
ARCHITECTURES AND DESIGN OF VLSI MACHINE LEARNING SYSTEMS

A Dissertation

by

QIAN WANG

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Peng Li
Committee Members, Gwan Choi

Sam Palermo
Yoonsuck Choe

Head of Department, Miroslav M. Begovic

August 2016

Major Subject: Computer Engineering

Copyright 2016 Qian Wang

ABSTRACT

Quintillions of bytes of data are generated every day in this era of big

data. Machine learning techniques are utilized to perform predictive analysis on

these data, to reveal hidden relationships and dependencies and perform

predictions of outcomes and behaviors. The obtained predictive models are used

to interpret the existing data and predict new data information.

Nowadays, most machine learning algorithms are realized by software pro-

grams running on general-purpose processors, which usually takes a huge amount

of CPU time and introduces unbelievably high energy consumption. In compar-

ison, a dedicated hardware design is usually much more efficient than software

programs running on general-purpose processors in terms of runtime and energy

consumption. Therefore, the objective of this dissertation is to develop efficient

hardware architectures for mainstream machine learning algorithms, to provide a

promising solution to addressing the runtime and energy bottlenecks of machine

learning applications. However, it is a really challenging task to map complex

machine learning algorithms to efficient hardware architectures. In fact, many

important design decisions need to be made during the hardware development

for efficient tradeoffs.

In this dissertation, a parallel digital VLSI architecture for combined SVM

training and classification is proposed. For the first time, cascade SVM, a pow-

erful training algorithm, is leveraged to significantly improve the scalability of

hardware-based SVM training and develop an efficient parallel VLSI architec-

ture. The parallel SVM processors provide a significant training time speedup

and energy reduction compared with the software SVM algorithm running on a

ii

general-purpose CPU.

Furthermore, a liquid state machine based neuromorphic learning processor

with integrated training and recognition is proposed. A novel theoretical measure

of computational power is proposed to facilitate fast design space exploration of

the recurrent reservoir. Three low-power techniques are proposed to improve

the energy efficiency. Meanwhile, a 2-layer spiking neural network with global

inhibition is realized on Silicon.

In addition, we also present architectural design exploration of a brain-inspired

digital neuromorphic processor architecture with memristive synaptic crossbar

array, and highlight several synaptic memory access styles. Various analog-to-

digital converter schemes have been investigated to provide new insights into the

tradeoff between the hardware cost and energy consumption.

iii

DEDICATION

To my parents

iv

ACKNOWLEDGEMENTS

First and foremost, I am very grateful to have had the opportunity to work

with a great research advisor Dr. Peng Li and would like to thank him with my

deep respect for his valuable advice and consistent support during my doctoral

studies at Texas A&M University. Dr. Li has actively encouraged me to move

forward with new innovative research ideas and willingly shared his profound

knowledge, deep insight and creative inspiration so I could learn the way of re-

search from him. Also, I would like to thank my committee members Dr. Gwan

Choi, Dr. Sam Palermo and Dr. Yoonsuck Choe for their constructive discussions

and suggestions on my research, making this dissertation possible.

My appreciation goes to all the members in our research group for their knowl-

edge, discussion and friendship. Particular thanks go to Yingyezhe Jin and Youjie

Li for the simulation and hard implementation supports. Many friends in the de-

partment have made my stay of four years in College Station a pleasurable and

unforgettable experience. I also want to acknowledge all my other friends who

have consistently helped me at A&M for their considerable assistances.

From deep down in my heart, I would like to thank my parents and other

family members for their devotion, support and encouragement.

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . ix

LIST OF TABLES . xvii

1. INTRODUCTION . 1

1.1 A Parallel Digital VLSI Architecture for Support Vector Machine . . 7
1.2 Energy Efficient Parallel Neuromorphic Learning Systems 9
1.3 Emerging Memory Technologies for Neuromorphic Processors . . . 13
1.4 Outline of the Dissertation . 15

2. BACKGROUND AND RELATED WORKS 16

2.1 Support Vector Machine and Hardware Implementations 16
2.2 Brain-Inspired Neuromorphic Computing 27

2.2.1 Biological Motivation . 29
2.2.2 Artificial Neural Networks . 31
2.2.3 Spiking Neural Networks . 37
2.2.4 Reservoir Computing and Liquid State Machine 44

2.3 Emerging Memristor Technology for Neuromorphic Computing . . 49
2.3.1 Memristor Crossbar Array Based Synaptic Storage 49

3. A PARALLEL DIGITAL VLSI ARCHITECTURE FOR SUPPORT VEC-
TOR MACHINE . 55

3.1 Cascade SVM Training Algorithm . 55
3.2 Proposed VLSI Architecture and Hardware Implementation 58

3.2.1 Efficient Mapping from the Cascade SVM Algorithm to the
Hardware Architecture . 58

vi

3.2.2 Multi-layer System Bus Architecture 63
3.2.3 Design of Flexible SVM Units 67
3.2.4 Flexible Processing Configurations 71
3.2.5 Global Convergence Checking and Classification 74

3.3 Experimental Results . 76
3.3.1 Layout and Area Breakdown 77
3.3.2 Comparison between 90nm SVM Designs and a 45nm Gen-

eral Purpose Processor . 80
3.3.3 Impact of Cascade SVM Feedbacks 84
3.3.4 Comparison between Temporal Reuse, Fully Parallel and Hy-

brid Configurations . 85
3.3.5 Classification for Different Data Sets 88
3.3.6 Solution for Higher-dimensional Problems 89

3.4 Summary . 91

4. ENERGY EFFICIENT PARALLEL NEUROMORPHIC ARCHITECTURES
FOR SPIKING NEURAL NETWORKS . 93

4.1 General Purpose LSM Learning Processor Architecture and Theo-
retically Guided Design Space Exploration 94
4.1.1 Overall Hardware LSM Architecture 95
4.1.2 Implementation of the Digital Neurons 96
4.1.3 Theoretically Guided Design Space Exploration 100
4.1.4 Energy Efficient Realization for Multiple Tasks 102
4.1.5 Low-Power Design Techniques for Each Task 107
4.1.6 Proposed Approximate Adder 108
4.1.7 Summary . 113

4.2 A Parallel Neuromorphic Architecture for a 2-layer Spiking Neuron
Network with Global Inhibition . 115
4.2.1 Serial Baseline Neuromorphic Processor Architecture 118
4.2.2 Parallel Architectures . 122
4.2.3 Experimental Results . 126
4.2.4 Summary . 132

5. ARCHITECTURAL EXPLORATION OF NEUROMORPHIC PROCESSORS
WITH MEMRISTIVE SYNAPSES . 134

5.1 The Digital Neuromorphic Processor Architecture with Memristor
Synaptic Array . 134

5.2 The Proposed Architectures . 138
5.2.1 Memory Access Styles . 140
5.2.2 Analog-to-Digital Conversion 141
5.2.3 Optimized Storage Strategy for Feedforward Networks 147

vii

5.2.4 The Baseline Building Components of the Propose DNP Ar-
chitectures . 150

5.2.5 The Parallel Neuron Integration 153
5.3 Experimental Results . 154
5.4 Summary . 165

6. CONCLUSION AND FUTURE WORK . 166

6.1 Conclusion . 166
6.1.1 A Parallel Digital VLSI Architecture for Cascade SVM 166
6.1.2 General-purpose LSM Learning Processor on FPGA 167
6.1.3 A Parallel Digital Neuromorphic Processor with STDP Learn-

ing Rule . 168
6.1.4 Architectural Exploration of Digital Neuromorphic Proces-

sor with Memristive Synaptic Array 168
6.2 Future Work . 169

REFERENCES . 171

viii

LIST OF FIGURES

FIGURE Page

1.1 The scenarios, in which the devices may not be continuously con-
nected to the network, require edge computing which can enable
analytics and knowledge generation to occur at the source of the data. 3

1.2 Comparison of a 32-bit general purpose CPU and a dedicated hard-
ware design for a specific task. 4

1.3 The critical considerations when mapping a complex software al-
gorithm to a dedicated hardware design. 5

2.1 Soft margin SVM with all support vectors highlighted by dashed
circles. ©IEEE 2014 . 18

2.2 Overall digital SVM architecture presented in [17]. 21

2.3 The implementation of the dsvm block. 22

2.4 Overall block diagram of the analog SVM architecture in [20]. 23

2.5 The block diagram of a single vector unit. The input current IC
represents the regularization parameter C. The Gaussian and ex-
ponential functions are realized by MOS circuits working in the
sub-threshold region. 24

2.6 The cascade SVM classifier proposed by [19]. 26

2.7 Biological neuron anatomy [59] . 30

2.8 Artificial neuron model. The input signals are first multiplied with
the corresponding synaptic weights. Then the summation of these
products is converted to the output signal by an activation function. 33

2.9 Popular activation functions used in artificial neuron models. 34

2.10 Feedforward artificial neural network architecture 36

2.11 Overview of the spiking neural network. 38

ix

2.12 Behavior of the spiking neural network. 39

2.13 Spike timing dependent plasticity. 41

2.14 Block diagram of neuromorphic chip proposed by [46] 43

2.15 Block diagram of neuromorphic chip proposed by [47]. 44

2.16 The structure of a typical LSM. ©IEEE 2015 45

2.17 Block diagram of the neuromorphic architecture in [37]. PE repre-
sents the Processing Element. 46

2.18 Block diagram of the neuromorphic architecture in [38]. PE repre-
sents the Processing Element. 48

2.19 Memristive device structure (left) and variable resistance model
(right). 50

2.20 Block diagram of neuromorphic chip with memristor crossbar array. 52

2.21 Memristor level partitions by equal conductance. 53

2.22 Block diagram of neuromorphic chip with memristor crossbar array. 54

3.1 Schematic of a binary Cascade SVM. The whole data set is split into
smaller subsets and each one is fed as the inputs to the SVMs in the
first layer. Then the results (support vectors) will be combined two
by two and fed as the inputs to the following layers. The SVMs can
be seen as filters which extract support vectors from the input data
set. A feedback path is added to guarantee the global convergence.
©IEEE 2015 . 56

3.2 The proposed architecture of cascade SVM.©IEEE 2015 59

3.3 An example of SVM processing unit reuse for cascade SVM and the
corresponding data flow diagram. (a)-(c) correspond to the train-
ing of different layers in the 3-layer cascade tree in Fig. 3.1, respec-
tively. ©IEEE 2015 . 61

3.4 Address mapping from virtual address space to physical address
space with MMUs. ©IEEE 2015 . 63

x

3.5 The Cascade SVM hardware implementation using the multi-layer
system bus: (a) the operating control flow for a 4-SVM design, (b)
the address bus, (c) the data buses for read and write, respectively,
(d)-(f) the configurations of the address bus for different layers.
©IEEE 2015 . 64

3.6 The proposed flexible SVM processing unit with three 32-bit fixed-
point multipliers and one Gaussian function lookup table. ©IEEE
2015 . 69

3.7 Mapping the Cascade SVM algorithm to the temporal reuse design
and hybrid design: (a) temporal reuse of one SVM unit, (b) the hy-
brid design which involves both parallel processing and temporal
reuse. The dashed lines correspond to the address bus. ©IEEE 2015 72

3.8 The process of KKT checking for global convergence. The addresses
of the training results from the previous iteration is stored in the
MMU1s or MMU2s. When one pass through the cascade is com-
pleted, an SVM processing unit tests each sample for KKT violators
based on equations (3.6). The physical addresses of the KKT viola-
tors are then saved in the same MMUs. ©IEEE 2015 75

3.9 Layouts of the 8-core SVM design and the hybrid design.©IEEE 2015 78

3.10 Area breakdown analysis for two implementations: (left) single SVM
unit, and (right) fully parallel 8-core SVM.©IEEE 2015 79

3.11 Comparison of the runtime speedups of the proposed cascade SVM
designs. The SVM processing units in the multi-core designs run
fully in parallel. ©IEEE 2015 . 81

3.12 Comparison of the energy reduction of the proposed cascade SVM
designs. The SVM processing units in the multi-core designs run
fully in parallel. ©IEEE 2015 . 83

3.13 The decision boundary obtained from the fully parallel 8-Core hard-
ware design of Cascade SVM. The training set involves 400 2-D
samples. ©IEEE 2015 . 85

3.14 Comparison between temporal reuse, full parallel, hybrid design
and the flat SVM in terms of speedup, area efficiency and power
efficiency. ©IEEE 2015 . 87

xi

3.15 The proposed kernel arithmetic logic unit which supports the data
set of any dimensions. ©IEEE 2015 89

3.16 Comparison of the runtime and energy consumption. Left: train-
ing runtime speedups. Right: energy reduction of the proposed
cascade SVM design. SVM units in the multicore designs run fully
in parallel. ©IEEE 2014 . 91

4.1 A liquid state machine supporting multiple tasks. ©IEEE 2015 . . . 94

4.2 An exemplary reservoir implementation with 135 digital liquid neu-
rons. In this example, each liquid element (LE) receives up to 8
external input spikes and up to 16 internal spikes. ©IEEE 2015 . . . 95

4.3 An exemplary readout stage with 26 digital output neurons. In this
example, each output element (OE) receives all 135 spike trains
from the RU. The address space of a BRAM is split into multiple re-
gions for different tasks. W represents the synaptic weight. ©IEEE
2015 . 97

4.4 (a) the digital neuron. The shaded blocks only exist in OE. (b) the
implementation of SRU based on (4.3). PISO (Parallel-in and Serial-
out) is realized by a shift register. ©IEEE 2015 99

4.5 Illustration of the proposed design methodology. ©IEEE 2015 100

4.6 (a) The full-load operating mode in which the RU is fully utilized
for “hard tasks”. (2) The light (energy saving) mode in which cer-
tain liquid neurons are powered off for “simple tasks”. ©IEEE 2015 102

4.7 Benchmarks: (a) speech samples of 10 digits. (b) handwritten dig-
its. (c) images of 15 traffic signs. (d) speech samples of 26 letters.
©IEEE 2015 . 103

4.8 Comparison between two theoretical measures in terms of their cor-
relation with recognition performance of the different tasks. The
saturation points of the proposed measure are highlighted with
dashed circles, corresponding to the predicted reservoir sizes in
Step 1 of the design methodology. ©IEEE 2015 105

4.9 Area/Power breakdown of the hardware LSM, which demonstrates
the digital adders make a large portion in terms of both hardware
cost and power consumption. 108

xii

4.10 In addition to pi , the proposed approximate adder also realizes gi .
The carry-in of each subadder is generated by a simple logic called
Carry Prediction (CP) and is based on both p signals and g signals. . 110

4.11 Each Carry4 block is made of 4 multiplexers and 4 XOR gates. It
receives p, a and cin from the other logics in Fig. 4.10, which are
realized by LUTs. 111

4.12 Energy consumption and recognition rates of different designs. The
percentage energy reductions of the proposed technique are same
as the percentage power reductions of Table 4.6 as the execution
times of all designs are the same. 114

4.13 The neurons labeled 1-784 are the excitatory neurons in the input
layer, while the neurons labeled 785-1584 are the excitatory neu-
rons in the output layer. The other neurons are the inhibitory neu-
rons. 116

4.14 Pseudocode of the learning algorithm based on STDP (left). Flow
diagram of the digital neuromorphic processor (right). NOS repre-
sents the neuron operation stage and LOS repre- sents the learning
operation stage. The LOS is necessary for training, but not required
for recognition. 117

4.15 The block diagram of the serial baseline architecture without paral-
lel computing. The synaptic weights W ’s are stored in a single-port
block RAM, and the synaptic parameters A+ and A− are stored in
another two block RAMs. 119

4.16 The proposed LIF Arithmetic Unit (LAU) and Neuron Unit (NU).
LAU is used to update the membrane potentials of all the neurons.
NU is used to store the membrane potential, firing time and firing
activity flag of each neuron. The synaptic weights are stored in the
BRAM. 120

4.17 The proposed STDP unit which is used to update the synaptic weights.
Tf ire and S are obtained from the neuron unit. W , A+ and A− are
from the BRAMs. 121

xiii

4.18 The detailed timing diagram of the baseline design. A large num-
ber of biological time steps need to be processed for a single input
pattern (i.e. a handwriting digit image) in the training phase. Each
iteration is divided into NOS and LOS. The updating of membrane
potentials during NOS is parallelized, which consumes 96.2% of
the total runtime. 123

4.19 Parallel processing schemes for N excitatory neurons in the input
layer and M excitatory neurons in the output layer: simultaneous
updates of K membrane potentials with synaptic weights stored in
K parallel block RAMs. 124

4.20 The proposed parallel neuromorphic processor which develops K-
way parallel processing based on LIP. K block RAMs are used to
store synaptic weights, and K LAUs work in parallel to update K
membrane potentials at the same time. 125

4.21 Top-level schematic of the proposed neuromorphic processor run-
ning on Xilinx ML605 evaluation board, with the synaptic weights
stored in block RAMs. The communication between PC and FPGA
is realized by an UART cable. 126

4.22 The 800 receptive fields obtained after the training over 60,000
MNIST images of handwritten digits. 129

4.23 Comparison of different designs in terms of runtime and energy
consumption. The solid curve represents the designs using stan-
dard booth multipliers. The dashed curve represents the designs
using the approximate multipliers. (a) is for the training mode,
while (b) is for the recognition mode. 131

5.1 Block diagram of the baseline digital neuromorphic processor ar-
chitecture. 135

5.2 Proposed synaptic crossbar array and CMOS / memristor hybrid
synaptic cell. Parallel voltage pulses are generated by the R/W
pulse generator and used for the read and write of all cells in the
row (column). 136

5.3 Flow diagram of the digital neuromorphic processor. 138

xiv

5.4 Different memory access styles for neuron stage: (a) Read out synap-
tic weights column by column with N integration elements (IEs);
(b) Read out synaptic weights column by column with only one
shared IE; (c) Read out synaptic weights row by row with N low
resolution ADCs and N accumulators. 139

5.5 Comparison of ADC architectures vs. Resolution and Sampling rate. 142

5.6 Power and area for different ADCs of various resolutions. 143

5.7 Block diagram of the readout with column ADC. 144

5.8 An example of 2-layer feedforward neural networks and its corre-
sponding crossbar array. 148

5.9 The proposed storage organization optimized for 2-layer feedfor-
ward neural network. The constant blocks CB1, CB2 and CB3 are
actually constants integrated into the digital design. 149

5.10 Digital pulse width modulator: CLKPWM is the 50MHz clock sig-
nal for the pulse generator. NPWM is the desired number of clock
cycles, which is compared to the output of the counter. The multi-
plexer outputs the pulse with duration of NPWM clock cycles. 151

5.11 Data flow of the Integration Element (IE) and the Neuron Element
(NE). The signal SumW corresponds to the term

∑M
j=1wji · Sj[t − 1]

in (5.1), which is calculated by the readout circuits of the Synapse
Unit. 152

5.12 Data flow of the Learning element (LE). Lookup tables (LUTs) are
used to calculate ∆W based on STDP learning rule. Signal NPWN
controls the pulse generator to generate the required pulse widths. . 152

5.13 Parallel processing with 2 column ADCs: (a) the detailed connec-
tion between memristor cells and pulse generators; (b) the simulta-
neous access of 2 columns in a design with N digital neurons. Each
column ADC accesses N/2 columns sequentially. Two Vmems can
be calculated simultaneously. 153

5.14 The 2-layer neural network designed for character recognition and
the corresponding learning result. Each pixel input pattern is con-
verted into 14× 14 spike inputs to the input layer of the network. . . 159

xv

5.15 The 2-layer neural network designed for speech recognition. Each
speech pattern is converted into 25x35 spike inputs to the input
layer of the network. 161

5.16 The spiking events emitted by the output neurons (with neuron
index from 876 to 884) as a function of time after training. Each
neuron only responds to one particular speech pattern and shows
high firing frequency for this speech pattern. 162

5.17 The synapse distribution of the conceptual 891x891 synaptic array.
Since there are only 9 excitatory neurons in the output layer and
875 excitatory neurons in the input layer, the feedforward synapses
only exist in a very small region. 164

6.1 Block diagram of the a deep spiking neural network architecture. . . 170

xvi

LIST OF TABLES

TABLE Page

3.1 Pseudocode of the hardware-friendly gradient-ascent algorithm for
SVM training. 69

3.2 Comparison of runtimes of different cascade SVM structures with
different C values. The dataset involves 400 samples. 71

3.3 Comparison of 4 full parallel SVM designs and the software SVM
solution on T4300 in terms of runtime for different data sets. 80

3.4 Comparison of 4 fully parallel hardware designs and the software
SVM solution on Intel T4300 in terms of power, area, speedup and
energy reduction for the data set with 200 points. 82

3.5 The effect of feedback on training accuracies for the data set with
400 samples. 84

3.6 Comparison of two fully parallel designs and their temporal reuse
version in terms of area, power and runtime. 86

3.7 Comparison of the classification time for a test data set with 800
samples. The 4 classifiers are obtained from the training over 4
different training sets with 50,100,200 and 400 samples, respectively. 88

3.8 Comparison of power, area and runtime of the designs using the
above kernel computation unit. The training set Cod-RNA involves
59,532 8-D samples. 90

4.1 The comparison of the 4 tasks in terms of the runtime, the desired
reservoir size and the recognition accuracy. 106

4.2 The comparison between the RU and the TU in terms of hardware
cost and power consumption. The RU involves 135 liquid neurons
and the TU involves 26 readout neurons. 106

4.3 Comparison of 3 multitask LSM designs in terms of hardware cost
and total energy consumption for all the 4 tasks. 107

xvii

4.4 Comparison between the Xilinx built-in adder and the proposed
approximate adder in terms of delay, hardware cost and power con-
sumption. The operands are 32-bit fixed point numbers. 111

4.5 Comparison of processors using Xilinx built-in adders vs. approxi-
mate adders in RU in terms of hardware cost. 112

4.6 Effects of the proposed low-power design techniques on the average
power over 50 training iterations and the recognition rate. 114

4.7 Power and resource utilization of the building block components
of the baseline architecture, which accumulates the pre-synaptic
weights serially for each output layer neuron. All the neurons are
processed one by one in a sequential manner. 130

5.1 Coefficients in power modeling function 146

5.2 The power consumptions of memristor crossbar arrays in different
designs as functions of the size of the arrays. The application spe-
cific architectures only store the feedforward synapses in the mem-
ristor crossbar array. 156

5.3 Power and area of the baseline components. NU and LU represent
neuron stage and learning stage, respectively. 157

5.4 Fully reconfigurable designs using 256 x 256 memristor array as
synapse storage, which can support any network topology involv-
ing 256 neurons. Comparison of different architectures in terms of
energy, area and enery-area product (EAP). 157

5.5 Application specific designs which store only feed-forward synapses
in the memristor array. Comparison of different architectures in
terms of energy, area and enery-area product(EAP). All designs are
based on the non-shared IE scheme. 158

5.6 Power and area of the baseline components. NU and LU repre-
sent neuron stage and learning stage, respectively. Since there are
891 neurons in this network, the resolution of the column ADC is
changed to 13 bits. 163

5.7 Fully reconfigurable designs using 891x891 memristor array for
synapse storage. Comparison of different architectures in terms of
energy, area and enery-area product (EAP). All designs are based
on the non-shared IE scheme. 163

xviii

5.8 Application specific designs which only update the feed-forward
synapses between the two layers. Comparison of different archi-
tectures in terms of energy, area and enery-area product (EAP). All
designs are based on the non-shared IE scheme. 164

xix

1. INTRODUCTION*

In this era of big data, IT technology development and scientific research are

becoming increasingly data-intensive in recent years [1] [2]. For example, bioin-

formatics researchers often need to process tens of billions points of data to ac-

quire new insights of diseases and develop diagnostics and therapeutics. Process-

ing such large data can take a huge amount of CPU times (e.g., several weeks

or even months) [3]. As another example, to address some of the key problems

of astrophysics and cosmology, square kilometer array, the world’s quickest radio

telescope located in Australia, is collecting up to 30-360 TB of data per day, which

requires extremely powerful computational resources [4]. Therefore, time and en-

ergy efficient processing of large data is of key importance. Extracting patterns

and classifiers from a set of data and using them to interpret the existing data and

predict new data information are usually achieved by applying machine learning

and data mining techniques. Building embedded machine learning intelligent

into silicon can also enable a wide range of low-power smart sensors.

Basically, machine learning techniques enable a computer system or a program

to learn from the past experiences to improve the performance of a certain task.

Various machine learning techniques have been developed nowadays, and they

are widely applied to many aspects of humans life. For example, machine learn-

*© 2015 IEEE. Reprinted, with permission, from Q. Wang P. Li Y. Kim A Parallel Digital VLSI
Architecture for Integrated Support Vector Machine Training and Classification, Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on 23.8 (2015): 1471-1484.
© 2014 IEEE. Reprinted, with permission, from Q. Wang, Y. Kim, and P. Li. Architectural de-
sign exploration for neuromorphic processors with memristive synapses. Nanotechnology (IEEE-
NANO), 2014 IEEE 14th International Conference on. IEEE, 2014.
© 2015 IEEE. Reprinted, with permission, from Q. Wang, Y. Jin and P. Li. General-purpose LSM
learning processor architecture and theoretically guided design space exploration. In Biomedical
Circuits and Systems Conference (BioCAS), 2015 IEEE (pp. 1-4). IEEE.

1

ing techniques allow us to integrate human expertise into Artificial Intelligence

Systems (AISs). Therefore, the NASA robots such as the Mars Rovers are able to

navigate themselves on another planet and even make simple decisions without

the help from human [5]. Also, the computer system is enabled to recognize and

understand our handwriting and vocal voice. Meanwhile, machine learning tech-

niques can help us to extract some hidden information from complex large data

sets. Take social networks as an example. Facebook is using machine learning

techniques to help the users to group and categorize their connections, and also

detect malicious social activities such as frauds and spams.

Cloud computing provides a good solution for big data processing [6]. In many

cases, the data can be transmitted to the cloud and the machine learning is per-

formed by the powerful data centers which might be thousands of miles away

from the source of the data. However, there are also many scenarios which have

to involve computational power on the edge, as illustrated by Fig. 1.1. For exam-

ple, the round-trip communication delay between Earth and Mars ranges from 8

to 42 minutes, and the network connection is only available several times during

a Martian solar day, due to the movement of both planets [7]. In addition, the data

transmission and communication are also important concerns for the autonomous

vehicles in the near future. Both of these two scenarios can not reply on the data

centers in the distant parts of the world. Therefore, efficient machine learning on

the edge is essential for such applications.

However, as the applications becomes more complex and data-intensive, the

concerns about data processing speed and energy consumption are becoming in-

creasingly critical. Nowadays, most machine learning tasks are handled by cor-

responding software programs running on general-purpose processors. Such ap-

proaches usually requires a huge amount of CPU time to complete the machine

2

Autonomous
Vehicles

(a) Artificial Intelligent Mars rover on another planet (b) Smart traffic system with autonomous vehicles

Figure 1.1: The scenarios, in which the devices may not be continuously con-
nected to the network, require edge computing which can enable analytics and
knowledge generation to occur at the source of the data.

learning tasks and results in unbelievably high energy consumption. Take a large

human genome as an example, completing the genome sequencing usually re-

quires weeks or months of computation even on a world-class supercomputer. In

addition, it is not efficient to run some complex machine learning programs on

smart phones or other wearable devices, because not only will it result in a long

runtime, but also the battery will run out very fast.

Our solution to these problems, which is also the main focus of this work, is

to develop optimized hardware architectures for mainstream machine learning

algorithms. As is well known, a dedicated VLSI hardware design is usually much

more efficient than the software programs running on general-purpose CPUs, in

terms of runtime and energy consumption. This is because unlike a general pur-

pose CPU, a dedicated hardware design is not limited by the instruction set, so

only necessary functional blocks for specific tasks are required. Meanwhile, there

is no need of instruction memories to store the program codes. This also allows

3

the designers to use flexible arithmetic precisions and operand representations to

optimize the design for a particular algorithm. What is more important, the ded-

icated hardware design allows us to fully exploit hardware parallelism. Fig. 1.2

illustrates the differences between a 32-bit general-purpose CPU and a logic cir-

cuit which is optimized for a specific task. In order to compute the value of Y

based on X, A, B and C, a short program with 5 instructions is needed by the

32-bit general-purpose CPU. The program occupies some on-chip storage, and it

takes a 32-bit general purpose ALU (Arithmetic Logic Unit), usually a large func-

tional block, about 5 clock cycles to complete the computation. However, if all

the operands are 5-bit fixed point numbers, the dedicated hardware design only

involves 3 low-resolution multipliers and 2 low-resolution adders to finish the

computation in 1 clock cycle. Assuming that the maximum clock rate and the

CMOS technology are the same for both, it is quite obvious that the dedicated

hardware design is much more efficient than the general purpose CPU in terms of

both runtime and hardware cost.

Ph.D. Preliminary Examination

6

A specific task:
Y = AX2 + BX +C

5-bit fixed point numbers

Program :

VS

32-bit
CPU

Dedicated
Hardware

(assume the
same Clock rate)

 Our Solutions
– A dedicated VLSI hardware design is usually much more time and

energy-efficient than general purpose CPUs

 Not limited by Instruction Set;

 Necessary functional logics for specific tasks;

 No need of Instruction memory (program codes, intermediate results);

 Flexible arithmetic precisions

 Fully exploit hardware parallelism

Figure 1.2: Comparison of a 32-bit general purpose CPU and a dedicated hard-
ware design for a specific task.

However, to map complex machine learning algorithms to efficient hardware

4

architectures with on-chip learning is a very challenging task itself. As illustrated

by Fig. 1.3, a lot of critical design issues need to be taken into consideration when

developing the hardware architectures. First of all, the hardware designers should

carefully investigate the machine learning algorithms and identify the hardware-

friendly properties which are suitable for efficient implementation. Secondly, a lot

of important design decisions need to be made during the hardware development

on both architecture and circuit level.
Ph.D. Preliminary Examination

48

Dedicated Hardware Designs

Speed

Power
Area

Software Algorithms

Reconfigurability Parallelism Potential Reusability

Scalability Hardware Friendly Algorithm Binary Arithmetic's

Memory Organization Flexibility Algorithm Complexity

Error Resilience Various interesting features of the algorithm itself

 How do we design hardware?

Figure 1.3: The critical considerations when mapping a complex software algo-
rithm to a dedicated hardware design.

From the architecture design point of view, both the reconfigurability and scal-

ability issues need to be considered. For example, which part of the algorithm

should be parallelized and how much parallelism is needed? Correspondingly,

5

what type of memory (storage) organization should be used to support the data

processing in this architecture? Similarly, when should we introduce efficient

hardware reuse to reduce the cost? Is it possible to configure the architecture dif-

ferently to identify some important tradeoffs between throughput and hardware

cost? Besides, both the binary arithmetics and the potential error resilience of the

hardware architecture need to be investigated thoroughly for efficient hardware

implementations.

From the circuit design point of view, the designers should always keep the

timing, power consumption and silicon area in mind, in order to satisfy the nec-

essary design constraints. This also requires the designers to be sensitive to the

emerging new technologies which might benefit the overall performance of the

hardware design.

The kernel methods like SVM (Support Vector Machine) and the ANNs (Arti-

ficial Neural Networks) are two of the most successful groups of the recent ma-

chine learning methods, which have been successfully applied to a wide range

of real-world pattern recognition applications [8]. The corresponding hardware

implementations have attracted much research interest from both academia and

industry. However, due to the complexity of these algorithms, few earlier works

have demonstrated competitive performance for real-world applications and ef-

ficient hardware architecture. In this dissertation, we propose a scalable digital

architecture for a parallel SVM training algorithm, which achieves significant ac-

celerations and demonstrates high energy efficiency and good performance for

public data sets for real-world applications [9]. This dissertation also proposes

several energy efficient neuromorphic architectures based on spiking neural net-

works, which demonstrate efficient parallel computing and error resilience for

multiple real-world pattern recognition tasks [10]. Meanwhile, the potential ap-

6

plication of memristive nanodevices for efficient synaptic storage in neuromor-

phic processors is systematically investigated in this dissertation. The remaining

part of this section will give detailed introductions to all these works.

1.1 A Parallel Digital VLSI Architecture for Support Vector Machine

Support vector machine (SVM) is a learning and classification algorithm, which

has been successfully applied to a wide range of real-world pattern recognition

problems. An SVM learns by solving a convex constrained quadratic program-

ming problem, whose size is equivalent to the number of training samples [11].

The training phase of SVM is a much more difficult and time consuming task than

classification, and its implementation is also more complex.

Cloud computing provides a good solution for the big data processing [12],

including the training of SVM. At the same time, some parallel SVM algorithms

can also speedup the training phase [13]. However, these software approaches are

all based on commercial general purpose CPUs, instead of dedicated application-

specific integrated circuit (ASIC) designs optimized particularly for SVM algo-

rithms. Therefore, hardware-based acceleration has not been explored in these

works. In practice, having efficient hardware-based training can be quite use-

ful. For example, training an SVM model over a large set of sampled data for big

data analysis can be very time consuming. Dedicated hardware acceleration to

improve both the training time and power consumption can be very appealing.

In addition, in applications, such as smart sensors, where in situ machine intel-

ligence is highly desirable, the ability in performing online training in hardware

is essential because the changing environment requires frequent modifications to

the existing model.

To facilitate the application of SVMs in embedded systems and develop pro-

7

cessing acceleration for large data sets, there have been several attempts to imple-

ment the algorithm in VLSI hardware. Analog VLSI implementation of the linear

kernel SVM and the quadratic kernel SVM is reported in [14] and [15]. Kucher

and Chakrabartty [16] adopt the margin propagation principle to design an ana-

log VLSI SVM, whose key limitation is that training is performed offline. A digital

architecture was proposed in [17], which enjoyed better precision and resolution

compared with analog implementations, but it is not an ASIC solution. Kuan et

al. [18] proposed an ASIC solution to sequential minimal optimization algorithm,

but this paper is limited to only linear kernels. More recently, an FPGA based

accelerator for SVM classification is presented in [19], which speeds up the clas-

sification process by cascading trained classifiers of different resolutions. While

this architecture is also termed cascade, it differs dramatically from the cascade

architecture proposed in this paper. The classification approach of [19] is heuris-

tic in nature. More importantly, it does not deal with the acceleration of SVM

training despite the fact that SVM training is typically much more algorithmi-

cally complex and compute-intensive than classification. An on-chip trainable

Gaussian kernel analog SVM has been developed in [20], which uses an array of

Gaussian circuits to support 12 2-D vectors.

Since training an SVM requires the solution of a quadratic programming prob-

lem, the required computation and storage increases rapidly with the number of

training vectors, presenting a key challenge for learning over large data sets on

chip. To this end, a highly scalable digital architecture for both training and clas-

sification, amenable to robust large-scale integration in modern VLSI technolo-

gies, is lacking, which is the focus of this work.

From a purely algorithmic point of view, an efficient strategy for accelerating

SVM is to eliminate nonsupport vectors (SVs) early on during the optimization

8

process. The cascade SVM algorithm of [21] deals with this challenge by solv-

ing multiple smaller optimization problems based on partitioned data while rig-

orously guaranteeing the global convergence. This process can be viewed as a

powerful built-in mechanism for early on filtering of non-SVs. In this work, we

use the term cascade to either refer to the training algorithm of [21] or the corre-

sponding VLSI architecture proposed by us. However, there is no prior work that

investigates the VLSI implementation of cascade SVM. The main goal of this work

is to develop a parallel digital VLSI architecture and the associated design tech-

niques to bring the significantly improved scalability of cascade SVM to silicon.

Our digital architecture enables efficient machine learning based on an array of

interacting SVM processing units, amenable to implementation in scaled CMOS

technologies. Several cascade SVM designs integrating both training and classi-

fication have been implemented using a commercial 90-nm CMOS standard cell

library. Significant training speedup and energy reduction are demonstrated by

our parallel hardware SVM designs. Meanwhile, the implemented SVM proces-

sors greatly outperform a 45nm commercial general purpose CPU for SVM train-

ing, in terms of both runtime and energy efficiency. These encouraging results

suggest the great potential of the proposed architecture and circuit design for

building large SVM array processors with high throughput and energy efficiency.

1.2 Energy Efficient Parallel Neuromorphic Learning Systems

The human brain can solve complex tasks such as pattern recognition and

language learning with ease and demonstrate much improved energy and space

efficiency than supercomputers [22]. Thus, brain-inspired cognitive computing

and neuromorphic engineering have attracted much research interest nowadays.

Spiking neural networks (SNNs) may be computationally more powerful than tra-

9

ditional rate-based neural networks, because SNNs more accurately resemble the

biological neuron behavior. The inherent error resilience of SNNs is an appealing

property for large-scale VLSI implementation, in modern technologies for which

device reliability and process variation are becoming increasingly challenging.

There have been several attempts to implement SNNs in VLSI [23]- [35]. How-

ever, these works did not fully exploit the power of SNNs for complex tasks such

as speech recognition and handwritten character recognition. This dissertation

proposes FPGA-based neuromorphic processor architectures for two spiking neu-

ral networks. One is a recurrent neural network called the liquid state machine,

while the other is a feedforward spiking neural network with inhibitory neurons

feedback loops to provide winner-take-all (WTA) mechanisms to each layer.

Realizing FPGA-based spiking neural networks (SNNs) entails addressing a

number of critical issues pertaining to memory organization, parallel processing,

hardware reuse for different operating modes and tradeoffs between throughput,

area, and power overheads. The proposed neuromorphic system makes use of a

large number of available block-RAMs for storing synaptic weights. To support

parallel processing, multiple block-RAMs are instantiated in the system which

allows multiple synaptic weights to be accessed simultaneously. We systemati-

cally demonstrate the tradeoffs between processing speed, power or energy and

area overheads as a result of employment of varying levels of parallelisms and/or

approximate multiplications.

The liquid state machine (LSM) is a recurrent neural network that recently

emerged in theoretical neuroscience [36], and provides a solution to bridge the

gap between biological plausibility and practical tractability of recurrent net-

works. Structurally, the LSM consists of a reservoir of neurons (“Liquid”) receiv-

ing input spike trains and a group of readout neurons receiving signals from the

10

reservoir.

Recently, [37] proposed an FPGA LSM processor architecture for speech recog-

nition. However, this work did not explore the advantage of distributed comput-

ing in the neuromorphic system and its inherent error tolerance. [38] focused on

the design of the readout stage for LSMs based on perceptrons and the p-Delta

algorithm, which were less biologically inspired and were only applied to sim-

ple two-class recognition problems. Neither of these works exploit the potential

application of approximate computing.

This work proposes a rather general model and neuromorphic architecture of

computation based on the LSM. The main goal of this work is to develop a neu-

romorphic LSM architecture to support efficient general-purpose processing with

integrated training and recognition. To aid the design space exploration of the

LSM processor, in particular its complex recurrent reservoir, we propose a the-

oretical measure of computational power to allow for fast learning performance

prediction of multiple applications without incurring timing consuming train-

ing. Based upon this, we develop a design methodology that determines the op-

timized reservoir size for each application and achieves minimal hardware and

energy overhead of the general-purpose LSM learning processor for a given set

of applications. We demonstrate the application of our processor architecture by

mapping four recognition tasks onto a reconfigurable FPGA processor platform.

In addition, in order to fully exploit the unique computational structure and

inherent resilience of the liquid state machine, we significantly reduce the en-

ergy dissipation of the reservoir by exploring spiking activity dependent power

gating and efficient approximate adders. A widely adopted speech recognition

benchmark, TI46 speech corpus [39], is used to evaluate the presented FPGA neu-

romorphic processors demonstrating their and a runtime speedup of 88× over

11

the 2.3 GHz AMD OpteronTM Processor. The proposed LSM hardware design

also demonstrates better recognition accuracy than the earlier works. The firing-

activity based power gating scheme monitors the runtime activities of the reser-

voir and turns off inactive reservoir neurons during the training process to reduce

power. An optimized approximate adder with adjustable precision is proposed,

which significantly reduces power dissipation compared to the Xilinx built-in

adders. The proposed techniques combined lead to a 30.2% reduction in both

power and energy dissipations without greatly impacting speech recognition per-

formance.

For the 2-layer spiking neural network with global inhibition, parallel digi-

tal neuromorphic architectures are developed and this work also investigates the

potential application of approximate arithmetic units to reduce hardware cost

and power consumption. The proposed architectures are demonstrated under the

context of an FPGA based spiking neuromorphic learning system, which fully

explores the parallelism in key processing steps. We also integrate a recent ap-

proximate Booth multiplier design [40] to replace the relatively bulky full preci-

sion multipliers, which contribute significantly to the area and energy estate of

the overall system. Importantly, through the use of a real-life pattern recognition

application, we show how such arithmetic units can be employed without incur-

ring any significant loss of recognition performance for the end application. In

return, the use of approximate computing offers noticeable energy and area ben-

efits. Such reduction in energy dissipation and/or area overhead provides room

for further throughput improvement via increased parallelism.

The proposed neuromorphic processor is implemented on a Xilinx Virtex-6

FPGA. The handwritten digits from the MNIST dataset [41] are used to test the

recognition performance of the system. The architectures with standard multipli-

12

ers achieve a recognition rate of 89.1%, and those utilizing the approximate mul-

tipliers maintain an excellent recognition rate of 87.7%. The proposed spiking

neural network involves 1,591 neurons and 638,208 synapses, which shows com-

parable performance to a recent software reference [42] although our network has

a smaller size. Energy consumption of the architecture without parallel process-

ing is reduced by 20% when the approximate multipliers are used. A promising

13.5× training speedup and a 25.8× recognition speedup are achieved by the par-

allel architecture whose degree of parallelism is 32.

1.3 Emerging Memory Technologies for Neuromorphic Processors

Traditionally, analog circuits are used to implement the silicon neurons [43]

[44]. However, they are difficult to reconfigure and intrinsically sensitive to pro-

cess, voltage and temperature (PVT) variations. In addition, large-scale integra-

tion of spiking neurons is hindered by the use of area-consuming capacitors as to

keep synaptic weights [45]. Recently, [46] and [47] have demonstrated two digital

reconfigurable neuromorphic chips. These two designs support up to 256 pro-

grammable digital neurons as well as 1024× 256 binary synapses by means of an

SRAM crossbar array. However, the corresponding binary synapses are updated

by a probabilistic scheme, which may degrade the learning performance. More-

over, the SRAM array occupies a significant portion of the entire chip area.

Memristive nanodevice provides a promising solution for on-chip storage thanks

to its nonvolatile nature and high integration density reaching 10Gb/cm2 [23]-

[25]. Several recent studies have suggested leveraging memristive nanodevices

for building synaptic arrays [26] [27]. A high-density, fully operational hybrid

crossbar/CMOS system composed of a memristor crossbar array has been demon-

strated in [28], which can reliably store complex binary and multilevel data. [29]

13

proposes a memristor crossbar array system for image processing and demon-

strates a good performance for noise reduction. Meanwhile, efficient hardware

implementations of neural networks based on RRAM (Resistive Random Access

Memory) crossbar arrays have been demonstrated in [30]- [33].

A brain-inspired reconfigurable digital neuromorphic processor (DNP) archi-

tecture for large-scale spiking neural networks is presented in [46]- [48], which

supports spike timing dependent plasticity (STDP) learning mechanism. This

design is implemented in a commercial 90nm CMOS technology and leverages

the memristor nanodevice to build a 256 × 256 crossbar array to store multi-bit

synaptic weight values with significantly reduced area cost. Realizing memristor

array based DNPs entails addressing a number of critical issues pertaining to the

memory access styles, analog-to-digital conversion and also the optimized storage

organization. However, a systematic analysis of the above issues is lacking in the

previous works. The main goal of this work is to investigate critical design deci-

sions and identify key tradeoffs between energy and area for DNPs with different

synapse readout schemes and storage organizations.

The memristor crossbar array has many advantages over SRAM and DRAM in

terms of high integration density and nonvolatile nature, but the synaptic weight

values stored in the memristor array are essentially continuous-valued analog sig-

nals (i.e. conductance and current), which can not be directly processed by the

digital arithmetic components in the DNP. Typically, in such mixed-signal sys-

tems, the ADCs (analog-to-digital converters) make up a large portion of the to-

tal power consumption and chip area. Therefore, an efficient analog-to-digital

conversion scheme for synapse readout plays an extremely important role in the

design of DNPs. Crucial design choices and tradeoffs involving different mem-

ory access styles and different types of ADCs are systematically investigated in

14

this work. Two memory access styles are proposed, which are referred to as the

column-wise scheme and the row-wise scheme. Hence there exists a large design

space for optimization of area and energy consumption. Our analysis highlights

the trade-offs involved in various ADC strategies available for synapse readout.

In addition, this work proposes an optimized synapse storage scheme for a wide

class of feedforward spiking neural networks, which significantly reduces the en-

ergy consumption compared with those based on a full N ×N memristor array,

where N is the total number of neurons.

1.4 Outline of the Dissertation

The remainder of this dissertation is organized as the follows. Section 2 in-

troduces the mainstream machine learning methods, namely, SVM and ANNs,

in order to provide some relevant algorithm background. The related works on

hardware SVM, neuromorphic computing and emerging memory technologies are

also discussed in this dissertation. Section 3 presents the proposed parallel digital

VLSI architecture for Cascade SVM. The proposed general-purpose LSM neuro-

morphic processor and the parallel neuromorphic architecture for a 2-layer SNN

with global inhibition are introduced in Section 4. Section 5 presents he architec-

tural design exploration of the neuromorphic processor with memristive synaptic

crossbar. Finally, we conclude this dissertation and discuss the future works in

Section 6.

15

2. BACKGROUND AND RELATED WORKS*

This section describes an overview of SVM learning and neural networks. It

starts with the basic concepts of SVM and Cascade SVM training algorithm, and

earlier hardware SVM implementation works are introduced here. Then, we move

on to the biological motivation of neuromorphic computing and provides reviews

of artificial and spiking neural networks and the corresponding learning algo-

rithms. The existing designs of silicon neurons and neuromorphic VLSI systems

are also covered, which mimic the biological brain on silicon. The key design is-

sues and limitations of these existing work are also discussed in this section. At

last, the overview of the memristor nanodevice, which can be employed as the on-

chip storage of the neuromorphic system, is given. Finally, it clarifies the objective

of this dissertation.

2.1 Support Vector Machine and Hardware Implementations

The objective of the learning process of SVM classification is to find the struc-

tural optimal hyperplane that separates the training data with the largest mar-

gin [11]. To deal with the problem that the input data may not be linearly sepa-

rable, in SVM the data may be nonlinearly mapped to a high dimensional space,

*© 2015 IEEE. Reprinted, with permission, from Q. Wang P. Li Y. Kim A Parallel Digital
VLSI Architecture for Integrated Support Vector Machine Training and Classification, Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on 23.8 (2015): 1471-1484. © 2014 IEEE.
Reprinted, with permission, from Q. Wang, Y. Kim, and P. Li. Architectural design exploration for
neuromorphic processors with memristive synapses. Nanotechnology (IEEE-NANO), 2014 IEEE
14th International Conference on. IEEE, 2014. © 2015 IEEE. Reprinted, with permission, from
Q. Wang, Y. Jin and P. Li. General-purpose LSM learning processor architecture and theoretically
guided design space exploration. In Biomedical Circuits and Systems Conference (BioCAS), 2015
IEEE (pp. 1-4). IEEE.

16

which is called the feature space. Denote the training data as

(~xi , yi), yi ∈ {−1,+1}, i = 1,2,3, ...,N (2.1)

in which ~xi is the input vector and yi the corresponding class label. Assume that

a mapping function φ(~x) is used to map any input vector ~x to the feature space,

the decision function of an SVM can be defined as

f (~x) = w ·φ(~x) + b (2.2)

where w is the normal to the separating hyperplane denoted by f (~x) = 0, and the

distance from the closest positive (negative) sample to the hyperplane is called the

margin, which is equal to 2/‖w‖. Therefore, the optimization problem becomes

minw,b
‖w‖2

2
(2.3)

subject to

yi(w ·φ(~xi) + b) ≥ 1 (2.4)

However, sometimes it is too difficult to find a hyperplane that completely

separates all the training samples without error. Hence a modified SVM called

soft margin SVM is proposed to deal with the trade-off between the margin and

minimum number of errors. The optimization problem of soft margin SVM is

formulated as

minw,ξ,b
‖w‖2

2
+C

N∑
i=1

ξi (2.5)

17

1

2

3

4

5

6

f(x)=1

f(x)= -1

f(x)=0

Figure 2.1: Soft margin SVM with all support vectors highlighted by dashed cir-
cles. ©IEEE 2014

subject to

yi(w ·φ(~xi) + b) ≥ 1− ξi , ξi ≥ 0 (2.6)

where ξi is the slack variable for the i-th training sample. The first term of (5)

forces the hyperplane to have a maximal margin while the second term penalizes

the presence of points violating the margin. The tradeoff between the two terms

is simply set by using the constant C. For soft margin SVM, there are two kinds

of points that contribute to the optimal hyperplane: the points on the margin

and the points with non-zero ξ values which violate the margin. These points

are called the support vectors. Fig. 2.1 demonstrates the locations of support

vectors in the feature space. All the correctly classified points outside the margin

are called non-support vectors. The goal of training the SVM is to find out the

18

support vectors from a set of samples.

The above optimization problem is referred to as the P rimal CQP (constrained

quadratic programming) problem, which is usually solved in the dual form (D)

that is in terms of variables α’s, which are the Lagrange multipliers [11]

max
α
W (α) =

N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

yiyjαiαjK(~xi , ~xj), (2.7)

subject to
N∑
i=1

yiαi = 0, 0 ≤ αi ≤ C, and i = 1, ...,N , (2.8)

where

K(~xi , ~xj) = φ(~xi) ·φ(~xj), (2.9)

is the kernel function.

The KKT (Karush Kuhn T ucker) conditions are the necessary and sufficient

conditions for the global optimality of a CQP problem like SVM. And KKT con-

dition checking is a critical process for the Cascade SVM that will be discussed in

the next section. These conditions require that the product of a Lagrange multi-

plier and its corresponding constraint vanish at the solution, that is,

αi(yi(w
T ·φ(~xi) + b)− 1 + ξi) = 0, βiξi = 0 (2.10)

where βi is the Lagrange multiplier for slack variable ξi . Therefore, by substitut-

ing (2.8) into (2.10), we can easily get the KKT conditions for soft margin SVM, as

19

follows. 
αi = 0 ⇒ yi(wTφ(~xi) + b) ≥ 1

0 < αi < C ⇒ yi(wTφ(~xi) + b) = 1

αi = C ⇒ yi(wTφ(~xi) + b) ≤ 1

(2.11)

The corresponding separating hyperplane can be determined byw =
∑N
i=1αiyiφ(x)

and b is determined by plugging a data point with 0 < αi < C into the second equa-

tion. From the above equations, we can see the α value is zero for each correctly

classified sample outside the margin. Therefore, this kind of samples are non-

support vectors which do not contribute to the optimal hyperplane. On the other

hand, two kinds of support vectors exist. One is the samples exactly on the mar-

gin with a non-zero α values less than C, and the other is the samples violating

the margin with an α value equal to C, both of which contribute to the optimal

hyperplane.

The main purpose of SVM training is to find the support vectors, which are

samples with non-zero Lagrange multiplier values. Therefore, training a SVM

can also be seen as a filtering process to get rid of the non-support vectors and

the support vectors are results of the training process. From the algorithm point

of view, because it usually takes hundreds or even thousands of iterations to con-

verge to an optimum solution, SVM training is a much more complex task than

running the trained SVM to classify an unlabeled sample.

Recently, some hardware implementations of basic SVM have appeared. Three

representative works are introduced in this section. [17] presents a digital ar-

chitecture for SVM on FPGA, which is one of the earliest works on this topic.

The overall architecture of this digital SVM learning processor is illustrated by

Fig. 2.2. The functionality of the SVM block can be subdivided in three basic

phases: (1) The loading phase, which receives the training data from the in-

20

FSM-load FSM-learn FSM-output

counters
block

bias
block

s
block

dsvm
block

Address Bus

Data Bus

Control Bus

datain

dataout

req

ack

start

ready

rst

en

clk

SVM
block

Figure 2.2: Overall digital SVM architecture presented in [17].

put/output ports of the block; (2) The learning phase, which updates the lagrange

multipliers based on a particular SVM learning rule; (3) The output phase, which

sends the results (i.e. b, α1, α2,...,αm) to the external world through the same

input/output ports. These logical phases are implemented by the general archi-

tecture depicted in the block-scheme of Fig. 2.2. It is mainly composed by four

computing blocks, namely the counters, dsvm, bias and s − blocks, and three con-

trollers for the loading, learning, and output phase, respectively. Whereas all the

signals to/from the controllers are connected on the controlBUS via a tristate-

based connection, data are connected on the dataBUS, while the information on

the addressBUS indexes each element of the kernel matrix.

The implementation of the main processing unit, namely, the dsvm block is

illustrated in Fig. 2.3, which contains both the memory to store the kernel matrix

Q and the digital logic components to perform SVM learning. The dsvm block

involves m PEs (Processing Elements), which are the simple digital components

to update −Qα + r, where r is a vector of all ones.

21

FSM-load FSM-learn FSM-output

counters
block

bias
block

s
block

dsvm
block

Address Bus

Data Bus

Control Bus

datain

dataout

req

ack

start

ready

rst

en

clk

SVM
block

1

0
1

sel1

RAM1

ctrlRAM

we

cs1

addr

2compl

1 0

+

1

PE1

q1j
y1

+

0 1

C

0 1

0

MSB

akpl1

ak1

Comp 1

1

0
1

selm

RAM1

csm

addr

2compl

1 0

+

1

PEm

qmj

ym

+

0 1

C

0 1

0

MSB

akplm

akm

Comp m

Address Bus

D
ata B

u
s

din
din

b

Training End Decision

Figure 2.3: The implementation of the dsvm block.

