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ABSTRACT

The record-setting 2011 Texas drought/heat wave is examined to identify physical processes, underlying

causes, and predictability. October 2010–September 2011 was Texas’s driest 12-month period on record.

While the summer 2011 heat wavemagnitude (2.98C above the 1981–2010mean) was larger than the previous

record, events of similar or larger magnitude appear in preindustrial control runs of climate models. The

principal factor contributing to the heat wave magnitude was a severe rainfall deficit during antecedent and

concurrent seasons related to anomalous sea surface temperatures (SSTs) that included a La Niña event.

Virtually all the precipitation deficits appear to be due to natural variability. About 0.68Cwarming relative to

the 1981–2010mean is estimated to be attributable to human-induced climate change, with warming observed

mainly in the past decade. Quantitative attribution of the overall human-induced contribution since pre-

industrial times is complicated by the lack of a detected century-scale temperature trend over Texas.Multiple

factors altered the probability of climate extremes over Texas in 2011. Observed SST conditions increased the

frequency of severe rainfall deficit events from 9% to 34% relative to 1981–2010, while anthropogenic forcing

did not appreciably alter their frequency. Human-induced climate change increased the probability of a new

temperature record from 3% during the 1981–2010 reference period to 6% in 2011, while the 2011 SSTs

increased the probability from 4% to 23%. Forecasts initialized in May 2011 demonstrate predictive skill in

anticipating much of the SST-enhanced risk for an extreme summer drought/heat wave over Texas.

1. Introduction

Drought and heat are no strangers to Texas. Ac-

cording to climate division data from the National

Climatic Data Center (NCDC; Guttman and Quayle

1996), the average summertime [June–August (JJA)]

temperature is higher in Texas than in any other of the

lower 48 states. Memorable Texas summertime heat

waves include 1934 during the Dust Bowl, the 1980

central United States heat wave with 107 heat-related

deaths reported in Texas (Greenberg et al. 1983), and

themore localized Texas–Oklahoma heat wave in 1998

(Hong and Kalnay 2002). The drought of 1948–57 is

the drought of record across most of Texas, and the

statewide Palmer Drought Severity Index (PDSI)

achieved a minimum of 27.80 in September 1956. Other

memorable droughts and their associated minimum PDSI

values were in 1916–18 (27.09) and 1925 (26.10).

And then came 2011. The three-month average for

June through August was 30.48C, warmer than any

previous single month. This was 2.98C above the long-

term average, nearly a factor of 2 larger than the pre-

vious record June–August departure. The heat was

accompanied by extreme drought: statewide precipi-

tation for October 2010 through September 2011 was

287 mm, a new record for driest consecutive 12 months.

The PDSI reached a new record minimum of 27.93 in

September 2011. Along with the drought and heat came

record statewide agricultural losses of $7.62 billion (all

values are in U.S. dollars) (Fannin 2012). Wildfires

burned 3 993 716 acres, almost double the previous

highest value in 20 years of statewide records, according
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to the Texas Forest Service. Commercial timber losses

from the drought totaled $755 million, of which only

13% was due to wildfire (Texas Forest Service 2012).

This paper examines the climatological context for

both the extreme precipitation and temperature con-

ditions occurring over Texas during 2011, diagnoses the

physical processes contributing to both conditions in-

cluding their interrelationship and feedbacks, and ex-

amines underlying causes with a principal purpose of

providing a predictive understanding (i.e., quantifying

the predictability). The paper assesses how various

contributing factors affected event occurrence, including

its timing and location, but especially its magnitude and

probability for record threshold exceedance, comparing

the role of natural factors to those associated with human-

induced climate change. In addition to the analysis of

observational data, the paper diagnoses initialized cou-

pled forecasts that were part of the National Oceanic

and Atmospheric Administration’s (NOAA’s) opera-

tional seasonal forecasting activities, and uninitialized

climate simulations of phase 5 of the Coupled Model

Intercomparison Project (CMIP5).

Several specific questions are considered in this study

of the 2011 Texas drought and heat wave. What pro-

cesses, whether due to natural variability or anthropo-

genic climate change,might have provided earlywarning?

Were, for instance, interannually varying sea surface

temperatures (SSTs) important, as for the 1998 heat

wave (e.g., Hong and Kalnay 2000), and to which the

1930s and 1950s central U.S. warm/dry epochs were also

sensitive (Schubert et al. 2004a,b; Seager et al. 2005;

Hoerling et al. 2009)? Did soil moisture play an appre-

ciable role in this event, given that the Great Plains is

a region of known strong land surface feedbacks on

summertime air temperature and rainfall (e.g., Koster

et al. 2004, 2010) and case studies provide evidence for

appreciable soil moisture effects in 1980 and 1998 and

during the Dust Bowl (e.g., Hong and Kalnay 2002;

Lyon and Dole 1995; Schubert et al. 2004a,b)? How did

the antecedent deficits in precipitation, which them-

selves were record setting, influence the subsequent

summer Texas heat wave intensity in light of global

observational analyses indicating that hot summer days

are much more likely after the occurrence of precipi-

tation deficits (Mueller and Seneviratne 2012)? Finally,

what aspects of the drought/heat wave were manifesta-

tions of human-induced climate change?

Presented herein is a considerably broader assessment

of the causes for the extreme Texas conditions than

would be entailed by an attribution of human-induced

climate change alone. Likewise, the study is concerned

not just with how various factors, including anthropo-

genic climate change, may have altered the probability

of exceeding a particular extreme threshold for rainfall and

temperature over Texas in 2011, but also with explaining

the fullmagnitude of the drought and heatwave intensities.

Statistical analyses of the relationships between cli-

mate change and general classes of events may provide

some gross insights on the Texas drought/heat wave

event, but there are significant uncertainties. For in-

stance, warm extremes have increased more rapidly in

recent decades compared to cold extremes over the

United States as a whole (Meehl et al. 2009), and a re-

cent synthesis report expresses medium confidence that

heat waves have lengthened and become more frequent

over many regions as a result of anthropogenic climate

change (Field et al. 2012). Yet, no systematic changes in

the annual and warm season mean daily temperature

have been detected over the Great Plains and Texas

over the 62-yr period from 1948 to 2009 (Groisman et al.

2012), consistent with the notion of a regional ‘‘warming

hole’’ (e.g., Kunkel et al. 2006). Indeed, May–October

maximum temperatures over the region have decreased

by 0.98C (62 yr)21, which is statistically significant ac-

cording to Groisman et al. The authors surmise that ‘‘It

may well be that the maximum temperature decrease

was caused by wetter warm seasons in the last decades

rather than an opposite inference.’’ Their assessment of

an increase in regional summertime rainfall is consistent

with results of a century-scale analysis that also shows

significant increases in precipitation (McRoberts and

Nielsen-Gammon 2011), and with the Intergovernmental

Panel on Climate Change (IPCC) report on extremes

(Field et al. 2012) that notes droughts have become less

frequent, less intense, and shorter in duration since

about 1950 over central North America.

It is therefore evident that neither the 2011 record

drought nor record heat wave was consistent with recent

regional trends over Texas, complicating the quantifi-

cation of overall human-induced climate change contri-

bution. Thus, a comprehensive event-specific diagnosis,

including assessing its climatological context in both

a regional and global framework, is essential for a

proper understanding of this extreme event.

The paper presents a quantitative analysis into the

anatomy of the 2011 Texas heat wave and drought, un-

dertaken in the spirit of Namias’s (1982) dissection of

the 1980 event. Section 2 describes the observational

and numerical model datasets.

Section 3 probes into potential causes for the climate

extremes including an assessment of the range of ex-

tremes that could arise solely from natural variations

and a quantification of the likely roles of both natural

and human influences on the drought and heat wave.

The paper contrasts the ability of uninitialized and

initialized climate models in simulating the extreme
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conditions over Texas during summer 2011. A summary

of results is presented in section 4, which includes a dis-

cussion of the possible overall effects of climate change

over the period spanning preindustrial times to the

present.

