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ABSTRACT 

Low-Voltage, Low-Power Circuits for Data Communication Systems. 

(December 2003) 

Mingdeng Chen,  

B.S., National University of Defense Technology, P. R. China; 

M.S., National University of Defense Technology, P. R. China    

Chair of Advisory Committee: Dr. Jose Silva-Martinez 

 

There are growing industrial demands for low-voltage supply and low-power 

consumption circuits and systems. This is especially true for very high integration level 

and very large scale integrated (VLSI) mixed-signal chips and system-on-a-chip. It is 

mainly due to the limited power dissipation within a small area and the costs related to 

the packaging and thermal management. 

In this research work, two low-voltage, low-power integrated circuits used for data 

communication systems are introduced. The first one is a high performance continuous-

time linear phase filter with automatic frequency tuning. The filter can be used in hard 

disk driver systems and wired communication systems such as 1000Base-T transceivers. 

A pseudo-differential operational transconductance amplifier (OTA) based on transistors 

operating in triode region is used to achieve a large linear signal swing with low-voltage 

supplies. A common-mode (CM) control circuit that combines common-mode feedback 

(CMFB), common-mode feedforward (CMFF), and adaptive-bias has been proposed. 



 iv 

With a 2.3V single supply, the filter’s total harmonic distortion is less than –44dB for a 

2VPP differential input, which is due to the well controlled CM behavior. The ratio of the 

root mean square value of the ac signal to the power supply voltage is around 31%, 

which is much better than previous realizations. 

The second integrated circuit includes two LVDS drivers used for high-speed point-

to-point links. By removing the stacked switches used in the conventional structures, 

both LVDS drivers can operate with ultra low-voltage supplies. Although the Double 

Current Sources (DCS) LVDS driver draws twice minimum static current as required by 

the signal swing, it is quite simple and achieves very high speed operation. The 

Switchable Current Sources (SCS) LVDS driver, by dynamically switching the current 

sources, draws minimum static current and reduces the power consumption by 60% 

compared to the previously reported LVDS drivers. Both LVDS drivers are compliant to 

the standards and operate at data rates up to gigabits-per-second. 
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CHAPTER I   

INTRODUCTION 

 

1.1. Low-Voltage, Low-Power Mixed-Signal Circuits and Systems 

There are growing industrial demands for low-voltage supply and low-power 

consumption  circuits and systems [1]. From modern portable computers and 

communication devices to more traditional applications such as medical devices, the 

need for circuits and systems that operate with smaller supply voltages and consume 

minimum power is immense and endless. This is specially true for very high integration 

level and very large scale integrated (VLSI) mixed-signal chips and system-on-a-chip. It 

is mainly due to the limited power dissipation within a small area and so the costs related 

to the packaging and thermal management. Also portable applications require to extend 

the battery life as well.  

This trend has forced designers to develop new approaches more amenable to low-

voltage and low-power integrated circuits and it poses lots of challenges for all involved: 

processes, devices, circuits, and system architectures [1]. Low-voltage and low-power 

electronic systems have been pursued continuously; recently we have been seeing 

continuous advances in process technologies, in device modeling for computer 

simulation, in circuit design techniques, and in approaches to system design--all aim at 

                                                           
  This dissertation follows the style and format of IEEE Journal of Solid-State Circuits. 
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the production of electronic systems that operate from very low supply voltages and that 

dissipate very low power. 

In mixed-signal systems, the analog circuits are combined with digital circuits in 

order to get the best performance with low-voltage supply and low-power consumption. 

This combination should be in an optimal way and the optimization process is 

application dependent. 

 

1.2. Types of Filters 

Filters are systems that can be used to manipulate the frequency spectrum of signals 

and they are essential in many different applications. Filters are usually used to get ride 

of the unwanted noise and reject the surrounding interference. For example, they can be 

used to band-limit signals and noise in data conversion systems and communication 

systems; provide magnitude and phase equalization in hard disk driver systems, 

transmission lines, and cables; select band, reject image, and detect signals in RF 

communication systems. Figure I.1 shows a simplified 1000Base-T receiver which 

includes a continuous-time filter. The signal coming from the cable is amplified to a 

certain level through the variable gain amplifier (VGA). The low-pass continuous-time 

filter is used to limit signal and noise bandwidth and provide anti-aliasing prior 

sampling. The analog-to-digital converter (ADC) digitizes the filtered output to take the 

advantages of the Digital Signal Processing (DSP) unit. The equalizer provides the 

equalization and the equalized signal goes to the decoder. The gain/timing control 

module is used to adjust the gain of the VGA. Although we are living in a digital age, 
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many digital systems interfacing with the real analog world might use continuous-time 

filters. 

 

Cable VGA ADCLPF Equalizer Decoder

Gain, Timing
Control

Receiver
 

Figure I.1 Simplified 1000Base-T receiver block diagram 

 

There are mainly two types of filters: digital filters and analog filters. While the data 

samples are discrete for digital filters, analog filters process continuous signals. Analog 

filters can be further divided into passive filters and active filters. While passive filters 

comprise passive components only such as resistors, capacitors, and inductors, active 

filters use active devices such as operational amplifiers (OPAMP) and/or operational 

transconductance amplifiers (OTA). Active filters can also be classified into Active-RC, 

Switched-Capacitor (sampled-data filters), OTA-C/Gm-C, and LC filters. Passive filters 

do not employ amplifiers and usually they are off-chip filters and are not suitable for 

integrated circuits. Active-RC and Switched-Capacitor filters are suitable for low to 

medium frequency applications, but they are not suitable for high frequency 

applications. This is mainly due to the very wide bandwidth and very large unity-gain 

frequency requirements for the used operational amplifiers. OTA-C/Gm-C filters use the 
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whole frequency range up to the unity-gain frequency of the operational 

transconductance amplifiers and they can be used in medium to high frequency systems. 

But due to the sensitivity to the parasitics and that operational transconductance 

amplifiers are power hungry for frequencies in the GHz frequency range, OTA-C filters 

are not suitable for very high frequency systems. For GHz frequency systems, LC filters 

become feasible because the required values for Ls and Cs are small so that they can be 

used for IC solutions. Because of the low quality factor of the on-chip inductors, Q-

enhancement is usually needed for LC filters. 

Another important issue associated with high performance filters is the automatic 

tuning. Because of the process, supply, and temperature (PVT) variations, the frequency 

response and the quality factor of the filter deviates from the desired ones; hence 

efficient and cost effective automatic tuning systems are needed for high performance 

systems. 

 

1.3. Operational Transconductance Amplifiers (OTAs)  

Operational transconductance amplifiers (OTAs) are the key active building blocks 

of continuous-time filters. They can be generally classified into three types: single-

ended, fully-differential (FD), and pseudo-differential (PD) OTAs. Most modern high 

performance analog integrated circuits make use of  fully differential signal paths [2]. 

With OTAs, this technique results in differential outputs as well as differential inputs; 

hence they are referred to as fully differential OTAs. Fully differential OTAs are 

preferred because they provide better dynamic range over their single-ended counter 
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parts, this is mainly due to their larger signal swing, better distortion performance, and 

better common-mode noise and supply noise rejection. For symmetrical circuits, the 

common-mode noise appears in both outputs and can be easily rejected. For example, 

fully differential structures reject noise from the substrate as well as from pass-transistor 

switches turning off in switched-capacitor applications. If the circuit is built in a 

symmetric manner, then ideally the noise will affect both signal paths identically, and 

will be rejected, since only the difference between signals is of importance. In other 

words, the noise will not affect the differential signal, which is the signal of interest, 

since both sides of the differential signals see the same noise. In reality, the rejection 

only partially occurs since the mechanism introducing the noise are usually nonlinear 

with respect to voltage levels. One example is the substrate noise, which feeds in 

through junction capacitors and they are nonlinear. However, the noise rejection of a 

fully differential design will be much better than that for a single-ended output design. 

The main drawback of using fully differential OTAs is that a common-mode 

feedback (CMFB) circuit must be added. This extra circuit is needed to establish the 

common-mode output voltage. This CMFB circuit is also used to suppress the common-

mode signal components over the whole band of differential operation that tends to 

saturate the different stages [3]. The design of a good CMFB circuit is nontrivial. The 

speed of the common-mode path should be comparable to that of the differential path, 

otherwise the common-mode noise (e.g., power supply noise) may be significantly 

amplified such that the output signal becomes distorted. Also, the CMFB circuit is often 

a source of noise injection and increases the load capacitance that needs to be driven. 
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Regardless of the limitations described above, fully differential OTAs work very 

well and can substantially improve the system’s quality, especially in very unfriendly 

environments such as mixed-mode applications. However, at lower supply voltages, 

pseudo-differential operation transconductances could be used to avoid the voltage drop 

across the tail current source used in the fully differential structures. Removing the tail 

current source achieves a larger signal swing, but it also results in larger common-mode 

gain. So it requires to carefully control the common-mode response for pseudo-

differential OTAs. In some cases, the CMFB requirements may be relaxed [3]. For 

example, if the common-mode gain is small, the CMFB speed might be  reduced (e.g., 

for a pseudo-differential OTA with common-mode feedforward, the requirements of the 

CMFB can be relaxed).  

 

1.4. High Order  Filters 

Usually a second-order filter can not provide the required selectivity required in 

many practical systems. So high order filters are necessary to provide enough selectivity. 

There are three main approaches to achieve high order filters: cascade of biquadratic 

sections without feedback [4], cascade of biquadratic sections with feedback [5], and LC 

ladder filter emulation [6]. 

In the cascade of biquadratic sections approach, high order functions are achieved by 

the direct connection of second-order biquadratic sections. This method provides the 

simplicity of the filter design and tuning scheme design. But its disadvantage is that the 

overall filter transfer function is sensitive to the biquad’s parameter variations, which are 
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caused by the inevitable process, supply voltage, and temperature (PVT) variations. So 

its sensitivity performance is not good enough.  

Cascaded biquadratics with feedback loops are also based on biquadratic sections, 

but with some negative feedback [7]. This approach provides better overall filter transfer 

function sensitivity performance compared to the corresponding cascade of biquadratic 

sections without feedback [8]. 

There are mainly two methods to emulate LC ladder filters: emulating the LC ladder 

filter functionally by realizing the currents and node voltages of the ladder [9] or 

implementing the inductors using active elements. These approaches provide the best 

sensitivity performance over the cascaded approaches without/with feedback. 

 

1.5. L inear  Phase Filter  Approximations 

Integrated continuous-time filters used for hard disk driver systems and some digital 

communication systems such as 1000Base-T are good examples for linear phase filters. 

The primary purpose of this kind of filters is to limit the signal and noise bandwidth. In 

general, there is no stringent magnitude response requirements in the passband or 

stopband, but it must have a linear phase or a constant group delay for all signal 

frequencies to maintain the data integrity. Non-uniform group delay causes phase 

distortion and leads to detection problems. In practice, a small group delay deviation or a 

ripple of about 5% is permitted and a filter with an order of 4-7 maybe used. 
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1.5.1 Bessel-Thomson and Equir ipple L inear  Phase Filter  Approximations 

Bessel-Thomson approximation (maximally flat delay) and equiripple delay 

approximation are the two main filter approximations used for the design of filters with 

approximately constant group delay [10-11]. For a fourth-order linear phase filter, the 

normalized frequencies ωis and Qis for both Bessel-Thomson and 0.05o Equiripple linear 

phase filters are shown in Table I.1 and Table I.2. 

 

Table I.1 4th-order Bessel-Thomason linear phase filter parameters 
 

Filter Section ωi, rad/sec Qi 

Biquad 1 ω1=1.419 Q1=0.522 

Biquad 2 ω2=1.591 Q2=0.806 

 

Table I.2 4th-order 0.05o equiripple linear phase filter parameters 
 

Filter Section ωi, rad/sec Qi 

Biquad 1 ω1=1.007 Q1=0.573 

Biquad 2 ω2=1.599 Q2=1.148 

 

From Tables I.1 and I.2, we can see that for the Bessel-Thomson filter, the biquad 

section’s Qis are smaller, and the ωis are more closely clustered. However, the group 

delay for the 0.05o equiripple filter is flat up to 1.5Fc vs. 1.0Fc for the Bessel-Thomson 
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filter. Also, equiripple filter has a better selectivity than the Bessel-Thomson filter with 

the same order. 

1.5.2 Gain Boosting and Group Delay Shaping 

In addition to the basic functions, some times additional magnitude and group delay 

shaping functions are added to facilitate the detection process (e.g., read channel filters). 

Magnitude boost is provided within the appropriate frequency band in order to remove 

the undesired effect of bit shift due to the influence of the neighboring pulse [12]. This 

pulse slimming must not distort the group delay. Also in order to compensate for the 

non-uniform group delay of the components, or simply to provide flexibility in 

detection, the group delay may be modified in some frequency bands. 

These additional requirements of magnitude and group delay shaping are provided by 

modifying the basic linear phase filters, and the overall transfer function H(s) takes the 

form 

)(

)(
)(

sD

sN
sH =                                                                                                      (1) 

where D(s) corresponds to the basic, classical linear phase filter transfer function, and 

N(s) is the added polynomial that incorporates the modifications stated above.  

The numerator N(s) provides the magnitude and group delay shaping via two 

transmission zeroes: 
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10 

If K1=0, and K2>0, then N(jω)=1+K2ω2/ω1
2, and it provides magnitude shaping 

without affecting the group delay response.  

If K1≠0, and K2=0, then N(s)=1+K1s/ω1, and it provides group delay shaping 

without affecting the magnitude response significantly. 

If K1 and K2 are properly selected, then N(s) might provide two asymmetrical 

zeroes and it provides both magnitude and group delay shaping. The interaction between 

the magnitude and group delay is very small—magnitude boost is pronounced at high 

frequencies around ωo and group delay shaping is more effective at low frequencies. For 

all practical purposes, K1 and K2 are used to independently program group delay and 

magnitude shaping. 