Generally speaking, this work presents a working hardware SVM system and

investigates some interesting implementation details such as quantization errors.

However, the kernel matrix computation which dominates the entire SVM train-

ing process is not discussed. The authors assume that the kernel matrix is pre-

computed and stored in a set of RAMs inside the main SVM traing block.

[20] presents an analog circuit architecture of Gaussian-kernel SVMs having

on-chip training capability. It has a scalable array processor configuration whose

size increases in proportion to the number of learning samples. Although the sys-

22

tem is inherently analog, the input and output signals including training results

are all available in digital format. A novel Gaussian circuit has been developed

utilizing the subthreshold operation of differential MOS pairs. A proof-of concept

chip containing 2-class, 2-D, 12-template classifier was designed and fabricated

in a 0.18um CMOS technology. The experimental results obtained from the fab-

ricated chips are presented and compared with theoretical calculation results. It

can classify 8.7×105 vectors per second and the average power dissipation was

220uW. Fig. 2.4 demonstrates the block diagram of this analog SVM architecture.

FSM-load FSM-learn FSM-output

counters
block

bias
block

s
block

dsvm
block

Address Bus

Data Bus

Control Bus

datain

dataout

req

ack

start

ready

rst

en

clk

SVM
block

1

0
1

sel1

RAM1

ctrlRAM

we

cs1

addr

2compl

1 0

+

1

PE1

q1j
y1

+

0 1

C

0 1

0

MSB

akpl1

ak1

Comp 1

1

0
1

selm

RAM1

csm

addr

2compl

1 0

+

1

PEm

qmj

ym

+

0 1

C

0 1

0

MSB

akplm

akm

Comp m

Address Bus

D
ata B

u
s

din
din

b

Training End Decision

X(1)

X(2)

.

.

.

X(N)

D
/A

 C
o

n
ve

rto
rs

G
au

ssian
 ke

rn
e

l #1

Alpha
Multiply

G
au

ssian
 ke

rn
e

l #2

Alpha
Multiply

G
au

ssian
 ke

rn
e

l #3

Alpha
Multiply

G
au

ssian
 ke

rn
e

l #l

Alpha
Multiply

Alpha
Multiply

Alpha
Multiply

Current Comparator

Positive Line (PL)

Negative Line (NL)

A

Y

Alpha Binary Search Block

Digital Inputs Vector Unit Array

Bias Blocks
Reference

Current

Classification Result

))(exp(2

)1()1(ixxC 

}))(){(exp(2

)2()2(

2

)1()1(ii xxxxC 

))(exp(2

ixxC 

))(exp(2

ii xx 

))(exp(2

iii xxy 

X(1)

X(2)

X(N)

Xi(1)

Xi(2)

Xi(N)

)1()1(xix VV 

)2()2(xix VV 

)()(NxiNx VV 

Analog
Memory

)1()1(xix VV 

Analog
Memory

Analog
Memory









Analog
Memory

iV

Digital
Memory

iy

Positive Line Negative Line

Ci /

1iy 1iy

CI

Gaussian Circuit

Gaussian Circuit

Gaussian Circuit

Alpha Multiplier

Figure 2.4: Overall block diagram of the analog SVM architecture in [20].

For this analog array processor, the inputs are given in a digital format, which

23

FSM-load FSM-learn FSM-output

counters
block

bias
block

s
block

dsvm
block

Address Bus

Data Bus

Control Bus

datain

dataout

req

ack

start

ready

rst

en

clk

SVM
block

1

0
1

sel1

RAM1

ctrlRAM

we

cs1

addr

2compl

1 0

+

1

PE1

q1j
y1

+

0 1

C

0 1

0

MSB

akpl1

ak1

Comp 1

1

0
1

selm

RAM1

csm

addr

2compl

1 0

+

1

PEm

qmj

ym

+

0 1

C

0 1

0

MSB

akplm

akm

Comp m

Address Bus

D
ata B

u
s

din
din

b

Training End Decision

X(1)

X(2)

.

.

.

X(N)

D
/A

 C
o

n
ve

rto
rs

G
au

ssian
 ke

rn
e

l #1

Alpha
Multiply

G
au

ssian
 ke

rn
e

l #2

Alpha
Multiply

G
au

ssian
 ke

rn
e

l #3

Alpha
Multiply

G
au

ssian
 ke

rn
e

l #l

Alpha
Multiply

Alpha
Multiply

Alpha
Multiply

Current Comparator

Positive Line (PL)

Negative Line (NL)

A

Y

Alpha Binary Search Block

Digital Inputs Vector Unit Array

Bias Blocks
Reference

Current

Classification Result

))(exp(2

)1()1(ixxC 

}))(){(exp(2

)2()2(

2

)1()1(ii xxxxC 

))(exp(2

ixxC 

))(exp(2

ii xx 

))(exp(2

iii xxy 

X(1)

X(2)

X(N)

Xi(1)

Xi(2)

Xi(N)

)1()1(xix VV 

)2()2(xix VV 

)()(NxiNx VV 

Analog
Memory

)1()1(xix VV 

Analog
Memory

Analog
Memory









Analog
Memory

iV

Digital
Memory

iy

Positive Line Negative Line

Ci /

1iy 1iy

CI

Gaussian Circuit

Gaussian Circuit

Gaussian Circuit

Alpha Multiplier

Figure 2.5: The block diagram of a single vector unit. The input current IC rep-
resents the regularization parameter C. The Gaussian and exponential functions
are realized by MOS circuits working in the sub-threshold region.

are converted to analog voltages and sent to vector units (Gaussian kernels) in

parallel. The output currents from vector units are summed up on positive line

(PL) and negative line (NL) and the results are sent to the current comparator. The

decision made by the comparator is the classification result of the system. It works

internally as analog circuits, but the input and output signals are all digital. The

block diagram of a single vector unit (Gaussian kernel) is shown in Fig. 2.5. Each

vector unit is composed of plural Gaussian circuits, an alpha multiplier, gating

switches, and memories to store training data (xi ,yi) and langrange multiplier

αi . Basically, this arrayed architectures realized the following calculation in the

24

analog domain (i.e. via current), in order to achieve a good efficiency in terms of

area and power consumption:

αi =min(C,max(0,1− yi
∑
j,i

αjyjexp(−γ(xi − xj)2))), (2.12)

The alpha binary search block generates a digital signal Ai , which is converted to

an analog voltage Vαi and is given to the i-th alpha multiplier to determine αi .

At each iteration step, the value of αi given by (2.12) is determined by a binary

search algorithm by monitoring the comparator output.

This analog Gaussian SVM processor focuses on the processing efficiency im-

provement of the kernel calculation. However, only a very small data set with

12 2-D samples is only to evaluate the performance of this architecture. What’s

more, since the number of vector units is proportional to the number of data sam-

ples, this architecture might suffer from bad scalability issue when the tasking

application involves tens of thousands of data samples, which is really common

in the real world applications. Also, the analog circuits are intrinsically sensitive

to process, voltage and temperature (PVT) variations, which limits its application

to high-speed data processing in the real world.

A scalable heterogeneous FPGA cascade classifier for the acceleration of the

SVM classification is presented by [19]. This work exploits the device hetero-

geneity and the dynamic range diversities among the dataset attributes, and pro-

poses an adaptive and fully-customized processing unit. The proposed FPGA

architecture for the SVM classifier is shown in Fig. 2.6 (a). The SVs are loaded

into the internal FPGA memories, while the classification dataset is loaded into

the random-access memories (RAMs) of the FPGA board, which serve as First-In,

First-Out units between the host and the FPGA. The data points are streamed into

25

FSM-load FSM-learn FSM-output

counters
block

bias
block

s
block

dsvm
block

Address Bus

Data Bus

Control Bus

datain

dataout

req

ack

start

ready

rst

en

clk

SVM
block

1

0
1

sel1

RAM1

ctrlRAM

we

cs1

addr

2compl

1 0

+

1

PE1

q1j
y1

+

0 1

C

0 1

0

MSB

akpl1

ak1

Comp 1

1

0
1

selm

RAM1

csm

addr

2compl

1 0

+

1

PEm

qmj

ym

+

0 1

C

0 1

0

MSB

akplm

akm

Comp m

Address Bus

D
ata B

u
s

din
din

b

Training End Decision

X(1)

X(2)

.

.

.

X(N)

D
/A

 C
o

n
ve

rto
rs

G
au

ssian
 ke

rn
e

l #1

Alpha
Multiply

G
au

ssian
 ke

rn
e

l #2

Alpha
Multiply

G
au

ssian
 ke

rn
e

l #3

Alpha
Multiply

G
au

ssian
 ke

rn
e

l #l

Alpha
Multiply

Alpha
Multiply

Alpha
Multiply

Current Comparator

Positive Line (PL)

Negative Line (NL)

A

Y

Alpha Binary Search Block

Digital Inputs Vector Unit Array

Bias Blocks
Reference

Current

Classification Result

))(exp(2

)1()1(ixxC 

}))(){(exp(2

)2()2(

2

)1()1(ii xxxxC 

))(exp(2

ixxC 

))(exp(2

ii xx 

))(exp(2

iii xxy 

X(1)

X(2)

X(N)

Xi(1)

Xi(2)

Xi(N)

)1()1(xix VV 

)2()2(xix VV 

)()(NxiNx VV 

Analog
Memory

)1()1(xix VV 

Analog
Memory

Analog
Memory









Analog
Memory

iV

Digital
Memory

iy

Positive Line Negative Line

Ci /

1iy 1iy

CI

Gaussian Circuit

Gaussian Circuit

Gaussian Circuit

Alpha Multiplier

PCI-X
Controller

Test Data
Mem

Bank 1

Test Data
Mem

Bank 2

Test Data
Mem

Bank n

Su
p

p
o

rt V
e

cto
rs

Classifier
Hypertile

Classifier
Hypertile

Classifier
Hypertile

+ Pos/
NegClass

label

Class
label

FPGA
FPGA
Board

SV Memory

SV Memory

In
p

u
t ve

cto
r w

ith
 D

 d
im

e
n

sio
n

s SV Memory

Dim 1

Dim 2

Dim D

+
+

+

ADDER
TREE

 log2(D)

FX2FP
Kernel

Processor

Multiply

alpha

+

+

b

Pos/
Neg

Class
label

x

PCI-X
Controller

Test Data
Mem

Bank 1

Test Data
Mem

Bank 2

Test Data
Mem

Bank n

Support Vectors
Common Pool Memory

Class
label

FPGA
FPGA
Board

Low-precision
Classifier

High-precision
Classifier

unclassified
data

SVs

Test
data

LP class
label

HP class
label

(a) Cascade SVM Classifier.

(b) Hypertile of the heterogeneous SVM classifier.

Figure 2.6: The cascade SVM classifier proposed by [19].

the FPGA and fed to each classifier hypertile, which is the processing unit of the

architecture. Inside each hypertile, a fragment of the overall classification func-

tion is processed. The hypertile calculates the kernel evaluations, which are then

added in parallel. When the decision function is obtained, each hypertile outputs

26

the predicted class label. The architecture of the heterogeneous classifier hyper-

tile is presented in Fig. 2.6(b). The data path is split in fixed- and floating-point

domains. The internal FPGA memories store a subset of support vectors. The

support vectors are fed to the parallel multipliers, each of which is dedicated to a

single dimension. The features are summed together according to their precision

requirements, in order to minimize the adder tree resource usage. The adder tree

produces the inner product for the floating-point kernel processor. The fixed-

point inner products are interpreted into a standard single precision floating-

point format before fed to the kernel. The kernel processor implements one of

the three targeted kernel functions, while its output is accumulated to produce

the final result of the hypertile. This classification method is heuristic in nature.

In addition, the training of SVM, which is a more complex task than classification,

is not investigated in this work.

Importantly, although the above works attempt to project the kernel compu-

tations of all data points along a line, so as to accelerate the kernel computation,

none of the these earlier works investigate the potential parallelism on the algo-

rithm level(i.e. spliting the data set.). In the following sections of this dissertation,

we will discuss the parallel SVM training method like Cascade SVM and its hard-

ware architecture implementation.

2.2 Brain-Inspired Neuromorphic Computing

Nowadays, the Von Neumann computers are able to deal with very compli-

cated algorithmic computations and procedural control tasks. This makes the

Von Neumann computers widely used for solving these complicated problems

steadily which may be difficult to be handled by humans. On the other hand, tra-

ditional Von Neumann machines may be limited by many other kinds of tasks that

27

human beings can process without difficulties, such as image and speech recog-

nition, text reading and language learning. Importantly, the humans are adaptive

to new situations with the help of the amazing ability of the brain to accumulate

information and knowledge. In other words, when we come across a new situa-

tion, we can make a proper decision and take the appropriate actions based on

the acquired knowledge through the learning or training processes. Incredibly,

the human brain processes these tasks with much higher energy efficiency than

the conventional Von Neumann computers. In general, biological neurons are

much slower (i.e. 106 times) than silicon logic gates [49]. Silicon chips operate

with a clock period in the range of the nanoseconds (10−9sec.) while neural events

happen in the millisecond (10−3sec.) range. The slower operating speed of the bi-

ological neurons may have contributed to the brain’s results in exceptionally good

energy efficiency. Specifically, the brain consumes approximately 10−16J per op-

eration per second, whereas the traditional computer requires an energy level of

about 10−6J per operation per second [49].

The human brain has been investigated intensively by neuroscientists who

have devoted intense efforts towards the biological structure of the nervous sys-

tems. As part of these efforts, a landmark work in modeling the dynamics of

a biological neuron was conducted by Hodgkin and Huxley [50]. After that, a

variety of computational neuron models, such as FitzHugh-Nagumo [51] [52],

Hindmarsh-Rose [53], and Morris-Lecar [54], have been proposed. Also, scien-

tists have studied the interactions among neurons through synapses. Meanwhile,

the rapid advance of digital computers significantly facilitates the brain and neu-

ron modeling. However, simulating a large number of computational neurons is

still challenging nowadays due to the tremendous computing power and simula-

tion time. Meanwhile, neuromorphic engineers have been trying to reproduce the

28

neuron behaviors by morphing their anatomy and physiology into silicon chips

for simulating the human or mammal’s brains in real-time [55]- [57]. Fast sim-

ulation of neural networks with less power consumption has been achieved by

hardware neuromorphic systems.

2.2.1 Biological Motivation

To realize efficient brain-inspired neuromorphic computing systems, it is es-

sential to have a good understanding of the artificial or spiking neural networks,

whose development has been motivated in the part by the insights obtained from

biological nervous systems (i.e., the human brain) which are an extremely intri-

cate interconnection of neurons. As an example, the brain of an adult is estimated

to contain a densely interconnected network of approximately 1011 neurons and

more than 1014 synapses [58]. Neurons are the primary elements of a nervous

system. The neurons are electrically excitable, so they can process and transmit

information in the form of cellular signals which are either electrical or chemical

for long and short distances, respectively. A considerable number of neurons con-

nect to each other to form a neural network via synapses, which are specialized

connections among the neurons.

Fig. 2.7 illustrates typical biological neurons with synapse structure. Accord-

ing to this figure, each neuron consists of three major parts, which are the den-

drites, the cell body (also referred to as soma) and axon. The cell body is the heart

of the neuron and includes the nucleus where most protein synthesis occurs. The

dendrites of the neuron are highly branched extensions and receive nerve signals

from other neurons. A neuron may have numerous dendrites and their overall

shape is referred to as a dendritic tree. On the other hand, the neuron has only

one axon that is typically thinner and much longer than the dendrites and trans-

29

PE 1 PE 2 PE P

Controller
Block

Interconnect
Block

sw
it

ch
e

sOutput
spikes

mem

Connection
mem

sw
it

ch
e

s input
spikes

mem

Weight
mem

Synapse &
membrane

mem

Outgoing
Spikes

External
Inputs

VCC

DPI
Synapse

X2

D
e

co
d

e
r

D0

Dm-1

D0

Dm-1

VCC

DPI
Synapse

X2

Isyn

VCC

DPI
Synapse

X2

VCC

DPI
Synapse

X2

Isyn N
e

u
ro

n Output

 Positive
 Cell

Negative
Cell

Address
(Dendrite)

Pulse In

Undoped Doped

 D

w
RON . w/DROFF .(1- w/D)

0 1 2 3 4 5 6 7 8

Network
Connectivity

Synapse Value 0 ~ 7

GOFF GON

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8

0

2

4

6

8

10

R
es

is
ta

n
ce

 (
Ω

)

Memristor Level

C
o

n
d

u
ct

an
ce

 (
Ω
-
1

)

X 105 X 10-5

Resistance
ConductanceROFF

RON

GON

GOFF

NOS

LOS

Figure 2.7: Biological neuron anatomy [59]

mits signals to other cells via synapses. In short, the dendrites and axon act as the

signal receiver and transmitter, respectively. Information of the nervous system is

encoded in the form of electrical impulses which are called the action potentials

or spikes. The pulse is transmitted from a pre-synaptic neuron to a post-synaptic

one. The action potentials are created by the axon hillock that is a specialized

part of the cell body and connects to the axon. A neuron processes information by

integrating the incoming nerve signals that come from its pre-synaptic neurons

and the action potential is generated when the membrane potential of the neuron

reaches a certain threshold. Briefly, the neuron transmits the information using

the action potentials or spikes.

A synapse is a junction between two neurons, which are referred to as the pre-

30

synaptic and post-synaptic neurons, respectively. In fact, neurons do not phys-

ically touch each other and are separated by a small space called the synaptic

cleft. When an action potential arrives at the axon terminal, the pre-synaptic

neuron releases chemical neurotransmitter molecules into the synaptic cleft and

they diffuse across the synaptic junction, leading to inter-neuron communication

at the synapse. These chemical molecules bind to the receptor which is placed on

the opposite side of the cleft (i.e., post-synaptic neuron) and cause the membrane

potential of the post-synaptic neuron to change. The type of the receptor and

neurotransmitter employed at the synapse determines whether the post-synaptic

neuron would be either excited or inhibited when a pre-synaptic spike is gen-

erated. The resulting effects of excitation and inhibition are to potentiate and

depress the post-synaptic neuron’s membrane potential. In addition, the strength

of a synapse is defined by the amplitude change of the membrane potential as a

result of a pre-synaptic action potential. Learning and memory are resulted from

the changes in synaptic strength through the mechanism of synaptic plasticity

that leads to either decrease or increase in strength. In this way, the synapses

store information.

2.2.2 Artificial Neural Networks

Artificial neural network (ANN) is a computational model inspired by the bio-

logical nervous systems, in particular the brain, and is widely adopted in applica-

tions of intelligent information processing, such as machine learning and pattern

recognition [49] [60]. An ANN is a network structure with connected artificial

neurons (also called processing elements) that processes information in a way to

mimic biological neural networks. The signals of the network are passed among

the artificial neurons over the connection links called synapses. Each synapse has

31

an associated weight or strength of its own, which typically multiplies the signal

transmitted. The weight is an adaptive numerical parameter that can be manip-

ulated by a learning algorithm. Additionally, each neuron accumulates the input

signals that are weighted by the respective synapses of the neuron, and applies

an activation function that may be either linear or non-linear to its net input (i.e.,

sum of the weighted input signals) to determine its output signal. Furthermore,

ANNs are similar to their biological counterparts in the sense that they perform

functions dispersively, collectively and in parallel by the processing elements.

Artificial neurons are the basic functional units to build an ANN and are a

great simplification of biological neurons. The first computation model of arti-

ficial neurons was created by McCulloch and Pitts in [61]. The McCulloch-Pitts

model is based on a simplified binary neuron whose state is either active or non-

active, and implements a threshold function in discrete time. The state is deter-

mined by accumulating weighted incoming signals of activated pre-synaptic neu-

rons at each neural computation step. Namely, it is set to be active if the sum of the

weighted signals exceeds a given threshold, otherwise it is not. Subsequent neu-

ron models extend the McCulloch-Pitts model by introducing real-valued inputs

and outputs and various threshold (activation) functions [49]. Fig. 2.8 illustrates

a typical computation model of the artificial neuron.

According to Fig. 2.8, an artificial neuron consists of three basic elements: (1) a

set of input synapses which are represented by the synaptic weights; (2) a summa-

tion unit of the weighted input signals; (3) an activation function to modulate the

amplitude of the output signal. The behavior of the neuron k is mathematically

32

Z

Linux OS

User Applications
(LSM, HW_TB, Ethernet)

ZC706 evaluation board

Ubuntu 14.04 Another PC

SD

Ethernet Cable

UART Cable

JTAG Cable

Linux Terminal
root@ubuntu:> cd
root@ubuntu:> ls

root@ubuntu:> ./LSM.elf

Message Received J

Message Sent J

x1k

x2k

xmk
summation

vk

Activation
function

yk

Output
signal

Input
signals

Synaptic
weights

w1k

w2k

wmk

Σ ϕ(.)

Post-syn
Neuron

Pre-syn
Neuron1

Pre-syn
Neuron2

Pre-syn
Neuron3

Input spike train

Post-synaptic neuron output spike train

Pre-synaptic neuron output spike train

Figure 2.8: Artificial neuron model. The input signals are first multiplied with
the corresponding synaptic weights. Then the summation of these products is
converted to the output signal by an activation function.

described by the following equations:

vk =
m∑
j=1

wjkxj (2.13)

yk = ϕ(k) (2.14)

where m is the number of the pre-synaptic neurons, wjk is the synaptic weight

between the j-th pre-synaptic neuron and the current neuron k, and xj is the input

signal coming from the j-th pre-synaptic neuron. vk is the linear summation of

the weighted input signals, varphi(.) is the activation function and yk is the final

output signal of the neuron k. The three most popular activation functions are

(1) step; (2) piecewise linear and (3) sigmoid, which are plotted in the following

figure.

According to Fig. 2.9, the step function makes a binary decision and produces

33

Z

Linux OS

User Applications
(LSM, HW_TB, Ethernet)

ZC706 evaluation board

Ubuntu 14.04 Another PC

SD

Ethernet Cable

UART Cable

JTAG Cable

Linux Terminal
root@ubuntu:> cd
root@ubuntu:> ls

root@ubuntu:> ./LSM.elf

Message Received J

Message Sent J

x1k

x2k

xmk
summation

vk

Activation
function

yk

Output
signal

Input
signals

Synaptic
weights

w1k

w2k

wmk

Σ ϕ(.)

Post-syn
Neuron

Pre-syn
Neuron1

Pre-syn
Neuron2

Pre-syn
Neuron3

Input spike train

Post-synaptic neuron output spike train

Pre-synaptic neuron output spike train

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

Increasing 𝞪

Step

Piecewise Linear

Sigmoid

Figure 2.9: Popular activation functions used in artificial neuron models.

only two values. The step function can be described by

ϕ(v) =

 1 if v ≥ 0

0 if v < 0

where the threshold value is zero. The output value is equal to 0 if the input v

is greater than or equals to a given threshold, otherwise this function generates a

value of 1 as the output.

34

The piecewise linear function can be express by

ϕ(v) =


1 if v ≥ 0.5

v + 0.5 if − 0.5 < v < 0.5

0 if v ≤ −0.5

where the amplification factor for the linear region is unity. It has two saturation

output levels corresponding an upper and lower bounds (e.g., 0 and 1 in the above

equations) and provides a linear response between them.

The sigmoid function can be seen as a smoother version of the piecewise linear

function. It is the most commonly adopted activation function in the construction

of ANNs, which is mathematically defined by

ϕ(v) =
1

1 + e−αv
(2.15)

where α is a slope parameter. Adjusting the α allows the sigmoid function to

generate different slopes as shown in Fig. 2.9.

There are many different ways to combine the artificial neurons to form an

ANN. Most practical ANN architectures exhibit layered structures, as illustrated

by Fig. 2.10 which shows a typical feedforward ANN architecture.

The feedforward artificial neural network shown in Fig. 2.10 is comprised of

an input layer, a hidden layer and an output layer. However, practical applica-

tions usually requires more hidden layers to provide a large space for parameter

tuning. The network can be connected either fully or partially. The communi-

cation proceeds layer by layer from the input to the output layers through the

hidden ones. The neuron states of the output layer indicate the computation re-

sult of the network. The neurons in the input layer receives external input signals

35

Z

Linux OS

User Applications
(LSM, HW_TB, Ethernet)

ZC706 evaluation board

Ubuntu 14.04 Another PC

SD

Ethernet Cable

UART Cable

JTAG Cable

Linux Terminal
root@ubuntu:> cd
root@ubuntu:> ls

root@ubuntu:> ./LSM.elf

Message Received J

Message Sent J

x1k

x2k

xmk
summation

vk

Activation
function

yk

Output
signal

Input
signals

Synaptic
weights

w1k

w2k

wmk

Σ ϕ(.)

Post-syn
Neuron

Pre-syn
Neuron1

Pre-syn
Neuron2

Pre-syn
Neuron3

Input spike train

Post-synaptic neuron output spike train

Pre-synaptic neuron output spike train

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

Increasing 𝞪

Step

Piecewise Linear

Sigmoid

Input
Layer

Hidden
Layer

Output
Layer

Figure 2.10: Feedforward artificial neural network architecture

in the form of activation pattern and projects them onto the next layer.

For ANNs, learning refers to a process to adjust synaptic weights so that the

network is able to perform a specific task efficiently. Many learning algorithms

have been presented to appropriately adjust the synaptic weight values of the

neural network but they are classified into two main learning paradigms: 1) su-

pervised and 2) unsupervised.

Supervised learning is a technique of training the model using labeled data.

In supervised learning, every training input is given to the network with each de-

sired output (correct answer). The synaptic weights of the network are modified

to produce the outputs as close as possible to the known correct answers. When

it comes to the supervised learning on ANN, teacher signals are required in the

output layer. For example, the famous error back-propagation algorithm com-

pares the output results of the output neurons with the detailed labels, and then

36

propagate the error back the previous layers in a form of gradients, so as to finally

update the synaptic weights [62].

In contrast, the unsupervised learning does not require teacher signals or la-

bels. The training process utilizes only local information. This learning lever-

ages the properties or correlations of the training inputs, and tries to organize

patterns into categories from these correlations. In many neural networks with

unsupervised learning, output units (i.e., neurons) compete among themselves

for activation. Therefore, it allows only one output neuron to be activated at any

given time. This phenomenon is referred to as winner-take-all (WTA), which is a

common feature of unsupervised learning.

2.2.3 Spiking Neural Networks

While the conventional ANNs described in the previous section are a pow-

erful computation tool for complex machine learning applications, the lack of

temporal information during the learning limits their application in emulating

a real biological neural system. To make ANNs more powerful and biologically

realistic, Spiking neural networks (SNNs), referred to as the third generation of

ANNs, have been developed by considering the communication among neurons

with precise timing information of the spikes. They more realistically resemble

the biological brain than the conventional ANNs [63].

While the conventional ANNs process neural information with real-valued

numbers, SNNs exploit both the presence and timing of individual spikes as a

means of communication among the spiking neurons. Therefore, both the firing

frequency and the firing time matter in SNNs. As illustrated by Fig. 2.11, an SNN

receives the external input spike trains as stimulation, and sends out new spike

trains as the spiking processing results. In an SNN, it is assumed that the ampli-

37

Z

Linux OS

User Applications
(LSM, HW_TB, Ethernet)

ZC706 evaluation board

Ubuntu 14.04 Another PC

SD

Ethernet Cable

UART Cable

JTAG Cable

Linux Terminal
root@ubuntu:> cd
root@ubuntu:> ls

root@ubuntu:> ./LSM.elf

Message Received J

Message Sent J

x1k

x2k

xmk
summation

vk

Activation
function

yk

Output
signal

Input
signals

Synaptic
weights

w1k

w2k

wmk

Σ ϕ(.)

Post-syn
Neuron

Pre-syn
Neuron1

Pre-syn
Neuron2

Pre-syn
Neuron3

Input spike train

Post-synaptic neuron output spike train

Pre-synaptic neuron output spike train

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

Increasing 𝞪

Step

Piecewise Linear

Sigmoid

Input
Layer

Hidden
Layer

Output
Layer

Spiking
Neural

Network

Input spike train Output spike train

Figure 2.11: Overview of the spiking neural network.

tude of spikes does not encode any information. Instead, information is encoded

in the timing of the spikes that forms a spike train. Similarly, the output spike

train has to be decoded to interpret the result of the network. There are various

coding schemes for inputs and outputs for SNNs to interpret a spike train as real-

valued numbers, by using either the frequency of the spikes or the timing between

the spikes.

According to Fig. 2.12, a spiking neuron receives the stimulation from three

pre-synaptic neurons in the form of spike sequences. The membrane potential

of this neuron is influenced by these external input spikes, and the post-synaptic

neuron sends out new spike sequences according to different input spike patterns.

Therefore, spiking neurons are similar to the conventional artificial neurons as

accumulators of input stimulation. However, spiking neurons utilize spikes as

input and output while the traditional ones have real-valued counterparts. In a

spiking neural network, when the spikes from the pre-synaptic neurons arrive

at a post-synaptic neuron, the membrane potential of the post-synaptic neuron

will change. The membrane potential represents the internal state of the spik-

ing neuron that is induced in the model to respond to pre-synaptic spikes. The

38

Z

Linux OS

User Applications
(LSM, HW_TB, Ethernet)

ZC706 evaluation board

Ubuntu 14.04 Another PC

SD

Ethernet Cable

UART Cable

JTAG Cable

Linux Terminal
root@ubuntu:> cd
root@ubuntu:> ls

root@ubuntu:> ./LSM.elf

Message Received J

Message Sent J

x1k

x2k

xmk
summation

vk

Activation
function

yk

Output
signal

Input
signals

Synaptic
weights

w1k

w2k

wmk

Σ ϕ(.)

Post-syn
Neuron

Pre-syn
Neuron1

Pre-syn
Neuron2

Pre-syn
Neuron3

Input spike train

Post-synaptic neuron output spike train

Pre-synaptic neuron output spike train

Figure 2.12: Behavior of the spiking neural network.

membrane potential is affected by the synaptic characteristics such as strength

of the synaptic connections. The post-synaptic neuron fires when its potential

reaches a specific threshold. It is important to note that the membrane poten-

tial can either increase or decrease according to the type of neurons. In other

words, inhibitory pre-synaptic neurons depress the membrane potential of the

post-synaptic neuron whereas excitatory ones potentiate. The post-synaptic neu-

ron temporarily integrates the input spike trains to compute the internal state (i.e.

membrane potential) of the spiking neuron over time. As mentioned earlier, the

post-synaptic neuron fires and generates an output spike if its membrane poten-

tial reaches the threshold. The output spike from the post-synaptic neuron can be

either transmitted to other spiking neurons in the SNN, or read out by the exter-

nal environment. Similar neuron behavior can be modeled with many different

ways by exploiting the existing spiking neuron models, such as Hodgkin-Huxley

39

and Leaky Integrate-and-Fire models [64].

Similar to the learning of traditional ANNs, the learning of SNNs depends

on the synaptic plasticity and is realized by the adaptation process that updates

the strength of the synaptic connections among the neurons over time. Neuron-

scientific research revealed that the change in the synaptic strength depends on

the timings of pre- and post-synaptic spikes [65] [66]. This dependency was ex-

perimentally characterized in detail by Bi and Poo [67] and named spike timing

dependent plasticity (STDP) [66] [68]. Basically, STDP is a temporally asymmetric

form induced by temporal correlations between the spike firing events between

pre- and post-synaptic neurons. Namely, the strength change of synaptic con-

nection is a function of the spike time difference between pre- and post-synaptic

firing events and the difference determines the synaptic weight change as illus-

trated in Fig. 2.13. For example, in order to perform the STDP learning on a

synapse between two spiking neurons, the firing times of both neurons need to be

recorded. Then, based on the firing time difference of the pre- and post-synaptic

neurons, the desired weight change ∆w is obtained from the STDP curve. Finally,

the synaptic weight is updated. Mathematically, the STDP learning can be de-

scribed by the following equations.

∆t = tpost − tpre (2.16)

∆w = STDP (∆t) (2.17)

w = w+∆w (2.18)

where tpre and tpost represents the firing times of the pre- and post-synaptic neu-

ron, respectively. STDP (.) is the STDP learning function and w is the synaptic

40

Ph.D. Preliminary Examination

56

Pre Post

Pre

Post

∆𝑡𝑡

LTP

LTD

∆𝑤𝑤

W

Figure 2.13: Spike timing dependent plasticity.

weight between the pre-synaptic neuron and the post-synaptic neuron. Since the

STDP function affects the learning performance of the SNN, it should be carefully

designed according to the targeted applications.

Recently, [46] and [47] have demonstrated two digital reconfigurable neuro-

morphic chips. These two designs support up to 256 programmable digital neu-

rons as well as 1024×256 binary synapses by means of an SRAM crossbar array.

However, the SRAM array occupies a significant portion of the entire chip area.

Fig. 2.14 shows the block diagram of the digital neurosynaptic core in [46].

It consists of 256 digital LIF neurons with an output encoder, 1024 individu-

ally addressable axons, which can be either excitatory or inhibitory, with an in-

put decoder and 1024×256 programmable binary synapses implemented with an

SRAM crossbar array. This design does not include an on-chip learning mech-

41

anism and necessitates loading of synaptic weights into the crossbar after the

off-chip learning. It performs neural information processing in an event driven

manner to save active power dissipation greatly. Specifically, it adopts an asyn-

chronous design technique where all communication among the blocks requires

a request-acknowledge handshake without a global clock signal. The detailed op-

eration in each time step t is divided into two phases. In the first phase, a set of

input spike-events A are sent to the neurosynaptic core at a time, and these events

are sequentially decoded to the appropriate axon block. The corresponding axon

activates the SRAM’s row, and reads out all of its connections and type G. If there

are synaptic connections W , which are represented as 1, the inputs are sent to the

corresponding neurons circuits. Then, they update the membrane potentials V

appropriately. After a sequence of neuron updates, the axon block deactivates the

SRAM and waits for the new inputs. In the second phase, a synchronization event

that occurs in every millisecond period is sent to all the digital neurons. Each

neuron checks whether its membrane potential reaches certain threshold. If so,

it produces a spike and resets the potential to zero. These spikes of the neurons

are encoded and sequentially sent to the chip through the encoder. After that, the

leak parameter is applied to the neurons. Throughout the two phases of neural

processing, the neurosynaptic core implements the neuron dynamics described

by the following mathematical expression.

Vi(t + 1) = Vi(t) +Li +
K∑
j=1

[Aj(t)×Wji × S
Gj
i] (2.19)

where L is the leaky parameter, K is the number of axons, A is the activity bit, W

is the synaptic value and G is the axon type.

Fig. 2.15 illustrates the block diagram of the digital neuromorphic design

42

SU
B

+
-

A
D

D
+

+

A
D

D
+

+M
U

L
M

U
L

C
M

P

Vleak

Kext

Ksyn

Vmem_old

SumW

Ei

Vth

Si

Vmem_new

Ext Spk
 Reg

MUX

Vrst

Memb
 Reg

Out Spk
Reg

Output
spikes

External
spikes

Si

Vmem_old

Vmem_new

MUX

Time
 Reg

Global Timer

Ti
m

e
 S

ca
lin

g

Selection

Selection

SU
B

+
-

SUB
+-

Selection

Counter
(W>0)

ADD ++

Δt

Δw

0

4

1

2

2

1

…...

…...

LUT for STDP

ΔL

Npwm 117 142 152

…...

…...

LUT for Pulse Width

1 21 2 1 3 1 4

Δt

W from Flash ADC

ΔW

Wnew

NWNEW
NW

NPWN

NFIREPRE

W

Current
time

Learning
Element

To R/W Pulse Gen.

Spike

(a) Integration Element (b) Neuron Element

Ei

Dendrites

A
xo

n
s

Analog-to-Digital
Memristor Readout

P
u

lse G
en

erato
r

1

2

3

Spike I/O

Neuron Stage

Learning Stage

1

Learning FSM

LE #1

LE #2

LE #N

Learning Unit

LIF Arithmetic
Unit

LU
T fo

r W
eigh

t
U

p
d

ate

Neuron FSM

NE #1

NE #2

NE #N

Neuron Unit

Buf

Buf

Buf

Synapse Unit

Spike
I/O

2

2

3

3

3

LE

NE

Buf

Learning Element

Neuron Element

Spike Buffer

Spike I/O Neuron Learning

Spike I/O Neuron Learning

Spike I/O Neuron Learning

t-1

t

t+1

St
ep

 (
B

io
lo

gi
ca

l t
im

e)

Time (Hardware time)

MUX

Time
 Reg

Global Timer

Ti
m

e
 S

ca
lin

g

Selection

Selection

SU
B

+
-

SUB
+-

Selection

Counter
(W>0)

ADD ++

Δt

Δw

0

4

1

2

2

1

…...

…...

LUT for STDP

ΔL

Npwm 117 142 152

…...

…...

LUT for Pulse Width

1 21 2 1 3 1 4

Δt

W from Flash ADC

ΔW

Wnew

NWNEW
NW

NPWN

NFIREPRE

W

Current
time

Learning
Element

To R/W Pulse Gen.

Spike

PreTime

FireTime

N x N Synaptic Crossbar

Read/Write Interface

Synapse Array

Spike

I/O

N Dendrites

N
 A

x
o

n
s

Synaptic

Weight

(wji)

Learning

Circuit
Learning

Circuit

Learning Array

N

Neuron

Circuit
Neuron

Circuit

Neuron Array

N

Traditional SRAM array

Memristive Nanodevices

· [Seo et al, CICC11], [Merolla et al, CICC’11]

· Area bottleneck particularly for multibit synapses

· Not suitable for Synaptic Storage!

· Non-volatile nature

· High integration density of 10 Gb/cm2

· Scalability (Multi-bit synapses)

Low Area Cost

D
e

co
d

e

Ak

A3

A2

A1

Gk

G3

G2

G1

N1 N2 N3 NM

Select & Encode

Neurons

Sync

Output Spikes

Input Spikes

Axon Crossbar Synapses Type

1 0 1 1

Figure 2.14: Block diagram of neuromorphic chip proposed by [46]

in [47], which incorporates the on-chip learning capability. This design involves

256 digital spiking neurons and 256×256 binary synapses. A global hardware

clock signal is used in this architecture to make it operate in a synchronous man-

ner, and each biological time step consumes many clock cycles. The digital spik-

ing neurons calculate their membrane potentials in each biological time step, and

produce spikes when the corresponding membrane potentials reach a particular

threshold. The spike events generated by the firing neurons lead to the synaptic

integrations in their post-synaptic neurons. The corresponding synaptic weights

are updated by a certain learning rule. The N×N crossbar architecture is suitable

to represent a neural network of N neurons and all N2 possible synaptic connec-

tions among them. Correspondingly, the on-chip storage used to keep the binary

43

SU
B

+
-

A
D

D
+

+

A
D

D
+

+M
U

L
M

U
L

C
M

P

Vleak

Kext

Ksyn

Vmem_old

SumW

Ei

Vth

Si

Vmem_new

Ext Spk
 Reg

MUX

Vrst

Memb
 Reg

Out Spk
Reg

Output
spikes

External
spikes

Si

Vmem_old

Vmem_new

MUX

Time
 Reg

Global Timer

Ti
m

e
 S

ca
lin

g

Selection

Selection

SU
B

+
-

SUB
+-

Selection

Counter
(W>0)

ADD ++

Δt

Δw

0

4

1

2

2

1

…...

…...

LUT for STDP

ΔL

Npwm 117 142 152

…...

…...

LUT for Pulse Width

1 21 2 1 3 1 4

Δt

W from Flash ADC

ΔW

Wnew

NWNEW
NW

NPWN

NFIREPRE

W

Current
time

Learning
Element

To R/W Pulse Gen.

Spike

(a) Integration Element (b) Neuron Element

Ei

Dendrites

A
xo

n
s

Analog-to-Digital
Memristor Readout

P
u

lse G
en

erato
r

1

2

3

Spike I/O

Neuron Stage

Learning Stage

1

Learning FSM

LE #1

LE #2

LE #N

Learning Unit

LIF Arithmetic
Unit

LU
T fo

r W
eigh

t
U

p
d

ate

Neuron FSM

NE #1

NE #2

NE #N

Neuron Unit

Buf

Buf

Buf

Synapse Unit

Spike
I/O

2

2

3

3

3

LE

NE

Buf

Learning Element

Neuron Element

Spike Buffer

Spike I/O Neuron Learning

Spike I/O Neuron Learning

Spike I/O Neuron Learning

t-1

t

t+1

St
ep

 (
B

io
lo

gi
ca

l t
im

e)

Time (Hardware time)

MUX

Time
 Reg

Global Timer

Ti
m

e
 S

ca
lin

g

Selection

Selection

SU
B

+
-

SUB
+-

Selection

Counter
(W>0)

ADD ++

Δt

Δw

0

4

1

2

2

1

…...

…...

LUT for STDP

ΔL

Npwm 117 142 152

…...

…...

LUT for Pulse Width

1 21 2 1 3 1 4

Δt

W from Flash ADC

ΔW

Wnew

NWNEW
NW

NPWN

NFIREPRE

W

Current
time

Learning
Element

To R/W Pulse Gen.

Spike

PreTime

FireTime

N x N Synaptic Crossbar

Read/Write Interface

Synapse Array

Spike

I/O

N Dendrites

N
 A

x
o

n
s

Synaptic

Weight

(wji)

Learning

Circuit
Learning

Circuit

Learning Array

N

Neuron

Circuit
Neuron

Circuit

Neuron Array

N

Traditional SRAM array

Memristive Nanodevices

· [Seo et al, CICC11], [Merolla et al, CICC’11]

· Area bottleneck particularly for multibit synapses

· Not suitable for Synaptic Storage!

· Non-volatile nature

· High integration density of 10 Gb/cm2

· Scalability (Multi-bit synapses)

Low Area Cost

D
e

co
d

e

Ak

A3

A2

A1

Gk

G3

G2

G1

N1 N2 N3 NM

Select & Encode

Neurons

Sync

Output Spikes

Input Spikes

Axon Crossbar Synapses Type

1 0 1 1

In
p

u
t

P
ad

s

G
lo

b
al

 F
SM

256 x 256
Synapse Array

BL/WL Driver, Sense Amp

Priority Encoder

256 Neurons

N256N2N1

O
u

tp
u

t
P

ad
s

Clock

Input Spikes

Neuron/Synapse
Configuration

Output Spikes

Neuron/Synapse
State

Figure 2.15: Block diagram of neuromorphic chip proposed by [47].

synapse values is implemented by a 256×256 array of SRAM cells. The SRAM

array in [47] is accessible in both row- and column-fashions for pre-synaptic and

post-synaptic weight updates, respectively, leading to a significant speedup of the

update process. Moreover, an entire row and column of the crossbar can be ac-

cessed simultaneously. Note that each row and column corresponds to a neuron’s

axon and dendrite, respectively, in the SRAM array.

Both the two neuromorphic designs mentioned above utilize SRAM arrays to

store synaptic weights, which introduces a significant portion of the entire chip

area. Furthermore, the learning performance may be degraded due to the adopted

binary synapses [47]. The lack of an on-chip learning mechanism may limit the

design of applications [46].

2.2.4 Reservoir Computing and Liquid State Machine

The liquid state machine (LSM) is a recurrent neural network that recently

emerged in theoretical neuroscience [36], and provides a solution to bridge the

gap between biological plausibility and practical tractability of recurrent net-

works. Structurally, the LSM consists of a reservoir of neurons (“Liquid”) receiv-

44

ing input spike trains and a group of readout neurons receiving signals from the

reservoir, as demonstrated by Fig. 2.16.

Input Neurons Reservoir Neurons Readout Neurons

Plastic synapses

Figure 2.16: The structure of a typical LSM. ©IEEE 2015

The reservoir has a recurrent structure with a group of neurons randomly con-

nected by fixed synapses. Therefore, LSM exhibits complex non-linear dynamics

and leads to decaying transient memories inside the reservoir, which resemble the

essential characteristics of the information processing in the brain, e.g. in the pri-

mary visual/auditory cortices [69]. Via its nonlinear dynamics, the reservoir first

maps the input signal to the liquid response, a higher dimensional transient state.

As such, it memorizes information of its inputs in the past [70]. Then, the liquid

response is projected to output readout neurons through plastic synapses. Im-

portantly, one key advantage of the LSM is that its training is much simpler than

general recurrent networks: only the synapses of the last stage readout neurons

are plastic and trained [71].

45

The LSM is specially competent for processing temporal patterns such as speech

signals. Its inherent error resilience is appealing for large-scale VLSI implemen-

tation in modern technologies for which device reliability and process variation

are becoming increasingly challenging. Recently, [37] proposed an FPGA imple-

mentation of LSM for speech recognition, whose overall architecture is illustrated

by Fig. 2.17. In this architecture, each processing element (PE) computes several

PE 1 PE 2 PE P

Controller
Block

Interconnect
Block

sw
it

ch
e

sOutput
spikes

mem

Connection
mem

sw
it

ch
e

s input
spikes

mem

Weight
mem

Synapse &
membrane

mem

Outgoing
Spikes

External
Inputs

Figure 2.17: Block diagram of the neuromorphic architecture in [37]. PE repre-
sents the Processing Element.

neurons based on the dynamics of the LIF neuron model. As shown in Fig. 2.17,

multiple PEs are connected to 4 different memories in parallel, where the address

to each memory comes from the global controller block. The synapse parame-

46

ters and membrane voltage are stored in a centralized memory outside the PEs.

The second memory is a circular buffer holding the synaptic weights. The third

and fourth memories are used to buffer the input and output spikes to and from

the PEs. The interconnection is realized the Interconnection Block, which is also

memory based. Spike output memory is switched after each complete simulated

time-step. External input/output is possible via a memory interface. This work

highlights a compact hardware implementation of LSM for speech recognition.

However, this work treats LSM in the same manner with general SNNs. In

other words, this compact architecture is suitable for any SNNs but it is not dedi-

cated to reservoir computation. The interconnection of liquid neurons is realized

by a memory based interconnection block, which might be suitable for a general

network architecture, but might not be the optimum solution for LSM. What is

more important, this work only deals with centralized memories, instead of ex-

ploring the advantage of distributed computing in the neuromorphic system. The

error tolerance of neuromorphic processors is not investigated, either.

[38] proposed a novel analog architecture for the readout stage of Liquid

State Machine. Inspired by the nonlinear properties of dendrites in biological

neurons, the readout neurons of LSM-DER (Liquid State Machine - Dendrite En-

hanced Readout) employs multiple dendrites with lumped nonlinearities. The

VLSI architectures for implementing DER (Dendrite Enhanced Readout) read-

outs for LSM are shown in Fig. 2.18. AER (Address Event Representation) pro-

tocol is used to provide the synaptic connections. For DER, there is one shared

synapse for every dendritic branch. The input spikes to the readout stage (output

of the liquid) are applied to the circuit through an address decoder while Differ-

ential Pair Integrator (DPI) circuits are used to implement synaptic function. For

one neuron of the DER case, there are dendritic branches connected to a NEU-

47

PE 1 PE 2 PE P

Controller
Block

Interconnect
Block

sw
it

ch
e

sOutput
spikes

mem

Connection
mem

sw
it

ch
e

s input
spikes

mem

Weight
mem

Synapse &
membrane

mem

Outgoing
Spikes

External
Inputs

VCC

DPI
Synapse

X2

D
e

co
d

e
r

D0

Dm-1

D0

Dm-1

VCC

DPI
Synapse

X2

Isyn

VCC

DPI
Synapse

X2

VCC

DPI
Synapse

X2

Isyn N
e

u
ro

n Output

 Positive
 Cell

Negative
Cell

Address
(Dendrite)

Pulse In

Figure 2.18: Block diagram of the neuromorphic architecture in [38]. PE repre-
sents the Processing Element.

RON block through Square Law Nonlinear circuits. The output of the spiking

neuron can be converted to the analog output by considering the spike rate av-

eraged over a predefined time period. Compared with the conventional parallel

perceptron readout (PPR), the LSM-DER attains less error for a binary class clas-

sification task with much fewer synapses. When the conventional PPR requires

analog synaptic weights whereas LSM-DER can achieve better performance even

with binary synapses, thus being very advantageous for hardware implementa-

tions. Generally speaking, this work only focuses on the efficient implementation

of readout stage of the LSM with analog circuits. However, the implementation

of the recurrent reservoir and LSM training are not the main focus. In addition,

only two-class recognition tasks were used for demonstration.

48

2.3 Emerging Memristor Technology for Neuromorphic Computing

2.3.1 Memristor Crossbar Array Based Synaptic Storage

In addition to the traditional memories such as SRAM and DRAM, various new

memory technologies have emerged nowadays to provide better solutions to data-

intensive applications. Among these new memory technologies, phase-change

memory (PCRAM), spin-torque-transfer random access memory (STT-RAM) and

memristor based resistive random-access memory (ReRAM) are considered the

most promising candidates for replacing the traditional memories in the future.

PCRAMs utilize chalcogenide materials for memory storage which can be switched

between a crystalline phase (SET state) and an amorphous phase (RESET state)

by heat [72]. STT-RAMs leverage a magnetic tunnel junction to store informa-

tion and the difference in magnetic directions is used to represent a bit of infor-

mation [72]. Typically, memristors are used to implement ReRAMs, which are

known as memory resistor, whose existence was theoretically predicted by Chua

in 1971 as the fourth fundamental passive circuit element [73]. More recently, [73]

demonstrates the T iO2 thin-film based memristors at the nanoscale. Increasing

research interest has been attracted by the memristive nanodevice, which has be-

come a promising solution for low-cost on-chip storage due to its non-volatile

nature, excellent scalability and high density of over 10 Gb/cm2 [74]. Several

multibit hybrid CMOS/memristor memory architectures, which target high in-

tegration density and low power dissipation, have been proposed to replace the

conventional SRAM and flash memories that are confronted with the fundamen-

tal technology scaling limits [75] [76]. In addition, several recent studies have

suggested leveraging memristive nanodevices for building synaptic arrays [77].

This section briefly review the memristor device model which can be used for

49

implementing the on-chip synaptic weight storage in a neuromorphic system. A

T iO2 thin-film based memristor is a two terminal electrical device and is sand-

wiched by two metal contacts. Conceptually, there are a doped layer and an un-

doped layer in the film, which is illustrated in Fig. 2.19. The undoped layer is a

highly resistive pure T iO2 region (T iO2 layer) while the doped one is filled with

oxygen vacancy that makes it highly conductive (T iO2−x layer) [24]. The memris-

tive device model can be mathematically expressed by

R(w) =
w
D
·RON + (1− w

D
) ·ROFF , where 0 < w < D (2.20)

In (2.20), RON is the fully doped (lowest) resistance of the memristor, and ROFF is

the fully undoped (highest) resistances of the memristor. w represents the length

of the doped region and thus physically bounded by the range between 0 and the

total device length D. Moreover, w represents the internal state of the memristor.

PE 1 PE 2 PE P

Controller
Block

Interconnect
Block

sw
it

ch
e

sOutput
spikes

mem

Connection
mem

sw
it

ch
e

s input
spikes

mem

Weight
mem

Synapse &
membrane

mem

Outgoing
Spikes

External
Inputs

VCC

DPI
Synapse

X2

D
e

co
d

e
r

D0

Dm-1

D0

Dm-1

VCC

DPI
Synapse

X2

Isyn

VCC

DPI
Synapse

X2

VCC

DPI
Synapse

X2

Isyn N
e

u
ro

n Output

 Positive
 Cell

Negative
Cell

Address
(Dendrite)

Pulse In

Undoped Doped

 D

w
RON . w/DROFF .(1- w/D)

0 1 2 3 4 5 6 7 8

Network
Connectivity

Synapse Value 0 ~ 7

GOFF GON

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8

0

2

4

6

8

10

R
es

is
ta

n
ce

 (
Ω

)

Memristor Level

C
o

n
d

u
ct

an
ce

 (
Ω
-
1

)

X 105 X 10-5

Resistance
ConductanceROFF

RON

GON

GOFF

Figure 2.19: Memristive device structure (left) and variable resistance model
(right).

Several recent publications suggest the application of memristive arrays in

neuromorphic system as an efficient synaptic storage [30] [33]. A brain-inspired

50

reconfigurable digital neuromorphic processor (DNP) architecture for large-scale

spiking neural networks is presented in [34]- [48], which supports spike timing

dependent plasticity (STDP) learning mechanism. This design is implemented in

a commercial 90nm CMOS technology and leverages the memristor nanodevice

to build a 256× 256 crossbar array to store multi-bit synaptic weight values with

significantly reduced area cost. Fig. 2.20 illustrates the motivation of such analog

storage scheme in neuromorphic systems. An N ×N crossbar array can be used

to represent any neural network topologies when the total number of neurons is

N . Assuming the nodes in each column represent the input synapses to a partic-

ular neuron, while the nodes in each row represent the output synapses from a

particular neurons, the value associated with each node is actually the synaptic

weight of the corresponding synapse. Traditionally, such synaptic crossbar arrays

are stored in SRAMs. However, SRAMs are not suitable for synaptic storage when

dealing with multi-bit synapses. However, unlike an SRAM which normally uti-

lizes 6 transistors to storage 1 bit of data, a single memristor, which has a much

smaller area than a typical SRAM cell, can represent multiple bits of data through

its adjustable conductance. Therefore, memristor-based synaptic storage is much

more efficient than the SRAM-based synaptic storage in terms of area.

Fig. 2.21 demonstrates how the memristor conductance can represent multiple

levels of synaptic weights in a digital neuromorphic processor [34]. The memris-

tors of the crossbar array are made to have equally partitioned 9 conductance

levels to represent a multilevel synaptic weight.