2. Data and methods

a. Observational data

Contiguous U.S. surface temperature and precipita-

tion for 1895–2011 are derived from NOAA’s monthly

U.S. Climate Division data (NCDC 2002). Analyses of

Texas averaged conditions are constructed by averaging

the 10 individual climate divisions available for the state.

Global monthly SST data are based on the 18 gridded
Hadley Centre Global Sea Ice and Sea Surface Tem-

perature (HadISST) product (Rayner et al. 2003). For

both datasets, seasonal departures are calculated rela-

tive to a 1981–2010 reference.

b. Climate model simulations

Four configurations of climate simulations are studied

in order to determine different aspects of the variability

in Texas temperature and rainfall. One employs a suite

of CMIP5 global coupled ocean–atmosphere models in

which external radiative conditions are fixed to pre-

industrial conditions. We analyze the results from 18

different models having integrations typically on the

order of 500 years. A more detailed analysis is conducted

of a dataset consisting of 1500 years of simulations based

on the fourth version of the Community Climate System

Model (CCSM4; Gent et al. 2011). This and other model

configurations are summarized in Table 1.

A second configuration employs a global atmospheric

model in which SSTs, sea ice, and carbon dioxide con-

centrations (but no other external forcings) are specified

to vary as observed during the period 1950–2010. This

uses the atmospheric component [Global Forecast Sys-

tem (GFS)] of the second version of NOAA’s Climate

Forecast System (CFSv2). Further, in order to assess the

statistical properties of the atmospheric response to

global SST/sea ice conditions during the period of the

Texas heat wave, we examine output from a third ad-

ditional 80-member ensemble of GFS simulations

spanning the period October 2009–September 2011.

The fourth configuration is based on the externally

forced CMIP5 simulations. We analyze monthly output

from 20 different models that were subjected to varia-

tions in greenhouse gases (GHGs), aerosols, solar irra-

diance, and the radiative effects of volcanic activity for

1880–2005 (Taylor et al. 2012). Our analysis uses single

runs from each of the modeling centers.

c. Climate model projections and predictions

Projections (uninitialized simulations) of climate con-

ditions during the 2011 Texas heat wave are based on

CMIP5 models employing the Representative Concen-

tration Pathway (RCP) 4.5 for individual greenhouse

gases and aerosols (Moss et al. 2010). We diagnose the

CMIP model runs for an 11-yr centered window (2006–

16) in order to consider a large ensemble from which the

TABLE 1. Summary of the climate simulations, predictions, and projections diagnosed in the current paper, including the nature of their

external and boundary forcings, the length of integrations, and the available ensemble size.

Type Model

Radiative

forcing SST, sea ice

Duration

(target time) Ensemble members

Preindustrial

simulation

CMIP5 Preindustrial Coupled $500 yr 1 run each for 18 models

Historical

simulation

GFSv2 Observed CO2 Observed

(AMIP)

1950–2010 12

Event simulation GFSv2* Observed CO2 Observed

(AMIP)

October 2009–September

2011

80

Historical

simulation

CMIP5 Observed

(see text)

Coupled 1880–2005 1 run each for 20 models

Projection CMIP5 RCP 4.5

(see text)

Coupled 2006–16 1 run each for 20 models

Forecast (0 lead) CFSv1 1988 CO2 Coupled 1 Jun–31 Aug 2011 120 (initialized every 6 h)

Hindcast (0 lead) CFSv1 1988 CO2 Coupled 1 Jun–31 Aug 1981–2009 15 (initialized once daily, staggered

every 2 days)

Forecast (0 lead) CFSv2 Observed and

projected CO2

Coupled 1 Jun–31 Aug 2011 120 (initialized every 6 h)

Hindcast (0 lead) CFSv2 Observed CO2 Coupled 1 Jun–31 Aug 1982–2010 24 (initialized every 6 h, staggered

every 5 days)

* Anomaly calculated relative to a 1981–2010 GFSv2 AMIP set having same CO2 as the 2011 runs.
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model’s signal and the intensity of natural internal var-

iability in 2011 can be estimated. The forcing will be

subsequently referred to as ‘‘anthropogenic forcing’’ to

denote the radiative driving associated with the pro-

jected changes in anthropogenic GHGs and aerosols,

and the impacts for 2011 will be referred to as ‘‘human-

induced’’ climate change.

Predictions (initialized forecasts) of climate condi-

tions are analyzed using the first (CFSv1; Saha et al.

2006) and second (CFSv2) generations of NOAA’s

Climate Forecast System. Apart from differences in the

resolution of the atmospheric and oceanic component

models between CFSv1 and CFSv2,1 another differ-

ence is that the CO2 conditions for the CFSv1 were held

fixed at their 1988 values for all hindcasts and real-time

forecasts, while CFSv2 has a time-evolving CO2 con-

centration. For each system, retrospective forecasts

(hindcasts) provide a reference from which forecast

anomalies for 2011 are calculated. All predictions are

for JJA seasonal means based on initialization from

May conditions. Table 1 provides details on the hindcast

and forecast procedures.

Themonthly temperature and precipitation data from

all model simulations, projections, and predictions are

interpolated to the 344 NCDC U.S. Climate Division

centroids using a simple linear inverse distance tech-

nique to facilitate comparison with the observations.

Texas averages are calculated as the area–weight of the

10 climate divisions defining the state. Unless stated

otherwise, all model and observed anomalies for 2011

conditions are calculated relative to a 1981–2010 refer-

ence climatology. There are several reasons for using

this 30-yr period. First, the various model and observed

datasets have as their common period of evaluation

1981–2010, thus making this the only period for mean-

ingful intercomparison. Second, it is standard practice in

climate monitoring to use a 30-yr period as it is long

enough to filter out interannual variations, but also

short enough to be able to respond to longer climatic

trends. Finally, operational practices of seasonal fore-

casting involve articulating anomalies relative to the

most recent 30-yr average. An assessment of observed

overall climate trends spanning the longer period of

historical data is also presented, and section 4 further

discusses estimates of the overall anthropogenic climate

change signal in which the period of reference for esti-

mating CMIP5model simulations for 2011 is themodels’

preindustrial climate.

3. Results

The 2011 heat wave was centered over Texas and

Oklahoma (Fig. 1, top), and included western portions

of Louisiana and Arkansas, southern Kansas, and east-

ern New Mexico. The Texas summer temperature of

30.48C in 2011 was an outlier with respect to conditions

during 1895–1954 that included the Dust Bowl era and

the sustained late 1940s/early 1950s drought period. It

was also an outlier relative to the recent epoch of 1955–

2010 that includes the era of rapidly increasing atmo-

spheric greenhouse gas concentrations as indicated in

the probability distribution functions (PDFs) of sum-

mertime temperature (Fig. 1, bottom right). The similarity

in statistical properties of Texas summer temperatures

between 1895–1954 and 1955–2010 is consistent with the

lack of an appreciable summertime warming trend over

the southern plains since the beginning of the twentieth

century (e.g., Kunkel et al. 2006; Fig. 1, bottom left). The

extreme magnitude of the 2011 event thus would not

have been anticipated from any appreciable century-

scale trend in the historical time series of Texas summer

mean temperatures or their variability, similar to the

situation that occurred in relation to the 2010 Russian

summer heat wave (Dole et al. 2011). Likewise, the se-

vere deficits in precipitation during 2011 would not have

been anticipated from century-scale trends, which were

actually toward wetter conditions (McRoberts and

Nielsen-Gammon 2011).

a. The role of randomness

We address the question of whether an event as ex-

treme as occurred in 2011 might have been anticipated

(at least in a statistical sense) if a longer-term record

were available. In such a case, relying on a limited ob-

servational data record could result in significantly

underestimating the probability of an extreme heat

wave or, put another way, overestimating how rare such

events would be. This is precisely the recipe for a ‘‘cli-

mate surprise.’’

We test this possibility by calculating the statistics of

100-yr block maxima for Texas summertime tempera-

tures occurring in the preindustrial simulations of

CMIP5. Figure 2 shows the histogram (gray bars) of the

115 hottest summers occurring in consecutive, non-

overlapping 100-yr samples. There is substantial vari-

ability in the magnitude of 1 in 100-yr summer warm

extremes in these simulations, ranging from a low value

of 11.28C departure to a high value of 148C departure.

