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ABSTRACT 

 

This thesis presents a 2D numerical analysis of a cross flow compact energy 

recovery ventilator (HRV) with staggered baffle channels, using finite difference 

iterative method. The model was developed by discretization of the momentum and 

continuity equation into convective-diffusive terms and applying the power law scheme. 

Solving the system of equations required the combination of the Gauss-Seidel iterative 

method and the tridiagonal-matrix direct method applied to a staggered velocity and 

pressure grid. The Semi-Implicit method for the pressure-linked equations algorithm 

(SIMPLE) was chosen for coding of the program. The simulation was carried out to 

determine the effects of baffle height h/Dh, baffle spacing S/Dh and Reynolds number 

on thermal and flow performance, therefore it was necessary to vary one of the 

parameters within a range while all others were kept constant. The results showed that 

the baffle height has the greatest effect on the overall performance. At greater baffle 

heights the pressure drop, the Nusselt number, and heat transfer effectiveness was 

increased.  The baffle pitch has the least effect on the overall performance; with 

increasing baffle pitch the pressure drop decreased while the Nusselt number had a slight 

increase prior to stabilization. The change of Reynolds increased the pressure drop and 

Nusselt number but reduced the residence time in the channel, diminishing the heat 

transfer effectiveness.  
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CHAPTER I  

INTRODUCTION  

 

With increased energy consumption as a result of economic growth, 

competitiveness and the necessity to reduce overall emissions of greenhouse gases have 

become vital for success of modern organizations. The HVAC industry has a crucial role 

for global economy to reach target greenhouse gas emission levels, as a result of energy 

consumption by sector in industrialized countries, which accounts for 33% of total 

energy consumption Zhang (2008). They are more than ever, driven to provide more 

sustainable and energy efficient systems with comfort and air quality for a wide range of 

operating conditions.  

One of the most effective methods for heat transfer enhancement is through the 

use of baffles placed on channel walls, due their high thermal loads for decreased 

dimensions. This occurs mainly because of the growth interruption of the hydrodynamic 

and thermal boundary layer, as at reattachment heat transfer rate increases. This method 

is commonly used in modern engineering applications such as in compact heat 

exchangers, solar collectors and in electronics.  

To predict effectiveness of heat transfer design, numerical analysis has become a 

common engineering task. Current available models provide reliable results eliminating 

the necessity of prototypes and tedious testing. This has become a powerful resource for 

organizations as they are able to get much faster response of design model performance, 
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eliminating the bottleneck of the design process to define the optimal arrangement much 

quicker.   

 

Objectives 

The goal of this work is creating a numerical model to simulate the effects of the 

dimensions of baffle height, baffle pitch and Reynolds number on the overall heat 

transfer effectiveness of an HRV.  The numerical model is implemented by applying a 

finite difference method to the general convection and diffusion differential equation 

using Matlab, and a simulation is carried out, changing one variable at a time such as 

baffle height, baffle pitch and Reynolds number, while the others are kept constant.  
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CHAPTER II  

LITERATURE REVIEW 

 

Compact Heat Exchangers  

Compact heat exchangers are widely used, due their high offered area density, or 

in other words the ratio of heat transfer surface to the total volume of the heat exchanger. 

This results in a reduction volume and weight, and also in improved performances and 

lower costs other convectional heat exchanger designs. 

 

Heat Recovery Ventilation Systems  

HRVs are a process for recovering heat from an air to air heat exchanger. 

Schurcliff (1988) defines heat or energy recovery as any device that removes, recovers 

or salvages heat or mass from one air stream and transfers it to another airstream. In 

other words the air that would be discarded into the outside environment is used to 

preheat or precool incoming air of and HVAC system.   

Generally Heat Recovery Ventilation systems are separated by the sensible heat 

recovery or sensible and latent heat recovery. While the first only exchanges sensible 

heat between incoming and exhausted air stream, the second also exchanges latent heat 

by means of mass exchange of moisture through a porous membrane.  

Heat recovery systems typically recover about 60%-95% of the heat in exhaust 

air and have significantly improved the energy efficiencies of buildings Idayu and Riffat 

(2012). Other advantages than the energy savings, is the reduced loss of heat and 
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effective ventilation, which can be extremely important in environments where open 

windows are a security risk. 

There are numerous types, sizes, configurations and flow arrangements of heat 

recovery units which all depend on the heat exchanger core. They can be classified based 

on geometry, flow arrangement and number of different working fluids. The main types 

of recovery systems that are currently used are the fixed plate, heat pipe, and rotary 

wheel.  

 

Fixed-Plate Heat Recovery System  

The Fixed plate heat recovery system is the most common type, due to the 

simplicity of arrangement combined with a high efficiency. They are usually constructed 

by thin plates stacked together. The plates can be smooth, have baffles or other 

disturbances for enhancing heat transfer. The schematic of a cross flow fixed-plate heat 

recovery system is shown in Figure 1. Typical effectiveness of sensible heat transfer is 

50-80% and air flow arrangements can be counter-flow, cross-flow and parallel flow 

ASHRAE (2005). 

A study performed by Han H et al (2007) investigated the effects of outdoor 

weather conditions and performance of the plate-type heat recovery ventilators. The 

experiments were carried out to measure efficiencies, while varying the outdoor 

conditions and maintaining fixed indoor heating/cooling conditions. The results showed 

that during the winter the efficiencies are higher than during the summer, mainly due to 

heat generation of the fan.  
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Figure 1. Fixed-Plate Heat Exchanger 

 

The main disadvantages of this model of compact heat exchanger is the high 

pressure drop for the equivalent flow velocities, this is due to the narrow passages 

generating high velocities and resulting in inefficient transverse vortices Li et al. (2011). 

The fixed-plate heat exchangers with disturbances of fins or baffles are denoted 

as plate-fin compact heat exchangers. The main function of the disturbance is to act as a 

secondary heat transfer surface increasing the secondary heat transfer surface area, 

consequently reducing the thermal resistance and also increasing the total heat transfer 

from the different air-flow channels of same temperature gradient.  

Heat exchange enhancement occurs through the increase of area density, also due 

to mixing which generates complex secondary flow and boundary layer separation. 

Surface interruption can also enhance heat transfer, by preventing continuous growth of 

the thermal boundary layer with periodical interruption.  
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Thus, thicker boundary layers present in a continuous flow offer greater 

resistance to heat transfer, while interruption of a thin boundary layer offers lower 

resistance to heat transfer. This enhancement mechanism occurs even at low Reynolds 

numbers when flow is steady and laminar.  Above critical numbers, the interrupted 

surfaces can offer an additional mechanism of heat transfer enhancement by introducing 

oscillations in the flow in form of vortex shedding. Vortices start near the leading edge 

of the interruption and subsequently travel downstream in the wake.  They act as large 

scale mixers and continuously bring fresh fluid from the stream towards the surface in 

the upstream of the interruption and eject the fluid away from the surface on the 

downstream side of the interruption.  It is important to note that, there is an associated 

increase in pressure drop and consequently, greater pumping power is required. The 

increased pressure drop is mainly caused due to an increase of the friction factor 

associated with the periodic restart of the hydrodynamic boundary layer. For an optimal 

design, heat transfer enhancement provided by design parameters must also account for 

their effect on increasing the required pumping power. 

 

Developing Flow 

Albakhit et al (2005) investigated numerically parallel flow and heat transfer in 

compact heat exchangers channels using the hybrid method. Developing laminar flow 

was studied in two parallel rectangular channels, and it was found that the developing 

region leads to a higher overall heat transfer coefficient.  
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Periodically Fully Developed Flow 

Patankar et al. (1977) were the first to present the concept of periodically fully 

developed flow to investigate the flow characteristics and heat transfer in ducts. For a 

module of length Lx in the stream wise direction (x), with the cross direction being 

denoted by y, the velocity profile repeats periodically: 

𝑢(𝑥, 𝑦) = 𝑢(𝑥 + 𝐿𝑥 , 𝑦) = 𝑢(𝑥 + 2𝐿𝑥 , 𝑦) = ⋯

𝑣(𝑥, 𝑦) = 𝑣(𝑥 + 𝐿𝑥 , 𝑦) = 𝑣(𝑥 + 2𝐿𝑥 , 𝑦) = ⋯
(1) 

For the heat transfer and pressure drop problem the variable does not repeat from 

module-to-module, as the case for the velocities presented in Equation (1). Although, the 

gradients repeat from module-to-module, 

Thus, 

𝛽 =
𝑃(𝑥, 𝑦) − 𝑃(𝑥 + 𝐿𝑥 , 𝑦)

𝐿𝑥
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝛾 =
𝑇(𝑥 + 𝐿𝑥 , 𝑦) − 𝑇(𝑥, 𝑦)

𝐿𝑥
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

(2) 
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The modules that satisfy Equation (1) and Equation (2) are shown in Figure igure 

2. 

 

 

 

 

 

 

 

Baffle Ribs 

Previous works have shown that that obstruction of flow can have negative or 

positive effect. For this type of heat enhancement technique, design engineers strive to 

obtain heat transfer enhancement without increasing significantly the pressure drop. A 

numerical study of parallel plates with staggered transverse baffles, with constant heat 

flux boundary condition performed by Webb and Ramadhyani (1985) has shown that by 

varying the Reynolds number from 340 to 1400, while maintaining the baffle spacing 

and baffle height to h/Dh=0.25 and S/Dh=1 respectively, the point of reattachment is no 

longer sensitive to the Reynolds number beyond Re=940, but the size of the upstream 

recirculation eddies keep increasing.  

Decreasing the rib spacing S/Dh while maintaining a constant Reynolds number 

of Re=340, the authors found that the upstream recirculating eddies occupy more of the 

Figure 2. Flow and Energy Module 

Lx 
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available space until a full recirculation cell is formed, isolating the core flow from the 

walls.  

Increasing the rib height h/Dh while maintaining a constant Reynolds number of 

Re=340, the streamlines are deflected and flow impinges with greater strength against 

the opposite walls, thus the size and the recirculation zone also increases and higher 

velocities are found at the core of the flow.  The study concluded that the Nusselt 

number and friction factor increase with Reynolds number. Also high Prandtl number 

fluid- such as water- yields a significantly higher Nusselt number combined with 

comparatively low friction factor, when compared to a fluid with lower Prandtl such a 

gas.  

Another numerical study by Rowley and Pantakar (1984) in circumferential in-

line finned tubes concluded the contrary, showing an overall decrease in the Nusselt 

number for low Prandtl number fluids, due to complete detachment of fluid from the 

tube wall.  

