliability, the 
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planning will be more robust, since most renewable resources (wind and solar energy), 

load, and energy price are also highly correlated with time. Hence, the maximum benefit 

of using available renewable energy sources can be achieved.  

In this research effort, two stochastic optimization procedures are suggested to 

find optimal plan of hybrid energy system. 

 

1) System planning using two-stage stochastic programming. 

 

2) System planning using scenario aggregation procedure. 
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4.2 Hybrid energy system description and subsystem models  

 This section provides an explanation of modeling of distribution system 

components which are the renewable resources, energy market, energy storage and load. 

The suggested hybrid distribution system, shown in Figure 4.1, has the following 

components. Renewable power sources in form of wind and solar farms. The role of 

energy storage is to store the surplus of energy generated from the renewables and to 

lower system cost by charging when energy price is cheap and supplying the stored 

energy when the load or the energy price are high. Load profile represents the required 

demand of the distribution system. The energy market is used to purchase energy needed 

to fulfill the system requirements in case of renewable energy generation is not sufficient 

or the price of the energy is lower than the levelized cost of energy (LCOE) generated 

from the renewables. 

 

 

Figure 4.1 Proposed hybrid energy system connected to distribution system. 
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 The uncertainties in wind speed, solar radiation, energy market price, and load 

are modeled using Weibull distribution, Beta distribution, Lognormal distribution, and 

Normal distribution respectively. The time correlation between the time varying random 

variables of the proposed system has been reflected by using the proper random variable 

distribution for each time step in each season. The random variable distribution is 

created from historical data of wind speed, solar radiation, energy market price, and load 

for each time step on each season. The system modeling details are further explained in 

the following discussion. In these discussions the whole year is divided into seasons and 

each season is represented by a typical day of 24 hours. 

 

4.2.1 Wind farm 

 As mentioned in chapter III, the capital cost of a wind farm consists of turbine 

system cost and the balance of the station cost. However, annual cost is typically used to 

represent the cost of energy. Hence, the capital cost of the wind farm is levelized over its 

lifespan time. The annual operating and maintenance cost is the summation of three 

different factors which are land lease cost, maintenance cost, and replacement cost. 

 Electrical power generated from wind turbine (Pw) depends on wind speed (vw). 

The relationship between Pw and vw is given in Equation 4.1, 
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Where Pw is the power generated from wind turbine in MW, ρ is air density in Kg/m
3
, vw 

is wind speed in m/s, d is wind turbine diameter in m, Cρ is wind turbine efficiency, vin is 

cut-in speed for wind turbine in m/s, vr is rated speed for wind turbine in m/s, voff is cut-

off speed for wind turbine in m/s, and Pr is rated power for wind turbine in MW. 

 The Weibull distribution is widely used for modeling the stochastic behavior of 

wind speed. The using of Weibull pdf to represent the stochastic nature of wind speed is 

based on a comparison of actual wind speed profiles at different sites and wind speed 

profiles estimated using the Weibull pdf [61]. The Weibull pdf is found to be valid for 

most wind speed profiles. Therefore, it has been used in this study to model the wind 

speed uncertainty over each time step on each season. The Weibull distribution pdf is 

given in Equation 4.2, 
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Where ci,j is Weibull scale parameter for season i and time step j, and ki,j is Weibull 

shape parameter for season i and time step j. 

 Wind speed data are usually available in time series, in which each data point 

represents either an instantaneous sample of wind speed or an average wind speed over 

some time period. The estimation of Weibull parameters over each time step is done 

using the empirical method which is a special case of the moment method [62]. The 

Weibull pdf parameters ki,j and ci,j are calculated using Equations 4.3 and 4.4, 
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Where 𝜎wi,j is the standard deviation of wind speed data of time step i and season j, µwi,j 

is the mean of wind speed data of time step i and season j, and 𝚪 is the gamma function. 

 The rating of utility scale wind farm is much larger than turbine rated power. 

Therefore, wind farm size is assumed to be a continuous function of wind speed. This is 

a reasonable assumption given that the wind farm is much bigger than a single turbine 

rating. This assumption is helpful in solving optimization problem. Now, the total power 

generated from wind farm in MW (wind farm utilization) can be calculated using 

Equations 4.5 and 4.6, 
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Where Cwi,j is wind farm utilization factor in season i and time step j, and Sw is wind 

farm size in MW. 
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 4.2.2 Solar farm 

 PV system cost has gone through rapid changes recently. The evolution of PV 

panel technology drives the price of PV systems to drop lower. The averaged capital cost 

of PV projects for utility scale solar farm in the US is 1820$/KW, according to the most 

recent report from the Department of Energy in the United States [50]. While, the total 

operation and maintenance cost is 12$/KW/year. Similar to wind farm, the capital cost of 

solar farm will be levelized over its lifespan time and added to the total operation and 

maintenance cost to get the annual cost of energy. 

 The electrical power generated from PV panel (Ps) is a function of solar radiation 

s. The relationship between Ps and s can be calculated using Equation 4.7 [51], 

 

PVPVs AsP **  (4.7) 

 

Where Ps is electrical power generated from PV panel in W, s is global horizontal 

irradiance in W/m
2
, APV is PV panel area in m

2
, and εPV is efficiency of PV module. 