The observed 2011 event is thus seen to fall well within

this distribution, which also brackets the values for the

observed 1895–2010 prior record. The fact that 2011 had

a heat wave magnitude much greater than occurring in

1 The atmospheric component of CFS, the Global Forecast

System (GFS), uses a spectral truncation of 62 and 126 waves in

version 1 and 2, respectively.
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the prior 116-yr observational record could thus be

reconciled, at least in part, with the inadequacy of ob-

servational data and sampling noise. There are un-

certainties, however, in the CMIP5 estimates of such

extreme Texas heat wave magnitudes, stemming in part

from the fact that individual models have interannual

variability of Texas summer temperatures that is ap-

preciably greater than and also some that is appreciably

less than observed. The histogram should therefore not

be viewed as having been drawn from a homogeneous

population. Several individual models having long in-

tegrations (on order of 1000 yr) also yield spreads in

their 100-yr block maxima heat waves analogous to that

shown for the entire multimodel distribution. In par-

ticular, a 1500-yr-long simulation of CCSM4 was ana-

lyzed separately, in part because of the excellent

model representation of climatological mean summer

Texas temperatures (27.88C compared to 27.48C ob-

served) and the realism of its interannual variability

(standard deviation of 0.88C compared to 0.78C ob-

served). The range among the 15 samples of CCSM4

block maxima heat waves was11.58 to138C, consistent
with the multimodel spread.

The range of 100-yr block maxima extreme event

magnitudes is almost certainly greater than indicated

by the histogram alone, the latter having been drawn

from a finite sample of the models’ population. Figure

2 addresses this further by superposing upon the his-

togram two probability distribution functions, one a

fittedGaussian (red curve) and the other a nonparametric

fit. It is evident that the Gaussian curve is not a particu-

larly good fit to these extreme values, consistent with

expectations from generalized extreme value theory,

although again the fact that the data are not drawn from

FIG. 1. (top) The observed June–August (JJA) 2011 averaged surface temperature departures (8C), (bottom left) the time series of JJA

Texas surface temperature departures (8C), and (bottom right) the PDFs of the JJA Texas surface temperatures for two subperiods of the

historical record: 1895–1954 (blue curve), and 1955–2010 (red curve). The observed 2011 JJA Texas surface temperature is shown in gray

tick marks. The data source is the NCDC U.S. Climate Divisions, and departures are relative to 1981–2010 means. The PDFs are non-

parametric curves constructed using the R software program, which utilizes a kernel density estimation and a Gaussian smoother.
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a homogeneous population sample must be recognized

also. Whether based on the histogram or the curve fits,

the results in Fig. 2 suggest that natural variability alone

appears capable of producing heat wave magnitudes as

large as (or larger than) observed in 2011.

To have illustrated, based on CMIP5 simulations, that

natural variability appears capable of producing ex-

treme heat waves as large as or larger than observed in

2011 is of course not the same as stating that natural

variability accounts for the total observed magnitude of

this particular event. This does, however, confirm that

the observed 116-yr record is insufficient to delineate the

extremes of natural variability.

The extreme heat waves in the CMIP5 simulations,

though statistically random events, were accompanied

by a coherent pattern of global SST evolution. To il-

lustrate the evolution of such a pattern, we use the very

large sample of CCSM4 runs. In addition to the attri-

butes of having a realistic Texas region climatology, this

model is also suitable for analysis because of the realistic

pattern of tropical SST variability (Gent et al. 2011),

to which Texas climate is well known to be sensitive.

Figure 3 (top) shows the composite global SST and U.S.

precipitation anomalies that were coincident with the

summertime occurrences of the 1 in 100 year heat wave

events. Extreme southern plains dryness is seen to ac-

company these heat waves, as was noted also in 2011 and

during past Texas heat waves. Dryness is also noted in

the model over the Pacific Northwest, though these de-

partures, shown as standardized anomalies, are small in

an absolute sense because they occur during that re-

gion’s climatological dry season. The JJA SST anoma-

lies in the tropical equatorial Pacific are not particularly

extreme, though they are part of a pattern typical of the

waning phases of La Niña events, including cool tropical/

subtropical SSTs in most basins, and a distinctive North

Pacific SST anomaly pattern. Antecedent October–May

SST composite conditions for these heat wave events

illustrates a mature La Niña structure (Fig. 3, bottom

left), and a similar La Niña pattern occurs in several

other CMIP5 models that were examined (not shown).

Likewise, the antecedent U.S. precipitation anomaly

pattern (Fig. 3, bottom right) shows dryness over Texas

and the Gulf Coast region, a feature that is consistent

with known global climate anomalies associated with

La Niña (e.g., Kiladis and Diaz 1989). A similar evo-

lution of cold Pacific SSTs accompanied the 2011

Texas heat wave, and the combination of antecedent

and contemporaneous dryness was likewise a particu-

lar feature of the 2011 Texas heat wave. It should be

noted that the tropical Atlantic SSTs in the CCSM4

heat wave composite for preindustrial runs are cold,

which is opposite to the warm conditions occurring dur-

ing the 2011 heat wave, as discussed further in the next

section.

b. The role of forcing

Suites of climate simulations are diagnosed to address

how anthropogenic forcing, SST forcing, and soil mois-

ture forcings contributed to the 2011 extreme event. It

should be noted that SST and soil moisture conditions

in 2011 likely possess some anthropogenic component,

aspects of which are discussed further below. Figure 4

illustrates the observed pattern of global SST anomalies

for summer 2011 (top left) and for the preceding seasons

(bottom left). The patterns of SST anomalies are similar

to known patterns of natural coupled ocean–atmosphere

variability. For instance, the antecedent conditions con-

sisted of tropical Pacific cold SSTswith peak anomalies of

21.58C, a horseshoe pattern of warm anomalies stretch-

ing poleward from the equatorial west Pacific, and cold

anomalies extending along the west coasts of North

and South America that are characteristic of a mature

La Niña event. The tropical SST anomalies weakened

considerably by summer as La Niña waned. On the

other hand, warm SST anomalies exceeding10.58C that

FIG. 2. Histogram of the temperature departures (8C) for the

hottest Texas summers occurring in consecutive, nonoverlapping

100-yr samples of CMIP5 preindustrial simulations. The block

maxima analysis is based on 18 different CMIP5 models, most of

which have at least 500-yr-long simulations. The prior record

observed summertime Texas departure during 1895–2010 in-

dicated by short green tick marks, and the 2011 new record

summer departure indicated by long green tick marks. The red

PDF is the Gaussian fitted curve to the histogram, while the blue

PDF is the nonparametric curve constructed using the R software

program, which utilizes a kernel density estimation and a Gaussian

smoother.
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covered the tropical Atlantic Ocean throughout this

period were atypical of La Niña. The 2011 warmth of the

tropical Atlantic Ocean was more likely related to a

combination of lower-frequency behavior that may have

included natural multidecadal Atlantic variability and

an externally forced global warming trend (Ting et al.

2009).

While no explicit experiments are conducted in this

study that constrain evolution of soil moisture, cumu-

lative precipitation serves as a proxy indicator for soil

moisture. TheU.S. summer 2011 precipitation departures

(Fig. 4, top right) and the antecedent deficits accumu-

lated during the prior eight months of the water year

(Fig. 4, bottom right) were less than 50%of normal, each

breaking records for their driest periods since 1895.

These dry conditions are contrary to observed long-term

trends in the region, which consist of decreased dryness,

with droughts becoming less frequent, less intense, and

shorter in duration (Field et al. 2012).

It is not surprising that the hottest summer coincided

with the driest summer over Texas in 2011 given the

well-known inverse correlation between tempera-

ture and precipitation over this region (e.g., Madden

and Williams 1978) and various other evidence for

strong soil moisture feedbacks on summer climate

(e.g., Senevirante et al. 2006; Fischer and Schär 2010;

Hirschi et al. 2011). However, the extreme magnitude of

the heat wave cannot be reconciled with the extreme

summer dryness alone, at least not in a linear sense.