A finite volume numerical simulation done by Mousavi and Hooman (2005) 

investigated fluid flow and heat transfer in the entrance region of a two dimensional 

horizontal channel with staggered baffles and with isothermal walls. As previously 

mentioned, the flow detaches from the walls upstream of the baffles, creating a 

recirculating zone. Downstream of the recirculating zone the flow is reattached and the 

local Nusselt number will reach its peak value. The investigation showed that increasing 

the height of the baffles h/Dh in the ranges of (0.25 to 0.5) will lead to a greater change 
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in friction factor and also Nusselt number, in that sense one may conclude that the 

optimal heat transfer design, based on minimal pressure drop may be within that range.  

 

Staggered Baffle Ribs and In-Line Baffle Ribs 

Kelkar and Pantakar (1987) solved a parallel plate problem with staggered baffle 

ribs and based on their result the staggered baffle arrangement performs better than the 

in-line arrangement. According to their results the staggered arrangement causes the 

flow to deflect and impinge on the walls, while the in-line configuration only helps the 

flow detach from the walls of the channel, thus reducing the heat transfer performance.  

A similar study by Cheng and Huang (1990) investigated the effects of geometric 

parameters and Reynolds number on heat transfer coefficients and friction factor for 

parallel-plate of transverse fins using a finite difference stream-function vortices 

transformation. The study concluded that flow attains a fully-developed periodic profile 

after a short entrance length and in that region the higher fins have greater influence on 

the friction factor (h/Dh >0.3). As for the overall heat transfer coefficient the correct 

arrangement of the fins are of great importance in order to operate at higher Reynolds 

numbers which enhance heat transfer, without generating flow detachment and large 

recirculation zones that create an insulating effect.  

The results indicated that the staggered arrangement behaves more efficiently 

than the in-line arrangement, due to higher flow detachment of the latter. Although it is 

important to note that for the staggered arrangement, as the friction factor increases by 

an order of 100 the heat transfer coefficient will only be increased by 10. To minimize 
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this effect the fin height should diminish to drive the solution to approach the fully 

developed flow in smooth channel solution. 

Figure 3 shows the arrangement of the staggered baffle ribs in (a) and the in-line 

baffle ribs in (b) along with the standard geometry dimensions that will be used further 

sections of this investigation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Yaici et al (2012) performed a detailed numerical analysis of energy recovery 

ventilators (HRV/ERV), using computational fluid dynamics, investigating Canadian 

summer and winter conditions in both con-current and counter-current flow 

arrangements. The results showed that effectiveness decreases with increasing air 

velocity, which is attributed to the residence time in the heat recovery system core.  

(a) 

L 

h

H 
t 

S

(b) 

Figure 3. Staggered Baffle Ribs (a) and In-Line Baffle Ribs (b) 



12 

When the velocity of the air flow is low, the air remains in the core of the heat 

recovery system for more time, permitting a higher amount of heat transfer per mass of 

airflow, and which in turn enhances the effectiveness. In addition, the effectiveness is 

higher for the counter-current arrangement when compared to the con-current 

arrangement. 
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CHAPTER III 

METHODOLOGY 

 

2D - Convection and Diffusion Equation General Form 

For given flow field the convection and diffusion equation for a general 

variable ∅ is given by Equation (3) 

 

 𝑑

𝑑𝑡
(𝜌∅) +

𝑑

𝑑𝑥
(𝜌𝑢∅) +

𝑑

𝑑𝑦
(𝜌𝑣∅) =

𝑑

𝑑𝑥
(Γ

𝑑∅

𝑑𝑥
) +

𝑑

𝑑𝑦
(Γ

𝑑∅

𝑑𝑦
) + 𝑆 (3) 

 

2D - Convection and Diffusion Equation Steady State 

For steady state the first term on the left hand side of Equation (3) is eliminated. 

Additionally the source term S on the right hand side of Equation (3) can be broken 

down into different terms (body forces, pressure forces, internal generation) depending 

on the chosen general variable ∅. For now, the S term will not be considered, but will be 

inserted later for the pressure field in the momentum equation in the following sections.  

Consequently 

 

 𝑑

𝑑𝑥
(𝜌𝑢∅) +

𝑑

𝑑𝑦
(𝜌𝑣∅) =

𝑑

𝑑𝑥
(Γ

𝑑∅

𝑑𝑥
) +

𝑑

𝑑𝑦
(Γ

𝑑∅

𝑑𝑦
) (4) 
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The right hand side of Equation (4) represents the convective terms — originated 

by the bulk motion of fluid— which is linked to the fluid density (ρ)  and the velocity 

components (u) and (v) .  

The left hand side represents the diffusivity terms, linked to the flux due to the 

gradient of the general variable ∅ in the x and y direction, where Γ is the dynamic 

viscosity.  
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Figure 4. Pressure Control Volume 
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To derive the discretized equation, the control volume on Figure 4 is used. The 

control volume faces are placed at e,w,s,n – the mid-point in between the nodes, 

presented in red.  

 

Primary Derivation 

The integration of Equation (4) over the control volume of Figure 4 

 

 
∬

𝑑

𝑑𝑥
(𝜌𝑢∅)𝑑𝑥𝑑𝑦 +∬

𝑑

𝑑𝑦
(𝜌𝑣∅)𝑑𝑦𝑑𝑥

=∬
𝑑

𝑑𝑥
(Γ

𝑑∅

𝑑𝑥
)𝑑𝑥𝑑𝑦 +∬

𝑑

𝑑𝑦
(Γ

𝑑∅

𝑑𝑦
)𝑑𝑦𝑑𝑥 

(5) 

 

Provides 

 

 (𝜌𝑢∅)𝑒𝛿𝑦 − (𝜌𝑢∅)𝑤𝛿𝑦+(𝜌𝑣∅)𝑠𝛿𝑥 − (𝜌𝑣∅)𝑛𝛿𝑥 = 

(𝛤
𝑑∅

𝑑𝑥
)
𝑒
𝛿𝑦 − (𝛤

𝑑∅

𝑑𝑥
)
𝑤
𝛿𝑦 + (𝛤

𝑑∅

𝑑𝑦
)
𝑠

𝛿𝑥 − (𝛤
𝑑∅

𝑑𝑦
)
𝑛

𝛿𝑥 

(6) 
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To rearrange Equation (6) more properly, the symbols F and D are defined  

 𝐹𝑒 = (𝜌𝑢)𝑒𝛿𝑦 𝑎𝑛𝑑 𝐹𝑤 = (𝜌𝑢)𝑤𝛿𝑦     

𝐹𝑠 = (𝜌𝑣)𝑠𝛿𝑥  𝑎𝑛𝑑 𝐹𝑛 = (𝜌𝑣)𝑛𝛿𝑥      

𝐷𝑒 = (
Γ

𝛿𝑥
)
𝑒

𝛿𝑦 𝑎𝑛𝑑 𝐷𝑤 = (
Γ

𝛿𝑥
)
𝑤

𝛿𝑦    

𝐷𝑠 = (
Γ

𝛿𝑦
)
𝑠

𝛿𝑥  𝑎𝑛𝑑 𝐷𝑛 = (
Γ

𝛿𝑦
)
𝑛

𝛿𝑥    

(7) 

 

F indicates the strength of convection and D indicates the strength of diffusion. It 

is important to note that F can assume positive and negative values depending on the 

direction of fluid flow.  

With the assumption of the interfaces being midway of two control volume 

nodes, the central differencing scheme is achieved. However as mentioned before if the 

values of F are negative, coefficients of negative value can arise originating unrealistic 

results, therefore this scheme is only effective for extremely small values of δx and δy. 

For primary derivation, the upwind scheme is a used remedy for the limitations 

encountered by the central differencing scheme. The upwind scheme proposes a better 

theory, by reformulating the convective terms – linked to F– yet leaving the diffusivity 

terms unchanged. The value of ∅ at the interface of the control volume is equal to the 

value of ∅ at the previous grid point upwind of the flow direction. 
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Thus, 

 

 𝜙𝑒 = 𝜙𝑃   𝑖𝑓 𝐹𝑒 > 0   𝑎𝑛𝑑 𝜙𝑒 = 𝜙𝐸   𝑖𝑓 𝐹𝑒 < 0  

 𝜙𝑤 = 𝜙𝑊  𝑖𝑓 𝐹𝑤 > 0  𝑎𝑛𝑑 𝜙𝑤 = 𝜙𝑃   𝑖𝑓 𝐹𝑤 < 0 

𝜙𝑠 = 𝜙𝑃   𝑖𝑓 𝐹𝑠 > 0   𝑎𝑛𝑑 𝜙𝑠 = 𝜙𝑆  𝑖𝑓 𝐹𝑠 < 0  

 𝜙𝑛 = 𝜙𝑁   𝑖𝑓 𝐹𝑛 > 0   𝑎𝑛𝑑 𝜙𝑛 = 𝜙𝑃   𝑖𝑓 𝐹𝑛 < 0 

(8) 

 

Defining the new operator [[A,B]] to denote the greater of A and B, and with 

following upwind scheme assumptions, Equation (6) becomes: 

 

 𝑎𝑃𝜙𝑃 = 𝑎𝐸𝜙𝐸 + 𝑎𝑊𝜙𝑊 + 𝑎𝑆𝜙𝑆 + 𝑎𝑁𝜙𝑁 (9) 

 

 

 𝑎𝐸 = 𝐷𝑒 + [[−F𝑒 , 0]]  

𝑎𝑊 = 𝐷𝑊 + [[F𝑊, 0]] 

𝑎𝑆 = 𝐷𝑆 + [[−F𝑆, 0]]  

𝑎𝑁 = 𝐷𝑁 + [[F𝑁, 0]]  

𝑎𝑃 = 𝑎𝐸 + 𝑎𝑊 + 𝑎𝑆 + 𝑎𝑁 

(10) 

 

It is evident from Equation (10) that no negative coefficients will arise; therefore 

the solution will be physically realistic.  
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Numerical Schemes  

Equation (4) can be solved for an exact solution if F and D are taken to be 

constants. As follows the ϕ = f(x)  profile can be better understood for different Peclet 

numbers. The ratio of convective strengths by diffusive strengths is defined by the Peclet 

number  

 

 
𝑃 =

𝐹

𝐷
 (11) 

 

In a pure diffusion P=0 with  ϕ = f(x)   defined by a linear profile. For positive P 

the values of ϕ seem to be more influenced by the upstream values of ϕ, and becomes 

more accurate as higher positive values of P are approached throughout the domain . For 

negative P the picture is reversed. This proves that the upwind scheme becomes more 

accurate for higher values of |𝑃|. 