 Beta distribution is usually used to model solar radiation uncertainty. In this 

chapter, the Beta distribution for each time step in each season is used to model the 

uncertainty in solar radiation. The pdf of the Beta distribution is given in Equation 4.8, 
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Where fb(s) is Beta distribution function of s, and 𝛼i,j,𝛽i,j are the parameters of Beta 

distribution for season i and time step j. 

 The parameters of the Beta distribution for each time step is calculated form the 

historical solar radiation data using Equations 4.9 and 4.10, 
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Where µsi,j is the mean of solar radiation data for season i and time step j, and 𝜎si,j is the 

standard deviation of the solar radiation data for season i and time step j. 

 Now, the total solar farm power output (i.e. solar farm utilization) can be 

calculated using Equations 4.11 and 4.12, 

 

wjsijsi SCP *,,   (4.11) 
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Where Csi,j is solar farm utilization factor for season i and time step j, Ss is solar farm 

size in MW, and s(STC) is global horizontal irradiance at slandered test condition which 

is 1000 W/m
2
. 
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 4.2.3 Energy storage 

 In the suggested model, Lead acid batteries have been deployed as energy 

storage. Lead acid batteries are one of the oldest and most commercially mature form of 

rechargeable battery technology. Lead acid battery technologies are being used in wide 

range of applications like automotive, uninterruptible power supplies, and marine just to 

name a few. In Tappi Wind Park installed in 2001 by Hitachi, advanced lead acid 

batteries have been integrated with wind generating farms [5]. Energy storage in sizes of 

10 to 20 MW has been achieved using lead acid carbon technology [6]. 

 Lead acid battery life cycle cost analysis is applied in this study. The cost 

estimates are based on capital cost, operation and maintenance cost, and battery 

replacement cost. The handbook from Sandia Labs describes different Lead Acid energy 

storage systems [5]. The average present value of installed energy storage system cost is 

4000 $/KW for power capacity and 400 $/MWh for energy capacity of the energy 

storage. Therefore, the total cost of energy storage will be a function of its power and 

energy capacities. 

 In the proposed hybrid energy system, energy storage has two main goals. The 

first one is to smooth the fluctuation of power generated from the renewables. The 

second one is to reduce the total system cost by storing energy when it is cheap and 

supplying the stored energy when energy price and the demand are high. However, the 

power and energy capacities of the energy storage must be satisfied as shown in 

Equations 4.13 and 4.14, 
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 (4.14) 

 

Where P
*
and E

*
 are power and energy capacities of energy storage, Pci,j and Pdi,j are 

power charged/discharged to/from energy storage, εc and εd are charging/discharging 

efficiencies of energy storage, ∆t is time step, and ei,j is energy stored in energy storage 

in season i and time step j. 

 

 4.2.4 Energy market 

 Market operation determines the price of electricity purchased from the energy 

market. Therefore, the energy price is highly related with the demand level. The energy 

market, if available, will supply load requirements in the case that power generated from 

renewable sources is not enough or energy price is lower than LCOE from renewables. 

A model for the uncertainty in the market-clearing prices is needed. For pool-based 

electric energy market, the uncertainty of energy price is modeled using lognormal 

distribution [63]. The lognormal distribution is defined with two parameters µπ and 𝜎π 

that are, respectively, the mean and standard deviation of the variable‘s natural 

logarithm. The Lognormal distribution for each time step in each season is used to model 

the uncertainty in energy market price. The pdf of Lognormal distribution is given in 

Equation 4.15, 
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Where π is energy price in $/MWh, µπi,j is the Log mean for season i and time step j, and 

𝜎πi,j is the Log standard deviation for season i and time step j. 

 Maximum likelihood procedure is used in estimating the lognormal distribution 

parameters as in Equations 4.16 and 4.17, 
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Where n is the number of data samples. 

 The total energy price purchased from energy market can be calculated using 

Equation 4.18, 

 

 

i j

jijpi tP ,,   
(4.18) 

 

Where Ppi,j is power purchased from energy market in season i and time step j in MW, 

πi,j is energy market price in season i and time step j in $/MWh and ∆t is time step in 

hours. 
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4.2.5 Load model 

 The daily load variation over the long term is modeled using Normal probability 

distribution [64]. Normal distribution is often used in modeling real valued random 

variables whose distributions are not known. The Normal distribution is defined by two 

parameters which are the mean value µl and the standard deviation 𝜎l. Distribution 

system load data is used to create the normal distribution for each time step on each 

season in order to model the uncertainty in load demand. Then, the load profile for each 

time step will be created by calculating the two parameters which characterize the 

normal distribution over each time step. The pdf of the normal distribution is given in 

the Equation 4.19, 
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Where l is the load demand in MW, µli,j is the mean value of l for season i and time step 

j, and 𝜎li,j is the standard deviation. The load will be supplied from the hybrid energy 

system and the energy market. 
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4.3 Problem formulation 

 In this section, a mathematical formulation of the proposed system is presented 

for optimization. The objective of the optimization procedure is to minimize the annual 

cost of the overall planned system while considering system uncertainties, satisfying 

load requirements, and include consideration of system reliability. The system 

uncertainties are wind speed, solar radiation, energy market price and load. The load is 

supplied by the renewable sources and energy market. The system reliability problem is 

a result from failures of wind turbines, PV panels, energy market, energy storage, and 

transmission lines. Solving the optimization gives the optimal size of system 

components needed to minimize the overall annual cost of the system and meet problem 

constraints. 