 

1.6. Group Delay Sensitivity  

A second-order low-pass biquadratic transfer function can be written as 

2
0

02

2
0)(

ωω
ω

+⋅+
=

Q
ss

sH                                                                                    (3) 

For real frequencies, s = jω, H(s) can be partitioned into a gain component G(ω) and 

a phase component Θ(ω) as given by 

)()()( ωωω Θ⋅= jeGjH                                                                                       (4) 

The gain sensitivities of the biquad to ω0 and Q are [13]: 
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As shown in [14], the group delay sensitivities to ω0 and Q can be expressed as 

)()( 21 ωωτ G
QQ SS ⋅+−=                                                                                          (7) 
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For a transfer function composed of N second-order low-pass biquads, the group 

delay variation can be written as 

τ
τ

ω
ω

τ
τ τ

ω
τ i

N

i i

i

i

i
Q

i

i

i

i
S

Q

Q
S

=

���
�		
� ∆

+
∆

=∆
1

                                                                     (9) 

Expressions (7)-(9) can be used to find the integrator’s specifications such as the DC 

gain and excess.  

For the fourth-order equiripple linear phase filter designed in this dissertation, its 

transfer function is 

2
2

2
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sH                                                      (10) 

where ω1=1.0075, Q1=0.5734, ω2=1.5987, and Q2=1.1481. Figure I.2 and Figure I.3 

show the group delay sensitivity functions for the two biquadratic sections. While the 

group delay sensitivities to both the quality and resonant frequency are less than 1 for the 
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first biquad, the sensitivity to the resonant frequency for the second biquad is larger than 

1. So it is important to minimize the resonant frequency variations to reduce the group 

delay ripple. In this dissertation, the quality factor Qi is implemented as the ratio of two 

scaled operational transconductance and the resonant frequency ωi is implemented as the 

ratio of  transconductance to capacitance. While the quality factor Qi is well controlled 

by the scaling, the resonant ωi can vary significantly. So an automatic frequency tuning 

scheme is used to reduce the group delay variations.  

 

 

Figure I.2 Group delay sensitivities for the first biquad 
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Figure I.3 Group delay sensitivities for the second biquad 

 

1.7. Low-Voltage Differential Signaling (LVDS) Dr ivers 

The ever-increasing processing speed of microprocessor motherboards, optical 

transmission links, chip-to-chip communications, etc., is pushing the off-chip data rate 

into the gigabits-per-second range. While scaled CMOS technologies continue to 

enhance the on-chip operating speeds, off-chip data rates have gained little benefit from 

the increased silicon integration. This is primarily due to the excessive power 

consumption necessary for driving impedance-controlled electrical interconnects, which 

leads to an increase in the costs related to packaging and thermal management [15].  

In the past, off-chip high data rates were achieved by massive parallelism, with the 

disadvantages of increased complexity, excessive pins needed, and increased cost for the 
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IC package and the printed circuit board (PCB). So it is beneficial to move the off-chip 

data rate to the range of Gb/s-per-pin or above. Also reducing  the power consumption is 

critical for battery-powered portable systems as well as some other systems in order to 

extend the battery life and reduce the cost related to packaging and additional cooling 

systems. 

Scalable Coherent Interface (SCI) is a high-speed packet transmission protocol that 

efficiently provides the functionality of bus-like transactions (read, write, lock, etc.), but 

it uses a collection of fast point-to-point links instead of physical buses to reach higher 

speeds. The initial physical implementations are based on emitter coupled logic (ECL) 

signal levels [16], which consume more power than is practical in the low-cost 

workstation environment and are inconvenient for some applications.  

Low voltage differential signaling (LVDS) is a standardized data transmission 

format that is widely used for serial data transmissions [17]. It is a technology developed 

to provide a low-power and low-voltage alternative to ECL and other high-speed I/O 

interfaces for point-to-point transmissions. LVDS achieves higher speed and significant 

power savings by means of a differential scheme for transmission and termination, in 

conjunction with low voltage swing. 

 

1.8. Main Contr ibutions 

A low-voltage, low-power, high performance continuous-time linear phase filter with 

automatic frequency tuning is designed. The optimal design of a pseudo-differential 

transconductor using transistors operating in triode region is discussed. A common-mode 
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control circuit that combines CMFB, common-mode feedforward (CMFF), and adaptive-

bias has been presented. A large linear signal swing (2Vppd) has been achieved due to the 

well controlled common-mode (CM) behavior. The ratio of the root mean square value 

of the ac signal to the power supply voltage is around 31%, which is much better than 

previous realizations. 

Two low-voltage, low-power, and high speed LVDS drivers are designed. The 

Double Current Sources (DCS) LVDS driver is simple and fast, but the drawback is that 

its static current consumption is as twice as the minimum required by the voltage swing. 

The Switchable Current Sources (SCS) LVDS driver, by dynamically switching the 

current sources, draws minimum static current and reduces the power consumption by 

60% compared to the previously reported LVDS drivers. While the previous realizations 

can not operate properly with low-voltage supplies, both the DCS and SCS LVDS 

drivers are suitable for low-voltage supply applications. The two LVDS drivers are 

compliant to the standards and can operate at data rates up to gigabits-per-second. 
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1.9. Organization 

Two low-voltage, low-power integrated circuits used for data communication 

systems are presented in Chapter II and Chapter III, respectively. In each chapter, the 

background and motivations for each design are introduced first. Following the 

discussion of the current status of the research on those topics, the new ideas and the 

circuit designs are presented. The difference among these designs  and the previously 

reported works are pointed out and emphasized. The detailed design issues associated 

with these designs are also discussed. Some of the simulation results and the silicon 

experimental results are included to verify the new ideas and designs. Specifically, 

Chapter II discusses a low-voltage, low-power, high performance continuous-time linear 

phase filter with automatic frequency tuning. The filter can be used for wired 

communication systems such as 1000Base-T and hard disk driver systems. Chapter III 

presents a low-voltage, low-power differential signaling (LVDS) driver, which is used 

for point-to-point links such as chip-to-chip communications. Finally, Chapter IV draws 

some conclusions and summarizes the main contributions of this research work. 
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CHAPTER I I   

A 2Vpp, 80-200MHZ FOURTH-ORDER CONTINUOUS-TIME 

LINEAR PHASE FILTER WITH AUTOMATIC FREQUENCY 

TUNING 

 

2.1. Background and Motivation 

The growing demand of portable electronic equipment and system-on-a-chip has 

been pushing the industry to design efficient circuits for low power supply voltages and 

low power consumption. In analog/mixed signal processing, fully differential structures 

are often used due to their better dynamic range (larger signal swing, better distortion 

performance, and better common-mode noise and supply noise rejection) over single-

ended structures. For applications of low power supply voltages and large signal swings, 

pseudo-differential structures become attractive since they avoid the voltage drop across 

the tail current source. But inherently pseudo-differential structures have the same low 

frequency transconductance for both differential and common-mode signals. Therefore, 

the use of pseudo-differential structures requires a careful and efficient control over the 

common-mode behavior of the circuits. 

Continuous efforts have been made to control the common-mode (CM) behavior of 

pseudo-differential architectures [18-22]. The common-mode control circuit should not 

only stabilize the OTA output common-mode voltage, but also reject the input common-

mode signals and supply noises. So usually it is not enough to control the CM behavior 
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of pseudo-differential architectures by using a common-mode feedback (CMFB) only. 

We also need a common-mode feedforward (CMFF) to suppress CM signals. For 

tunable filters and other differential systems, an adaptive mechanism is also needed to 

control the CM behavior over the tuning range. In the standalone CMFF scheme [19], 

the CM current is partially cancelled at the output stage of the transconductor, but the 

CM voltage at the output nodes is not always properly controlled. In [20], the authors 

use a fully-balanced (FB) architecture based on single-ended blocks to suppress the CM 

components. The efficiency of this approach depends on good matching between two 

single-ended transconductors which is usually difficult to satisfy, especially for high 

frequency applications. Both CMFB and CMFF were used in [21]. The cancellation of 

the CM components relies on good matching among the triode transistors in the Gm cell, 

CMFB, and CMFF. It also relies on good matching among several transistors (the 

current sources and the current mirrors). In [22], an adaptive-bias mechanism to improve 

the stability of the CM voltage over the tuning range is proposed; its efficiency depends 

on the performance of the CMFB only. 

In a 1000Base-T receiver, a continuous-time low-pass filter is needed to limit the 

signal and noise bandwidth and provide anti-aliasing prior to sampling. The main 

specifications of this filter for the original project are:  

• The THD must be less than –40dB for a 2Vppd input signal;  

• The bandwidth of the filter is tunable from 45MHz to 105MHz; 

• Single 1.8V supply; 

• The process is 0.18µm CMOS. 
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The most challenging specification is the large linear signal swing. Since we do not 

have access to the 0.18µm CMOS process, we used 0.35µm CMOS process and a single 

2.3V supply. Later on, we also modified the bandwidth requirements to that the tunable 

range of the filter is from 80MHz to 200MHz, with a nominal bandwidth of 150MHz in 

order that this filter can also be used for other higher speed applications. This filter can 

also be used for hard-disk read channel systems. 

 

2.2. Pseudo-differential OTAs and Their  Character istics 

The topology of a generic fully-differential transconductor is shown in Figure II.1a 

[19]. While M1 and M2 are shown as simple NMOS transistors here, they can represent 

arbitrary unilateral active devices with transconductance of Gm. The input signal can be 

expressed as 

2
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v
vv +=+                                                                                                  (1a) 

2
id

icmi

v
vv −=−                                                                                                  (1b) 

where νicm is the input common-mode signal, and νid is the input differential signal. In 

the fully-differential configuration, the rejection of the common-mode signal is achieved 

by the large output impedance Zp (Zp=Rp||Cp) of the tail current source, especially at 

relatively low frequencies. 
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Figure II.1a Fully-differential structure 
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Figure II.1b Pseudo-differential structure 

 

At lower supply voltages, a pseudo-differential architecture, Figure II.1b, could be 

used to avoid the voltage drop across the tail current source. This solution usually 
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achieves a larger signal swing, but it requires to carefully control its response to 

common-mode signals. Actually, for this circuit, the transconductance for the input 

common-mode signal is exactly equal to that for the differential input signal. 

Besides the large common-mode gain, we also need to consider another important 

characteristics for transconductors: linearity. 

The pseudo-differential transconductor shown in Figure II.1b can be seen as a 

combination of two parallel single-ended branches. If we consider the non-linear 

voltage-to-current conversion, the drain currents of transistors M1 and M2 (I1 and I2) can 

be generally expressed as 

( ) ( ) ( )3

3

2

211
+++ +++= iiib vvvII ααα                                                                (2a) 

( ) ( ) ( )3

3

2

211
−−− +++= iiib vvvII ααα                                                                (2b) 

where Ib is the bias current, and νi
+ and νi

- are the input signals as expressed in equations 

(1a) and (1b). α1, α2, and α3 are the coefficients of the polynomial, where α2 and α3 are 

used to represent the OTA non-lineariiesy. Notice that higher order harmonics (greater 

than third-order) are neglected here. 

The output differential current (io,PD) for the pseudo-differential structures can then 

be calculated as 

)43(2 22
321, idicmidicmididPDo vvvvvvi +++= ααα                                               (3a) 

If the same expression is derived for the fully-differential structure (I1+I2 = constant), 

the output differential current (io,FD) is 
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Comparing the expressions for the two output differential currents, we have the 

following observations: 

• The pseudo-differential structure presents additional distortion terms which 

arises from the common-mode signal. In particular, even-order terms can appear 

in a perfectly symmetrical structure due to the product of the differential and 

common-mode signals (which is not the case for fully-differential structures). 

To minimize the importance of this effect, when using a pseudo-differential 

structure, the transconductance must be designed to be as linear as possible. Also the 

common-mode signal must be minimized, i.e., a strong and efficient common-mode 

control circuit is needed for pseudo-differential structures. As a consequence, the 

combination of common-mode feedforward (CMFF) and common-mode feedback 

(CMFB) is essential for high performance systems based on pseudo-differential 

structures. 

 

2.3. Common-Mode Control Techniques for  Pseudo-Differential OTAs 

2.3.1 Pseudo-Differential OTAs with Common-Mode Feedforward 

As discussed in section 2.2., strong and efficient common-mode control circuits are 

needed for high performance systems based on pseudo-differential structures. A 

common-mode feedforward scheme was first proposed in [19]. Its basic idea is to use 
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some transconductor to detect the input common-mode signal, convert it into current, 

mirror the current to the main transconductor, and partially cancel the input common-

mode signal. The configuration of the idea with simple CMOS implementation is shown 

in Figure II.2. 
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Figure II.2 Common-mode feedforward scheme 

 

Transistors M1 and M2 are the core of the transconductor. Transistors M1’  have the 

half dimensions as M1 and they are used to detect the input common-mode signal and 

convert it into common-mode current. This current flows through transistor M2’  and it is 

mirrored into the main transconductor. This current cancels the common-mode current 

generated by transistors M1 and reduces the common-mode gain. In particular, the 

current flowing into the output nodes of the transconductor can be expressed as 
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where Cp is the parasitic capacitance associated with the mirroring node P. The 

common-mode gain is 
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At DC, it can be seen from (4) that the output common-mode current iocm is non-

zero, which is caused by the finite output transconductance of the transistors. The DC 

common-mode gain is approximated by  
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Equation (6) says that the common-mode feedforward reduces the low frequency 

common-mode gain to approximately 1. At very high frequencies, the common-mode 

gain is approximated by 
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which means that the CMFF does not work well at very high frequencies. At high 

frequencies, the mirroring node P is AC grounded and the common-mode feedforward 

path is disabled. 