With the exact solution it is possible to obtain guidance as regarding the use of an 

appropriate profile ϕ = f(x)  . The primary derivation fails to give a satisfactory 

formulation, due to our profile not being linear therefore the assumption of the upwind 

scheme becomes valid only for where |P| is high.  

To compensate for all |P| different schemes can be used, for instance as the 

Exponential Scheme (exact solution), Hybrid Scheme and the power law scheme the 

latter being used for this simulation.  
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The schemes are introduced into the discretized equations through a constant 

A(|P|) added to the link coefficients of Equation (10).  

Thus,  

 

 𝑎𝐸 = 𝐷𝑒A(|𝑃|)  + [[−F𝑒, 0]]  

𝑎𝑊 = 𝐷𝑊A(|𝑃|)  + [[F𝑊, 0]] 

𝑎𝑆 = 𝐷𝑆A(|𝑃|)  + [[−F𝑆, 0]]  

𝑎𝑁 = 𝐷𝑁A(|𝑃|)  + [[F𝑁, 0]]  

𝑎𝑃 = 𝑎𝐸 + 𝑎𝑊 + 𝑎𝑆 + 𝑎𝑁 

(12) 

 

Power Law Scheme  

Although the Exponential Scheme provides the most accurate solution, this is a 

method which is not widely used due to the required computational power and 

consequently high costs for simulations.  

To overcome the previous constraints the power law scheme is the best 

approximation to the exact curve for a wide range of Peclet numbers and it is a method 

that does not require excessive computational power.  

The constant A(|P|) added to the link coefficients presented on the previous 

numerical scheme section, for the power law scheme is given by 

 

 A(|𝑃|) = [[0, (1 − 0.1|𝑃|)5]] (13) 
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Flow Field – Momentum Equation 

The general formulation in the previous sections to solve the differential equation 

for ϕ is only valid in the presence of a given flow field. For this application it is not 

possible to guess a flow field as it can vary with flow and geometry conditions therefore 

the governing equations are used to calculate de flow field. The velocity components of 

the flow field are governed by the momentum Equation (14). 

𝑑𝑉⃗ 

𝑑𝑡
+ 𝑉⃗ ∙ (∇𝑉⃗ ) =

1

𝜌
(−∇𝑃⃗ + ∇ ∙ (𝜇∇𝑉⃗ )) + 𝑆 (14) 

Considering the flow is a continuum, incompressible, steady state and with no 

body forces, Equation (14) reduces to Equation (15) in 2D coordinates. 

:  𝑢
𝑑𝑢

𝑑𝑥
+ 𝑣

𝑑𝑢

𝑑𝑦
=
1

𝜌
(−

𝑑𝑃

𝑑𝑥
+

𝑑

𝑑𝑥
(μ

𝑑𝑢

𝑑𝑥
) +

𝑑

𝑑𝑦
(μ

𝑑𝑢

𝑑𝑦
)) 

𝑦:  𝑢
𝑑𝑣

𝑑𝑥
+ 𝑣

𝑑𝑣

𝑑𝑦
=
1

𝜌
(−

𝑑𝑃

𝑑𝑦
+

𝑑

𝑑𝑥
(μ

𝑑𝑣

𝑑𝑥
) +

𝑑

𝑑𝑦
(μ

𝑑𝑣

𝑑𝑦
)) 

(15) 

Equation (15) is a distinct form of the steady state general Equation (4) for the 

general variable when  ϕ = u  or v is the 2D coordinate velocity, Γ = μ is the dynamic 

viscosity, and when the pressure gradient source term is added.  
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Solving the momentum equation is not a concern and could be done by iteration, 

the difficulty in calculating the velocity field lies in the unknown pressure field.  The 

pressure filed is indirectly specified via the continuity equation, and when the correctly 

specified the resulting velocity filed satisfies the continuity equation.  

 

Staggered Grid  

It is important to recognize that the variables do not have to be calculated in the 

same grid, this is extremely effective to avoid limitations and difficulties of determining 

the pressure field.  
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 Figure 5. Control Volume Staggered Grid 
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For the Staggered Grid the velocity components are calculated at the faces of the 

control volumes of the other variables such as pressure. Assigning a different grid to the 

velocity components brings a significant benefit to the simulation. 

Figure 5 (a) shows the representation of the staggered grid, and Figure 5 (b) and 

(c) shows two control volumes for the 2D coordinate velocity. The location of the 𝑢 

velocity is shown by the black arrow and the 𝑣 velocity is shown by the green arrow, 

while the other variables (pressure, viscosity, density) are arranged at the red center 

node. 

The first most important advantage of the staggered grid is that the discretized 

continuity equation will contain the differences of adjacent velocities and that prevents a 

wavy unrealistic velocity field. The second advantage is that the pressure difference 

between grids becomes the driving force for the velocity as shown by the velocity 

components control volumes of Figure 5 (b) and (c). 
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Discretized Momentum Equation 

To obtain the discretization of the 2D coordinate momentum Equation (15), an 

identical formulation used in the previous section for the primary derivations of 

Equation (9) is used, subsequent to the substitution of the general variable ∅  for the 

velocity components, Γ for the absolute viscosity and addition of the source term for the 

pressure gradient field. Integration is performed over the velocity control volumes 

containing the pressure nodes at the interface presented in Figure 5 (b) and (c) 

determines: 

 

 𝑥:  𝑎𝑒𝑢𝑒 =∑𝑎𝑛𝑏𝑢𝑛𝑏 + (𝑃𝑝 − 𝑃𝐸)𝛿𝑦 

𝑦:  𝑎𝑠𝑣𝑠 =∑𝑎𝑛𝑏𝑣𝑛𝑏 + (𝑃𝑝 − 𝑃𝑁)𝛿𝑥 

(16) 

 

The discretized momentum Equation (16)  can only be solved when a pressure 

field is predicted or given by experiment. If the correct pressure filed is not employed, 

the resulting velocity will not satisfy the continuity equation. The velocity profile 

obtained by a guessed pressure field is denoted by superscript * is defined by: 
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 𝑥:  𝑎𝑒𝑢𝑒
∗ = ∑𝑎𝑛𝑏𝑢𝑛𝑏

∗ + (𝑃𝑝
∗ − 𝑃𝐸

∗)𝛿𝑦 

𝑦:  𝑎𝑠𝑣𝑠
∗ =∑𝑎𝑛𝑏𝑣𝑛𝑏

∗ + (𝑃𝑝
∗ − 𝑃𝑁

∗)𝛿𝑥 

(17) 

 

Pressure and Velocity Corrections  

Considering the initial pressure field is guessed, it needs to be improved in order 

for the velocity flow field to become closer to satisfying the continuity equation. To 

correct the pressure a correction term need to be added to the initial guessed pressure, 

given by: 

 

 𝑝 = 𝑝∗ + 𝑝′ (18) 

 

where 𝑝′is the pressure correction term. Subsequently the velocity is affected by the 

change in pressure; in that sense it is also necessary to correct the velocities in a similar 

manner: 

 

 𝑢 = 𝑢∗ + 𝑢′ 

𝑣 = 𝑣∗ + 𝑣′  
(19) 
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When subtracting Equation (17) from Equation (16), which is the guessed 

pressure field momentum equation minus the actual momentum equation provides the 

discretized correction momentum equation. 

 

 𝑥:  𝑎𝑒𝑢𝑒
′ =∑𝑎𝑛𝑏𝑢𝑛𝑏

′ + (𝑃𝑝
′ − 𝑃𝐸

′)𝛿𝑦 

𝑦:  𝑎𝑠𝑣𝑠
′ =∑𝑎𝑛𝑏𝑣𝑛𝑏

′ + (𝑃𝑝
′ − 𝑃𝑁

′)𝛿𝑥 

(20) 

 

When considering the Semi-Implicit Method the summation of the neighboring 

nodes is set to zero. The words Semi-Implicit means that by setting the summation term 

to zero in Equation (20), the neighboring velocity corrections do not influence one 

another in the correction momentum equation; however since the pressure term is 

maintained, there is an implicit influence of the pressure correction on the velocity and 

consequently causes a velocity correction at each node. Equations (20) reduce to: 

 

 𝑥:  𝑎𝑒𝑢𝑒
′ = (𝑃𝑝

′ − 𝑃𝐸
′)𝛿𝑦 

𝑦:  𝑎𝑛𝑣𝑛
′ = (𝑃𝑝

′ − 𝑃𝑁
′)𝛿𝑥 

(21) 
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Substituting Equation (21) back into Equation (19) defines: 

 

 
𝑥:  𝑢𝑒 = 𝑢𝑒

∗ +
𝛿𝑦
 𝑎𝑒

(𝑃𝑝
′ − 𝑃𝐸

′) 

𝑦: 𝑣𝑛 = 𝑣𝑛
∗ +

𝛿𝑥
𝑎𝑛

(𝑃𝑝
′ − 𝑃𝑁

′) 

(22) 

 

Now, to obtain the pressure correction equation the continuity equation is used. 

The 2D continuity equation is given by: 

 

 𝑑

𝑑𝑥
(𝜌𝑢) +

𝑑

𝑑𝑦
(𝜌𝑣) = 0 (23) 

 

To obtain the discretized equation, the same procedure as the general variable is 

used, where integration of the continuity Equation (23) over the control volume of 

Figure 4 is performed  

Thus, 

 

 [(𝜌𝑢)𝑒 − (𝜌𝑢)𝑤]𝛿𝑦 + [(𝜌𝑣)𝑒 − (𝜌𝑣)𝑤]𝛿𝑥 = 0 (24) 
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If now the velocity correction terms from Equation (22) are substituted into 

Equation (24): 

 

 𝑎𝑃𝑃𝑃
′ = 𝑎𝐸𝑃𝐸

′ + 𝑎𝑊𝑃𝑊
′+𝑎𝑁𝑃𝑁

′ + 𝑎𝑆𝑃𝑆
′
 (25) 

 

 

 
𝑎𝐸 = 𝜌𝑒

𝛿𝑦
2

 𝑎𝑒
, 

𝑎𝑊 = 𝜌𝑤
𝛿𝑦

2

 𝑎𝑒
 

𝑎𝑁 = 𝜌𝑛
𝛿𝑥

2

 𝑎𝑛
 

𝑎𝑆 = 𝜌𝑠
𝛿𝑥

2

 𝑎𝑛
 

𝑎𝑃 = 𝑎𝐸 + 𝑎𝑊 + 𝑎𝑁 + 𝑎𝑆 

 

(26) 
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The SIMPLE Algorithm  

The procedure that has been given to calculate the flow field, by guessing a 

pressure filed and correcting the pressure and the velocities is given the name of 

SIMPLE algorithm, which stands for semi implicit method for the pressure-linked 

equations. 