  

 4.3.1 Objective function 

 Objective function measures the total system annual cost in ($/year). The total 

system annual cost includes the levelized capital cost and operational and maintenance 

cost. Cost of system comes from wind turbines, PV panels, energy storage, and energy 

purchased from the market. The levelized cost for each system component will be 

calculated using Equation 4.20 [52], 
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Where δ is the levelized capital cost in $/year, ε is discount rate of the investment in 

terms of annual interest per year, N is lifespan of system component in years, and γ is 

capital cost in $. 

 Now, the objective function that measures total system annual cost can be 

formulated as in Equation 4.21, 

 


 



4

1 1

,

~

,
*

2
*

1)()(min

i

n

j

jijpieessswww

s

tPEPSSJ   (4.21) 

 

Where δw is levelized wind farm cost in $/MW/year, δs is levelized solar farm cost in 

$/MW/year, Sw is wind farm size in MW, Ss is solar farm size in MW, βw is operational 

and maintenance wind farm cost in $/MW/year, βs is operational and maintenance solar 

farm cost in $/MW/year, δe1 is levelized cost and operational costs for energy storage 

power capacity in $/MW/year, δe2 is levelized cost and operational costs for energy 

storage energy capacity in $/MWh/year, P
*
 and E

*
are power and energy capacities of 

energy storage in MW and MWh respectively. 
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tP  is total cost of energy purchased from energy market in $/year 

and ji,

~

  is the energy price generated randomly using Lognormal distribution at season i 

and time step j, ns is total number of time steps in one day. 
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 4.3.2 Problem constraints 

1)  Power balance constraint is that power generated from the renewables and purchased 