Another interesting property of memristor is that, its conductance can be mod-

ulated by voltage pulses on its two terminals. Different pulse widths will intro-

duce different changes to the conductance value, and the change also depends on

the memristor’s current level. Therefore, the memristor can be written by apply-

51

SU
B

+
-

A
D

D
+

+

A
D

D
+

+M
U

L
M

U
L

C
M

P

Vleak

Kext

Ksyn

Vmem_old

SumW

Ei

Vth

Si

Vmem_new

Ext Spk
 Reg

MUX

Vrst

Memb
 Reg

Out Spk
Reg

Output
spikes

External
spikes

Si

Vmem_old

Vmem_new

MUX

Time
 Reg

Global Timer

Ti
m

e
 S

ca
lin

g

Selection

Selection

SU
B

+
-

SUB
+-

Selection

Counter
(W>0)

ADD ++

Δt

Δw

0

4

1

2

2

1

…...

…...

LUT for STDP

ΔL

Npwm 117 142 152

…...

…...

LUT for Pulse Width

1 21 2 1 3 1 4

Δt

W from Flash ADC

ΔW

Wnew

NWNEW
NW

NPWN

NFIREPRE

W

Current
time

Learning
Element

To R/W Pulse Gen.

Spike

(a) Integration Element (b) Neuron Element

Ei

Dendrites

A
xo

n
s

Analog-to-Digital
Memristor Readout

P
u

lse G
en

erato
r

1

2

3

Spike I/O

Neuron Stage

Learning Stage

1

Learning FSM

LE #1

LE #2

LE #N

Learning Unit

LIF Arithmetic
Unit

LU
T fo

r W
eigh

t
U

p
d

ate

Neuron FSM

NE #1

NE #2

NE #N

Neuron Unit

Buf

Buf

Buf

Synapse Unit

Spike
I/O

2

2

3

3

3

LE

NE

Buf

Learning Element

Neuron Element

Spike Buffer

Spike I/O Neuron Learning

Spike I/O Neuron Learning

Spike I/O Neuron Learning

t-1

t

t+1

St
ep

 (
B

io
lo

gi
ca

l t
im

e)

Time (Hardware time)

MUX

Time
 Reg

Global Timer

Ti
m

e
 S

ca
lin

g

Selection

Selection

SU
B

+
-

SUB
+-

Selection

Counter
(W>0)

ADD ++

Δt

Δw

0

4

1

2

2

1

…...

…...

LUT for STDP

ΔL

Npwm 117 142 152

…...

…...

LUT for Pulse Width

1 21 2 1 3 1 4

Δt

W from Flash ADC

ΔW

Wnew

NWNEW
NW

NPWN

NFIREPRE

W

Current
time

Learning
Element

To R/W Pulse Gen.

Spike

PreTime

FireTime

N x N Synaptic Crossbar

Read/Write Interface

Synapse Array

Spike

I/O

N Dendrites

N
 A

x
o

n
s

Synaptic

Weight

(wji)

Learning

Circuit

Learning

Circuit

Learning Array

N

Neuron

Circuit

Neuron

Circuit

Neuron Array

N

Traditional SRAM array

Memristive Nanodevices

· [Seo et al, CICC11], [Merolla et al, CICC’11]

· Area bottleneck particularly for multibit synapses

· Not suitable for Synaptic Storage!

· Non-volatile nature

· High integration density of 10 Gb/cm2

· Scalability (Multi-bit synapses)

Low Area Cost

D
e

co
d

e

Ak

A3

A2

A1

Gk

G3

G2

G1

N1 N2 N3 NM

Select & Encode

Neurons

Sync

Output Spikes

Input Spikes

Axon Crossbar Synapses Type

1 0 1 1

In
p

u
t

P
ad

s

G
lo

b
al

 F
SM

256 x 256
Synapse Array

BL/WL Driver, Sense Amp

Priority Encoder

256 Neurons

N256N2N1

O
u

tp
u

t
P

ad
s

Clock

Input Spikes

Neuron/Synapse
Configuration

Output Spikes

Neuron/Synapse
State

Figure 2.20: Block diagram of neuromorphic chip with memristor crossbar array.

ing voltage pulses to it. This property makes the memristive nanodevices very

suitable for the implementation of STDP learning rule. As mentioned in the pre-

vious sections, the STDP learning rule updates the synaptic weights according to

the firing time difference between the pre-synaptic neuron and the post-synaptic

neuron. Therefore, if the firing times of the pre-synaptic neuron and the post-

synaptic neuron are recorded by some hardware logics, we can generate a voltage

pulse whose width is determined by the firing time difference and then use it to

update the synaptic weight, namely, the conductance of the corresponding mem-

ristor in the crossbar array.

52

PE 1 PE 2 PE P

Controller
Block

Interconnect
Block

sw
it

ch
e

sOutput
spikes

mem

Connection
mem

sw
it

ch
e

s input
spikes

mem

Weight
mem

Synapse &
membrane

mem

Outgoing
Spikes

External
Inputs

VCC

DPI
Synapse

X2

D
e

co
d

e
r

D0

Dm-1

D0

Dm-1

VCC

DPI
Synapse

X2

Isyn

VCC

DPI
Synapse

X2

VCC

DPI
Synapse

X2

Isyn N
e

u
ro

n Output

 Positive
 Cell

Negative
Cell

Address
(Dendrite)

Pulse In

Undoped Doped

 D

w
RON . w/DROFF .(1- w/D)

0 1 2 3 4 5 6 7 8

Network
Connectivity

Synapse Value 0 ~ 7

GOFF GON

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8

0

2

4

6

8

10

R
es

is
ta

n
ce

 (
Ω

)

Memristor Level

C
o

n
d

u
ct

an
ce

 (
Ω
-
1

)

X 105 X 10-5

Resistance
ConductanceROFF

RON

GON

GOFF

Figure 2.21: Memristor level partitions by equal conductance.

Fig. 2.22 depicts the overall block diagram of the DNP architecture with a

N ×N memristive synapse array. It consists of a synapse unit (SU), a learning unit

(LU), a neuron unit (NU) and a LIF arithmetic unit (LAU). Let N denote the total

number of neurons in the network. The SU employs an N ×N memristor cross-

bar structure, which can represent a fully recurrent neural network topology and

support N 2 possible synaptic connections among all the neurons. In this memris-

tor array, a row and a column correspond to a dendrite and an axon, respectively,

for a biological neuron. Therefore, the connection between the (j)th row and (i)th

column corresponds to the synapse between the (j)th and (i)th neurons.

Because the memristor crossbar array is an analog storage, Analog-to-Digit

Converters (ADCs) are required for communication between the synaptic array

and the digital functional blocks. The read and write operations are realized by

applying voltage pulses with various widths to the memrisor cells. This work

utilizes the multilevel memristive synaptic crossbar arrays to realize high-density

synaptic storage and flexible access.

53

5
k

Sy
st

em
 C

o
n

tr
o

lle
r

1
st

 la
ye

r
P

re
-

W
TA

 L
U

T
R

O
M

1

2
n

d
 la

ye
r

P
re

-
W

TA
 L

U
T

R
O

M
2

3
rd

 la
ye

r
P

re
-W

TA

LU
T

R
O

M
3

A
ll

p
o

st
 W

TA

LU
T

R
O

M
4

2nd stage Axons

2
n

d
 s

ta
ge

 D
en

d
ri

te
s

1
st

 s
ta

ge
 D

en
d

ri
te

s

1st stage Axons

C
o

lu
m

n
 (

D
en

d
ri

te
)

A
D

C
C

o
lu

m
n

 (
D

en
d

ri
te

)
A

D
C

SUB

+ -

SUB

+ -

2
's

C

o
m

p

P
W

M
#1

P
W

M
#2

P
W

M
#n

P
W

M
#3

Lo
w

-R
es

o
lu

ti
o

n
 A

D
C

 A
rr

ay

P
W

M
#1

6

P
W

M
#1

7

P
W

M
#m

P
W

M
#1

8

C
o

lu
m

n
 (

 D
en

d
ri

te
)

D
ri

ve
r

Row (Axon) Driver

Lo
w

-R
es

o
lu

ti
o

n
 A

D
C

 A
rr

ay

Global Timer

LI
F

A
ri

th
m

et
ic

U
n

it

Sy
n

ap
se

 U
n

it

Le
ar

n
in

g
FS

M

LE
 #

1

LE
 #

2

LE
 #

N

LUTs for
 Synaptic Weight Update

Le
ar

n
in

g
U

n
it

N
eu

ro
n

 F
SM

N
E

#1
Sp

k
B

u
f

N
E

#2
Sp

k
B

u
f

N
E

#N
Sp

k
B

u
f

N
eu

ro
n

 U
n

it

C
o

lu
m

n
 (

D
en

d
ri

te
)

D
ri

ve
r

Row (Axon)Driver

Sp
ik

e
I/

O

R
O

M
1

2nd stage Axons

2
n

d
 s

ta
ge

 D
e

n
d

ri
te

s
1

st
 s

ta
ge

 D
e

n
d

ri
te

s

1st stage Axons C
o

lu
m

n
 (

D
e

n
d

ri
te

)
A

D
C

C
o

lu
m

n
 (

D
e

n
d

ri
te

)
A

D
C

SUB

+ -

SUB

+ -

Sy
n

ap
se

 U
n

it

2
's

C

o
m

p

R
O

M
4

R
O

M
3

R
O

M
2

D
en

d
ri

te
s

Axons

A
n

al
o

g-
to

-D
ig

it
al

M
em

ri
st

o
r

R
ea

d
o

u
t

Pulse Generator

Global Controller

Sp
ik

e
I/

O
1 2 3

Sp
ik

e
I/

O

N
eu

ro
n

 S
ta

ge

Le
ar

n
in

g
St

ag
e

1

Le
ar

n
in

g
FS

M

LE
 #

1

LE
 #

2

LE
 #

N

Le
ar

n
in

g
U

n
it

LI
F

A
ri

th
m

et
ic

U
n

it

LUT for Weight
Update

N
eu

ro
n

 F
SM

N
E

#1

N
E

#2

N
E

#N

N
eu

ro
n

 U
n

it

B
u

f

B
u

f

B
u

f

Sy
n

ap
se

 U
n

it

Sp
ik

e
I/

O

2

2

3

3

3

LE N
E

B
u

f

Le
ar

n
in

g
El

em
en

t

N
eu

ro
n

 E
le

m
en

t
Sp

ik
e

B
u

ff
er

Sp
ik

e
I/

O
N

eu
ro

n
Le

ar
n

in
g

Sp
ik

e
I/

O
N

eu
ro

n
Le

ar
n

in
g

Sp
ik

e
I/

O
N

eu
ro

n
Le

ar
n

in
g

t-
1 t

t+
1

Step (Biological time)

Ti
m

e
(H

ar
d

w
ar

e
ti

m
e)

1
4 1
4

In
h

ib
it

o
ry

 n
e

u
ro

n
Ex

ci
ta

to
ry

 n
e

u
ro

n

O
u

tp
u

t
la

ye
r

In
p

u
t

la
ye

r
In

p
u

t
Sp

ik
e

s

A
Z 1

3
0

kst
e

p

1
4

1
4

(a
)

(b
)

(c
)

5
k

In
p

u
t

Sp
ik

e
s

A
Z 1

3
0

k

st
e

p

1
4

1
4

B
1

0
k

Sp
ik

e

#1

Sp
ik

e

#2 Sp
ik

e

#1
9

6

In
h

ib
it

o
ry

 n
e

u
ro

n
Ex

ci
ta

to
ry

 n
e

u
ro

n

O
u

tp
u

t
la

ye
r

In
p

u
t

la
ye

r

R
e

ce
p

ti
ve

 f
ie

ld
s

af
te

r
tr

ai
n

in
g

1
4

1
4

D
en

d
ri

te
s

Axons A
n

al
o

g-
to

-D
ig

it
al

M
em

ri
st

o
r

R
ea

d
o

u
t

Pulse Generator

1 2 3

Sp
ik

e
I/

O

N
eu

ro
n

 S
ta

ge

Le
ar

n
in

g
St

ag
e

1

Le
ar

n
in

g
FS

M

LE
 #

1

LE
 #

2

LE
 #

N

LI
F

A
ri

th
m

et
ic

U
n

it

LUT for Weight
Update

N
eu

ro
n

 F
SM

N
E

#1

N
E

#2

N
E

#N

N
eu

ro
n

 U
n

it

B
u

f

B
u

f

B
u

f

Sy
n

ap
se

 U
n

it

Sp
ik

e
I/

O

2

2

3

3

3

LE N
E

B
u

f

Le
ar

n
in

g
El

em
en

t

N
eu

ro
n

 E
le

m
en

t
Sp

ik
e

B
u

ff
er

Le
ar

n
in

g
U

n
it

3
5

2
5

Ze
ro

Tw
o

Th
re

e
O

n
e

Fi
ve

Si
x

Ei
gh

t

O
u

tp
u

t
la

ye
r

9
 e

xc
it

at
o

ry
 n

eu
ro

n
s

1
 in

h
ib

it
o

ry
 n

eu
ro

n
s

In
p

u
t

la
ye

r
8

7
5

 e
xc

it
at

o
ry

 n
eu

ro
n

s
6

 in
h

ib
it

o
ry

 n
eu

ro
n

s
Sp

ee
ch

 P
at

te
rn

s

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

7
0

0
8

0
0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

D
en

d
ri

te
 In

d
ex

Axon Index

N
e
u
ro

n
 T

y
p
e

N
e
u
ro

n
 I
n

d
e
x

In
p
u
t

E
x
c
it

a
to

ry
1

~
8

7
5

O
u
tp

u
t

E
x
c
it

a
to

ry
8
7

6
~

8
8
4

In
p
u
t

In
h
ib

it
o
ry

8
8

5
~

8
9
0

O
u
tp

u
t

In
h
ib

it
o
ry

8
9

1

Th
e

fe
ed

-f
o

rw
ar

d
 s

yn
ap

se
s

o
n

ly
 e

xi
st

s
in

 t
h

is
 s

m
al

l r
eg

io
n

.

8
7

6

8
7

7

8
7

8

8
7

9

8
8

0

8
8

1

8
8

2

8
8

3

8
8

4

Neuron #

Th
re

e
Tw

o
Ei

gh
t

Si
x

Fi
ve

O
n

e
Ze

ro

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

1
2
0
0
0

1
4
0
0
0

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

1
2
0
0
0

1
4
0
0
0

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

1
2
0
0
0

1
4
0
0
0

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

1
2
0
0
0

1
4
0
0
0

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

1
2
0
0
0

1
4
0
0
0

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

1
2
0
0
0

1
4
0
0
0

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

1
2
0
0
0

1
4
0
0
0

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

1
2
0
0
0

1
4
0
0
0

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

1
2
0
0
0

1
4
0
0
0

D
en

d
ri

te
s

Axons

A
n

al
o

g-
to

-D
ig

it
al

M
em

ri
st

o
r

R
ea

d
o

u
t

Pulse Generator

1 2 3

Sp
ik

e
I/

O

N
eu

ro
n

 S
ta

ge

Le
ar

n
in

g
St

ag
e

1

Le
ar

n
in

g
FS

M

LE
 #

1

LE
 #

2

LE
 #

N

Le
ar

n
in

g
U

n
it

LI
F

A
ri

th
m

et
ic

U
n

it

LUT for Weight
Update

N
eu

ro
n

 F
SM

N
E

#1

N
E

#2

N
E

#N

N
eu

ro
n

 U
n

it

B
u

f

B
u

f

B
u

f

Sy
n

ap
se

 U
n

it

2

2

3

3

3 LE N
E

B
u

f

Le
ar

n
in

g
El

em
en

t

N
eu

ro
n

 E
le

m
en

t
Sp

ik
e

B
u

ff
er

C
o

lu
m

n
 W

o
rd

 L
in

e

A
D

C

A
D

C

A
D

C

A
D

C

A
D

C

A
D

C

w
1

i

w
2

i

w
3

i

w
4

i

w
5

i

w
6

i

Row Word Line

w
i1

w
i3

w
i6

A
D

C
A

D
C

A
D

C

Sy
st

em
 C

o
n

tr
o

lle
r

1
st

 s
ta

ge
 D

en
d

ri
te

s

1st stage Axons C
o

lu
m

n
 (

D
en

d
ri

te
)

A
D

C

P
W

M
#1

P
W

M
#2

P
W

M
#n

P
W

M
#3

Lo
w

-R
es

o
lu

ti
o

n
 A

D
C

 A
rr

ay

Global Timer

LI
F

A
ri

th
m

et
ic

U
n

it

Sy
n

ap
se

 U
n

it

Le
ar

n
in

g
FS

M

LE
 #

1

LE
 #

2

LE
 #

N

LUTs for
 Synaptic Weight Update

Le
ar

n
in

g
U

n
it

N
eu

ro
n

 F
SM

N
E

#1
Sp

k
B

u
f

N
E

#2
Sp

k
B

u
f

N
E

#N
Sp

k
B

u
f

N
eu

ro
n

 U
n

it

C
o

lu
m

n
 (

D
en

d
ri

te
)

D
ri

ve
r

Row (Axon)Driver

Sp
ik

e
I/

O

Read/Write Pulse Generator

Memristor
readout

Fi
gu

re
2.

22
:B

lo
ck

d
ia

gr
am

of
ne

u
ro

m
or

p
hi

c
ch

ip
w

it
h

m
em

ri
st

or
cr

os
sb

ar
ar

ra
y.

54

3. A PARALLEL DIGITAL VLSI ARCHITECTURE FOR SUPPORT VECTOR

MACHINE*

In this section, we start from the motivation of algorithm-level parallelism for

SVM training by giving a detailed introduction to Cascade SVM. Then, this sec-

tion discusses the proposed parallel digital VLSI architecture for Cascade SVM.

Some critical design issues such as efficient processing unit reuse and memory

organizations are thoroughly studied. Meanwhile, the scalability and reconfig-

urability issues of the proposed architecture are also discussed in this section.

3.1 Cascade SVM Training Algorithm

The time cost of SVM training is dominated by kernel evaluations and has a

complexity of O(n2), where n is the number of samples between which kernel

functions need to be evaluated. For the classical flat SVM algorithm [20], n is the

cardinality of the training data set. In most real world problems, support vectors

are only a small portion of the whole training data set. Therefore, eliminating

non-support vectors early on in the training process is an effective way to speed

up SVM training. To serve this purpose, multiple SVM units may be used to filter

out non-support vectors from multiple subsets of the training data in parallel.

The Cascade SVM is based on this concept [21], and the hierarchical structure of

cascade SVM is shown in Fig. 3.1.

For Cascade SVM, the original optimization problem is initialized with many

independent smaller optimizations. The sets of support vectors obtained from

the first layer are combined two-by-two in the later stages. The training process

*© 2015 IEEE. Reprinted, with permission, from Q. Wang P. Li Y. Kim A Parallel Digital VLSI
Architecture for Integrated Support Vector Machine Training and Classification, Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on 23.8 (2015): 1471-1484.

55

proceeds by finding the new support vectors from each of the combined subsets

until the final training at the bottom layer is done.

SVM SVM SVM SVM

SVM SVM

SVM

SV SV SV SV

SV SV

D1 D3 D4D2

SV

Feedback for KKT
condition check

SV: support vectors
Di: the i-th data set

Figure 3.1: Schematic of a binary Cascade SVM. The whole data set is split into
smaller subsets and each one is fed as the inputs to the SVMs in the first layer.
Then the results (support vectors) will be combined two by two and fed as the
inputs to the following layers. The SVMs can be seen as filters which extract
support vectors from the input data set. A feedback path is added to guarantee
the global convergence. ©IEEE 2015

Fig. 3.1 shows a 3-layer Cascade SVM. The original data set is split intoD1, D2,

D3 andD4, which are the input to the first layer SVMs. After the first layer extracts

support vectors (SVs) from the four subsets, these support vectors are used as the

input to the second layer SVMs. Then, new support vectors are extracted by the

second layer, which will be sent to the third layer SVM as input. The output of

the third layer is the one-pass training result of this 3-layer Cascade SVM.

56

According to [21], in most cases, only one single pass through the cascade is

necessary, and produces satisfactory accuracy. On the other hand, to reach the

global optimum, multiple passes through the cascade are needed. This is ac-

complished efficiently in the Cascade algorithm though the combination of in-

termediate solutions of different layers and different passes and use of effective

convergence checking mechanisms. To achieve this, upon the completion of the

first pass, the result of the last layer is used to form an SVM classifier that is fed

back to the first layer to start the second pass. Essentially, with respect to this

classifier, samples that violate the KKT conditions are found from each subsets of

training data (D1 , D2 , D3 andD4). Then, each subset of the violators is combined

with the support vectors obtained by the last layer SVM and the combined set is

treated as the new inputs to the same SVM in the second pass. With these new

inputs, the same cascade filtering process proceeds. This process may repeat for

several passes until there no long exists any KKT violation, which signifies the

global convergence.

Thanks to the divide-and-conquer strategy in this architecture, each SVM never

deals with the whole training set. In practice, the first layer SVM units are very

effective in filtering non-support vectors and the support vectors constitute only

a small fraction of the training data. After the filtering of the first layer, only a

small number of first-layer support vectors are forwarded to the following lay-

ers. Hence, the dominant training work is processed at the first layer in the first

pass, where each SVM unit processes a sub-set of the data, an SVM optimization

problem of a smaller scale.

To show the potential speedups by the cascade algorithm, we construct a 4-

layer cascade SVM and apply it to a number of data sets. Software simulation

reveals that the average workload breakdowns are 90%, 7%, 2% and 1% for the

57

four layers, respectively. Due to quadratic complexity of the kernel evaluation,

the cascade speedup of each layer is the square of the number of SVMs in that

layer. Therefore, according to Amdahl’s law [78], the theoretical overall speedup

of this 4-layer design is quite significant and is given by

Speedup =
1

P4
12 + P3

22 + P2
42 + P1

82

= 33, (3.1)

where Pi represents the workload of the i-th layer.

3.2 Proposed VLSI Architecture and Hardware Implementation

In this section, we describe in detail the proposed VLSI architecture and design

for Cascade SVM. A number of critical issues, such as flexibility in processing

variable sized data, architecture and memory organization, are addressed in this

section. The overall architecture of our hardware implementation is shown in Fig.

3.2, which consists of an array of basic SVM processing units with distributed

cache memory storage. The interconnection of the SVM units and memories is

realized by a multi-layer system bus to fully enable parallel processing.

The operations of this architecture are controlled by a global finite state ma-

chine (FSM), which is responsible for the control of parallel training, partial re-

sults combination as well as convergence checking. This flexible architecture can

be configured differently to trade off between throughput, area and power over-

heads.

3.2.1 Efficient Mapping from the Cascade SVM Algorithm to the Hardware

Architecture

There are two main concerns for the hardware implementation regarding the

area efficiency. The first concern is to use a moderate number of SVM processing

58

MEM MEM MEMMEM
MEM MEM MEMMEM

SVM SVM SVMSVM
SVM SVM SVMSVM

Global
Controller

SVM SVM SVM

Read/write interface, Address mapping control

MEM MEM MEM

SVM

MEM

Multi-layer
System Bus

SVM Array

Distributed
Memory

Figure 3.2: The proposed architecture of cascade SVM.©IEEE 2015

units to construct the hardware architecture of the cascade SVM algorithm. The

second is to make efficient use of on-chip memory for both training samples and

training results. In this paper, we propose the SVM processing unit reuse and the

address mapping scheme to deal with the above concerns.

3.2.1.1 Reuse of SVM processing Units

As shown in Fig. 3.1, there are multiple layers of SVMs in the cascade, but

only one layer of SVMs works at a time. Therefore, when it comes to the hardware

implementation, only the top layer SVMs instead of all have to be implemented

as SVM processing units. The SVM training in the following layers is achieved

by reusing these SVM processing units at a different time. Fig. 3.3 demonstrates

an example of SVM reuse in the proposed hardware cascade SVM. Initially, the

59

training samples are continuously stored in the on-chip memories, and each sam-

ple involves the data y, ~x and α. At the very beginning, all the SVM units only

read data from their private memories, and update the α values for all the train-

ing samples as shown in Fig. 3.3(a). When all these SVM units finish training, the

samples with non-zero α values are determined to be the support vectors. The

addresses of these support vectors are the temporary training results, which are

saved in the memory management units (MMUs). The training of the 2nd layer is

illustrated in Fig. 3.3(b). According to the 2nd layer of the cascade SVM in Fig.

3.1, two SVMs are used to process four sets of support vectors obtained from the

1st layer training. Therefore, for hardware implementation, two SVM units are

reused to process the support vectors stored in the four memories, and the new

training results are also saved in MMUs. The training of the 3rd layer is shown

in Fig. 3.3(c), in which one SVM unit is reused to access all the four memories to

locate the support vectors obtained by the 2nd layer training.

3.2.1.2 Address Mapping for Memory Access

To reduce the design complexity of a single SVM, it only sends out continu-

ous addresses to the bus, which requires that the input samples are stored in a

continuous memory space in a good order. This is exactly the case for the paral-

lel training in the first layer at the very beginning (see Fig. 3.3(a)). However, for

cascade SVM, the support vectors obtained from the previous layer are the input

to the current layer, which means that the input samples of the current layer are

not continuously stored any more. One simple approach to solve this problem is

to copy and save the support vectors of the previous layer in an additional con-

tinuous memory space, and then process them with an SVM processing unit. But

this simple approach would introduce dramatic increase of the on-chip memory

60

MEM

x(1)

SVM

MMU
y Results

SVM

MMU

Results

MMU

SVM

MMU

Results

MMU

(a)

(b)

x(2)

SVM

MMU

Results

MMU MMU MMU

MEM MEM MEM MEM

(c)

MEM

x(1)

SVM

MMU
y Results

x(2)

MEM

x(1)

SVM

MMU
y Results

x(2)

MEM

x(1)

SVM

MMU
y Results

x(2)

x(1)

y

x(2)

x(1)

y

x(2)

x(1)

y

x(2)

new new new new

new new

new

MEM MEM MEM MEM

Figure 3.3: An example of SVM processing unit reuse for cascade SVM and the
corresponding data flow diagram. (a)-(c) correspond to the training of different
layers in the 3-layer cascade tree in Fig. 3.1, respectively. ©IEEE 2015

area, and also non-negligible delay due to the transfer of large amounts of data.

Therefore, we develop an address mapping scheme, which allows the SVM pro-

61

cessing unit to locate the support vectors originally stored in the memory without

creating additional memory space and data movements.

The proposed address mapping scheme solves the above problems in an effi-

cient way. To distinguish from the physical addresses associated with real mem-

ory locations, the continuous addresses from SVM units are called the virtual ad-

dresses. The physical addresses of the support vectors of each SVM are saved in

each MMU continuously. Therefore, we can consider the MMU as a lookup table,

and the physical addresses of the support vectors are the elements in the table. So

the physical address of a certain support vector can be simply obtained by using

the virtual address from the SVM unit as the index to the lookup table. In this

case, an SVM unit still assumes all its input samples are stored in a continuous

virtual address space, and the MMUs are used to find the physical locations of

these sparsely distributed samples in the physical address space.

The key component for the address mapping is the MMU. Each MMU is asso-

ciated with one memory and stores the physical addresses of the support vectors

inside this memory. The MMU receives the virtual addresses from SVM units and

generate the physical addresses based on the information in the lookup table. This

address mapping scheme is illustrated in Fig. 3.4, which shows an example of ad-

dress mapping for the 2nd layer training (see Fig. 3.3(b)). MMU(a) and MMU(b)

are associated with SRAM(a) and SRAM(b), respectively. Assuming samples A to

E in SRAM(a) and F, G and H in SRAM(b) are determined to be the support vec-

tors by the 1st layer training. Take F, G and H for example. Their corresponding

addresses 0, 4 and 7 are saved in MMU(b). When an SVM unit needs to combine

the support vectors A to H , it will send out continuous addresses ranging from

0x000000 to 0x000007, which corresponds to the virtual address space in Fig.

3.4. Take the 7th sample G in virtual address space as an example. Because its ad-

62

A
B
C
D
E
F
G
H

of SVs : 50x000000

0x000001

0x000002

0x000003

0x000004

0x000005

0x000006

0x000007

A

B
C

D

1
3
4
6

E
8

of SVs : 3
0
4
7

F

G

H

0x000000
0x000001
0x000002
0x000003
0x000004
0x000005
0x000006
0x000007
0x000008

0x000000
0x000001
0x000002
0x000003
0x000004
0x000005
0x000006
0x000007
0x000008

Virtual Address Space Physical Address Space

Continuous addresses
from one SVM unit

Support Vector
lookup tables
inside MMUs

Physical addresses
from two separate

SRAMs

MMU (a)

MMU (b)

SRAM (a)

SRAM (b)

Figure 3.4: Address mapping from virtual address space to physical address space
with MMUs. ©IEEE 2015

dress is larger than 5, the number of support vectors in SRAM(a), G is determined

to be inside SRAM(b). Therefore, the sample G corresponds to the second entry of

MMU(b), and the MMU (b) is controlled to generate a physical address to locate

the 5th data point in SRAM(b). The address mapping for other support vectors is

performed in the same manner.

3.2.2 Multi-layer System Bus Architecture

As mentioned in the previous sections, to facilitate parallel processing among

multiple SVM processing units, instead of having a centralized memory, we em-

ploy a distributed memory organization, i.e. each SVM unit owns a private mem-

63

M
M

U
2

M
E

M
M

E
M

M
E

M
M

E
M

A
M

PSV
M

SV
M

SV
M

SV
M

SV
M

SV
M

SV
M

SV
M

M
E

M
M

E
M

M
E

M
M

E
M

M
E

M
M

E
M

M
E

M
M

E
M

A
M

P
A

M
P

A
M

P
A

M
P

SV
M

SV
M

M
E

M
M

E
M

M
E

M
M

E
M

A
M

P
A

M
P

A
M

P
A

M
PSV

M

M
E

M
M

E
M

M
E

M
M

E
M

A
M

P
A

M
P

A
M

P
A

M
PSV

M
SV

M
SV

M
SV

M

Re
ad

Re
ad

Re
ad

Re
ad

W
rit
e

W
rit
e

W
rit
e

W
rit
e

Ad
dr
es
s

Ad
dr
es
s

Ad
dr
es
s

Ad
dr
es
s

Ad
dr
es
s

Ad
dr
es
s

Ad
dr
es
s

(a
)

(b
)

(c
)

(d
)

(e
)

(f)

Pa
ra

lle
l p

ro
ce

ss
in

g
w

ith
 a

ll
4

SV
M

s
Fi

g
(d

)
U

pd
at

e
M

M
U

1

Pa
ra

lle
l p

ro
ce

ss
in

g
w

ith
 o

nl
y

2
SV

M
s

Fi
g

(e
)

U
pd

at
e

M
M

U
1

Co
nv
er
ge

Fi
na

l C
om

bi
na

tio
n

w
ith

 o
nl

y
1

SV
M

Fi
g

(f)

U
pd

at
e

M
M

U
2

Co
nv
er
ge

Co
nv
er
ge

A
M

P
A

M
P

A
M

P

M
M

U
1

M
M

U
2

M
M

U
1

M
M

U
2

M
M

U
1

M
M

U
2

M
M

U
1

M
M

U
2

M
M

U
1

M
M

U
2

M
M

U
1

M
M

U
2

M
M

U
1

M
M

U
2

M
M

U
1

M
M

U
2

M
M

U
1

M
M

U
2

M
M

U
1

M
M

U
2

M
M

U
1

M
M

U
2

M
M

U
1

M
M

U
2

M
M

U
1

M
M

U
2

M
M

U
1

M
M

U
2

M
M

U
1

M
M

U
2

M
M

U
1

Fi
gu

re
3.

5:
T

he
C

as
ca

d
e

SV
M

ha
rd

w
ar

e
im

p
le

m
en

ta
ti

on
u

si
ng

th
e

m
u

lt
i-

la
ye

r
sy

st
em

bu
s:

(a
)

th
e

op
er

at
in

g
co

nt
ro

l
fl

ow
fo

r
a

4-
SV

M
d

es
ig

n,
(b

)t
he

ad
d

re
ss

bu
s,

(c
)t

he
d

at
a

bu
se

s
fo

r
re

ad
an

d
w

ri
te

,r
es

p
ec

ti
ve

ly
,(

d
)-

(f
)t

he
co

nfi
gu

ra
-

ti
on

s
of

th
e

ad
d

re
ss

bu
s

fo
r

d
iff

er
en

t
la

ye
rs

.©
IE

E
E

20
15

64

ory. The training data of each SVM unit is cached in its own private memory,

allowing simultaneous private memory accesses by multiple SVM units. On the

other hand, a flexible architecture interconnecting these private memories allow-

ing for communication between SVM units is needed. For this, we design a multi-

layer system bus that enables parallel access paths between multiple SVM units

and their memories.

The proposed bus architecture is illustrated in Fig. 3.5, which shows an exam-

ple of 4-core Cascade SVM. Fig. 3.5(a) shows the overall control flow. The address

bus and the data bus are illustrated in Fig. 3.5(b)-(c). Fig. 3.5(d)-(f) demonstrate

the configurations of the address bus for different layers of training.

In the proposed designs, the original training samples (y,~x) are continuously

stored in each memory. The corresponding α values are stored continuously ad-

jacent to the samples without overlap. When an SVM unit needs to access the

samples in multiple memories (Fig. 3.3(b)-(c)), the corresponding new α values

are also saved in the private memory of this SVM unit. In this case, only one direct

write bus is required between each SVM unit and its private memory (Fig. 3.5(c)),

which greatly simplifies the configuration of data bus.

As mentioned in the previous subsection, each MMU involves a lookup table

which stores the address information of the temporary training results. There are

two major functions for the MMU: 1) recording the physical addresses of the sup-

port vectors obtained from the previous layer training; 2) translating the contin-

uous virtual addresses from the SVM units to discontinuous physical addresses

of the memories based on the lookup table. Therefore, for each SVM unit, we

need one MMU with the training results from the previous layer to perform the

address mapping, and another MMU to record the training results obtained from

the current layer. In the example of the cascade SVM design in Fig. 3.5, there

65

is an address mapping pair (AMP) for each memory, which includes MMU1 and

MMU2.

Due to the filtering process of the cascade SVM algorithm, the training results

of the current layer should be a subset of the training results of the previous layer.

Therefore, once the current layer training is completed, we only scan the training

results of the previous layer, instead of all original samples, to detect the samples

with non-zero α values. So the training results of the current layer can be quickly

located once the current layer of training is completed.

According to Fig. 3.5(a), once all the four SVM units converge, the addresses of

the support vectors extracted from the corresponding data sets are recorded and

saved continuously into each MMU1. The parallel training of the first layer of

cascade SVM is illustrated in Fig. 3.5(d). During this process, each SVM unit only

accesses its private memory without the need of address mapping because the

virtual addresses and the physical addresses of input samples are equivalent at

the very beginning. For the 2nd layer training, as shown in Fig. 3.5(e), the input

samples are the support vectors from the 1st layer training, which are sparsely

distributed in the memories. Since the virtual addresses from SVM units are no

longer equivalent to the physical addresses of the input samples, it is necessary to

use the MMU1s to perform the address mapping for the 2nd layer training. Once

both the SVM units reused for the 2nd layer complete their training, they scan

over the support vectors of the previous layer, to find the new support vectors of

the current layer. The addresses of the new support vectors are saved into each

MMU2.

Finally, as shown in Fig. 3.5(f), one SVM unit is reused for the 3rd layer train-

ing. The input samples to this SVM unit are the newly obtained support vec-

tors from the 2nd layer training, which are stored discontinuously inside all four

66

memories. This SVM unit still sends out continuous virtual addresses, but with

the address mapping of the MMU2s, all the input samples can still be correctly

located. When the 3rd layer training is completed, the corresponding training

results are saved in each MMU1, because there’s no need to keep the old training

results inside MMU1 any more.

If the cascade tree has more layers, or more iterations are required, the MMU1s

and MMU2s will alternately change roles between the “result recording unit”

and the “address mapping unit”, therefore, good scalability is achieved by reusing

both the SVM processing units and MMUs.

3.2.3 Design of Flexible SVM Units

As required by Cascade SVM, a basic SVM processing unit design has to be ca-

pable of processing variable data size, so that the Cascade SVM can handle input

data of variable sizes and the partial training results of unpredictable size can be

combined by going through another SVM training iteration. Fig. 3.6 shows the

proposed SVM unit for addressing the flexibility issue. A Gaussian kernel with

the form k(~xi , ~xj) = exp(−γ ||~xi− ~xj ||2) is used for our SVM unit, which is one of most

common kernels used nowadays. We choose to use a gradient-ascent algorithm to

solve the optimization problem defined by (2.7). Therefore, during the training

SVM, updating rule for αi can be written as [20]

αnewi = αi − ηi
∂W (α,b)
∂αi

, (3.2)

67

where ηi is the learning rate. In this work, we choose ηi = 1/K(~xi , ~xi) so the above

updating rule becomes

αnewi = αi −
1

K(~xi , ~xi)
{yi(

n∑
j=1

αjyjK(~xi , ~xj) + b)− 1} (3.3)

Since K(~xi , ~xi) is equal to 1 for Gaussian kernel, the above equation becomes

αnewi = 1− yi(
N∑
j,i

αjyjK(~xi , ~xj) + b) (3.4)

The above equation does not include any division operation or old value of αi .

Since the Gaussian function maps the input space to an infinite dimensional space,

the bias b can be removed due to the characteristics of the Gaussian kernel [20].

Therefore, this gradient ascent algorithm is quite hardware-friendly [20]. Consid-

ering the constraint (0 ≤ αi ≤ C) for α in the soft-margin SVM, the final form of

the updating equation becomes

αnewi = min(C,max(0,1− yi
N∑
j,i

αjyjK(~xi , ~xj)) (3.5)

Therefore, the above updating equation is the solution to the optimization

problem described by (2.7), when using Gaussian kernel and 1/K(xi ,xi) as the

learning rate. The pseudo-code of the gradient-ascent algorithm is given in Table

3.1. Consider the case of training over 2D input vectors. There are four fixed-

point numbers for each training sample, which correspond to y,x(1),x(2) and α.

The samples are continuously stored in the memory so the addresses of each data

element can be completely determined by N , i and j, where N is the size of the

training set, and i and j are the indices of training samples. Initially, the value

68

Memory

Address
Generator

yj

xi
(1)

xj
(1)

xi
(2)

xj
(2)

Sub

Sub

()2

()2

AddLUT

-1

yi
32 bit

Multiplier Add Reg

-1
Sub

1

Local
FSM

{0, C}

0

4N-1

|
|
|
|
|

y

x(1)

x(2)

N
i
j

address

dataout

datain

kij

Comp

i

sram

j

Figure 3.6: The proposed flexible SVM processing unit with three 32-bit fixed-
point multipliers and one Gaussian function lookup table. ©IEEE 2015

Table 3.1: Pseudocode of the hardware-friendly gradient-ascent algorithm for
SVM training.

Given training set (~xi , yi)1≤i≤N
α = 0
repeat

for i = 1 to N
αnewi = min(C,max(0,1− yi

∑N
j,i αjyjK(~xi , ~xj))

end for
until solution converges (sufficient iteration cycles)
return α

69

of each Lagrange multiplier α is zero, but its value will be changed during the

training process, and the SVM unit keeps writing the updated α values back to

the memory.

The calculations in this SVM block are based on fixed-point arithmetic of two’s

complements. Each operand is stored as a 32-bit fixed point number, with 16 in-

teger bits and 16 fractional bits. Linear or polynomial kernels can be easily imple-

mented with multipliers and adders, but the implementation of a Gaussian kernel

requires an exponential function. [79] proposes a hardware friendly kernel to re-

place the conventional Gaussian kernel with low hardware cost, showing good

performance in many cases. However, to guarantee the performance for general

problems, we choose to implement a standard Gaussian kernel. In this work, the

exponential function is realized by a pre-computed lookup table (LUT).

This SVM design is very suitable for Cascade SVM, because it is flexible enough

to handle a input data set of random size in runtime.

The hyperparametersC and γ are application specific parameters, which greatly

influence the training performance and might be different for different data sets

[80] [81] [82]. In this work, the optimized hyperparameters are obtained by a

search on a regular grid, using a cross validation procedure for estimating the

generalization error. C and γ are determined by the software simulation and the

users can choose to optimize these values for a specific training data set. When C

is small, more support vectors will be obtained, but there will be less iterations

before the convergence. According to [81], a higher value of C tends to reduce er-

rors. Therefore, the value of C should not be too small. However, as C gets larger,

the decreasing of the number of support vectors will be slower, while the number

of iterations will keep increasing. Thus, a very large C is not necessary. Table

3.2 compares the training runtimes of different cascade SVMs using different C

70

values. The simulations are based on a dataset with 400 2-D samples. Table 3.2

shows that the relative speedups are not significantly influenced by C.

Table 3.2: Comparison of runtimes of different cascade SVM structures with dif-
ferent C values. The dataset involves 400 samples.

flat SVM 2-layer cascade 3-layer cascade Misclassified samples
C=1 4.49s 1.57s 0.49s 9
C=5 7.52s 2.03s 0.67s 2

C=20 7.64s 2.09s 0.69s 1
C=100 8.10s 2.32s 0.79s 1

3.2.4 Flexible Processing Configurations

The flexibility of the proposed Cascade SVM architecture allows for various

processing configurations, namely, full hardware-based parallel processing, tem-

poral reuse, and the hybrid scheme, which combines the first two, leading to dif-

ferent trade-offs between performance and cost.

3.2.4.1 Full Parallel Processing and Temporal Reuse

We use three Cascade SVM designs involving multiple SVM units working

in parallel to illustrate the full parallel processing configuration of the proposed

architecture. These designs use two, four and eight SVM units, respectively, for

the first layer parallel processing. All these full parallel Cascade SVM designs

have the same processing flow with Fig. 3.5. At the beginning, all SVM units

work in parallel to perform first layer training, and then half of them are reused

to perform the second layer training. In other words, for each layer of the cascade

SVM, the SVMs in this layer work in parallel.

71

Subset 1 Subset 1 Subset 3

SVM1 SVM2SVM

(a) (b)
Subset 2

Memory
Subset 2 Subset 4

Memory1 Memory2

MMU1 MMU2 MMU1 MMU2 MMU3 MMU4

SVM1 SVM2

SVM5

SVM3 SVM4

SVM6

SVM7

SVM1 SVM2

SVM3

Subset 1 Subset 2 Subset 1 Subset 2 Subset 3 Subset 4

Figure 3.7: Mapping the Cascade SVM algorithm to the temporal reuse design
and hybrid design: (a) temporal reuse of one SVM unit, (b) the hybrid design
which involves both parallel processing and temporal reuse. The dashed lines
correspond to the address bus. ©IEEE 2015

The Cascade SVM can also be implemented with a structure shown in Fig.

3.7(a), which reuses only one SVM unit in time domain to train multiple subsets

of data one at a time. Unlike the full parallel processing, for each layer of the

cascade, the temporal reuse scheme uses only one hardware SVM unit to train

multiple subsets sequentially. Take the 2-layer cascade SVM in Fig. 3.7(a) as

an example. The data set in the memory is conceptually split into two subsets.

The SVM processing units first serves as SVM1 in the 1st layer to process the

Subset1. Then it saves the addresses of support vectors into MMU1. After that,

72

the same SVM unit starts to process Subset2 and stores the addresses of partial

training result into MMU2. Finally, the SVM unit accesses the remaining samples

in memory based on the information in both MMUs. Upon the completion of the

combination step, the addresses of the final results are saved in MMU1.

As in the previous cases (full parallel processing) where the original training

data is split into two sub data sets, the time complexity of processing one subset

of the data remains as O((N/2)2). However, since there is no parallel process-

ing, the overall complexity is O(N 2/2), offering a speed up of 2x over the serial

implementation of the flat SVM algorithm.

3.2.4.2 Hybrid Processing

Combining the above temporal reuse with full parallel processing, we propose

a hybrid configuration to improve the trade-offs between area, power dissipation

and throughput. To present this idea, consider the case where the full data set is

partitioned into four equally sized subsets for which two hardware SVM units are

instantiated, as shown in Fig. 3.7(b).

This hardware design corresponds to the conceptual algorithm-level cascade

tree with 3 layers, whose first layer has four algorithmic SVM units. At first, the

two SVM processing unit work in parallel, and each of them processes two data

subsets in a sequential temporal reuse manner. The combination in each SVM

unit is done by using its private MMUs (i.e, MMU1 and MMU2 for SVM1, MMU3

and MMU4 for SVM2). Once both SVM units finish the combination of their own

partial results, the addresses of the surviving support vectors will be saved into

MMU1 and MMU3, then the first SVM processing unit in Fig. 3.7(b) combines the

surviving samples based on the information in these two MMUs.

For the example in Fig. 3.7(b), the hybrid design enjoys a theoretical speedup

73

which is a little smaller than 8x while the the area is only doubled compared with

the serial implementation of the flat SVM. Therefore, by combining hardware-

based parallel processing and temporal reuse, this design shows a further im-

proved throughput and a better area efficiency.

3.2.5 Global Convergence Checking and Classification

According to the algorithm of cascade SVM, which is discussed in Section III,

the training results of the last layer should be fed back to the top layer to test the

KKT conditions. Then the KKT violators are combined with the support vectors

as the input to the next iteration. Although one run through the cascade without

any feedback usually achieves promising training accuracy [21], we implement

this feedback scheme for our designs to guarantee the global convergence. Since

the bias b has been removed in the proposed design and w =
∑N
i=1αiyiφ(x), the

KKT conditions in (2.11) can be rewritten as


αi = 0 ⇒ yi(

∑N
j=1αjyjK(~xj , ~xi)) ≥ 1

0 < αi < C ⇒ yi(
∑N
j=1αjyjK(~xj , ~xi)) = 1

αi = C ⇒ yi(
∑N
j=1αjyjK(~xj , ~xi)) ≤ 1

(3.6)

where ~xi is the sample to be tested, and ~xj is one support vector obtained from the

training.

The above equation has a form very similar to that of the training update rule

in Table I. Therefore, the major part of the hardware for the training process can

be reused during the KKT condition checking. As shown in Fig. 3.8, one SVM

unit is used to check the KKT conditions of each sample. Unlike SVM training,

the KKT checking does not require tens or hundreds of iterations to get to con-

vergence. Therefore, the time cost is trivial compared with the time of training.

74

During the KKT condition checking, the SVM unit reads out each sample from

the memories without any address mapping, while all the support vectors need to

be accessed based on the updated lookup tables in the MMUs. The inner products

between each sample and all support vectors are calculated by the same SVM unit.

Once a KKT violator is detected, the corresponding physical address is saved in

the lookup table of MMUs adjacent to the addresses of the support vectors. Then

the system will enter a new iteration of cascade SVM training, with the same con-

trol flow of Fig. 3.5.

MEM MEM MEMMEM

AMP

SVM
Address

Indices of
Support
Vectors

Indices of
KKT

violators

Indices of
Support
Vectors

Indices of
Support
Vectors

Indices of
Support
Vectors

AMP AMP AMP

Indices of
KKT

violators

Indices of
KKT

violators

Indices of
KKT

violators

Indices of
KKT

violators

Figure 3.8: The process of KKT checking for global convergence. The addresses of
the training results from the previous iteration is stored in the MMU1s or MMU2s.
When one pass through the cascade is completed, an SVM processing unit tests
each sample for KKT violators based on equations (3.6). The physical addresses
of the KKT violators are then saved in the same MMUs. ©IEEE 2015

As mentioned earlier, the decision boundary for classification can be expressed

75

as f (~x) =
∑Nsv
i=1αsvysvK(~x, ~xsv) when the bias b is removed, where Nsv , αsv , ysv and

~xsv represent the total number, the corresponding Lagrange multiplier values, the

labels and vectors of the support vectors. When an unlabeled sample comes, it

is first stored in a particular location in the on-chip memory, and then its corre-

sponding f (x) is calculated using the above expression. If f (~x) > 0, its label is

determined to be +1. But if f (~x) < 0, its label is determined to be −1. Since f (~x)

also has a form very similar to that of the training update rule, the hardware for

the training process is also reused for classification, leading to noticeable reduc-

tion of area overhead.

3.3 Experimental Results

The classical flat SVM and proposed Cascade SVM architecture are designed

in the Verilog HDL and synthesized using a commercial 90nm CMOS standard

cell library. The IP of on-chip memory is generated by the corresponding SRAM

compiler. We follow the typical ASIC design flow to perform the logic synthe-

sis, floor-planning, placement and routing. Parasitic extraction is done after the

layout generation. According to our post-layout timing analysis, the hardware

designs are able to run at 178MHz. The proposed designs are synthesized in a

bottom-up manner, so that the IP blocks such as SVM units, MMUs and SRAMs

can be easily reused if the design needs to be scaled up further.

To demonstrate the performance of different cascade SVM architectures, we

use the proposed designs and a flat SVM design to solve binary classification prob-

lems with 50, 100, 200 and 400 2-D samples. Three fully parallel structures have

been implemented, to integrate 2, 4 and 8 SVM units, respectively. As mentioned

before, due to the quadratic complexity of the kernel evaluation, Cascade SVM al-

ready enjoys an algorithm level divide-and-conquer advantage, so fully hardware

76

parallel designs can introduce a significant training speed up compared with the

flat SVM design and other architecture configurations offer different tradeoffs be-

tween throughput, area and power, as detailed later. The simulation result by

using a public 8-D training data set shows that the proposed architecture also

supports higher dimensional data sets.

3.3.1 Layout and Area Breakdown

The layouts of the 8-core parallel SVM design and the hybrid design are shown

in Fig. 3.9. The total area of the 8-core design (Fig. 3.9(a)) including I/O pads

is 6.68mm2. On-chip cache memories are integrated in our designs to speed up

training and classification. For all the designs, the total cache size is 8KB and is

divided into multiple smaller private caches for the SVM units. For example, the

8-core design involves eight 1KB SRAMs, while the 2-core design involves two

4KB SRAMs. While storing all the training samples of a large set on chip may

not be feasible due to area constraint, the included on-chip SRAMs are only used

as caches. Since our designs are clocked at 178MHz and the mainstream DRAM

interfaces (e.g. DDR-1066) can support a memory bandwidth of up to 6GB/s, the

latency of off-chip data communication is not a bottleneck for our designs.

Fig. 3.10 demonstrates the area breakdown analysis for the SVM processing

unit and the 8-Core parallel implementation. The first pie chart shows that the

three multipliers dominate the total area of the single SVM learning unit. There-

fore, it would not be an efficient way to scale up the SVM hardware designs by

only increasing the number of multipliers. As what happens in [20] and [17],

which develop the parallel processing inside only one SVM unit, speedup is ob-

tained by using multiple multipliers working in parallel to perform multiple

kernel evaluation simultaneously. In such approaches, speedup increases only

77

Figure 3.9: Layouts of the 8-core SVM design and the hybrid design.©IEEE 2015

78

linearly with the number of multipliers, which makes it difficult to scale up in

terms of area efficiency. Therefore, the Cascade SVM which provides a quadratic

speedup with only linearly increased area is a better choice to address this scala-

bility issue.

87.96%

2.20%
9.84%

SVM Learning Unit

Multipliers
Exponential LUT
Other Logic

38%

15%20%

27%

Learning Units
MMUs
SRAMs
Others

8-core SVM

Figure 3.10: Area breakdown analysis for two implementations: (left) single SVM
unit, and (right) fully parallel 8-core SVM.©IEEE 2015

For the cascade SVM designs, there is one private SRAM for each SVM learning

unit, and two MMUs for each SRAM. Since the total on-chip storage remains the

same for the proposed cascade SVM designs with different numbers of cores, the

storage of each SRAM of the 8-core design is one eighth of the storage of the 1-

core design. Although the area of SRAM does not decrease linearly as the size of

storage does due to the peripherals of the SRAMs, the area of each SRAM for the 8-

core design is somewhat smaller than the area of each SRAM for the designs with

less cores. Therefore, as the number of the learning units increases, the proportion

of the SRAM area will decrease slightly. In other words, given a proper total on-

chip storage size, the area of SRAMs will never dominate the whole area even if

the number of cores is further increased.

79

3.3.2 Comparison between 90nm SVM Designs and a 45nm General Purpose

Processor

Table 3.3 compares four fully parallel SVM hardware designs with an Intel

T4300 Core CPU (45nm) in terms of training time for data sets with different sizes,

showing that the hardware SVM designs require up to 561.4 times less runtime

than the software SVM solution on the general purpose CPU. Fig. 3.11 shows

how the runtime varies with different numbers of samples, and the advantage of

hardware implementation over the software solution on Intel T4300 is obvious.

Take the data set with 200 samples as an example. The training time of a single

SVM unit is 19.5x shorter than that of T4300, and our full parallel 8-core SVM

design can provide an even larger speedup of 564.1x.

Table 3.3: Comparison of 4 full parallel SVM designs and the software SVM solu-
tion on T4300 in terms of runtime for different data sets.

50points 100points 200points 400points
T4300 0.185s 0.72s 2.24s 7.84s

Flat SVM 16.67ms 26.85ms 0.115s 0.39s
2-Core 3.02ms 6.713ms 31.27ms 0.103s
4-Core 1.88ms 2.441ms 10.90ms 32.85ms
8-Core 0.69ms 1.063ms 3.99ms 13.99ms

Table 3.4 compares the performance of different hardware implementations

when the data set involves 200 samples. The average power of the Intel T4300

CPU for running an SVM software program is measured by PowerTop [83], a

popular Linux tool to diagnose issues with power consumption and power man-

agement. After generating the layout, the power of SVM units, MMUs and other

synthesizable logic blocks is obtained from a commercial logic synthesis tool with

80

100 200 300 400
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Number of training samples

R
un

tim
e

(s
)

T4300

1−core SVM

2−core SVM

4−core SVM

8−core SVM

19.5x 561.4x

Figure 3.11: Comparison of the runtime speedups of the proposed cascade SVM
designs. The SVM processing units in the multi-core designs run fully in parallel.
©IEEE 2015

a frequency of 178MHz. The average power for the SRAM instances is obtained

from the SRAM compiler.