While the CMFF scheme reduces the common-mode gain, it does not set the output 

common-mode voltage. Lossy-integrators can be used to control the output common-

mode voltages. In fact, a pseudo-differential transconductor closed in negative feedback 
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creates a low impedance node for both the differential and common-mode signals. Also 

CMFF schemes add loads to the driving stages. 

2.3.2 Fully-Balanced Transconductor  Based on Single-Ended OTAs 

Figure II.3 shows a balanced transconductor [23] based on two singled-ended (SE) 

OTAs. For each of the SE OTA, its common-mode gain is also given by equation (5). 

The SE OTA subtracts the common-mode components from M1 and cancels them out at 

the output, while it sums the differential-mode component at the output. Therefore, SE 

transconductor inherently has a small common-mode gain and a large differential gain. 
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Figure II.3 Balanced transconductor based on single-ended OTAs 

 

In the balanced transconductor based on SE OTAs, the output common-mode 

voltage is not defined and it depends on the input common-mode signal (common-mode 

gain is 1 at low frequencies). So a common-mode feedback is necessary to fix the proper 

operating point. Since the common-mode gain is small (approximately 1), the CMFB 
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circuit does not require a wide bandwidth; therefore, the CMFB circuit does not 

consume much power. 

A fully balanced CMOS transconductor was proposed in [20]. The conceptual 

implementation is shown in Figure II.4. This fully-balanced transconductor uses two 

single-ended transconductors with same transconductance. Besides taking advantage of 

the small common-mode gain of SE transconductors, this fully-balanced configuration 

also includes the function of common-mode feedback. Specifically, the current 

corresponding to the common-mode output voltage (CM current) is produced by adding 

each current corresponding to each output voltage. Then, the CM current is compared 

with the current corresponding to the output common-mode reference voltage Vcm, and 

the difference is fed to both the plus and minus outputs. The current-mode addition and 

subtraction  are realized by current mirrors. The multi-inputs can be realized by 

connecting transistors in parallel to input transistors. 

 

_
+

+
+
_
_

In+

Vcm

Out+

Out-

_

_

+

+
+

_

In-
 

Figure II.4 Fully-balanced configuration using two multi-inputs single-ended 
transconductors 



27 

 

Although fully-balanced architectures include the functions of both CMFF and 

CMFB, they need good matching between the two single-ended transconductors, which 

is not easy to achieve, especially for high frequency systems. 

2.3.3 Common-Mode Control Circuit Using Both CMFF and CMFB 

As reported in [21], a common-mode control circuit based on CMFF scheme 

combines CMFF and CMFB. A simplified CMOS version is used here for explanation. 

The transconductor with the CM control is shown in Figure II.5. Transistors M1 and M2 

compose the main transconductor. The right most part of the transconductor is the 

CMFF circuit, while the left most part of the main transconductor is the CMFB circuit. 

An assumption is made here that transistors M1 and M1’  are working in triode region. 

Transistors M1’  have the half dimensions as M1. The CMFF used here is very similar to 

the one shown in Figure II.2, except that a common-mode reference current ICM is added. 

The left side CMFB is the same as the CMFF, with the exception that the gates of 

transistors M1’  are connected to the outputs of the main transconductor. 
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Figure II.5 Pseudo-differential transconductor with CMFF and CMFB 

 

The common-mode reference current ICM shown in Figure II.5 is defined as follows 
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where VCM is the reference common-mode voltage and it is generated by a bias circuit. 

The currents I1 and I2 generated by the CMFF and CMFB circuits can be expressed as 
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Currents ICMFF and ICMFB generated respectively by the CMFF and CMFB are fed 

back into the main transconductor via two PMOS devices, resulting the following bias 

current 
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where the first term corresponds to the current required to reject the input CM signal and 

the second term corresponds to the current used to set the transconductor output CM 

voltage Vocm to CM reference voltage VCM. 

The advantage of this CM control scheme is that it combines the CMFF and CMFB 

together. The disadvantages are that the CMFF and CMFB are correlated (both use ICM, 

both use the same transistors as the input transistors, etc); It needs good match among 

many components (M1 and M1’ , M2 and M2’ , two ICM), which is difficult to satisfy, 

especially for high frequency systems. The CMFB gain is fixed by the input transistors 

M1’  and their transconductance is relatively small since they are working in triode 

region. Also, the CM reference current ICM needs to be generated.  

2.3.4 Adaptive Biasing for  Tunable Transconductors 

For tunable transconductors, it is desirable to control the output common-mode 

voltage to a fixed value over the whole tuning range in order not to degrade the 

transconductor’s dynamic range. This issue becomes more critical for low-voltage 

applications, since the voltage swings are inherently constrained to small headroom 

voltages.  

Figure II.6 shows a typical tunable transconductor with CMFB. Assume that under 

nominal conditions, the tail current source M5 sinks 2IB, the PMOS active load M3(M4) 

sources IB. Also assume that the output common-mode voltage Vocm equals the output 

CM reference voltage Vo,ref, and the common-mode control voltage is Vcmfb. Suppose 

during tuning, the tail current source M5 needs to sink 2(IB+∆IB). Then the top active 

load M3(M4) needs to source IB+∆IB, and the CMFB control voltage can be denoted as 
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Vcmfb+∆Vcmfb. Since the amplifier’s gain is finite, the output CM voltage Vocm is no 

longer equal to Vo,ref, i.e., the tuning forces the output CM voltage Vocm to deviate from 

the CM reference voltage Vo,ref. 
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Figure II.6 Tunable transconductor with CMFB 

 

An adaptive CMFB is proposed in [22]. This adaptive CMFB eliminates meaningful 

deviations of the CM voltage over transconductance tuning by delivering to the 

transconductor load an adaptive current. The adaptive current is produced by a tuning 

voltage dependent bias generator and it is mirrored to the tail current of the CMFB. The 

CMFB adjusts the transconductor active load current so that the output common-mode 

voltage remains the same over the tuning range. The pseudo-differential transconductor 

adopted in that paper uses only CMFB to control its CM behavior. So the CM control 

efficiency dependent on the CMFB only. 
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2.4. Pseudo-Differential Transconductor  

From section 2.1, it can be seen that the most challenging specification of the filter is 

the very large linear signal swing. It is well known that a transistor working in triode 

region has a linear transconductance if its drain-source voltage is constant. Using the 

simple MOS transistor model, the drain current of a NMOS transistor working in triode 

region can be expressed as 

]
2

1
)[( 2

DSDSTNGSD vvVvi −−= β                                                                        (12) 

where β=µnCox(W/L) and VTN are the transconductance parameter and the threshold 

voltage, respectively. Assuming the drain-source voltage νDS is constant, then the 

transistor has a linear transconductance and it is given by βνDS. Also as discussed in 

section 1.3, a pseudo-differential OTA achieves larger signal swings than a fully-

differential OTA by removing the tail current source. So a pseudo-differential OTA 

based on transistors operating in triode region is used for the filter design and it is shown 

in Figure II.7 [24]. Transistors M1 operate in triode region and they convert the voltage 

into current in a linear fashion. Transistors M2 and amplifier amp form a regulated-gain-

control (RGC) loop and they are used to fix the drain voltage of M1. M3 and M4 are the 

cascoded active load of the OTA. M2, M3, and M4 are working in saturation region. The 

tuning voltage VTUNE is used to adjust the OTA’s transconductance. Assuming the 

amplifier amp is ideal and its gain is infinite, then we have both a constant drain-source 

voltage νDS1=VTUNE independent of the input voltage level, and a linear 

transconductance given by βVTUNE.  
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Figure II.7 Pseudo-differential OTA 

 

In order to get the best OTA linearity performance, there are several design issues 

need to be addressed properly. First, we need to determine the common-mode voltage 

properly to maximize the linear range. Second, we need to optimize the design of the 

RGC amplifier amp so that M1’s drain voltage is fixed well and its transconductance is 

linear, even at high frequencies. Also we need investigate the short channel effects of the 

input transistors M1 to have a good trade off between linearity performance and 

frequency response. 

2.4.1 Optimizing the L inear  Range 

Let’s consider a single branch and determine the CM voltage VCM that maximizes 

the OTA linear input range. Assume that the power supply is VDD. Let us denote the gate 



33 

voltage of M2 by VG2, the gate voltage of  M1 by VCM-νi, and the output voltage by 

VCM+νo, where VCM is the CM reference voltage, where νi and νo are the input and 

output AC signals, respectively. 

Since transistor M1 must operate in triode region for better linearity, then 

TUNETNiCM VVvV >−− max,                                                                                (13) 

where νi,max is the maximum amplitude of the input signal. 

Also, transistor M3 must operate in saturation region, then 

TPBIASoCM VVvV +<+ max,                                                                               (14) 

where νo,max is the maximum amplitude of the output signal. 

In order to maximize the signal swing, we need to select the bias voltage VBIAS such 

that the source-drain voltage of M4 is a bit larger than |VDSAT4|. Assume we also have to 

support VDSAT3(=VDSAT4) for the source-drain voltage of M3, then equation (14) yields: 

4max, 2 DSATDDoCM VVvV −<+                                                                          (15) 

From the filter transfer function (which will be discussed in section 2.6.), it can be 

seen that the signal swing at all of the filter’s nodes are always equal or less than the 

input signal swing. So we can assume that the OTA’s maximum input signal equals the 

maximum output signal; i.e. νi,max=νo,max. According to (13) and (15), the maximum 

input signal can be obtained as: 

( ) 4max, 2

1
DSATTUNETNDDi VVVVv −−−=                                                            (16) 

where VTUNE is obtained from the required filter bandwidth and the transconductance of 

the OTA. 
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As a result of this, the common-mode voltage that maximizes the linear signal range 

is given by: 

4max, 2 DSATiDDCM VvVV −−=                                                                           (17) 

For a supply voltage of 2.3V, a threshold voltage VTN of 0.6V, an overdriving 

voltage VDSAT of 0.2V, and a tuning voltage VTUNE of 0.2V, the maximum input voltage 

νi,max is 0.55V and the common-mode voltage VCM which maximizes the linear signal 

swing is 1.35V. 

2.4.2 Regulated Gain Control (RGC) Loop 

The design of the RGC loop is critical for the OTA’s linearity performance. One of 

the main sources of OTA’s non-linearity is the low gain of the RGC loop at high 

frequencies, since smaller RGC loop gain leads to larger νDS1 variations, leading to 

larger harmonic distortion components. Figure II.8 is a simplified configuration used to 

evaluate the OTA performance. Capacitor CL has a large capacitance, and it grounds the 

output for AC signals.  
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Figure II.8 Configuration for evaluating OTA transconductance 

 

According to equation (12), and neglecting the second-order term νd
2/2, it can be 

shown that the AC current across the capacitor CL can be expressed as: 

( )[ ]dDdTNCMidiD vVvVVvvvVi −−++≅ β                                                      (18) 

Using typical small signal analysis, the impedance looking into the RGC from the 

drain of M1 is approximated by an impedance Z≅1/((A(s)+1)gm2), where A(s) is the gain 

of the RGC amplifier. Using νd≅-iZ,  equation  (18) leads to:  

iDTNCM

iD

ZvVVVZ

vV
i

+−−+
=

])[(/1 β
                                                              (19) 

And using Taylor series expansion with respect to νi, then we have: 

⋅⋅⋅+++= 3
3

2
21 iii vvvi ααα                                                                              (20) 

where     
)(11

DTNCM

D

VVVZ

V

−−+
=

β
βα ,  



36 

2

2

2 )](1[ DTNCM

D

VVVZ

ZV

−−+
=

β
βα ,  

3

23

3 )](1[ DTNCM

D

VVVZ

VZ

−−+
=

β
βα , … 

Neglecting the higher order terms, the third-order harmonic distortion can be 

expressed as: 
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V
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β
β

                                       (21) 

 
where V i is the magnitude of the input signal, and A(s) is the RGC amplifier gain. The 

above expression shows the relationship between (A(s)+1)gm2 and the third-order 

harmonic distortion. Figure II.9 shows the OTA’s THD simulation results and the 

theoretical HD3 predicted by (21). When the amplifier’s gain is small (e.g., A(s)<6), the 

OTA’s THD is dominated by (A(s)+1)gm2 and the theoretical values are close to the 

simulated ones; but with large amplifier’s gain, the OTA’s THD is limited by the short-

channel effects (which will be discussed in the next section). It can be seen that in order 

to achieve THD figures around –50dB, the RGC amplifier’s gain should be greater than 

10V/V over the whole passband of the filter. Note that the non-zero impedance Z causes 

OTA transconductance reduction, which is clear from the expression of α1. 
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Figure II.9 OTA’s THD vs. RGC amplifier’s gain (LM1=0.6µm) 

 

Another important issue is the RGC loop stability, which has been already discussed 

in [25]. The implementation of the RGC amplifier is shown in Figure II.10. It is 

composed of a single-ended amplifier and two source followers. The source follower M2 

shifts up M1’s drain voltage νDS1, giving more room to the OTA’s input stage and 

increasing the transconductance tuning range. The reason that we use two source 

followers is that we can have a clear idea about M1’s drain voltage during the testing. 

The designed amplifier amp has a low-frequency gain of 31dB, a unity-gain frequency 

of 1.25GHz with a phase margin of 68o, and a current consumption is 540µA. 
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Figure II.10 RGC amplifier 

 

2.4.3 Short-Channel Effects 

Short-channel effects affect the OTA’s linearity as well. For short channel devices, 

the effective carrier mobility (µeff) is a function of both lateral and vertical electric fields 

[26], and it can be expressed as:  

( ) ( )dsDS
c

TgsGS
eff

vV
LE

VvV ++
⋅

−++
⋅=

1
1

1

1

1
0 θ

µµ                                       (22) 

where µ0 is the low electric field mobility, Ec is the critical electric field, and θ  is a 

fitting parameter which is inversely proportional to the oxide thickness.  