Despite the strong inverse relation between Texas

summer rainfall and temperature (Fig. 5), a prediction

based on this historical data fails to anticipate the

extreme magnitude of the summer temperature when

accounting for the extreme coincident precipitation

deficit. This is indicated by the large displacement be-

tween the JJA 2011 observed conditions and the linear

fit, even giving reasonable consideration for the scatter

about the linear relation.

There is reason to posit that the relation between

temperature and precipitation may be a nonlinear

function of the soil moisture deficit, for instance as found

during summer over southeastern Europe (Hirschi et al.

FIG. 3. (left) The 15-case composite SST (8C) and (right) U.S. precipitation anomalies (% of climatology) based on

the 1-in-100-yr hottest summertime Texas heat wave events occurring in a 1500-yr simulation of CCSM4. The ex-

periment is an unforced, preindustrial simulation. Shown are (top) contemporaneous conditions for JJA and (bot-

tom) antecedent conditions for October–May. All anomalies are relative to the CCSM4 climatology.
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2011). Also, analyses of historical Texas temperature

and precipitation data by Mueller and Seneviratne

(2012) find an asymmetrical impact of antecedent drying

on the probability of hot summer days, with the hot

tail of the temperature distribution more affected by

precipitation/soil moisture deficits. Furthermore, aside

from the predictive component of temperatures related

to antecedent soil moisture impacts, there is also a po-

tential impact of human-induced warming over Texas in

2011.

Figure 6 compares the June–August 2011 observed

contiguous U.S. precipitation and surface temperature

anomaly patterns (top) with the ensemble mean anom-

alies from the Atmospheric Model Intercomparison

Project (AMIP; middle) and CMIP5 (bottom) simula-

tions (relative to 1981–2010). The forced response to the

actual SST conditions captures several of the principal

regional features of the 2011 climate conditions. The

AMIP simulations indicate, in particular, that the pat-

tern of above normal temperature and below normal

rainfall focused on the Texas area was part of a regional

sensitivity to that year’s SST conditions. Cold tropical

Pacific SSTs were likely an important factor in causing

southern plains dryness as affirmed in model experi-

ments that have assessed U.S. climate sensitivity to

separate ocean basin forcing (e.g., Schubert et al. 2009).

Likewise, climate experiments studied by Findell and

Delworth (2010) reveal that warm tropical Atlantic

SSTs also contribute to southern plains drying, although

that sensitivity is weaker than the influence of tropical

Pacific SSTs.

In contrast, no such regional specificity emerges

in response to the anthropogenic forcing alone. The

CMIP5 simulations indicate a mostly uniform surface

warming response that spans the entire contiguous

United States, indicating that the Texas region was not

particularly susceptible (relative to adjacent regions)

to the change in anthropogenic forcing. Further, there

is nomaterial sensitivity of summer mean precipitation

to the anthropogenic forcing over the United States

as a whole for 2011. Nor do the CMIP5 simulations

indicate appreciable sensitivity of antecedent winter

and spring precipitation over the United States (not

shown).

FIG. 4. (left) Observed SST anomalies (8C) and (right) U.S. precipitation anomalies (% of climatology), for (top)

contemporaneous conditions for JJA 2011 and (bottom) antecedent conditions for October 2010–May 2011. All

anomalies are relative to an observed 1981–2010 climatology.
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The AMIP forced experiments suggest that a 11.18C
warm signal existed during summer over Texas as a

consequence of the particular global ocean conditions

in 2011, which implies that approximately 40% of the

magnitude of the Texas heat wave (12.98C) might have

been anticipated as a mean response to forcing related

to the specific ocean conditions. The CMIP forced ex-

periments further suggest that a 10.68C warm signal

existed during summer over Texas as a consequence of

the projected anthropogenic GHG and aerosol condi-

tions in 2011, which implies that relative to 1981–2010

about 20% of the magnitude of the Texas heat wave

might have been attributable to such forcings. The

characteristics of these PDFs are summarized in Tables 2

and 3 and discussed further in section 3d. Suffice it to

state here that the forcing associated with observed SSTs

greatly increased the probability for an extreme dry and

hot summer over Texas in 2011, considerably more so

than did anthropogenic forcing.

To what extent can the seasonal responses in the

AMIP and CMIP simulation suites be interpreted as

representing separate and independent forcing effects?

While much of the pattern of ocean conditions in 2011

was consistent with natural internal variability, some

fraction of the anomaly patterns likely also included a

climate change component, and as such the AMIP re-

sponses are not necessarily signatures of internal ocean

variability alone. Regarding rainfall, however, the re-

sults do lend themselves to an interpretation of separate

physical forcing factors. In particular, the AMIP simu-

lated drying over the Texas region is likely due to nat-

ural SST forcing alone insofar as the CMIP simulations

do not yield a discernible precipitation response. This is

consistent with the results of other modeling studies that

find the global SST trends produce only weak pre-

cipitation responses over the continental United States.

(Schubert et al. 2009). Regarding temperature, the

AMIP simulated warming over the Texas region likely

includes a human-induced component via anthropo-

genic forcing of SSTs; however, the majority of the

AMIP simulated warmth resulted from the aforemen-

tioned drying signal and the physical relationship be-

tween precipitation deficits and hot summers (e.g.,

Mueller and Seneviratne 2012) The Texas warming in

the CMIP simulations is partly due to the direct effect of

changed radiative forcing on the region’s temperature

(a factor not included in the AMIP simulation for 2011),

and an indirect effect related to human-induced ocean

warming (Hoerling et al. 2006, 2008; Dommenget 2009;

Compo and Sardeshmukh 2009).

How robust are the signals derived from this partic-

ular suite of model simulations? The structural un-

certainty in each signal that would arise from model

biases cannot be determined from the present suite

of model runs. In particular, additional experiments

employing different atmospheric models also run in

AMIP mode would need to be analyzed to assess the

uncertainty in SST/sea ice signals. Likewise, ensembles

of each of the 20 CMIP5 models would be required to

estimate the uncertainty in the human-induced climate

change response. The current study provides a single

indication of the probable human-induced signal in

2011 climate conditions, derived by ensemble averaging

single runs of each CMIP model. Additional analyses

described further below, however, suggest that this CMIP5

ensemble mean signal is a reasonable estimate of the

anthropogenic forcing of Texas summertime tempera-

tures, at least for 2011 relative to 1981–2010.

Aside from estimating the mean value of the forced

response, it is also important to diagnose the variability

about that mean and thereby assess how deterministic

the 2011 Texas extreme event was with respect to forc-

ing. Was the observed occurrence of an extreme heat

wave and drought the only outcome possible over Texas

in 2011 for the particular conditions of boundary and

external forcings? Was it the most likely outcome?

Could the JJA 2011 conditions have been even more

severe? To address such questions, Fig. 7 shows the

frequency distributions of the simulations of JJA 2011

and of the reference period 1981–2010 for AMIP (top)

FIG. 5. The historical relationship between JJA Texas averaged

rainfall departures (% of climatology) and surface temperature

departures (8C). Each dot corresponds to a summer during 1895–

2010, and the 2011 value is indicated by the bluewagonwheel. Inset

values are for the correlation R and the slope of the linear fit ex-

pressed as degree Celsius per percent precipitation departure.
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and CMIP5 (bottom). The considerable spread evident

in each of the probability distribution functions reveals

the appreciable role of random variability in Texas

summer climate. For instance, consider the PDFs for

2011 based on the AMIP simulations. Because each of

the 80 members was identically forced, the spread of the

distributions is entirely due to internal atmospheric

noise. Thus, while the odds of a cold summer were much

reduced in 2011 compared to 1981–2010, three of the

model simulations did produce colder than normal

summer conditions over Texas in 2011. The CMIP5

spread for 2011 simulations is greater than the AMIP

spread in part because the latter is constrained by a single

particular SST conditions, but also because the former

has overall greater summertime temperature variability

(see Table 3), and an even larger fraction of CMIP5 runs

FIG. 6. (left) The JJA 2011 U.S. precipitation anomalies (% of climatology) and (right) surface temperature

anomalies (8C): (top) observed, (middle) ensemble mean AMIP simulated, and (bottom) ensemble mean CMIP5

simulated. The AMIP results are based on an 80-member GFS average for 2011, and the CMIP results are based on

a 220-member average using 20 different models for an 11-yr window of JJA conditions centered on 2011. All

anomalies are relative to the respective dataset’s 1981–2010 climatology, and the observed scale of plotted anomalies

is double that shown for the simulations. The referenceAMIP simulation uses the sameGHGconcentrations as those

specified in the 2011 experiments.
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yielded cold summer conditions over Texas in 2011. The

important indication offered by these PDFs is that

a wide range of possible climate outcomes for Texas in

2011 would have been consistent with, and thus possible

under, the influences of forcings. In particular, the ob-

served extreme hot temperature and drought conditions

were not the most probable outcomes in 2011, even

though the probability of such extremes was greatly in-

creased owing especially to the SST conditions of 2011

(see section 3d). These results once again suggest the

important role played by random internal variability,

consistent with our analysis of the preindustrial climate

simulations.