The sequence of operation for the SIMPLE algorithm is: 

1.) Guess the pressure field 𝑃∗. 

2.) Solve the momentum Equation (17), to obtain 𝑢∗,  𝑣∗. 

3.) Solve the pressure correction equation 𝑃′. 

4.) Calculate P from Equation (18) adding 𝑃′ 𝑡𝑜 𝑃∗ . 

5.) Calculate 𝑢 𝑎𝑛𝑑 𝑣 using the velocity correction Equation (22). 

6.) Solve the other discretized Equations for T. 

7.) Make the corrected pressure P the new guessed pressure 𝑃∗, and start from 

step 2. Repeat until a converged solution is obtained. 

 

Solution of the System of Equations 

To model the flow and heat transfer problems of this simulation either ordinary 

(ODE) or partial differential (PDE) equations are used, and in order to solve these 

equations they need to be converted to a system of linear algebraic equations, as shown 

in a previous section trough discretization.  
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To solve the system of equations, various methods are available for usage, 

choosing the correct method is extremely important to guarantee optimal required 

computational power. The methods are separated into iterative methods and direct 

methods or a blend of the two methods. The methods used for the scope of this 

simulation will be presented. 

Gauss-Seidel 

∅𝑖
(𝐾+1)

=
1

𝑎𝑖𝑖
[𝑏𝑖 −∑𝑎𝑖𝑗∅𝑗

(𝐾+1)
− ∑ 𝑎𝑖𝑗∅𝑗

(𝐾)

𝑁

𝑗=𝑖+1

𝑖−1

𝑗=1

] 

∆∅𝑖 = ∆∅𝑖
(𝐾+1) − ∆∅𝑖

(𝐾)

(27) 

The Gauss-Seidel method is an implicit iteration method to solve a system of 

equations. 

In Equation (27) the index i is the number of the equation, ∅ is the general 

variable, K is the number of iterations, a are the coefficients of the equations and b is the 

source term of each equation. 
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As a starting point initial values are guessed for all variables ∅ and the value of 

the first variable is calculated through the first equation. Subsequently, the calculated 

value for the first variable ∅j
(K+1)

 is used on the subsequent equation aij∅j
(K)

 until a 

converged solution that satisfies all the equations is attained∆∅i = 0. The major 

disadvantage of this method is that convergence is slow, especially when a fine grid is 

being used. 

 

Tridiagonal Matrix  

The tridiagonal matrix is a direct method, which solves a system of equations by 

the standard Gauss Elimination method. The 1-D discretized equations display the 

tridiagonal pattern, due to each equation having only the  a𝑤 , a𝑃 , a𝐸 coefficients. 

Thus, the matrix for the grid of length n becomes:  

 

 

(

−𝑎𝑊1 𝑎𝑃1 −𝑎𝐸1 0 0 0
0 −𝑎𝑊2 𝑎𝑃2 −𝑎𝐸2 0 0
0 0 ⋱ ⋱ ⋱ 0
0 0 0 −𝑎𝑊𝑛 𝑎𝑃𝑛 −𝑎𝐸𝑛

)(

𝑢1
𝑢2
⋮
𝑢𝑛

) = (

𝑏1
𝑏2
⋮
𝑏𝑛

) (28) 

 

The main objective of the tridiagonal matrix is to exploit the pattern by storing 

only the non-zero elements, which reduces significantly the memory required. 
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To apply the algorithm, each of the diagonals has to be applied to vectors  

 

 𝐴 = [−𝑎𝑊1, −𝑎𝑊2, … , −𝑎𝑊𝑛] 

𝐵 = [𝑎𝑃1, 𝑎𝑃2, … , 𝑎𝑃𝑛] 

𝐶 = [−𝑎𝐸1, −𝑎𝐸2, … ,−𝑎𝐸𝑛] 

𝐷 = [𝑏1, 𝑏2, … , 𝑏𝑛] 

 

(29) 

Subsequently the equation is solved through the direct Gauss-Elimination method 

embedded in the algorithm. It is important to note that the two dimensional grid displays 

a Penta diagonal matrix. Solving the entire grid by a direct method would not be very 

effective, requiring excessive memory.   

 

Line by Line Method 

A combination of the TDMA direct method and the iterative Gauss-Seidel 

method is the line by line method. First a grid line in the x or y direction shall be chosen, 

afterwards the grids along the direction of the chosen line are solved through the TDMA 

method, while the grid points in the other direction are solved through Gauss-Seidel 

iteration method.  After sweeping through all the grid points, the method can be repeated 

by switching the directions and sweeping again through the grid points. This helps 

improve convergence time.  The main advantage of this method is that the boundary 

conditions at the endings are promptly inserted to the grid points also improving 

convergence time.  
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When the y direction is chosen to be solved through TDMA, it is called implicit 

in the y direction, this is because during the iteration calculation the terms the y line and 

to the east are at the K iteration while the grid points to the west at ae the K+1 iteration. 

The scheme is shown by Figure 6 for implicit y direction and Figure 7 for implicit in x 

direction. 

Figure 6. Line by Line Method Implicit y 

K+1 K 

T
D

M
A
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Figure 7. Line by Line Method Implicit x 

K+1 

K 
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Overrelaxation and Underrelaxation 

During iteration solution -which is used to handle all the nonlinearities- it is often 

desirable to speed up or slow down the changes from iteration to iteration. 

Overrelaxation is when the convergence is accelerated and the underrelaxation is when 

convergence is slowed down. The underrelaxed or overrelaxed general variable 

discretized equation (9) takes the following form: 

𝑎𝑃
𝛼
𝜙𝑃 = 𝑎𝐸𝜙𝐸 + 𝑎𝑊𝜙𝑊 + 𝑎𝑆𝜙𝑆 + 𝑎𝑁𝜙𝑁 + (1 − 𝛼)

𝑎𝑃
𝛼
𝜙𝑃
∗ (30) 

∗where the term  ϕP from the previous iteration is introduced along with the relaxation

factor α. It is important to note that when the relaxation is between 0 and 1 the effect is 
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underrelaxation. Underrelaxation is only recommended in cases when the non-linearity 

of the discretized equation is high. There is no general rule for the correct value of the 

relaxation factor, as it is usually defined by experimenting different values and 

simulating. The overrelaxation factor that commonly used is between 1 and 1.5. 

For this simulation the relaxation method is applied to all discretized equations 

from the previous section. 

Assumptions 

The assumptions for this simulation were, flow is a 2D continuum, laminar, 

steady-state, incompressible, the fluid is considered to be Newtonian and the walls are 

thin with very high thermal conductivity. 
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Convergence 

The used convergence criterion is the residual method, given by: 

𝑅𝑢 = ∑
| 𝑎𝑃𝑢𝑃 − ∑𝑎𝑛𝑏𝑢𝑛𝑏 − (𝑃𝑊 − 𝑃𝐸)𝛿𝑦|

| 𝑎𝑃𝑢𝑃|
≤ 106 

𝑅𝑣 =∑
| 𝑎𝑃𝑣𝑃 − ∑𝑎𝑛𝑏𝑣𝑛𝑏 − (𝑃𝑆 − 𝑃𝑁)𝛿𝑥|

| 𝑎𝑃𝑣𝑃|
≤ 106 

𝑅𝑃 =∑
|( 𝜌𝑤𝑢𝑤 −  𝜌𝑒𝑢𝑒)𝛿𝑦 + ( 𝜌𝑠𝑢𝑠 −  𝜌𝑛𝑢𝑛)𝛿𝑥|

|𝜌𝑢𝑚𝑎𝑥𝐿𝑦|
≤ 106 

𝑅𝑇 = ∑
| 𝑎𝑃𝑇𝑃 −∑𝑎𝑛𝑏𝑇𝑛𝑏|

| 𝑎𝑃𝑇𝑃|
≤ 107 

(31) 

Grid Dependence 

Different mesh sizes were employed for the conditions of Re=150, h/Dh=0.25 

and S/dh= 2.0  the grid size was changed  from 25x250 to  28x275 to 30x300 changed by 

less than 0.05%. 
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Code Validation  

To verify the code of the numerical simulation, the analytical solution for fully 

developed flow in a smooth channel was used with a constant heat flux boundary 

condition of 8.235 according to Han (2012). Using a grid size of 30x300 the Nusselt 

number archived was of 8.232 which is a 0.03% difference from the analytical solution.  

A pressure field was guessed of 82 (Pa) for a Re=150, S/Dh=2.0 and h/Dh=0.35 

and the final pressure field achieved was only different by 0.073% by the initial zero 

pressure field, but it is important to note that convergence time was reduced.  
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CHAPTER IV  

RESULTS AND DISCUSSION 

 

In this section performance results are presented for the numerical simulation, 

followed by a discussion. In this study, it was assumed that the heat recovery system is 

an air-to-air compact heat exchanger (HRV), with two ducts of equal dimensions, 

properties and flow conditions. Figure 8. shows the schematic and the fluid properties 

along with inlet conditions are presented in Table 1: 

  

𝑚  

𝑄 

= 𝜋𝑟2

Ti

Ti

𝑚  

Figure 8. Schematic of Air-to-Air Compact Heat Exchanger 
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𝜌 (𝑑𝑒𝑛𝑠𝑖𝑡𝑦) 1.177  (
𝐾𝑔

𝑚3)

𝜇 (Viscosity) 1.846 𝑥 10−5 (𝑃𝑎 𝑠) 

𝑘 (Thermal Conductivity) 0.02624 (
𝑊

𝑚2𝐾
)

𝑐𝑝 (Specific Heat) 1004.8   (
𝐽

𝐾𝑔 𝐾
) 

𝑅𝑒 (Reynolds Number) 150, 300,450 

𝑃𝑟 (Prandtl Number) 0.707 

𝑇𝑖𝑛𝐶  (Inlet temperature of the cold channel) 298  𝐾 

𝑇𝑖𝑛𝐻(Inlet temperature of the hot channel) 313  𝐾 

Table 1 Fluid Properties and Inlet Temperature Conditions 

Table 2 presents the geometrical conditions of the heat recovery system along 

with the size of meshing for both ducts. 
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𝐷ℎ (Hydraulic Diameter) 0.004 𝑚 

𝐿 (𝑙𝑒𝑛𝑔𝑡ℎ) 0.280 𝑚 

EntL (Straight entry length) 0.045 𝑚 

ExiL (Straight exit length) 0.045 𝑚 

h (Height of the Baffle) 0.0010 𝑚, 0.0014 𝑚, 0.0018  𝑚 

Th (Thickness of the Baffle) 0.001 𝑚 

Pit (Pitch of the baffle plate) 0.002 𝑚, 0.006 𝑚, 0.010 𝑚 

Nx (Number of control volumes x) 300 

Ny (Number of control volumes y) 30 

 

Table 2 Geometry and Meshing Size  

 

To determine the effects of baffle height, baffle pitch and Reynolds number on 

heat transfer enhancement while maintaining a relatively low increase in pressure drop, 

it was necessary to keep two of the latter variables constant, while varying the other and 

analyze from the results the impact of each.  