According to Table 3.4, the flat SVM hardware design shows a 19.5x speedup

and 6,169x energy reduction compared with the software SVM solution running

on Intel T4300 CPU. As the number of SVM units (cores) increases, the training

speedup and energy efficiency are both improved. The proposed cascade SVM

hardware design with 8 cores shows a 28.7x speedup compared to the flat SVM

81

Table 3.4: Comparison of 4 fully parallel hardware designs and the software SVM
solution on Intel T4300 in terms of power, area, speedup and energy reduction
for the data set with 200 points.

Power Core Area Speedup Energy
(mW) (um2) Reduction

T4300 4910 1x 1x
Flat SVM 15.52 373,518 19.5x 6,169x

2-Core 27.74 727,946 71.6x 12,673x
4-Core 64.43 1,499,828 205.5x 15,660x
8-Core 126.10 3,143,700 561.4x 21,859x

hardware design for a data set with 200 samples. The corresponding energy con-

sumption is 3.5 times less than that of the flat SVM design. The software SVM

uses the standard math library of C to realize the exponential function, which is

the same with the mainstream SVM solvers such as SVMLight and LibSVM. How-

ever, the proposed hardware designs are based on a lookup table. Our software

simulation reveals that, if this difference were eliminated, the speedup of the flat

SVM hardware design over the software SVM running on T4300 would be 4.2x,

instead of 19.5x. This is still a great improvement of runtime, considering that

our hardware design works at 178MHz while the general purpose CPU works at

2.1GHz.

The comparison of energy efficiency for different solutions is illustrated in Fig.

3.12, from which we can see significantly reduced energy consumption from the

proposed hardware designs, relative to the software solution running on a general

purpose CPU.

For most parallel VLSI designs, high throughput usually means higher power

consumption such that the energy efficiency is difficult to scale up with the num-

ber of processing units working in parallel. However, our architecture takes ad-

82

50 100 150 200 250 300 350 400
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Number of training samples

E
ne

rg
y

(J
)

T4300
1−core SVM
2−core SVM
4−core SVM
8−core SVM

6169x 21859x

Figure 3.12: Comparison of the energy reduction of the proposed cascade SVM
designs. The SVM processing units in the multi-core designs run fully in parallel.
©IEEE 2015

vantage of the algorithm-level parallelism of Cascade SVM. So the training time

can be reduced approximately quadratically with the number of parallel cores,

while the power increases only linearly with the number of parallel cores. There-

fore, the proposed design is also scalable in terms of energy efficiency.

83

3.3.3 Impact of Cascade SVM Feedbacks

To shed more light on the operation of the cascade SVM algorithm on the pro-

posed hardware, we examine the impact of feedback iterations on runtime and

classification performance. Table 3.5 shows the results for a data set with 400

samples. One run through the cascade without feedback can already achieve good

Table 3.5: The effect of feedback on training accuracies for the data set with 400
samples.

Without Feedback One Feedback
Runtime Accuracy Runtime Accuracy

Flat SVM 0.394s 98% unnecessary
2-Core 0.104s 94.25% 0.120s 98%
4-Core 32.85ms 92.50% 37.55ms 98%
8-Core 13.99ms 89.75% 16.13ms 98%

training accuracies. For this data set, the cascade based training fully converges

with only one feedback (or two passes overall), leading to the optimal classifica-

tion rate of 98%. This number is consistent with the training accuracy of our soft-

ware SVM running on T4300, which is based on double-precision floating point

arithmetic. Since the parallel training in the first layer of the cascade in the first it-

eration dominates the entire training workload, the additional time introduced by

this feedback is trivial. Therefore, the speedup and energy efficiency are almost

unaffected.

The decision boundary obtained from the 8-Core design is illustrated in Fig.

3.13. In this case, the learning results from the 8-core design are collected and the

decision boundary is visualized along with the training data in Matlab.

84

0 2 4 6 8 10
0

2

4

6

8

10

Figure 3.13: The decision boundary obtained from the fully parallel 8-Core hard-
ware design of Cascade SVM. The training set involves 400 2-D samples. ©IEEE
2015

3.3.4 Comparison between Temporal Reuse, Fully Parallel and Hybrid

Configurations

Table 3.6 compares several configurations of the proposed architecture in terms

of area, power and runtime based on the 200-sample data set. For the tempo-

ral reuse design with one SVM unit and the full parallel design with two SVM

units, the whole date set is split into two subsets of 100 samples each. And the

speedups relative to the flat SVM are 2.01x and 3.7x, respectively. For the hybrid

85

design with two SVM units, the whole data set is split into four subsets of 50 sam-

ples each. And it achieves a speedup of 6.9x compared with the flat SVM with

only doubled chip area. To evaluate the scalability of different designs, we define

the area efficiency as Speedup/Area and the energy efficiency as Speedup/P ower,

which is proportional to 1/Energy. Fig. 3.14 shows the tradeoff between the area

and energy efficiency for different configurations.

Table 3.6: Comparison of two fully parallel designs and their temporal reuse ver-
sion in terms of area, power and runtime.

Core Area Power Time
(um2) (mW) (ms)

Flat SVM (1-Core) 373,518 15.52 115.73
Temporal Reuse (1-Core) 373,518 16.44 57.46

Fully Parallel (2-Core) 727,946 28.28 31.28
Hybrid (2-Core) 727,946 29.99 16.75

Compared with temporal reuse of one SVM unit, the fully parallel 2-Core de-

sign provides a higher speedup at the cost of a higher power and area. The energy

efficiency of this design is also somewhat improved, but is largely comparable to

that of the design based on temporal reuse. On the other hand, temporal reuse

of one SVM unit leads to an area efficiency which is comparable to that of the

full parallel 2-Core design. Compared with these two designs, the hybrid design,

which involves temporal reuse of two SVM units, has an improved speedup, en-

ergy and area efficiency. Note here that for the hybrid design the training data

set is split into four instead of two subsets. Hence, there is an additional boost

of speedup from the Cascade algorithm as the number of kernel evaluations is

roughly reduced by a factor of two.

86

0

1

2

3

4

5

6

7

8

Flat SVM
(1-Core)

Temporal reuse
(1-Core)

Fully parallel
(2-Core)

Hybrid
(2-Core)

Speedup

Area Efficiency

power Efficiency

Figure 3.14: Comparison between temporal reuse, full parallel, hybrid design
and the flat SVM in terms of speedup, area efficiency and power efficiency. ©IEEE
2015

The above hardware design results are largely in line with the theoretical scal-

ing of the Cascade SVM algorithm. Neglecting non-ideal scaling resulted from

additional control logic, area, power and delay overhead in the hardware imple-

mentation, both efficiency measures approximately linearly scale with the num-

ber of subsets the full training data is split into, independent of the implementa-

tion style. In this sense, temporal reuse offers the least area/power footprints with

the smallest speedup, hardware parallel processing offers the highest speedup at

the expense of the highest area and power consumption, and the hybrid scheme

provides a middle ground between the first two.

87

3.3.5 Classification for Different Data Sets

According to Section IV, during the classification, only one SVM processing

unit is reused as the classifier for all the cascade SVM designs. In other words,

although the cascade SVM designs have different numbers of SVM units working

in parallel during the training, they are all equivalent to the flat SVM design when

it comes to the classification. Therefore, we use the training results of the flat SVM

design to demonstrate the classification process in this subsection. Four different

SVM classifiers are obtained from the training over four different training data

sets. Table 3.7 compares the runtime of 800 classification runs for the classifiers

obtained from different training sets.

Table 3.7: Comparison of the classification time for a test data set with 800 sam-
ples. The 4 classifiers are obtained from the training over 4 different training sets
with 50,100,200 and 400 samples, respectively.

Training set Number of Support Vectors Classification time (ms)
50 points 9 0.0401

100 points 14 0.0626
200 points 31 0.1400
400 points 56 0.2453

From Table 3.7, we can see that the time required to classify 800 samples using

a trained SVM classifier is much less than 1ms. However, the training processes

over even smaller data sets requires tens or hundreds of milliseconds to complete

(see Table 3.3). Therefore, if the test data set is not extremely large, the SVM

training is usually much more time consuming than using a trained SVM classifier

to perform the classification.

88

3.3.6 Solution for Higher-dimensional Problems

The designs presented above are all targeting the data sets of 2-D vectors,

which utilize the structure in Fig. 3.6 as each SVM core. However, the kernel

computation of higher-dimensional vectors are usually required for many practi-

cal problems.

The proposed SVM design can be easily configured to process high-dimensional

feature vectors. Fig. 3.15 illustrates the proposed kernel arithmetic logic unit

(ALU) for each SVM core. This kernel ALU is based on a serial processing scheme.

To calculate the Gaussian kernel involving two vectors (i.e. ~xi and ~xj), the term

||~xi − ~xj ||2 needs to be obtained first. During the calculation, each pair of the at-

tributes (i.e. xi(k) and xj(k)) enters the ALU one by one, and the square values of

their differences are accumulated by an accumulator. Finally, the corresponding

kernel value is obtained by using an exponential lookup table.

+

Reg m
ul
tip

lie
r

)()1(mxx ii

)()1(mxx jj

)exp(),(
2

jiji xxxxk

-

LUT

Xi(k)

Xj(k)

Figure 3.15: The proposed kernel arithmetic logic unit which supports the data
set of any dimensions. ©IEEE 2015

Obviously, this structure can compute the kernel values of vectors of any di-

mensions, as long as the accumulator goes through enough iterations. The hard-

ware cost is constrained in this approach, but the processing speed is limited by

89

the single multiplier. Actually, the kernel computation method in Fig. 3.6 is a

parallel version of this approach, in which two multipliers are used to calculate

(xi(1)− xj(1))2 and (xi(2)− xj(2))2 simultaneously. Therefore, the proposed kernel

arithmetic unit provides a new tradeoff between hardware cost and processing

time.

Table 3.8: Comparison of power, area and runtime of the designs using the above
kernel computation unit. The training set Cod-RNA involves 59,532 8-D samples.

Power(mW) Core area (um2) Runtime (s)
Flat SVM 13.73 340,050 6,109

2-Core 25.98 671,016 2,182
4-Core 59.29 1,365,959 663

In order to test the performance for higher-dimensional vectors, a public do-

main biomedical data set Cod-RNA is used as the new training data set [84] [85].

This public data set involves 59,532 8-D training samples and 271,617 testing

samples. The designs are modified according to the proposed kernel arithmetic

unit in Fig. 3.15 in order to support 8-D vectors. The modified designs are also

synthesized with the same commercial 90nm standard cell library. Gate or tran-

sistor level simulation of long training processes requires huge CPU times, mak-

ing it practically infeasible, so we choose to perform behavior level simulations

for the flat SVM, 2-Core SVM and 4-Core SVM with the Cod-RNA data set.

A testing accuracy of 93.4% has been achieved for the 271,617 testing data set.

The power consumptions, areas and the runtimes for different designs are listed

in Table 3.8. According to the runtimes, the speedups of the 2-Core SVM and the

4-Core SVM relative to the flat SVM are 3.3x and 9.2x, respectively, which are

90

roughly the same with the runtime improvement of the 2-D data sets.

3.4 Summary

In this section, we presented a digital VLSI architecture for Cascade SVM. To

the best of our knowledge, this is the first time Cascade SVM training algorithm

has been implemented with digital hardware. The proposed architecture success-

fully addresses some critical issues pertaining to flexibility in processing vari-

able sized data, on-chip communication and the trade-offs between throughput,

area and power overheads for different configurations. We implemented different

kinds of hardware designs which involve both time domain reuse and fully hard-

ware based parallel approach. The design was synthesized with a 90nm CMOS

technology, and the entire layouts including on-chip SRAM and I/O were gener-

ated for post-layout analysis.
1472 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 8, AUGUST 2015

also termed cascade, it differs dramatically from the cascade
architecture proposed in this paper. The classification approach
of [12] is heuristic in nature. More importantly, it does not
deal with the acceleration of SVM training despite the fact
that SVM training is typically much more algorithmically
complex and compute-intensive than classification. An on-chip
trainable Gaussian kernel analog SVM has been developed
in [13], which uses an array of Gaussian circuits to support 12
2-D vectors. A heterogeneous FPGA architecture for SVM
training is proposed by [14], in which a hypertile is used to
project the kernel computations of all data points along a line.
The parallelization of kernel computation is also discussed
by [15], which compares a GPU implementation of SVM with
an FPGA work. However, all these three works focus on the
acceleration of kernel computation, instead of the algorithm
level parallelism of a parallel SVM algorithm.

Since training an SVM requires the solution of a quadratic
programming problem, the required computation and storage
increases rapidly with the number of training vectors,
presenting a key challenge for learning over large data sets
on chip. To this end, a highly scalable digital architecture for
both training and classification, amenable to robust large-scale
integration in modern VLSI technologies, is lacking, which is
the focus of this paper.

From a purely algorithmic point of view, an efficient strategy
for accelerating SVM is to eliminate nonsupport vectors (SVs)
early on during the optimization process. The cascade SVM
algorithm of [16] deals with this challenge by solving multiple
smaller optimization problems based on partitioned data while
rigorously guaranteeing the global convergence. This process
can be viewed as a powerful built-in mechanism for early on
filtering of non-SVs. In this paper, we use the term cascade
to either refer to the training algorithm of [16] or the corre-
sponding VLSI architecture proposed by us. However, there
is no prior work that investigates the VLSI implementation
of cascade SVM. The main goal of this paper is to develop
a parallel digital VLSI architecture and the associated design
techniques to bring the significantly improved scalability of
cascade SVM to silicon. Our digital architecture enables
efficient machine learning based on an array of interacting
SVM processing units, amenable to implementation in scaled
CMOS technologies.

Realizing silicon-based cascade SVM entails addressing
a number of critical issues pertaining to flexibility in
processing variable sized data, architecture and memory orga-
nization, hardware-based parallel processing, temporal reuse
and tradeoffs between throughput, area, and power overheads.
In contrast to earlier SVM implementations that lack the
necessary flexibility, we propose a basic SVM processing
unit design that is capable of processing variable data size,
as required by cascade SVM. Our overall architecture consists
of an array of basic SVM units with distributed memory
storage to allow for parallel processing. The interconnection of
the SVM units is realized by a multilayer system bus that min-
imizes communication overhead. The proposed architecture
integrates both hardware-based parallel processing, temporal
reuse, a technique that allows the same physical SVM unit
to be reused to process different partitions of the data, and a

Fig. 1. Comparison of the runtime and energy consumption. Left: training
runtime speedups. Right: energy reduction of the proposed cascade SVM
design. SVM units in the multicore designs run fully in parallel.

combination thereof, to flexibly tradeoff between speed, power,
and area overheads.

Several cascade SVM designs integrating both training and
classification have been implemented using a commercial
90-nm CMOS standard cell library. In Fig. 1, we compare
our designs with the single-threaded software SVM algorithm
running on a 45-nm Intel CPU (T4300) for a training set of
400 samples. We focus on the runtime costs for training, which
are several orders of magnitude more expensive than single
classifications for our benchmarks. The estimated energy con-
sumed by the software algorithm is measured by the Linux
power diagnostic tool PowerTop [17].

The training runtime speedup of our dedicated SVM designs
over Intel T4300 is rather significant and approximately grows
quadratically in the number of SVM units (cores). In par-
ticular, the speedup of our eight-core SVM design is 561X.
The energy reduction of the proposed designs is even more
significant. It grows approximately linearly in the number
of SVM cores and reaches to 21 859× for the eight-core
design. These encouraging results suggest the great potential
of the proposed architecture and circuit design for building
large SVM array processors with high throughput and energy
efficiency.

II. BASIC SVM

The objective of the learning process of SVM classification
is to find the structural optimal hyperplane that separates the
training data with the largest margin [4]. To deal with the
problem that the input data may not be linearly separable,
in SVM the data may be nonlinearly mapped to a high-
dimensional space, which is called the feature space. Denote
the training data as

(�xi , yi), yi ∈ {−1,+1}, i = 1, 2, 3, . . . , N (1)

in which �xi is the input vector and yi the corresponding class
label. Assume that a mapping function φ(�x) is used to map
any input vector �x to the feature space, the decision function
of an SVM can be defined as

f (�x) = w · φ(�x) + b (2)

where w is the normal to the separating hyperplane denoted by
f (�x) = 0, and the distance from the closest positive (negative)

Figure 3.16: Comparison of the runtime and energy consumption. Left: training
runtime speedups. Right: energy reduction of the proposed cascade SVM design.
SVM units in the multicore designs run fully in parallel. ©IEEE 2014

In Fig. 3.16, we compare our designs with the single-threaded software SVM

91

algorithm running on a 45-nm Intel CPU (T4300) for a training set of 400 sam-

ples. A promising training speedup of 28.7x is achieved by a 8-Core SVM parallel

structure compared with a flat SVM design, and a more significant speedup of

561x compared with the software solution running on the Intel T4300 CPU. In

addition, our hardware designs provide a significant improvement of energy effi-

ciency compared with software solution on general purpose CPU, and our parallel

architecture also introduces an efficient way of scaling up the speedup and energy

reduction.

92

4. ENERGY EFFICIENT PARALLEL NEUROMORPHIC ARCHITECTURES

FOR SPIKING NEURAL NETWORKS*

This section proposes two parallel digital neurmorphic architectures based on

spiking neural networks. The first architecture is developed for LSM, which high-

lights a general purpose LSM learning processor for multiple applications [10].

This work also proposes an efficient design methodology based on a novel theoret-

ical measure of computational performance for complex recurrent reservoirs. A

reconfigurable reservoir pre-processor with task-dependent power gating is pro-

posed to improve the energy efficiency. Further more, we enable this LSM proces-

sor to perform the firing activity based power gating for each particular task. The

other architecture is developed for a feed-forward SNN with STDP learning rule,

which performs the neuron dynamics in parallel. Meanwhile, both of the pro-

posed architectures investigate the potential application of approximate comput-

ing in neuromorphic systems, and demonstrate reduction of energy consumption

without introducing significant learning performance degradation.

FPGAs offer great flexibility and reconfigurability for fast prototyping and

hardware acceleration of software algorithms. To facilitate the application of

SNNs in embedded systems and develop processing acceleration for large data

sets, there have been several attempts to implement software algorithms in FPGA

[86]- [89]. Meanwhile, due to their much shorter development period compared

with ASIC designs, the FPGAs are widely used in the data centers of companies

such as Microsoft and Amazon. Therefore, the digital neuromorphic architectures

*© 2015 IEEE. Reprinted, with permission, from Q. Wang, Y. Jin and P. Li. General-purpose
LSM learning processor architecture and theoretically guided design space exploration. In
Biomedical Circuits and Systems Conference (BioCAS), 2015 IEEE (pp. 1-4).

93

in this section are also based on the FPGA platform.

4.1 General Purpose LSM Learning Processor Architecture and Theoretically

Guided Design Space Exploration

A general model and neuromorphic architecture of computation based on the

LSM is proposed in this work, whose main objective is to realize efficient general-

purpose LSM processing with integrated training and recognition. As shown in

Fig. 4.1, the proposed architecture consists of a generic pre-processor and one or

multiple task processors. The reservoir consists of a recurrent network of liquid

spiking neurons with fixed synaptic weights, and is shared by multiple appli-

cations. Task processors comprise a set of readout spiking neurons with plastic

synapses, which are tuned by a biologically plausible supervised learning rule.

Input Neurons Reservoir Neurons Readout Neurons

Plastic synapses

Input Neurons Liquid Neurons Readout Neurons

Plastic synapses

Input Neurons Liquid Neurons

Plastic synapses

Readout Neurons

Input Neurons Liquid Neurons
Readout Neurons

Plastic synapses

Input Neurons Liquid Neurons Readout Neurons

Plastic

synapses

Generic Pre-processor (Reservoir) Task processors

Task 1
Task 2

Task M

Figure 4.1: A liquid state machine supporting multiple tasks. ©IEEE 2015

94

4.1.1 Overall Hardware LSM Architecture

The proposed architecture consists of a reservoir unit (RU) and a training unit

(TU) corresponding to the task processors in Fig. 4.1. The liquid neurons are im-

plemented with digital processing units called liquid elements (LEs), which work

in parallel to calculate the liquid response. Without loss of generality, we con-

sider FPGA as an implementation platform for our processor architecture. As il-

lustrated by Fig. 4.2, the external input spikes are sent to their target LEs through

a crossbar switching interface. The spikes generated by the LEs are buffered in a

register called R Spike. Then, the spikes in R Spike are sent to other LEs through

a second crossbar switching interface. Meanwhile, the spikes in R Spike are also

sent to TU as the liquid response.

LE 1

LE 2

LE 135

Crossbar
Interconnect

R
_S

p
ik

e
 [

 1
3

5
 :

 1
]Sin1

Sin2

Sin100

161616

8

8

8

RU

SR1

SR2

SR135

OE 1

OE 2

OE 10

BRAM
A
W’
W

Sout 1

Sout 10

TU

W’
W

Sout 2

W’
W

Teacher1

A

A

Teacher2

Teacher10

BRAM

BRAM

135

135

135

135

SR

8

16

+
-

+
-

>>K+

>>K-

cm
p

Vth

8

16

Vmem

SIn

EIn

ER

SR

Sout

LE
Synaptic

Response
Unit

ES+

ES-

IS+

IS-

1
0

Vrest

A
d

d
er

IS-
>>k

+
-

+
+

W_IS-

Zero
Zero1

0

1
0

IS+
>>k

+
-

+
+

W_IS+

Zero
Zero1

0

1
0

ES-
>>k

+
-

+
+

W_ES-

Zero
Zero1

0

1
0

ES+
>>k

+
-

+
+

W_ES+

Zero
Zero1

0

1
0

Synaptic Response Unit

EIn

ER

SIn

SR

IS-

IS+

ES+

ES-

LE 1

LE 2

LE 135

Crossbar
Interconnect

R
_S

p
ik

e
 [

 1
3

5
 :

 1
]Sin1

Sin2

Sin100

161616

8

8

8

RU

SR1

SR2

SR135

Figure 4.2: An exemplary reservoir implementation with 135 digital liquid neu-
rons. In this example, each liquid element (LE) receives up to 8 external input
spikes and up to 16 internal spikes. ©IEEE 2015

95

According to Fig. 4.3, the readout neurons inside TU are implemented with

output elements (OEs). During training, each OE receives the liquid response

from the RU and the OEs update the corresponding synaptic weights in parallel.

To realize supervised learning, a teacher signal is used to modulate the firing

activity of each OE and implement a particular form of Hebbian learning. In order

to reduce the hardware cost, the OEs inside TU are reused for different tasks. The

weights of the plastic synapses associated with each OE are stored in its private

block RAM (BRAM). The synaptic weights for different applications are stored in

different regions of the address space of each BRAM. For a particular task, the

TU only accesses the synaptic weights stored in the corresponding region inside

the BRAM. For example, when the current task is the first task, each OE only

accesses the region labeled “Task 1” in the BRAM, without touching any other

regions. Similarly, when the current task is switched to the second task, the OEs

only access the “Task 2” region in the BRAMs.

4.1.2 Implementation of the Digital Neurons

In the proposed architecture, the spiking neurons are based on the widely used

leaky integrate-and-fire (LIF) model, whose dynamics is described by

Vmem(t) = Vmem(t − 1)− Vmem(t − 1)
τ

+R+ −R− (4.1)

where Vmem(t) is the membrane potential at time step t, and τ the time constant

of its first-order dynamics. R+ and R− are the second-order synaptic responses

from the excititory and inhibitory pre-synaptic neurons, respectively. We adopt

the algorithm of [90] to digitize R+ and R− as follows

R+ =
ES+ −ES−
τES+
− τES−

, R− =
IS+ − IS−
τIS+
− τIS−

(4.2)

96

LE 1

LE 2

LE 135

Crossbar
Interconnect

R
_S

p
ik

e
 [

 1
3

5
 :

 1
]Sin1

Sin2

Sin100

161616

8

8

8

RU

SR1

SR2

SR135

OE 1

OE 2

OE 10

BRAM
1

A
W’
W Sout

1

Sout
10

TU

W’
W Sout

2

W’
W

Teacher1

A

A

Teacher2

Teacher10

BRAM
2

BRAM
10

135

135

135

SR

8

16

+
-

+
-

>>K+

>>K-

cm
p

Vth

8

16

Vmem

SIn

EIn

ER

SR

Sout

LE
Synaptic

Response
Unit

ES+

ES-

IS+

IS-

1
0

Vrest

A
d

d
er

IS-
>>k

+
-

+
+

W_IS-

Zero
Zero1

0

1
0

IS+
>>k

+
-

+
+

W_IS+

Zero
Zero1

0

1
0

ES-
>>k

+
-

+
+

W_ES-

Zero
Zero1

0

1
0

ES+
>>k

+
-

+
+

W_ES+

Zero
Zero1

0

1
0

Synaptic Response Unit

EIn

ER

SIn

SR

IS-

IS+

ES+

ES-

LE 1

LE 2

LE 135

Crossbar
Interconnect

R
_S

p
ik

e
 [

 1
3

5
 :

 1
]Sin1

Sin2

Sin100

161616

8

8

8

RU

SR1

SR2

SR135

BRAM i

Task
1

Task
2

Task
M

Task 1

Task M

Task 2

OE 1

OE 2

OE 26

BRAM
1

Addr
Wnew

Wold Sout
1

Sout
26

TU

Sout
2

Teach1

Teach2

Teach26

BRAM
2

BRAM
26

135

135

135

SR

BRAM

IS-
>>k

+
-

+
+

W_IS-

Zero
Zero1

0

1
0

IS+
>>k

+
-

+
+

W_IS+

Zero
Zero

1
0

1
0

ES->
>
k

+
-

+
+

W_ES-

Zero
Zero

1
0

1
0

>>k

+
-

+
+

W_ES+

Zero
Zero1

0

1
0

ES+

SRU

EIn

ER

SIn

SR

IS-
IS+
ES-
ES+

PISO

PISO

(a) Liquid Element (LE)

(b) Synaptic Response Unit (SRU)

8

16

+
-

+
-

>>K+

>>K-

cm
p

Vth

8

16

Vmem

SIn

EIn

ER

SR

Sout

LE
Synaptic

Response
Unit

ES+

ES-

IS+

IS-

1
0

Vrest

A
d

d
er

IS-
>>k

+
-

+
+

W_IS-

Zero
Zero1

0

1
0

IS+
>>k

+
-

+
+

W_IS+

Zero
Zero

1
0

1
0

ES->
>
k

+
-

+
+

W_ES-

Zero
Zero

1
0

1
0

>>k

+
-

+
+

W_ES+

Zero
Zero1

0

1
0

ES+

SRU

EIn

ER

SIn

SR

IS-
IS+
ES-
ES+

PISO

PISO

(a) Liquid Element (LE)

(b) Synaptic Response Unit (SRU)

Addr
Wnew

Wold

Addr
Wnew

Wold

RU
(135)

TU
(26)

Task1

Task2

Task3

Task4

RU
(135) TU

(26)

Task1

Task2

Task3

Task4

RU
(72)

(a) Fully Utilized Reservoir (b) Energy Saving Scheme

Simple task

Hard task

+
-

+
-

>>K+

>>K-

cmpVth

Vmem

SIn

EIn

Sout

Digital
NeuronSynaptic

Response
Unit

ES+

ES-

IS+

IS-

1
0

Vrest

A
d

d
er

IS-
>>k

+
-

+
+

W

0
01

0

0

IS+
>>k

+
-

+
+ 0

0

1
0

0

ES->
>
k

+
-

+
+

0
0

1
0

0

>>k

+
-

+
+ 0

01
0

1
0

ES+

SRU

EIn

SIn

IS-
IS+
ES-
ES+

PISO

PISO

(a) Liquid Element (LE)

(b) Synaptic Response Unit (SRU)

PISO

WIn

Address
Generator

Update W

Synaptic
Response

Unit

+
-

+
-

>>K+

>>K-

A
d

d
e

r

cmp

Vth Vmem

Win

Sout

 Potentiation
Depression

0

Teach

RNG

Wout

Address GeneratorAddr

Ein

Sin
ES+

ES-

IS+

IS-

Learning
Unit

IS-
>>k

+
-

+
+

W

0
01

0

0

IS+
>>k

+
-

+
+ 0

0

1
0

0

ES->
>
k

+
-

+
+

0
0

1
0

0

>>k

+
-

+
+ 0

01
0

1
0

ES+

SRU

EIn

SIn

IS-
IS+
ES-
ES+

PISO

PISO

(a) Digital Neuron Element

(b) Synaptic Response Unit (SRU)

PISO

Figure 4.3: An exemplary readout stage with 26 digital output neurons. In this
example, each output element (OE) receives all 135 spike trains from the RU.
The address space of a BRAM is split into multiple regions for different tasks. W
represents the synaptic weight. ©IEEE 2015

where ES+, ES−, IS+ and IS− are the state variables of the second order responses,

and τES+
, τES− , τIS+

and τIS− are the time constants in the form of 2K so the divi-

sions in the above equations can be realized by right shifting the binary number

by K bits. These state variables are updated by

ES+(t) = ES+(t − 1)(1− 1/τES+
) +

∑
wi ·E+(i)

ES−(t) = ES−(t − 1)(1− 1/τES−) +
∑
wi ·E+(i)

IS+(t) = IS+(t − 1)(1− 1/τIS+
) +

∑
wi ·E−(i)

IS−(t) = IS−(t − 1)(1− 1/τIS−) +
∑
wi ·E−(i)

(4.3)

wherewi is the synaptic weight associated with the i-th pre-synaptic neuron. E+(i)

and E−(i) represent the spiking events from the i-th pre-synaptic neurons and are

set to 0 if the i-th pre-synaptic neuron does not fire at time t − 1. E+(i) is equal to

1 only if the corresponding pre-synaptic neuron is excitatory and fires. Similarly,

97

E−(i) is equal to 1 only if the corresponding pre-synaptic neuron is inhibitory and

fires.

In the adopted biologically plausible learning rule, the firing activity of each

neuron is characterized biologically using its calcium concentration modeled as

C(t) = C(t − 1)− C(t − 1)
τc

+E(t) (4.4)

where E(t) is the spiking event at the current time step. Finally, the weight of

the synapse between the current readout neuron and the i-th liquid neuron is

updated by [90] 
wi = wi +∆w with P+ if Cθ < C < Cθ +∆C

wi = wi −∆w with P− if Cθ > C > Cθ −∆C
(4.5)

where P+ and P− are the potentiation and depression probabilities, respectively.

Cθ and ∆C are the calcium concentration threshold and margin, respectively. To

realize the spike-based supervised learning rule, an additional current used as a

teacher signal is injected into each readout neuron to activate desired synaptic

weight updates according to (5).

Fig. 4.4 (a) illustrates the design of a digital neuron, which receives input

spikes (signal Sin) from its presynaptic neurons. At the same time, Ein indicates

whether the corresponding pre-synaptic neuron is excitatory or inhibitory and

Win represents the corresponding synaptic weight. The shaded blocks in Fig. 4.4

(a) are only for the OEs because the LEs do not deal with plastic synapses. The

Synaptic Response Unit (SRU) is used to realize (4.3), and the membrane potential

Vmem is updated based on ES+, ES−, IS+ and IS− obtained from the SRU. If Vmem

is above a threshold Vth, this particular LE sends out a spike before Vmem is reset

to Vrest. The implementation of the SRU is illustrated by Fig. 4.4(b). The signal

98

LE 1

LE 2

LE 135

Crossbar
Interconnect

R_
Sp

ik
e

[1
35

 :
1

]Sin1

Sin2

Sin100

161616

8

8

8

RU

SR1

SR2

SR135

Fig. 2: An exemplary reservoir implementation with 135 digital liquid
neurons. In this example, each liquid element (LE) receives up to 8
external input spikes and up to 16 internal spikes.

different tasks. The weights of the plastic synapses associated
with each OE are stored in its private block RAM (BRAM).
The synaptic weights for different applications are stored in
different regions of the address space of each BRAM. For
a particular task, the TU only accesses the synaptic weights
stored in the corresponding region inside the BRAM. For
example, when the current task is the first task, each OE only
accesses the region labeled “Task 1” in the BRAM, without
touching any other regions. Similarly, when the current task
is switched to the second task, the OEs only access the “Task
2” region in the BRAMs.

Task 1

Task M

Task 2

OE 1

OE 2

OE 26

BRAM
1

Addr
Wnew
Wold Sout

1

Sout
26

TU

Sout
2

Teach1

Teach2

Teach26

BRAM
2

BRAM
26

135

135

135

SR

BRAM

Addr
Wnew
Wold

Addr
Wnew
Wold

Fig. 3: An exemplary readout stage with 26 digital output neurons. In
this example, each output element (OE) receives all 135 spike trains
from the RU. The address space of a BRAM is split into multiple
regions for different tasks. W represents the synaptic weight.

III. IMPLEMENTATION OF THE DIGITAL NEURONS

In the proposed architecture, the spiking neurons are based
on the widely used leaky integrate-and-fire (LIF) model, whose
dynamics is described by

Vmem(t) = Vmem(t− 1)− Vmem(t− 1)

τ
+R+ −R− (1)

where Vmem(t) is the membrane potential at time step t, and
τ the time constant of its first-order dynamics. R+ and R−
are the second-order synaptic responses from the excititory
and inhibitory pre-synaptic neurons, respectively. We adopt the
algorithm of [8] to digitize R+ and R− as follows

R+ =
ES+ − ES−
τES+ − τES−

, R− =
IS+ − IS−
τIS+ − τIS−

(2)

where ES+, ES−, IS+ and IS− are the state variables of the
second order responses, and τES+

, τES− , τIS+
and τIS− are

the time constants in the form of 2K so the divisions in the
above equations can be realized by right shifting the binary
number by K bits. These state variables are updated by

⎧
⎪⎨
⎪⎩

ES+(t) = ES+(t− 1)(1− 1/τES+) +
∑

wi · E+(i)
ES−(t) = ES−(t− 1)(1− 1/τES−) +

∑
wi · E+(i)

IS+(t) = IS+(t− 1)(1− 1/τIS+) +
∑

wi · E−(i)
IS−(t) = IS−(t− 1)(1− 1/τIS−) +

∑
wi · E−(i)

(3)

Synaptic
Response

Unit

+
-

+
-

>>K+

>>K-

Ad
de

r

cmp

Vth Vmem

Win

Sout

Potentiation
Depression

0
Teach

RNG

Wout

Address GeneratorAddr

Ein

Sin
ES+
ES-
IS+
IS-

Learning
Unit

IS-
>>k

+
-

+
+

Win
0
01

0 0

IS+
>>k

+
-

+
+ 0

01
0 0

ES->
>
k

+
-

+
+ 0

01
0 0

>>k

+
-

+
+ 0

01
0

1
0

ES+

SRU

EIn

SIn

IS-
IS+
ES-
ES+

PISO

PISO

(a) Digital Neuron Element

(b) Synaptic Response Unit (SRU)

PISO

Fig. 4: (a) the structure of the digital neuron. The shaded blocks
only exist in OE. (b) the implementation of SRU based on (3). PISO
(Parallel-in and Serial-out) is realized by a shift register.

where wi is the synaptic weight associated with the i-th pre-
synaptic neuron. E+(i) and E−(i) represent the spiking events
from the i-th pre-synaptic neurons and are set to 0 if the i-
th pre-synaptic neuron does not fire at time t − 1. E+(i) is
equal to 1 only if the corresponding pre-synaptic neuron is
excitatory and fires. Similarly, E−(i) is equal to 1 only if the
corresponding pre-synaptic neuron is inhibitory and fires.

In the adopted biologically plausible learning rule, the firing
activity of each neuron is characterized biologically using its
calcium concentration modeled as

C(t) = C(t− 1)− C(t− 1)

τc
+ E(t) (4)

where E(t) is the spiking event at the current time step.
Finally, the weight of the synapse between the current readout
neuron and the i-th liquid neuron is updated by [8]
{
wi = wi +Δw with P+ if Cθ < C < Cθ +ΔC
wi = wi −Δw with P− if Cθ > C > Cθ −ΔC

(5)

where P+ and P− are the potentiation and depression proba-
bilities, respectively. Cθ and ΔC are the calcium concentration
threshold and margin, respectively. To realize the spike-based
supervised learning rule, an additional current used as a teacher
signal is injected into each readout neuron to activate desired
synaptic weight updates according to (5).

Fig. 4 (a) illustrates the design of a digital neuron, which
receives input spikes (signal Sin) from its presynaptic neurons.
At the same time, Ein indicates whether the corresponding
pre-synaptic neuron is excitatory or inhibitory and Win repre-
sents the corresponding synaptic weight. The shaded blocks in
Fig. 4 (a) are only for the OEs because the LEs do not deal with
plastic synapses. The Synaptic Response Unit (SRU) is used
to realize (3), and the membrane potential Vmem is updated
based on ES+, ES−, IS+ and IS− obtained from the SRU. If
Vmem is above a threshold Vth, this particular LE sends out a
spike before Vmem is reset to Vrest. The implementation of the
SRU is illustrated by Fig. 4(b). The signal Win corresponds
to wi in (3), which is the fixed synaptic weight for an LE and
plastic synaptic weight for an OE.

For each OE, the signal Win is connected to the output of
a BRAM. (4) and (5) are realized by the learning unit and the
RNG (Random Number Generator) inside each OE, where the
RNG is used to realize the probabilities in (5). Once a synaptic
weight is updated by the learning unit, it is written back to the
BRAM through the signal Wout. In order to realize multiple
applications, the address generator inside each OE sends out
the correct addresses to guarantee that this OE only accesses

Figure 4.4: (a) the digital neuron. The shaded blocks only exist in OE. (b) the im-
plementation of SRU based on (4.3). PISO (Parallel-in and Serial-out) is realized
by a shift register. ©IEEE 2015

Win corresponds to wi in (4.3), which is the fixed synaptic weight for an LE and

plastic synaptic weight for an OE.

For each OE, the signal Win is connected to the output of a BRAM. (4.4) and

(4.5) are realized by the learning unit and the RNG (Random Number Generator)

inside each OE, where the RNG is used to realize the probabilities in (4.5). Once

a synaptic weight is updated by the learning unit, it is written back to the BRAM

99

through the signal Wout. In order to realize multiple applications, the address

generator inside each OE sends out the correct addresses to guarantee that this

OE only accesses the particular region inside the BRAM for the given task.

4.1.3 Theoretically Guided Design Space Exploration

The design of recurrent networks is challenging, and this is indeed the case

for the proposed LSM which targets multiple applications. The key design chal-

lenges to be addressed are: 1) how to determine the desired size for the shared

reservoir; 2) how to maximize the hardware and energy efficiency of the reservoir

for multiple applications. To tackle these two challenges, this paper proposes a

general design methodology shown in Fig. 4.5.

A set of tasks

Step 1. Fast design space exploration

Step 2. Design fine-tuning

Step 3. Efficient reservoir re-use by power gating

Reconfigurable LSM processor
Figure 4.5: Illustration of the proposed design methodology. ©IEEE 2015

In Step 1, a novel theoretical measure of computational power is used to quickly

evaluate the performance of the LSM processor for different tasks without costly

100

training and performance testing. This measure is done by evaluating the kernel

and generalization capabilities of the LSM. These two properties are estimated

by computing the rank of a response matrix M of dimension of n ×m, where n

is the number of the liquid state variables, m the number of the applied input

samples, and each column of M is the state vector of the reservoir for the corre-

sponding input at a fixed time point. Randomly generated input streams are used

for estimating separation while application-dependent training samples are used

for estimating generalization for a given task. [91] suggests that the difference be-

tween RS (the rank estimating the separation) and RG (the rank estimating the

generalization) is a good predictor of recognition performance. However, the key

limitation of this measure is that it cannot correctly reflect the performance satu-

ration of the real-world tasks as the reservoir size increases. Instead, we propose

a new measure:

C =
√
RS −RG
RS

. (4.6)

Since RS directly reflects the reservoir’s size, the proposed measure captures the

influence of the reservoir size by using RS as a normalization factor. Furthermore,

the square root of the difference between RS and RG better tracks the performance

saturation of real-world tasks as the reservoir size increases. For each task, we

increase the reservoir size until the new performance measure C, which can be

efficiently computed, saturates for each application. In Step 2, to avoid possible

over-design or under-design, we fine tune the reservoir size for each application

around the value determined in Step 1 by going through detailed network training

phases.

Step 3 of the proposed methodology designs a common reservoir for all tar-

geted applications. A simple strategy is to choose the largest reservoir size among

all applications as determined in Step 2 to ensure a good performance for any

101

application. But this may lead to bad energy efficiency when executing an appli-

cation that demands a much smaller reservoir. Another approach is to realize a

dedicated reservoir for each application to optimize energy efficiency at the cost

of increased hardware overhead. To be efficient in both energy and hardware over-

head, a reconfigurable reservoir whose size is determined by the most demanding

application is used and its size is adapted for different applications during run-

time. To run each task with the maximum energy efficiency, certain number of

liquid neurons may be powered off via power gating to effectively operate the

reservoir with the desired size. This is illustrated in Fig. 4.6.

LE 1

LE 2

LE 135

Crossbar
Interconnect

R
_S

p
ik

e
 [

 1
3

5
 :

 1
]Sin1

Sin2

Sin100

161616

8

8

8

RU

SR1

SR2

SR135

OE 1

OE 2

OE 10

BRAM
1

A
W’
W Sout

1

Sout
10

TU

W’
W Sout

2

W’
W

Teacher1

A

A

Teacher2

Teacher10

BRAM
2

BRAM
10

135

135

135

SR

8

16

+
-

+
-

>>K+

>>K-

cm
p

Vth

8

16

Vmem

SIn

EIn

ER

SR

Sout

LE
Synaptic

Response
Unit

ES+

ES-

IS+

IS-

1
0

Vrest

A
d

d
er

IS-
>>k

+
-

+
+

W_IS-

Zero
Zero1

0

1
0

IS+
>>k

+
-

+
+

W_IS+

Zero
Zero1

0

1
0

ES-
>>k

+
-

+
+

W_ES-

Zero
Zero1

0

1
0

ES+
>>k

+
-

+
+

W_ES+

Zero
Zero1

0

1
0

Synaptic Response Unit

EIn

ER

SIn

SR

IS-

IS+

ES+

ES-

LE 1

LE 2

LE 135

Crossbar
Interconnect

R
_S

p
ik

e
 [

 1
3

5
 :

 1
]Sin1

Sin2

Sin100

161616

8

8

8

RU

SR1

SR2

SR135

BRAM i

Task
1

Task
2

Task
M

Task 1

Task M

Task 2

OE 1

OE 2

OE 10

BRAM
1

Addr
Wnew

Wold Sout
1

Sout
10

TU

Sout
2

Teacher1

Teacher2

Teacher10

BRAM
2

BRAM
10

135

135

135

SR

BRAM

IS-
>>k

+
-

+
+

W_IS-

Zero
Zero1

0

1
0

IS+
>>k

+
-

+
+

W_IS+

Zero
Zero

1
0

1
0

ES->
>
k

+
-

+
+

W_ES-

Zero
Zero

1
0

1
0

>>k

+
-

+
+

W_ES+

Zero
Zero1

0

1
0

ES+

SRU

EIn

ER

SIn

SR

IS-
IS+
ES-
ES+

PISO

PISO

(a) Liquid Element (LE)

(b) Synaptic Response Unit (SRU)

8

16

+
-

+
-

>>K+

>>K-

cm
p

Vth

8

16

Vmem

SIn

EIn

ER

SR

Sout

LE
Synaptic

Response
Unit

ES+

ES-

IS+

IS-

1
0

Vrest

A
d

d
er

IS-
>>k

+
-

+
+

W_IS-

Zero
Zero1

0

1
0

IS+
>>k

+
-

+
+

W_IS+

Zero
Zero

1
0

1
0

ES->
>
k

+
-

+
+

W_ES-

Zero
Zero

1
0

1
0

>>k

+
-

+
+

W_ES+

Zero
Zero1

0

1
0

ES+

SRU

EIn

ER

SIn

SR

IS-
IS+
ES-
ES+

PISO

PISO

(a) Liquid Element (LE)

(b) Synaptic Response Unit (SRU)

Addr
Wnew

Wold

Addr
Wnew

Wold

RU
(135)

TU
(26)

Task1

Task2

Task3

Task4

RU
(135) TU

(26)

Task1

Task2

Task3

Task4

RU
(72)

(a) Fully Utilized Reservoir (b) Energy Saving Scheme

Simple task

Hard task

Figure 4.6: (a) The full-load operating mode in which the RU is fully utilized for
“hard tasks”. (2) The light (energy saving) mode in which certain liquid neurons
are powered off for “simple tasks”. ©IEEE 2015

4.1.4 Energy Efficient Realization for Multiple Tasks

The proposed neuromorphic processor architecture is realized on a Xilinx Virtex-

6 FPGA which can operate at a frequency of 390MHz. Four benchmarks as il-

102

lustrated in Fig. 4.7 are used in this work. The first benchmark is a subset of

the widely adopted public domain speech benchmark TI46 [39] which involves

500 speech samples of 10 spoken digits from five different speakers. The second

benchmark is a subset of the MNIST database [41], which contains 500 images

of handwritten digits randomly selected from the MNIST dataset. The 3rd task

deals with recognition of 300 images of 15 different traffic signs with added ran-

dom noise. The 4th task is the recognition of 260 isolated spoken English letters

recorded by a single speaker as part of the TI46 speech corpus.

zero one two three

four five six seven

eight nine

a b c d e f g

h i j k l m n

o p q r s t u

v w x y z

(a) Task 1 (b) Task 2

(c) Task 3 (d) Task 4

zero one two three

four five six seven

eight nine

a b c d e f g

h i j k l m n

o p q r s t u

v w x y z

(a) Task 1 (b) Task 2

(c) Task 3 (d) Task 4

zero one two three

four five six seven

eight nine

a b c d e f g

h i j k l m n

o p q r s t u

v w x y z

(a) Task 1 (b) Task 2

(c) Task 3 (d) Task 4

0 1 2 3

4 5 6 7

8 9

a b c d e f g

h i j k l m n

o p q r s t u

v w x y z

(a) Task 1 (b) Task 2

(c) Task 3 (d) Task 4

Figure 4.7: Benchmarks: (a) speech samples of 10 digits. (b) handwritten digits.
(c) images of 15 traffic signs. (d) speech samples of 26 letters. ©IEEE 2015

The time domain speech samples are pre-processed by Lyons passive ear model

103

[92] and transformed to spike trains using BSA [93], a widely used spike encoding

algorithm. For each image sample, the direction features are extracted based on

the method in [94]. Then the obtained direction information is converted to Pois-

son spike trains. In the recognition phase of the proposed LSM processor, each

input is processed without the teacher signals and adaption of synaptic weights.

The recognition decision is based on the activities of OEs and made right after

each sample is represented. The OE with the highest number of fired spikes is the

winner, whose associated class label is deemed to be the classification decision.

Fig. 4.8 correlates the theoretical measures with the true recognition perfor-

mance and demonstrates the good predictability of the proposed measure. Table

4.1 summarizes the runtimes, the desired reservoir sizes and recognition rates of

different tasks. According to the proposed theoretical measure, Task 1 and Task 4

both require 135 liquid neurons to achieve a desirable performance, while Task 2

and Task 3 only require 90 liquid neurons. Therefore, these 4 tasks can be catego-

rized into two groups, namely, the “hard tasks” and the “simple tasks”.

As can be seen from Fig. 4.8, both the real recognition performance (blue

curves) and the proposed theoretical measure (black curves) demonstrate some

nonmonotonicity as the reservoir size goes up. This is because although the reser-

voir size is one of the most important parameter associated with the recognition

performance, the training of LSM is much more complex than expected. For

example, the random recurrent structure of the reservoir, the proportion of in-

hibitory neurons and the stochastic updating of the plastic synaptic weights in the

readout layer can all affect the training performance. In other words, the train-

ing processes are not always perfect due to such complexity. However, although

some nonmonotonicity is observed in the experiment, the macroscopic trend is

still very clear, that is, larger reservoirs tend to demonstrate better recognition

104

50 150 200
94

96

98

100

50 100 150 200
95

96
97
98

99

(a) Task 1
Reservoir Size

P
er

fo
rm

an
ce

100
0

20

40

60

0.02
0.025

0.03
0.035
0.04

135

98.6

80

85

90

95

80

85

90

95

(d) Task 4

Reservoir Size

50 100 150 200
0

10

20

30

50 100 150 200
0

0.01

0.02

0.03

Th
eo

re
ti

ca
l M

ea
su

re

135

(c) Task 3
Reservoir Size

P
er

fo
rm

an
ce

Performance

Theoretical Measure in [14] Theoretical Measure in This Paper

50 100 150 200
90
92
94
96
98

100

0
20
40
60
80
100

50
100 150 200

90
92
94

96.6
98

100

(b) Task 2
Reservoir Size

0
0.01
0.02
0.03
0.04
0.05

Th
eo

re
ti

ca
l M

ea
su

re

90

50 100 150 200
90

95

100

0

50

100

50 100 150 200
90

95

100

0

0.02

0.04

96

90

Figure 4.8: Comparison between two theoretical measures in terms of their corre-
lation with recognition performance of the different tasks. The saturation points
of the proposed measure are highlighted with dashed circles, corresponding to
the predicted reservoir sizes in Step 1 of the design methodology. ©IEEE 2015

performance.

Table 4.2 shows the hardware costs and the power consumptions of the re-

configurable RU and the TU. Because the number of pattern classes may vary for

different tasks, the number of active readout neurons and also the power con-

sumption of TU may vary for different tasks. The reconfigurable RU is in the

full-load mode for the “hard tasks” in which all the 135 liquid neurons are active.

However, it works in the light mode for “simple tasks” with only 90 active liquid

105

Table 4.1: The comparison of the 4 tasks in terms of the runtime, the desired
reservoir size and the recognition accuracy.

Type Runtime(s) Desired size Accuracy
Task 1 Speech 10.25 135 98.6%
Task 2 Image 41.50 90 96.6%
Task 3 Image 41.50 90 96.0%
Task 4 Speech 5.56 135 90.0%

neurons. The power consumption of each building block is measured by Xilinx

Power Analyzer (XPA).

Table 4.2: The comparison between the RU and the TU in terms of hardware cost
and power consumption. The RU involves 135 liquid neurons and the TU involves
26 readout neurons.

RU (full) RU (light) TU
Slice LUTs 65,756 21,286
Slice FFs 22,140 6,755

Block RAMs 0 26

Power (W)
@ 390MHz

Task 1
1.56 /

0.36
Task 4 0.97
Task 2

/ 1.00
0.36

Task 3 0.55

To demonstrate the efficiency of the proposed architecture, we compare three

implemented processors in Table 4.3. The first design simply reuses a fixed RU

with a size required by the hard tasks, leading to the lowest hardware overhead

and the highest energy dissipation. The second design involves two RUs, one large

RU is utilized for Tasks 1 & 4 and a smaller one for Tasks 2 & 3. Although this

design has a much larger hardware cost, its energy is reduced by 30.6% compared

to the first design. The third design combines the benefits of the first two designs

106

Table 4.3: Comparison of 3 multitask LSM designs in terms of hardware cost and
total energy consumption for all the 4 tasks.

LSM with
1 fixed RU

LSM with
2 fixed RUs

LSM with
1 flexible RU

Slice LUTs 87,042 130,881 87,177
Slice FFs 28,895 43,655 28,912
BRAMs 26 26 26

Energy (J) 200.336 139.028 140.135

by utilizing a single reconfigurable RU, which is dynamically configured to realize

the desired reservoir sizes (i.e. 135 and 90) for both task groups. The third design

reduces the energy dissipation by 30.0% over the first design with a negligible

increase of hardware overhead due to the use of power gating.

4.1.5 Low-Power Design Techniques for Each Task

For a particular task, three low-power design techniques are proposed to re-

duce the energy consumption of the hardware LSM.

1) Silent Neuron Gating (SNG): This implements the firing-activity based power

gating which is based upon the following key observation of the LSM training

process. Since fixed synaptic weights are used for the reservoir, the firing activities

of the liquid neurons remain the same from one training iteration to the next.

Hence, LEs that are inactive during the 1st iteration can be turned off for the

remaining iterations without altering the training process.

2) Approximate Adder: Due to the inherent error resilience of LSM and the fact

that digital adders make up a large portion of the hardware cost, it is a good op-

portunity to reduce hardware cost and energy consumption using efficient ap-

proximate adders. The OEs need to use the accurate adders to guarantee the

recognition rate. However, the adders in the LEs can be replaced by low-cost

107

approximate adders.

3) 2-Mode Approximate Computing: Similar to SNG, it is easy to record the fir-

ing frequencies of LEs in the 1st iteration, to identify the LEs that seldom fire for

a particular benchmark. We can further reduce the power by making the approx-

imate adders in such LEs work in “less accurate but lower power mode” in the

remaining iterations.

4.1.6 Proposed Approximate Adder

Before the approximate adders are used to replace the Xilinx built-in adders,

we compare the adders with the other part of the hardware LSM, in terms of total

number of BELs (Basic Element Logics) and power consumption. According to

Fig. 4.9, the digital adders take up 79% of the hardware cost as well as 82% of

the total power consumption, which motivates the use of approximate adders to

greatly improve the energy and area efficiency.

13

ISCAS 2016

Q. Wang, Y. Li, P. Li - Texas A&M University

Energy Efficiency
 Key Observations

– Many LEs never or seldom fire for a particular training data set.
– e.g. 21% LEs never fire for TI-46 Speech Corpus

– Digital adders make a large portion of hardware/power overheads.