From equations (12) and (22), if the lateral electric field effect is fixed by the RGC loop, 

which fixes the drain-source voltage νDS, the effective carrier mobility µeff should be 

independent of transistor length L, and so the OTA’s linearity should be independent of 

the transistor length L.  
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In fact, according to higher order models [27], the above expression is only a 

simplified approximation for the drain-source current equation used by the Spice model. 

It can not predict the OTA’s linearity versus the transistor length.  

In [27], a more complex drain-source current model is used, and it is expressed as 
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where  
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It can be seen that VGST,eff is a function of VGS,eff and VT; where VT is a nonlinear 

function of Leff. Also, VDS,eff, RDS, Abulk, VA, etc., all depend on VGST,eff. 

So it is too complicated to get a simple expression for the OTA linearity as function of 

the transistor length. So it is realistic here to refer to the simulation results. 

In order to see the transistor length’s effect on the OTA’s linearity, we assume that 

the RGC amplifier has an infinite gain and we keep W/L constant for the input 

transistors M1. The simulation results for the OTA’s THD versus the input transistor’s 

length L are shown in Figure II.11 and they are summarized in Table II.1. 
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Figure II.11 OTA’s THD vs. input transistor M1’s length L 

 

Table II.1 OTA’s THD vs. input transistor length L (V in = 2Vppd) 

Transistor Length L (µm) 0.4 0.6 0.8 1.0 

OTA’s THD (dB) -50.6 -54.3 -58.2 -60.2 

 

So we choose a transistor length of 0.6µm so that the OTA’s THD is about –50dB 

with the actual RGC amplifier, in order to meet the filter’s linearity specifications. 

All of the issues discussed above have been considered in the OTA’s design. The 

OTA has a low frequency gain of 31dB and an excess phase of –4.6o at a unity-gain 

frequency of 150MHz. The OTA transistor dimensions and bias currents are summarized 

in Table II.2. 
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Table II.2 OTA transistor dimensions and bias conditions 

Transistor M1 M2 M3 M4 M5 M6 M7 

W/L(µm/µm) 40/0.6 48/0.4 240/0.4 320/0.4 36/0.4 36/0.6 24/0.6 

Ibias(mA) 1.08 1.08 1.08 1.08 0.18 0.18 0.18 

 

2.5. Common-Mode Control Circuits 

The OTA shown in Figure II.7 requires a proper common-mode control system. It 

should not only stabilize the OTA output CM voltage, but also reject the input CM 

signals and supply noise. So the combination of a CMFB and a CMFF for the CM 

control is essential for high performance systems with pseudo-differential architectures. 

Due to the benefits of the CMFF, the loop gain and bandwidth requirements of the 

CMFB can be relaxed. Conventional CM control circuits for pseudo-differential 

structures with CMFB and/or CMFF are shown in Figure II.12a. In order to simplify the 

design of pseudo-differential architectures, it is more efficient to have a CM control 

circuit that combines CMFB and CMFF together as shown in Figure II.12b. A CM 

control system with this feature is used here. 
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Figure II.12a Conventional CM control using separate CMFB and CMFF 
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Figure II.12b Proposed CM control that combines CMFB and CMFF 

 

2.5.1 Common-Mode Control Pr inciple 

The basic idea of the proposed CM control circuit is that the circuit senses the input 

CM information as well as the output CM information, then it combines both signals 

together to control the OTA’s CM behavior. The implementation of the CM control is 

shown in Figure II.13.  
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Figure II.13 Common-mode control circuit 
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The CM control circuit contains two parts. Part-A is a CMFF and an adaptive bias 

circuit. Part-B is a CM detector and V-I converter. The combination of the two parts 

functions as a CMFB, a CMFF, and an adaptive-bias scheme. In Part-A, the CMFF/Bias 

is a replica of a single branch of the OTA except that the dimensions of M1’  are one half 

of the main OTA’s input transistor (M1 in Figure II.7). Transistors M1’  are connected to 

the inputs of the OTA and they are used to cancel the CM input signal. The CMFF 

current is: 

icmmCMFFicmmCMFFCMFF vgIvgIi 1
'

12 +=+=                                                      (32) 

where ICMFF is the ideal DC bias current with zero input CM signal, and vicm is the CM 

input signal. In Part-B, transistors M6 and M6’  are driven by OTA outputs and the CM 

reference voltage, respectively. Transistors M5 and M5’  are working in deep triode 

region, their gates are connected to VDD, and they operate in a source degeneration 

configuration in order to improve the linearity of the CMFB. These circuits compare the 

output CM voltage with the reference CM voltage and convert the voltage difference 

into the CMFB correcting current. 

56

6

1

2

Rg

vg
Iii

m

ocmm
REFCMFBcmfb +

≅−≡                                                                       (33) 

where R5 is the effective drain-source resistance of M5, see Figure II.14. It is assumed 

that M5=M5’  and M6=M6’ . Both of the CMFB correcting current icmfb  and CMFF 

curent iCMFF are then fed into transistors M3 and M4 to control the OTA outputs. The 

overall current mirrored to the OTA output is: 
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ocmm
icmmCMFFD +

−+=                                                                   (34) 

where ICMFF provides the adaptive DC current, 2g’m1νicm provides the CMFF correcting 

current, and 2gm6νocm/(1+gm6R5) provides the current for the action of CMFB. Equation 

(34) clearly shows why the transistors M1’  have to be one half of the main OTA’s input 

transistors. The CM control fixes the common-mode issues but it is transparent to 

differential signals, and so it does not affect the integrator’s differential signal operation. 

2.5.2 Common-Mode Control Frequency Response 

In order to get some insight in the CMFB loop frequency response, a simplified 

integrator with the CMFB is shown in Figure II.14.  
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Figure II.14 Simplified CMFB loop equivalent circuit 
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If we neglect the pole-zero pair produced by the source degeneration composed by 

2M6 and R5/2, and we also neglect the parasitic poles produced by the cascode 

transistors, then there are three main poles in the CMFB loop at nodes A, B, and C. For 

M8=M8’  and M4=M4’ , the CM loop gain ACMFB(s) is approximated by: 
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6                                 (35) 

where goc≅2(go3go4/gm3+go1go2/(Agm2)) is the output conductance at node C; CA, CB, Cc 

are the total capacitance at the nodes A, B, and C, respectively. The factor “2”  comes 

from the fact that the OTA has two identical branches. The CMFB open loop DC gain is 

ADC=2gm6/((1+gm6R5)goc), the dominant pole is at ωd=goc/Cc, and the non-dominant poles 

are located at ωnd1=gm4/CB and ωnd2=gm8/CA. To insure enough phase margin in the 

CMFB loop, the frequencies of the non-dominant poles must be greater than two times 

that of the gain-bandwidth product (=4gm6/((1+gm6R5)Cc)). The load capacitor CL is 

chosen to be 0.9pF. Under this conditions, the unity-gain frequency of the integrator 

equals the filter’s second biquad resonant frequency, which represents the filter’s 

integrator largest unity-gain frequency and it represents the worst case for the common-

mode loop stability. The simulated CMFB open loop phase margin is 68 degrees at the 

unity-gain frequency of 160MHz. Applying a CM current step of 50µA at the OTA 

outputs, the CM voltage settles properly within 4 nsecs. An overshot of 10mV without 
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ringing was observed for all simulations. The DC offset produced by the 50µA common-

mode current is less than 50mV.  This CMFB closed loop CM step response is shown in 

Figure II.15. 

 

 

Figure II.15 CMFB closed loop CM step response with a CM current step of 50µA 

 

2.5.3 A Fast Common-Mode Control Circuit 

As shown in Figure II.14, the output CM correcting current is combined with the 

input CM correcting current at node B. Then the combination of these two correcting 

currents is mirrored to the main OTA. Although this CM control circuit (with CMFF, 

CMFB, and adaptive-biasing) works well for this filter design, there are two non-
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dominant poles at node A and node B in the CMFB loop, which may cause stability 

problems for faster systems. So it is good to reduce the number of non-dominant poles in 

the CM loop.  

A potential solution to reduce the number of non-dominant pole is to inject the 

CMFB correcting current directly into the main OTA, eliminating the non-dominant pole 

at node B which is produced by the combination. The conceptual schematic of this 

solution with one branch of the main OTA is shown in Figure II.16. This schematic 

contains two parts: the right part is one branch of the main OTA, while the left part is the 

CM control circuit. The CM control circuit contains a CMFF branch and two CMFB 

branches, but only one of the two branches is shown in the figure. The output CM 

reference current IREF is generated outside of the CM control circuit once and it can be 

mirrored to multiple CMFB branches. Transistor MCM and source-degeneration resistor 

RCM  are used to detect the output CM voltage and convert it into CM current iCMFB. The 

difference of the output CM reference current IREF and the output CM current iCMFB is 

then injected into one of the two main OTA branches and it is used to control the output 

CM voltage. The branch composed by M3, M4 and input CM current iCMFF is the CMFF 

part of the CM control circuit. It is the same as the one shown in Figure II.13. It can be 

seen that there is one dominant pole in the CMFB loop (at node B) and one non-

dominant pole (at node A). Notice that RCM operates as a source degeneration resistor 

that linearizes the CMFB. On top of that, it introduces a high frequency zero that 

improves even further CMFB loop phase margin. This CM control circuit can be used 

for faster systems. 
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Figure II.16 Conceptual schematic of a faster common-mode control circuit 

 

The implementation of the CM control is shown in Figure II.17. This CM control 

circuit contains two parts: Part-A is the CMFF and adaptive bias part; Part-B is the 

output CM detector and V-I converter. Reference voltage VREF is generated outside of 

the CM control circuit once and it is used by multiple CMFB branches so that the output 

CM reference current IREF can be mirrored to the top PMOS current sources in the 

CMFB branches. The CM correcting currents iCMFB-IREF are injected into the sources of 

the cascode PMOS transistors M3 in the main OTA two branches, respectively, as 

shown in the right part of  Figure II.16. The CMFF current iCMFF is converted into 

voltage VCMFF and it is connected to the gates of the PMOS current sources in the main 

OTA so that the CMFF correcting current can be. mirrored to the main OTA branches.  
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Figure II.17 A fast common-mode control circuit 

 

This CM control circuit is used to control an integrator’s output CM voltage and the 

simulated CM step response is shown in Figure II.18. The simulation conditions are the 

same as those that produces Figure II.15. With a unity-gain frequency of 156MHz, the 

phase margin of the CMFB loop is 80.3 degrees. It can be seen that no overshot is 

observed in the CM step response, which means this CMFB is more stable than the 

previous discussed CM control circuit. Compared to the CM control circuit discussed in 

sections 2.5.1 and 2.5.2, this CM control circuit has less poles in the CMFB loop, faster 

response, similar power consumption, but increased parasitics (two branches for the CM 

detection and V-I converting).  
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Figure II.18 CMFB closed loop CM step response with a CM current step of 50µA 

 

2.6. Filter  Architecture 

Usually Bessel-Thomson approximation (maximally flat delay) and equiripple delay 

approximation are the two filter approximations used for the design of filters with 

approximately constant group delay. Since for a given delay error the useful bandwidth 

of the equiripple delay approximation is expected to be wider than that of a maximally 

flat delay approximation of the same order, a fourth-order equiripple linear phase filter 

was chosen. The normalized  filter transfer function is given by: 

5558.23925.1

5558.2

0151.17571.1

0151.1
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22 ++
⋅

++
=

ssss
sH                                    (36) 

where ωo1=1.0075, Q1=0.5734, ωo2=1.5987, Q2=1.1481. 
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Figure II.19 4th-order equiripple linear phase filter 

 

The filter architecture is shown in Figure II.19. Same transconductance is used for all 

of the six Gm cells. Similar but scaled transconductance is used for GmQ1 and GmQ2 in 

order to adjust the Q’s of the biquads. C1 and C2 represent the total capacitance at nodes 

A, B and nodes C, D, respectively. C1 and C2 include the load capacitance as well as the 

parasitic capacitance. Two common-mode control circuits have been used to control the 

two nodes B and D. As a result of the pseudo-differential structure used, A and C are 

low-impedance nodes for both differential signals and common-mode signals; hence, we 
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only use Part-A of the CM control circuit to provide CMFF and adaptive-bias for these 

nodes. The transconductance of Gm, GmQ1, and GmQ2 are tuned by an automatic tuning 

system (which will be explained in the next section). For each biquad of the filter, we 

can match the total capacitance at the biquad’s nodes. In this way, we can scale the OTA 

according to the desired Qs directly and get the proper transconductance for GmQ1 and 

GmQ2. The capacitance at the filter’s nodes (A, B, C, and D) are summarized in Table 

II.3. There is a trade-off between the frequency response and the noise performance. 

While smaller capacitance provides higher achievable bandwidth, the noise performance 

is degraded. Also with smaller capacitance, the parasitics becomes more significant and 

this limits the circuit accuracy.  

 

Table II.3 Capacitances at the filter’s nodes 
 

Filter’s node Parasitic capacitance 
 (pF) 

Poly capacitance 
 (pF) 

Target capacitance 
(pF) 

A  0.52 1.18 1.70 
B  0.34 1.36 1.70 
C  0.48 0.58 1.06 
D  0.34 0.72 1.06 

 
 

2.7. Automatic Tuning System 

Low quality factor filters are low sensitive to component tolerances and temperature 

variations, hence, Q-tuning schemes are not required for those applications. For this 

design, a simple automatic frequency-tuning system is used to compensate the variations 
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of the pole locations. The topology is based on the architecture reported in [28]; the 

principle of the automatic tuning system is shown in Figure II.20.  