from the market is sufficient to satisfy the load demand as in Equation 4.22, 

 

~~~

DPPPPP cdpsw   (4.22) 

 

Where wP
~

 is the power generated from wind farm in MW, using randomly generated 

wind speed from Weibull distribution, calculated using Equation 4.23 and 4.24, 
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 (4.24) 

 

jwic ,

~

is random wind farm utilization factor in season i and time step j. 

sP
~

is the power generated from solar farm in MW, using randomly generated solar 

radiation from Beta distribution, calculated using Equation 4.25 and 4.26, 

 

sss SCP *
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jsic ,

~

is random solar farm utilization factor in season i and time step j. 

Pp is power purchased from the energy market in MW. This amount of power can be 

controlled during system operation. 
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ppi,j is the power purchased from energy market in season i and time step j. 

Pd is power discharged from energy storage in MW. This power can be controlled during 

system operation. 
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pdi,j is the power discharged from energy storage in season i and time step j. 

Pc is power charged into energy storage in MW. This power can be controlled during 

system operation. 
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 (4.29) 

 

pci,j is the power charged into energy storage in season i and time step j. 

~

D is the load demand in MW generated randomly from normal distribution for each time 

step. 
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jid ,

~

is the load demand generated from Normal distribution in season i and time step j. 

2) System reliability constraint 

 The reliability of the proposed system measured using expected energy not 

served (EENS). The EENS is a result of failures in wind turbines, PV panels, energy 

market, energy storage, and transmission lines. The calculation of EENS is illustrated in 

section 4.6. In this chapter, the reliability constraint is given in Equation (4.31), 

 

maxEENSEENS   (4.31) 

 

Where EENSmax is the maximum energy not serve as a percentage of the load. 

 



 

86 

 

 

3) Energy storage constraints 

Energy storage has two capacities that limit its operation which are the power 

and energy capacities. 

 

a) Power capacity constraint: power charged/discharged into/from energy storage is 

limited by its power capacity. 
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(4.32) 

 

b) Energy capacity constraint: energy stored into is limited by its energy capacity. 
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(4.33) 

 

From this section, the optimization variables can be classified into three major sets, 

 

1) Decision variables: Sw, Ss, P
*
, E

*
. Once theses decision variables are determined, 

these hard to be changed. 

2) Operating decision variables: Pp, Pc, Pd which can be controlled and changed 

during system operation. 
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3) Random variables: wC
~

, sC
~

, 
~

D , 
~

  which are randomly generated using their 

stochastic distributions for each time step on each season. 

 

Solving the optimization problem gives the optimal (Sw, Ss, P
*
, and E

*
) needed to 

plan the hybrid energy system. However, in practical design there is an area limitation 

for wind/solar farm which limits the installed capacity of both of them. Therefore it is 

worth to indicate that an upper limit to the design variables (i.e. Sw, Ss, P
*
, E

*
) can be 

added into the optimization constraints. 
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4.4 Solution using stochastic programming 

4.4.1 Compact matrix form 

 In this subsection, the two stage stochastic programming is presented in compact 

matrix form to solve the optimization problem. The basic idea of two-stage stochastic 

programming is that optimal decisions should be based on data available at the time the 

decisions are made and should not depend on future observations. Two-stage 

formulation is widely used in stochastic programming. All first stage decision variables 

including wind farm size, solar farm size, energy storage power capacity, and energy 

storage energy capacity are denoted using x. Once these variables are determined, it is 

not practical to change them since they are installed and cannot be changed with the 

uncertainties. The first stage decision variables called ‗here and now‘ variables. The 

second stage decision variables are contained in the vector yd. This second stage decision 

variables are the operating decision variables including power purchased from energy 

market, power charged into energy storage, and power discharged from the energy 

storage. Now, the two stage stochastic programming can be written using the following 

matrix form. 






Ss

d
TT yq

S
xc

1
min  (4.34) 

s.t bAx   (4.35) 

vyHxC dss   (4.36) 

sdss dyVxU   (4.37) 

0,0  dyx  (4.38) 
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 The objective function (4.21) is represented by the vector form used in (4.34), 

where all first terms related to first stage decision variables are contained in c
T
x part and 

the terms of second stage decision variables are represented in vector yd. Constraint 

(4.35) is not applied in the proposed procedure since there is no limitation on the budget 

or the installed capacity of the system components. The inequality constraints of EENS 

in (4.31) and energy storage operation (4.32) and (4.33) are expressed in (4.36). Equality 

constraint, namely, energy balance constraint (4.22) is included in (4.37). The Cs, Hs, Us, 

and Vs matrices express the matrix in (4.24), (4.26), (4.27), (4.28), and (4.29). ds 

represent (4.30). q
T
yd is the cost of the recourse action which is related to the price of 

energy purchased from the market. All decision variables are positive, as included in 

(4.38). 

 

 4.4.2 Sample average approximation 

 The expected operation cost can be approximated by means of sampling as 

shown in the second term of Equation (4.34). This term is a SAA of the expected 

operation cost. However, the solution of this sample based technique does not guarantee 

optimality in the original problem. As shown in [65], for sample size of S, consider xS
*
 to 

be the optimal solution and JS
*
 to be the optimal objective value of the approximated 

problem in (4.34). Since x
*
, J

*
 are the optimal solution of the original problem, then 

 

**
SJJ   (4.39) 
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Therefore, JS
* 

represents an upper bound of optimal objective value. But, JS
* 

is the 

optimal solution of (4.34), therefore the following holds true, 

 

)()( ***
xJxJJ ssss   (4.40) 

 

Taking expectation for both sides 

 

   )( **
xJEJE ss   (4.41) 

 

Since SAA is an unbiased estimator of the population mean 

 

    ***