 Proposed Solutions
– Silent Neuron Gating (SNG): switch off the LEs that never fire.
– Approximate Adder: leverage approximate computing for energy efficiency
– Adjustable Arithmetic Precision: Firing-Activity dependent mode switching

Adder
79%

Adder
82% Other

21%
Other
18%

Hardware cost Power of LSM @ 390MHz

Liberman, Mark, et al. TI 46-Word LDC93S9. Web Download. Philadelphia: Linguistic Data Consortium, 1993.

Figure 4.9: Area/Power breakdown of the hardware LSM, which demonstrates
the digital adders make a large portion in terms of both hardware cost and power
consumption.

108

As is well known, the Xilinx built-in adders are the standard ripple-carry

adders. Denote the two inputs of the adder A and B, and the i-th bit by ai and bi ,

respectively. Then, the operation of a Xilinx built-in adder can be described by

pi = ai ⊕ bi , ci = pi−1ai−1 + pi−1ci−1, si = ci ⊕ pi (4.7)

where p, c and s represent the propagation, the carry signal and the summa-

tion, respectively. On a Xilinx FPGA, ci and si are realized by multiplexers and

XOR gates inside a highly optimized on-chip resource called “Carry4”, which con-

structs the fast carry chain of a Xilinx built-in adder. This makes it very difficult

for user-defined adder designs to outperform the Xilinx built-in adder. However,

this paper proposes a more efficient approximate adder, which also utilizes the

efficient Carry4 blocks and is optimized for the FPGA platform. Fig. 4.10 illus-

trates the data flow of the proposed approximate adder. The desired precision is

32-bit in the system. The long carry chain of the Xilinx built-in adder is split into

separate Carry4 blocks. The carry into each Carry4 is approximated by a block

called Carry Prediction (CP), which calculates the carry at the i-th bit based on

only k previous (less significant) input bits. The corresponding logic function is

ci = gi−1 + pi−1gi−2 + pi−1pi−2gi−3...+ gi−k
i−1∏

j=i−k+1

pj (4.8)

where gi = ai ·bi represents the “generate” signal at the i-th bit. To implement the

CP, the value of k is chosen from a set of integers from 2 to 6, which is optimized

for the best accuracy and cost tradeoff. In this case, the Carry4 block for the 4

least significant bits (LSBs) is not necessary so it is discarded in Fig. 4.10 and the

propagation bits p3:0 are used to approximate s3:0. The signal connections of one

Carry4 block in Fig. 4.10 are illustrated by Fig. 4.11 and the input signals are

generated by the Lookup Tables.

109

a3 a2 a1 a0

cin

p3 p2 p1 p0

c1c2c3

s0s1s2s3

cout

S31:28 S27:24 S23:20 S19:16 S15:12 S11:8 S7:4 S3:0

a31:0 b31:0

iii bap 

p27:22

g27:22

p23:20

g23:20

p19:16

g19:16

p15:13

g15:13

p7:6

g7:6

p11:9

g11:9

p3:2

g3:2

iii bag 

CP CP CP CP CP CP CP

Carry4 Carry4 Carry4 Carry4 Carry4 Carry4 Carry4

p3:0

0.6

0.7

0.8

0.9

1

1.1

Energy Consumption

Recognition Accuracy

Silent Neuron Gating (SNG)

N
o

rm
al

iz
ed

 E
n

er
gy

 a
n

d
 A

cc
u

ra
cy

0.6

0.7

0.8

0.9

1

1.1

1.2
Energy Consumption

Recognition Rate

Xadder
w/o SNG

Xadderw/ SNG

100% M0
w/o SNG

100% M0
w/ SNG

88% M0
w/ SNG

69% M0
w/ SNG

60% M0
w/ SNG

100% M1
w/ SNG

19.8 J

16.3 J
17.3 J

16.4 J 16.2 J 15.9 J 15.7 J
14.7 J

99.4% 99.4% 99.2% 99.2% 98.6%
97.2% 95.0%

88.4%

Baseline
Design

SNG Only Approximate
Addition Only

Adjustable
Precision

w/ all these
technqiues

En
e

rg
y

an
d

 A
cc

u
ra

cy
19.8J

17.8J
17.1J

15.9J

13.8J

99.4% 99.4% 99.2% 97.0% 96.4%

10.3% 13.8%
19.8%

30.2%
IN

>>k

+
-

+
+

W

Zero
Zero1

0

1
0

IP
>>k

+
-

+
+

W

Zero
Zero1

0

1
0

EN
>>k

+
-

+
+

W

Zero
Zero1

0

1
0

8

16

+
-

+
-

>>K+

>>K-

cm
p

Vth

8

16

Vmem

SIn

EIn

ER

SR

Sout

LE
Synaptic

Response
Unit

EP

EN

IP

IN

1
0

Vrest

A
d

d
e

r

EP
>>k

+
-

+
+

W

Zero
Zero1

0

1
0

Synaptic
Response

Unit
EIn

ER

SIn

SR

IN

IP

EP

EN

(a) Liquid Element (b) Synaptic Response Unit

OE 1

OE 2

OE 10

BRAM
1

A
W’
W Sout

1

Sout
10

TU

W’
W Sout

2

W’
W

Teacher1

A

A

Teacher2

Teacher10

BRAM
2

BRAM
10

135

135

135

SR

LE 1

LE 2

LE 135

Crossbar
Interconnect

R
_S

p
ik

e
 [

 1
3

5
 :

 1
]Sin1

Sin2

Sin100

161616

8

8

8

RU

SR1

SR2

SR135

BRAM i

Task
1

Task
2

Task
M

LE 1

LE 2

LE 135

Input
1

Input
2

Input
100

LE i

1

1

1

8

8

8

8

R
_S

p
ik

e
[

1
3

5
 :

1
]

1

1

1

1

135

Reservoir

16 16 16 16 OE 1

OE 2

OE 10

BRAM
A

W’
W

135

135

135

Teacher1

Teacher2

Teacher10

Spike
Out 1

Spike
Out 10

Training Unit

W’
W Spike

Out 2

W’
W

Excite1

A

A

Excite2

Excite10

BRAM

BRAM

Input Neurons Reservoir Neurons Readout Neurons

Plastic synapses

Figure 4.10: In addition to pi , the proposed approximate adder also realizes gi .
The carry-in of each subadder is generated by a simple logic called Carry Predic-
tion (CP) and is based on both p signals and g signals.

Because of the much shortened carry-propagation length, the proposed adder

can be faster than the Xilinx built-in adder. What is more, because the carries

generated at the LSBs no longer propagate all the way to the most significant

bits (MSBs), the switching rates and therefore the power consumed by the Carry4

blocks at the MSBs is also reduced. In other words, the splitting of the long carry

can contribute to power reduction. In order to further reduce the power consump-

tion, the proposed approximate adder can work in an additional low-precision

mode (Mode 1), in which one more Carry4 at the LSBs and the corresponding CP

are disabled.

Table 4.4 compares the 32-bit Xilinx built-in adder with the proposed approx-

110

a3 a2 a1 a0

cin

p3 p2 p1 p0

c1c2c3

s0s1s2s3

cout

S31:28 S27:24 S23:20 S19:16 S15:12 S11:8 S7:4 S3:0

a31:0 b31:0

iii bap 

p27:22

g27:22

p23:20

g23:20

p19:16

g19:16

p15:13

g15:13

p7:6

g7:6

p11:9

g11:9

p3:2

g3:2

iii bag 

CP CP CP CP CP CP CP

Carry4 Carry4 Carry4 Carry4 Carry4 Carry4 Carry4

p3:0

0.6

0.7

0.8

0.9

1

1.1

Energy Consumption

Recognition Accuracy

Silent Neuron Gating (SNG)

N
o

rm
al

iz
ed

 E
n

er
gy

 a
n

d
 A

cc
u

ra
cy

0.6

0.7

0.8

0.9

1

1.1

1.2
Energy Consumption

Recognition Rate

Xadder
w/o SNG

Xadderw/ SNG

100% M0
w/o SNG

100% M0
w/ SNG

88% M0
w/ SNG

69% M0
w/ SNG

60% M0
w/ SNG

100% M1
w/ SNG

19.8 J

16.3 J
17.3 J

16.4 J 16.2 J 15.9 J 15.7 J
14.7 J

99.4% 99.4% 99.2% 99.2% 98.6%
97.2% 95.0%

88.4%

Baseline
Design

SNG Only Approximate
Addition Only

Adjustable
Precision

w/ all these
technqiues

En
e

rg
y

an
d

 A
cc

u
ra

cy

19.8J
17.8J

17.1J
15.9J

13.8J

99.4% 99.4% 99.2% 97.0% 96.4%

10.3% 13.8%
19.8%

30.2%
IN

>>k

+
-

+
+

W

Zero
Zero1

0

1
0

IP
>>k

+
-

+
+

W

Zero
Zero1

0

1
0

EN
>>k

+
-

+
+

W

Zero
Zero1

0

1
0

8

16

+
-

+
-

>>K+

>>K-

cm
p

Vth

8

16

Vmem

SIn

EIn

ER

SR

Sout

LE
Synaptic

Response
Unit

EP

EN

IP

IN

1
0

Vrest

A
d

d
e

r

EP
>>k

+
-

+
+

W

Zero
Zero1

0

1
0

Synaptic
Response

Unit
EIn

ER

SIn

SR

IN

IP

EP

EN

(a) Liquid Element (b) Synaptic Response Unit

OE 1

OE 2

OE 10

BRAM
1

A
W’
W Sout

1

Sout
10

TU

W’
W Sout

2

W’
W

Teacher1

A

A

Teacher2

Teacher10

BRAM
2

BRAM
10

135

135

135

SR

LE 1

LE 2

LE 135

Crossbar
Interconnect

R
_S

p
ik

e
 [

 1
3

5
 :

 1
]Sin1

Sin2

Sin100

161616

8

8

8

RU

SR1

SR2

SR135

BRAM i

Task
1

Task
2

Task
M

LE 1

LE 2

LE 135

Input
1

Input
2

Input
100

LE i

1

1

1

8

8

8

8

R
_S

p
ik

e
[

1
3

5
 :

1
]

1

1

1

1

135

Reservoir

16 16 16 16 OE 1

OE 2

OE 10

BRAM
A

W’
W

135

135

135

Teacher1

Teacher2

Teacher10

Spike
Out 1

Spike
Out 10

Training Unit

W’
W Spike

Out 2

W’
W

Excite1

A

A

Excite2

Excite10

BRAM

BRAM

Input Neurons Reservoir Neurons Readout Neurons

Plastic synapses

Figure 4.11: Each Carry4 block is made of 4 multiplexers and 4 XOR gates. It
receives p, a and cin from the other logics in Fig. 4.10, which are realized by LUTs.

Table 4.4: Comparison between the Xilinx built-in adder and the proposed ap-
proximate adder in terms of delay, hardware cost and power consumption. The
operands are 32-bit fixed point numbers.

Xilinx
Built-In Adder

Proposed Adder
Mode 0 Mode 1

Delay (ns) 2.510 1.916
Number of BELs 95 93

Power (mW) @ 390MHz 17.77 14.04 11.32

imate adder in different modes. The delay, hardware cost and power consumption

are reported by FPGA Editor and XPower Analyzer. To be accurate, BELs (Basic

Elements of Logic) are used to evaluate the hardware cost, which encompass all

the combinational logic components such as the multiplexers and XOR gates in-

side the CARRY4, and also the Slice LUTs. The approximate adder utilizes slightly

fewer BELs than the Xilinx buit-in adder. In addition, the proposed approximate

adder in the high-precision mode (Mode 0) consumes 18.7% less power than the

built-in adder, and the approximate adder in the low precision mode (Mode 1)

111

consumes 32.6% less power than the built-in adder.

A subset of public domain speech benchmark TI46 [39] is used to evaluate

the recognition performance of our system, which involves 500 speech samples

of 10 digits from five different speakers. Each speech sample is transformed into

77 spike trains of over 500 time steps. All these speech samples enter the LSM

one after another during each training iteration. With an operating frequency of

390 MHz, the proposed LSM processors complete 50 training iterations of pro-

cessing in 10.205s. However, the runtime of a single thread C++ program of the

same algorithm running on the 2.3 GHz AMD OpteronTM Processor is 15 min-

utes. Therefore, the proposed LSM processors achieve an 88X speedup compared

with the C++ program running on a general purpose CPU.

The recognition phase of the proposed LSM processor is almost the same with

the training phase, except that the teacher signals in TU are disabled and the

synaptic weights are not updated. If the OE corresponding to a sample’s true

speech class fires with the highest frequency, this particular speech sample is suc-

cessfully recognized.

Table 4.5: Comparison of processors using Xilinx built-in adders vs. approximate
adders in RU in terms of hardware cost.

RU TU
Design with

Xilinx Adders in RU
22,140 Flip-Flops

136,306 BELs
10 BRAMs
2,590 Flip-Flops
15,890 BELs

Design with
Approx Adders in RU

22,098 Flip-Flops
135,897 BELs

According to Table 4.5, the hardware cost of the RU is slightly reduced if all

the Xilinx adders are replaced by the proposed approximate adders. Table 4.6

112

illustrates how the three techniques described in Section III influence the energy

consumption. If SNG is leveraged, the LEs that never fired in the 1st iteration

are shut down for the remaining 49 iterations. Such LEs are referred to as the

S-mode LEs. If the LE uses the approximate adders working with high-precision

(low-precision), it is said to be in the M0 (M1) mode.

The design without employing any of the three techniques is chosen as the

baseline. Table 4.6 reports the recognition performances and power savings for

the training phase achieved by the proposed techniques. Similar power savings

are achieved for the recognition phase. According to Table 4.6, if SNG is added

to the baseline design, 21 S-mode LEs are shut down for the TI46 benchmark and

the energy is reduced by 10.3%. If all LEs are in the M0 mode without SNG, the

energy is reduced by 13.8%. If the approximate computing with adjustable pre-

cision is used and 80 LEs with the lowest firing frequencies are switched from

the M0 mode to the M1 mode, the energy is reduced by 19.8%. When all these

three techniques are applied, 18 S-mode LEs are obtained for the same bench-

mark, because this time the reservoir response is calculated with approximate

adders. Thus, if another 80 LEs are made to work in the M1 mode, a total en-

ergy reduction of 30.2% is achieved. According to Fig. 4.12, SNG efficiently

reduces energy consumption without affecting the recognition rate at all. The

approximate adders with adjustable precision may have a slight impact on the

recognition performance, but the benefit in terms of energy saving is significant.

4.1.7 Summary

In this section, we demonstrate a general-purpose LSM learning processor ar-

chitecture, which efficiently reuses an optimized reservoir for different tasks. A

novel theoretical measure of computational performance is proposed to provide

113

Table 4.6: Effects of the proposed low-power design techniques on the average
power over 50 training iterations and the recognition rate.

LE Mode Rate
(%)

Power
(W)

Power
ReductionS M0 M1

Baseline / / / 99.4 1.943 /
SNG Only 21 / / 99.4 1.742 10.3%

Approximate
Addition Only

/ 135 0 99.2 1.674 13.8%

Adjustable
Precision

/ 55 80 97.0 1.558 19.8%

All applied 18 37 80 96.4 1.355 30.2%

a3 a2 a1 a0

cin

p3 p2 p1 p0

c1c2c3

s0s1s2s3

cout

S31:28 S27:24 S23:20 S19:16 S15:12 S11:8 S7:4 S3:0

a31:0 b31:0

iii bap 

p27:22

g27:22

p23:20

g23:20

p19:16

g19:16

p15:13

g15:13

p7:6

g7:6

p11:9

g11:9

p3:2

g3:2

iii bag 

CP CP CP CP CP CP CP

Carry4 Carry4 Carry4 Carry4 Carry4 Carry4 Carry4

p3:0

0.6

0.7

0.8

0.9

1

1.1

Energy Consumption

Recognition Accuracy

Silent Neuron Gating (SNG)

N
o

rm
al

iz
ed

 E
n

er
gy

 a
n

d
 A

cc
u

ra
cy

0.6

0.7

0.8

0.9

1

1.1

1.2
Energy Consumption

Recognition Rate

Xadder
w/o SNG

Xadderw/ SNG

100% M0
w/o SNG

100% M0
w/ SNG

88% M0
w/ SNG

69% M0
w/ SNG

60% M0
w/ SNG

100% M1
w/ SNG

19.8 J

16.3 J
17.3 J

16.4 J 16.2 J 15.9 J 15.7 J
14.7 J

99.4% 99.4% 99.2% 99.2% 98.6%
97.2% 95.0%

88.4%

Baseline
Design

SNG Only Approximate
Addition Only

Adjustable
Precision

w/ all these
technqiues

En
e

rg
y

an
d

 A
cc

u
ra

cy

19.8J
17.8J

17.1J
15.9J

13.8J

99.4% 99.4% 99.2% 97.0% 96.4%

10.3% 13.8%
19.8%

30.2%
IN

>>k

+
-

+
+

W

Zero
Zero1

0

1
0

IP
>>k

+
-

+
+

W

Zero
Zero1

0

1
0

EN
>>k

+
-

+
+

W

Zero
Zero1

0

1
0

8

16

+
-

+
-

>>K+

>>K-

cm
p

Vth

8

16

Vmem

SIn

EIn

ER

SR

Sout

LE
Synaptic

Response
Unit

EP

EN

IP

IN

1
0

Vrest

A
d

d
e

r

EP
>>k

+
-

+
+

W

Zero
Zero1

0

1
0

Synaptic
Response

Unit
EIn

ER

SIn

SR

IN

IP

EP

EN

(a) Liquid Element (b) Synaptic Response Unit

OE 1

OE 2

OE 10

BRAM
1

A
W’
W Sout

1

Sout
10

TU

W’
W Sout

2

W’
W

Teacher1

A

A

Teacher2

Teacher10

BRAM
2

BRAM
10

135

135

135

SR

LE 1

LE 2

LE 135

Crossbar
Interconnect

R
_S

p
ik

e
 [

 1
3

5
 :

 1
]Sin1

Sin2

Sin100

161616

8

8

8

RU

SR1

SR2

SR135

BRAM i

Task
1

Task
2

Task
M

LE 1

LE 2

LE 135

Input
1

Input
2

Input
100

LE i

1

1

1

8

8

8

8

R
_S

p
ik

e
[

1
3

5
 :

1
]

1

1

1

1

135

Reservoir

16 16 16 16 OE 1

OE 2

OE 10

BRAM
A

W’
W

135

135

135

Teacher1

Teacher2

Teacher10

Spike
Out 1

Spike
Out 10

Training Unit

W’
W Spike

Out 2

W’
W

Excite1

A

A

Excite2

Excite10

BRAM

BRAM

Input Neurons Reservoir Neurons Readout Neurons

Plastic synapses

Figure 4.12: Energy consumption and recognition rates of different designs. The
percentage energy reductions of the proposed technique are same as the percent-
age power reductions of Table 4.6 as the execution times of all designs are the
same.

accurate guidance for the reservoir optimization. A flexible hardware reservoir

with dynamic neuron power gating is proposed to significantly improve the effi-

ciency of the processor architecture when targeting multiple applications. Mean-

while, for each particular task, this parallel hardware design utilizes firing-activity

based power gating and approximate arithmetic computing with runtime ad-

114

justable precision to reduce the energy consumption for a speech recognition

benchmark without greatly impacting recognition accuracy. A number of critical

design issues such as the interconnection in the reservoir and design of arithmetic

blocks are addressed in this work.

4.2 A Parallel Neuromorphic Architecture for a 2-layer Spiking Neuron

Network with Global Inhibition

In addition to the LSM learning processor mentioned earlier, we also propose

a parallel neuromorphic learning system for a 2-layer spiking neural network

with global inhibition, which is tuned by the STDP learning rule. To demonstrate

the performance, we use the proposed architectures to solve a handwritten digit

recognition problem with images from MNIST, a popular public domain dataset

of handwritten digits with the 28x28 resolution [41]. MNIST involves 60,000 im-

ages for training and 10,000 images for recognition. Each 28x28 image is con-

verted into a pattern with 28x28 pixels, which are used to generate the external

input spikes to the input layer of the spiking neural network. In order to obtain

an acceptable performance for this particular test bench, we instantiate a spiking

neural network with 784 excitatory neurons in the input layer and 800 excitatory

neurons in the output layer, as illustrated by Fig. 4.13. There are also 6 inhibitory

neurons in the input layer and 1 inhibitory neuron in the output layer. The pur-

pose of this global inhibition is to realize the winner-take-all (WTA) mechanism

inside each layer.

Each 28x28 image is converted to 784 parallel spike trains which are the in-

puts to the input layer of the neural network. The occupation rate of each spike

train depends on the grey level of the corresponding pixel. These spike trains are

considered as the external input spikes of the neuromorphic processor.

115

Image
“Zero”

Image
“One”

Image
“Nine”

Input
Layer

Spike Sequences into the input layer

No spikes

Spike trains

28x28 Resolution 14x14 Resolution

(a) downsampling of the MNIST images

(b) Converting Images to Spike Trains

5000 BTS
(Image “Zero”)

5000 BTS
(Image “One”)

5000 BTS
(Image “Nine”)

……
Input layer

……

Spike Sequence into the input layer

No spikes

Grey Level
Of Pixels

Spike trains

Image
“Zero”

Image
“One”

Image
“Nine”

Input
Layer

Spike Sequences into the input layer

No spikes

Spike trains

6869140 61

5455112 47

404184 33

404156 33

262728 5

1591
1590 1589 1588

1587 1586 1585

Input layerOutput layer

60 59 58 57

46 45 44 43

32 31 30 29

32 31 30 29

4 3 2 1

782783784 761

754755756 733

726727728 705

760 759 758 757

732 731 730 729

704 703 702 701

15741575

1569

799

793

1570

59

800

794

1573 1572 1571

1568 801

798 797 796 795

792 791 790 789

1580 1579 1578 1577 1576

1584 1583 1582 1581

788 787 786 785

Image
“Zero”

Image
“One”

Image
“Nine”

Input
 Layer

Spike Sequences into the input layer

No spikes

Spike trains

(a) the 2-layer spiking neural network

(b) the generation of training spikes

Figure 4.13: The neurons labeled 1-784 are the excitatory neurons in the input
layer, while the neurons labeled 785-1584 are the excitatory neurons in the output
layer. The other neurons are the inhibitory neurons.

Fig. 4.14 shows the pseudo code of the SNN learning algorithm based on the

STDP learning rule, and the flow diagram of the digital neuromorphic processor.

Vmem is the membrane potential. W is the synaptic weight. E is the external

input spike to each neuron, and S indicates if a neuron fires or not. N is the total

number of neurons. Lf isrt and Llast are the indices of the first excitatory neuron

and the last excitatory neuron in the output layer, respectively. Mf isrt and Mlast

are the indices of the first excitatory neuron and the last excitatory neuron in the

input layer, respectively.

For each training pattern entering the input layer, the STDP learning process

is performed for a certain number of iterations, which is the outer most loop of

the pseudo code. In one run of this procedure, the membrane potential Vmem

116

Comp

250 200 170
150 130 100

BRAM
1

BRAM
2

BRAM
N

LIF Arithmetic Unit

VMEM
S

VMEM VMEM

Global Timer & Control

Neuron Unit

Time

Spike
I/O

STDP

S

Time

+

Reg

m
u

lt
ip

lie
r

)()1(mxx ii 

)()1(mxx jj 

)exp(),(
2

jiji xxxxk


 

-

LUT

Xi(k)

Xj(k)

SU
B

+
-

M
u

lt
ip

lie
r

M
u

lt
ip

lie
r

Exp()

Exp()

M
u

lt
ip

lie
r

M
u

lt
ip

lie
r

+

+

A
D

D
Reg

+

+

A
D

D

Offset1

Offset2

Reg

+

+

A
D

D

Offset3

A
D

D

Clipping
{0,7}

STDP

1/1 

2/1 

oldW

GlobalT

FireT
newW

T

A

A

Inhibitory neuron Excitatory neuron

Output
layer

Input
layer

97 96 95 94 93 929899100 91

87 86 85 84 83 82888990 81

77 76 75 74 73 72787980 71

67 66 65 64 63 62686970 61

57 56 55 54 53 52585960 51

47 46 45 44 43 42484950 41

37 36 35 34 33 32383940 31

27 26 25 24 23 22282930 21

17 16 15 14 13 12181920 11

7 6 5 4 3 28910 1

101

102

103

104

105

106

107

108

109

116

110 111 112

113 114 115

Input layerOutput layer

- 1000

-11 -11 -10
-10 -10 -10

1000

1 2 3 … … 100 101 … … 109 110 … … 115 116

1
2
.
.
.

100

101
.
.
.

109

110
.
.
.

115

116

2
5

0
2

0
0

1
7

0
1

5
0

1
3

0
1

0
0

1
0

0
0

-11

-10

-1000

Dendrite Index

A
x
o

n
 I
n

d
e

x

+

+

A
D

D

Sum_W M
u

lt
ip

lie
r

0

W

KSyn

S

0
1

+

+

A
D

D-

+

SU
B

Vleakge

Vmem

+

+

A
D

D

0 0
1RNG

C
lip

p
in

g
>0 Vmem

Spike
I/O

LIF Arithmatic Unit

VINVOUT

SIN SOUT

Comparator
+ -

Vth
Enable

FSM

S

Index

WAddr_

Firing Time
(Register file)

Vmem
(Register file)

Firing Flag
(Register file)

Address
Generator

Index

Addr_W

LIF Arithmetic Unit

N
e

u
ro

n
 U

n
it

STDP Unit

Neuromorphic Processor

U
A

R
T

&
 I/

O
 In

te
rf

ac
e

Memory Control & Read/Write
Interface of Synapses

Block
RAM

Block
RAM

Block
RAM

PC with Matlab

FPGA

(a) the 2-layer spiking neural network (b) the corresponding synapse connections

Plastic

Neuron Unit

LIF Arithmetic Unit

N
eu

ro
n

 U
n

it

STDP Unit

Neuromorphic Processor

U
A

R
T

&
 I/

O
 In

te
rf

ac
e

Memory Control & Read/Write
Interface of Synapses

Block
RAM

Block
RAM

Block
RAM

FPGA

5k

Input Spikes

A
Z

130k

step

14

14B
10k

GlobalT

FireT

S

APosAddr_

ANegAddr_

W(1,N+1)
W(2,N+1)

W(N,N+1)

W(1,N+2)

W(2,N+2)

W(N,N+2)

W(1,N+M)

W(2,N+M)

W(N,N+M)

from all input
layer neurons to

the 1st output
layer neuron

from all input
layer neurons to
the 2nd output
layer neuron

from all input
layer neurons to
the Mth output
layer neuron

A-(1,N+1)
A-(2,N+1)

A-(N,N+1)

A-(1,N+2)

A-(2,N+2)

A-(N,N+2)

A-(1,N+M)

A-(2,N+M)

A-(N,N+M)

A+(1,N+1)
A+(2,N+1)

A+(N,N+1)

A+(1,N+2)

A+(2,N+2)

A+(N,N+2)

A+(1,N+M)

A+(2,N+M)

A+(N,N+M)

BRAM_P BRAM_N BRAM_W

W(1,N+1)
W(1,N+2)

W(1,N+M)

W(2,N+1)
W(2,N+2)

W(2,N+M)

W(N,N+1)
W(N,N+2)

W(N,N+M)

BRAM_1_SP BRAM_2_SP BRAM_N_SP

W(1,N+i) W(2,N+i) W(N,N+i)

LIF
Arithmetic

Unit

W(1,N+1)
W(1,N+2)

W(1,N+M)

W(2,N+1)
W(2,N+2)

W(2,N+M)

W(N,N+1)
W(N,N+2)

W(N,N+M)

BRAM_1_DP BRAM_2_DP BRAM_N_DP

W(1,N+i) W(2,N+i) W(N,N+i)

W(1,N+i+1) W(2,N+i+1) W(N,N+i+1)

2 Parallel
LIF

Arithmetic
Units

(a) the sequential readout of synaptic weight

(b) parallel readout of N weights

(c) parallel readout of 2N weights

Wreadout

Wwritein

BRAM
A-

BRAM
A+

jji SW 

S

BRAM
1

BRAM
2

BRAM
N

LAU

VMEM VMEM

Global Timer & Control

STDP

S

Time

Wreadout

BRAM
A+

jji SW 

S

LAU

VMEM VMEM
jji SW 

S

S

Time

BRAM
A-

012345678910111213141516171819202122232425262728293031

S0S0S0

S11

S21

S31

S41

S51

S61

S71

C0

C1

C2

C3

C4

C5

C6

C71

p0p1p2p3p4p5p6p7p8p9p10p11p12p13p14p15p16p17p18p19p20p21p22p23p24p25p26p27p28p29p30p31

PP0

PP1

PP2

PP3

PP4

PP5

PP6

PP7

16-bit inputs

Low-Precision
Computing Unit

Combine
Unit

16-bit output

Signature
Generator

M
U

X

Group1: 2

Group2: 1

Group3: 0

CA, CB, FA

Not generated in the
approximate multiplier

Update of Vmem(i) Check Fire Update of W(j,i)

NOS LOS

To be Parallelized (97.6%) Serial (2.4%)

LAU , BRAM_W Vmem(i) LAU , BRAM_W Vmem(i)

99% 1% 99% 1%

Vmem(i), S(i), Tfire(i) STDP Unit, BRAM_A+/A-

Iteration 1 Iteration 2 Iteration End Iteration k

For a single input pattern:
NOS LOSSpike I/O

NOS LOSSpike I/O

NOS LOSSpike I/O

t-1

t

t+1

Time (Hardware Time)

St
ep

 (
B

io
lo

gi
ca

l T
im

e)

Update of Vmem(i) Check Fire Update of W(j,i)

NOS LOS

To be Parallelized (97.6%) Serial (2.4%)

99% 1% 99% 1%

Vmem, S, Tfire STDP Unit, BRAMs

Iteration 1 Iteration 2 Iteration End Iteration k

For a single input pattern:

LAU, BRAM VmemVmemLAU, BRAM

BRAM
1

BRAM
2

BRAM
N

LIF Arithmetic Unit

VMEM
S

VMEM VMEM

Global Timer & Control

Neuron Unit

Time

Spike
I/O

STDP

S

Time

Wreadout

Wwritein

BRAM
A-

BRAM
A+

S

LAU 1 LAU 2 LAU K

BRAM 1
W

BRAM 2
W

BRAM K
W

STDP

Tfire

S
BRAM

A-

BRAM
A+

Global Timer & Control

Spike I/O
Buffer VMEM

S

Neuron Unit

Time

Tglobal

W(1,N+1)
W(2,N+1)

W(N,N+1)

W(1,N+2)

W(2,N+2)

W(N,N+2)

W(1,N+M)

W(2,N+M)

W(N,N+M)

from all input
layer neurons to

the 1st output
layer neuron

from all input
layer neurons to
the 2nd output
layer neuron

from all input
layer neurons to
the Mth output
layer neuron

A-(1,N+1)
A-(2,N+1)

A-(N,N+1)

A-(1,N+2)

A-(2,N+2)

A-(N,N+2)

A-(1,N+M)

A-(2,N+M)

A-(N,N+M)

A+(1,N+1)
A+(2,N+1)

A+(N,N+1)

A+(1,N+2)

A+(2,N+2)

A+(N,N+2)

A+(1,N+M)

A+(2,N+M)

A+(N,N+M)

BRAM_A+ BRAM_A- BRAM_W
W(1,N+1)
W(1,N+2)

W(1,N+M)

W(2,N+1)
W(2,N+2)

W(2,N+M)

W(N,N+1)
W(N,N+2)

W(N,N+M)

BRAM_1_SP BRAM_2_SP BRAM_N_SP

W(1,N+i) W(2,N+i) W(N,N+i) LAU

W(1,N+1)
W(1,N+2)

W(1,N+M)

W(2,N+1)
W(2,N+2)

W(2,N+M)

W(N,N+1)
W(N,N+2)

W(N,N+M)

BRAM_1_DP BRAM_2_DP BRAM_N_DP

W(1,N+i) W(2,N+i) W(N,N+i)

W(1,N+i+1) W(2,N+i+1) W(N,N+i+1)

2
Parallel

LAUs

(a) the sequential readout of synaptic weight

(c) parallel readout of N weights for 1 Vmem

(d) parallel readout of 2N weights for 2 Vmems

BRAM_W_1

W(1,N+1)
W(2,N+1)

W(N,N+1)

W(1,N+2)

W(2,N+2)

W(N,N+2)

W(1,N+K)

W(2,N+K)

W(N,N+K)

W(1,N+1+K)
W(2,N+1+K)

W(N,N+1+K)

W(1,N+2+K)
W(2,N+2+K)

W(N,N+2+K)

W(1,N+2K)
W(2,N+2K)

W(N,N+2K)

W(1,N+1+K)
W(2,N+1+K)

W(N,

N+1+M-K)

W(1,N+2+K)
W(2,N+2+K)

W(N,

N+2+M-K)

W(1,N+M)
W(2,N+M)

W(N,N+M)

(b) parallel readout of K weights for K Vmems

LAUSTDP Unit

BRAM_W_2 BRAM_W_K

STDP Unit LAU KLAU 1 LAU 2

Encoding Selection Compression
Final

Addition

A = an-1 an-2 … a0

B = bn-1 bn-2 … b0

P = p2n-1 p2n-2 … p0

LIF Arithmetic Unit

BRAM
W

STDP

Tfire

S

Global Timer & Control

Spike I/O
Buffer VMEM

S
Neuron Unit

Time

Tglobal

E Vmem SVmem

STglobal

BRAM A+

BRAM A-

A+

A-

W

Updated W

W to be updated

NU 1

BRAM
1

BRAM
2

BRAM
N

LAU 1

Global Timer & Control

S

Time

W1 … WN

BRAM
A+

NU 2

LAU 2

S

Time

BRAM
A-

STDP

WwriteinW1 … WN

NU 1

BRAM
1

BRAM
2

BRAM
N

LAU 1

Global Timer & Control

S

Time

W1 … WN

BRAM
A+

NU 2

LAU 2

S

Time

BRAM
A-

STDP

W1 … WN

Wnew

NOS LOSI/O

NOS LOSI/O

NOS LOSI/O

t-1
t

t+1

Time (Hardware Time)

St
ep

 (
B

io
lo

gi
ca

l T
im

e)

LIF Arithmetic Unit

BRAM
W

STDP

Tfire

S

Global Timer & Control

Spike I/O
Buffer VMEM

S
Neuron Unit

Time

Tglobal

E Vmem SVmem

STglobal

BRAM A+

BRAM A-

A+

A-

W

Updated W

W to be updated

(a) Flow diagram of the neuromorphic processor

(b) Baseline architecture of the neuromorphic processor

W(1,N+1)
W(1,N+2)

W(1,N+M)

W(2,N+1)
W(2,N+2)

W(2,N+M)

W(N,N+1)
W(N,N+2)

W(N,N+M)

BRAM_1_SP BRAM_2_SP BRAM_N_SP

W(1,N+i) W(2,N+i) W(N,N+i)

1
modified

LAU

W(1,N+1)
W(1,N+2)

W(1,N+M)

W(2,N+1)
W(2,N+2)

W(2,N+M)

W(N,N+1)
W(N,N+2)

W(N,N+M)

BRAM_1_DP BRAM_2_DP BRAM_N_DP

W(1,N+i) W(2,N+i) W(N,N+i)

W(1,N+i+1) W(2,N+i+1) W(N,N+i+1)

(b) parallel readout of N weights for 1 Vmem

(c) parallel readout of 2N weights for 2 Vmem’s

BRAM_W_1

W(1,N+1)
W(2,N+1)

W(N,N+1)

W(1,N+2)
W(2,N+2)

W(N,N+2)

W(1,N+K)
W(2,N+K)

W(N,N+K)

W(1,N+1+K)
W(2,N+1+K)

W(N,N+1+K)

W(1,N+2+K)
W(2,N+2+K)

W(N,N+2+K)

W(1,N+2K)
W(2,N+2K)

W(N,N+2K)

W(1,N+1+K)
W(2,N+1+K)

W(N,N+1+M-K)

W(1,N+2+K)
W(2,N+2+K)

W(N,N+2+M-K)

W(1,N+M)
W(2,N+M)

W(N,N+M)

(a) parallel readout of K weights for K Vmem’s

BRAM_W_2 BRAM_W_K

LAU KLAU 1 LAU 2

2
modified

LAUs

250 200 170
150 130 100

137 136 135 134 133 132138139140 131

123 122 121 120 119 118124125126 117

109 108 107 106 105 104110111112 103

95 94 93 92 91 90969798 89

81 80 79 78 77 76828384 75

67 66 65 64 63 62686970 61

53 52 51 50 49 48545556 47

39 38 37 36 35 34404142 33

25 24 23 22 21 20262728 19

11 10 9 8 7 6121314 5

211

205
199

210

204
198

209

203
197

239

236 237 238

233 234 235

Input layerOutput layer

- 1000
-11 -11 -10
-10 -10 -10

1000

1 2 3 … … 196 197 … … 232 233 … … 238 239

1
2
.
.
.

196

197
.
.
.

232

233
.
.
.

238

239

2
5

0
2

0
0

1
7

0
1

5
0

1
3

0
1

0
0

1
0

0
0

-11

-10

-1000

Dendrite Index

A
x
o

n
 I
n

d
e

x

(a) the 2-layer spiking neural network (b) the corresponding synapse connections

Plastic

130 129 128 127

116 115 114 113

102 101 100 99

88 87 86 85

74 73 72 71

60 59 58 57

46 45 44 43

32 31 30 29

18 17 16 15

4 3 2 1

193 192 191 190 189 188194195196 187

179 178 177 176 175 174180181182 173

165 164 163 162 161 160166167168 159

151 150 149 148 147 146152153154 145

186 185 184 183

172 171 170 169

158 157 156 155

144 143 142 141

214

208

202
213

207

201
212

206
200

229

223

217

228

222

216
227

221

215

232

226

220
231

225

219

230

224

218

250 200 170
150 130 100

137 136 135 134 133 132138139140 131

123 122 121 120 119 118124125126 117

109 108 107 106 105 104110111112 103

95 94 93 92 91 90969798 89

81 80 79 78 77 76828384 75

67 66 65 64 63 62686970 61

53 52 51 50 49 48545556 47

39 38 37 36 35 34404142 33

25 24 23 22 21 20262728 19

11 10 9 8 7 6121314 5

202

199201

198200

197

212

209 210 211

206 207 208

Input layerOutput layer

- 1000
-11 -11 -10
-10 -10 -10

1000

1 2 3 … … 196 197 … … 205 206 … … 211 212

1
2
.
.
.

196

197
.
.
.

205

206
.
.
.

211

212

2
5

0
2

0
0

1
7

0
1

5
0

1
3

0
1

0
0

1
0

0
0

-11

-10

-1000

Dendrite Index

A
x
o

n
 I
n

d
e

x

(a) the 2-layer spiking neural network (b) the interconnections between neurons

Plastic

130 129 128 127

116 115 114 113

102 101 100 99

88 87 86 85

74 73 72 71

60 59 58 57

46 45 44 43

32 31 30 29

18 17 16 15

4 3 2 1

193 192 191 190 189 188194195196 187

179 178 177 176 175 174180181182 173

165 164 163 162 161 160166167168 159

151 150 149 148 147 146152153154 145

186 185 184 183

172 171 170 169

158 157 156 155

144 143 142 141

203

204

205

28x28 Resolution 14x14 Resolution

(a) downsampling of the MNIST images

(b) the receptive fields of the proposed SNN

012345678910111213141516171819202122232425262728293031

S0S0S0

S11

S21

S31

S41

S51

S61

S71

C0

C1

C2

C3

C4

C5

C6

C7

p0p1p2p3p4p5p6p7p8p9p10p11p12p13p14p15p16p17p18p19p20p21p22p23p24p25p26p27p28p29p30p31

PP0

PP1

PP2

PP3

PP4

PP5

PP6

PP7

16-bit inputs

32-bit output16 MSBs (Exact) 16 LSBs (Truncated)

Update of Vmem(i) Check Fire Update of W(j,i)

NOS LOS

To be Parallelized (96.2%) Serial (3.8%)

99% 1% 99% 1%

Vmem, S, Tfire STDP Unit, BRAMs

Iteration 1 Iteration 2 Iteration End Iteration k

For a single input pattern:

LAU, BRAM VmemVmemLAU, BRAM

LAU 1 LAU 2 LAU K

BRAM 1
W

BRAM 2
W

BRAM K
W

STDP

Tfire

S

Global Timer & Control

Spike I/O
Buffer VMEM

S

Neuron Unit

Time

Tglobal

STDP

Li
gh

t
w

ei
gh

t
D

D
R

3
 C

o
n

tr
o

lle
r

A+ and A-

Spike
 I/O

t-1 t t+1

Ti
m

e
(H

ar
d

w
ar

e
Ti

m
e)

Step (Biological Time)

NOS

LOS

Spike
I/O

NOS

LOS

Spike
I/O

NOS

LOS

Figure 4.14: Pseudocode of the learning algorithm based on STDP (left). Flow di-
agram of the digital neuromorphic processor (right). NOS represents the neuron
operation stage and LOS repre- sents the learning operation stage. The LOS is
necessary for training, but not required for recognition.

of each ith neuron is updated considering the spikes from its firing presynaptic

neurons (i. e. by incrementing the membrane potential by a scaled version of W(j,

i) x S(j), where W (j, i) represents the weight of the synapse from the jth neuron

to the ith neuron and S(j) is the flag indicating if a neuron fires or not.) and

the external input spike (denoted by E(i)). There also exists a constant leakage

for Vmem, which is denoted by VLEAK . It should be noted that the amplitude of

117

the external input spike KEXT is a random number, which emulates the random

injected currents to a biological neuron. Once the membrane potential of each

neuron has been updated, it is compared with a threshold value Vthreshold to check

the firing activity. If Vmem is higher than the threshold, the corresponding neuron

fires and its firing flag S is set. Meanwhile, the corresponding firing time Tf ire

is stamped with the current biological time t (iteration index), and Vmem is reset

to the resting potential Vrest. On the other hand, the firing flag S is reset if Vmem

is below the threshold. During the above operation, the update of Vmems can be

parallelized in hardware implementations. This will be referred to as the NOS

(Neuron Operation Stage) in this dissertation.

After that, the change of each synaptic weight is calculated following the STDP

learning rule. When a particular neuron fires during the current iteration, all

its pre-synaptic neurons are accessed to receive their most recent firing times.

Then the change of a particular synaptic weight is calculated from the relative

firing time difference between the post-synaptic and pre-synaptic firing events.

According to the STDP learning rule, a smaller ∆T tends to result in larger change

of the synaptic weight, accordingly, the parameters τ1 and τ2 are chosen to certain

negative values. The synaptic parameters A+ and A− determine the maximum

amounts of synaptic modification. This will be referred to as the LOS (Learning

Operation Stage) in this dissertation. After the synaptic weights are updated, a

new iteration will start.

4.2.1 Serial Baseline Neuromorphic Processor Architecture

In this section, we describe in detail the proposed neuromorphic processor

architecture for the 2-layer spiking neural network. A number of critical issues

such as memory organization, efficient parallel processing and the application of

118

approximate arithmetic units in system, are addressed.

0 50 100 150 200 250
600

700

800

900

1000

1100

1200

0 50 100 150 200 250
700

800

900

1000

1100

1200

1300

1400

NU

BRAM 1 BRAM 2 BRAM N

Modified LAU

Global Timer & Control

S

Time

W1 … WN

BRAM
A+

BRAM
A-

STDP

Wnew

M
u

lt
ip

lie
r

W1

KSyn

S1

+

+

A
D

D-

+

SU
B

VLeak

Vmem

+

+

A
D

D

0 0
1RNG

Vmem

Spike
I/O

Modified LAU

W2

WN

S2 SN

Adder
tree

(from NU)

NU 1

BRAM 1
W

BRAM 2
W

BRAM N
W

Modified LAU

Global Timer & Control

S

Time

W1 … WN

BRAM
A+

NU 2

Modified LAU

S

Time

BRAM
A-

STDP

W1 … WN

Wnew

0 0.5 1 1.5 2 2.5
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
x 10

4

Serial Standard

Serial Approximate

Parallel1 Standard

Parallel1 Approximate

Parallel2 Standard

Parallel2 Approximate

0 0.5 1 1.5 2 2.5
4000

4200

4400

4600

4800

5000
Serial Standard

Serial Approximate

Parallel1 Standard

Parallel1 Approximate

Parallel2 Standard

Parallel2 Approximate

N
u

m
b

er
 o

f
Sl

ic
e

LU
Ts

N
u

m
b

er
 o

f
Sl

ic
e

FF
s

Runtime (s)

Runtime (s)

5.4%

2.6%

1.9%

10.8%

8.8%

7.6%

W(1,N+1)
W(1,N+2)

W(1,N+M)

W(2,N+1)
W(2,N+2)

W(2,N+M)

W(N,N+1)
W(N,N+2)

W(N,N+M)

BRAM_1_SP BRAM_2_SP BRAM_N_SP

W(1,N+i) W(2,N+i) W(N,N+i)

1
modified

LAU

W(1,N+1)
W(1,N+2)

W(1,N+M)

W(2,N+1)
W(2,N+2)

W(2,N+M)

W(N,N+1)
W(N,N+2)

W(N,N+M)

BRAM_1_DP BRAM_2_DP BRAM_N_DP

W(1,N+i) W(2,N+i) W(N,N+i)

W(1,N+i+1) W(2,N+i+1) W(N,N+i+1)

(b) parallel readout of N weights for 1 Vmem

(c) parallel readout of 2N weights for 2 Vmem’s

BRAM_W_1

W(1,N+1)
W(2,N+1)

W(N,N+1)

W(1,N+2)
W(2,N+2)

W(N,N+2)

W(1,N+K)
W(2,N+K)

W(N,N+K)

W(1,N+1+K)
W(2,N+1+K)

W(N,N+1+K)

W(1,N+2+K)
W(2,N+2+K)

W(N,N+2+K)

W(1,N+2K)
W(2,N+2K)

W(N,N+2K)

W(1,N+1+K)
W(2,N+1+K)

W(N,N+1+M-K)

W(1,N+2+K)
W(2,N+2+K)

W(N,N+2+M-K)

W(1,N+M)
W(2,N+M)

W(N,N+M)

(a) parallel readout of K weights for K Vmem’s

BRAM_W_2 BRAM_W_K

LAU KLAU 1 LAU 2

2
modified

LAUs

W(1 , 785)
W(393 , 785)

W(1, 1584)

W(2 , 785)
W(394 , 785)

W(2, 1584)

W(392 , 785)
W(784 , 785)

W(392, 1584)

BRAM_1_SP BRAM_2_SP BRAM_N_SP

W(1 , i) W(2 , i) W(392 , i)

1
modified

LAU
(2 clock cycles)

W(393 , i) W(394 , i) W(784 , i)

W(393, 1584) W(394, 1584) W(784, 1584)

W(1 , 785)

W(393, 785)

W(1, 1584)

W(2 , 785)

W(394, 785)

W(2, 1584)

W(392, 785)

W(784, 785)

W(392, 1584)

BRAM_1_SP BRAM_2_SP BRAM_N_SP

W(1 , 784+i) W(2 , 784+i) W(392, 784+i)
1

modified
LAU

W(393, 784+i) W(394 , 784+i) W(784 , 784+i)

W(393, 1584) W(394, 1584) W(392, 1584)

6869140 61

5455112 47

404184 33

404156 33

262728 5

1591 1590 1589 1588

1587 1586 1585

Input layerOutput layer

60 59 58 57

46 45 44 43

32 31 30 29

32 31 30 29

4 3 2 1

782783784 761

754755756 733

726727728 705

760 759 758 757

732 731 730 729

704 703 702 701

15741575

1569

799

793

1570

59

800

794

1573 1572 1571

1568 801

798 797 796 795

792 791 790 789

1580 1579 1578 1577 1576

1584 1583 1582 1581

788 787 786 785

0 50 100 150 200 250
700

800

900

1000

1100

1200

1300

1400

w/o approximate

w/ approximate

32-way parallel

8-way parallel

4-way parallel

2-way parallel

serial baseline

16.8%

20.1%

Runtime (s)

En
er

gy
 (

m
J)

32-way parallel

8-way parallel

4-way parallel

2-way parallel

serial baseline

w/o approximate

w/ approximate

20.4%

17.9%

Runtime (s)

En
er

gy
 (

m
J)

Update of W(j,i)

NOS LOS

To be Parallelized (96.2%) Serial (3.8%)

99% 1% 99% 1%

Vmem, S, Tfire STDP Unit, BRAMs

For a single input pattern:

LAU, BRAM VmemVmemLAU, BRAM

Iteration 1 Iteration 2 Iteration EndIteration k... …...

Update of Vmem(i) Check Fire

LIF Arithmetic Unit

BRAM
W

STDP

Tfire

S

Global Timer & Control

Spike I/O
Buffer VMEM

S

Neuron Unit
Time

Tglobal

E Vmem SVmem

STglobal

BRAM A-

BRAM A+

A+

A+

W Updated W

W to be updated

Figure 4.15: The block diagram of the serial baseline architecture without parallel
computing. The synaptic weights W ’s are stored in a single-port block RAM, and
the synaptic parameters A+ and A− are stored in another two block RAMs.

Fig. 4.15 demonstrates the baseline architecture of the proposed neuromor-

phic processor. The synaptic parameters such as W , A+ and A− are stored in the

block RAMs. The synaptic weights are read out from the BRAM sequentially and

the membrane potentials which are recorded by the Neuron Unit are updated one

after another. Fig. 4.16 shows the design details of the Neuron Unit (NU) and the

LIF Arithmetic Unit (LAU). The NU involves three important register files which

store the membrane potentials (Vmem’s), the firing times (Tf ire’s) and the firing ac-

tivity flags (S’s) of all the neurons. During the NOS, the LAU first reads out the

Vmem’s and the S’s from the NU, the synaptic weights from the BRAM and the ex-

ternal input spikes from the spike I/O buffer, and then writes the updated Vmem

119

0 50 100 150 200 250
600

700

800

900

1000

1100

1200

0 50 100 150 200 250
700

800

900

1000

1100

1200

1300

1400

NU

BRAM 1 BRAM 2 BRAM N

Modified LAU

Global Timer & Control

S

Time

W1 … WN

BRAM
A+

BRAM
A-

STDP

Wnew

M
u

lt
ip

lie
r

W1

KSyn

S1

+

+

A
D

D-

+

SU
B

VLeak

Vmem

+

+

A
D

D

0 0
1RNG

Vmem

Spike
I/O

Modified LAU

W2

WN

S2 SN

Adder
tree

(from NU)

NU 1

BRAM 1
W

BRAM 2
W

BRAM N
W

Modified LAU

Global Timer & Control

S

Time

W1 … WN

BRAM
A+

NU 2

Modified LAU

S

Time

BRAM
A-

STDP

W1 … WN

Wnew

0 0.5 1 1.5 2 2.5
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
x 10

4

Serial Standard

Serial Approximate

Parallel1 Standard

Parallel1 Approximate

Parallel2 Standard

Parallel2 Approximate

0 0.5 1 1.5 2 2.5
4000

4200

4400

4600

4800

5000
Serial Standard

Serial Approximate

Parallel1 Standard

Parallel1 Approximate

Parallel2 Standard

Parallel2 Approximate

N
u

m
b

er
 o

f
Sl

ic
e

LU
Ts

N
u

m
b

er
 o

f
Sl

ic
e

FF
s

Runtime (s)

Runtime (s)

5.4%

2.6%

1.9%

10.8%

8.8%

7.6%

W(1,N+1)
W(1,N+2)

W(1,N+M)

W(2,N+1)
W(2,N+2)

W(2,N+M)

W(N,N+1)
W(N,N+2)

W(N,N+M)

BRAM_1_SP BRAM_2_SP BRAM_N_SP

W(1,N+i) W(2,N+i) W(N,N+i)

1
modified

LAU

W(1,N+1)
W(1,N+2)

W(1,N+M)

W(2,N+1)
W(2,N+2)

W(2,N+M)

W(N,N+1)
W(N,N+2)

W(N,N+M)

BRAM_1_DP BRAM_2_DP BRAM_N_DP

W(1,N+i) W(2,N+i) W(N,N+i)

W(1,N+i+1) W(2,N+i+1) W(N,N+i+1)

(b) parallel readout of N weights for 1 Vmem

(c) parallel readout of 2N weights for 2 Vmem’s

BRAM_W_1

W(1,N+1)
W(2,N+1)

W(N,N+1)

W(1,N+2)
W(2,N+2)

W(N,N+2)

W(1,N+K)
W(2,N+K)

W(N,N+K)

W(1,N+1+K)
W(2,N+1+K)

W(N,N+1+K)

W(1,N+2+K)
W(2,N+2+K)

W(N,N+2+K)

W(1,N+2K)
W(2,N+2K)

W(N,N+2K)

W(1,N+1+K)
W(2,N+1+K)

W(N,N+1+M-K)

W(1,N+2+K)
W(2,N+2+K)

W(N,N+2+M-K)

W(1,N+M)
W(2,N+M)

W(N,N+M)

(a) parallel readout of K weights for K Vmem’s

BRAM_W_2 BRAM_W_K

LAU KLAU 1 LAU 2

2
modified

LAUs

W(1 , 785)
W(393 , 785)

W(1, 1584)

W(2 , 785)
W(394 , 785)

W(2, 1584)

W(392 , 785)
W(784 , 785)

W(392, 1584)

BRAM_1_SP BRAM_2_SP BRAM_N_SP

W(1 , i) W(2 , i) W(392 , i)

1
modified

LAU
(2 clock cycles)

W(393 , i) W(394 , i) W(784 , i)

W(393, 1584) W(394, 1584) W(784, 1584)

W(1 , 785)

W(393, 785)

W(1, 1584)

W(2 , 785)

W(394, 785)

W(2, 1584)

W(392, 785)

W(784, 785)

W(392, 1584)

BRAM_1_SP BRAM_2_SP BRAM_N_SP

W(1 , 784+i) W(2 , 784+i) W(392, 784+i)
1

modified
LAU

W(393, 784+i) W(394 , 784+i) W(784 , 784+i)

W(393, 1584) W(394, 1584) W(392, 1584)

6869140 61

5455112 47

404184 33

404156 33

262728 5

1591 1590 1589 1588

1587 1586 1585

Input layerOutput layer

60 59 58 57

46 45 44 43

32 31 30 29

32 31 30 29

4 3 2 1

782783784 761

754755756 733

726727728 705

760 759 758 757

732 731 730 729

704 703 702 701

15741575

1569

799

793

1570

59

800

794

1573 1572 1571

1568 801

798 797 796 795

792 791 790 789

1580 1579 1578 1577 1576

1584 1583 1582 1581

788 787 786 785

0 50 100 150 200 250
700

800

900

1000

1100

1200

1300

1400

w/o approximate

w/ approximate

32-way parallel

8-way parallel

4-way parallel

2-way parallel

serial baseline

16.8%

20.1%

Runtime (s)

En
er

gy
 (

m
J)

32-way parallel

8-way parallel

4-way parallel

2-way parallel

serial baseline

w/o approximate

w/ approximate

20.4%

17.9%

Runtime (s)

En
er

gy
 (

m
J)

Update of W(j,i)

NOS LOS

To be Parallelized (96.2%) Serial (3.8%)

99% 1% 99% 1%

Vmem, S, Tfire STDP Unit, BRAMs

For a single input pattern:

LAU, BRAM VmemVmemLAU, BRAM

Iteration 1 Iteration 2 Iteration EndIteration k... …...