 

( )2

( )2

refv 0C

Vtune

ov

refv

2
ov

2
refv

Squarer

Squarer

Level
Shifter

47uF

Gm

 

Figure II.20 Block diagram of the automatic tuning system 

 

The OTA Gm is a replica of the transconductor used in the filter. Connected as an 

integrator, its transfer function is given by 
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m
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=)(                                                                                           (37) 

where oG  and Co are the output conductance and the total capacitance at the integrator’s 

output, respectively. Around the unity-gain frequency of the integrator, H(s)≅Gm/(sCo) 

and the unity-gain frequency is fu=Gm/(2πCo). By using a reference input-signal 

νref=Asin(2πfrt), the integrator output voltage becomes  

)2cos( tfA
f

f
v r

r

u
o π���

����
�

=                                                                                     (38) 



55 

i.e. the integrator output signal magnitude is proportional to the ratio of the integrator 

unity-gain frequency to the reference frequency. Hence, by comparing the magnitude of 

the reference input signal with the integrator output signal, the integrator unity-gain 

frequency can be tuned to the reference frequency. The voltage comparator can be 

realized using two peak detectors and a low-pass filter; low dc-offset circuitry is required 

for this approach. 

The approach used here is based on comparing the mean squared values. Squaring 

νref and νo and applying the trigonometrical identities the following expressions can be 

obtained: 
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After filtering the high frequency components, the dc levels are compared to obtain 

the correction error. This error is shifted down and further low-pass filtered by an 

external capacitor (4.7µF), then it is used to adjust the OTA’s transconductance. If the 

control loop dc gain is large enough, under steady-state conditions, the error is close to 

zero and Gm/Co is tuned to the reference frequency. 

The squarer is similar to the one used in [29] and it is shown in Figure II.21. The 

squarer is based on the simple model that the drain current of a transistor working in 

saturation region is proportional to the gate-source voltage, that is, the difference of two 

inputs. Transistors M1 – M5 are working in saturation region. M3 and M4 act as source 
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followers, where M1 and M2 are squaring transistors. An assumption is made here that 

the aspect ratio (W/L)3 of the source follower is much larger than (W/L)1 of the squaring 

transistor, and the drain current of the squaring transistor is much less than the bias 

current IS. Then the gate-to-source voltage drop of the source follower may be regarded 

as a constant since the drain current variation of the source follower is very small with 

respect to the bias current IS. It can be shown that the current flowing through the diode-

connected transistor M5 can be expressed as 
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= −+β                                                                      (41) 

where β=µCox, and IM5 represents the dc biasing current of the two squaring transistors. 

Notice that the current iM5 is not affected by the dc common voltage of the two inputs 

V i
+ and V i

- as long as the dc common voltages at the two inputs are the same, which is 

the case in this tuning scheme. 
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Figure II.21 Squarer 
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The comparator and the level-shifter are shown in Figure II.22a and Figure II.22b. 

The comparator is a single stage OTA. The level shifter is used to maximize the linear 

range of the automatic tuning system. The loop gain is stabilized by an external 

capacitor. This structure is compact and allows us to control the filter cutoff frequency 

within an error below 5%. The accuracy of the system is limited by the OTA differential 

offsets, offset current due to the voltage squarers and comparator, finite gain of the 

control loop, and mismatches between the master and slave circuits. 
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Vo Vo
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Figure II.22a Comparator                          Figure II.22b Level-Shifter              

 

The experimental results show a cutoff frequency tuning error of less than 5% over a 

frequency range of 80-200MHz. The tuning accuracy is also limited by the mismatches 

between the integrator’s capacitance and the filter’s capacitance.  
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2.8. Exper imental Results 

The proposed OTA and the filter have been fabricated in a 0.35µm CMOS process 

through the MOSIS service. The chip micrograph is shown in Figure II.23.  
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Figure II.23 Chip micrograph 

 

With a single 2.3V power supply, the OTA’s power consumption is 7.4mW. The 

OTA was terminated with a 50Ω matching impedance network. Experimental results for 

the standalone OTA show that the THD is –48dB for a 2Vpp differential input at 

frequency of 20MHz, while the simulated THD is –49.4dB; the experimental output 

spectrum under these conditions is shown in Figure II.24. 
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Figure II.24 OTA’s output spectrum (V in=2Vpp) 

 

All the previously discussed circuits and techniques are used for the design of a 4th-

order 0.05o equiripple linear phase filter. For the filter’s experimental setup, a similar 

OTA is used as a buffer to converts the filter outputs into current. The buffer is 

terminated with 50Ω resistors and a high frequency transformer. The experimental 

results show that the filter has a large signal swing; THD figures of less than –44dB for 

input signals up to 2Vpp at frequency of 20MHz are achieved, as shown in Figure II.25 

(the simulated THD is –47.8dB). The third-order inter-modulation (IM3) of the filter for 

a two-tone input of 1Vpp (at 60MHz and 70MHz) is –40dB, as shown in Figure II.26. 

The measured inband IM3 is shown in Figure II.27; notice that the IM3 is less than –

38dB over the whole filter bandwidth.  
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Figure II.25 Filter’s output spectrum (V in=2Vpp) 

 

 

Figure II.26 Filter’s IM3 for a two-tone input (@60MHz and 70MHz) of 1Vpp each 
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Figure II.27 Filter’s IM3 vs. frequency (V1=1Vpp, V2=1Vpp) 

 

For the filter tuned at 150MHz, the filter’s magnitude response, phase response, and 

group delay response are shown in Figure II.28, Figure II.29, and Figure II.30, 

respectively. The filter’s –3dB frequency is around 150MHz. The filter’s phase response 

is linear and the group delay ripple is less than ±100ps up to 1.5fc.  
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Figure II.28 Filter magnitude response with a bandwidth of 150MHz 

 

 
 

Figure II.29 Filter’s phase response with a bandwidth of 150MHz 
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Figure II.30 Filter’s group delay response with a bandwidth of 150MHz 

 

The magnitude response of the filter, driven by the automatic tuning system, is 

shown in Figure II.31. The differences in the low-frequency gain are due to the different 

transconductance of the buffer connected after the filter over the tuning, which was also 

controlled by the automatic tuning circuit. The cutoff frequency tuning error is less than 

5% for all frequencies.  
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Figure II.31 Zoomed filter’s magnitude response with automatic frequency tuning 
system (reference frequency = 80MHz, 100MHz, 150MHz, and 200MHz) 

 

The common-mode rejection ratio (CMRR) of the filter is 40dB at 60MHz and is 

greater than 32dB at 150MHz. The positive and negative power supply rejection ratios 

(PSRR+ and PSRR-) are 38dB and 31dB at low frequencies and they are greater than 

21dB and 22dB within the whole passband, respectively. The dynamic range of the filter 

is 52dB @THD<-44dB, and the power consumption of the whole system is 90mW. The 

measured performances of the filter are summarized in Table II.4. 
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Table II.4 Performance summary of the standalone filter prototype fabricated in  

0.35 CMOS process 
 

Process 0.35um CMOS 
Filter type 4th-order equiripple 
Power supply 2.3V  
Power consumption 72mW 
Cutoff frequency 80-200MHz 
Group delay ripple <4% up to 1.5fc 

Noise level (BW=150MHz) 1.69mVrms 
Differential input for THD<-44dB @20MHz 2Vpp 
Dynamic range @THD=-44dB 52dB 
Worst case CMRR @f=150MHz 32dB 
Worst case PSRR+ @f=150MHz 21dB 
Worst case PSRR- @f=150MHz 22dB 

 

 

The experimental results of the proposed design are also compared with previous 

realizations in Table II.5. For the proposed filter, the automatic tuning system is included 

in the power budget. With the cheapest technology and the lowest power supply voltage, 

the proposed filter has the largest linear signal swing. It is a result of the well designed 

pseudo-differential OTA with transistors operating in triode region and the well 

controlled common-mode level due to the proposed common-mode control circuit. 
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Table II.5 Comparison of several linear phase filters 
 

Parameters [30]*  [31]*  [32]*  [33]*  This work 
fc(MHz) 10-100 30-100 30-120 80-200 80-200 

Technology 0.29um 
BiCMOS 

0.25um 
CMOS 

0.25um 
CMOS 

0.25um 
CMOS 

0.35um 
CMOS 

Vin,max (mVpp) 100 200 200 800 2000 
THD@ Vin,max (dB) -46 -46 -50 -42 -44 

Dynamic Range (dB) 40 -- 45 -- 52 
Power/Pole (mW) 17 30 15 30 22 
Supply Voltage(V) 3 2.5 2.5 3 2.3 

 

*  These filters provide gain boosting, hence they are more complex, but the 

automatic tuning systems are not included for the power consumption. 

 



67 

2.9. Conclusions 

A low voltage and highly linear full CMOS transconductor using transistors 

operating in triode region has been presented. A common-mode control circuit that 

combines CMFB, CMFF, and adaptive-bias has been discussed. A large linear signal 

swing has been achieved due to the well controlled CM behavior. The principle of the 

CM control circuit can be easily applied to the design of differential structures, and it is 

well suited for low voltage pseudo-differential architectures.  

Experimental results of the OTA with the CM control and the 80-200MHz 4th-order 

linear phase filter are in good agreement with the theoretical results. The proposed 

circuit is attractive for low-voltage applications and it presents good power efficiency. 

The ratio of the RMS (root-mean-square) value of the AC signal to the power supply 

voltage is around 31%, which is much better than previous realizations.  
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CHAPTER I I I   

LOW-VOLTAGE, LOW-POWER LVDS DRIVERS 

 

3.1. Background and Motivation 

The demand for more processing power continues to increase, and apparently has no 

limit. The ever-increasing processing speed of microprocessor motherboards, optical 

transmission links, chip-to-chip communications, etc., is pushing the off-chip data rate 

into the gigabits-per-second range. While scaled CMOS technologies continue to 

enhance the on-chip operating speeds, off-chip data rates have gained little benefit from 

the increased silicon integration. This is primarily due to the excessive power 

consumption necessary for driving impedance-controlled electrical interconnects, which 

leads to an increase in the costs related to packaging and thermal management [15].  

In the past, off-chip high data rates were achieved by massive parallelism, with the 

disadvantages of increased complexity and cost for the IC package and the printed 

circuit board (PCB). So it is beneficial to move the off-chip data rate to the range of 

Gb/s-per-pin or above. In fact, the SIA Silicon Roadmap [34] forecasts an off-chip 

frequency of 1GHz for peripheral buses with the 100-nm generation in 2006. Also 

reducing  the power consumption is critical for battery-powered portable systems as well 

as some other systems in order to extend the battery life and reduce the cost related to 

packaging and additional cooling systems. 
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Scalable Coherent Interface (SCI) is a high-speed packet transmission protocol that 

efficiently provides the functionality of bus-like transactions (read, write, lock, etc.), but 

it uses a collection of fast point-to-point links instead of physical buses to reach higher 

speeds. The initial physical implementations are based on emitter coupled logic (ECL) 

signal levels [16], which consume more power than is practical in the low-cost 

workstation environment and are inconvenient for some applications. Low-voltage 

differential signaling (LVDS) is a technology developed to provide a low-power and 

low-voltage alternative [17] to ECL and other high-speed I/O interfaces for point-to-

point transmissions. LVDS achieves higher speed and significant power savings by 

means of a differential scheme for transmission and termination, in conjunction with low 

voltage swing. 

The following are some of the basic design strategies selected by the LVDS standard 

[17]: 

Low-voltage swing. To minimize power dissipation and enable operation at very 

high-speed, small swing (400 mV maximum) signals are specified. 

Differential signals. Small signal swings require differential signaling for 

adequate noise margin in practical systems. 

Self-terminated. To minimize board area and cost, and to maximize clock rates, 

each receiver is assumed to provide its own termination resistors. 

Differential signaling at first appears to double the number of signal lines, but the 

pin-count overhead is actually much less than this, since reliable single-ended schemes 

require many more ground signals (many high-speed chips and/or backplanes provide 
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one ground for every two signal pins) and run at significantly lower speeds. Other design 

benefits associated with differential signals include Constant Driver Current (which 

simplifies the design of power-distribution wiring), Low Power (differential signals 

allow low signal current to be used), Simple Board Design (differential signals are 

usually less sensitive to imperfections in the transmission line environment), Low 

Electromagnetic Interference (EMI) (equal and opposite currents create canceling 

electromagnetic fields, which dramatically reduces the electromagnetic emissions), and 

Low Susceptibility to Externally Generated Noise (that can be considered as common-

mode noise and is rejected by the differential nature of the architecture).  

The purpose of the LVDS standard is to provide a protocol for high speed, low-

power, and low cost point-to-point communications, and so the standard demands for 

low-voltage, low-power transmitter and drivers to increase the data rate and reduce the 

cost. The target of this work is to design high speed (data rate of 1Gb/s and above), ultra 

low-voltage (single supply voltage as low as 1.6V) and low-power LVDS drivers fully 

compatible with IEEE Std 1596.3-1996 [17] for general purpose links and IEEE Draft 

P802.3ae/D5.0 [35] for XSBI interface. With low voltage supplies, the driver’s power 

consumption is further reduced. The EMI and the cost related to the packaging and 

cooling systems are reduced as well. Also, low-voltage supply drivers make it possible 

to use single supply for both the I/O and the core circuits and simplify the board design. 
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3.2. LVDS Inter faces 

A LVDS interface, as shown in Figure III.1a, has a low-voltage swing (250 mV – 

400 mV); it is connected point-to-point and achieves very high data rates (up to 500 

Mb/s per signal pair) and reduced power dissipation [36]. LVDS uses differential data 

transmission and the transmitter is configured as a switched-polarity current generator. A 

differential load resistor at the receiver end provides current-to-voltage conversion and 

optimum line matching at the same time. 
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Figure III.1a  LVDS interface with line termination at the receiver end 

 

The power dissipation is low because signal swings are small: a minimum of 2.5mA 

is sent to the 100Ω termination resistor. This sharply reduced power dissipation presents 

an important advantage: integrating the line termination resistors, interface drivers and 

receivers, and the processing circuits in the same integrated circuit. 