c. Physical process understanding

Here we examine the relationship between Texas

summertime temperature and precipitation variability

in the context of how their linkages may have been

sensitive to the influence of the specific 2011 SST and

GHG forcings. Diagnosis of AMIP and CMIP models is

conducted to specifically test whether precipitation

deficits amplified the hot tails of the summertime tem-

perature distribution. An intercomparison of these

forced experiments will also address how the observed

record-breaking heat wave arose from physical pro-

cesses tied to naturally varying ocean conditions versus

those tied to increased greenhouse gas and aerosol

concentrations. Regarding effects of the latter forcings,

the question of detection of a human-induced climate

change over Texas is also explored, despite the absence

of a century-long warming (or drying) over Texas noted

in the prior section.

Figure 8 presents the scatter relationship between

Texas summer temperature and rainfall in AMIP (top)

and CMIP (bottom) simulations for both the 1981–2010

reference period (left) and the actual forcing con-

ditions of 2011 (right). A strong negative correlation

between temperature and rainfall, with a magnitude

quite similar to that found in observations, occurs in all

the simulation suites. Having the advantage of a large

sample of model realizations (720 for CMIP, 360 for

AMIP), one can discern nonlinearity in the temperature–

rainfall relationship occurring at the tails of the dis-

tribution. This is characterized by a larger sensitivity

of Texas summertime temperature per incremental

precipitation change for dry conditions compared to

wet conditions. We also note that the CMIP5 samples

include several heat wave occurrences larger in mag-

nitude than the 2011 event during 1981–2010, consis-

tent with the appreciably greater variance in surface

temperature in CMIP5 models than is observed (see

Table 2).

It is plausible therefore that amplification of the hot

tails of the summertime temperature distribution was

an important physical process associated with the ex-

treme 2011 Texas event. Additional evidence to this

effect is seen in the scatter relationships for the model

simulations of summer 2011. Note in particular that

virtually all AMIP realizations were warm and dry

(Fig. 8, top right). A small cluster of AMIP realizations

TABLE 2. The left column shows the simulated JJA 2011 Texas

precipitation anomalies for the indicated suite of models based on

their ensemble average 2011 simulations relative to a 1981–2010

model reference. The standard deviation of simulated JJA pre-

cipitation is the average of the 1981–2010 runs and the 2011 runs.

Event probability and return period in the third column is for the

exceedance of a less than 50% of normal precipitation deficit.

Event probabilities and return periods in the fourth column are for

exceeding this same threshold, but based on the distribution of

simulations for 2011. The probabilities are calculated from the

nonparametric curves of the simulated frequency distributions

shown in Fig. 7 for CMIP and AMIP, and Fig. 13 for CFS.

Model

JJA 2011

Texas

PANOM

Model

std dev

Event probability

(1981–2010)

Event probability

(2011)

Return period Return period

CMIP5 10.2% 36.8% 6% 6%

17 yr 17 yr

AMIP 233.9% 36.3% 9% 34%

11 yr 3 yr

CFSv1 221.5% 36.1% 7% 16%

14 yr 6 yr

CFSv2 29.1% 33.4% 5% 12%

20 yr 8 yr

TABLE 3. The left column shows the simulated JJA 2011 Texas

surface temperature anomalies for the indicated suite of models

based on their ensemble average 2011 simulations relative to a

1981–2010 model reference. The standard deviation of simulated

JJA surface temperatures is the average of the 1981–2010 runs and

the 2011 runs. Event probability and return period in the third

column is for the exceedance of a 2 standardized departure

warming over Texas for the 1981–2010 distribution of simulations.

Event probabilities and return periods in the fourth column are for

exceeding this same threshold, but based on the distribution of

simulations for 2011. The probabilities are calculated from the

nonparametric curves of the simulated frequency distributions

shown in Fig. 7 for CMIP and AMIP, and Fig. 13 for CFS.

Model

JJA 2011

Texas

TANOM

Model

std dev

Event probability

(1981–2010)

Event probability

(2011)

Return period Return period

CMIP5 10.68C 1.28C 3% 6%

33 yr 17 yr

AMIP 11.18C 0.98C 4% 23%

25 yr 4 yr

CFSv1 10.78C 0.88C 3% 10%

33 yr 10 yr

CFSv2 10.88C 0.78C 2% 17%

50 yr 6 yr
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produced summertime temperature departures near the

observed heat wave magnitude, and these realizations

were also among the driest. By contrast, the 2011 CMIP5

scatter is characterized by a shift in only the temperature

probability relative to its 1981–2010 population. How-

ever, one again sees a few individual members as hot as

observed, and these are also among the driest CMIP

realizations. Severe drought thus appears to be a neces-

sary ingredient for occurrences of Texas summertime

extreme heat. While the SST forcing of 2011 increased

the probability for below normal precipitation, it is im-

portant to recognize also the substantial random com-

ponent of the summertime conditions over Texas as

revealed by the PDF spreads in Fig. 7 and the scatterplot

in Fig. 8. This is quantified in Table 2, which indicates

that the AMIP mean drying signal of 234% was equiv-

alent to only one standardized departure of the model’s

overall interannual variability.

FIG. 7. PDFs of the (top) AMIP and (bottom) CMIP5 simulated summer Texas (left) precipitation anomalies

(% of climatology) and (right) surface temperature (8C). Each panel plots two curves, one for the frequency dis-

tribution of simulations during 1981–2010 and the other for the frequency distribution of simulations during 2011. For

CMIP5, 600 (220) individual simulations are used for 1981–2010 (2011). For AMIP, 360 (80) individual simulations

are used for 1981–2010 (2011). The vertical gray tick marks denote the observed 2011 anomalies. All departures are

relative to a 1981–2010 reference. The PDFs are nonparametric curves constructed using the R software program,

which utilizes a kernel density estimation and a Gaussian smoother.
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We also find that SST forcing exerted an even

greater effect on antecedent moisture conditions.

Texas cumulative precipitation departures from October

2010 through August 2011 (Fig. 9) are plotted for the

80-member averaged AMIP data (thick black line) and

for observations (thick red line). About 80% of the mag-

nitude of observed deficits accumulated during fall and

winter can be explained by an SST-forced signal. Such

antecedent dry conditions likely contributed signifi-

cantly to the ensuing summer heat wave intensity, and

FIG. 8. The (top) AMIP and (bottom) CMIP5 simulated relationship between JJA Texas averaged rainfall de-

partures (% of climatology) and surface temperature departures (8C). Left (right) panels show the relationship for

1981–2010 (2011). Each dot corresponds to the temperature/precipitation for a particular model realization. For

AMIP, there are 360 (80) realizations for 1981–2010 (2011). For CMIP, there are 720 (220) realizations for 1981–2010

(2011). Inset values are for the correlation R and the slope b of the linear fit expressed as degree Celsius per percent

precipitation departure. The blue wagon wheel denotes the observed JJA 2011 values.
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perhaps also to the summer rainfall deficits themselves,

as illustrated from further analysis of the very large

ensemble of historical AMIP data. Shown in Fig. 10 is

the model’s Texas summer rainfall and precipitation

sensitivity to October–May antecedent precipitation

based on data from the 1950–2010 AMIP simulations,

and a scatterplot is constructed from the 10% (72 sam-

ple) driest antecedents (red dots) and the 10% (72

sample) wettest antecedents. These simulations suggest

several indications for land surface feedbacks, which

may have contributed to the observed extreme summer

conditions, although other factors (e.g., the SST evolu-

tion) could also have contributed. First, there is nearly

a 128C difference in the mean summer temperature

between the dry versus the wet antecedent ensemble

means. Also, the majority of dry (wet) antecedent cases

experienced dry (wet) summers. Finally, there is a greater

sensitivity of summer temperature to incremental rain-

fall departures in the environment of prior cumulative

low moisture conditions compared to prior cumulative

wet conditions, consistent with the nonlinearity seen in

the temperature/precipitation scatterplots of Fig. 8.