Update of Vmem(i) Check Fire

LIF Arithmetic Unit

BRAM
W

STDP

Tfire

S

Global Timer & Control

Spike I/O
Buffer VMEM

S

Neuron Unit
Time

Tglobal

E Vmem SVmem

STglobal

BRAM A-

BRAM A+

A+

A+

W Updated W

W to be updated

SU
B

+
-

M
u

lt
ip

lie
r

M
u

lt
ip

lie
r

Exp()

Exp()

M
u

lt
ip

lie
r

M
u

lt
ip

lie
r

+

+

A
D

D

Reg

+

+

A
D

D

Offset1

Offset2

Reg

+

+

A
D

D

Offset3

A
D

D

Clipping
{0,7}

STDP

1/1 

2/1 

oldW

GlobalT

FireT
newW

T

A

A

+
+

A
D

D

Sum_W

M
u

lt
ip

lie
r

0

W

KSyn

S

0
1

+

+

A
D

D-

+

SU
B

Vleakge

Vmem

+

+

A
D

D

0 0
1RNG

C
lip

p
in

g

Vmem

Spike
I/O

LIF Arithmatic
Unit

VINVOUT

SIN SOUT

Comp

+ -

Vth
Enable

FSM

S

Index

WAddr_

Firing Time
(Register file)

Vmem
(Register

file)

Firing Flag
(Register file)

Address
Generator

Index

Addr_WNeuron
Unit

GlobalT

FireT

S

APosAddr_

ANegAddr_

Figure 4.16: The proposed LIF Arithmetic Unit (LAU) and Neuron Unit (NU).
LAU is used to update the membrane potentials of all the neurons. NU is used to
store the membrane potential, firing time and firing activity flag of each neuron.
The synaptic weights are stored in the BRAM.

back to the NU. The calculation of
∑
W (j, i) · S(j) as in the membrane potential

update section of Table 4.14 takes many clock cycles to complete. And the time

consumed by the NOS usually dominates the entire processing runtime. Once all

the membrane potentials inside the NU are updated for the current iteration, the

NU compares all the membrane potentials with Vthreshold to detect firing neurons

and update the firing activity flags and firing times. TGlobal is a signal represent-

ing the current biological time, which is generated by a global timer inside the

top-level control logic. The amplitude of the external input spike is determined

by a random number generator (RNG) based on Linear Feedback Shift Registers

(LFSRs).

Fig. 4.17 shows the design details of the proposed STDP unit, which is used to

update the synaptic weights based on the difference of firing times between the

pre-synaptic neuron and the post-synaptic neuron. Assuming there are Noutput

neurons in the output layer andNinput neurons in the input layer, the total number

of the plastic synapses to be updated is Noutput ×Ninput. Each plastic synapse is

120

0 50 100 150 200 250
600

700

800

900

1000

1100

1200

0 50 100 150 200 250
700

800

900

1000

1100

1200

1300

1400

NU

BRAM 1 BRAM 2 BRAM N

Modified LAU

Global Timer & Control

S

Time

W1 … WN

BRAM
A+

BRAM
A-

STDP

Wnew

M
u

lt
ip

lie
r

W1

KSyn

S1

+

+

A
D

D-

+

SU
B

VLeak

Vmem

+

+

A
D

D

0 0
1RNG

Vmem

Spike
I/O

Modified LAU

W2

WN

S2 SN

Adder
tree

(from NU)

NU 1

BRAM 1
W

BRAM 2
W

BRAM N
W

Modified LAU

Global Timer & Control

S

Time

W1 … WN

BRAM
A+

NU 2

Modified LAU

S

Time

BRAM
A-

STDP

W1 … WN

Wnew

0 0.5 1 1.5 2 2.5
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
x 10

4

Serial Standard

Serial Approximate

Parallel1 Standard

Parallel1 Approximate

Parallel2 Standard

Parallel2 Approximate

0 0.5 1 1.5 2 2.5
4000

4200

4400

4600

4800

5000
Serial Standard

Serial Approximate

Parallel1 Standard

Parallel1 Approximate

Parallel2 Standard

Parallel2 Approximate

N
u

m
b

er
 o

f
Sl

ic
e

LU
Ts

N
u

m
b

er
 o

f
Sl

ic
e

FF
s

Runtime (s)

Runtime (s)

5.4%

2.6%

1.9%

10.8%

8.8%

7.6%

W(1,N+1)
W(1,N+2)

W(1,N+M)

W(2,N+1)
W(2,N+2)

W(2,N+M)

W(N,N+1)
W(N,N+2)

W(N,N+M)

BRAM_1_SP BRAM_2_SP BRAM_N_SP

W(1,N+i) W(2,N+i) W(N,N+i)

1
modified

LAU

W(1,N+1)
W(1,N+2)

W(1,N+M)

W(2,N+1)
W(2,N+2)

W(2,N+M)

W(N,N+1)
W(N,N+2)

W(N,N+M)

BRAM_1_DP BRAM_2_DP BRAM_N_DP

W(1,N+i) W(2,N+i) W(N,N+i)

W(1,N+i+1) W(2,N+i+1) W(N,N+i+1)

(b) parallel readout of N weights for 1 Vmem

(c) parallel readout of 2N weights for 2 Vmem’s

BRAM_W_1

W(1,N+1)
W(2,N+1)

W(N,N+1)

W(1,N+2)
W(2,N+2)

W(N,N+2)

W(1,N+K)
W(2,N+K)

W(N,N+K)

W(1,N+1+K)
W(2,N+1+K)

W(N,N+1+K)

W(1,N+2+K)
W(2,N+2+K)

W(N,N+2+K)

W(1,N+2K)
W(2,N+2K)

W(N,N+2K)

W(1,N+1+K)
W(2,N+1+K)

W(N,N+1+M-K)

W(1,N+2+K)
W(2,N+2+K)

W(N,N+2+M-K)

W(1,N+M)
W(2,N+M)

W(N,N+M)

(a) parallel readout of K weights for K Vmem’s

BRAM_W_2 BRAM_W_K

LAU KLAU 1 LAU 2

2
modified

LAUs

W(1 , 785)
W(393 , 785)

W(1, 1584)

W(2 , 785)
W(394 , 785)

W(2, 1584)

W(392 , 785)
W(784 , 785)

W(392, 1584)

BRAM_1_SP BRAM_2_SP BRAM_N_SP

W(1 , i) W(2 , i) W(392 , i)

1
modified

LAU
(2 clock cycles)

W(393 , i) W(394 , i) W(784 , i)

W(393, 1584) W(394, 1584) W(784, 1584)

W(1 , 785)

W(393, 785)

W(1, 1584)

W(2 , 785)

W(394, 785)

W(2, 1584)

W(392, 785)

W(784, 785)

W(392, 1584)

BRAM_1_SP BRAM_2_SP BRAM_N_SP

W(1 , 784+i) W(2 , 784+i) W(392, 784+i)
1

modified
LAU

W(393, 784+i) W(394 , 784+i) W(784 , 784+i)

W(393, 1584) W(394, 1584) W(392, 1584)

6869140 61

5455112 47

404184 33

404156 33

262728 5

1591 1590 1589 1588

1587 1586 1585

Input layerOutput layer

60 59 58 57

46 45 44 43

32 31 30 29

32 31 30 29

4 3 2 1

782783784 761

754755756 733

726727728 705

760 759 758 757

732 731 730 729

704 703 702 701

15741575

1569

799

793

1570

59

800

794

1573 1572 1571

1568 801

798 797 796 795

792 791 790 789

1580 1579 1578 1577 1576

1584 1583 1582 1581

788 787 786 785

0 50 100 150 200 250
700

800

900

1000

1100

1200

1300

1400

w/o approximate

w/ approximate

32-way parallel

8-way parallel

4-way parallel

2-way parallel

serial baseline

16.8%

20.1%

Runtime (s)

En
er

gy
 (

m
J)

32-way parallel

8-way parallel

4-way parallel

2-way parallel

serial baseline

w/o approximate

w/ approximate

20.4%

17.9%

Runtime (s)

En
er

gy
 (

m
J)

Update of W(j,i)

NOS LOS

To be Parallelized (96.2%) Serial (3.8%)

99% 1% 99% 1%

Vmem, S, Tfire STDP Unit, BRAMs

For a single input pattern:

LAU, BRAM VmemVmemLAU, BRAM

Iteration 1 Iteration 2 Iteration EndIteration k... …...

Update of Vmem(i) Check Fire

LIF Arithmetic Unit

BRAM
W

STDP

Tfire

S

Global Timer & Control

Spike I/O
Buffer VMEM

S

Neuron Unit
Time

Tglobal

E Vmem SVmem

STglobal

BRAM A-

BRAM A+

A+

A+

W Updated W

W to be updated

SU
B

+
-

M
u

lt
ip

lie
r

M
u

lt
ip

lie
r

Exp()

Exp()

M
u

lt
ip

lie
r

M
u

lt
ip

lie
r

+

+

A
D

D

Reg

+

+

A
D

D

Offset1

Offset2

Reg +

+

A
D

D

Offset3

A
D

D

Clipping
{0,7}

STDP

1/1 

2/1 

oldW

GlobalT

FireT

newW

T

A

A

+

+

A
D

D

Sum_W

M
u

lt
ip

lie
r

0

W

KSyn

S

0
1

+

+

A
D

D-

+

SU
B

Vleakge

Vmem

+

+

A
D

D

0 0
1RNG

C
lip

p
in

g

Vmem

Spike
I/O

LIF Arithmatic
Unit

VINVOUT

SIN SOUT

Comp

+ -

Vth
Enable

FSM

S

Index

WAddr_

Firing Time
(Register file)

Vmem
(Register

file)

Firing Flag
(Register file)

Address
Generator

Index

Addr_WNeuron
Unit

GlobalT

FireT

S

APosAddr_

ANegAddr_

Figure 4.17: The proposed STDP unit which is used to update the synaptic
weights. Tf ire and S are obtained from the neuron unit. W , A+ and A− are from
the BRAMs.

associated with two parameters A+ and A− which may depend on the current

status of the synapse. And the change of the synaptic weightW is calculated with

these two parameters during the LOS. The exponential function used to update

A+ and A− is realized by a pre-computed lookup table.

The proposed neuromorphic processor has two operating modes, namely, the

training mode and the recognition mode. The recognition mode is much sim-

pler than the training mode because the synaptic weights need not to be updated

during recognition. The NU, the LAU and the BRAM for the synaptic weights

are reused in the recognition mode, which leads to noticeable reduction of area

overhead since no additional functional block is added.

121

4.2.2 Parallel Architectures

4.2.2.1 Motivation for Parallel Architectures

The proposed architecture in Fig. 4.15, which is referred to as the serial base-

line, takes Npre cycles to update one Vmem if this particular neuron has Npre pre-

synapses. The Vmem of each neuron is calculated one after another, during which

a LAU takes many clock cycles to accumulate the pre-synaptic weights. During

the LOS, we only scan the excitatory neurons in the output layer and the update

of the plastic pre-synapses is not performed unless the excitatory neuron in the

output layer fires. If it does not fire, the update of pre-synaptic weights will be

skipped. This approach enjoys a low hardware cost at the expense of processing

speed due to lack of parallelism.

Storage of synaptic weights is an important issue for both the serial baseline

architecture and several parallel architectures that will be discussed later. Block

RAMs are based upon the embedded memory blocks of the FPGA chips. We take

advantage of the fact that it is normally more efficient to implement memories on

FPGAs using the embedded block RAMs, each of which can be quite large while

supporting high-speed operations. Take an SNN with 800 output neurons and

784 input neurons as an example, there are 627,200 (800× 784) variable weights

associated with the plastic synapses but only 10 different constant numbers are

used as the weights of the inhibitory synapses. Therefore, since the weights of

all the inhibitory synapses are fixed and have limited number of values, these

constant weights are integrated into the arithmetic logic circuits. So only the feed-

forward synapses require a large storage and we choose to store them in the block

RAMs.

To see why parallel architectures for the targeted spiking neural networks are

122

0 50 100 150 200 250
600

700

800

900

1000

1100

1200

0 50 100 150 200 250
700

800

900

1000

1100

1200

1300

1400

NU

BRAM 1 BRAM 2 BRAM N

Modified LAU

Global Timer & Control

S

Time

W1 … WN

BRAM
A+

BRAM
A-

STDP

Wnew

M
u

lt
ip

lie
r

W1

KSyn

S1

+

+

A
D

D-

+

SU
B

VLeak

Vmem

+

+

A
D

D

0 0
1RNG

Vmem

Spike
I/O

Modified LAU

W2

WN

S2 SN

Adder
tree

(from NU)

NU 1

BRAM 1
W

BRAM 2
W

BRAM N
W

Modified LAU

Global Timer & Control

S

Time

W1 … WN

BRAM
A+

NU 2

Modified LAU

S

Time

BRAM
A-

STDP

W1 … WN

Wnew

0 0.5 1 1.5 2 2.5
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
x 10

4

Serial Standard

Serial Approximate

Parallel1 Standard

Parallel1 Approximate

Parallel2 Standard

Parallel2 Approximate

0 0.5 1 1.5 2 2.5
4000

4200

4400

4600

4800

5000
Serial Standard

Serial Approximate

Parallel1 Standard

Parallel1 Approximate

Parallel2 Standard

Parallel2 Approximate

N
u

m
b

er
 o

f
Sl

ic
e

LU
Ts

N
u

m
b

er
 o

f
Sl

ic
e

FF
s

Runtime (s)

Runtime (s)

5.4%

2.6%

1.9%

10.8%

8.8%

7.6%

W(1,N+1)
W(1,N+2)

W(1,N+M)

W(2,N+1)
W(2,N+2)

W(2,N+M)

W(N,N+1)
W(N,N+2)

W(N,N+M)

BRAM_1_SP BRAM_2_SP BRAM_N_SP

W(1,N+i) W(2,N+i) W(N,N+i)

1
modified

LAU

W(1,N+1)
W(1,N+2)

W(1,N+M)

W(2,N+1)
W(2,N+2)

W(2,N+M)

W(N,N+1)
W(N,N+2)

W(N,N+M)

BRAM_1_DP BRAM_2_DP BRAM_N_DP

W(1,N+i) W(2,N+i) W(N,N+i)

W(1,N+i+1) W(2,N+i+1) W(N,N+i+1)

(b) parallel readout of N weights for 1 Vmem

(c) parallel readout of 2N weights for 2 Vmem’s

BRAM_W_1

W(1,N+1)
W(2,N+1)

W(N,N+1)

W(1,N+2)
W(2,N+2)

W(N,N+2)

W(1,N+K)
W(2,N+K)

W(N,N+K)

W(1,N+1+K)
W(2,N+1+K)

W(N,N+1+K)

W(1,N+2+K)
W(2,N+2+K)

W(N,N+2+K)

W(1,N+2K)
W(2,N+2K)

W(N,N+2K)

W(1,N+1+K)
W(2,N+1+K)

W(N,N+1+M-K)

W(1,N+2+K)
W(2,N+2+K)

W(N,N+2+M-K)

W(1,N+M)
W(2,N+M)

W(N,N+M)

(a) parallel readout of K weights for K Vmem’s

BRAM_W_2 BRAM_W_K

LAU KLAU 1 LAU 2

2
modified

LAUs

W(1 , 785)
W(393 , 785)

W(1, 1584)

W(2 , 785)
W(394 , 785)

W(2, 1584)

W(392 , 785)
W(784 , 785)

W(392, 1584)

BRAM_1_SP BRAM_2_SP BRAM_N_SP

W(1 , i) W(2 , i) W(392 , i)

1
modified

LAU
(2 clock cycles)

W(393 , i) W(394 , i) W(784 , i)

W(393, 1584) W(394, 1584) W(784, 1584)

W(1 , 785)

W(393, 785)

W(1, 1584)

W(2 , 785)

W(394, 785)

W(2, 1584)

W(392, 785)

W(784, 785)

W(392, 1584)

BRAM_1_SP BRAM_2_SP BRAM_N_SP

W(1 , 784+i) W(2 , 784+i) W(392, 784+i)
1

modified
LAU

W(393, 784+i) W(394 , 784+i) W(784 , 784+i)

W(393, 1584) W(394, 1584) W(392, 1584)

6869140 61

5455112 47

404184 33

404156 33

262728 5

1591 1590 1589 1588

1587 1586 1585

Input layerOutput layer

60 59 58 57

46 45 44 43

32 31 30 29

32 31 30 29

4 3 2 1

782783784 761

754755756 733

726727728 705

760 759 758 757

732 731 730 729

704 703 702 701

15741575

1569

799

793

1570

59

800

794

1573 1572 1571

1568 801

798 797 796 795

792 791 790 789

1580 1579 1578 1577 1576

1584 1583 1582 1581

788 787 786 785

0 50 100 150 200 250
700

800

900

1000

1100

1200

1300

1400

w/o approximate

w/ approximate

32-way parallel

8-way parallel

4-way parallel

2-way parallel

serial baseline

16.8%

20.1%

Runtime (s)

En
er

gy
 (

m
J)

32-way parallel

8-way parallel

4-way parallel

2-way parallel

serial baseline

w/o approximate

w/ approximate

20.4%

17.9%

Runtime (s)

En
er

gy
 (

m
J)

Update of W(j,i)

NOS LOS

To be Parallelized (96.2%) Serial (3.8%)

99% 1% 99% 1%

Vmem, S, Tfire STDP Unit, BRAMs

For a single input pattern:

LAU, BRAM VmemVmemLAU, BRAM

Iteration 1 Iteration 2 Iteration EndIteration k... …...

Update of Vmem(i) Check Fire

Figure 4.18: The detailed timing diagram of the baseline design. A large number
of biological time steps need to be processed for a single input pattern (i.e. a
handwriting digit image) in the training phase. Each iteration is divided into
NOS and LOS. The updating of membrane potentials during NOS is parallelized,
which consumes 96.2% of the total runtime.

desirable, we analyze temporal processing steps involved in the baseline serial

architecture. Fig. 4.18 uses a detailed timing diagram to demonstrate the opera-

tions of the serial baseline architecture without parallel processing. The timing

diagram is based on the functional simulation with Verilog HDL, which shall cor-

relate well with the actual design running on the FPGA. The time utilization of

each functional block in one biological time step is also illustrated in this figure.

Thousands of biological time steps are required for the training of one input pat-

tern, which corresponds to the outermost loop of the pseudo code in Table 4.14.

As mentioned earlier, processing of each biological time step is divided into two

stages, namely, the NOS and the LOS. According to Fig. 4.18, the LAU and the

block RAM which stores the synaptic weights have the highest utilization, while

other blocks consume a much less portion of the overall processing time. Because

the update of synaptic weights is only performed for the firing post-synaptic neu-

123

NU

BRAM 1 BRAM 2 BRAM N

Modified LAU

Global Timer & Control

S

Time

W1 … WN

BRAM
A+

BRAM
A-

STDP

Wnew

M
u

lt
ip

lie
r

W1

KSyn

S1

+

+

A
D

D-

+

SU
B

VLeak

Vmem

+

+

A
D

D

0 0
1RNG

Vmem

Spike
I/O

Modified LAU

W2

WN

S2 SN

Adder
tree

(from NU)

NU 1

BRAM 1
W

BRAM 2
W

BRAM N
W

Modified LAU

Global Timer & Control

S

Time

W1 … WN

BRAM
A+

NU 2

Modified LAU

S

Time

BRAM
A-

STDP

W1 … WN

Wnew

(a) the parallel neuromorphic processor (b) the modified LAU with a huge adder

W(1,N+1)
W(1,N+2)

W(1,N+M)

W(2,N+1)
W(2,N+2)

W(2,N+M)

W(N,N+1)
W(N,N+2)

W(N,N+M)

BRAM_1_SP BRAM_2_SP BRAM_N_SP

W(1,N+i) W(2,N+i) W(N,N+i)

1
modified

LAU

W(1,N+1)
W(1,N+2)

W(1,N+M)

W(2,N+1)
W(2,N+2)

W(2,N+M)

W(N,N+1)
W(N,N+2)

W(N,N+M)

BRAM_1_DP BRAM_2_DP BRAM_N_DP

W(1,N+i) W(2,N+i) W(N,N+i)

W(1,N+i+1) W(2,N+i+1) W(N,N+i+1)

(b) parallel readout of N weights to update 1 Vmem

(c) parallel readout of 2N weights to update 2 Vmem’s

BRAM_W_1

W(1,N+1)
W(2,N+1)

W(N,N+1)

W(1,N+2)
W(2,N+2)

W(N,N+2)

W(1,N+K)
W(2,N+K)

W(N,N+K)

W(1,N+1+K)
W(2,N+1+K)

W(N,N+1+K)

W(1,N+2+K)
W(2,N+2+K)

W(N,N+2+K)

W(1,N+2K)
W(2,N+2K)

W(N,N+2K)

W(1,N+1+K)
W(2,N+1+K)

W(N,N+1+M-K)

W(1,N+2+K)
W(2,N+2+K)

W(N,N+2+M-K)

W(1,N+M)
W(2,N+M)

W(N,N+M)

(a) parallel readout of K weights to update K Vmem’s

BRAM_W_2 BRAM_W_K

LAU KLAU 1 LAU 2

2
modified

LAUs

Figure 4.19: Parallel processing schemes for N excitatory neurons in the input
layer and M excitatory neurons in the output layer: simultaneous updates of K
membrane potentials with synaptic weights stored in K parallel block RAMs.

rons, the workload for LOS can be very small considering the low firing rate of the

output neurons. Obviously, the runtime of the NOS is much longer than the LOS,

and the runtime of updating the membrane potentials dominates the NOS run-

time, so this work only focuses on the parallel readout of synaptic weights during

the NOS. The updating of the synaptic weights during the LOS is still a sequential

process.

4.2.2.2 Proposed Parallel Architectures and Memory Organization

We propose several parallel architectures. In Fig. 4.19, W (j, i) represents the

weight of the synapse from the jth neuron to the ith neuron. Assume that there

are N input layer neurons and M output layer neurons. The neurons in the input

layer are labeled from 1 toN , and the neurons in the output layer are labeled from

124

0 50 100 150 200 250
600

700

800

900

1000

1100

1200

0 50 100 150 200 250
700

800

900

1000

1100

1200

1300

1400

NU

BRAM 1 BRAM 2 BRAM N

Modified LAU

Global Timer & Control

S

Time

W1 … WN

BRAM
A+

BRAM
A-

STDP

Wnew

M
u

lt
ip

lie
r

W1

KSyn

S1

+

+

A
D

D-

+

SU
B

VLeak

Vmem

+

+

A
D

D

0 0
1RNG

Vmem

Spike
I/O

Modified LAU

W2

WN

S2 SN

Adder
tree

(from NU)

NU 1

BRAM 1
W

BRAM 2
W

BRAM N
W

Modified LAU

Global Timer & Control

S

Time

W1 … WN

BRAM
A+

NU 2

Modified LAU

S

Time

BRAM
A-

STDP

W1 … WN

Wnew

0 0.5 1 1.5 2 2.5
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
x 10

4

Serial Standard

Serial Approximate

Parallel1 Standard

Parallel1 Approximate

Parallel2 Standard

Parallel2 Approximate

0 0.5 1 1.5 2 2.5
4000

4200

4400

4600

4800

5000
Serial Standard

Serial Approximate

Parallel1 Standard

Parallel1 Approximate

Parallel2 Standard

Parallel2 Approximate

N
u

m
b

er
 o

f
Sl

ic
e

LU
Ts

N
u

m
b

er
 o

f
Sl

ic
e

FF
s

Runtime (s)

Runtime (s)

5.4%

2.6%

1.9%

10.8%

8.8%

7.6%

W(1,N+1)
W(1,N+2)

W(1,N+M)

W(2,N+1)
W(2,N+2)

W(2,N+M)

W(N,N+1)
W(N,N+2)

W(N,N+M)

BRAM_1_SP BRAM_2_SP BRAM_N_SP

W(1,N+i) W(2,N+i) W(N,N+i)

1
modified

LAU

W(1,N+1)
W(1,N+2)

W(1,N+M)

W(2,N+1)
W(2,N+2)

W(2,N+M)

W(N,N+1)
W(N,N+2)

W(N,N+M)

BRAM_1_DP BRAM_2_DP BRAM_N_DP

W(1,N+i) W(2,N+i) W(N,N+i)

W(1,N+i+1) W(2,N+i+1) W(N,N+i+1)

(b) parallel readout of N weights for 1 Vmem

(c) parallel readout of 2N weights for 2 Vmem’s

BRAM_W_1

W(1,N+1)
W(2,N+1)

W(N,N+1)

W(1,N+2)
W(2,N+2)

W(N,N+2)

W(1,N+K)
W(2,N+K)

W(N,N+K)

W(1,N+1+K)
W(2,N+1+K)

W(N,N+1+K)

W(1,N+2+K)
W(2,N+2+K)

W(N,N+2+K)

W(1,N+2K)
W(2,N+2K)

W(N,N+2K)

W(1,N+1+K)
W(2,N+1+K)

W(N,N+1+M-K)

W(1,N+2+K)
W(2,N+2+K)

W(N,N+2+M-K)

W(1,N+M)
W(2,N+M)

W(N,N+M)

(a) parallel readout of K weights for K Vmem’s

BRAM_W_2 BRAM_W_K

LAU KLAU 1 LAU 2

2
modified

LAUs

W(1 , 785)
W(393 , 785)

W(1, 1584)

W(2 , 785)
W(394 , 785)

W(2, 1584)

W(392 , 785)
W(784 , 785)

W(392, 1584)

BRAM_1_SP BRAM_2_SP BRAM_N_SP

W(1 , i) W(2 , i) W(392 , i)

1
modified

LAU
(2 clock cycles)

W(393 , i) W(394 , i) W(784 , i)

W(393, 1584) W(394, 1584) W(784, 1584)

W(1 , 785)

W(393, 785)

W(1, 1584)

W(2 , 785)

W(394, 785)

W(2, 1584)

W(392, 785)

W(784, 785)

W(392, 1584)

BRAM_1_SP BRAM_2_SP BRAM_N_SP

W(1 , 784+i) W(2 , 784+i) W(392, 784+i)
1

modified
LAU

W(393, 784+i) W(394 , 784+i) W(784 , 784+i)

W(393, 1584) W(394, 1584) W(392, 1584)

6869140 61

5455112 47

404184 33

404156 33

262728 5

1591 1590 1589 1588

1587 1586 1585

Input layerOutput layer

60 59 58 57

46 45 44 43

32 31 30 29

32 31 30 29

4 3 2 1

782783784 761

754755756 733

726727728 705

760 759 758 757

732 731 730 729

704 703 702 701

15741575

1569

799

793

1570

59

800

794

1573 1572 1571

1568 801

798 797 796 795

792 791 790 789

1580 1579 1578 1577 1576

1584 1583 1582 1581

788 787 786 785

0 50 100 150 200 250
700

800

900

1000

1100

1200

1300

1400

w/o approximate

w/ approximate

32-way parallel

8-way parallel

4-way parallel

2-way parallel

serial baseline

16.8%

20.1%

Runtime (s)

En
er

gy
 (

m
J)

32-way parallel

8-way parallel

4-way parallel

2-way parallel

serial baseline

w/o approximate

w/ approximate

20.4%

17.9%

Runtime (s)

En
er

gy
 (

m
J)

Update of W(j,i)

NOS LOS

To be Parallelized (96.2%) Serial (3.8%)

99% 1% 99% 1%

Vmem, S, Tfire STDP Unit, BRAMs

For a single input pattern:

LAU, BRAM VmemVmemLAU, BRAM

Iteration 1 Iteration 2 Iteration EndIteration k... …...

Update of Vmem(i) Check Fire

LIF Arithmetic Unit

BRAM
W

STDP

Tfire

S

Global Timer & Control

Spike I/O
Buffer VMEM

S

Neuron Unit
Time

Tglobal

E Vmem SVmem

STglobal

BRAM A-

BRAM A+

A+

A+

W Updated W

W to be updated

SU
B

+
-

M
u

lt
ip

lie
r

M
u

lt
ip

lie
r

Exp()

Exp()

M
u

lt
ip

lie
r

M
u

lt
ip

lie
r

+

+

A
D

D

Reg

+

+

A
D

D

Offset1

Offset2

Reg +

+

A
D

D

Offset3

A
D

D

Clipping
{0,7}

STDP

1/1 

2/1 

oldW

GlobalT

FireT

newW

T

A

A

+

+

A
D

D

Sum_W

M
u

lt
ip

lie
r

0

W

KSyn

S

0
1

+

+

A
D

D-

+

SU
B

Vleakge

Vmem

+

+

A
D

D

0 0
1RNG

C
lip

p
in

g

Vmem

Spike
I/O

LIF Arithmatic
Unit

VINVOUT

SIN SOUT

Comp

+ -

Vth
Enable

FSM

S

Index

WAddr_

Firing Time
(Register file)

Vmem
(Register

file)

Firing Flag
(Register file)

Address
Generator

Index

Addr_WNeuron
Unit

GlobalT

FireT

S

APosAddr_

ANegAddr_

LAU 1 LAU 2 LAU K

BRAM 1
W

BRAM 2
W

BRAM K
W

STDP

Tfire

S

BRAM
A-

BRAM
A+

Global Timer & Control

Spike I/O
BufferVMEM

S

Neuron Unit

Time

Tglobal

Figure 4.20: The proposed parallel neuromorphic processor which develops K-
way parallel processing based on LIP. K block RAMs are used to store synaptic
weights, and K LAUs work in parallel to update K membrane potentials at the
same time.

N + 1 to N +M. Fig. 4.19 shows a parallel architecture which supports K-way

parallel processing during the NOS where K membrane potentials are updated

simultaneously. The processing may take many clock cycles to complete since for

each update many pre-synaptic weights need to be read out in sequence.

The parallel architecture is illustrated by Fig. 4.20. The weights of the synapses

from the input layer to the output layer are stored in K block RAMs. The weights

associated with each output layer neuron are all in the same block RAM. Ideally,

if the workload of the NOS is well balanced, each LAU performs the Vmem update

of M/K excitatory neurons in the output layer and K LAUs work in parallel. The

Vmem update of other neurons is parallelized in the same way. Although the total

capacity of the register files (Vmem, S and Tf ire) inside the neuron unit (NU) re-

125

mains the same, multiple data ports are created for the NU to enable the K LAUs

to access the data inside NU in parallel.

4.2.3 Experimental Results

4.2.3.1 Design Platform

The proposed neuromorphic processors are designed in Verilog HDL and syn-

thesized using a Xilinx Synthesis tools. A Xilinx ML605 Evaluation Board, making

use of a FPGA Virtex 6 core, has been employed in order to develop and test our

designs.

Image
“Zero”

Image
“One”

Image
“Nine”

Input
 Layer

Spike Sequences into the input layer

No spikes

Spike trains

28x28 Resolution 14x14 Resolution

(a) downsampling of the MNIST images

(b) Converting Images to Spike Trains

5000 BTS
(Image “Zero”)

5000 BTS
(Image “One”)

5000 BTS
(Image “Nine”)

……
Input layer

……

Spike Sequence into the input layer

No spikes

Grey Level
Of Pixels

Spike trains

Image
“Zero”

Image
“One”

Image
“Nine”

Input
 Layer

Spike Sequences into the input layer

No spikes

Spike trains

6869140 61

5455112 47

404184 33

404156 33

262728 5

1591
1590 1589 1588

1587 1586 1585

Input layerOutput layer

60 59 58 57

46 45 44 43

32 31 30 29

32 31 30 29

4 3 2 1

782783784 761

754755756 733

726727728 705

760 759 758 757

732 731 730 729

704 703 702 701

15741575

1569

799

793

1570

59

800

794

1573 1572 1571

1568 801

798 797 796 795

792 791 790 789

1580 1579 1578 1577 1576

1584 1583 1582 1581

788 787 786 785

Image
“Zero”

Image
“One”

Image
“Nine”

Input
 Layer

Spike Sequences into the input layer

No spikes

Spike trains

(a) the 2-layer spiking neural network

(b) the generation of training spikes

LAU

Neuron
Unit

STDP Unit

Neuromorphic Processor

U
A

R
T

&
 I/

O
 In

te
rf

ac
e

M
em

o
ry

 C
o

n
tr

o
l &

 R
ea

d
/W

ri
te

In

te
rf

ac
e

o
f

Sy
n

ap
se

s

Block
RAM

Block
RAM

Block
RAM

FPGA

Input Spikes

PC

LAU

LAU

Figure 4.21: Top-level schematic of the proposed neuromorphic processor run-
ning on Xilinx ML605 evaluation board, with the synaptic weights stored in block
RAMs. The communication between PC and FPGA is realized by an UART cable.

The overall experimental platform of this neuromorphic system is shown in

Fig. 4.21. The Matlab program on the PC converts the training patterns to spike

sequences and sends them to a Xilinx ML605 evaluation board through an UART

126

(universal asynchronous receiver/transmitter) cable. Once the training is fin-

ished, the results (i.e. output spikes and synaptic weights) are sent back to the

PC through the same cable. The proposed FPGA-based neuromorphic processor

is composed of three major components: Neuron Unit, an array of LIF (Leaky-

Integrate-and-Fire) Arithmetic Units, and STDP Unit. The synaptic weights of

the plastic synapses (i.e. the synapses from the input layer to the output layer) are

stored in the block RAMs (BRAMs) on the FPGA chip. The access to these BRAMs

is realized by a synapse Read/Write interface.

We follow the typical FPGA design flow to perform functional simulation,

logic synthesis, placement & routing, and generate the configuration bitstream.

According to the timing analysis conducted as part of the synthesis flow, the

proposed neuromorphic processors are able to run at 133.288 MHz. We employ

an MMCM (Mixed Mode Clock Manager) block to generate the actual clock rate

which is 120MHz. The proposed designs are synthesized in a hierarchical/bottom-

up manner, to allow straightforward reuse of baseline building blocks such as the

Neuron Unit, LIF Arithmetic Unit and STDP Unit among targeted architectural

variants. In order for the proposed architectures to communicate with the Mat-

lab program running on PC, we also implement a UART(Universal Asynchronous

Receiver/Transmitter) to support the serial communication. The power consump-

tion of each architecture is obtained by using XPower Analyzer, which offers de-

tailed power analysis of the designs on Xilinx FPGA.

4.2.3.2 Performances for Handwritten Digit Recognition

The receptive fields of the output layer neurons after the training are illus-

trated in Fig. 4.22. As can be seen, the receptive fields are well shaped by the

training. The proposed neuromorphic processors with the standard Booth multi-

127

pliers achieve a 89.1% recognition rate over the complete MNIST dataset. If the

standard booth multipliers in the proposed architectures are replaced by the ap-

proximate multipliers, the recognition rate over the same data set becomes 87.7%,

demonstrating that the use of approximate multiplications has no significant im-

pact on recognition performance for this application.

In [42], a neural network with 400 excitatory neurons in the output layer,

1,584 neurons and 473,600 synapses in total achieves a recognition accuracy of

87.0%. However, when 1,600 excitatory neurons are used in the output layer,

3,984 neurons and 3,814,400 synapses are used for the entire network, an ac-

curacy of 91.9% is obtained from their network. The recognition accuracy vs.

network size plot provided in [42] shows that an accuracy level of 88.6% can be

achieved by a network with 800 excitatory neurons in the output layer, 2,384

neurons and 1,267,200 synapses in total. Compared with this reference network

simulated using floating points in software, our proposed work achieves highly

competitive recognition performances with a much smaller overall network com-

plexity, i.e. 1,591 neurons and 638,208 synapses. This is the case even for our

hardware-based implementations operating on the fixed-point arithmetic.

4.2.3.3 Tradeoffs between Power, Energy and Hardware Overheads of the Parallel

Architectures

Table 4.7 lists the power consumption and slice utilization of each building

block in the baseline serial neuromorphic processor design. The membrane po-

tentials of all neurons are updated one after another. The summation of the

synaptic weights for each neuron is realized by a single accumulator, which is con-

sistent with Fig. 4.16. The slice utilization of each building block is obtained after

place and route. The powers of the building blocks are obtained from XPower An-

128

0 50 100 150 200 250
600

700

800

900

1000

1100

1200

0 50 100 150 200 250
700

800

900

1000

1100

1200

1300

1400

NU

BRAM 1 BRAM 2 BRAM N

Modified LAU

Global Timer & Control

S

Time

W1 … WN

BRAM
A+

BRAM
A-

STDP

Wnew

M
u

lt
ip

lie
r

W1

KSyn

S1

+

+

A
D

D-

+

SU
B

VLeak

Vmem

+

+

A
D

D

0 0
1RNG

Vmem

Spike
I/O

Modified LAU

W2

WN

S2 SN

Adder
tree

(from NU)

NU 1

BRAM 1
W

BRAM 2
W

BRAM N
W

Modified LAU

Global Timer & Control

S

Time

W1 … WN

BRAM
A+

NU 2

Modified LAU

S

Time

BRAM
A-

STDP

W1 … WN

Wnew

0 0.5 1 1.5 2 2.5
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
x 10

4

Serial Standard

Serial Approximate

Parallel1 Standard

Parallel1 Approximate

Parallel2 Standard

Parallel2 Approximate

0 0.5 1 1.5 2 2.5
4000

4200

4400

4600

4800

5000
Serial Standard

Serial Approximate

Parallel1 Standard

Parallel1 Approximate

Parallel2 Standard

Parallel2 Approximate

N
u

m
b

er
 o

f
Sl

ic
e

LU
Ts

N
u

m
b

er
 o

f
Sl

ic
e

FF
s

Runtime (s)

Runtime (s)

5.4%

2.6%

1.9%

10.8%

8.8%

7.6%

W(1,N+1)
W(1,N+2)

W(1,N+M)

W(2,N+1)
W(2,N+2)

W(2,N+M)

W(N,N+1)
W(N,N+2)

W(N,N+M)

BRAM_1_SP BRAM_2_SP BRAM_N_SP

W(1,N+i) W(2,N+i) W(N,N+i)

1
modified

LAU

W(1,N+1)
W(1,N+2)

W(1,N+M)

W(2,N+1)
W(2,N+2)

W(2,N+M)

W(N,N+1)
W(N,N+2)

W(N,N+M)

BRAM_1_DP BRAM_2_DP BRAM_N_DP

W(1,N+i) W(2,N+i) W(N,N+i)

W(1,N+i+1) W(2,N+i+1) W(N,N+i+1)

(b) parallel readout of N weights for 1 Vmem

(c) parallel readout of 2N weights for 2 Vmem’s

BRAM_W_1

W(1,N+1)
W(2,N+1)

W(N,N+1)

W(1,N+2)
W(2,N+2)

W(N,N+2)

W(1,N+K)
W(2,N+K)

W(N,N+K)

W(1,N+1+K)
W(2,N+1+K)

W(N,N+1+K)

W(1,N+2+K)
W(2,N+2+K)

W(N,N+2+K)

W(1,N+2K)
W(2,N+2K)

W(N,N+2K)

W(1,N+1+K)
W(2,N+1+K)

W(N,N+1+M-K)

W(1,N+2+K)
W(2,N+2+K)

W(N,N+2+M-K)

W(1,N+M)
W(2,N+M)

W(N,N+M)

(a) parallel readout of K weights for K Vmem’s

BRAM_W_2 BRAM_W_K

LAU KLAU 1 LAU 2

2
modified

LAUs

W(1 , 785)
W(393 , 785)

W(1, 1584)

W(2 , 785)
W(394 , 785)

W(2, 1584)

W(392 , 785)
W(784 , 785)

W(392, 1584)

BRAM_1_SP BRAM_2_SP BRAM_N_SP

W(1 , i) W(2 , i) W(392 , i)

1
modified

LAU
(2 clock cycles)

W(393 , i) W(394 , i) W(784 , i)

W(393, 1584) W(394, 1584) W(784, 1584)

W(1 , 785)

W(393, 785)

W(1, 1584)

W(2 , 785)

W(394, 785)

W(2, 1584)

W(392, 785)

W(784, 785)

W(392, 1584)

BRAM_1_SP BRAM_2_SP BRAM_N_SP

W(1 , 784+i) W(2 , 784+i) W(392, 784+i)
1

modified
LAU

W(393, 784+i) W(394 , 784+i) W(784 , 784+i)

W(393, 1584) W(394, 1584) W(392, 1584)

6869140 61

5455112 47

404184 33

404156 33

262728 5

1591 1590 1589 1588

1587 1586 1585

Input layerOutput layer

60 59 58 57

46 45 44 43

32 31 30 29

32 31 30 29

4 3 2 1

782783784 761

754755756 733

726727728 705

760 759 758 757

732 731 730 729

704 703 702 701

15741575

1569

799

793

1570

59

800

794

1573 1572 1571

1568 801

798 797 796 795

792 791 790 789

1580 1579 1578 1577 1576

1584 1583 1582 1581

788 787 786 785

0 50 100 150 200 250
700

800

900

1000

1100

1200

1300

1400

w/o approximate

w/ approximate

32-way parallel

8-way parallel

4-way parallel

2-way parallel

serial baseline

16.8%

20.1%

Runtime (s)

En
er

gy
 (

m
J)

32-way parallel

8-way parallel

4-way parallel

2-way parallel

serial baseline

w/o approximate

w/ approximate

20.4%

17.9%

Runtime (s)

En
er

gy
 (

m
J)

Update of W(j,i)

NOS LOS

To be Parallelized (96.2%) Serial (3.8%)

99% 1% 99% 1%

Vmem, S, Tfire STDP Unit, BRAMs

For a single input pattern:

LAU, BRAM VmemVmemLAU, BRAM

Iteration 1 Iteration 2 Iteration EndIteration k... …...

Update of Vmem(i) Check Fire

LIF Arithmetic Unit

BRAM
W

STDP

Tfire

S

Global Timer & Control

Spike I/O
Buffer VMEM

S

Neuron Unit
Time

Tglobal

E Vmem SVmem

STglobal

BRAM A-

BRAM A+

A+

A+

W Updated W

W to be updated

SU
B

+
-

M
u

lt
ip

lie
r

M
u

lt
ip

lie
r

Exp()

Exp()

M
u

lt
ip

lie
r

M
u

lt
ip

lie
r

+

+

A
D

D

Reg

+

+

A
D

D

Offset1

Offset2

Reg +

+

A
D

D

Offset3

A
D

D

Clipping
{0,7}

STDP

1/1 

2/1 

oldW

GlobalT

FireT

newW

T

A

A

+

+

A
D

D

Sum_W

M
u

lt
ip

lie
r

0

W

KSyn

S

0
1

+

+

A
D

D-
+

SU
B

Vleakge

Vmem

+

+

A
D

D

0 0
1RNG

C
lip

p
in

g

Vmem

Spike
I/O

LIF Arithmatic
Unit

VINVOUT

SIN SOUT

Comp

+ -

Vth
Enable

FSM

S

Index

WAddr_

Firing Time
(Register file)

Vmem
(Register

file)

Firing Flag
(Register file)

Address
Generator

Index

Addr_WNeuron
Unit

GlobalT

FireT

S

APosAddr_

ANegAddr_

LAU 1 LAU 2 LAU K

BRAM 1
W

BRAM 2
W

BRAM K
W

STDP

Tfire

S
BRAM

A-

BRAM
A+

Global Timer & Control

Spike I/O
BufferVMEM

S

Neuron Unit

Time

Tglobal

Figure 4.22: The 800 receptive fields obtained after the training over 60,000
MNIST images of handwritten digits.

alyzer (XPA) and Xilinx Power Estimator (XPE), two commercial tools for power

analysis. Although the clock frequency is 120MHz for the neuromorphic pro-

cessor, the actual switching frequency of each building block can be much lower

than the main system clock. Therefore, the Neuron Unit has a low power con-

sumption although the number of used flip-flops is large. The design information

of the baseline design without and with the approximate multipliers are shown

in Table 4.7(a) and Table 4.7(b), respectively. When comparing these two vari-

ants of the baseline serial design, we can easily see adoption of the approximate

multipliers helps reduce both power consumption and slice utilization.

Fig. 4.23(a) compares five LIP designs with different degrees of parallelism and

different multipliers in terms of the runtime, energy consumption and hardware

resource cost. The runtime is the processing time of one image during training.

These designs follow the LIP architecture of Fig. 4.19(a). The energy consumption

of each design is calculated from the actual runtime, the power consumption and

utilization of all its building blocks. For the serial baseline architecture, we use

129

Table 4.7: Power and resource utilization of the building block components of
the baseline architecture, which accumulates the pre-synaptic weights serially for
each output layer neuron. All the neurons are processed one by one in a sequential
manner.

(a) The baseline design with standard booth multipliers

Slice LUTs Slice FFs Power(mW)
LIF Arithmetic 626 96 2.98
Neuron Unit 69,265 50,688 1.07
STDP Unit 2,352 199 10.44
Glue Logic 68 16 0.55
Block RAM 2,508,800 bits for W 0.39
Block RAM 5,017,600 bits for A+ 0.48
Block RAM 5,017,600 bits for A− 0.48

(b) The baseline design with approximate multipliers

Slice LUTs Slice FFs Power(mW)
LIF Arithmetic 516 83 2.21
Neuron Unit 69,265 50,688 1.07
STDP Unit 1817 134 7.71
Glue Logic 68 16 0.55
Block RAM 2,508,800 bits for W 0.39
Block RAM 5,017,600 bits for A+ 0.48
Block RAM 5,017,600 bits for A− 0.48

the detailed timing diagram shown in Fig. 4.18 to determine the execution times

for various building blocks for the purpose of energy estimation. Similar func-

tional analysis is performed for the architectures with K=2∼32. Obviously, the

parallel design with K=32 achieves a speedup of 13.5X over the baseline design

with K=1.

Fig. 4.23 compares these designs with respect to runtime and energy consump-

tion. As the degree of parallelism increases, the runtime gets shorter and shorter

but the energy consumption goes up. This is because additional resource and

power overheads are introduced to support parallel processing. The energy im-

130

Runtime (s) Runtime (s)

En
er

gy
 (m

J)

En
er

gy
 (m

J)

(a) Training (b) Recognition

Figure 4.23: Comparison of different designs in terms of runtime and energy con-
sumption. The solid curve represents the designs using standard booth multipli-
ers. The dashed curve represents the designs using the approximate multipliers.
(a) is for the training mode, while (b) is for the recognition mode.

provement introduced by the approximate multipliers can reach up to 20.1% for

the serial design. This improvement gets somewhat smaller when the degree of

parallelism is increased. It is due to the fact that the runtime of the parallelized

part takes up a smaller portion of the total runtime. In this case, while a larger

number of approximate multipliers are used to increase the number of LAUs so

as to increase parallelism, the relative benefit in energy saving is getting smaller.

Therefore, to further parallelize the serial part of the design (i.e. STDP Unit) can

be a solution, which prevents the energy improvement due to approximate com-

puting from decreasing. However, we expect higher energy consumption from

such a design, and the corresponding improvement of runtime is not obvious be-

cause the LOS consumes much shorter runtime than the NOS.

The C++ program which corresponds to the serial baseline hardware design

131

is evaluated on the AMD Opteron 6174 processor, which is a general purpose

CPU clocked at 2.2GHz. This single-thread program takes 989.7s to process an

image during training, which is 4.4x longer than the runtime of the proposed

serial hardware design with K = 1. Our 32-way parallel hardware design is 59.4x

faster than the single-thread C++ program for processing one image.

When the neuromorphic processors are in the recognition mode, the STDP

unit and the BRAMs for A+ and A- remain inactive. Therefore, the runtime for

processing one image can be shorter than that of the training mode, because there

is no LOS in the recognition phase.

Obviously, since LOS which is not parallelized does not exist in the recognition

mode, the speedup increases almost linearly with the degree of parallelism in

NOS. For example, when K=32, the speedup over the baseline design (K=1) for

the recognition mode is 25.8X. In addition, as the degree of parallelism goes up,

the recognition mode shows a more linear runtime reduction than the training

mode. Therefore, its energy dissipation increases slower than that of the training

mode. The comparison of parallel designs in the recognition mode is illustrated

in Fig. 4.23(b).

4.2.4 Summary

In this work, we present an FPGA-based digital neuromorphic processor and

several parallel architectures. The proposed architectures successfully address

several critical issues pertaining to efficient parallelization in membrane poten-

tial computation, on-chip storage of synaptic weights, and integration of approx-

imate arithmetic units. The trade-offs between throughput, hardware cost and

power overheads for different configurations have been thoroughly investigated.

A promising training speedup of 13.5x and a recognition speedup of 25.8x are

132

achieved by a parallel design whose degree of parallelism is 32. The total train-

ing speedup provided by the 32-way parallel design running at 120 MHz over the

serial software simulation running on a 2.2 GHz CPU is 59.4x. Up to 20% reduc-

tion in energy consumption is achieved when using the approximate multipliers

in our baseline processor design, while maintaining pretty much the same level

of recognition performance for handwritten digit recognition.

133

5. ARCHITECTURAL EXPLORATION OF NEUROMORPHIC PROCESSORS

WITH MEMRISTIVE SYNAPSES*

5.1 The Digital Neuromorphic Processor Architecture with Memristor Synaptic

Array

The leaky integrate-and-fire (LIF) model is adopted in this work for the silicon

neurons to mimic the biological counterparts, which proves to be effective for a

number of learning applications and is suitable for digital implementation due to

its moderate hardware overhead [95]. Fig. 5.1 depicts the overall block diagram

of the DNP architecture with a N ×N memristive synapse array. It consists of a

synapse unit (SU), a learning unit (LU), a neuron unit (NU) and a LIF arithmetic

unit (LAU). Let N denote the total number of neurons in the network. The SU

employs an N ×N memristor crossbar structure, which can represent a fully re-

current neural network topology and support N 2 possible synaptic connections

among all the neurons. In this memristor array, a row and a column correspond

to a dendrite and an axon, respectively, for a biological neuron. Therefore, the

connection between the (j)th row and (i)th column corresponds to the synapse

between the (j)th and (i)th neurons.

The conductance of a memristive device can be incrementally adjusted by al-

tering the pulse width of the constant input voltage [96]. In other words, longer

positive pulse duration leads to a larger increase of memductance. Therefore, an

R/W pulse generator is required for the access of either a column or a row of

*© 2015 IEEE. Reprinted, with permission, from Q. Wang, Y. Kim and P. Li. Architectural
design exploration for neuromorphic processors with memristive synapses, in Proc. of IEEE Intl.
Conference on Technology, pp. 962-966, August 2014. © 2014 IEEE. Reprinted, with permission,
from Q. Wang, Y. Kim, and P. Li. Neuromorphic processors with memristive synapses: synaptic
interface and architectural exploration, in ACM Journal on Emerging Technologies in Computing
Systems, 2016.