)( JxJEJE ss   (4.42) 

 

Thus,  *
sJE  is a lower bound for the optimal objective value. Now, the lower and upper 

bound estimates are discussed. The derivation of lower and upper bound estimates is 

presented in [66]. 

 

1) Lower bound estimates 

 *
sJE can be estimated using ML independent batches, each of them contains SL 

samples. Solving SAA problem gives *

LSJ  then lower bound for this SL, ML is calculated 

as Equation (4.43) 
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From the central limit theorem, the distribution of lower bound estimate converges to 

Normal distribution. The mean value of this Normal distribution is  *

LSJE , which is 

approximated by a sample mean 
LL MSL ,  and Var [ *

LSJ ] approximated by sample variance. 
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Now, for ζ confidence interval, the two sided 100(1-ζ)% lower bound is 
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Where 2/s  satisfies  2/2/ )1,0(Pr  sNs   =1-ζ. 

The lower bound confidence interval computed solving ML independent SAA problem of 

sample size NL. 

 

 

 

 



 

92 

 

 

2) Upper bound estimates 

Given xS
*
 , the upper bound of the optimal objective value can be calculated using 

MU independent batches with SU samples in each batch. Since the solution is xS
*
, the 

problem can be decomposed to SU independent linear programming, where each one 

gives )( *
s

s
S xJ

U
. Then the upper bound is approximated from Equation 4.46 
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  (4.46) 

 

Using central limit theorem, the distribution of an upper bound estimate converges to a 

normal distribution with mean  )( *
sS xJE

u
 which is approximated by a sample mean 

UU MSU ,  and variance Var[ )( *
sS xJ

u
] which can be approximated by a sample variance 
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The two sided confidence interval of the upper bound is calculated same as for lower 

bound. 

      A solution xS
*
 is found from each batch of ML in lower bound SAA problems and 

used to find upper bound estimates. 
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4.5 Scenario aggregation procedure 

 In this, a simpler approach is explored to find the optimal near solution. Using 

the probability distribution, a scenario of wind, solar, market and load is created for the 

whole year using the typical days. Then for this scenario, using LP described in section 

4.3, an optimal solution is found for the decision variables as shown in the flow diagram 

in Figure 4.2. Now this solution is valid for the given values of the sampled scenario.  

 

 

Figure 4.2 Scenario aggregation flow chart. 
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To decide on the near optimal solution, we do clustering to see how the solutions 

group together. The clustering technique used is K-means, with K-means++ procedure 

proposed in [67] used to determine clusters centers. The K-means++ procedure improves 

the simulation time of Lloyd‘s algorithm, and the quality of final solution. The clustering 

procedure is illustrated in the following discussion. 

 

4.5.1 Cluster centers 

 Let D(x) be the shortest distance between the closest center and observation x. 

The cluster seeds are obtained following these steps. 

1) An observation is selected uniformly at random from data set X and this 

observation will be the first center for the cluster number 1 c1.  

2) Choose the next center ci, selecting ci=x’∈ X with probability
 Xx

xD

xD
2

2

)(

)'(
. 

3) Repeat step 2 until k cluster centers are chosen. 

 

4.5.2 K-means algorithm 

1) Choose k initial centers as mentioned earlier C=(c1,….,ck). 

2) The cluster Ci contains observations of X that are closer to ci than they are to cj 

for all j≠ i. 

3) The center of mass of all points is the average of the cluster Ci observations. 
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4.6 System reliability modeling 

 The reliability of the proposed system will be measured using expected value of 

energy not served to the load (EENS).  The energy not served in the proposed system 

results from the failure of system components which are wind turbines, PV panels, 

energy market, energy storage and transmission lines. Then, the EENS will be added to 

the constraints and applied to the optimization problem, such that, EENS is less than 

predefined limit EENSmax.  The EENS will be calculated as illustrated in the following 

discussion. 

 

4.6.1 Expected energy not served from wind farm 

 The EENS from wind farm in the proposed system is a result from two scenarios. 

The first one is the failure of wind turbines which can cause a partial loss of wind farm 

utilization. The second scenario is transmission line failure which results in a total loss 

of wind farm utilization. The outage probability of wind turbine is found to be related to 

wind speed [68]. The relationship between wind speed and wind turbine outage 

probability is shown in Equation 4.48, 

 

dcvbvavp wwwTdW  23
.  (4.48) 

 

Where pW.Td is the probability of wind turbine to be down. a, b, c, and d coefficients are 

taken from [69] and given in Table 4.1. 
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Table 4.1: Coefficients of wind turbine failure probability 

a b c d 

-4.4655*10
-5

 2.9438*10
-3

 -0.04538 0.2253 

 

For transmission line, the outage probability is calculated using Equation 4.49, 
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  (4.49) 

 

Where ℷT.L is the failure rate of transmission line, and µT.L is the repair rate of 

transmission line. 

 Now, the probability of k wind turbines to be down is calculated using Equation 

4.50, 
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Where k is number of down wind turbines, and Nw is total number of wind turbines. 

Then, EENS from wind farm will be the combination of the two scenarios. 
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4.6.2 Expected energy not served from solar farm 

 The EENS from solar farm in the proposed system is the same as wind farm a 

result from two scenarios. The first one is the failure of PV panels which can cause a 

partial loss of solar farm utilization. While, the second scenario is transmission line 

failure which results in a total loss of solar farm utilization. The outage probability of PV 

panel can be calculated using Equation 4.51, 
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  (4.51) 

 

For transmission line, the outage probability is the same one used in wind turbine. 

 Now, the probability of k PV panels to be down is calculated using Equation 

4.52, 
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1  (4.52) 

 

Where k is number of down PV panels, Ns is total number of PV panels. Then, EENS 

from solar farm will be the combination of the two scenarios. 

 

 4.6.3 Expected energy not served from energy market 