 

Effect of Baffle Height 

For this section, the simulation was carried out using a constant Reynolds 

Number of 150 and a baffle spacing ratio of S/Dh=2.0 while varying the baffle height 

h/Dh= 0.25-0.35-0.45. 
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Figure 10. Vector Plots h/Dh=0.35 

  

 

Figure 9. Velocity Vector Plots h/Dh=0.25 
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Figure 11. Velocity Vector Plots h/Dh=0.45 

 

Figures 9 to 11 illustrate the effect of baffle height on the hydrodynamic flow 

profile for the 0.15m to 0.2m section of the ducts.  The height of the baffles results in 

substantial change of the flow profile, creating recirculation zones downstream and also 

smaller recirculating zones upstream the baffles. Figure 9 – The smallest baffle height– 

displays only a slight bulk flow deflection, but in turn produces elongating circulating 

eddies that occupy 67% of the baffle spacing with consequently a longer reattachment 

length of the flow which is in the order of 4.7mm or 4.7 times the height.  Figure 10 – 

The intermediate baffle height – exhibits more intensive bulk flow deflection, producing 

shorter downstream baffle circulating eddies that occupy 53% of the baffle spacing with 

a reattachment length of the flow in the order of 3.7 mm or 2.6 times the height.  
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Figure 11- The greater baffle height – follows an even more intensive flow 

deflection trend compared to the other baffle heights, generating the shortest 

downstream baffle recirculating eddies that occupy 43% of the baffle spacing and 

reattachment length in the order of 3mm or 1.6 times the baffle height. It is also 

important to note that as the baffle height is lengthened, velocity is increased in the 

“core” of the flow and the reattachment length is shortened. The increased flow 

deflection cause greater impingement on the walls and promotes better mixing of the 

“core” with the regions near the walls.  

  

 

Figure 12. Pressure Drop h/Dh=0.25 



 

45 

 

 

  

Figure 13. Pressure Drop h/Dh=0.35 

 

 

Figure 14. Pressure Drop h/Dh=0.45 
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Figures 12 to 15 illustrate the effect of baffle height on the total pressure drop. 

As shown in the previous section, when the height of the baffle is increased, flow is 

increasingly deflected causing impingement on the walls. Also, as the baffle height is 

increased, the cross sectional area decreases, promoting greater velocity in the “core” of 

the flow increasing the pressure drop. The pressure drops for h/Dh=0.25, 0.35, 0.45 were 

27.54 (Pa), 82.15 (Pa), and155.31 (Pa) respectively. Varying h/Dh=0.25 to 0.35 

increased the pressure drop by 54.6 (Pa), while varying h/Dh=0.35 to 0.45 increased the 

pressure drop by 73.16 (Pa). Figure 15 displays this trend as the rates of change increase 

as baffle height h/Dh is lengthened.  

  

 

Figure 15. Pressure Drop x h/Dh 
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Figure 16. Nusselt Number h/Dh=0.25 

 

Figure 17. Nusselt Number h/Dh=0.35 
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Figure 18. Nusselt Number h/Dh=0.45 

 

Figure 19. Nusselt x h/Dh 
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Figures 16 to 19 illustrate the effect of baffle height on the local Nusselt number, 

which determines the convective heat transfer coefficient. The baffles interrupt not only 

the flow, but it also the thermal boundary layer. The Nusselt number reaches peak value 

after the recirculation eddies where flow is reattached.  The peak Nusselt numbers for 

h/Dh=0.25, 0.35, 0.45 were of 19, 29, and 50 respectively. Varying h/Dh=0.25 to 0.35 

increased the Nusselt number by 10, while varying h/Dh=0.35 to 0.45 increased the 

Nusselt number by 21. Figure 19 displays this trend as the Nusselt number rates of 

change increase as baffle height h/Dh is lengthened. The increasing rates of the Nusselt 

number are much lower compared to the pressure drop rates, and as h/Dh approaches 

0.45 or higher, the pressure drop increases at greater rates than the Nusselt number. 

When this condition is reached the increased pressure drop does not justify such small 

gain of heat transfer enhancement. 
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Figure 20. Bulk Temperature h/Dh=0.25 

 

 

Figure 21. Temperature Profile of Channels h/Dh=0.25 
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Figure 22. Bulk Temperature h/Dh=0.35 

Figure 23. Temperature Profile of Channels h/Dh=0.35 
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Figure 24. Bulk Temperature h/Dh=0.45 

 

Figure 25. Temperature Profile of Channels h/Dh=0.45 
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Figures 20 to 26 illustrate the effect of baffle height on temperature and heat 

transfer effectiveness. For h/Dh=0.25 the bulk temperature shift between the inlet and 

outlet of the two ducts is ∆T = 9.5 K. The slope is similar to of a straight duct; this can 

be noticed by figure 20, as there is only a slight change of slope relative to the entrance 

length, where no baffles are present. This behavior, mainly occurs because there is only 

a slight deflection of the flow, that hardly promotes interruption of the thermal boundary 

layer.  For h/Dh=0.35 the bulk temperature shift is ∆T = 10.5 K, and for h/Dh=0.45 

was ∆T = 11 K. For the previous two baffle heights the bulk temperature slope becomes 

more apparent, as the thermal boundary layer is further interrupted.  

 

 

 

Figure 26. Heat Transfer Effectiveness x h/Dh 
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Figure 26 presents the heat transfer effectiveness, increasing h/Dh=0.25 to 0.35 

increases significantly the effectiveness, but the rates of change start to decay for any 

further increment in h/Dh, and tends to approach a constant effectiveness after 

h/Dh=0.45. 

The temperature contour plots have a strong link with the velocity vector plots 

presented before, as the recirculating eddies downstream of the baffle act as an 

insulation zone. This becomes clear as the contour plot displays a zero temperature 

gradient tendency at those regions. It was proven that as the baffle height is increased, 

the length of the recirculating eddies decrease; therefore the insulation effect occurs in a 

shorter region. Since this simulation is performed in a counter-flow arrangement, it is 

important to note that the flow profiles of each duct are mirrored, and accordingly while 

one of the ducts is in the insulation recirculating region of lowest heat transfer 

coefficient, the other is most likely at a region where flow is reattached in an area of 

highest heat transfer coefficient. 

Recapitulating to the velocity vector plots, the length of the insulation region for 

h/Dh=0.25, 0.35, 0.45 is of 4.7mm, 3.7 mm, 3mm respectively, while the space between 

the baffles is only 7mm.  

After analyzing the results for the three different heights it is clear the effect of 

baffle height on the various parameters presented. Now it is possible to designate the 

most effective height, that will provide heat transfer enhancement with a tolerable 

pressure drop, and it all points to h/Dh=0.35. 
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Effect of Baffle Pitch 

To determine the effects of baffle pitch, the simulation was carried out using a 

constant Reynolds Number of 150 and a baffle height ratio of h/Dh=0.35, which was 

determined as optimum when comparing the three heights in the previous section. While 

keeping these variables constant the baffle pitch was varied S/Dh= 0.5, 1.5, 2.5. 

Figure 27. Velocity Vector Plots S/Dh=0.50 



56 

Figure 29. Pressure Drop S/Dh=2.50 

Figure 28. Pressure Drop S/Dh=1.50 
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Figures 27 to 29 illustrate the effect of baffle pitch on the hydrodynamic flow 

profile for the 0.15m to 0.2m section of the ducts.  The pitch, similarly to the height of 

the baffles also contribute in substantial change of the flow profile, creating recirculation 

zones downstream and also smaller recirculating zones upstream the baffles. Figure 27 – 

The smallest pitch S/Dh=0.50- does not promote any deflection of the flow; as the 

recirculating eddies occupy 100% of the baffle spacing. Due to this behavior, the flow 

tends to approach a parallel plate solution, but on a channel with a thinner cross sectional 

area. Figure 28 – The intermediate baffle pitch S/Dh=1.50 – exhibits mild flow 

deflection, as flow is barely reattached. The reattachment length is 2.8mm long or 47% 

of the length of the pitch. Figure 28 –The greater baffle pitch S/Dh=2.50 – Promotes 

slightly greater flow deflection, and generates a reattachment length of 3.7mm, 

occupying 37% of the length of the baffle pitch. As the baffle pitch is lengthened the 

downstream and upstream recirculating vortices become less significant compared to the 

size of the pitch, and the flow tends to penetrate deeper into the pitch spacing, promoting 

greater flow deflection and consequently better mixing.  

  



 

58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. Pressure Drop S/Dh=0.50 

 

Figure 31. Pressure Drop S/Dh=1.50 
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Figure 32. Pressure Drop S/Dh=2.50 

 

Figure 33. Pressure Drop x S/Dh 
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Figures 29 to 31 illustrate the effect of pitch on the total pressure drop. It was 

possible to notice that as baffle spacing is increased, flow has greater deflection, and 

causes impingent on the walls, but this is not the factor that has the greatest impact on 

the pressure drop. As the baffle spacing decreases the recirculating vortices fully occupy 

the pitch, and the “core” of the velocity of the flow can up to 2 times greater at S/Dh=0.5 

compared to S/Dh=2.5 causing much more impact on pressure drop. The pressure drop 

for S/Dh=0.5, 1.5, 2.5 were 137 (Pa), 123.3 (Pa), and 57.44 (Pa) respectively. Varying 

S/Dh=0.5 to 1.5 decreased the pressure drop by 13.7 (Pa), while varying S/Dh=1.5 to 2.5 

65.9 (Pa). It becomes clear that as pitch spacing increases the pressure drop is reduced at 

increasing rates, this is due to lower velocities in the core of the flow. Figure 31 displays 

the decay of pressure drop with increased pitch spacing S/Dh, showing an increasing rate 

of change trend.  With the results of baffle height and baffle spacing, it is clear that the 

baffle spacing has a much greater effect on pressure drop.  
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Figure 34. Nusselt S/Dh=0.50 

 

 

Figure 35. Nusselt S/Dh=1.50 
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Figure 36. Nusselt S/Dh=2.50 

 

Figure 37. Nusselt x S/Dh 
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Figures 34 to 37 illustrate the effect of baffle pitch on the local Nusselt number. 