134

5k

System Controller

1st layer Pre-
WTA LUT

ROM1

2nd layer Pre-
WTA LUT

ROM2

3rd layer Pre-WTA
LUT

ROM3

All post WTA
LUT

ROM4

2
n

d stage A
xo

n
s

2nd stage Dendrites1st stage Dendrites

1
st stage A

xo
n

s

Column (Dendrite) ADC Column (Dendrite) ADC

SU
B

+

-

SU
B

+

-

2's
Comp

PWM#1

PWM#2

PWM#n

PWM#3

Low-Resolution ADC Array

PWM#16

PWM#17

PWM#m

PWM#18

Column (Dendrite) Driver

R
o

w
 (A

xo
n

) D
river

Low-Resolution ADC Array

G
lo

b
al Tim

er

LIF Arithmetic
Unit

Synapse Unit

Learning FSM

LE #1

LE #2

LE #N

LU
Ts fo

r
 Syn

ap
tic W

eigh
t U

p
d

ate

Learning Unit

Neuron FSM

NE #1
Spk
Buf

NE #2
Spk
Buf

NE #N
Spk
Buf

Neuron Unit

Column (Dendrite) Driver

R
o

w
 (A

xo
n

)D
river

Spike
I/O

ROM1

2
n

d stage
 A

xo
n

s

2nd stage Dendrites1st stage Dendrites

1
st stage

 A
xo

n
s

Column (Dendrite) ADC Column (Dendrite) ADC

SU
B

+

-

SU
B

+

-

Synapse Unit

2's
Comp

ROM4ROM3ROM2

Dendrites

A
xo

n
s

Analog-to-Digital
Memristor Readout

P
u

lse G
en

erato
r

G
lo

b
al C

o
n

tro
ller

Spike I/O
1

2

3

Spike I/O

Neuron Stage

Learning Stage

1

Learning FSM

LE #1

LE #2

LE #N

Learning Unit

LIF Arithmetic
Unit

LU
T fo

r W
eigh

t
U

p
d

ate

Neuron FSM

NE #1

NE #2

NE #N

Neuron Unit

Buf

Buf

Buf

Synapse Unit

Spike
I/O

2

2

3

3

3

LE

NE Buf

Learning Element

Neuron Element Spike Buffer

Spike I/O Neuron Learning

Spike I/O Neuron Learning

Spike I/O Neuron Learning

t-1

t

t+1

St
ep

 (
B

io
lo

gi
ca

l t
im

e)

Time (Hardware time)

14

14

Inhibitory neuron Excitatory neuron

Output
layer

Input
layer

Input Spikes

A Z
130k

step

14

14

(a)

(b) (c)

5k

Input Spikes

A Z
130k

step

14

14B
10k

Spike
#1

Spike
#2

Spike
#196

Inhibitory neuron Excitatory neuron

Output
layer

Input
layer

Receptive fields after training

14

14

Dendrites

A
xo

n
s

Analog-to-Digital
Memristor Readout

P
u

lse G
en

erato
r

1

2

3

Spike I/O

Neuron Stage

Learning Stage

1

Learning FSM

LE #1

LE #2

LE #N

LIF Arithmetic
Unit

LU
T fo

r W
eigh

t
U

p
d

ate

Neuron FSM

NE #1

NE #2

NE #N

Neuron Unit

Buf

Buf

Buf

Synapse Unit

Spike
I/O

2

2

3

3

3

LE

NE Buf

Learning Element

Neuron Element Spike Buffer

Learning Unit

35

25

Zero

Two Three One

Five Six Eight

Output layer
9 excitatory neurons
1 inhibitory neurons

Input layer
875 excitatory neurons
6 inhibitory neurons

Speech Patterns

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

Dendrite Index

A
xo

n
 In

d
ex

Neuron Type Neuron Index

Input Excitatory 1~875

Output Excitatory 876~884

Input Inhibitory 885~890

Output Inhibitory 891

The feed-forward synapses
only exists in this small region.

876

877

878

879

880

881

882

883

884

N
eu

ro
n

 #

Three Two Eight Six Five One Zero

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

Dendrites

A
xo

n
s

Analog-to-Digital
Memristor Readout

P
u

lse G
en

erato
r

1

2

3

Spike I/O

Neuron Stage

Learning Stage

1

Learning FSM

LE #1

LE #2

LE #N

Learning Unit

LIF Arithmetic
Unit

LU
T fo

r W
eigh

t
U

p
d

ate

Neuron FSM

NE #1

NE #2

NE #N

Neuron Unit

Buf

Buf

Buf

Synapse Unit

2

2

3

3

3

LE

NE Buf

Learning Element

Neuron Element Spike Buffer

Column Word Line

ADC

ADC

ADC

ADC

ADC

ADC

w1i

w2i

w3i

w4i

w5i

w6i

R
o

w
 W

o
rd

 L
in

e

wi1 wi3 wi6

ADC ADCADC

System Controller

1st stage Dendrites

1
st stage A

xo
n

s

Column (Dendrite) ADC

PWM#1

PWM#2

PWM#n

PWM#3

Low-Resolution ADC Array

G
lo

b
al Tim

er

LIF Arithmetic
Unit

Synapse Unit

Learning FSM

LE #1

LE #2

LE #N

LU
Ts fo

r
 Syn

ap
tic W

eigh
t U

p
d

ate

Learning Unit

Neuron FSM

NE #1
Spk
Buf

NE #2
Spk
Buf

NE #N
Spk
Buf

Neuron Unit

Column (Dendrite) Driver

R
o

w
 (A

xo
n

)D
river

Spike
I/O

R
ea

d
/W

ri
te

 P
u

ls
e

G
en

er
at

o
r

M
e

m
ri

st
o

r
re

ad
o

u
t

24

20

16

12

8

4

100 1K 10K 100K 1M 10M 100M 1G

Sigma-Delta

SAR
Pipeline

Flash

Column ADC

Array ADC Neuromorphic Chip

Sampling rate (Hz)

A
D

C
 R

es
o

lu
ti

o
n

 (
EN

O
B

)

Figure 5.1: Block diagram of the baseline digital neuromorphic processor archi-
tecture.

the memristor array. For the purpose of parallel read and write, the R/W pulse

generator is designed to send out N parallel pulses simultaneously.

The proposed synaptic crossbar array and the synaptic cell are exhibited in

Fig. 5.2. The two switches S1 and S2 in the cell allow each memristive device to

be accessed in both the column and row fashion. When the row (column) driver

activates a word line, S1 (S2) of all cells in the same row (column) are switched

on, and the corresponding memristors are ready to be accessed. In order to allow

the conductance of each memristor to be decreased by a negative voltage pulse,

S3 and S4 are introduced to connect the two terminals of a memristor to either the

ADC or the pulse generator, respectively.

The control flow of the DNP involves three processing stages, namely, the spike

I/O stage, the neuron stage and the learning stage. As shown in Fig. 5.1, during

135

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs

IE

NE

NE

NE

LIF
Arithematic

Unit

Neuron
Unit

M
U

X

ADC ADC ADC

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

+ + +

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

S/H
High-Res

ADC

(a) Column wise synaptic weights readout

(b) Column-wise with shared integration element (IE)

(c) Row wise synaptic weights readout

ADC
ADC
ADC
ADC
ADC

ROM2

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

Adder

ROM1

ROM3

2's
 Comp

2's
 Comp

|

ROM1 Inhibitory neurons to 1st layer excitatory neurons

ROM2 Inhibitory neurons to 2nd layer excitatory neurons

ROM3 All excitatory neurons to all inhibitory neurons

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

ADC ADC ADC

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

+ + +

(a) Column wise synaptic weights readout

(b) Row wise synaptic weights readout

Write

Pulses

Read

Pulses
Column Word Line

S1

S2

S3 S4

To Readout Circuit (ADC)

From R/W Pulse Gen.

R
/W

 P
u

ls
e

G
en

.

ADC
ADC
ADC
ADC
ADC

CB1

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

Adder

CB2

CB3

2's
 Comp

2's
 Comp

|

CB1 Inhibitory neurons to 1st layer excitatory neurons

CB2 Inhibitory neurons to 2nd layer excitatory neurons

CB3 All excitatory neurons to all inhibitory neurons

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs
S/H

High-Res
ADC]1[

1




tSw j

M

j

ji
]1[

1




tSw j

M

j

ji

S1
S2

S3 S4

From R/W Pulse Gen.

(no use)

Pulse Gen.

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

From R/W Pulse Gen.

(no use)

From R/W Pulse Gen.

(no use)

Pulse Gen.

Pulse Gen.

(Column 1) (Column 2) (Column 3)

Flash ADC Flash ADC Flash ADC

4 5 6

4 5 6

S1
S2

S3 S4

Pulse Gen.

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

(Column 1) (Column 2) (Column 3)

4 5 6

Pulse Gen. Pulse Gen.

S/H High-Res ADC]1[
1




tSw j

M

j

ji

1

2

1

2

7

Figure 5.2: Proposed synaptic crossbar array and CMOS / memristor hybrid
synaptic cell. Parallel voltage pulses are generated by the R/W pulse generator
and used for the read and write of all cells in the row (column).

the spike I/O stage, input spike buffers in NU receive the spikes from the external

environment. Meanwhile, the output spikes can be read off the chip to observe

the output activities.

Then the neuron stage starts, where the following dynamics is implemented

for each neuron element (NE) inside NU

Vi[t] = Vi[t − 1] +KSYN
M∑
j=1

wji · Sj[t − 1] +KEXT ·Ei[t]−VLEAK (5.1)

where Vi is the membrane potential of neuron i, M is the number of pre-synaptic

neurons, KSYN is the synaptic weight parameter, wji is the synaptic weight be-

tween neurons j and i, Sj is the activity bit which indicates whether the neuron

j fired (i.e. Si = 1 if Vi[t] ≥ VT hreshold), KEXT is the external input spike parame-

ter, Ei is the activity bit for the input spike, and VLEAK is the leaky parameter. In

this stage, the R/W pulse generator generates pulses for reading all pre-synaptic

weight values. At the same time, the analog-to-digital readout block accumu-

lates these pre-synaptic weights and transforms them into a digital quantity. This

accumulation process can be realized in two ways. One is to sum the synaptic

136

weights in analog domain and then convert the summed result to a digital value

with a high-resolution ADC. The other is to use an array of low-resolution ADCs

to obtain all the digital weight values from a column (pre-synapses) and then ac-

cumulate them in digital domain. Finally, the accumulated presynaptic weights

are sent to the LAU to perform the calculation of (5.1), and the NE updates its

membrane potential based on the result from LAU. If the membrane potential ex-

ceeds the given threshold voltage, the NE generates a spike event which indicates

that the corresponding neuron fires.

After all the NEs have gone through the above process, the processing moves

onto the learning stage according to the spike timing dependent plasticity (STDP)

rule. In this rule, each learning element (LE) measures the time difference be-

tween a pre-synaptic and a post-synaptic spike event to determine the synaptic

weight change. The biological time of each neuron spike event is recorded by

a time register inside each LE. If a neuron fires, all its pre-(post-) synaptic neu-

rons’ time registers are compared with a global timer representing the current

biological time. The amounts of the synaptic weight changes are calculated by the

corresponding LEs with a shared lookup table (LUT) inside the LU. Therefore, ac-

cording to the amounts of the synaptic weight changes obtained by LU, the pulse

generator produces parallel write pulses with different widths to update the in-

ternal states of memristors in a particular column (row).

The system controller manages the overall operations of the system through

a clocking based synchronous control and the system operates in a synchronous

manner as shown in Fig. 5.3. Each step corresponds to a biological time unit

and consumes many hardware clock cycles. The three stages are executed in a

pipelined manner in that the spike I/O and learning stages can work simultane-

ously because there is no data and control hazards between them.

137

5k

System Controller

1st layer Pre-
WTA LUT

ROM1

2nd layer Pre-
WTA LUT

ROM2

3rd layer Pre-WTA
LUT

ROM3

All post WTA
LUT

ROM4

2
n

d stage A
xo

n
s

2nd stage Dendrites1st stage Dendrites

1
st stage A

xo
n

s

Column (Dendrite) ADC Column (Dendrite) ADC

SU
B

+

-

SU
B

+

-

2's
Comp

PWM#1

PWM#2

PWM#n

PWM#3

Low-Resolution ADC Array

PWM#16

PWM#17

PWM#m

PWM#18

Column (Dendrite) Driver

R
o

w
 (A

xo
n

) D
river

Low-Resolution ADC Array

G
lo

b
al Tim

er

LIF Arithmetic
Unit

Synapse Unit

Learning FSM

LE #1

LE #2

LE #N

LU
Ts fo

r
 Syn

ap
tic W

eigh
t U

p
d

ate

Learning Unit

Neuron FSM

NE #1
Spk
Buf

NE #2
Spk
Buf

NE #N
Spk
Buf

Neuron Unit

Column (Dendrite) Driver

R
o

w
 (A

xo
n

)D
river

Spike
I/O

ROM1

2
n

d stage
 A

xo
n

s

2nd stage Dendrites1st stage Dendrites

1
st stage

 A
xo

n
s

Column (Dendrite) ADC Column (Dendrite) ADC

SU
B

+

-

SU
B

+

-

Synapse Unit

2's
Comp

ROM4ROM3ROM2

Dendrites

A
xo

n
s

Analog-to-Digital
Memristor Readout

P
u

lse G
en

erato
r

G
lo

b
al C

o
n

tro
ller

Spike I/O
1

2

3

Spike I/O

Neuron Stage

Learning Stage

1

Learning FSM

LE #1

LE #2

LE #N

Learning Unit

LIF Arithmetic
Unit

LU
T fo

r W
eigh

t
U

p
d

ate

Neuron FSM

NE #1

NE #2

NE #N

Neuron Unit

Buf

Buf

Buf

Synapse Unit

Spike
I/O

2

2

3

3

3

LE

NE Buf

Learning Element

Neuron Element Spike Buffer

Spike I/O Neuron Learning

Spike I/O Neuron Learning

Spike I/O Neuron Learning

t-1

t

t+1

S
te

p
 (

B
io

lo
g
ic

al
 t

im
e)

Time (Hardware time)

14

14

Inhibitory neuron Excitatory neuron

Output
layer

Input
layer

Input Spikes

A Z
130k

step

14

14

(a)

(b) (c)

5k

Input Spikes

A Z
130k

step

14

14B
10k

Spike
#1

Spike
#2

Spike
#196

Inhibitory neuron Excitatory neuron

Output
layer

Input
layer

Receptive fields after training

14

14

Dendrites

A
xo

n
s

Analog-to-Digital
Memristor Readout

P
u

lse G
en

erato
r

1

2

3

Spike I/O

Neuron Stage

Learning Stage

1

Learning FSM

LE #1

LE #2

LE #N

LIF Arithmetic
Unit

LU
T fo

r W
eigh

t
U

p
d

ate

Neuron FSM

NE #1

NE #2

NE #N

Neuron Unit

Buf

Buf

Buf

Synapse Unit

Spike
I/O

2

2

3

3

3

LE

NE Buf

Learning Element

Neuron Element Spike Buffer

Learning Unit

35

25

Zero

Two Three One

Five Six Eight

Output layer
9 excitatory neurons
1 inhibitory neurons

Input layer
875 excitatory neurons
6 inhibitory neurons

Speech Patterns

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

Dendrite Index

A
xo

n
 In

d
ex

Neuron Type Neuron Index

Input Excitatory 1~875

Output Excitatory 876~884

Input Inhibitory 885~890

Output Inhibitory 891

The feed-forward synapses
only exists in this small region.

876

877

878

879

880

881

882

883

884

N
eu

ro
n

 #

Three Two Eight Six Five One Zero

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

Dendrites

A
xo

n
s

Analog-to-Digital
Memristor Readout

P
u

lse G
en

erato
r

1

2

3

Spike I/O

Neuron Stage

Learning Stage

1

Learning FSM

LE #1

LE #2

LE #N

Learning Unit

LIF Arithmetic
Unit

LU
T fo

r W
eigh

t
U

p
d

ate

Neuron FSM

NE #1

NE #2

NE #N

Neuron Unit

Buf

Buf

Buf

Synapse Unit

2

2

3

3

3

LE

NE Buf

Learning Element

Neuron Element Spike Buffer

Column Word Line

ADC

ADC

ADC

ADC

ADC

ADC

w1i

w2i

w3i

w4i

w5i

w6i

R
o

w
 W

o
rd

 L
in

e

wi1 wi3 wi6

ADC ADCADC

System Controller

1st stage Dendrites

1
st stage A

xo
n

s

Column (Dendrite) ADC

PWM#1

PWM#2

PWM#n

PWM#3

Low-Resolution ADC Array

G
lo

b
al Tim

er

LIF Arithmetic
Unit

Synapse Unit

Learning FSM

LE #1

LE #2

LE #N

LU
Ts fo

r
 Syn

ap
tic W

eigh
t U

p
d

ate

Learning Unit

Neuron FSM

NE #1
Spk
Buf

NE #2
Spk
Buf

NE #N
Spk
Buf

Neuron Unit

Column (Dendrite) Driver

R
o

w
 (A

xo
n

)D
river

Spike
I/O

R
ea

d
/W

ri
te

 P
u

ls
e

G
en

er
at

o
r

M
e

m
ri

st
o

r
re

ad
o

u
t

24

20

16

12

8

4

100 1K 10K 100K 1M 10M 100M 1G

Sigma-Delta

SAR
Pipeline

Flash

Column ADC

Array ADC Neuromorphic Chip

Sampling rate (Hz)

A
D

C
 R

es
o

lu
ti

o
n

 (
EN

O
B

)

Figure 5.3: Flow diagram of the digital neuromorphic processor.

5.2 The Proposed Architectures

As mentioned in the previous sections, the readout of the synaptic weights

is a central problem associated with DNPs based on memristive synapses, which

requires efficient analog-to-digital conversion and suitable memory access styles.

The key problems such as column/row readout, choices of ADCs and ways to

improve storage utility are thoroughly studied and addressed efficiently in this

section. Based on the baseline DNP design discussed in the previous section, we

investigate a range of architectural design variants.

The memristor crossbar array can be accessed either column-wise or row-wise,

and a range of ADC designs with different architectures and associated resolu-

tion, area and power consumption tradeoffs can be used for the analog-to-digital

conversion of the DNP. However, integrating one or multiple of such ADCs into

the DNP requires a systemic investigation of memristive memory access styles so

as to minimize power and area overhead as discussed below.

Two synapse storage strategies are developed for the proposed architectures,

one is the full-size N ×N memristor array, and the other is the optimized storage

strategy for feedforward neural network topologies. Both can be implemented

138

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

Pulse Gen.

Column 1 Column 2

S/H
High-Res

ADC
S/H

High-Res
ADC

LIF Unit Neuron Unit

S/H S/H

IE

IE

IE

IE

IE

IE

C
o

lu
m

n
 A

D
C

C
o

lu
m

n
 A

D
C

NE

NE

NE

NE

NE

NE

2- way Parallel Column Readout

Pulse Gen.

(a) 2-way parallel column access (b) 2-way parallel neuron integration

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

Pulse Gen.

Flash ADC

Flash
ADC

Column 1 Column 2
Pulse Gen.

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

Pulse Gen.

S/H
High-

Res ADC

Pulse Gen.
Column 1 Column 2

S1
S2

S3 S4

Pulse Gen.

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

Pulse Gen.

Row 1

Flash ADC Flash ADC

Row 2

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

ADC ADC ADC

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

+ + +

(a) Column wise synaptic weights readout

(c) Row wise synaptic weights readout

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

S/H
High-Res

ADC

(b) Column wise synaptic weights readout using Column ADC

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs

IE

NE

NE

NE

LIF
Arithematic

Unit

Neuron
Unit

M
U

X

ADC ADC ADC

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

+ + +

(a) Column wise synaptic weights readout

(b) Column-wise with shared integration element (IE)

(c) Row wise synaptic weights readout

ADC
ADC
ADC
ADC
ADC

CB1

IE NE

IE NE

IE NE

LIF Arithematic
Unit

Neuron Unit

Adder

CB2

CB3

2's
 Comp

2's
 Comp

|

CB1 Inhibitory neurons to 1st layer excitatory neurons

CB2 Inhibitory neurons to 2nd layer excitatory neurons
CB3 All excitatory neurons to all inhibitory neurons

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs

IE

NE

NE

NE

LIF
Arithematic

Unit

Neuron
Unit

M
U

X

ADC ADC ADC

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

+ + +

(a) Column wise synaptic weights readout

(b) Column-wise with shared integration element (IE)

(c) Row wise synaptic weights readout

Figure 5.4: Different memory access styles for neuron stage: (a) Read out synap-
tic weights column by column with N integration elements (IEs); (b) Read out
synaptic weights column by column with only one shared IE; (c) Read out synap-
tic weights row by row with N low resolution ADCs and N accumulators.

139

with different memory access styles and ADC architectures.

5.2.1 Memory Access Styles

In this work, we propose two different memristor array access styles. The first

one is referred to as the column-wise readout, in which all the columns are se-

quentially accessed and the accumulated synaptic weights for each column is ob-

tained one at a time. The integration element (IE) inside LIF arithmetic unit is

used for the calculation of (5.1). Although the column-wise approach shown in

Fig. 5.4(a) involves multiple IEs, these IEs do not work simultaneously. Therefore,

the membrane potentials of the digital neurons are not updated in parallel. Since

only one IE is needed to process the synaptic weights from a particular column, it

is possible to have all the neuron elements (NEs) inside the NU share only one IE,

and this shared IE approach is illustrated in Fig. 5.4(b), which requires a large N -

input multiplexer (MUX). The readout scheme involving only one IE is referred

to as the shared IE scheme, while the readout scheme involving multiple IEs is

referred to as the non-shared IE scheme.

Fig. 5.4(c) shows the second memristor array access style proposed, which is

referred to as the row-wise readout, where the memristor array is accessed row

by row. Although only one synaptic weight is read out for each neuron, totally N

synaptic weights are actually read out for all the N neurons for each row access.

The neuron stage of the row-wise approach is further divided into two stages. In

the first stage, N accumulators work in parallel to sum the synaptic weights in

their corresponding columns, and N cycles are required to obtain the accumu-

lated synaptic weights for all the neurons. Once all the rows have been accessed,

the second stage starts and all theN membrane potentials are updated in parallel,

which requires only one cycle. Therefore, the total number of cycles consumed by

140

the neuron stage of the row-wise approach is the same as that of the column-wise

approach.

5.2.2 Analog-to-Digital Conversion

Analog-to-digital conversion is essential for the synapse readout in both the

neuron stage and the learning stage.

During the neuron stage, the LIF arithmetic unit only needs the accumulated

synaptic weights from a partcular column, instead of each individual synaptic

weight in this column. Therefore, the synapse readout can be achieved in two

ways. One way is to use N low-resolution ADCs to readout all the N synaptic

weights from a column in parallel and then sum them with an N -input digital

adder, as shown in Fig. 5.4. The other way is to use a summing amplifier to obtain

the sum of the synaptic weights in analog domain and then convert it into a digital

value with a high resolution ADC (also called the Column ADC), as shown in Fig.

5.7.

During the learning stage, however, we should know the corresponding mem-

ristor’s current internal state, so that the pulse duration to write the desired synap-

tic weight to each memristor in a row/column can be determined. In this regard,

N low-resolution ADCs should be used to read all the pre-(post-) synaptic weights

of each column (row) in parallel. Therefore, a low-resolution ADC array is indis-

pensable to all the proposed architectures. Obviously, these N low-resolution

ADCs can be reused during the neuron stage, according to the first accumulation

scheme just mentioned.

Therefore, the current question is about what ADC architectures we should

use in the proposed neuromorphic processor. Fig. 5.5 compares the most pop-

ular ADC architectures in terms of number of bits and the sampling frequency

141

5k

System Controller

1st layer Pre-
WTA LUT

ROM1

2nd layer Pre-
WTA LUT

ROM2

3rd layer Pre-WTA
LUT

ROM3

All post WTA
LUT

ROM4

2
n

d stage A
xo

n
s

2nd stage Dendrites1st stage Dendrites

1
st stage A

xo
n

s

Column (Dendrite) ADC Column (Dendrite) ADC

SU
B

+

-

SU
B

+

-

2's
Comp

PWM#1

PWM#2

PWM#n

PWM#3

Low-Resolution ADC Array

PWM#16

PWM#17

PWM#m

PWM#18

Column (Dendrite) Driver

R
o

w
 (A

xo
n

) D
river

Low-Resolution ADC Array

G
lo

b
al Tim

er

LIF Arithmetic
Unit

Synapse Unit

Learning FSM

LE #1

LE #2

LE #N

LU
Ts fo

r
 Syn

ap
tic W

eigh
t U

p
d

ate

Learning Unit

Neuron FSM

NE #1
Spk
Buf

NE #2
Spk
Buf

NE #N
Spk
Buf

Neuron Unit

Column (Dendrite) Driver

R
o

w
 (A

xo
n

)D
river

Spike
I/O

ROM1

2
n

d stage
 A

xo
n

s

2nd stage Dendrites1st stage Dendrites

1
st stage

 A
xo

n
s

Column (Dendrite) ADC Column (Dendrite) ADC

SU
B

+

-

SU
B

+

-

Synapse Unit

2's
Comp

ROM4ROM3ROM2

Dendrites

A
xo

n
s

Analog-to-Digital
Memristor Readout

P
u

lse G
en

erato
r

G
lo

b
al C

o
n

tro
ller

Spike I/O
1

2

3

Spike I/O

Neuron Stage

Learning Stage

1

Learning FSM

LE #1

LE #2

LE #N

Learning Unit

LIF Arithmetic
Unit

LU
T fo

r W
eigh

t
U

p
d

ate

Neuron FSM

NE #1

NE #2

NE #N

Neuron Unit

Buf

Buf

Buf

Synapse Unit

Spike
I/O

2

2

3

3

3

LE

NE Buf

Learning Element

Neuron Element Spike Buffer

Spike I/O Neuron Learning

Spike I/O Neuron Learning

Spike I/O Neuron Learning

t-1

t

t+1

St
ep

 (
B

io
lo

gi
ca

l t
im

e)

Time (Hardware time)

14

14

Inhibitory neuron Excitatory neuron

Output
layer

Input
layer

Input Spikes

A Z
130k

step

14

14

(a)

(b) (c)

5k

Input Spikes

A Z
130k

step

14

14B
10k

Spike
#1

Spike
#2

Spike
#196

Inhibitory neuron Excitatory neuron

Output
layer

Input
layer

Receptive fields after training

14

14

Dendrites

A
xo

n
s

Analog-to-Digital
Memristor Readout

P
u

lse G
en

erato
r

1

2

3

Spike I/O

Neuron Stage

Learning Stage

1

Learning FSM

LE #1

LE #2

LE #N

LIF Arithmetic
Unit

LU
T fo

r W
eigh

t
U

p
d

ate

Neuron FSM

NE #1

NE #2

NE #N

Neuron Unit

Buf

Buf

Buf

Synapse Unit

Spike
I/O

2

2

3

3

3

LE

NE Buf

Learning Element

Neuron Element Spike Buffer

Learning Unit

35

25

Zero

Two Three One

Five Six Eight

Output layer
9 excitatory neurons
1 inhibitory neurons

Input layer
875 excitatory neurons
6 inhibitory neurons

Speech Patterns

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

Dendrite Index

A
xo

n
 In

d
ex

Neuron Type Neuron Index

Input Excitatory 1~875

Output Excitatory 876~884

Input Inhibitory 885~890

Output Inhibitory 891

The feed-forward synapses
only exists in this small region.

876

877

878

879

880

881

882

883

884

N
eu

ro
n

 #

Three Two Eight Six Five One Zero

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

Dendrites

A
xo

n
s

Analog-to-Digital
Memristor Readout

P
u

lse G
en

erato
r

1

2

3

Spike I/O

Neuron Stage

Learning Stage

1

Learning FSM

LE #1

LE #2

LE #N

Learning Unit

LIF Arithmetic
Unit

LU
T fo

r W
eigh

t
U

p
d

ate

Neuron FSM

NE #1

NE #2

NE #N

Neuron Unit

Buf

Buf

Buf

Synapse Unit

2

2

3

3

3

LE

NE Buf

Learning Element

Neuron Element Spike Buffer

Column Word Line

ADC

ADC

ADC

ADC

ADC

ADC

w1i

w2i

w3i

w4i

w5i

w6i

R
o

w
 W

o
rd

 L
in

e

wi1 wi3 wi6

ADC ADCADC

System Controller

1st stage Dendrites
1

st stage A
xo

n
s

Column (Dendrite) ADC

PWM#1

PWM#2

PWM#n

PWM#3

Low-Resolution ADC Array

G
lo

b
al Tim

er

LIF Arithmetic
Unit

Synapse Unit

Learning FSM

LE #1

LE #2

LE #N

LU
Ts fo

r
 Syn

ap
tic W

eigh
t U

p
d

ate

Learning Unit

Neuron FSM

NE #1
Spk
Buf

NE #2
Spk
Buf

NE #N
Spk
Buf

Neuron Unit

Column (Dendrite) Driver

R
o

w
 (A

xo
n

)D
river

Spike
I/O

R
ea

d
/W

ri
te

 P
u

ls
e

G
en

er
at

o
r

M
e

m
ri

st
o

r
re

ad
o

u
t

24

20

16

12

8

4

100 1K 10K 100K 1M 10M 100M 1G

Sigma-Delta

SAR
Pipeline

Flash

Column ADC

Array ADC Neuromorphic Chip

Sampling rate (Hz)

A
D

C
 R

es
o

lu
ti

o
n

 (
EN

O
B

)

Figure 5.5: Comparison of ADC architectures vs. Resolution and Sampling rate.

range [97]. From the application point of view, the ADC sampling rate should

be consistent with the frequency of the neuromorphic chip, which is 1MHz. The

synapse readout from the memristor crossbar array can be realized by using ei-

ther an array of low-resolution ADC (3 bits) or a high-resolution ADC (over 12

bits).

This work focuses on five typical ADC architectures, and Fig. 5.6 compares

powers and areas of these mainstream ADCs with various resolutions, which was

evaluated based on the models in [98] with 90nm CMOS technology. According

to Fig. 5.6, the flash ADC architecture is obviously the best candidate for low-

resolution analog-to-digital conversion (i.e. 3-bit resolution), while the other ADC

architectures are suitable for high-resolution conversion with different power-area

tradeoffs.

For a flash ADC with resolution b, the power consumption can be estimated

142

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

Pulse Gen.

Column 1 Column 2

S/H
High-Res

ADC
S/H

High-Res
ADC

LIF Unit Neuron Unit

S/H S/H

IE

IE

IE

IE

IE

IE
C

o
lu

m
n

 A
D

C
C

o
lu

m
n

 A
D

C

NE

NE

NE

NE

NE

NE

2- way Parallel Column Readout

Pulse Gen.

(a) 2-way parallel column access (b) 2-way parallel neuron integration

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

Pulse Gen.

Flash ADC

Flash
ADC

Column 1 Column 2
Pulse Gen.

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

Pulse Gen.

S/H
High-

Res ADC

Pulse Gen.
Column 1 Column 2

S1
S2

S3 S4

Pulse Gen.

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

Pulse Gen.

Row 1

Flash ADC Flash ADC

Row 2

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

ADC ADC ADC

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

+ + +

(a) Column wise synaptic weights readout

(c) Row wise synaptic weights readout

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

S/H
High-Res

ADC

(b) Column wise synaptic weights readout using Column ADC

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs

IE

NE

NE

NE

LIF
Arithematic

Unit

Neuron
Unit

M
U

X

ADC ADC ADC

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

+ + +

(a) Column wise synaptic weights readout

(b) Column-wise with shared integration element (IE)

(c) Row wise synaptic weights readout

ADC
ADC
ADC
ADC
ADC

CB1

IE NE

IE NE

IE NE

LIF Arithematic
Unit

Neuron Unit

Adder

CB2

CB3

2's
 Comp

2's
 Comp

|

CB1 Inhibitory neurons to 1st layer excitatory neurons

CB2 Inhibitory neurons to 2nd layer excitatory neurons
CB3 All excitatory neurons to all inhibitory neurons

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs

IE

NE

NE

NE

LIF
Arithematic

Unit

Neuron
Unit

M
U

X

ADC ADC ADC

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

+ + +

(a) Column wise synaptic weights readout

(b) Column-wise with shared integration element (IE)

(c) Row wise synaptic weights readout

Figure 5.6: Power and area for different ADCs of various resolutions.

by [99]

Pf lash = (2b − 1)Pcmp + Px (5.2)

where Pcmp and Px are powers of comparator and encoder, respectively. Obviously,

the flash ADC is a good choice for the low-resolution ADC array. However, it

suffers from considerable power and area consumption for high-resolution A/D

conversion, which prevents it from being used as column ADC.

In the column-wise approach with either shared IE or multiple IEs, alter-

natively, the neuron stage synapse readout can be achieved by using one high-

resolution ADC. While compared with reusing the low-resolution ADC array for

the neuron stage, introducing this additional high-resolution ADC may lead to

lower energy consumption at the cost of minor area overhead. This high-resolution

ADC is referred to as the column ADC. As shown in Fig. 5.7, a summing ampli-

fier (i.e. current-to-voltage converter) is used to provide the linear summation of

conductance of memristors in the analog domain. Then the obtained analog sum

is converted to a digital value with a high resolution column ADC. The same with

the readout scheme based on a low-resolution ADC array, in the column ADC

143

based readout scheme, the accumulation of the synaptic weights for a particu-

lar column can be finished within one clock cycle. The desired resolution of the

column ADC is derived by

resolution = [log2N + log2L] (5.3)

where N and L are the numbers of neurons and conductance levels of the mem-

ristor cell in the array, respectively. In [34], a VCO-based column ADC is adopted

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

Pulse Gen.

Column 1 Column 2

S/H
High-Res

ADC
S/H

High-Res
ADC

LIF Unit Neuron Unit

S/H S/H

IE

IE

IE

IE

IE

IE

C
o

lu
m

n
 A

D
C

C
o

lu
m

n
 A

D
C

NE

NE

NE

NE

NE

NE

2- way Parallel Column Readout

Pulse Gen.

(a) 2-way parallel column access (b) 2-way parallel neuron integration

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

Pulse Gen.

Flash ADC

Flash
ADC

Column 1 Column 2
Pulse Gen.

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

Pulse Gen.

S/H
High-

Res ADC

Pulse Gen.
Column 1 Column 2

S1
S2

S3 S4

Pulse Gen.

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

Pulse Gen.

Row 1

Flash ADC Flash ADC

Row 2

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

ADC ADC ADC

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

+ + +

(a) Column wise synaptic weights readout

(c) Row wise synaptic weights readout

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

S/H
High-Res

ADC

(b) Column wise synaptic weights readout using Column ADC

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs

IE

NE

NE

NE

LIF
Arithematic

Unit

Neuron
Unit

M
U

X

ADC ADC ADC

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

+ + +

(a) Column wise synaptic weights readout

(b) Column-wise with shared integration element (IE)

(c) Row wise synaptic weights readout

ADC
ADC
ADC
ADC
ADC

CB1

IE NE

IE NE

IE NE

LIF Arithematic
Unit

Neuron Unit

Adder

CB2

CB3

2's
 Comp

2's
 Comp

|

CB1 Inhibitory neurons to 1st layer excitatory neurons

CB2 Inhibitory neurons to 2nd layer excitatory neurons
CB3 All excitatory neurons to all inhibitory neurons

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs

IE

NE

NE

NE

LIF
Arithematic

Unit

Neuron
Unit

M
U

X

ADC ADC ADC

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

+ + +

(a) Column wise synaptic weights readout

(b) Column-wise with shared integration element (IE)

(c) Row wise synaptic weights readout

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

S/H
High-Res

ADC

Figure 5.7: Block diagram of the readout with column ADC.

for column readout. However, several other important choices exist.

The successive approximation register (SAR) ADC holds the analog input sig-

nal on a sample/hold [100]. Then it converts this analog signal into a digital value

via a binary search through all possible quantization levels. The estimated power

144

consumption for a SAR ADC with b bits resolution is

PSAR =
b
m

(PS/H +mPDAC + (2m − 1)Pcmp) + Px (5.4)

where m is the number of bits per cycle, Pcmp, PDAC , PS/H and Px correspond

to Comparator, Sub-DAC, Sample-and-Hold and Control Logic/Register, respec-

tively. SAR ADCs can provide the lowest hardware cost, but each conversion re-

quires multiple clock cycles to converge to the required resolution.

Pipelined ADCs distribute the conversion process over multiple stages in se-

quence, and the overall throughput is close to one sample per clock cycle if the

pipeline is fully occupied [101]. For a Nsta-stage pipelined ADC with b-bit reso-

lution, the estimated power is

Ppip = Nsta(PS/H + (PDAC + Pgain)b/Nsta + (2b/Nsta − 1)Pcmp) + Px (5.5)

where PS/H , PDAC , Pcmp, Pgain and Px correspond to the Sample-and-Hold, Sub-

DAC, Comparator, Gain stage and the digital part.

Since for our application, the LIF can not start until the analog-to-digital con-

version is completed, the advantage of pipeline is not utilized. In order for the

other parts of the DNP to still operate at 1MHz, the clock rate of the SAR and

the pipelined ADCs should be KMHz, assuming the required ADC resolution is

K-bit.

The Sigma-Delta ADC (SD ADC) achieves high resolution by oversampling the

input at a frequency higher than the Nyquist rate [102]. The input analog signal

passes through the integrator followed by a comparator. Then the output of the

comparator is fed back via a sub-DAC to the input for summation. The output of

145

the comparator also passes through the decimation filter at the output of the SD

ADC. For a Norder-order SD ADC with b-bit resolution, the estimated power is

PSD = Roversample(NorderPintg + Pcmp + PDAC) + Px (5.6)

where Roversample is the oversampling rate, Pintg , Pcmp, PDAC and Px correspond to

integrator, comparator, sub-DAC and decimation circuits.

Comparator, Sample-and-Hold, Sub-DAC, Integrator and Gain-stage are the

five major component building blocks for ADCs. According to [98], a univer-

sal function with different parameters can be employed to model the power con-

sumptions of these blocks. The power modeling function is

Pi =
αi ·VDD − βi ·Vswing

ηi
·VDD ·Lmin · fsample (5.7)

where VDD is the supply voltage, and Vswing is the maximum signal voltage swing.

Lmin is the feature size of a particular CMOS technology, and fsample is the sam-

pling frequency. The values of αi , βi and ηi vary for different building blocks,

which are summarized in Table 5.1. These coefficients are obtained from ex-

perimental data fitting and they have been validated with different commercial

ADCs [98].

Table 5.1: Coefficients in power modeling function

αi βi ηi
S/H 0.5 0.25 14.6× 103

Comparator 0.5 0.30 32.1× 103

Sub-DAC 0.5 0.20 27.5× 103

Gain 0.5 0.20 28.7× 103

Integrator 0.5 0.15 9.8× 103

146

Clearly, these ADC architectures define a large design space. In this work, by

properly modeling the area and power of each ADC as a function of the targeted

technology, conversion speed, and resolution, we systematically evaluate the de-

sign tradeoffs associated with each choice. The detailed analysis is presented in

Section 4.

5.2.3 Optimized Storage Strategy for Feedforward Networks

All architectures in the previous sections are based on theN ×N synaptic array

which is fully reconfigurable. However, in reality, the neural network topologies

are usually much sparser. Fig. 5.8 shows an example of a typical 2-layer feed-

forward neural network and the distribution of its synapses inside a conceptual

N ×N synaptic array. The neurons with indices 10, 11 and 12 are the inhibitory

neurons, while all the other neurons are excitatory. Such network topologies have

three important features:

1) The synapstic weights involving inhibitory neurons are fixed so they are not

updated during learning;

2) The excitatory neurons within each layer are not connected to each other;

3) There are no feedback synapses from the output layer neurons to the input

layer neurons.

The first feature indicates that the synapse weights involving the inhibitory neu-

rons can be simply integrated into the digital design, rather than memristor ar-

rays. The other two features guarantee that the synapses corresponding to the

feedforwarding paths reside in a very small block of the conceptual N ×N synap-

tic array so that a full N ×N memristor array is not necessary. In this case, the size

of the flash ADC array and the size of the pulse generator will be greatly reduced.

147

16

2

3

4

7

8

9

5

1112

10

Input layer
excitatory
neurons

Output layer
excitatory
neurons

All
inhibitory
neurons

Output layer

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

Input layer

Figure 5.8: An example of 2-layer feedforward neural networks and its corre-
sponding crossbar array.

What is more, the resolution of the column ADC may also be reduced by several

bits.

Based on the above analysis, we propose an optimized architecture for typical

feedforward neural networks, as illustrated in Fig. 5.9. We only need to up-

date the synaptic weights of the feedforward synapses this time, and all the other

synapses are constants integrated into the digital design. The synaptic weights

associated with the paths from inhibitory neurons to the input layer excitatory

neurons are provided by the constant block CB1, while the synapses from the in-

hibitory neurons to the output layer excitatory neurons are provided by CB2. The

weights of paths from all the excitatory neurons to the inhibitory neurons are pro-

vided by CB3. Each constant block is essentially combinational logic. Therefore,

the hardware cost of CB1, CB2 and CB3 is trivial compared with other compo-

148

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

Pulse Gen.

Column 1 Column 2

S/H
High-Res

ADC
S/H

High-Res
ADC

LIF Unit Neuron Unit

S/H S/H

IE

IE

IE

IE

IE

IE

C
o

lu
m

n
 A

D
C

C
o

lu
m

n
 A

D
C

NE

NE

NE

NE

NE

NE

2- way Parallel Column Readout

Pulse Gen.

(a) 2-way parallel column access (b) 2-way parallel neuron integration

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

Pulse Gen.

Flash ADC

Flash
ADC

Column 1 Column 2
Pulse Gen.

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

Pulse Gen.

S/H
High-

Res ADC

Pulse Gen.
Column 1 Column 2

S1
S2

S3 S4

Pulse Gen.

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

Pulse Gen.

Row 1

Flash ADC Flash ADC

Row 2

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

ADC ADC ADC

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

+ + +

(a) Column wise synaptic weights readout

(c) Row wise synaptic weights readout

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

S/H
High-Res

ADC

(b) Column wise synaptic weights readout using Column ADC

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs

IE

NE

NE

NE

LIF
Arithematic

Unit

Neuron
Unit

M
U

X

ADC ADC ADC

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

+ + +

(a) Column wise synaptic weights readout

(b) Column-wise with shared integration element (IE)

(c) Row wise synaptic weights readout

ADC
ADC
ADC
ADC
ADC

CB1

IE NE

IE NE

IE NE

LIF Arithematic
Unit

Neuron Unit

Adder

CB2

CB3

2's
 Comp

2's
 Comp

|

CB1 Inhibitory neurons to 1st layer excitatory neurons

CB2 Inhibitory neurons to 2nd layer excitatory neurons
CB3 All excitatory neurons to all inhibitory neurons

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs

IE

NE

NE

NE

LIF
Arithematic

Unit

Neuron
Unit

M
U

X

ADC ADC ADC

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

+ + +

(a) Column wise synaptic weights readout

(b) Column-wise with shared integration element (IE)

(c) Row wise synaptic weights readout

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

S/H
High-Res

ADC

Figure 5.9: The proposed storage organization optimized for 2-layer feedforward
neural network. The constant blocks CB1, CB2 and CB3 are actually constants
integrated into the digital design.

nents in the system. Because the weights of synapses between the input layer and

the output layer need to be updated during learning stage, they are stored in the

memristor crossbar array. When columns 1 to 5 from the conceptual synaptic ar-

ray in Fig. 5.8 needs to be read out, we access CB1 for the desired synaptic weights.

For the readout of columns 6 to 9, both the memristor array and CB2 are accessed.

In the same way, we access CB3 for the desired synaptic weights in columns 10 to

12. Generally speaking, the readout procedure for this architecture is very similar

to the architectures proposed in the previous section. However, fewer column ac-

cesses require analog-to-digital conversion and each analog-to-digital conversion

involves fewer ADCs and smaller pulse generator. Therefore, the proposed ar-

chitecture enjoys a significant improvement in energy efficiency for feedforward

neural networks.

149

In the 2-layer feedforward network discussed earlier, all the excitatory neurons

in the input layer are connected to each excitatory neuron in the output layer.

Therefore, this is not a sparse interconnection structure. In fact, this structure is

one of the most commonly used neural network topologies in the real world.

The optimization for 3-layer feedforward networks is the same with 2-layer

feedforward neuron networks. For 3-layer feedforward networks, the synapses

can still be divided into two categories, namely, the inhibitory synapses and feed-

forward synapses. The inhibitory synapses are integrated into the digital design

as constant values, and the feedforward synapses are stored in two separate small

memristor arrays. Therefore, the proposed architecture is scalable for multi-layer

feedforward neuron networks.

5.2.4 The Baseline Building Components of the Propose DNP Architectures

In order to perform an accurate analysis for the hardware cost of each archi-

tecture proposed above, it is necessary to investigate the basic building blocks

of different architectures and provide detailed information on each block. The

design in [35] is used as the baseline architecture in this work.

Memristor crossbar array is the central storage for all the architectures. To

access the memristor crossbar array, a decoder (i.e. 8-to-256 decoder) is needed.

Also, a pulse generator is needed to send out parallel voltage pulses for either read

or write operation. The pulse generator is implemented with an array of counters

and comparators, which is illustrated by Fig. 5.10. The digital counters in the

pulse generator operate at 50MHz, although the other digital building blocks such

as IE, NE and LE operate at 1MHz. The required pulse width is determined by

signal NPWN , which is obtained from the learning unit.

Neuron unit (NU) and Learning unit (LU) involve arrays of digital processing

150

Counter

C
M
P

+

-

nRSTPWM

CNTPWM

CLKPWM

NPWM

PPWM

NPWN cycles

20nsM
U
X

20ns

Figure 5.10: Digital pulse width modulator: CLKPWM is the 50MHz clock signal
for the pulse generator. NPWM is the desired number of clock cycles, which is
compared to the output of the counter. The multiplexer outputs the pulse with
duration of NPWM clock cycles.

engines (i.e. NE and LE), so they take up a large portion of the chip area. As

discussed in the previous sections, a flash ADC array is necessary for the synapse

update of all the architectures, and the corresponding hardware cost is also large.

The LIF arithmetic unit involves either one shared integration element (IE) or

an array of integration elements. If the architecture is based on the shared IE, the

cost of LIF arithmetic unit itself is trivial, but a huge multiplexer (MUX) will be

introduced.

Fig. 5.11 illustrates the design details of IE and NE. As mentioned earlier, the

function of IE and NE is to update the membrane potential of each neuron based

on (5.1) and then identify the firing activity. As shown in Fig. 5.11, the IE reads

out the membrane potential Vmem from NE and sends the updated value back to

NE. The firing activity (spike) is calculated inside IE and the spike bit is stored

inside NE.

Fig. 5.12 illustrates the design details of LE. Every time this particular neuron

fires, the current value of the Global Timer is recorded by the register T imeReg,

which will serve as the most recent firing time of this neuron. When this neu-

ron fires as a post-synaptic neuron, the firing times of its pre-synaptic neurons

151

SU
B

+
-

A
D

D
+

+

A
D

D
+

+M
U

L
M

U
L

C
M

P

Vleak

Kext

Ksyn

Vmem_old

SumW

Ei

Vth

Si

Vmem_new

Ext Spk
 Reg

MUX

Vrst

Memb
 Reg

Out Spk
Reg

Output
spikes

External
spikes

Si

Vmem_old

Vmem_new

MUX

Time
 Reg

Global Timer

Ti
m

e
 S

ca
lin

g

Selection

Selection

SU
B

+
-

SUB
+-

Selection

Counter
(W>0)

ADD ++

Δt

Δw

0

4

1

2

2

1

…...

…...

LUT for STDP

ΔL

Npwm 117 142 152

…...

…...

LUT for Pulse Width

1 21 2 1 3 1 4

Δt

W from Flash ADC

ΔW

Wnew

NWNEW
NW

NPWN

NFIREPRE

W

Current
time

Learning
Element

To R/W Pulse Gen.

Spike

(a) Integration Element (b) Neuron Element

Ei

Dendrites

A
xo

n
s

Analog-to-Digital
Memristor Readout

P
u

lse G
en

erato
r

1

2

3

Spike I/O

Neuron Stage

Learning Stage

1

Learning FSM

LE #1

LE #2

LE #N

Learning Unit

LIF Arithmetic
Unit

LU
T fo

r W
eigh

t
U

p
d

ate

Neuron FSM

NE #1

NE #2

NE #N

Neuron Unit

Buf

Buf

Buf

Synapse Unit

Spike
I/O

2

2

3

3

3

LE

NE

Buf

Learning Element

Neuron Element

Spike Buffer

Spike I/O Neuron Learning

Spike I/O Neuron Learning

Spike I/O Neuron Learning

t-1

t

t+1

St
ep

 (
B

io
lo

gi
ca

l t
im

e)

Time (Hardware time)

MUX

Time
 Reg

Global Timer

Ti
m

e
 S

ca
lin

g

Selection

Selection

SU
B

+
-

SUB
+-

Selection

Counter
(W>0)

ADD ++

Δt

Δw

0

4

1

2

2

1

…...

…...

LUT for STDP

ΔL

Npwm 117 142 152

…...

…...

LUT for Pulse Width

1 21 2 1 3 1 4

Δt

W from Flash ADC

ΔW

Wnew

NWNEW
NW

NPWN

NFIREPRE

W

Current
time

Learning
Element

To R/W Pulse Gen.

Spike

PreTime

FireTime

N x N Synaptic Crossbar

Read/Write Interface

Synapse Array

Spike

I/O

N Dendrites

N
 A

x
o

n
s

Synaptic

Weight

(wji)

Learning

Circuit

Learning

Circuit

Learning Array

N

Neuron

Circuit

Neuron

Circuit

Neuron Array

N

Traditional SRAM array

Memristive Nanodevices

· [Seo et al, CICC11], [Merolla et al, CICC’11]

· Area bottleneck particularly for multibit synapses

· Not suitable for Synaptic Storage!

· Non-volatile nature

· High integration density of 10 Gb/cm2

· Scalability (Multi-bit synapses)

Low Area Cost

D
e

co
d

e

Ak

A3

A2

A1

Gk

G3

G2

G1

N1 N2 N3 NM

Select & Encode

Neurons

Sync

Output Spikes

Input Spikes

Axon Crossbar Synapses Type

1 0 1 1

In
p

u
t

P
ad

s

G
lo

b
al

 F
SM

256 x 256
Synapse Array

BL/WL Driver, Sense Amp

Priority Encoder

256 Neurons

N256N2N1

O
u

tp
u

t
P

ad
s

Clock

Input Spikes

Neuron/Synapse
Configuration

Output Spikes

Neuron/Synapse
State

SU
B

+
-

A
D

D
+

+

A
D

D
+

+M
U

L
M

U
L

C
M

P

Vleak

Kext

Ksyn

Vmem_old

SumW

Ei

Vth

Si

Vmem_new
MUX

Vrst

Memb
 Reg

Out Spk
Reg

Output
spikes

Si

Vmem_old

Vmem_new

(a) Integration Element (b) Neuron Element

Ext Spk
 Reg

External
spikes

Ei

Figure 5.11: Data flow of the Integration Element (IE) and the Neuron Element
(NE). The signal SumW corresponds to the term

∑M
j=1wji · Sj[t − 1] in (5.1), which

is calculated by the readout circuits of the Synapse Unit.

are received from the P reT ime signal. As a pre-synapse neuron to some other

neuron, the firing time of this particular neuron is sent out to its post-synaptic

neuron through the FireT ime signal. The calculation of ∆W based on ∆t and the

calculation of NPWN for the pulse generator are both realized by lookup tables.

SU
B

+
-

A
D

D
+

+

A
D

D
+

+M
U

L
M

U
L

C
M

P

Vleak

Kext

Ksyn

Vmem_old

SumW

Ei

Vth

Si

Vmem_new

Ext Spk
 Reg

MUX

Vrst

Memb
 Reg

Out Spk
Reg

Output
spikes

External
spikes

Si

Vmem_old

Vmem_new

MUX

Time
 Reg

Global Timer

Ti
m

e
 S

ca
lin

g
Selection

Selection

SU
B

+
-

SUB
+-

Selection

Counter
(W>0)

ADD ++

Δt

Δw

0

4

1

2

2

1

…...

…...

LUT for STDP

ΔL

Npwm 117 142 152

…...

…...

LUT for Pulse Width

1 21 2 1 3 1 4

Δt

W from Flash ADC

ΔW

Wnew

NWNEW
NW

NPWN

NFIREPRE

W

Current
time

Learning
Element

To R/W Pulse Gen.

Spike

(a) Integration Element (b) Neuron Element

Ei

Dendrites

A
xo

n
s

Analog-to-Digital
Memristor Readout

P
u

lse G
en

erato
r

1

2

3

Spike I/O

Neuron Stage

Learning Stage

1

Learning FSM

LE #1

LE #2

LE #N

Learning Unit

LIF Arithmetic
Unit

LU
T fo

r W
eigh

t
U

p
d

ate

Neuron FSM

NE #1

NE #2

NE #N

Neuron Unit

Buf

Buf

Buf

Synapse Unit

Spike
I/O

2

2

3

3

3

LE

NE

Buf

Learning Element

Neuron Element

Spike Buffer

Spike I/O Neuron Learning

Spike I/O Neuron Learning

Spike I/O Neuron Learning

t-1

t

t+1

St
ep

 (
B

io
lo

gi
ca

l t
im

e)

Time (Hardware time)

MUX

Time
 Reg

Global Timer

Ti
m

e
 S

ca
lin

g

Selection

Selection

SU
B

+
-

SUB
+-

Selection

Counter
(W>0)

ADD ++

Δt

Δw

0

4

1

2

2

1

…...

…...

LUT for STDP

ΔL

Npwm 117 142 152

…...

…...

LUT for Pulse Width

1 21 2 1 3 1 4

Δt

W from Flash ADC

ΔW

Wnew

NWNEW
NW

NPWN

NFIREPRE

W

Current
time

Learning
Element To R/W Pulse Gen.

Spike

PreTime

FireTime

N x N Synaptic Crossbar

Read/Write Interface

Synapse Array

Spike

I/O

N Dendrites

N
 A

x
o

n
s

Synaptic

Weight

(wji)

Learning

Circuit

Learning

Circuit

Learning Array

N

Neuron

Circuit

Neuron

Circuit

Neuron Array

N

Traditional SRAM array

Memristive Nanodevices

· [Seo et al, CICC11], [Merolla et al, CICC’11]

· Area bottleneck particularly for multibit synapses

· Not suitable for Synaptic Storage!