 The energy market in the proposed system is needed to purchase the energy in 

order to meet load demand when the renewables are not sufficient or when the energy 
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market price is lower than renewables LCOE. The reliability model of the energy market 

suggested is either the market to be up or down. Thus, there is no partial outage of 

energy purchased from the market. The energy market is supposed to have failure rate of 

ℷm and repair rate of µm. Hence, the probability of energy market to be down is given in 

Equation 4.53, 

 

mm

m
dmp






.  (4.53) 

 

 Now, to calculate the EENS from the market the combination of energy market 

failure and transmission line failure are combined together. 

 

 4.6.4 Expected energy not served from energy storage 

 The energy storage EENS calculation procedure will be the same as the energy 

market. 

 

Finally, the total EENS will be the summation of the four cases mentioned in this 

section. 

 

 

 

 

 



 

99 

 

 

4.7 Case study and results 

 In this case study, a grid connected distribution system in north Texas is used for 

illustrating the methodology developed. The uncertainties in wind speed, solar radiation, 

energy market price, and load are modeled using the stochastic distribution models 

mentioned earlier. The Weibull, Beta, Lognormal and normal probability distribution 

functions that are needed to estimate the wind speed, solar irradiance, energy market 

price, and load demand are built based on one year of historical data that have been 

collected from north Texas. The year is divided into four seasons, with each season 

being represented by one typical day. Then, the day representing each season is 

subdivided into 48 time steps. Considering a month to be 30 days, each time step has 

around 90 data points in one year. The mean and standard deviation for each time step 

are calculated using these data points. Finally, the Weibull, Beta, Lognormal and Normal 

distributions are created for each time segment on each day that represents a particular 

season as described in section 4.2. By using this procedure, the time correlation between 

these variables will be included. 

 The wind farm uses the National Renewable Energy Laboratory (NREL) wind 

turbine design cost and scaling model which has the specifications shown in Table 4.2 

[55], and is assumed to have a lifespan of 25 years. The wind speed data has been 

collected from the NREL for the northern area distribution system. The available wind 

speed data is averaged over 30 minute time intervals. However, the wind speed is 

measured using anemometer at 50 m height, so Equation 4.54 has been used to substitute 

the impact of the roughness of the earth‘s surface on wind speed, 
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Where ℴ is the friction coefficient, vw is wind speed at hub height (82.5 m) in m/s, vo is 

wind speed at anemometer height (50 m) in m/s, H is turbine hub height (82.5 m), and 

Ho anemometer height (50 m). 

 The wind farm cost model is developed based on the 2014 wind technologies 

market report disseminated by the U.S. Department of Energy (DOE) [54]. The average 

capital cost for utility scale wind farm projects is 1550 $/KW, and the annual operating 

and maintenance cost is 15$/KW/year. 

 The wind farm utilization factor (cw) for four different typical days in different 

seasons, as an example, is shown in Figure 4.3. One can note that wind farm electrical 

power production is related to time. The wind power during the day time is most likely 

less than the wind power during the night (i.e. wind speed during night is higher than 

wind speed during day time). 

Table 4.2: Wind turbine characteristics. 

Turbine rated power (MW) 1.91 

Turbine rotor diameter (m) 96.7 

Turbine hub height (m) 82.5 

Rotor peak power coefficient (Cp) 0.47 

Cut in wind speed (m/s) 2.5  

Cut off wind speed (m/s) 25.0 

Rated wind speed (m/s) 9.6 
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Figure 4.3 Wind farm utilization factor. 

 

 One year of global horizontal irradiance data averaged over 30 minute time 

intervals is obtained from NREL. The averaged capital cost of PV projects in the United 

States for utility scale is 1820$/KW and the total operation and maintenance cost is 

12$/KW/year [50]. The lifespan of the solar farm in this work is assumed to be 33 years. 

The solar farm utilization factor (cs) for the same four days is shown in Figure 4.4. The 

reader can observe that power generated from solar farm is related to time. Solar power 

is generated during the day time only, since it depends on solar radiation. 
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Figure 4.4 Solar farm utilization factor. 

 

 Energy market price is collected from Electric Reliability Council of Texas 

(ERCOT). One year of energy price data averaged over 30 minute time intervals is 

obtained. The energy price for four different days in four different seasons, as an 

example, is shown in Figure 4.5. The energy price during the day time is typically more 

than energy price during the night time since the demand is higher at the day time. 

 

Figure 4.5 Energy price over the time. 
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 The load profile for north Texas distribution system is obtained from ERCOT. 

One year of load data averaged over 30 minute time steps is collected. The average load 

value is 925.25 MW while the load peak value is 1689.9 MW. Four days load data over 

the time, for example, is shown in Figure 4.6. The load during the day time is usually 

more than the load during the night. 

 

 

Figure 4.6 Averaged load over the time. 

 

 Two stage stochastic programming and scenario aggregation procedure are used 

to solve the optimization problem and the results are compared. Xprog MATLAB tool 

box is used to solve the two stage stochastic programming [56].  

 

 4.7.1 Case one: fully reliable system 

 In case one, the system is considered with the uncertainties in wind speed, solar 

radiation, energy market price, and load only. The reliability of the system is not 
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included in the optimization procedure. One year worth‘s of wind speed, solar radiation, 

energy market price, and load data used to create the stochastic distributions over each 

time step in each season. The parameters of each random distribution for each time step 

on each season are given in Figures 4.7 through 4.14. The hybrid energy system 

planning result for this case is solved using two stage stochastic programming described 

earlier with different number of simulated scenarios and batches. Five different sample 

sizes have been chosen which are 500, 1000, 2500, 5000, and 10000. Lower bound 

estimate of each sample size is found by solving SAA with ML equal 5. Then, these 