The switching speed is high because the driver load is an uncomplicated point-to-

point 100Ω  transmission line environment. Switching speed is also high because 

interface devices are all on the same piece of semiconductor material, reducing the skew 

due to process, temperature, and supply variations between signal pairs. 
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Due to the imperfect termination, package parasitics, and component tolerance, or 

crosstalk [37], there are reflected waveforms returning to the driver. The reflected 

waveforms see current sources (which has a very high output impedance) with reflection 

coefficient of +1. Therefore, the driver provides no termination and fully reflects both 

the differential and common-mode reflected signals [38]. The 100Ω termination resistor 

at the receiver end terminates the differential mode. In summary, the differential-mode is 

terminated only at the load, while the common-mode is not terminated at all. 

The termination provided by the LVDS is adequate since the receiver rejects 

common-mode noise, and the differential signal is terminated at the load. As data rates 

push significantly above 600 Mb/s and as connectors are added, this LVDS termination 

scheme fails to provide adequate signal integrity. Under these circumstances, an 

additional termination resistor is usually placed at the source end to suppress reflected 

waves, as shown in Figure III.1b, and the LVDS signaling can be substantially enhanced. 
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Figure III.1b  LVDS interface with termination at the receiver and source ends for 
gigabits-per-second operation 

 

With the both ends termination, the common-mode signals are still not terminated, so 

the receiver’s common-mode rejection is still used to avoid common-mode noise. For 
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both the driver and receiver, building the termination resistors into the circuits can 

simplify the PCB design and optimize the signal integrity. 

 

3.3. LVDS Dr iver  Structures 

3.3.1 Typical Br idged-Switches LVDS Dr iver  

A typical bridged-switches LVDS driver behaves as a current source with switched 

polarity [17] as shown in Figure III.2a. The bias current Ib is switched through the 

termination resistors in one direction according to the data input, and thus produces the 

correct differential output signal swing. A possible implementation of the typical LVDS 

driver is shown in Figure III.2b. It uses a configuration with four MOS switches (M1 – 

M4) in a bridge configuration. If switches M1 and M3 are on (D=HIGH), the polarity of 

the output current is positive together with the differential output voltage. On the 

contrary, if switches M1 and M3 are off (switches M2 and M4 are on), the polarity of the 

output current and voltage is reversed.  
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Figure III.2a Typical LVDS driver model       Figure III.2b A possible implementation 

 

The typical LVDS driver works well if the supply voltage (VDD) is 2.5V or greater. It 

is simple and it only needs minimum static current consumption to produce the required 

output signal swing. The drawback of the typical LVDS driver is that it is not suitable 

for low-voltage supplies (eg. VDD less than 2V). This is mainly due to the finite on-

resistance of the PMOS transistor switches and the large amount of current (nominally 

6.4mA for a signal swing of 320mV and a 50Ω termination resistance) flowing through 

the switches. The voltage drop across the resistance consumes headroom and it requires 

relatively high voltage supplies for the LVDS driver to operate properly. 

3.3.2 All NMOS Switches LVDS Dr iver  with CMFB 

One implementation similar to the typical LVDS driver was proposed in [39] and it 

is shown in Figure III.3a. Notice that the top two switches M3 and M4 are NMOS 
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transistors instead of PMOS transistors. This configuration reduces the effects of the 

charge injection at the output nodes Vop and Von. As shown in Figure III.3c, we assume 

the gate-drain capacitance of M1 and the gate-source capacitance of M4 are Cp1 and Cp4, 

respectively. Also we assume the parasitic capacitance from node Vop to ground is Cp. 

As the input data D charges (discharges) Cp through Cp1, the out-of-phase input data D’  

discharges (charges) Cp through Cp4 and it partially cancels the charge injection caused 

by D. Similar  charge injection cancellation occurs at node Von. 
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Figure III.3a LVDS driver core                        Figure III.3b LVDS driver CMFB 
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Figure III.3c Parasitic capacitors associated with the charge injection  

 

In order to achieve higher precision and lower circuit complexity, a simple low-

power common-mode feedback control was used in the driver; the topology is shown in 

Figure III.3b. The output common-mode voltage is sensed by means of a termination 

resistive divider and compared with a 1.25V reference by the differential amplifier M5 – 

M8. The fractions of the tail current IT flowing across M7 and M8 are mirrored to MU 

and ML, respectively, thus forcing Vocm ≈ 1.25V. The tail current IT is chosen to develop 

the correct voltage swing on the termination resistors. The mirroring gain K of MU/M7 

and ML/M8 is large in order to reduce the power consumption of the common-mode 

feedback circuit. The bias current IT is obtained from a reference voltage provided by an 

internal bandgap and an integrated resistor. 

This all NMOS switches LVDS driver has the similar advantages as the typical 

LVDS driver. It is simple and its static current consumption is kept to minimum if we 

neglect the current consumption of the CMFB. The simple CMFB maintains the output 

common-mode level within the specifications over the process, supply voltage, and 

temperature (PVT) variations, without external components nor trimming procedures. 
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Similarly, due to the on-resistance of the top switches, the drawback of this all NMOS 

switches LVDS driver is that it is not suitable for low-voltage supplies neither. 

This LVDS driver can operate up to 1.2Gb/s with 8-bit random data pattern. Its static 

power consumption is 43mW from a 3.3V supply (corresponds to a static current 

consumption of 13mA) and it occupies 0.175mm2.  

3.3.3 Two Switches LVDS Dr ivers 

Instead of using four switches in a bridge configuration, a LVDS driver using two 

switches in an open drain configuration for current steering was proposed in [40]. A 

simplified schematic revealing the basic idea of this LVDS driver is shown in Figure 

III.4. A reference voltage VCM and current i1+i2 are provided by an unity gain buffer. M1 

and M2 are two NMOS switches controlled by the input data. Suppose switch M1 is off, 

and the current flowing through R1 and RT is i1 and the current flowing through R2 is i2, 

then i2=3i1. Assume i1+i2=8mA, then i1=2mA and the signal swing across RT is 200mV. 

The output common-mode voltage is 1.2V.  
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Figure III.4 Two switches LVDS driver 

 

Since R1 and R2 consume voltage headroom, this two switches LVDS driver is not 

suitable for low-power supplies neither. The buffer that provides the reference voltage 

needs to provide 8mA current; its output impedance should be much less than 50Ω; it is 

a very strong buffer and its design is not trivial. This LVDS driver is compatible with 

IEEE LVDS standard [17] for reduced range links. Its static power consumption is 

23mW from a 1.8V supply and it occupies 0.022mm2. 

 

3.4. Roadmap to the Low-Voltage, Low-Power LVDS Dr ivers 

Low voltage differential signaling (LVDS) is a standardized data transmission 

format that is widely used for serial data transmissions [17]. Such LVDS formatting with 

different supply voltages is illustrated in Figure III.5.  As shown in Table III.5, a 
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differential signal is centered about a common mode voltage of 1.25V.  The maximum 

magnitude of the differential signal is 400mV.  Typically, the LVDS signal varies in 

magnitude from 1.05V to 1.45V. 
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Figure III.5 LVDS signal formatting 
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3.4.1 LVDS Dr iver  Specifications 

The LVDS specifications for some of the driver parameters are summarized in Table 

III.1.  

 

Table III.1 Specification for LVDS driver 

Symbol Parameter  Conditions Min Max Units 

|VOD| Output differential 
voltage 

Differential load, 
Rload=100Ω±1% 

250 400 mV 

VOS Output offset voltage Differential load, 
Rload=100Ω±1% 

1125 1375 mV 

RO Output impedance, single 
ended 

 40 140 Ω 

∆RO RO mismatch   10 % 

|∆VOD| 
Change in VOD between 
“0”  and “1”  

Differential load, 
Rload=100Ω±1% 

 50 mV 

|∆VOS| 
Change in VOS between 
“0”  and “1”  

Differential load, 
Rload=100Ω±1% 

 50 mV 

tfall Vod fall time, 20-80% Zload=100Ω±1% 300 500 ps 

trise Vod rise time, 20-80% Zload=100Ω±1% 300 500 ps 

 
 

As shown in Table III.1, LVDS standards pose relatively stringent requirements on 

the output common-mode voltage as well as the differential signal swing, raising 

interesting design issues if low-cost solutions with neither external components nor 

trimming procedures are required. Specifically, the output differential voltages are 

within 250mV and 400mV, and the output common-mode voltages (or output offset 
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voltage) are within 1.125V and 1.375V, with a nominal common-mode voltage of 

1.25V.  

3.4.2 Headroom Issues Associated with the Previous LVDS Dr ivers 

The typical bridged-switches LVDS driver is shown in Figure III.2b. This LVDS 

driver works well when the supply voltage (VDD) is 2.5V or greater, which is common 

for 0.25µm and 0.35µm CMOS technologies. But when the supply voltage drops below 

2V (e.g., 1.8V for 0.18µm CMOS technology), the typical LVDS driver does not have 

enough headroom in the VDD direction. With a differential output signal swing of 

400mV, as shown in Figure III.5, the signal swing is bounded from 1.05V to 1.45V, 

centered at a common-mode voltage of 1.25V. If, as allowed by the LVDS standard, the 

common-mode voltage drifts by 10% (e.g. 1.375V), then the output signal ranges from 

1.175V to 1.575V. With a 1.8V supply, there is only 225mV of headroom for the PMOS 

current source and the PMOS transistor switches. For an on-resistance of 12Ω 

(corresponds to a TSMC 0.35µm CMOS process PMOS transistor with a dimension of 

700µm/0.4µm) and a drain current of 8mA, the voltage drop across the switch is around 

96mV, leaving only 129mV drain-source voltage for the PMOS current source, which is 

apparently insufficient.  This problem is further accentuated when the supply voltage is 

less than 1.8V.  

Similarly, the other architectures discussed in section 3.3. have the same headroom 

issue in the VDD direction. For instance, for the two switches LVDS driver shown in 
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Figure III.4, R1 (R2) needs a voltage drop of  200mV for an output signal swing of 

400mV, which tightens the headroom issue. 

3.4.3 Double Current Sources (DCS) LVDS Dr iver  

A solution to the headroom issue is to remove the top two PMOS switches and 

replace the PMOS current source by two PMOS current sources, as shown in Figure 

III.6a and Figure III.6b. We call this LVDS driver Double Current Sources (DCS) LVDS 

driver. In order to produce the same signal swing, the bottom NMOS current source is 

required to sink 2Ib, which doubles the current consumption as required by the output 

signal swing. Accordingly, the embodiment of Figure III.6b consumes more power than 

the embodiment of Figure III.2b. In addition, the NMOS transistor switches and the 

bottom NMOS current source are required to be larger than the corresponding transistors 

in the embodiment of Figure III.2b. If an integrated circuit includes a plurality of LVDS 

drivers, the increased power consumption and transistor dimensions may be 

unacceptable.   
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Figure III.6a DCS LVDS driver model       Figure III.6b Possible implementation 

 

Therefore, a need exists for a low-power LVDS driver that operates at very low 

supply voltages. 

3.4.4 Switchable Current Sources (SCS) LVDS Dr iver  

Another solution to the headroom issue is shown in Figure III.7. In stead of using 

two constant current sources at the top, two switchable current sources are used here, 

and we call this new driver Switchable Current Sources (SCS) LVDS driver. Depending 

on the data input, one of the two switchable current sources conducts current. This 

current flows through the termination resistors and produces the output voltage swing. 

Notice that the bottom NMOS current source only needs to sink Ib, leading to minimum 

static current consumption. 
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Figure III.7 SCS LVDS driver model 

 

Figure III.8 shows the main principle of the SCS LVDS driver. Suppose we can 

generate a proper voltage VON  and when this voltage is applied to the gate of M1(M2), it 

conducts certain current ID, regardless of the PVT variations. Here transistors M1 and 

M2, and switches S1 and S2 act as switchable current sources. For instance, when D is 

HIGH, M2 is ON and it conducts current ID. This current ID is then used to produce the 

output voltage swing. 
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Figure III.8 Main principle of the SCS LVDS driver 

 

In order for the SCS LVDS driver shown in Figure III.8 to be practical, two issues 

need to be addressed. First, how to generate the corner-dependent reference voltage VON 

such that ID keeps at the proper value, regardless of the PVT variations? Second, since 

the PMOS switchable current sources need to conduct large currents (e.g., a drain 

current of 6.4mA is needed for an impedance of 50Ω looking at the two output nodes 

and a norminal output voltage swing of 320mV), their transistor dimensions are large as 

well as the parasitic capacitances. So another question is how to change the gate voltages 

of M1 and M2, or how to charge and discharge the parasitic capacitors at the gate of M1 

and M2 quickly? 

The above mentioned two issues are addressed in the following SCS LVDS driver 

shown in Figure III.9. This LVDS driver contains two parts: the switchable current 

source control module and the core of the LVDS driver. 
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Figure III.9 Schematic of the SCS LVDS driver with active pull up/down 

 

The left part of Figure III.9 is the switchable current source control module. It is used 

to generate a reference current (Iref) dependent voltage VON such that when VON is 

applied to the gate of M1(M2), it conducts a drain current ID proportional to Iref. Cascode 

transistor M7 and amplifier Amp forms a regulated-gain control (RGC) loop. This RGC 

loop is used to set M6’s drain voltage to VD_ref. An important observation is that the 

output common-mode voltage and signal swing must be maintained; hence the higher 

voltage of Vop(Von) is fixed, and it is defined by VD_ref(=Vocm_ref+Vo,swing/2), regardless of 

the PVT variations. Vocm is the output common-mode reference voltage, and Vo,swing is 

the required signal swing. For instance, for a output common-mode voltage of 1.25V and 

an output signal swing of 320mV, ideally the higher voltage of Vop(Von) should be 
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1.41V. By setting the drain voltage of M6 to VD_ref, we have a good matching for the 

current mirror composed of M6 and M1(M2). It is worth to mention that the switchable 

current source control module can be shared by several LVDS drivers, but independent 

buffers are used for each driver in order to minimize the signal feedthrough.  