· Non-volatile nature

· High integration density of 10 Gb/cm2

· Scalability (Multi-bit synapses)

Low Area Cost

D
e

co
d

e

Ak

A3

A2

A1

Gk

G3

G2

G1

N1 N2 N3 NM

Select & Encode

Neurons

Sync

Output Spikes

Input Spikes

Axon Crossbar Synapses Type

1 0 1 1

In
p

u
t

P
ad

s

G
lo

b
al

 F
SM

256 x 256
Synapse Array

BL/WL Driver, Sense Amp

Priority Encoder

256 Neurons

N256N2N1

O
u

tp
u

t
P

ad
s

Clock

Input Spikes

Neuron/Synapse
Configuration

Output Spikes

Neuron/Synapse
State

SU
B

+
-

A
D

D
+

+

A
D

D
+

+M
U

L
M

U
L

C
M

P

Vleak

Kext

Ksyn

Vmem_old

SumW

Ei

Vth

Si

Vmem_new
MUX

Vrst

Memb
 Reg

Out Spk
Reg

Output
spikes

Si

Vmem_old

Vmem_new

(a) Integration Element (b) Neuron Element

Ext Spk
 Reg

External
spikes

Ei

Figure 5.12: Data flow of the Learning element (LE). Lookup tables (LUTs) are
used to calculate ∆W based on STDP learning rule. Signal NPWN controls the
pulse generator to generate the required pulse widths.

152

For the column-wise design using the flash ADC array for neuron stage read-

out (see Fig.5.4 (a) or (b)), a digital adder tree has to be introduced to realize the

summation of the synaptic weights from one column. Although the total number

of inputs is large, the adder tree only performs low-precision additions. There-

fore, its hardware cost is not very big. According to Fig.5.4 (c), the row-wise design

requires an array of low-precision accumulators/adders. Since the proposed DNP

works at KHz or MHz frequency range, each low-precision adder has a very small

hardware cost.

5.2.5 The Parallel Neuron Integration

The proposed memristor crossbar array also supports parallel access of mul-

tiple columns. Therefore, the integration of multiple digital neurons can be per-

formed simultaneously in a column-wise design using multiple Integration Ele-

ments (IEs). The following figure illustrates an example of such parallel scheme

with a degree of parallelism of 2.

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

Pulse Gen.

Column 1 Column 2

S/H
High-Res

ADC
S/H

High-Res
ADC

LIF Unit Neuron Unit

S/H S/H

IE

IE

IE

IE

IE

IE

C
o

lu
m

n
 A

D
C

C
o

lu
m

n
 A

D
C

NE

NE

NE

NE

NE

NE

2- way Parallel Column Readout

Pulse Gen.

(a) 2-way parallel column access (b) 2-way parallel neuron integration

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

Pulse Gen.

Flash ADC

Flash
ADC

Column 1 Column 2
Pulse Gen.

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

Pulse Gen.

S/H
High-

Res ADC

Pulse Gen.
Column 1 Column 2

S1
S2

S3 S4

Pulse Gen.

S1
S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

Pulse Gen.

Row 1

Flash ADC Flash ADC

Row 2

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

ADC ADC ADC

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

+ + +

(a) Column wise synaptic weights readout

(c) Row wise synaptic weights readout

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

S/H
High-Res

ADC

(b) Column wise synaptic weights readout using Column ADC

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs

IE

NE

NE

NE

LIF
Arithematic

Unit

Neuron
Unit

M
U

X

ADC ADC ADC

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

+ + +

(a) Column wise synaptic weights readout

(b) Column-wise with shared integration element (IE)

(c) Row wise synaptic weights readout

ADC
ADC
ADC
ADC
ADC

CB1

IE NE

IE NE

IE NE

LIF Arithematic
Unit

Neuron Unit

Adder

CB2

CB3

2's
 Comp

2's
 Comp

|

CB1 Inhibitory neurons to 1st layer excitatory neurons

CB2 Inhibitory neurons to 2nd layer excitatory neurons
CB3 All excitatory neurons to all inhibitory neurons

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Digital
Adder

N inputs

IE

NE

NE

NE

LIF
Arithematic

Unit

Neuron
Unit

M
U

X

ADC ADC ADC

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

+ + +

(a) Column wise synaptic weights readout

(b) Column-wise with shared integration element (IE)

(c) Row wise synaptic weights readout

IE NE

IE NE

IE NE

LIF
Arithematic

Unit

Neuron
Unit

S/H
High-Res

ADC

S1
S2

S3 S4

S1 S2

S3 S4

S1
S2

S3 S4

S1
S2

S3 S4

Column 1 Column 2

S/H
High-Res

ADC
S/H

High-Res
ADC

LIF Unit Neuron Unit

S/H S/H

IE

IE

IE

IE

IE

IE

C
o

lu
m

n
 A

D
C

C
o

lu
m

n
 A

D
C

NE

NE

NE

NE

NE

NE

2- way Parallel Column Readout

Pulse Generation

(a) 2-way parallel column access (b) 2-way parallel neuron integration

Pulse Generation

Figure 5.13: Parallel processing with 2 column ADCs: (a) the detailed connection
between memristor cells and pulse generators; (b) the simultaneous access of 2
columns in a design with N digital neurons. Each column ADC accesses N/2
columns sequentially. Two Vmems can be calculated simultaneously.

153

As the degree of parallelism is increased, more and more summing amplifiers

and high resolution ADCs are required. The area overhead introduced by this par-

allel processing scheme is mainly due to the duplicated summing amplifiers and

the high resolution ADCs, so it increases linearly with the degree of parallelism.

Of course, the power consumption is also increased accordingly. The update of

each individual synaptic weight during on-chip training is still realized by the

flash ADC array. Because the hardware cost of the flash ADC array is much larger

than that of the column ADCs when the network is large, it would not be very

efficient if we duplicate multiple flash ADC arrays to support parallel synaptic

weight updates, although it is possible.

5.3 Experimental Results

In this section, we analyze the power and area costs of different DNP archi-

tectures, which involve different synapse readout schemes and various choices of

ADCs. In addition, we also evaluate the performance of the new synapse storage

scheme, which targets the mainstream feedforward neuron networks.

All the digital components such as neuron unit and learning unit are designed

in the Verilog HDL and synthesized using a commercial 90nm CMOS standard

cell library. The analog parts are designed and analyzed with HSPICE. A 2-layer

feed forward spiking neural network is proposed in this work, which can be con-

figured for character and speech recognition. Inhibitory neurons are added in

both input layer and output layer, which provide the winner-take-all mechanism

for the neural activity.

Four different designs are used for architecture analysis in this work, which

access one column or one row at a time. The power consumed by the memris-

tive crossbar is estimated by considering the average memristance and the supply

154

voltage. As mentioned earlier, there are 8 different conductance levels for each

memristor. The resistance values of level 4 and level 5, which are represented by

R4 and R5, are used to calculate the average power.

The average power of the memristor is estimated by the following equations:

Pread =
V 2
DD

Rread
· Tread
Tperiod

, Pwrite =
V 2
DD

Rwrite
· Twrite
Tperiod

(5.8)

where VDD is the supply voltage, Rread and Rwrite are the resistances for read and

write operations, respectively. Tread represents the time required by a read opera-

tion, while Twrite represents the time required by a write operation to change the

conductance between level 4 and level 5. Tperiod is the main clock period of the

DNP. When using the high-resolution Column ADC, Rread is simply equal to R4.

However, for the low-resolution ADC (i.e. 3-bit Flash ADC), (R4 +Rload) is used as

Rread , where Rload is the load resistance connected in series with the memristor to

form a voltage divider. For the write operation, the average between R4 and R5 is

used as Rwrite.

The average power consumptions of memristor crossbar arrays in these 4 de-

signs are summarized in the following table. The first two designs are both based

on the fully reconfigurable designs using N ×N memristor array as synapse stor-

age. However, the other two design are based on the application specific designs

which consider only feed-forward synapses in the memristor array.

When it comes to the hardware implementation, the neuromorphic chip for

character recognition involves 256 digital neurons. Power and area of each base-

line component in this work are illustrated in Table 5.3. The powers of the ADCs

are obtained by using the ADC power estimator discussed in the previous sec-

tion. The corresponding areas are estimated using the reference ADC designs

155

Table 5.2: The power consumptions of memristor crossbar arrays in different de-
signs as functions of the size of the arrays. The application specific architectures
only store the feedforward synapses in the memristor crossbar array.

Architecture Column-wise Array Access Row-wise Array Access
256 x 256 fully reconfigurable 1068.6 uW 1068.6 uW
891 x 891 fully reconfigurable 3721.5 uW 3721.5 uW
196 x 36 application specific 818.1 uW 150.3 uW
875 x 9 application specific 3654.7uW 38.3 uW

presented in [99]- [102], which are also based on a 90nm CMOS process. To es-

timate the ADC areas with different resolutions, we assume that: 1) The area of

the flash ADC is exponential with the resolution. 2) The area of the Pipeline/SAR

ADC is linear with the resolution. 3) The area of Sigma-Delta ADC is linear with

the filter order. The clock rate of the pulse generator is 50MHz, while the clock

rate of the other digital part is fixed at 1 MHz. According to the control flow of the

proposed neuron unit and learning unit, the time consumed in neuron stage and

learning stage are 256 us and 512 us, respectively. The total energy consumed for

processing all the 256 neurons is calculated from the power of each basic compo-

nent and the corresponding processing time.

For the column-wise memory access scheme, the flexibility of using different

high-resolution ADCs for the neuron stage provides a new way to tradeoff be-

tween energy and area. The power and area values of different ADCs are also

summarized in this table.

We conduct a behavior-level digital simulation to demonstrate the function-

ality of the neuromorphic processors in this paper. The behavioral simulation

is necessary as gate or transistor level simulation of long training processes re-

quires huge CPU times, making it practically infeasible. All the key hardware

features including the neuron dynamics and STDP rule are modeled in simula-

156

Table 5.3: Power and area of the baseline components. NU and LU represent
neuron stage and learning stage, respectively.

Power(uW) Area(um2) Stages
Integration element 88.65 430 NU
256-1 16-bit MUX 3680 24,950 NU

256-input adder tree 36.83 17,111 NU
3-bit accumulator 0.802 347 Row-wise
8-to-256 decoder 50.73 872 Both
Flash ADC array 1446.4 211,700 LU or Both

Learning Unit 968 551,391 LU
Neuron Unit 290 167,208 NU

Pulse Generator 1079 120,393 Both
System Controller 29.7 19,157 Both
Memristor Array / 100,489 Both
Pipelined ADC 835 68,600 NU

SAR ADC 639 30,800 NU
SD ADC 110 120,000 NU

VCO ADC 3610 5,817 NU

Table 5.4: Fully reconfigurable designs using 256 x 256 memristor array as
synapse storage, which can support any network topology involving 256 neu-
rons. Comparison of different architectures in terms of energy, area and enery-
area product (EAP).

Memory access ADC schemes Energy(uJ) Area (mm2) EAP

Column Wise

non-shared IE

Pipelined ADC 3.26 1.350 4.40
SAR ADC 3.21 1.312 4.21
SD ADC 3.08 1.402 4.32

VCO ADC 3.97 1.287 5.11
Flash ADC array 3.42 1.282 4.38

shared IE

Pipelined ADC 4.20 1.265 5.31
SAR ADC 4.15 1.227 5.09
SD ADC 4.02 1.317 5.30

VCO ADC 4.91 1.202 5.90
Flash ADC array 4.35 1.197 5.21

Row Wise Flash ADC array 3.43 1.299 4.46

157

Table 5.5: Application specific designs which store only feed-forward synapses
in the memristor array. Comparison of different architectures in terms of energy,
area and enery-area product(EAP). All designs are based on the non-shared IE
scheme.

Memory access styles ADC schemes Energy(uJ) Area(mm2) EAP

Column Wise

Flash ADC array 0.955 1.114 1.06
Pipelined ADC 0.941 1.183 1.11

SAR ADC 0.934 1.145 1.07
SD ADC 0.915 1.234 1.13

VCO ADC 1.041 1.120 1.17
Row Wise Flash ADC array 0.969 0.91 0.88

tion. The proposed DNP is configured to be a two-layer learning network for

character recognition as illustrated in Fig. 5.14. The network is designed to rec-

ognize the alphabets “A”-“Z” by unsupervised learning. Each exitatory input neu-

ron receives a pixel value in the 14x14 pixel input pattern and projects its output

to all excitatory output neurons through plastic synapses. The receptive fields of

the network after the training demonstrate the learning result.

Using the fully reconfigurable 256 × 256 memristor array as the memory, the

energy and area results of different architectures are listed in Table 5.4. According

to Table 5.4, the row-wise memory access scheme has the moderate level of energy

and area. But as mentioned earlier, the neuron stage of the row-wise scheme can

be further divided into two operating stages and the instantaneous peak power

due to the parallel LIF units in the second operating stage can be large, which is a

potential weakness of this readout scheme. The architectures based on the shared

IE scheme are more energy consuming than those based on the non-shared IE

approach, while their areas are smaller. To achieve a good balance between enery

and silicon area, we also take into account the energy-area product (EAP) for each

architecture.

158

5k

Input Spikes

A Z

130k

step

14

14B

10k

Spike

#1

Spike

#2

Spike

#196

Inhibitory neuron Excitatory neuron

Output

layer

Input

layer

Receptive fields after training

14

14

Figure 5.14: The 2-layer neural network designed for character recognition and
the corresponding learning result. Each pixel input pattern is converted into 14×
14 spike inputs to the input layer of the network.

As illustrated in Table 5.4, the designs involving VCO-based ADCs tend to suf-

fer from higher energy consumption, although moderate areas can be achieved.

On the contrary, the designs involving the pipelined ADC, SAR and Sigma-Delta

ADC tend to have a much lower energy consumption at the expense of a larger

area. The lowest energy consumption is achieved by the design which utilizes

Sigma-Delta ADC as the column ADC, although it has the largest area. The

smallest area is achieved by the design which utilizes flash ADC array for col-

umn readout with only one shared IE, but its energy level is high due to the large

159

multiplexer introduced by sharing a single IE.

All the designs discussed so far are based on the fully connected memristor

array. This is the most flexible approach because any network with 256 neurons

can be supported by the 256 × 256 synaptic array. However, this storage scheme

suffers from bad storage utilization for sparser but more practical network topolo-

gies, which leads to significant waste of energy and silicon area for very large scale

neuron networks. To solve this problem, we propose an optimized synapse stor-

age scheme for mainstream feedforward neural networks, which is discussed in

details in Section 3.3. According to Table 5.5, on average, the designs with the

new optimized storage scheme of the 2-layer feedforward networks consume 70%

less energy than the designs using 256 × 256 crossbar array. This significant re-

duction of energy consumption is mainly due to the smaller number of 3-bit flash

ADCs and smaller pulse generator, as well as fewer clock cycles to access memris-

tor array. The new memristor array only takes up 10.7% of the area of the original

256 × 256 memristor crossbar array. In addition, the optimized storage strategy

can achieve up to 5X reduction in the energy-area product (EAP) when compared

to the fully reconfigurable storage strategy.

In addition to character recognition, the proposed spiking neuron network can

also be used for speech recognition. Fig.5.15 demonstrates the 2-layer neural net-

work designed to recognize short audio clips, such as “Two”, “Three” and “Zero”.

To apply the proposed spiking neuron network to speech recognition, the speech

signals are converted into speech patterns with 35 frequency domain channels

over 25 time units, where stronger signal in this 35x25 pattern corresponds to

higher input spiking rate for the corresponding input-layer neuron (pixel). The

corresponding hardware implementation involves 891 digital neurons.

Fig. 5.16 shows the activity of the output layer neurons after learning. Before

160

5k

System Controller

1st layer Pre-
WTA LUT

ROM1

2nd layer Pre-
WTA LUT

ROM2

3rd layer Pre-WTA
LUT

ROM3

All post WTA
LUT

ROM4

2
n

d stage A
xo

n
s

2nd stage Dendrites1st stage Dendrites

1
st stage A

xo
n

s

Column (Dendrite) ADC Column (Dendrite) ADC

SU
B

+

-

SU
B

+

-

2's
Comp

PWM#1

PWM#2

PWM#n

PWM#3

Low-Resolution ADC Array

PWM#16

PWM#17

PWM#m

PWM#18

Column (Dendrite) Driver

R
o

w
 (A

xo
n

) D
river

Low-Resolution ADC Array

G
lo

b
al Tim

er

LIF Arithmetic
Unit

Synapse Unit

Learning FSM

LE #1

LE #2

LE #N

LU
Ts fo

r
 Syn

ap
tic W

eigh
t U

p
d

ate

Learning Unit

Neuron FSM

NE #1
Spk
Buf

NE #2
Spk
Buf

NE #N
Spk
Buf

Neuron Unit

Column (Dendrite) Driver

R
o

w
 (A

xo
n

)D
river

Spike
I/O

ROM1

2
n

d stage
 A

xo
n

s

2nd stage Dendrites1st stage Dendrites

1
st stage

 A
xo

n
s

Column (Dendrite) ADC Column (Dendrite) ADC

SU
B

+

-

SU
B

+

-

Synapse Unit

2's
Comp

ROM4ROM3ROM2

Dendrites

A
xo

n
s

Analog-to-Digital
Memristor Readout

P
u

lse G
en

erato
r

G
lo

b
al C

o
n

tro
ller

Spike I/O
1

2

3

Spike I/O

Neuron Stage

Learning Stage

1

Learning FSM

LE #1

LE #2

LE #N

Learning Unit

LIF Arithmetic
Unit

LU
T fo

r W
eigh

t
U

p
d

ate

Neuron FSM

NE #1

NE #2

NE #N

Neuron Unit

Buf

Buf

Buf

Synapse Unit

Spike
I/O

2

2

3

3

3

LE

NE Buf

Learning Element

Neuron Element Spike Buffer

Spike I/O Neuron Learning

Spike I/O Neuron Learning

Spike I/O Neuron Learning

t-1

t

t+1

S
te

p
 (

B
io

lo
g

ic
al

 t
im

e)

Time (Hardware time)

14

14

Inhibitory neuron Excitatory neuron

Output
layer

Input
layer

Input Spikes

A Z
130k

step

14

14

(a)

(b) (c)

5k

Input Spikes

A Z
130k

step

14

14B
10k

Spike
#1

Spike
#2

Spike
#196

Inhibitory neuron Excitatory neuron

Output
layer

Input
layer

Receptive fields after training

14

14

Dendrites

A
xo

n
s

Analog-to-Digital
Memristor Readout

P
u

lse G
en

erato
r

1

2

3

Spike I/O

Neuron Stage

Learning Stage

1

Learning FSM

LE #1

LE #2

LE #N

LIF Arithmetic
Unit

LU
T fo

r W
eigh

t
U

p
d

ate

Neuron FSM

NE #1

NE #2

NE #N

Neuron Unit

Buf

Buf

Buf

Synapse Unit

Spike
I/O

2

2

3

3

3

LE

NE Buf

Learning Element

Neuron Element Spike Buffer

Learning Unit

35

25

Zero

Two Three One

Five Six Eight

Output layer
9 excitatory neurons
1 inhibitory neurons

Input layer
875 excitatory neurons
6 inhibitory neurons

Speech Patterns

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

Dendrite Index

A
xo

n
 In

d
ex

Neuron Type Neuron Index

Input Excitatory 1~875

Output Excitatory 876~884

Input Inhibitory 885~890

Output Inhibitory 891

The feed-forward synapses
only exists in this small region.

876

877

878

879

880

881

882

883

884

N
eu

ro
n

 #

Three Two Eight Six Five One Zero

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

Dendrites

A
xo

n
s

Analog-to-Digital
Memristor Readout

P
u

lse G
en

erato
r

1

2

3

Spike I/O

Neuron Stage

Learning Stage

1

Learning FSM

LE #1

LE #2

LE #N

Learning Unit

LIF Arithmetic
Unit

LU
T fo

r W
eigh

t
U

p
d

ate

Neuron FSM

NE #1

NE #2

NE #N

Neuron Unit

Buf

Buf

Buf

Synapse Unit

2

2

3

3

3

LE

NE Buf

Learning Element

Neuron Element Spike Buffer

Column Word Line

ADC

ADC

ADC

ADC

ADC

ADC

w1i

w2i

w3i

w4i

w5i

w6i

R
o

w
 W

o
rd

 L
in

e

wi1 wi3 wi6

ADC ADCADC

System Controller

1st stage Dendrites

1
st stage A

xo
n

s

Column (Dendrite) ADC

PWM#1

PWM#2

PWM#n

PWM#3

Low-Resolution ADC Array

G
lo

b
al Tim

er

LIF Arithmetic
Unit

Synapse Unit

Learning FSM

LE #1

LE #2

LE #N

LU
Ts fo

r
 Syn

ap
tic W

eigh
t U

p
d

ate

Learning Unit

Neuron FSM

NE #1
Spk
Buf

NE #2
Spk
Buf

NE #N
Spk
Buf

Neuron Unit

Column (Dendrite) Driver

R
o

w
 (A

xo
n

)D
river

Spike
I/O

R
ea

d
/W

ri
te

 P
u

ls
e

G
en

er
at

o
r

M
e

m
ri

st
o

r
re

ad
o

u
t

24

20

16

12

8

4

100 1K 10K 100K 1M 10M 100M 1G

Sigma-Delta

SAR
Pipeline

Flash

Column ADC

Array ADC Neuromorphic Chip

Sampling rate (Hz)

A
D

C
 R

es
o

lu
ti

o
n

 (
EN

O
B

)

35

25

Zero

Two Three One

Five Six Eight

Output layer
9 excitatory neurons
1 inhibitory neurons

Input layer
875 excitatory neurons
6 inhibitory neuronsSpeech Patterns

Figure 5.15: The 2-layer neural network designed for speech recognition. Each
speech pattern is converted into 25x35 spike inputs to the input layer of the net-
work.

the training is finished, the speech patterns enter the input layer one by one in

random order, and the output layer shows no selectivity to different patterns. Af-

ter the training, due to the Winner-Take-All property introduced by the inhibitory

neuron, each output layer neuron only responds to one particular speech pattern.

For example, the output layer neuron labeled 880 shows a high firing frequency

for ”Three”, but it does not respond to any other input patterns.

For the hardware implementation of this spiking neural network with 891

neurons, the power and area of each baseline building component are listed in

Table 5.6. The energy and area results of different architectures are listed in Table

5.7. The architectures in Table 5.7 are all based on the non-shared IE scheme,

considering that the shared-IE scheme suffers from higher power due to the huge

multiplexer introduced. Both the feed-forward synapses and the synapses in-

volving inhibitory neurons are stored in the memristor crossbar array, and they

161

876

877

878

879

880

881

882

883

884

N
e

u
ro

n
 #

Three Two Eight Six Five One Zero

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 140000 2 4 6 8 10 12 14

Time (ms)

Figure 5.16: The spiking events emitted by the output neurons (with neuron index
from 876 to 884) as a function of time after training. Each neuron only responds
to one particular speech pattern and shows high firing frequency for this speech
pattern.

are processed in the same manner. These architectures are fully reconfigurable,

which can support any neural network topology.

Fig. 5.17 shows the synapse distribution of a conceptual 891x891 synaptic

array. The number of the input-layer neurons (pixels) is much larger than that of

the output layer neurons. This is a very common situation for 2-layer feed forward

neuron networks, because high resolution of the input pattern is required while

the total number of the patterns to be recognized is usually limited.

As illustrated in Fig. 5.17, the feed-forward synapses only exist in a narrow

region inside the 891x891 synaptic array. Obviously, it would be a huge waste

of hardware resource and processing cycles, if the fully-reconfigurable approach

storing all 891x891 synapses was applied to such networks. When mapping this

162

Table 5.6: Power and area of the baseline components. NU and LU represent
neuron stage and learning stage, respectively. Since there are 891 neurons in this
network, the resolution of the column ADC is changed to 13 bits.

Power(uW) Area(um2) Stages
Integration element 88.65 430 NU
10-to-1024 decoder 203.09 3,519 Both

891-input adder tree 125.12 56,980 NU
3-bit accumulator 0.802 347 Row-wise
Flash ADC array 5,034.15 736,815 LU or Both

Learning Unit 3,370.10 1,919,099 LU
Neuron Unit 1,009.36 581,962 NU

Pulse Generator 3755.42 419,025 Both
System Controller 29.7 19157 Both
Memristor Array / 1,217,289 Both
Pipelined ADC 904 74,360 NU

SAR ADC 693 33,300 NU
SD ADC 110 120,000 NU

VCO ADC 5,630 10,200 NU

Table 5.7: Fully reconfigurable designs using 891x891 memristor array for
synapse storage. Comparison of different architectures in terms of energy, area
and enery-area product (EAP). All designs are based on the non-shared IE scheme.

Memory access styles ADC schemes Energy(uJ) Area(mm2) EAP

Column Wise

Flash ADC array 41.06 5.28 216.78
Pipelined ADC 37.38 5.36 200.34

SAR ADC 37.20 5.31 197.80
SD ADC 36.67 5.40 197.64

VCO ADC 41.59 5.29 219.99
Row Wise Flash ADC array 41.88 5.30 221.95

neural network to the proposed neuromorphic processors, the energy and area

results can be obtained, as shown in Table 5.8.

The fully reconfigurable synapse storage approach uses a 891x891 memristor

array as storage, and each synapse in this array has to be accessed once for a single

training iteration. However, according to Fig. 5.17, there are only 9 columns and

163

Table 5.8: Application specific designs which only update the feed-forward
synapses between the two layers. Comparison of different architectures in terms
of energy, area and enery-area product (EAP). All designs are based on the non-
shared IE scheme.

Memory access styles ADC schemes Energy(uJ) Area(mm2) EAP

Column Wise

Flash ADC array 7.94 4.05 32.15
Pipelined ADC 7.90 4.13 32.62

SAR ADC 7.90 4.09 32.30
SD ADC 7.89 4.17 32.89

VCO ADC 7.94 4.07 32.31
Row Wise Flash ADC array 7.86 2.96 23.26

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

Dendrite Index

A
x
o

n
 I

n
d

e
x

Neuron Type Neuron Index

Input Excitatory 1~875

Output Excitatory 876~884

Input Inhibitory 885~890

Output Inhibitory 891

The feed-forward synapses

only exist in this small region.

Figure 5.17: The synapse distribution of the conceptual 891x891 synaptic array.
Since there are only 9 excitatory neurons in the output layer and 875 excitatory
neurons in the input layer, the feedforward synapses only exist in a very small
region.

875 rows that are associated with the feed-forward synapses, so the optimized

storage approach considering only feed-forward synapses only needs to access

875x9 synapses for a single training iteration. Therefore, it has a much smaller

164

energy consumption than the fully reconfigurable approach.

Updating only the feed-forward synaptic weights is actually application spe-

cific optimization, which works well for all the feed-forward neural networks as

described in Section 3.3. In addition, for this particular neural network, if we

choose Row-Wise memory access style over Column-Wise memory access style,

the number of flash ADCs can be reduced to 9 from 875, while the processing

cycles will increase from 9 to 875. Therefore, the energy consumption will not

change a lot, but the row-wise scheme introduces significant area reduction.

What needs to be noted here is that, row-wise scheme shows better results in

Table 5.5 and Table 5.8, only because the number of output layer neurons is much

smaller than that of the input layer neurons. If there are much more output layer

neurons than the input layer neurons, column-wise scheme will become the better

choice.

5.4 Summary

In this work, we have proposed two memory access styles for the memristor

synaptic array based DNP architectures. The architectures with various synaptic

weight readout strategies and possible ADC schemes are thoroughly investigated,

which provides new insights into the tradeoff between energy and chip area of

DNPs. In addition, a novel storage strategy optimized for mainstream feedfor-

ward spiking neural networks is presented, which proves to significantly improve

the energy efficiency as well as the utilization of the memristive synaptic array.

165

6. CONCLUSION AND FUTURE WORK

6.1 Conclusion

This dissertation has developed techniques for designing efficient VLSI hard-

ware architectures and implementation for machine learning algorithms. A num-

ber of critical design issues such as memory organization, parallel data processing

and reconfigurable architectures, have been addressed in this dissertation, which

provides the tradeoffs between the energy consumption, runtime and hardware

cost. We conclude this research by summarizing the major contributions of the

following categories:

6.1.1 A Parallel Digital VLSI Architecture for Cascade SVM

We have proposed a parallel digital VLSI architecture for integrated support

vector machine training and classification. For the first time, cascade SVM, which

significantly improves the training speed, is mapped to efficient parallel VLSI

architecture to improve the scalability of hardware-based SVM training. Excel-

lent scalability is achieved by spreading the training workload of a given data

set over multiple SVM processing units with minimal communication overhead.

Hardware-friendly implementation of the cascade algorithm is employed to achieve

low hardware overhead and allow for training over data sets of variable size. A

multilayer system bus is proposed in this work and multiple distributed memo-

ries are used to fully exploit parallelism. In addition, the proposed architecture

demonstrates great reconfigurability, which can be tailored to realize hybrid use of

hardware parallel processing and temporal reuse of processing resources, leading

to good tradeoffs between throughput, silicon overhead and power dissipation.

With a commercial 90-nm CMOS technology, our hardware cascade SVM designs

166

provide up to a 561× training time speedup and a significant estimated 21,859×

energy reduction compared with the software SVM algorithm running on a 45-nm

commercial general-purpose CPU.

6.1.2 General-purpose LSM Learning Processor on FPGA

A general-purpose LSM neuromorphic processor targeting multiple applica-

tions has been proposed in this work. Both the pre-processing and the readout

layer are fully parallelized. The interconnection of digital neuron elements in-

side the reservoir pre-processor is realized by crossbar switching interfaces, and

the neuron elements work in parallel to compute the liquid response. The digital

readout neurons follow a biologically plausible spike-based learning rule to up-

date the corresponding synaptic weights stored in distributed memories. A novel

measure of the reservoir computation power is proposed to provide theoretical

design guidance for a general-purpose LSM processor. Accordingly, a reconfig-

urable reservoir architecture is developed, which activates different numbers of

neurons for different applications, in order to improve efficient tradeoffs between

energy and hardware cost. In order to further improve the energy efficiency for

a particular task, a firing-activity dependent power gating method is proposed.

Approximate Computing is also added to the digital liquid neurons, which effec-

tively reduces the energy consumption without greatly affecting the recognition

performance. For a public domain speech data set with 500 samples, 30% energy

reduction is achieved by activating all these low-power techniques. In addition,

a 88× speechup is observed when comparing with the corresponding software

program running on a general-purpose CPU.

167

6.1.3 A Parallel Digital Neuromorphic Processor with STDP Learning Rule

We proposed a parallel neuromorphic architecture for a 2-layer spiking neural

network on FPGA, which supports the STDP learning rule. The neuron dynamics

are parallelized in this architecture. A 32-way parallel design for the application

of handwritten digit recognition achieves a promising training speedup of 13.5×

and a recognition speedup of 25.8×. Equally importantly, by leveraging the error

resilience of the neuromorphic architecture, a 20% energy reduction is observed

when approximate multipliers are utilized in the system while maintaining al-

most the same level of recognition rate achieved using standard multipliers.

6.1.4 Architectural Exploration of Digital Neuromorphic Processor with Memristive

Synaptic Array

Due to their nonvolatile nature, excellent scalability and high density, mem-

ristive nanodevices provide a promising solution for low-cost on-chip storage.

Integrating memristor-based synaptic crossbars into digital neuromorphic pro-

cessors (DNPs) may facilitate efficient realization of brain inspired computing.

This paper investigates architectural design exploration of DNPs with memristive

synapses by proposing two synapse readout schemes. The key design tradeoffs

involving different analog-to-digital conversions and memory accessing styles are

thoroughly investigated, which provides new insights into the tradeoff between

energy and chip area of DNPs. A novel storage strategy optimized for feedfor-

ward neural networks is proposed in this work, which significantly improve the

energy efficiency as well as the utilization of the memristive synaptic array.

168

6.2 Future Work

So far, we have demonstrated several proposed VLSI architectures for machine

learning algorithms. Although the above architectures are able to provide de-

cent recognition performance for a wide range of real world applications, more

complex networks with more neurons are needed for other more sophisticated

applications. Ultimately, it will be highly possible to integrate huge numbers of

neurons and synapses to create an artificial brain that mimics the functions of

the human brain such as reasoning, emotion, feeling and memory. When such

artificial brains are implemented in silicon, tasks requiring complex reasoning

and information processing as conducted by the humans may be solved with ex-

tremely short processing times. Also, such techniques may allow people to better

understand how the brain works so as to advance cognitive science.

Nowadays, deep feedforward rate-based neural networks such as convolu-

tional neural networks (CNNs) have achieved great success in many computer

vision related applications, which is considered as one of the most powerful ma-

chine learning techniques currently [103]. However, although the spiking neural

networks, which utilize both firing rate and spike timing to encode the informa-

tion, is potentially more computational powerful than the rate-based neural net-

works, few works have demonstrated competitive performance compared with

the conventional artificial neural networks such as CNNs. Therefore, a systematic

exploration of deep spiking neural networks is lacking, which will be main focus

of the future work.

In our future work, we plan to utilize the recurrent LSM networks to build

a deep spiking neural network architecture, as illustrated in Fig. 6.1. This deep

architecture consists of multiple basic LSM processing and pooling stages. Recur-

169

spike train 1

spike train 2

spike train 25 Pooling

Output1

Output2

Output 10

24

24

24

24

24

24

28

28

5

5

Pooling

24

24

Figure 6.1: Block diagram of the a deep spiking neural network architecture.

rent reservoir networks across different LSM stages act as nonlinear filters capa-

ble of extracting spatio-temporal features of increasingly higher levels from the

input.

The conventional deep learning networks are rate-based artificial neural net-

work models, whose error can be effectively minimized by the error back-propagation

training method [103]. While training feedforward deep spiking neural networks

by approximating trained deep analog neural networks has been attempted [104],

training deep spiking networks with layered recurrent structures presents signif-

icant challenges. To feasibly do so, we plan to use a combination of spike-based

unsupervised and supervised learning mechanisms. First, we utilize the spike-

based supervised learning rule to tune the plastic synapses between the reservoir

and the final readout layer in the last LSM stage. Second, we practically tune each

plastic recurrent reservoir by introducing organizing behaviors managed through

spike timing dependent plasticity (STDP).

170

REFERENCES

[1] Marz, Nathan, and James Warren. Big Data: Principles and best practices of

scalable realtime data systems. Greenwich, CT, USA: Manning Publications

Co., 2015.

[2] P. Zikopoulos and C. Eaton. Understanding Big Data: Analytics for enterprise

class Hadoop and streaming data. New York, NY, USA: McGraw-Hill, 2011.

[3] A. J. Butte. Translational bioinformatics: Coming of age. J. Amer. Med. Inform.

Assoc., vol. 15, no. 6, pp. 709714, Nov./Dec. 2008.

[4] P. E. Dewdney, P. J. Hall, R. T. Schilizzi, and T. J. L. W. Lazio. The square

kilometre array Proc. IEEE, vol. 97, no. 8, pp. 14821496, Aug. 2009.

[5] Volpe, Richard, et al. The rocky 7 mars rover prototype. Intelligent Robots

and Systems’ 96, IROS 96, Proceedings of the 1996 IEEE/RSJ International

Conference on. Vol. 3. IEEE, 1996.

[6] L. Zhang, C. Wu, Z. Li, C. Guo, M. Chen, and F. C. M. Lau. Moving big data to

the cloud: An online cost-minimizing approach. IEEE J. Sel. Areas Commun.,

vol. 31, no. 12, pp. 27102721, Dec. 2013.

[7] Bajracharya, Max, Mark W. Maimone, and Daniel Helmick. Autonomy for

mars rovers: Past, present, and future. IEEE Computer 41.12 (2008): 44-50.

[8] Bekkerman, Ron, Mikhail Bilenko, and John Langford, eds. Scaling up ma-

chine learning: Parallel and distributed approaches. Cambridge, England:

Cambridge University Press, 2011.

[9] Wang, Qian, Peng Li, and Yongtae Kim. A parallel digital VLSI architecture

for integrated support vector machine training and classification. Very Large

171

Scale Integration (VLSI) Systems, IEEE Transactions on 23.8 (2015): 1471-

1484.

[10] Wang, Qian, Yingyezhe Jin, and Peng Li. General-purpose LSM learning pro-

cessor architecture and theoretically guided design space exploration. Biomedi-

cal Circuits and Systems Conference (BioCAS), 2015 IEEE. IEEE, 2015.

[11] V. Vapnik. The nature of statistical learning theory New York, NY, USA:

Springer-Verlag, 1999.

[12] L. Zhang, C. Wu, Z. Li, C. Guo, M. Chen, and F. C. M. Lau. Moving big data to

the cloud: An online cost-minimizing approach. IEEE J. Sel. Areas Commun.,

vol. 31, no. 12, pp. 27102721, Dec. 2013.

[13] L. J. Cao et al. Parallel sequential minimal optimization for the training of sup-

port vector machines. IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 10391049,

Jul. 2006.

[14] R. Genov and G. Cauwenberghs. Kerneltron: Support vector machine in sili-

con, IEEE Trans. Neural Netw., vol. 14, no. 5, pp. 14261434, Sep. 2003.

[15] S. Chakrabartty and G. Cauwenberghs. Sub-microwatt analog VLSI trainable

pattern classifier, IEEE Solid-State Circuits, vol. 42, no. 5, pp. 11691179,

May 2007.

[16] P. Kucher and S. Chakrabartty. An energy-scalable margin propagation based

analog VLSI support vector machine, in Proc. IEEE Int. Symp. Circuits Syst.,

May 2007, pp. 12891292.

[17] D. Anguita, A. Boni, and S. Ridella. A digital architecture for support vector

machines: Theory, algorithm, and FPGA implementation, IEEE Neural Netw.,

vol. 14, no. 5, pp. 9931009, Sep. 2003.

172

[18] T.-W. Kuan, J.-F. Wang, J.-C. Wang, P.-C. Lin, and G.-H. Gu. VLSI design

of an SVM learning core on sequential minimal optimization algorithm, IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 4, pp. 673683, Apr.

2012.

[19] M. Papadonikolakis and C. Bouganis. Novel cascade FPGA accelerator for

support vector machines classification IEEE Trans. Neural Netw. Learn. Syst.,

vol. 23, no. 7, pp. 10401052, Jul. 2012.

[20] K. Kang and T. Shibata. An on-chip-trainable Gaussian-kernel analog support

vector machine, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 7, pp.

15131524, Jul. 2010.

[21] H. P. Graf, E. Cosatto, L. Bottou, I. Dourdanovic, and V. Vapnik. Parallel

support vector machines: The cascade SVM in Proc. Adv. Neural Inf. Process.

Syst., 2004, pp. 521528.

[22] J. V. Arthur, P. A. Merolla, et al. Building block of a programmable neuro-

morphic substrate: A digital neurosynaptic core. The 2012 International Joint

Conference on Neural Networks (IJCNN). IEEE, 2012.

[23] Y. Ho, G. Huang and P. Li. Nonvolatile memristor memory: device character-

istics and design implications. Proc. of IEEE/ACM Int. Conf. on Computer-

Aided Design, pp. 485-490, November 2009

[24] Y. Ho, et al. Dynamical Properties and Design Analysis for Nonvolatile Mem-

ristor Memories. IEEE Trans. Circuits Syst., vol.58, no 4, pp. 724-736, 2011.

[25] C. E. Merkel, et al. Reconfigurable N-level memristor memory design. Neural

Networks (IJCNN), The 2011 International Joint Conference on. IEEE, 2011.

173

[26] S. H. Jo, et al. Nanoscale memristor device as synapse in neuromorphic systems.

Nano Letters 10.4 (2010): 1297-1301.

[27] G. S. Snider, et al. Spike-timing-dependent learning in memristive nanode-

vices. International Symposium on Nanoscale Architectures. IEEE, pp. 85-

92, 2008

[28] Kim, K-H, et al. A functional hybrid memristor crossbar-array/CMOS system

for data storage and neuromorphic applications. Nano letters 12.3 (2011): 389-

395

[29] Chen L, Li C, Huang T, et al. Memristor crossbar-based unsupervised image

learning. Neural Computing and Applications, 2014, 25(2): 393-400.

[30] Hu, Miao, et al. Hardware realization of BSB recall function using memristor

crossbar arrays. Proceedings of the 49th Annual Design Automation Con-

ference. ACM, 2012.

[31] Tang, Tianqi, et al. Spiking neural network with RRAM: can we use it for real-

world application?. Proceedings of the 2015 Design, Automation & Test in

Europe Conference & Exhibition. EDA Consortium, 2015.

[32] Kadetotad, Deepak, et al. Parallel architecture with resistive crosspoint array

for dictionary learning acceleration. Emerging and Selected Topics in Circuits

and Systems, IEEE Journal on 5.2 (2015): 194-204.

[33] Li, Boxun, et al. Merging the interface: Power, area and accuracy co-

optimization for rram crossbar-based mixed-signal computing system. Proceed-

ings of the 52nd Annual Design Automation Conference. ACM, 2015.

[34] Y. Kim, Y. Zhang, and P. Li et al. A digital neuromophic VLSI architecture

with memristor crossbar synaptic array for machine learning. IEEE Int. SOC

174

Conf.(SOCC) 2012.

[35] Y. Kim, Y. Zhang, and P. Li. A reconfigurable digital neuromorphic proces-

sor with memristive synaptic crossbar for cognitive computing. ACM Journal

on Emerging Technologies in Computing Systems, vol. 11, no. 4, pp. 38:1-

38:25, Apr. 2015.

[36] Wolfgang Maass, Thomas Natschlager, and Henry Markram. Realtime com-

puting without stable states: a new framework for neural computation based on

perturbations. Neural Computation, 14(11):2531-2560, Nov. 2002.

[37] Schrauwen, Benjamin, et al. Compact hardware liquid state machines on FPGA

for real-time speech recognition. Neural Networks 21.2 (2008): 511-523.

[38] Roy, Subhrajit, Amitava Banerjee, and Arindam Basu. Liquid state machine

with dendritically enhanced readout for low-Power, neuromorphic VLSI imple-

mentations. IEEE Tran on Biomedical Circuits and Systems, VOL.8 (2014).

[39] Liberman, Mark, et al. TI 46-Word LDC93S9. Web Download. Philadelphia:

Linguistic Data Consortium, 1993.

[40] Botang Shao and Peng Li. A model for array-based approximate arith-

metic computing with application to multiplier and squarer design. Proc. of

IEEE/ACM Intl. Symp. on Low Power Electronics and Design, 2014

[41] LeCun, Yann, Corinna Cortes, and Christopher JC Burges. The MNIST

database of handwritten digits. Proceedings of the IEEE, 86(11):2278-2324,

November 1998.

[42] Diehl PU and Cook M. Unsupervised learning of digit recognition using spike-

timing-dependent plasticity Frontiers in Computational Neuroscience vol. 9

2015

175

[43] S. Mitra et al. Real time classification of complex patterns using spike-based

learning in neuromorphic VLSI. IEEE Trans. Bio. Circuits Syst., vol.3, no 1,

pp.32-42, 2009

[44] A. van Schaik, et al. Building blocks for electronic spiking neural networks.

Neural Networks, vol. 14, pp.617-628, 2001.

[45] G. Indiveri, et al. A VLSI array of low-power spiking neurons and bistable

synapses with spiking-timing dependent plasticity. IEEE Trans. Neural Net-

work, vol.17, no1, pp.211-221, 2006.

[46] P. Merolla, et al. A digital neurosynaptic core using embedded crossbar memory

with 45pJ per spike in 45nm. 2011 IEEE custom integrated circuits confer-

ence (CICC). IEEE, 2011.

[47] J. S. Seo, et al. A 45nm CMOS neuromorphic chip with a scalable architecure

for learning in networks of spiking neurons. 2011 IEEE Custom Integrated

Circuits Conference (CICC). IEEE, 2011.

[48] Q. Wang, Y. Kim and P. Li. Architectural design exploration for neuromor-

phic processors with memristive synapses. Proc. of IEEE Intl. Conference on

Technology, pp. 962-966, August 2014

[49] S.O.Haykin. Neural networks and learning machines. Vol. 3. Upper Saddle

River, NJ, USA: Pearson, 2009.

[50] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane cur-

rent and its application to conduction and excitation. in Nerve. J. Physiol.,

117(4):500-544, 1952.

[51] R. FitzHugh. Impulses and physiological states in theoretical models of nerve

membrane. Biophy. J., 1(6):445-466, 1961.

176

[52] J. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission line

simulating nerve axon. Proc. IRE, 50(10):2061-2070, 1962.

[53] J. L. Hindmarsh and R. M. Rose. A model of neuronal bursting using three

coupled first order differential equations. Proc. R. Soc. Lond. B.,221(1222):87-

102, 1984.

[54] C. Morris and H. Lecar. Voltage oscillations in the barnacle giant muscle fiber.

Biophy. J., 35(1):193-213, 1981.

[55] R. Serrano-Gotarredona et al. CAVIAR: A 45k neuron, 5M synapse, 12G con-

nects/s AER hardware sensory-processing-learning-actuating system for high-

speed visual object recognition and tracking. IEEE Trans. Neural Netw.,

20(9):1417-1438, 2009.

[56] S. Brink et al. A learning-enabled neuron array IC based upon transistor

channel models of biological phenomena. IEEE Trans. Biomed. Circuits Syst.,

7(1):71-81, 2013.

[57] T. M. Massoud and T. K. Horiuchi. A neuromorphic VLSI head direction cell

system. IEEE. Trans. Circuits Syst. I, Reg. Papers, 58(1):150-163, 2011.

[58] D. A. Drachman. Do we have brain to sparse? Neurology, 64(12):2056-

2062,2005.

[59] J. B. Reece et al. Campbell Biology, 9th Edition. Benjamin Cummings, San

Francisco, 2010.

[60] A. K. Jain, J. Mao, and K. M. Mohiuddin. Artificial neural networks: A tuto-

rial. Computer, 29(3):31-44, 1996.

[61] W. McCulloch and W. Pitts. A logical calculus of the ideas immanent in

nervous activity. The Bulletin of Mathematical Biophysics, 5(4):115-133, 1943.

177

[62] Williams, DE Rumelhart GE Hinton RJ, and G. E. Hinton. Learning repre-

sentations by back-propagating errors. Nature 323 (1986): 533-536.

[63] S. Ghosh-Dastidar and H. Adeli. Third generation neural networks: Spiking

neural networks. In Advances in Computational Intelligence, pages 167-

178.2009.

[64] H. Paugam-Moisy and S. Bohte. Computing with spiking neuron networks.

Handbook of Natural Computing, 2009.

[65] R. Kempter, W. Gerstner, and J. L. Van Hemmen. Hebbian learning and spik-

ing neurons. Physical Review E, 59(4):4498, 1999.

[66] Song, Sen, Kenneth D. Miller, and Larry F. Abbott. Competitive Hebbian

learning through spike-timing-dependent synaptic plasticity. Nature

Neuro-science 3.9 (2000): 919-926.

[67] G.-Q. Bi and M.-M. Poo. Synaptic modification in cultured hippocampal neu-

rons: Dependence on spike timing, synaptic strength, and postsynaptic cell type.

The Journal of Neuroscience, 18(24):10464-10472, 1998.

[68] D. E. Feldman. The spike-timing dependence of plasticity. Neuron, 75(4):556-

571, 2012.

[69] D. Nikolic, S. Haeusler, W. Singer, and W. Maass. Distributed fading memory

for stimulus properties in the primary visual cortex PLoS Biology, vol. 7, no.

12, pp. 119, 2009.

[70] Schurmann,F., Meier,K.,Schemmel,J. Edge of chaos computation in mixed-

mode VLSI – A hard liquid Advances in neural information processing sys-

tems: Vol. 17. Cambridge, MA: MIT Press.

178

[71] W. Maass. Motivation, theory, and applications of liquid state machines in

Computability in context: computation and logic in the real world B. Cooper

and A. Sorbi, Eds. Imperial College Press, 2011.

[72] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi. NVSim: A circuit-level performance,

energy, and area model for emerging nonvolatile memory. IEEE Trans.Comput.-

Aided Design Integr. Circuits Syst., 31(7):994-1007, 2012.

[73] L. O. Chua. Memristor-the missing circuit element. IEEE Trans. Circuit The-

ory, 18(5):507-519, 1971.

[74] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams. The missing

memristor found. Nature, 453:80-83, 2008.

[75] J. J. Yang and R. S. Williams. Memristive devices in computing system:

promises and challenges. ACM J. Emerg. Technol. Comput. Syst., 9(2):11:1-

11:20, 2013.

[76] H. Manem, J. Rajendran, and G. S. Rose. Design considerations for multilevel

CMOS/Nano memristive memory. ACM J. Emerg. Technol. Comput. Syst.,

8(1):6:1-6:22, 2012.

[77] Y. V. Pershin and M. D. Ventra. Experimental demonstration of associative

memory with memristive neural networks. Neural Netw., 23(7):881-886, 2010.

[78] Gene M. Amdahl. Validity of the single processor approach to achieving large

scale computing capabilities. Proceedings of the April 18-20, 1967, spring

joint computer conference. ACM, 1967.

[79] D.Anguita, S.Pischiutta, S.Ridella, D.Sterpi. Feed-forward support vector ma-

chine without multipliers. IEEE Trans. on Neural Networks Vol. 17, No. 5,

pp. 1328-1331, 2006

179

[80] D. Anguita, A. Ghio, L. Oneto, S. RIDELLA. In-sample and out-of-sample

model selection and error estimation for support vector machines IEEE Trans.

on Neural Networks vol.23, no.9, pp.1390,1406, Sept. 2012

[81] D.Anguita, S.Ridella, F.Rivieccio, R.Zunino. Hyperparameter design criteria

for support vector classifiers Neurocomputing Vol 55, No. 1-2, pp. 109-134,

2003.

[82] Kaibo Duan, S. Sathiya Keerthi, and Aun Neow Poo. Evaluation of simple

performance measures for tuning SVM hyperparameters. Neurocomputing 51

(2003): 41-59.

[83] Intel Open Source Technology Center, PowerTop 2.0, 2007.

[84] Uzilov, Andrew V., Joshua M. Keegan, and David H. Mathews. Detection of

non-coding RNAs on the basis of predicted secondary structure formation free

energy change. BMC Bioinformatics 7.1 (2006): 173.

[85] Chang, Chih-Chung, and Chih-Jen Lin. LIBSVM: a library for support vector

machines. ACM Trans. on Intelligent Systems and Technology (TIST) 2.3

(2011): 27.

[86] Upegui, Andres, Carlos Andrs Pea-Reyes, and Eduardo Sanchez et al. An

FPGA platform for on-line topology exploration of spiking neural networks.

Microprocessors and Microsystems 29.5 (2005): 211-223.

[87] Pearson, Martin J., et al. Implementing spiking neural networks for real-time

signal-processing and control applications: a model-validated FPGA approach.

Neural Networks, IEEE Transactions on 18.5 (2007): 1472-1487.

[88] Rice, Kenneth L., et al. FPGA implementation of Izhikevich spiking neural

networks for character recognition. Reconfigurable Computing and FPGAs,

180

2009. ReConFig’09. International Conference on. IEEE, 2009.

[89] Thomas, David B., and Wayne Luk. FPGA accelerated simulation of biolog-

ically plausible spiking neural networks. Field Programmable Custom Com-

puting Machines, 2009. FCCM’09. 17th IEEE Symposium on. IEEE, 2009.

[90] Y. Zhang, P. Li, Y. Jin, and Y. Choe. A digital liquid state machine with biologi-

cally inspired learning and its application to speech recognition IEEE Trans. on

Neural Networks and Learning Systems 2015

[91] Legenstein, R., & Maass, W. (2007). Edge of chaos and prediction of compu-

tational performance for neural circuit models. Neural Networks 20.3 (2007):

323-334.

[92] Lyon, R. (1982). A computational model of filtering, detection and compression

in the cochlea In Proceedings of the IEEE ICASSP (pp. 12821285).

[93] Schrauwen, B., & Van Campenhout, J. (2003). BSA, a fast and accurate spike

train encoding scheme. In Proceedings of the international joint conference

on neural networks (pp. 28252830).

[94] Blumenstein, M., Verma, B., & Basli, H. A novel feature extraction technique

for the recognition of segmented handwritten characters Document Analysis

and Recognition,Seventh International Conference on. IEEE, 2003.

[95] G. Indiveri, B. Linares-Barranco, et al. Neuromorphic silicon neuron circuits..

Frontiers in Neuroscience(May 2011).

[96] S. H. Jo, et al. Nanoscale memristor device as synapse in neuromophic systems..

Nano Letters 10,4(2010)

[97] B. Murmann. ADC performance survey. ISSCC & VLSI Symposium. Vol.

2013. 1997.

181

[98] Z. Huang, P. Zhong et al. An architectural power estimator for analog-

to-digital converters. IEEE International Conference on Computer Design

(ICCD) 2004.

[99] Verbruggen, Bob, et al. A 2.2 mW 1.75 GS/s 5 bit folding flash ADC in 90 nm

digital CMOS. Solid-State Circuits, IEEE Journal of 44.3 (2009): 874-882

[100] Harpe, Pieter JA, et al. A 26uW 8 bit 10 MS/s asynchronous SAR ADC for low

energy radios. Solid-State Circuits, IEEE Journal of 46.7 (2011): 1585-1595.

[101] Huang, Yen-Chuan, and Tai-Cheng Lee. A 10-bit 100-MS/s 4.5-mW

pipelined ADC with a time-sharing technique. Circuits and Systems I: Reg-

ular Papers, IEEE Transactions on 58.6 (2011): 1157-1166

[102] Shettigar, Pradeep, and Shanthi Pavan. A 15mW 3.6 GS/s CT-∆Σ ADC with

36MHz bandwidth and 83dB DR in 90nm CMOS. Solid-State Circuits Con-

ference Digest of Technical Papers (ISSCC), 2012 IEEE International. IEEE,

2012.

[103] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11).

[104] Diehl, Peter U., et al. Fast-classifying, high-accuracy spiking deep networks

through weight and threshold balancing. Neural Networks (IJCNN), 2015

International Joint Conference on. IEEE, 2015.

182