solutions are used to calculate upper bound estimate. The lower bound results for the 

objective function are given in Table 4.3 and the upper bound results are given in Table 

4.4. 

 

 

Figure 4.7 Scale parameter for Weibull distribution. 
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Figure 4.8 Shape parameter for Weibull distribution. 

 

Figure 4.9 𝛼 parameter for Beta distribution. 

 

Figure 4.10 𝛽 parameter for Beta distribution. 
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Figure 4.11 Log mean parameter for Lognormal distribution. 

 

 

Figure 4.12 Log standard deviation parameter for Lognormal distribution. 

 

 

Figure 4.13 Mean parameter for Normal distribution. 
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Figure 4.14 Standard deviation parameter for Normal distribution. 

 

Table 4.3: Lower bound estimate from stochastic programming 

Sample size Lower bound ($m, 95% confidence interval) 

500 268.74±17.85 

1000 279.51±16.54 

2500 284.21±13.8 

5000 286.3±3.2 

10000 287.34±4.58 
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Table 4.4: Upper bound estimate from stochastic programming 

Sample size Batch Sw (MW) Ss (MW) P
* 

(MW) E
* 

(MW) Upper bound ($m) 

500 1 448.4 53.8 23.1 156.6 271±3.7 

2 472.5 52.5 21.4 157.1 274.9±2.3 

3 476.6 46.0 22.0 171.6 272.6±6.3 

4 472.4 47.4 19.7 168.3 276.7±3.5 

5 462.5 46.7 21.2 143.7 275.8±1.3 

1000 1 471.9 43.1 24.8 144.8 285.7±8.9 

2 461.9 44.5 22.7 157.7 279.7±7.6 

3 479.8 47.1 22.6 140.6 280.8±4.3 

4 457.6 43.5 21.2 149.8 287.7±4.6 

5 477.5 52.7 22.4 143.4 284.7±3.8 

2500 1 461.4 42.9 23.1 159.6 284.3±6.4 

2 467.9 43.4 23.4 154.3 288.7±4.8 

3 476.9 42.6 22.0 150.0 290.4±4.0 

4 482.3 43.4 21.8 149.4 295.8±6.5 

5 457.8 46.5 24.9 143.7 287±3.6 

5000 1 468.9 46.8 22.6 151.3 296.4±4.1 

2 466.6 45.8 23.3 150.6 293.1±4.2 

3 462.3 46.8 23.1 152.9 290.2±5.5 

4 461.5 47.1 23.4 151.2 293.2±8.2 

5 461.7 45.7 23.4 152.0 290.1±3.5 

10000 1 459.5 45.4 23.6 150.3 294.3±8.5 

2 461.1 45.9 23.6 150.2 294.7±2.8 

3 461.1 46.0 22.9 152.1 297.2±1.5 

4 463.5 46.3 23.3 148.4 293.8±2.4 

5 463.4 46.5 22.7 148.7 289.4±3.5 
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Next, the optimal solution is chosen such that the Coefficient of Variation of 

each system component value, in all batches that have same number of samples is less 

than 2%. Therefore the optimal configuration happens at sample size 5000 and 10000. 

To compare the results, Scenario aggregation procedure described earlier has been used. 

The results for near optimal planning configuration of 1000 generated samples are given 

in Table 4.5 and the clusters are given in Table 4.6. 

 

Table 4.5: Suboptimal planning result from scenario aggregation 

Wind farm size (Sw) 473.81 MW 

Solar farm size (Ss) 33.88 MW 

Storage power capacity (P
*
) 15.46 MW 

Storage energy capacity (E
*
) 131.76 MWh 

Overall system annual cost (J) 287 (m$/year) 

 

Table 4.6: Clusters of scenario aggregation procedure 

Cluster # Sw (MW) Ss (MW) P
*
 (MW) E

*
 (MWh) J (m$/yr) Probability 

1 497.9 17.5 4.7 39.9 276.3 0.161 

2 469.1 7.8 0.2 1.9 271.9 0.142 

3 446.7 8.1 0 0 267.7 0.132 

4 466.0 32.8 4.1 37.1 280.6 0.128 

5 483.6 34.6 5.4 46.2 285.6 0.122 

6 502.4 89.8 9.0 75.2 290.9 0.1 

7 473.6 2.4 1.2 11.1 262.2 0.096 

8 350.7 0.0 0 0 252.8 0.012 

9 515.7 96.8 50.5 442.0 298.4 0.074 

10 613.6 167.3 194.9 1678.0 312.4 0.033 
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From the comparison between the two methods, it can be noticed that the results 

are fairly close to each other. Sensitivity analysis has been conducted to evaluate the 

effects of the magnitude of uncertainty on the results of two procedures. The sensitivity 

analysis is done by increasing the variance of random distributions with 10%, 20%, 

30%, 40%, and 50%. 

The results of sensitivity analysis using two stage stochastic programming with 

5000 samples and scenario aggregation with 1000 samples are given in Table 4.7 and 

Table 4.8 respectively. 

 

Table 4.7: Sensitivity analysis results for stochastic programming 

Var +% Sw (MW) Ss (MW) P
*
 (MW) E

*
 (MWh) J (m$/yr) 

10% 467.2 35.6 18.9 125.9 298.5 

20% 459.8 40.9 25.4 250.8 306.8 

30% 438.5 44.5 56.8 342.8 315.5 

40% 430.5 49.8 75.8 420.8 325.8 

50% 440.8 55.3 86.9 708.9 335.5 
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Table 4.8: Sensitivity analysis results for scenario aggregation procedure 

Var +% Sw (MW) Ss (MW) P
*
 (MW) E

*
 (MWh) J (m$/yr) 

10% 471.5 36.8 20.2 176.2 291.4 

20% 468.4 41.8 43.3 360 294.9 

30% 445.1 44.2 55.6 469.96 297.1 

40%           430.19 62.8 63.7 523.8 297.6 

50% 447.4 57.4 102.03 848.39 300.6 

 

 It can be seen from sensitivity analysis that the difference between objective 

values obtained by the two proposed methods increases as the variance increase. 

Therefore, it can be concluded that the two producers give close results when the 

uncertainty is low but tend to diverge with increased uncertainty. The other point noticed 

from the sensitivity analysis is the storage capacities have increased sharply with the 

increase in variance. This is reasonable since more storage is needed to smooth the 

fluctuations which are increased with the increased variance. 

 

 4.7.2 Case study two: considering system reliability 

 In this case the reliability of the system components is included. The system is 

supposed to meet the load and the EENS constraint as well. EENS is calculated as 

illustrated in section 4.6. The maximum EENS (EENSmax) considered are 0.5%, 1%, and 

1.5%. The number of scenarios for this case is chosen to be 5000. The results for this 

case are shown in Table 4.9. 
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Table 4.9: Results for case study two 

EENSmax Sw (MW) Ss (MW) P
*
 (MW) E

*
 (MWh) J (m$/yr) 

0.5% 543.1 47.2 18.7 145.2 310.8 

1% 540.8 43.8 16.2 138.9 307.4 

1.5% 535.2 40.5 17.8 142.4 302.1 

 

 From the case study, the total annual cost for the system in case 2 is higher than 

case 1 which is reasonable, since in case 2 the system has to meet the load and EENS 

constraint. 

 In the sensitivity analysis of this case, the energy market reliability is changed. 

The energy market is assumed to be more reliable by decreasing its failure rate and 

repair time. The failure rate is changed from 5/yr to 1/yr, and the repair time from 8 

hours to 2 hours. The reliability of the transmission line, connecting energy market to the 

distribution system, is also increased. The results are given in Table 4.10. 
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Table 4.10: Results for case study two with highly reliable energy market 

EENSmax Sw (MW) Ss (MW) P
*
 (MW) E

*
 (MWh) J (m$/yr) 

0.5% 538.1 40.1 14.1 122.8 293.4 

1% 536.8 38.8 14.2 119.9 292.7 

1.5% 525.2 36.5 13.8 118.4 290.8 

 

 From the sensitivity analysis, the system with high reliability energy market has 