Recalling that the observed October–May 2011 Texas

precipitation deficits were the most severe in the his-

torical record, these results imply that the probability

for a record-breaking summer heat wave in 2011 (and

also a further reduction in rainfall during summer) was

strongly elevated by the antecedent drought as implied

also by the empirical analysis of Mueller and Seneviratne

(2012).

We present two additional analyses that illustrate

the significance of antecedent drought conditions of

October–August 2011 on the subsequent summer tem-

perature extremes. One is of the precipitation behavior

in the subset of 2011 AMIP simulations that, by chance,

produced the hot summer extremes in Texas having

magnitudes close to the observed heat wave intensity.

The precipitation evolution in these eight runs (the 10%

hottest) is indicated by orange lines in Fig. 9. It is ap-

parent that all but one of the hottest realizations also

experienced the most severe cumulative drought con-

ditions for both antecedent and coincident periods,

and that among all 80 members their particular rainfall

traces were most similar to observations. A second anal-

ysis evaluates the Texas summertime temperature signal

associated with such a particular condition—both ante-

cedent and coincident summer dryness—but extracted

from the much larger suite of historical AMIP runs.

Shown in Fig. 11, this estimated ‘‘drought-induced

temperature signal’’ is about 128C, and the shift of the

distribution relative to summertime temperatures un-

conditioned by precipitation is visibly apparent.

Finally, we consider the evidence for a human con-

tribution to the 2011 Texas summer heat wave magni-

tude. The probability of hot summers has increased over

many land areas as a result of a human contribution to

mean warming over the last century (e.g., Jones et al.

2008). But the southern plains, sometimes referred to as

a warming hole region, has been a noteworthy exception

where no long-term warming has been observed (e.g.,

FIG. 9. Observed (red curve) and AMIP ensemble mean (thick black curve) cumulative

Texas precipitation departures (mm) from October 2010 through August 2011. Thin black

curves are for each of the 80 members of the GFS AMIP simulations. Orange curves are the

cumulative precipitation departures for the subset of eight warmest Texas JJA 2011 GFS re-

alization. Departures are computed relative to the 1981–2010 mean of the respective datasets.
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Kunkel et al. 2006; Knutson et al. 2006; Groisman et al.

2012), with such processes as natural variability (e.g.,Wang

et al. 2009), anthropogenic aerosols (e.g., Leibensperger

et al. 2012), and land use change (e.g., Lawrence et al.

2012) being among various possible factors. One might

thus argue that it is premature to attribute any fraction

(large or small) of the heat wave intensity to effects of

anthropogenic forcing in 2011, when in fact no long-term

warming has been detected. Of course, to the extent that

the lack of warming may be due to masking by strong

natural variability rather than due to a lack of any cli-

mate change signal (e.g., Kunkel et al. 2006), then esti-

mates of such signals via independent data (e.g., CMIP5

simulations) is valid. Some studies argue, however, that

because of model biases, simulated regional climate

responses to anthropogenic forcing may be unreliable

over the Great Plains in summer (e.g., Pan et al. 2004).

Also, long-term regional climate trends are sensitive to

the patterns of SST change (e.g., Hoerling et al. 2010,

2012) and, as such, biases in CMIP SST responses could

likewise contribute to differences between observed and

CMIP simulated regional climate anomalies (Shin and

Sardeshmukh 2011).

Yet, while acknowledging the validity of these various

concerns, analysis of the time-evolving summertime

surface temperature trends over Texas based on various

datasets (Fig. 12) suggests that our initial estimate of a

roughly 10.68C human-induced warming contribution

to 2011 conditions (relative to a 1981–2010 reference)

based on CMIP5 data alone is reasonable. The dark box-

and-whisker plots show the median trend value and the

spread among the 20 CMIP5 models for periods as long

as 110 years (left) and as short as 30 years (right), with

all periods ending in 2010. Green circles denote the

observed trends. Warming is observed to emerge in

recent decades, and this observed behavior is consis-

tent with an accelerated warming trend found also in

the CMIP5 simulations. This is further consistent with

an accelerated summertime Texas warming trend in

recent decades occurring in the AMIP simulations,

shown in the light box-and-whisker plots based on the

12-member GFS historical runs. These various lines of

evidence support a view that the region’s summertime

temperatures have been warming over the last 30- to

40-yr period, in a manner that appears to be consistent

both in timing and in magnitude with anthropogenic

forcing.

No long-term warming has been observed during

summer over Texas for periods of analysis greater than

about 50 years, however. Furthermore, there is little

FIG. 10. The simulated relationship between JJA Texas

averaged rainfall departures (% of climatology) and surface

temperature departures (8C) for wet (dry) Texas antecedent

October–May conditions in green (red) dots. The data are

based on the 12-member suite of 1950–2010 GFS AMIP simu-

lations, and the plotted values are for the 10% wettest (driest)

October–May realizations corresponding to 72 samples for each

extreme.

FIG. 11. PDFs of GFS simulated JJA Texas surface temperature

based on a joint condition of dry antecedent and dry summer

conditions (red curve), and for unconditional model realizations

(blue curve). The red PDF is comprised of the 41 realizations that

were among both the driest 20%October–May and the driest 20%

JJA conditions. The blue PDF is the unconditioned frequency

distribution comprising all 720 model realizations. Gray tick marks

denote themagnitude of the observed JJA 2011 Texas temperature

departure.
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consistency between the observed and CMIP5 trends

over these longer time scales, with the observed trends

often residing outside the range of the 20-model CMIP5

simulations. The true anthropogenic warming signal

during summer over Texas that spans the entire twen-

tieth century is thus highly uncertain given the appre-

ciable differences between model and observations, and

further research is required to understand the reasons

for these discrepancies.

Some have argued that warming trends at local-to-

regional scales in the past 30 years are probably largely

anthropogenic (e.g., for Moscow; Rahmstorf and

Coumou 2011). But such a notion risks conflating the true

external signal of climate change with natural coupled

ocean–atmosphere variability. In the case of Texas, if

one were to embrace the observed trend value during

1981–2010 period as an estimate of the human-induced

warming, for instance, then the inferred warming would

be only half the magnitude of the CMIP5 ensemble mean

signal. This could be justified if indeed the trends were

strongly deterministic in their relationship with radi-

ative forcing. In such a scenario, the spread among the

CMIP5 model trends would be an indication of differ-

ent model sensitivities (implying biases) to the forcing,

while the observed trend would be the true signal of

change. However, analysis of trends based on the AMIP

realizations indicates that much of the spread in trends,

post-1950, is actually due to random variability (see

Fig. 12). Since each run of this AMIP ensemble is forced

identically by the observed SST, sea ice, and CO2 vari-

ability, and utilizes the samemodel, the range of trends is

solely due to atmospheric noise.Given that the amplitude

of this range approximates the range among the 20 CMIP

model trends, the latter is thus likely also mainly due to

noise, rather than being an expression of different plau-

sible sensitivities to anthropogenic forcing and biases.

There is no reason, therefore, to assume that a single

observed regional trend is also not a combination of a

true signal and an appreciable noise component (e.g.,

Deser et al. 2012).