The right part of Figure III.9 is the core of the SCS LVDS driver. The switchable 

current sources are used to generate current ID and they are composed of transistors M1 

and M2, buffer-connected amplifier Buf-A, switches S1 and S2, and the pull up/down 

circuits. The pull up/down circuits are used to quickly change the gate voltages of M1 

and M2, i.e. to quickly charge or discharge the parasitic capacitors associated with the 

node Vgate. 

The buffer-connected amplifier Buf-A is used to isolate the DC voltage VON from the 

data controlled switches. It also provides “ fine adjustment”  to the gate voltage of 

M1(M2) when the switch S1(S2) is closed, while the pull up/down circuit driven by the 

input data provides coarse control. The CMFB is used to set the output common-mode 

voltage to the desired reference voltage Vocm_ref.  

The operation of the switchable current sources is explained as follows. If data D is 

LOW, then switch S1 is ON and switch S2 is OFF. The M1’s gate voltage is pulled 

down to VON through the pull up/down circuit during the data transition while M2’s gate 

voltage is pulled up to VOFF. M1 conducts current ID and M2 is OFF. The current ID 

flows through the termination resistors and produces the signal swing.  
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3.4.5 Pull Up/Down Circuits 

A potential implementation of the pull up/down circuit is shown in Figure III.10 

[41]. It includes a pull up and a pull down circuit. Both of the pull up and pull down 

circuits are used to produce short period of current pulses at the data’s transition edges. 

These current pulses are used to charge/discharge the parasitic capacitors and so to pull 

up/down the switchable current source gate voltages.  
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Figure III.10 Active pull up/down circuit 

 

Figure III.11a and Figure III.11b show the waveforms for the data, delayed data and 

the current pulses for the pull-up and pull-down circuits. 
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Figure III.11a Pull-up circuit waveforms    Figure III.11b Pull-down circuit waveforms  

 

Let us analyze the pull up circuit and the corresponding waveforms first. By dividing 

the waveforms into four time periods A, a, b, and c, the operation of the pull up circuit 

can be explained as follows.  

(1) Period a: Both D and D_delayed are HIGH. M2 is OFF, and M1 is also OFF. 

Then node N is HIGH, M3 is OFF and the output current IOUT is zero; 

(2) Period A: D is LOW and D_delayed is HIGH. M2 is ON and M1 is OFF. Then 

Node N is LOW,  M3 is ON and the output current IOUT is non-zero; 

(3) Period b: Both D and D_delayed are LOW. M1 is OFF and M2 is ON. Then 

node N is HIGH, M3 is OFF and the output current IOUT is zero; 

(4) Period c: D is HIGH and D_delayed is LOW. M1 is OFF and M2 is ON. Then 

node N is HIGH, M3 is OFF and the output current IOUT is zero. 

Notice that a current pulse is produced only at the falling edge of the data and the 

current pulse is used to charge the paracitic capacitors and pull the switchable current 

source gate voltage up. 
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Similarly, the operation of the pull-down circuit can be explained as follows. 

(1) Period A: D is HIGH and D_delayed is LOW. M1’  is ON and M2’  is OFF. Then 

node N’  is HIGH, M3’  is ON and the ouput current IOUT is non-zero; 

(2) Period a: Both D and D_delayed are HIGH. M1’  is OFF and M2’  is ON. Then 

node N’  is LOW, M3’  is OFF and the output current IOUT is zero; 

(3) Period b: D is LOW and D_delayed is HIGH. M1’  is OFF and M2’  is ON. Then 

node N’  is LOW, M3’  is OFF and the output current IOUT is zero; 

(4) Period c: Both D and D_delayed are LOW. M1’  and M2’  are OFF. Then Node 

N’  is LOW, M3’  is OFF and the output current IOUT is zero. 

A current pulse is produced only at the rising edge of  the data and it is used to 

discharge the parasitic capacitors and pull the switchable current source gate voltage 

down. 

There are some design issues for the above disscussed pull-up/pull-down circuit. 

First the circuit itself consumes dynamic power. Second, the current produced by M3 

and M3’  is finite and the speed of the charging/discharging is a concern. Third, since the 

charging and discharging currents are produced by PMOS and NMOS transistors, 

respectively, the charge injected onto the capacitors can not be guarranted to be equal to 

the charge extracted from the capacitors, and the gate voltage change is not symmetrical. 

This difference should be supplied by the “Buffer”  as shown in Figure III.9; and this 

requires a fast buffer and also more power consumption. 
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3.4.6 Proposed SCS LVDS Dr iver  with Passive Pull Up/Down Circuit 

In stead of using active pull-up/pull-down circuits, we propose to use passive 

capacitors CPP driven by the input data for the SCS LVDS driver. The schematic of the 

complete SCS LVDS driver is shown in Figure III.12. The passive pull up/down circuit 

solves all of the above mentioned issues faced by the active pull up/down circuits. The 

capacitors CPP driven by the input data are used to pull up/down M1(M2) gate voltage 

with drastically reduced transition time and to provide coarse control over the gate 

voltage Vgate. As shown in Figure III.12, parasitic capacitor Cgs, and capacitor CPP form a 

capacitive divider. CPP is driven by the input data, therefore M1(M2) gate voltage varies 

accordingly. The waveforms of the data and the gate voltage Vgate are also shown in 

Figure III.12. It is easy to show that the M1(M2) gate voltage variation ∆Vgate can be 

expressed as: 

DD
gspp

pp
gate V

CC

C
V ⋅

+
=∆                                                                                   (42) 

where ∆Vgate is defined as ∆Vgate=VOFF –VON. 
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Figure III.12 Schematic of the proposed LVDS driver 

 

It is worth to mention that when the transistor M1(M2) is turned off, its gate voltage 

VOFF needs not to be VDD; for fast circuits, it is better for VOFF to be lower than VDD such 

that the transistor operates in subthreshold region. In this way, we can turn on/off the 

switchable current sources more quickly and also we can minimize the dynamic power 

consumption needed to charge/discharge Cpp and Cgs, as long as the current flowing 

through the “OFF” switchable current source IOFF is negligible (e.g., IOFF is less than 

320µA). 

By choosing a proper limit for IOFF, we can find the gate voltage variation ∆Vgate 

such that IOFF does not exceed this limit over the PVT variations. Then the value of the 

capacitor Cpp can be determined as: 
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∆−
∆⋅

=                                                                                          (43) 

For this design, Cgs is 6.4pF and Cpp is chosen to be 0.8pF. The current flowing 

through the “OFF” switchable current source IOFF is around 240µA and ∆Vgate is around 

200mV under typical corner. 

Compared to active pull-up/pull-down circuit [42], this passive pull up/down circuit 

is faster as a result of the capacitors used, it consumes less power, and the up/down 

voltage changes are symmetrical. With symmetrical voltage changes, the switches S1 

and S2 can be small and the speed of the Buf-A is relaxed. Also the driver’s architecture 

is simpler and so more robust. 

 

3.5. DCS LVDS Dr iver  Circuit Design 

3.5.1 DCS LVDS Dr iver  Core and CMFB 

The core of the DCS LVDS driver with the source termination resistors is shown in 

Figure III.13. Since there is enough headroom in the VSS direction, a low voltage, wide 

swing cascode current mirror is used to generate the tail current such that we can have a 

good control over the output voltage swing. The nominal tail current 2Ib is chosen to be 

12.8mA. With a 100Ω source termination and 100Ω receiver termination, the nominal 

voltage swing is 320mV.  
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Figure III.13 DCS LVDS driver core 

 

The transistor dimensions of the LVDS driver core are summarized in Table III.2. 

The transistor’s gate-source parasitic capacitances are also included in the table. Because 

of the large bias current needed, the transistor dimensions are very large, especially for 

the PMOS current sources.  

 

Table III.2 Transistor dimensions and parasitic capacitances of the DCS LVDS core 

Transistor M1 M2 M3 M4 M5 M6 

W/L (µm/µm) 600/.4 600/.4 4000/.4 4000/.4 2000/.4 2000/.4 

Cgs (pF) 0.96 0.96 6.4 6.4 3.2 3.2 
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The common-mode feedback of the driver is shown in Figure III.14. It is a simple 

single-ended differential amplifier. The CMFB tail current is 100µA and its power 

consumption is quite small. 
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Figure III.14 DCS LVDS driver CMFB 

 

3.5.2 Adaptive Current Generator  

Let’s consider the double-end terminated LVDS interface as shown in Figure III.1b. 

RT-T and RT-R are the source end termination and receiver end termination resistors, 

respectively. While the receiver end termination resistor RT-R is fixed to be 100Ω±1%, as 

specified in the LVDS standard, the source termination resistor RT-T maybe different 

from 100Ω if it is realized as an integrated POLY resistor.  

In order to have a constant voltage swing regardless of the RT-T variations, it is 

desired for Iout to have two current components: a fixed current Ifixed used to produce the 

desired voltage swing through RT-R, and an adaptive current Iadaptive used to produce the 
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same voltage swing through RT-T. The adaptive current Iadaptive can be generated by 

applying a reference voltage VREF to a reference resistor RREF, which is the same type 

integrated POLY resistor. The adaptive current Iadaptive can be expressed as: 

REF

REF
adaptive R

V
I =                                                                                                 (44) 

Since RREF varies in the same way as RT-T does under PVT variations, by properly 

choosing VREF and RREF, the adaptive current Iadaptive can produce the same desired 

voltage swing through RT-T, regardless of the PVT variations. 

An adaptive biasing current generator which generates both the fixed and the 

adaptive currents is shown in Figure III.15. It is used to generate the above described 

adaptive current Iout such that the LVDS driver output voltage swing remains at the same 

desired level, regardless the PVT variations. The adaptive biasing current generator 

consists of three parts: an adaptive current source, a fixed current source, and a current 

summer. The adaptive current Iadaptive is generated by applying a reference voltage VREF 

to a reference integrated POLY resistor RREF. The fixed current Ifixed is mirrored from 

some reference current Ireference. The two currents are summed together and the sum is 

then mirrored to the LVDS driver core tail current source.  
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Figure III.15 Adaptive biasing current source 

 

3.6. SCS LVDS Dr iver  Circuit Design 

3.6.1 SCS LVDS Dr iver  Core 

The schematic of the Switchable Current Sources LVDS driver is shown in Figure 

III.12. The transistor dimensions and the gate-source parasitic capacitances of the 

driver’s core are summarized in Table III.3. 
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Table III.3 Transistor dimensions and parasitic capacitances of the SCS LVDS core 
 

Transistor M1 M2 M3 M4 M5 

W/L (µm/µm) 4000/.4 4000/.4 200/.4 200/.4 1000/.4 

Cgs (pF) 6.4 6.4 0.32 0.32 1.6 

 

 

The pull-up/pull-down capacitors CPP is chosen to be 800fF. The parasitic 

capacitance associated with the gate of the switchable current source is around 6.4pF. 

For a supply voltage of 1.8V, the gate voltage variation ∆Vgate is around 200mV and the 

current IOFF flowing through the “OFF” switchable current source is 240µA under 

nominal conditions (while IOFF is less than 320µA under all corners). The current ID 

flowing through the “ON” switchable current source is mirrored from the reference 

current Iref and it is 6.4mA. The common-mode feedback is the same as the one used in 

the DCS LVDS driver. 

The buffer-connected amplifier Buf-A isolates the DC voltage VON from the 

switches and provides fine adjustment to the switchable current source gate voltage Vgate. 

This amplifier is implemented as a telescopic amplifier as shown in Figure III.16. 

Telescopic amplifiers have the advantages of high speed and small power consumption 

compared to typical two-stage amplifiers and folded-cascode amplifiers. Also telescope 

amplifiers provide high gain. Although telescopic amplifiers connected as unity-gain 

buffer have limited voltage swing, it is not a problem here, since the positive input of the 
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amplifier is a DC voltage and the voltage variation at the negative input is relatively 

small.  
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Figure III.16 Telescope amplifier 

 

In order to have a good matching between the reference current Iref and the current ID 

flowing through the “ON” switchable current source, it is desired for the amplifier Buf-

A to have a high DC gain. Also its offset voltage should be minimized. In this design, 

the amplifier’s DC gain is 52dB. The transistor dimensions of the input transistors M1 

and M2 are chosen to be large (1000µm/0.4µm) in order to reduce the offset voltage. 

As mention in section 3.4.6, the amplifier Buf-A needs not to be very fast because of 

the passive capacitors used, but enough transconductance and dc gain are required. The 

current consumption of the amplifier is 480µA. 
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3.6.2 SCS LVDS Dr iver  Switchable Current Source Control Module 

The switchable current source control module is used to generate a reference current 

(Iref) dependent voltage VON. The RGC loop composed of amplifier Amp and  transistor 

M7 is used to set M6’s drain voltage to VD_ref. The schematic of the RGC amplifier Amp 

is shown in Figure III.17. It is composed of two level shifters and a simple differential 

amplifier. The dc input voltage of the amplifier is high (around 1.41V), and the level 

shifters are used to shift the voltage down. Since the switchable current source control 

module is providing a DC voltage VON and the RGC loop is only used to set M6’s drain 

voltage, its DC gain and unity-gain frequency requirements are quite relaxed. The 

current drawn by the RGC amplifier is only 30µA. The reference current Iref is generated 

by an adaptive current generator as discussed in section 3.5.2. 
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Figure III.17 RGC amplifier 
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3.7. Simulation Results 

The simulation configuration for the DCS and SCS LVDS drivers is shown in Figure 

III.18. RT-T is the on-chip integrated source termination resistor and RT-R is the 

termination resistor at the receiver end. The model of the load is shown in Figure III.19. 