The baffles interrupt not only the flow, but also the thermal boundary layer. The Nusselt 

number reaches peak value after the recirculation eddies where flow is reattached.  The 

peak Nusselt numbers for S/Dh=0.50, 1.50, 2.50 were 13, 30, 35. Varying S/Dh=0.50 to 

1.50 increased the Nusselt number by 17 while varying S/Dh=1.50 to 2.50 only 

increased the Nusselt number by 5. Figure 37  illustrates this trend, as the rate of change 

decays approaching a constant after about S/Dh=2.00, where the Nusselt number reaches 

a maximum of 35. 

Unlike the baffle height h/Dh, increasing the pitch S/Dh has a decreasing trend 

for the pressure drop, with an increasing trend of the Nusselt number during a short 

interval. This is extremely advantageous, as in the previous section heat transfer 

enhancement was associated with great increase in pressure drop. It is important to find 

equilibrium of both parameters, because even though this method has great advantage, 

the stabilization occurs in short ranges, while increasing baffle height results in much 

greater Nusselt numbers.  
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Figure 38. Bulk Temperature S/Dh=0.50 

 

Figure 39. Temperature Profile of Channels S/Dh=0.50 
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Figure 40. Bulk Temperature S/Dh=1.50 

 

Figure 41. Temperature Profile of Channels S/Dh=1.50 



 

66 

 

 

 

 

 

 

 

 

 

  

 

Figure 42. Bulk Temperature S/Dh=2.50 

 

Figure 43. Temperature Profile of Channels S/Dh=2.50 
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Figures 38 to 44 illustrate the effect of baffle pitch on temperature and heat 

transfer effectiveness. For S/Dh=0.50, 1.50, 2.50   the bulk temperature shift between the 

inlet and outlet of the two ducts were ∆T = 8.3 K, 10.2 K and 10.5 K respectively. At 

S/Dh=0.50, there is very little mixing of the flow, consequently no interruption of the 

thermal boundary layer due to almost no flow deflection being present. As S/Dh=1.50 

flow has much greater deflection since the recirculating vortices do not occupy the pitch 

fully like the first case, promoting much greater mixing of the thermal boundary layer. 

For S/Dh=2.50 the hydrodynamic reattachment length is only slightly longer than 

S/Dh=1.50 by less than 1 mm, this indicates that the recirculating vortices have about 

equivalent lengths even though we are dealing with a greater pitch length, and this 

explains why the shift after S/Dh=1.50 to a greater pitch does not promote significant 

temperature change.  

 

Figure 44. Heat Transfer Effectiveness x S/Dh 



 

68 

 

Figure 44 illustrates clearly this effect by the heat transfer effectiveness plot. 

Increasing S/Dh=0.50 to 1.50 increases significantly the effectiveness, but the rates of 

change start to decay for any further increase in S/Dh, and tends to approach a constant 

effectiveness after S/Dh=2.0. 

As mentioned in the previous section, the temperature contour plots have a strong 

link with the velocity vector plots, and recirculating vortices downstream of the vortices 

behave as an insulation zone, shown by the zero temperature gradient at those regions.  

This section proves that increasing the baffle pitch can sometimes be limited at 

very short ranges, and to get the more heat transfer enhancement, the height has much 

greater impact. A good combination of height and pitch is important as the baffle height 

has great impact on the downstream vortices and an adequate pitch could minimize the 

pressure drop.  

After analysis of results, it is clear that the Nusselt number, and effectiveness 

reaches the peak value and stabilizes after S/Dh=2, but the pressure drop continues to 

decrease until S/Dh=2.5, making it the most effective pitch for this application.  
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Effect of Reynolds Number 

To determine the effects of Reynolds number, the simulation was carried out 

using a constant baffle spacing of S/Dh=2.50 and a baffle height ratio of h/Dh=0.35, 

which was determined as optimum in the previous section. While keeping these 

variables constant the Reynolds number was varied from Re= 200,300, 400.  

 
 
  

 

Figure 45. Velocity Vector Plots Re=200 
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Figure 46. Velocity Vector Plots Re=300 

 

 

Figure 47. Velocity Vector Plots Re=400 
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Figures 45 to 46 illustrate the effect of Reynolds number on the hydrodynamic 

flow profile for the 0.15m to 0.2m section of the ducts.  From the results above Reynolds 

number is varied while all other parameters remain constant, including the geometric and 

fluid properties, so in other words the Reynolds number is only changing through 

velocity increase. The Reynolds number was varied Re 200, 300 and 400, and it is seen 

that the velocity has no impact on the reattachment length or the length of the 

recirculating vortices which for all was 3.7 mm. So for this manner the only visible 

change in the hydrodynamic profile is the magnitude of the velocity vectors.  
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Figure 48. Pressure Drop Re=200 

 

 

Figure 49. Pressure Drop Re=300 
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Figure 50. Pressure Drop Re=400 

 

 

Figure 51. Pressure Drop x Re 
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Figures 48 to 51 illustrate the effect of Reynolds number on the total pressure 

drop. As mentioned previously the only parameter changing the Reynolds number is the 

velocity, and as it is known, the pressure drop is proportional to the velocity squared. For 

Re= 200, 300, 400 the pressure drops were 101.81 (Pa), 231.28 (Pa), 415.06 (Pa). Figure 

51 displays the trend for the Re x Pressure drop.  

 
  

 

Figure 52. Nusselt Re=200 
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Figure 53. Nusselt Re=300 

 

Figure 54. Nusselt Re=400 
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Figures 52 to 55 illustrate the effect of Reynolds number on the local Nusselt 

number. The baffles interrupt not only the flow, but also the thermal boundary layer. The 

peak Nusselt numbers for Re=200, 300, 400 were 41.2, 53.6 and 63.9.  Varying the 

Reynolds number from Re=200 to Re=300 increased the Nusselt number by 12.4 and 

while increasing the Re=300 to Re=400 the Nusselt number was increased by 10.3. 

Figure 55. Nusselt x Re
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Figure 57. Bulk Temperature Re=200 

Figure 56. Temperature Profile of Channels Re=200
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Figure 58. Bulk Temperature Re=300 

Figure 59. Temperature Profile of Channels Re=300 
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Figure 60. Bulk Temperature Re=400 

Figure 61. Temperature Profile of Channels Re=400
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Figures 57 to 62 illustrate the effect of Reynolds number on temperature and heat 

transfer effectiveness. For Re= 200,300,400 the bulk temperature shift between the inlet 

and outlet of the two ducts were ∆T = 9.0 K , 9.3 K, 8.9 K respectively. Even though 

with increasing Reynolds number the heat transfer coefficient also increases -shown by 

figure 55 – the temperature change between the inlet and outlet of the duct slightly 

decreases. This happens even though you have a heat transfer enhancement, because as 

the velocity is increases with Reynolds number and the residence time of the air in the 

duct is lower, providing less time for heat to be exchanged. Figure 62 shows that heat 

transfer effectiveness decreases with increasing Reynolds number, and this also occurs 

because of the air residence time, for lower velocities the residence time is longer and as 

velocity increases the residence time decreases.  

 

Figure 62. Heat Transfer Effectiveness x Re 
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After analysis of results, it is clear that the increase in Reynolds number 

contributes to greater pressure drop, while providing only a marginal increase in the 

Nusselt number. Also with the increase of Reynolds number the residence time 

decreases along with the heat transfer effectiveness. The original value of Re=150 is the 

best option for this simulation.  

 
 
 
 
 
 

 



 

82 

 

CHAPTER V  

CONCLUSION 

 

A numerical study was performed to determine the effects of baffle height, baffle 

pitch and Reynolds number on the overall performance of a heat recovery ventilator. A 

numerical model using the steady state 2D convective diffusion equation using finite 

difference was developed.   

After analysis of the results it became evident that the baffle height has the 

greatest effect on the overall performance. At greater baffle heights the flow deflection, 

velocity of “core” flow, pressure drop, the Nuselt number, and heat transfer effectiveness 

all increased while the reattachment length decreased.  The pressure drop increased at 

much greater rates than the Nusselt number, so it was important to define an optimal 

point for the height. The optimum height for the selected range was defined as 

h/dh=0.35, because when setting h/dh=0.45 the pressure drop nearly doubled for only a 

small increment of only 3% of the heat transfer effectiveness.  

The results showed that the baffle pitch has less effect on the overall performance 

after flow is reattached. As the pitch spacing is occupied fully by the recirculating 

vortices, the pressure drop is the highest and as the pitch is lengthened, flow starts to 

reattach increasing the Nusselt number, reattachment length, heat transfer effectiveness 

until becoming stable, while the pressure drop has a continuous decreasing trend and 

stabilization occurs at greater pitch lengths.   
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The change of Reynolds number had no impact on the reattachment length, but 

since it was entirely linked to a velocity change the pressure drop was greatly influenced. 

As the Nusselt number was increased, the velocity, pressure drop and Nusselt number 

increased, while the heat transfer effectiveness decreased, due to the lower residence 

time. The results show that the lowest Nusselt numbers present the greatest heat transfer 

effectiveness, with lower pressure drops. The Reynolds number affects the pressure 

drop, much more than the baffle height or baffle spacing, without providing significant 

increase in the Nusselt number, while also decreasing the heat transfer effectiveness. 

For further work it is recommended to experiment this model and confront 

results, to determine if the numerical model is accurate with a practical application. Also 

since the rectangular baffles interrupt the flow abruptly, a future simulation with a baffle 

geometry that can offer a smooth transition producing flow deflection without large 

recirculating vortices and pressure drops. 
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APPENDIX A 

MATLAB CODE 

Final 2  

 

% Thesis Felipe Assuncao  

% SIMPLE algorithm applied to stagerred baffled channel  

 

  

clear all 

close all 

clc 

% calculate CPU time 

tic 

% Call Properties 

global rho mu k cp q Re lx ly nx ny umax k_vec EntL h Th Pit ExiL D D_vec 

[rho,mu,k,cp,q,Re,lx,ly,nx,ny,umax,EntL,h,Th,Pit,ExiL,D] = property; 

  

  

% - x,y            : location of grid points 

% - dx,dy          : diffusion length 

% - aW,aE,aS,aW,aP : coefficient 

  

% defines an empty struct array for pressure and velocity 

ps1 = struct('x',[],'y',[],'dx',[],'dy',[],...  