Based on the datasets available in this study, the only

reliable estimate of the signal due to external forcing is

the ensemble mean of all models, rather than any single

model run or the observed trend. In this regard, it is

important that the CMIP5 and AMIP median Texas

warming trends are virtually identical for the 1981–2010

period. Given that the AMIP suite was forced with the

actual SSTs, the agreement with CMIP5 implies that

aforementioned CMIP model biases in SST simulations

were either random across individual models, and thus

minimized via ensemble averaging, or that the Texas

summertime temperature sensitivity to such biases is

low. It cannot be discounted entirely that the agreement

is in part fortuitous, and that CMIP5 systematic errors in

sensitivity to external forcing have opposed the effects

of natural oceanic variability. Nonetheless, the agree-

ment of CMIP andAMIPmedian trendsmay provide an

independent and consistent estimate for the probable

FIG. 12. Observed (green dot) and simulated (box/whiskers) trends in JJA Texas surface

temperature (8C decade21). Trends are computed for different beginning years from (left to

right) 1901 to 1981, staggered at 10-yr increments, while the end year for all trend calculations is

2010 Thus, the longest trend period is for a 110-yr period and the shortest for a 30-yr period.

Dark (light) box/whiskers display the CMIP5 (AMIP) simulation trends based on a 20-member

(12-member) ensemble. The extreme values of the model simulated trends are shown by the

red and blue asterisks.
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magnitude of the human-induced mean warming of

Texas summer temperatures.

d. Event probability

How did various factors operating in 2011 alter the

probability of breaking the prior Texas heat wave re-

cord? In their diagnosis of the 2003 western European

heat wave, Stott et al. (2004) developed a procedure for

estimating how human-induced climate change affected

the probability of a record event. Here we employ sim-

ilar methods but broaden the scope to reveal not only

how anthropogenic forcing affected event probability,

but also how the particular state of 2011 global SSTs

affected event probabilities. As in Stott et al. (2004),

we attempt to avoid selection bias by examining the

threshold corresponding to the prior observed Texas

heat wave magnitude (11.68C), rather than the par-

ticular 2011 event magnitude (12.98C). A threshold of

11.68C corresponds to about a 2 standard deviation

departure (2s) in observations, and is thus also more

amenable to sampling using the ensemble sizes that are

available to this study. For precipitation we select a

threshold of250% departure, for which there had been

four prior summertime event occurrences at least as dry

in the 1895–2010 observational record (Fig. 5), although

this threshold is considerably less than the 270% de-

parture during summer 2011.

The results for precipitation are summarized in Table

2, which suggests a vastly different effect of anthropo-

genic greenhouse gas forcing versus the 2011 SST forc-

ing on the likelihood of extreme drought. The CMIP5

projections indicate no material change in the dry event

probability relative to 1981–2010. The AMIP simulations

indicate a nearly fourfold increase in event threshold

exceedance, with an expected return time of 11 years

during 1981–2011 becoming only about 3 years under

the influence of 2011 SST states. We interpret this re-

sult as revealingmainly the strong LaNiña effect on the

southern plains rainfall identified in numerous previous

observational and modeling studies. The apparent lack

of a dry tail sensitivity in CMIP5 projections appears

consistent with an overall lack of a mean rainfall

change. It is interesting to note, however, that the

CMIP5 projections suggest an increase in the proba-

bility of extreme wet summer seasons during 2011 (see

Fig. 7). In contrast, the 2011 SST patterns severely re-

duce the probability of an extreme wet Texas summer,

while simultaneously enhancing the probability of se-

vere drought.

Table 3 shows how the probability of exceeding a 2s

heat wave threshold had changed in 2011. The absolute

value of the threshold varies somewhat among the

model simulations because their different standard

deviations for temperature (whereas rainfall standard-

ized departures were more similar). The table indicates

that while anthropogenic forcing likely increased the

probability of a heat wave eclipsing a prior record value

(from 3% to 6%), the event probability was increased

much more by the particular global SST conditions oc-

curring in 2011. In the AMIP runs, the probability of

exceeding a 2s heat wave is estimated at 23% during

summer 2011, compared to only a 4% probability during

1981–2010. The AMIP runs present a consistent picture

for the joint change in extreme drought and heat wave

probabilities with both conditions greatly increasing

their probabilities in 2011, physically consistent with

the known strong influence of dryness on summertime

temperature (e.g., Mueller and Seneviratne 2012). By

comparison, the CMIP5 simulations reveal a different

physical process operating. The effects of greenhouse

gas and aerosol forcing act to increase summertime

temperatures through radiative processes while not

materially altering mean precipitation and thus not ini-

tiating the strong surface energy balance responses and

feedbacks that lead to heat waves during droughts as

occurred in 2011.

The current analysis has been conductedwith respect to

a 1981–2010 reference, and in this sense all of the changes

in probabilities can be meaningfully intercompared

among various model simulations. One might, nonethe-

less, raise the more general question of how anthropo-

genic forcing has changed the event probability in 2011,

but relative to an earlier reference frame such as pre-

industrial climate. We address this question further in

section 4. Here it is important to recognize the difficulty

in interpreting the meaning of such analysis given the

lack of an overall century-scale temperature trend over

Texas. While our analysis supports a view that most of

the potential summertime Texas warming due to human

influences has likely emerged after 1980, there are large

discrepancies between CMIP and observed warming

trends over longer periods.

e. Predictability

How predictable was the extreme event of 2011, and

can our scientific understanding of the causes for this

extreme event be utilized to improve the effectiveness of

societal responses via early warnings (e.g., Lubchenco

and Karl 2012)? The results from the NOAA/National

Centers for Environmental Prediction (NCEP) opera-

tional prediction systems are shown in Fig. 13. These

predictions warned in advance that Texas—more so

than any other region over the United States in summer

2011—was especially prone to having a hot/dry summer

as a consequence of the particular meteorological, oce-

anic, and soil moisture settings in May 2011 from which
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FIG. 13. NOAA/NCEP operational dynamical predictions of JJA seasonally averaged (left)

precipitation anomalies (% of climatology) and (right) surface temperature anomalies (8C).
PDFs are as in Fig. 7. Spatial anomaly maps are as in Fig. 6, but based on the ensemble mean of

the CFS forecasts. For CFSv1, 435 (124) individual hindcasts (forecasts) are used for 1981–2009

(2011). For CFSv2, 696 (124) individual hindcasts (forecasts) are used for 1982–2010 (2011). All

hindcasts and forecasts are based on initializations from May analyses, and anomalies are

calculated relative to the period of available hindcast climatologies for all May initializations.
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each forecast system was initialized. Nonetheless, the

distributions of model realizations still affirms the rare

and highly unlikely outcome that was observed over

Texas, even when the prediction systems were con-

strained by observations as near to the event as May

2011. The predicted mean temperature anomalies av-

eraged for Texas were10.78 and10.88C and the mean

predicted precipitation departures were222% and29%,

for CFSv1 and CFSv2, respectively. CFSv2 forecasts

begun even earlier, based on April 2011 initializations,

also consistently predicted elevated summer tempera-

tures across the southern Great Plains (Luo and Zhang

2012).

While recognizing the rarity of 2011 event occur-

rences within the ensemble of CFS predictions, the

changes in probability of exceeding prior record values

was greatly elevated in both systems relative to their

event frequencies in the hindcast period. Based on

analysis of the PDFs in Fig. 13, Table 2 summarizes the

estimated frequencies and return periods for summer

rainfall less than 50% of the models’ climatological

rainfall (note from Fig. 5 that four such occurrences

were observed during 1895–2011). The event likelihood

in 2011 predictions roughly doubled, and an event of this

intensity is estimated to have an 8-yr return period for

the 2011 initialized conditions compared to a 20-yr re-

turn period during the hindcast period of 1981–2010. For

a heat wave magnitude threshold roughly equal to the

prior observed Texas summertime record, the predicted

probability for 2011 more than tripled relative to the

overall probability in the hindcast period.