It includes lumped models for the ESD devices, bonding wires, and packages.  
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Figure III.18 Simulation configuration for the LVDS drivers 
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Figure III.19 Model of the load used for simulations 
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3.7.1 DCS LVDS Simulation Results 

Figures III.20 - III.23 show some of the simulation results of the DSC LVDS driver 

for a data rate of 1.25Gb/s, but with different data patterns. Specifically, Figure III.20 

and Figure III.21 show the output differential and common-mode voltages for a data 

pattern of 101010, with and without the load model, respectively. Without the load 

model, the output common-mode level presents variations of around 100mV, which is 

within the specifications (1.125V - 1.375V). The output differential signal swing is 

around 312mV, which is close to the design value (320mV) and it is also within the 

specifications (250mV - 400mV). With the load model, the output common-mode level 

presents variations of around 200mV and it is still within the specifications. While 

without the load model, the output differential voltage shows no ringing, it shows some 

ringing with the load model. This is due to the LC tanks in the load model.  

Figure III.22 and Figure III.23 show the output differential and common-mode 

voltages for data patterns of 1111100000 and 100000, respectively, both with the load 

model. It can be seen that the output differential voltage swings and the common-mode 

voltage variations are within the specifications for both data patterns.  
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Figure III.20 DCS LVDS driver output waveforms without the load model (101010) 
 

 

Figure III.21 DCS LVDS driver output waveforms with the load model (101010) 
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Figure III.22 DCS LVDS driver output waveforms with the load model (1111100000) 
 

 
Figure III.23 DCS LVDS driver output waveforms with the load model (100000) 
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3.7.2 SCS LVDS Dr iver  Simulation Results 

From the discussions in section 3.4.4, 3.4.6, and 3.6.1, we know that the key design 

issue of the SCS LVDS driver is to control the switchable current source gate voltage 

Vgate and so the corresponding drain current properly. Figure III.24 shows the simulation 

results for the switchable current source gate voltage Vgate, transistor drain current 

ID(IOFF), and the corresponding output differential voltage without the load model. The 

input data rate is 625Mb/s and the data pattern is 101010. It can be seen that the gate 

voltage Vgate and the corresponding drain current ID(IOFF) changes properly. The 

transition time is only around 240ps and it can be seen that the rising time and falling 

time of the output signal are within the specifications (300ps – 500ps). The small 

transition time is mainly due to the passive capacitors we used for the pull up/down 

circuit, and operating the switchable current sources  in subthreshold region when they 

are turned “OFF”.  The gate voltage variation ∆Vgate is around 200mV, and the drain 

current ID and IOFF are around 6.4mA and 240µA, respectively. Notice that the gate 

voltage Vgate and the drain current ID present small variations. They are due to the 

transients of charging/discharging the parasitic capacitances. The output differential 

voltage changes properly as well, and its voltage swing is around 320mV.  
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Figure III.24 Switchable current source gate voltage, drain current,  

and the output differential voltage (101010) 

 

Figures III.25 - III.28 show some of the simulation results of the SCS LVDS driver 

for a data rate of 1.25Gb/s, with different data patterns. Figure III.25 and Figure III.26 

show the output differential and common-mode voltages for a data pattern of 101010, 

with and without the load model, respectively. It can be seen that both the output 

differential signal swings and the common-mode levels are within the specifications for 

both simulations. Similar to the DCS LVDS driver, the SCS LVDS driver output 

differential voltage shows no ringing without the load model and it shows some ringing 

with the load model, which is also caused by the LC tanks in the load model. Compared 

to the simulation results of the DCS LVDS driver, the SCS LVDS driver output signal 
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presents larger rising time and falling time. This is due to the finite transition time of the 

gate voltage and drain current of the switchable current sources.  

Figure III.27 and Figure III.28 show the output differential and common-mode voltages 

for data patterns of 1111100000 and 100000, respectively, both with the load model. It 

can be seen that the output differential voltage swings and the common-mode voltage 

variations are also within the specifications for both data patterns. 

 

 

Figure III.25 SCS LVDS driver output waveforms without the load model (101010) 
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Figure III.26 SCS LVDS driver output waveforms with the load model (101010) 

 

Figure III.27 SCS LVDS driver output waveforms with the load model (1111100000) 



109 

 

Figure III.28 SCS LVDS driver output waveforms with the load model (100000) 

 

3.8. Exper imental Results 

Both the DCS  and SCS LVDS drivers have been fabricated in a 0.35µm CMOS 

process through MOSIS service, and the die areas are 0.11mm2 and 0.14mm2, 

respectively. The chip micrograph is shown in Figure III.29. The experimental results of 

the output differential and common-mode voltages as well as the eye-diagrams are 

shown in the following figures. A Pseudo Random Bit Sequence (PRBS) of 231-1 was 

chosen for the eye-diagram testing. According to the experimental results, the DCS 

LVDS driver can operate properly for a data rate up to 1.4Gb/s and the SCS LVDS drive 

can operate properly for a data rate up to 1.2Gb/s. 
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Figure III.29 DCS and SCS LVDS drivers chip micrograph 

 

3.8.1  DCS LVDS Dr iver  Exper imental Results  

Figure III.30 shows the DCS LVDS driver differential output eye diagram with a 231-

1 PRBS pattern and a data rate of 680Mb/s. The differential output signal swing is 

around 340mV and the root-mean-square (RMS) jitter is 15ps. It can be seen that the 

eyes are wide open and the driver works well. 

Figure III.31 shows the eye diagram with a data rate of 1.0Gb/s. The differential 

signal swing is also around 340mV and the RMS jitter is 36ps. Although it presents 

double traces, which is due to the asymmetry between the two single-ended outputs, the 

eyes are still wide open and the driver works well. 
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Figure III.30 DCS LVDS driver eye diagram (data rate = 680Mb/s) 
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Figure III.31 DCS LVDS driver eye diagram (data rate = 1.0Gb/s) 
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3.8.2 SCS LVDS Dr iver  Exper imental Results 

Figure III.32 and Figure III.33 show the SCS LVDS driver eye diagram with a 231-1 

PRBS at data rates of 680Mb/s and 1.0Gb/s, respectively. Their differential output signal 

swings are 340mV and the RMS jitters are 28ps and 50ps, respectively. 
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Figure III.32 SCS LVDS driver eye diagram (data rate = 680Mb/s) 
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Figure III.33 SCS LVDS driver eye diagram (data rate = 1.0Gb/s) 

 

Compared to the DCS LVDS driver eye diagrams at the same data rates, the SCS 

LVDS driver eye diagrams present larger jitter and narrower open eyes. Several factors 

contribute to the performance degradation. First, the rising and falling times of the SCS 

LVDS driver output signal are larger than those of the DCS LVDS driver output signal, 

which is discussed in section 3.7.2; larger rising time and falling time cause larger jitter. 

Second, while the drain current of the PMOS current sources in the DCS LVDS driver 

keeps constant, the drain current of the switchable current sources in the SCS LVDS 

driver presents some variations, which was discussed in section 3.7.2, and increases the 

jitter. Also, the effect of the charge injection on the driver’s output nodes is more 

pronounced for the SCS LVDS driver than for the DCS LVDS driver. While for the 

DCS LVDS driver only the NMOS switches inject charge onto the output nodes, the 

PMOS switchable current sources also inject charge onto the output nodes for the SCS 

LVDS driver. The charge injection affects the differential output signal and it contributes 
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to the jitter. Taking into count all of the above effects, the SCS LVDS driver still works 

well for data rates up to 1.2Gb/s. 

Figure III.34 shows both differential and common-mode signals for a data rate of 

300Mb/s. It can be seen that both differential and common-mode signals are within the 

specifications. Figure III.35 shows the eye diagram of the SCS LVDS driver with a 

supply voltage of only 1.6V and a data rate of 800Mb/s. We can see that the driver 

works pretty well with the very low supply voltage and at a very high data rate. 
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Figure III.34 SCS LVDS driver output signals (data rate = 300Mb/s)  

Top curve: Differential signal; Bottom curve: Common-mode signal.  
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Figure III.35 SCS LVDS driver eye diagram (VDD=1.6V; data rate = 800Mb/s) 
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3.9. Compar ison and Conclusions 

Two LVDS driver structures suitable for very low-voltage supplies are discussed. 

The DCS LVDS driver is simple and fast. If we neglect the dynamic power consumed by 

the parasitic capacitance of NMOS switches, the DCS LVDS driver power consumption 

is constant, regardless of the data patterns. A major drawback of the DCS LVDS driver 

is that its static current consumption is twice the minimum required by the output 

voltage swing. Another drawback of the DCS LVDS driver is that the transistor 

dimensions of the NMOS switches and the bottom NMOS current sources are large 

because of the larger amount of current used, so the die area and the parasitic 

capacitance are large. If an integrated circuit includes a plurality of LVDS drivers, the 

increased current consumption and the increased die area maybe unacceptable. 

The design of the SCS LVDS driver is more complex compared to the DCS LVDS 

driver, but its biggest advantage is that the static current consumption is kept to the 

minimum as required by the voltage swing. Since it is needed to charge/discharge the 

parasitic capacitance associated with the switchable current sources, the SCS LVDS 

driver power consumption depends on the data pattern, even if we neglect the dynamic 

power consumed by the parasitic capacitance of NMOS switches. The higher the data 

rate, the larger the dynamic power consumption is.  

The total current consumption (both static and dynamic) of the two LVDS structures 

for different data rates is shown in Table III.4. Notice that the dynamic power consumed 

by the parasitic capacitance of the NMOS switches has been neglected for both 

structures. While in this table the current consumption of the DCS LVDS driver only 
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consists the static tail current, that of the SCS LVDS driver includes the current drawn 

by the buffer-connected amplifier Buf-A, the dynamic current consumed by the parasitic 

capacitance of the switchable current sources, and the static tail current. It can be seen 

that for data rates up to 1.2Gb/s, the SCS LVDS driver draws much less current than the 

DCS LVDS driver. 

 

Table III.4 Current consumption for DCS and SCS LVDS drivers 
 

Data Rate (Mb/s) 625 1200 2000 

DCS Iaverage (mA) 12.8 12.8 12.8 

SCS Iaverage (mA) 8.4 9.2 10.2 

 

A comparison among these two structures and the previously reported LVDS drivers 

is shown in Table III.5. It can be seen that both the DCS and SCS LVDS drivers 

consumes less power than the previous realizations. Especially for the SCS LVDS 

driver, by dynamically switching the current sources, it reduces the power consumption 

by 60% compared to the previous implementations if the same signal swing is 

maintained. In addition, while the previously reported LVDS drivers can not operate 

properly with low-voltage supplies, both the DCS and SCS LVDS drivers are suitable 

for low-voltage supply applications, and they are still compliant to the LVDS standards 

and operate properly at very high data rates. 
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Table III.5 Comparison with the previous realizations 
 

 [9] [10] DCS SCS 

Technology 0.35µm 
CMOS 

0.18µm 
CMOS 

0.35µm 
CMOS 

0.35µm 
CMOS 

Output Voltage Swing (mV) 412 200 320 320 

Static Power Consumption (mW) 43 23 23 12.8 

Maximum Data Rate (Mb/s) 1200 622 1400 1200 

Supply Voltage (V) 3.3 1.8 1.8 1.8 

 

In addition to the low-power consumption, the other benefits of the low-voltage 

supply drivers are reduced EMI and reduced cost related to the packaging and cooling 

systems. Being able to operate with low-voltage supplies makes it possible to use the 

same supply for both the core circuits and the I/O drivers, which can simplify the circuit 

design as well as the PCB design. 
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CHAPTER IV  

CONCLUSIONS 

 

In this dissertation, two low-voltage, low-power integrated circuits used for data 

communication systems have been examined. For the low-voltage, low-power 

continuous-time linear phase filter, the most challenging requirement is the large linear 

signal swing. A pseudo-differential OTA based on transistors operating in triode region 

is used to achieve a large linear signal swing. A common-mode control circuit that 

combines CMFB, CMFF, and adaptive-bias has been proposed to control the OTA’s 

common-mode voltage. Due to the well controlled common-mode behavior, the filter’s 

total harmonic distortion is less than –44dB for a 2VPP differential input with a single 

2.3V power supply. The ratio of the root mean square value of the ac signal to the power 

supply voltage is around 31%, which is much better than previous realizations. The 

principle of the common-mode control circuit can be easily applied to the design of fully 

differential structures, and it is well suitable for low-voltage pseudo-differential 

architectures.  

Two low-voltage, low-power LVDS drivers used for high-speed point-to-point links 

have been also examined. While the previously reported LVDS drivers can not operate 

with low-voltage supplies, the proposed DCS LVDS driver and the SCS LVDS driver 

are suitable for ultra low-voltage supply applications. While the static current 

consumption is as twice as the minimum required by the signal swing, the DCS LVDS 
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driver is simple and fast. The SCS LVDS driver, by dynamically switching the current 

sources, draws minimum static current and reduces the power consumption by 60% 

compared to previous realizations. Being able to operate with low supply voltages and 

reduced power consumption, the EMI can be reduced as well as the cost related to the 

package and thermal management. Also the circuit and PCB designs can be simplified. 

The two LVDS drivers are compliant to the standards and can operate at data rates up to 

gigabits-per-second. 
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