    'aW',[],'aE',[],'aS',[],'aN',[],'aP',[]);  

us1 = ps1; vs1 = ps1; ts1=ps1; 

ps2=ps1; us2=ps1; vs2=ps1; ts2=ts1; 

rhos1=ps1;rhos2=ps2; 

  

% Call Geometry 

[ps1] = geometry(ps1);  

[us1] = geometry(us1,0);  

[vs1] = geometry(vs1,1); 

[ts1] = geometry(ts1); 

  

[ps2] = geometry(ps2);  

[us2] = geometry(us2,0);  

[vs2] = geometry(vs2,1); 

[ts2] = geometry(ts2); 

  

  

% Call Boudary Conditions   

[p1,p2,pc1,pc2,u1,u2,v1,v2,T1,T2] = bcic2(); 

% Call Boudary Conditions for Baffles  

[mu,k_vec,D_vec]=blockage(mu); 

mu1=mu; 

mu2=fliplr(mu); 

mu2=flipud(mu2); 

  

k_vec1=k_vec; 

k_vec2=fliplr(k_vec); 

k_vec2=flipud(k_vec2); 

  

D_vec1=D_vec; 

D_vec2=fliplr(D_vec); 

D_vec2=flipud(D_vec2); 

  

% Initialize Residue and Iteration 

Ru1=ones; Ru2=ones; Rv1=ones; Rv2=ones; Rp1=ones;Rp2=ones; R1=zeros; IT1=zeros; 

Rt1=ones;Rt2=ones;Rrho1=ones;Rrho2=ones;R2=zeros; IT2=zeros; 

%Define Relaxation Factors 

w=0.4; wp=0.7; wt=1; wrho=1;   % each represent momentum, pressure, temperature 



 

89 

 

% Monitor residual 

disp('IT            Ru1          Ru2          Rv1          Rv2          Rp1          Rp2          

Rt1          Rt2')  

  

while Ru1 > 1e-06 | Ru2 > 1e-06 | Rv1 > 1e-06 | Rv2 > 1e-06 | Rp1 > 1e-06 | Rp2 > 1e-

06...  

    | Rt1 > 1e-07 | Rt2 > 1e-07 

     

    % Duct 1  

    % Call u coefficient and solve u 

    [us1]=u_coefficient1(us1,u1,v1,mu1);  

    [u1]=imp_x_u(us1,u1,p1,w);   

    [u1]=imp_y_u(us1,u1,p1,w);  

    [u1]=imp_x_u(us1,u1,p1,w);   

    [u1]=imp_y_u(us1,u1,p1,w);      

    % Duct 2  

    % Call u coefficient and solve u 

    [us2]=u_coefficient1(us2,u2,v2,mu2);  

    [u2]=imp_x_u(us2,u2,p2,w);   

    [u2]=imp_y_u(us2,u2,p2,w);  

    [u2]=imp_x_u(us2,u2,p2,w);   

    [u2]=imp_y_u(us2,u2,p2,w);  

     

     

    % Duct 1  

    % Call v coefficient and solve v 

    [vs1]=v_coefficient1(vs1,u1,v1,mu1);  

    [v1]=imp_x_v(vs1,v1,p1,w);  

    [v1]=imp_y_v(vs1,v1,p1,w); 

    [v1]=imp_x_v(vs1,v1,p1,w);  

    [v1]=imp_y_v(vs1,v1,p1,w);  

    % Duct 2  

     % Call v coefficient and solve v 

    [vs2]=v_coefficient1(vs2,u2,v2,mu2);  

    [v2]=imp_x_v(vs2,v2,p2,w);   

    [v2]=imp_y_v(vs2,v2,p2,w); 

    [v2]=imp_x_v(vs2,v2,p2,w);   

    [v2]=imp_y_v(vs2,v2,p2,w); 

     

     

    % Call pc coefficient and solve pc 

    % Duct 1  

    [ps1]=p_coefficient(ps1,us1,vs1); pc1=zeros(nx+2,ny+2);  

    [pc1]=imp_x_p(ps1,u1,v1,pc1);    

    [pc1]=imp_y_p(ps1,u1,v1,pc1);   

    [pc1]=imp_x_p(ps1,u1,v1,pc1);   

    [pc1]=imp_y_p(ps1,u1,v1,pc1);  

    % Duct 2 

    [ps2]=p_coefficient(ps2,us2,vs2); pc2=zeros(nx+2,ny+2);  

    [pc2]=imp_x_p(ps2,u2,v2,pc2);   

    [pc2]=imp_y_p(ps2,u2,v2,pc2);   

    [pc2]=imp_x_p(ps2,u2,v2,pc2);   

    [pc2]=imp_y_p(ps2,u2,v2,pc2);   

     

     

    % Calculate p 

    % Duct 1  

    p1=p1+wp*pc1; 

    % Duct 2 

    p2=p2+wp*pc2; 

  

    % Calculate the velocity correction  

    % Duct 1  

    [u1,v1]=vel_correction(us1,vs1,u1,v1,pc1); 

    % Duct 1  

    [u2,v2]=vel_correction(us2,vs2,u2,v2,pc2); 
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    % Mass continuity  

    % Duct 1  

    min=rho*u1(1,:)*(ly/ny); 

    mout=rho*u1(end-1,:)*(ly/ny); 

    min=sum(min); 

    mout=sum(mout); 

    mrat=min/mout; 

    u1(end,:)=mrat*u1(end-1,:); 

    % Duct 2 

    min=rho*u2(1,:)*(ly/ny); 

    mout=rho*u2(end-1,:)*(ly/ny); 

    min=sum(min); 

    mout=sum(mout); 

    mrat=min/mout; 

    u2(end,:)=mrat*u2(end-1,:); 

         

    % Call T coefficient and solve T 

    [ts1]=t_coefficient1(ts1,u1,v1,T1,k_vec1); 

    [T1]=imp_x_t1(ts1,T1,T2,wt);  

%   [T1]=imp_y_t1(ts1,T1,T2,wt);  

    [T1]=imp_x_t1(ts1,T1,T2,wt);  

%   [T1]=imp_y_t1(ts1,T1,T2,wt);  

    [ts2]=t_coefficient2(ts2,u2,v2,T2,k_vec2); 

    [T2]=imp_x_t2(ts2,T2,T1,wt);  

%   [T2]=imp_y_t2(ts2,T2,T1,wt); 

    [T2]=imp_x_t2(ts2,T2,T1,wt);  

%   [T2]=imp_y_t2(ts2,T2,T1,wt);  

  

     

    % Calculate Residual  

     

    IT1=IT1+1; % Count iteration 

    [Ru1,Rv1,Rp1,Rt1,R1]=residuals(us1,vs1,ts1,u1,v1,p1,T1,IT1,R1); 

    IT2=IT2+1; 

    [Ru2,Rv2,Rp2,Rt2,R2]=residuals(us2,vs2,ts2,u2,v2,p2,T2,IT2,R2); 

%      

    % Monitor residual 

    fprintf('%d      %.4e     %.4e     %.4e     %.4e     %.4e     %.4e     %.4e     

%.4e\n',IT1,Ru1,Ru2,Rv1,Rv2,Rp1,Rp2,Rt1,Rt2) 

     

end 

  

% Calculate nodal points velocities 

[uc1,vc1] = postprocess(us1,vs1,u1,v1); 

[uc2,vc2] = postprocess(us2,vs2,u2,v2); 

  

% Temperature Plots  

[T_bulk1,rho_bulk1,Nu1]=Tbulk1(T1,rho1,ts1,rhos1,uc1); 

[T_bulk2,Nu2]=Tbulk2(T2,ts2,uc2); 

effec=(T_bulk1(end)-T_bulk1(1))/(T_bulk2(1)-T_bulk1(1)); 

figure(3) 

plot(ts1.x,T_bulk1,ts1.x,fliplr(T_bulk2),'LineWidth',2) 

xlabel('Channel length, L [m]','FontSize',10) 

ylabel('T bulk[K]','FontSize',10) 

  

% Velocty vector plots 

%Duct 1  

figure(4) 

scale=0.18; 

quiver(ps1.x,ps1.y,uc1,vc1,scale) 

xlabel('Channel length, L [m]','FontSize',10) 

ylabel('Channel Height, H [m]','FontSize',10) 

axis([0.15 0.20 0 0.004]); 

%Duct 2 

figure(5) 
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uc2=flipud(uc2); 

vc2=flipud(vc2); 

quiver(ps2.x,ps2.y,-uc2,vc2,scale) 

xlabel('Channel length, L [m]','FontSize',10) 

ylabel('Channel Height, H [m]','FontSize',10) 

axis([0.15 0.20 0 0.004]); 

  

% Temperature Countour  

%Duct 1 

figure(6) 

 contourf(ps1.x,ps1.y,T1,500) 

 caxis([298,311]) 

 xlabel('Channel length, L [m]','FontSize',10) 

 ylabel('Channel Height, H [m]','FontSize',10) 

 c=colorbar; 

 ylabel(c,'Temperature [K]','FontSize',10) 

 %Duct 2 

figure(7) 

 Tc2=flipud(T2); 

 contourf(ps2.x,ps2.y,Tc2,500) 

 caxis([297,313]) 

 xlabel('Channel length, L [m]','FontSize',10) 

 ylabel('Channel Height, H [m]','FontSize',10) 

 c=colorbar; 

 ylabel(c,'Temperature [K]','FontSize',10) 

  

%Pressure drop 

%Duct 1 

figure(8)  

 plot(ps1.x(:,ny/2),p1(:,ny/2),'LineWidth',2) 

xlabel('Channel length, L [m]','FontSize',10) 

ylabel('Pressure (Pa)','FontSize',10) 

  

  

time=toc; toc 

  

% Heat transfer effectiveness 

figure(10) 

xx=[0.5;1.5;2.5]; 

yy=[55.12,67.87,69.68]; % Values were added manually after simulation 

xxx=linspace(0.5,2.5,10); 

plot(xxx,csapi(xx,yy,xxx),xx,yy,'ro','LineWidth',2) 

xlabel('S/Dh','FontSize',10) 

ylabel('Effectiveness(%)','FontSize',10) 

  

% Pressure drop x baffle height 

figure(11) 

xx=[0.25;0.35;0.45]; 

yy=[27.54,82.15,155.31]; % Values were added manually after simulation 

xxx=linspace(0.25,0.45,10); 

plot(xxx,csapi(xx,yy,xxx),xx,yy,'ro','LineWidth',2) 

xlabel('h/Dh','FontSize',10) 

ylabel('Pressure Drop (Pa)','FontSize',10) 