lower objective value compared with the previous results. The wind and solar farms size 

has slightly decreased as well, since the market is now more capable to meet system 

demand. 
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4.8 Summary 

 A general hybrid energy system planning model that considers cost of 

renewables, energy storage, energy market price, system uncertainties, and system 

reliability has been proposed. An important contribution of this work is a hybrid energy 

system sizing model that maximizes the benefit from using renewable sources which are 

highly correlated with time by considering time correlated random distributions of 

system uncertainties. Thus the hybrid system planning will be more robust and able to 

take maximum advantage of available renewable resources. 

 Wind speed, solar irradiance, energy market price, and load data are used to build 

the stochastic distributions which model system uncertainties. Two stage stochastic 

programming is used to solve the system uncertainties and to get values of design 

parameters which will meet load requirements, practical problem constraints, EENS, and 

reduce overall annual system cost. An alternative method, scenario aggregation 

procedure has also been developed. This alternative method is simpler and gives close 

results to the stochastic optimization when the uncertainty is not too high. A case study 

has been conducted using real data of north Texas distribution system to illustrate the 

usefulness of the developed methods. 
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CHAPTER V 

CONCLUSIONS AND REMARKS 

 With the recent developments of energy storage and renewable power generation 

technologies, large penetration of renewable energy sources is expected. Furthermore, 

the need of a more reliable and efficient smart grid, many technical challenges need to 

be solved. The research reported in this dissertation focuses on the development of tools 

for planning of hybrid energy systems which use renewables connected to energy 

storage to make the electric grid more reliable and economically efficient. Several 

important topics in this research are investigated. 

The planning of energy storage system for a wind farm, to smooth its output and 

dispatch power on hourly basis, needs a careful analysis. The optimal size of BESS can 

be found to be varying due the varying nature of wind power. Therefore a method is 

needed to determine the proper size that is applicable over the planning horizon. In 

chapter II, two approaches are proposed using different philosophies. One approach 

suggested is to meet the needs of dispatched power with a certain level of probability or 

equivalently to be able to do so for a certain percentage of days of the year. This 

approach is implemented by finding the frequency distribution of the optimal BESS size 

for all days of a year or multiple years if so desired. A probability distribution function 

pdf is then created to represent the frequency distribution. The validity of this pdf is 

checked by chi-square test. It should be pointed out, if needed; the optimal size can be 

based on smaller intervals than a day. The other approach suggested is to develop a cost 

benefit relationship that measures the cost of complete system with varying BESS size 
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and find the optimal size which minimizes the overall cost. The SOC and DC-link 

voltage are important constraints in order to guarantee a proper operation for converters 

and BESS ability to dispatch the required power respectively. 

The planning of hybrid energy systems is discussed in chapters III and IV. In 

chapter III, a general hybrid energy system planning model that considers cost of 

renewables, energy storage and energy market price is developed. An important 

contribution of this suggested procedure is a hybrid energy system sizing model that 

maximizes the benefit from using renewable sources which are highly correlated with 

time by considering real time energy market price which changes with time as well. 

Thus the hybrid system planning will be more robust and able to take maximum 

advantage of available renewable resources. 

Wind speed, solar irradiance, energy market price, and load data are used to 

optimize hybrid energy system planning using linear programming. The linear 

programming is used to get values of design parameters which will meet load 

requirements, practical problem constraints, and reduce overall annual system cost. A 

case study has been conducted using real data of north Texas distribution system to 

illustrate the feasibility of the suggested system. Sensitivity analysis which considers 

changes in load demand and hybrid system configuration has been performed. From the 

sensitivity analysis, a strong relationship between wind farm and energy storage is 

indicated. 

    In chapter IV, the general hybrid energy system of chapter III with system 

uncertainties, and system reliability is considered. Hybrid energy system sizing model 
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that maximizes the benefit from using renewable sources which are highly correlated 

with time by considering time correlated random distributions of system uncertainties. 

Thus the hybrid system planning will be more robust and able to take maximum 

advantage of available renewable resources. Wind speed, solar irradiance, energy market 

price, and load data are used to build the stochastic distributions which model system 

uncertainties. A method based on two stage stochastic programming and sample average 

approximation has been developed to include the system uncertainties and to get values 

of design parameters which will meet load requirements, practical problem constraints, 

EENS, and reduce overall annual system cost.  An alternative simpler method based on 

scenario aggregation has also been developed. A case study has been conducted using 

real data of north Texas distribution system to illustrate the feasibility of the suggested 

system. The results show that the proposed scenario aggregation procedure gives close 

results to two stage stochastic programming in the case of system uncertainness are 

small.  

Costs for wind and PV farms have declined over the recent years and this 

phenomenon is expected to continue, because of the advancement in the technology used 

in generating electrical power from renewable resources. The research in this 

dissertation shows that it is practical to use renewable energy system from economical 

point of view even at the current pricing. Therefore, in the next few years, as the prices 

fall following the trend, the energy generated from renewable resources will be even 

more competitive with current traditional technologies to generate energy. 
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