A more detailed analysis of the dynamical predictions

will be the subject of a separate study, though a few

additional features of the predictions are worthy of

mention here. First, the magnitude of summer rainfall

departures is more than twice as large in CFSv1 com-

pared to CFSv2, yet the two predictions produce similar

mean warming over Texas.While recognizing numerous

fundamental differences in these models that could have

bearing on Texas climate variability, one notable dif-

ference is that CFSv2 includes time-varying CO2 and

thus includes a factor contributing to warming that is

absent in CFSv1. Second, although both prediction

systems were initialized with the May 2011 soil moisture

conditions, and thus in principle incorporated the full

intensity of the cumulative antecedent observed drought,

the uninitialized AMIP simulations (using GFSv2) yield

warmer and drier summer conditions. Reasons for this

difference are not entirely known, although substantial

errors in the CFS SST forecasts for June–August (not

shown) appear to have forfeited some SST impacts on

the summertime Texas extremes that were incorporated

in the AMIP forcing with observed SSTs. Finally, no

formal verification of the predicted changes in extreme

event thresholds has been presented herein, and indeed

such an undertaking will be difficult given the rare nature

of such extreme events. In the interim, large multimodel

approaches will be essential that can provide some in-

dication of confidence and uncertainty based on model

reproducibility.

4. Summary and concluding remarks

Through a physically based analysis of observations

and climate models, this study sought to identify the

causes for and the predictability of the extreme U.S.

drought and heat wave of 2011, whose epicenter was

Texas but whose extent consumed adjacent southern

plains states as well. Placing the event within a climato-

logical context revealed no appreciable century-long

change in summer temperature and an increase in rainfall

over Texas. Thus, no strong evidence for a detected

change toward either hotter or drier summers was found

for Texas specifically, consistent with prior studies re-

vealing the central and southern United States to be

a ‘‘warming hole’’ region overall (Kunkel et al. 2006;

Groisman et al. 2012). Our study demonstrated that the

principal physical process contributing to the record

setting heat wave magnitude was the occurrence of a

commensurate extreme precipitation deficit, both dur-

ing the preceding winter/spring, and continuing during

summer 2011. Our diagnosis of climate simulations

further confirmed that the probability of record setting

summer temperatures over Texas in 2011 was consid-

erably elevated by the condition of antecedent rainfall

deficits (dry soils), consistent with empirical studies on

shifts in probabilities for hot summers conditioned by

precipitation deficits (Hirschi et al. 2011; Mueller and

Seneviratne 2012).

The paper addressed the underlying causes for the

precipitation deficits, demonstrating from diagnosis of

AMIP simulations that much of the antecedent and

summer precipitation deficits were reconcilable with the

region’s sensitivity to the particular global SST patterns

during 2011. Various lines of evidence indicated that the

drought-producing SST forcing was primarily associated

with a naturally varying state of the oceans, especially

related to La Niña conditions consisting of a cold trop-

ical east Pacific Ocean to which numerous prior obser-

vational modeling studies have shown strong southern

plains rainfall sensitivity. Analysis of AMIP simulations

also revealed a fourfold increase in the 2011 probability

(relative to chances during 1981–2010) that Texas sum-

mertime rainfall would be lower than 50% of normal. In

contrast, our diagnosis of CMIP5 projections for 2011

revealed no change in either seasonal mean Texas rainfall
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or the probability of extreme dry threshold exceedances,

indicating that the drought, and the appreciable fraction

of observed summer heat attributed to the dryness, was

primarily unrelated to anthropogenic climate change.

About 80% (2.38C) of the observed 2011 Texas heat

wave magnitude of 2.98C was estimated to have resulted

from natural variability, principally through physical

processes associated with the severe rainfall deficits.

About 0.68C (20%) of the heat wave magnitude relative

to 1981–2010 mean was estimated to be attributable to

human-induced climate change, based on analysis of

time-evolving summertime surface temperature trends

over Texas in observational and various model data.

Diagnosis of seasonal forecast systems revealed that

much of the regional pattern and an appreciable fraction

of the magnitude of both the summertime Texas rainfall

deficits and heat wave were predictable from May 2011

initializations. These predictions for 2011 indicated ap-

preciably elevated probabilities of exceeding prior re-

cord heat wave and severe drought thresholds relative to

the hindcast period of 1981–2010. They captured much

of the change in event probabilities identified in the ret-

rospective AMIP simulations which were uninitialized,

butwere forcedwith the actual observed ocean conditions.

This attribution study had a purpose and goal con-

siderably broader than just an assessment of the role of

overall human-induced climate change, and examined

causes more generally with a goal to advance predictive

understanding. Thus, to the extent that natural vari-

ability played a key role in the extreme event (as it did in

2011), we attempted to reconcile the characteristics and

features of the underlying natural processes with a ca-

pacity to predict their evolution and impacts. To this

end, we analyzed initialized coupled forecast systems

that were part of NOAA’s operational seasonal fore-

casting activities, the diagnosis of which was comple-

mented by a study of uninitialized CMIP5 simulations.

The use of a recent 30-yr reference period is standard

procedure for expressing forecast anomalies in oper-

ational seasonal prediction practices, and is also the

standard World Meteorological Organization (WMO)

guideline for diagnosing seasonal climate anomalies in

routine monitoring practices. Yet, the more narrow ques-

tion of the attributable effect of overall human-induced

climate change since preindustrial times is clearly also

of interest.

We have conducted an additional analysis of CMIP5

simulations to assess how extreme heat wave event

probabilities for preindustrial climate conditions changed

in those same models but under the influence of ex-

ternal radiative conditions circa 2011. We determined

that the mean summertime temperature increase rela-

tive to preindustrial conditions is 11.28C from such an

analysis, double the estimated warming relative to

1981–2010. Using a generalized extreme value (GEV) fit

to the histogram of model simulations (not shown), a

Texas heat wave magnitude equal to 2011 observations

(2.98C) is found to have roughly a 250-yr return period in
these preindustrial climate simulations, whereas such

an event is found to have a 10-yr return period for 2011.

There are various difficulties in interpreting such an

analysis and assessing its relevance to understanding ob-

servations. First, no summertime warming over Texas in

the long historical record has been detected, and we em-

phasized in this paper that the CMIP5 model-simulated

Texas warming over the last century is inconsistent with

observations. In the absence of a detected warming over

the long record, and in light of the uncertainty in the

magnitude of climate change in this region based on

CMIP5 experiments, these estimates of changes in event

probability drawn solely from CMIP5 must be viewed

with great caution. Second, the CMIP5 models have

considerably greater summertime temperature variabil-

ity over Texas than is observed, with the consequence

that greater event probabilities for temperature thresh-

olds are estimated from the models than likely exist in

nature. To illustrate the considerable sensitivity of these

probabilities to exceedance thresholds used, we repeated

the above analysis using the observed standardized de-

parture for 2011 (roughly 4s, or 58C for model equiva-

lent values), rather than employing the observed heat

wave of 2.98C as the threshold. The GEV analysis of

model simulations for 2011 then implies a roughly 350-yr

return period, far different from the approximately 10-yr

return period estimated when using the observed heat

wave magnitude as a threshold value. In this latter anal-

ysis based on standardized departures, one would draw

the conclusion that a heat wave event of the intensity of

2011 was indeed a very rare occurrence.

Ultimately, the question of greatest concern is whether

a drought/heat wave as severe as occurred over Texas in

2011 can be anticipated. Our results have some impli-

cations for addressing such a concern. First, the results of

this analysis provide evidence for a considerable sea-

sonal predictability of an event of the type observed

during 2011 owing to the impact of slow modes of ocean

variability associated with the El Niño/La Niña phe-

nomenon (and perhaps also Atlantic SSTs). As such,

a capability for useful early warning several seasons in

advance exists. Second, our analysis reveals that intrinsic

variability of the atmosphere alone has the capacity to

generate drought and heat waves of considerable mag-

nitude and was important in determining the ultimate

magnitude of this event. There is currently very limited

predictability of such atmospheric-driven extremes at

lead times beyond the time scale of useful weather
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predictability of about 2 weeks. And, finally regarding

the possible impacts of human-induced climate change

and its connection with anticipating the 2011 event,

several specific science challenges for the region of the

southern plains remain. In particular, there is a need for

a complete and physically based explanation for why

there has been a lack of overall warming during the last

century over this region; providing reasons for the overall

increase in rainfall would be key to understanding such

a lack of warming.
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