  

% Nusselt x baffle height 

figure(12) 

xx=[0.25;0.35;0.45]; 

yy=[19.15,29.2,50.1]; % Values were added manually after simulation 

xxx=linspace(0.25,0.45,10); 

plot(xxx,csapi(xx,yy,xxx),xx,yy,'ro','LineWidth',2) 

xlabel('h/Dh','FontSize',10) 

ylabel('Nusselt','FontSize',10) 

  

% Pressure drop x baffle spacing 

figure(13) 

xx=[0.50;1.50;2.0;2.50]; 
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yy=[137.1,123.31,82.14,57.41]; % Values were added manually after simulation 

xxx=linspace(0.50,2.50,10); 

plot(xxx,csapi(xx,yy,xxx),xx,yy,'ro','LineWidth',2) 

xlabel('S/Dh','FontSize',10) 

ylabel('Pressure Drop (Pa)','FontSize',10) 

  

% Nusselt number x baffle spacing 

figure(14) 

xx=[0.50;1.50;2.50]; 

yy=[9.4,30.1,35.2]; % Values were added manually after simulation 

xxx=linspace(0.50,2.50,10); 

plot(xxx,csapi(xx,yy,xxx),xx,yy,'ro','LineWidth',2) 

xlabel('S/Dh','FontSize',10) 

ylabel('Nusselt','FontSize',10) 

  

% Pressure drop x Re 

figure(15) 

xx=[150;200;300;400]; 

yy=[57.45,101.81,231.28,415.06]; 

xxx=linspace(150,400,10); 

plot(xxx,csapi(xx,yy,xxx),xx,yy,'ro','LineWidth',2) 

xlabel('Re','FontSize',10) 

ylabel('Pressure Drop (Pa)','FontSize',10) 

  

% Nusselt number x Re 

figure(16) 

xx=[200;300;400]; 

yy=[41.2,53.6,63.9]; 

xxx=linspace(200,400,10); 

plot(xxx,csapi(xx,yy,xxx),xx,yy,'ro','LineWidth',2) 

xlabel('Re','FontSize',10) 

ylabel('Nusselt','FontSize',10) 

  

% Heat transfer effectiveness x Re 

figure(17) 

xx=[200;300;400]; 

yy=[66.38,62.22,59.40]; 

xxx=linspace(200,400,10); 

plot(xxx,csapi(xx,yy,xxx),xx,yy,'ro','LineWidth',2) 

xlabel('Re','FontSize',10) 

ylabel('Effectiveness(%)','FontSize',10) 

 

% Geometry Function 

 

function [ss] = geometry(ss,verbose) 

  

% call global variables 

global lx ly nx ny 

  

if nargin < 2, xmax=nx+2; ymax=ny+2;                 % p control volumes 

elseif verbose < 1, xmax=nx+1; ymax=ny+2;            % u control volumes 

else xmax=nx+2; ymax=ny+1;                           % v control volumes  

end                       

  

% Initial variables 

x=zeros(xmax,ymax); y=zeros(xmax,ymax);  

dx=zeros(xmax-1,ymax); dy=zeros(xmax,ymax-1); 

  

% Grid distribution 

if nargin < 2, dx(1,:)=lx/nx/2; dy(:,1)=ly/ny/2;     % p control volumes 

elseif verbose < 1, dx(1,:)=lx/nx; dy(:,1)=ly/ny/2;  % u control volumes 

else dx(1,:)=lx/nx/2; dy(:,1)=ly/ny;                 % v control volumes 

end 

  

% last points 
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dx(xmax-1,:)=dx(1,:); 

dy(:,ymax-1)=dy(:,1); 

  

% diffusion length 

dx(2:xmax-2,:)=lx/nx; 

dy(:,2:ymax-2)=ly/ny; 

  

% Boundary 

for i=2:xmax, for j=1:ymax-1, x(i,j)=x(i-1,j)+dx(i-1,j); end, end 

for i=1:xmax-1, for j=2:ymax, y(i,j)=y(i,j-1)+dy(i,j-1); end, end 

x(:,ymax)=x(:,ymax-1); y(xmax,:)=y(xmax-1,:); 

  

  

ss.x=x; ss.y=y; ss.dx=dx; ss.dy=dy; 

  

end 

  

 

% Boundary Condition Function 

 

function [p1,p2,pc1,pc2,u1,u2,v1,v2,T1,T2] = bcic() 

  

% Call global variables 

global ly nx ny umax 

  

% Pressure and velocity vectors 

  

u1=zeros(nx+1,ny+2); 

u2=zeros(nx+1,ny+2); 

v1=zeros(nx+2,ny+1); 

v2=zeros(nx+2,ny+1); 

p1=zeros(nx+2,ny+2); 

p2=zeros(nx+2,ny+2); 

pc1=zeros(nx+2,ny+2); 

pc2=zeros(nx+2,ny+2); 

T1=zeros(nx+2,ny+2); 

T2=zeros(nx+2,ny+2); 

  

% BC for pressure and velocities 

% West 

u1(1,2:end) = umax; 

u2(1,2:end) = umax; 

v1(1,:)=0;  

v2(1,:)=0;  

T1(1,:) =298; 

T2(1,:) =313; 

% east 

u1(nx+1,:)=0; 

u2(nx+1,:)=0;  

v1(nx+2,:)=0; 

v2(nx+2,:)=0;  

T1(nx+2,:)=0; 

T2(nx+2,:)=0; 

% north 

u1(:,ny+2)=0; 

u2(:,ny+2)=0;  

v1(:,ny+1)=0; 

v2(:,ny+1)=0; 

T1(2:end-1,ny+2)=0; 

T2(2:end-1,ny+2)=0;  

% south  

u1(:,1)=0; 

u2(:,1)=0;  

v1(:,1)=0;v(:,1)=0;  

T1(2:end-1,1)=0; 

T2(2:end-1,1)=0;                   
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end 

 

 
% Blockage condition in baffles 

 

function [mu,k_vec,D_vec]=blockage(mu) 

  

% Call global variables 

global k lx ly nx ny EntL h Th Pit ExiL D 

  

% Define block as high vicosity region 

if isvector(mu)     

    % initialize viscosity 

    mu=mu*ones(nx+2,ny+2); 

    k_vec=k*ones(nx+2,ny+2); 

    D_vec=D*ones(nx+2,ny+2); 

     

     

Mu1T=round(EntL/lx*nx)+round(Th/lx*nx+1); % Index of viscosity matrix 

Mu0T=round(EntL/lx*nx+1); 

Mu1B=round(EntL/lx*nx)+round(((Pit-(abs(Pit-Th)/2))+Th)/lx*nx+1); 

Mu0B=round(EntL/lx*nx)+round((Pit-(abs(Pit-Th)/2))/lx*nx+1); 

i=1; 

  

     

  

while Mu1B<(nx+2-round(ExiL/lx*nx)) 

     

    mu(Mu0B+1:Mu1B,1:round(h/ly*ny+1))=10^45; 

    mu(Mu0T+1:Mu1T,(ny+2-round(h/ly*ny):end))=10^45; 

    k_vec(Mu0B+1:Mu1B,1:round(h/ly*ny+1))=0; 

    k_vec(Mu0T+1:Mu1T,(ny+2-round(h/ly*ny):end))=0; 

    D_vec(Mu0B+1:Mu1B,1:round(h/ly*ny+1))=0; 

    D_vec(Mu0T+1:Mu1T,(ny+2-round(h/ly*ny):end))=0; 

     

    Mu0T=round(EntL/lx*nx)+round((Th+Pit)*i/lx*nx+1); 

    Mu1T=round(EntL/lx*nx)+round((Th+((Th+Pit)*i))/lx*nx+1); 

    Mu1B=round(EntL/lx*nx)+round(((Pit-(abs(Pit-Th)/2))+Th+((Th+Pit)*i))/lx*nx+1); 

    Mu0B=round(EntL/lx*nx)+round(((Pit-(abs(Pit-Th)/2))+((Th+Pit)*i))/lx*nx+1); 

     

     

    i=i+1; 

end     

    

elseif ~isvector(mu) 

  

Mu1T=round(EntL/lx*nx)+round(Th/lx*nx+1); % Index of viscosity matrix 

Mu0T=round(EntL/lx*nx+1); 

Mu1B=round(EntL/lx*nx)+round(((Pit-(abs(Pit-Th)/2))+Th)/lx*nx+1); 

Mu0B=round(EntL/lx*nx)+round((Pit-(abs(Pit-Th)/2))/lx*nx+1); 

i=1; 

  

     

  

while Mu1B<(nx+2-round(ExiL/lx*nx)) 

     

    mu(Mu0B+1:Mu1B,1:round(h/ly*ny+1))=10^45; 

    mu(Mu0T+1:Mu1T,(ny+2-round(h/ly*ny):end))=10^45; 

     

    Mu0T=round(EntL/lx*nx)+round((Th+Pit)*i/lx*nx+1); 

    Mu1T=round(EntL/lx*nx)+round((Th+((Th+Pit)*i))/lx*nx+1); 

    Mu1B=round(EntL/lx*nx)+round(((Pit-(abs(Pit-Th)/2))+Th+((Th+Pit)*i))/lx*nx+1); 

    Mu0B=round(EntL/lx*nx)+round(((Pit-(abs(Pit-Th)/2))+((Th+Pit)*i))/lx*nx+1); 
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    i=i+1; 

end 

  

  

end 

end 

 

 

% U velocity Coefficients 

function [us]=u_coefficient1(us,u,v,mu) 

  

% define maximum points 

xmax=size(u,1); ymax=size(u,2); 

  

% Initialize coefficients 

aw=zeros(xmax,ymax); 

ae=aw; 

as=aw; 

an=aw; 

ap=aw; 

Dw=aw; 

De=aw; 

Ds=aw; 

Dn=aw; 

Fw=aw; 

Fe=aw; 

Fs=aw; 

Fn=aw; 

Pw=aw; 

Pe=aw; 

Ps=aw; 

Pn=aw; 

  

% Call global variables 

global rho lx ly nx ny 

  

%Difussion 

for j=2:ymax-1 

    for i=2:xmax-1 

        switch i 

            case 2          % 3/2 control volumes 

                Dw(i,j)=mu(i-1,j)*ly/ny/us.dx(i-1,j);  

                De(i,j)=mu(i+1,j)*ly/ny/us.dx(i,j);         

                Ds(i,j)=harmmean([mu(i,j-1) mu(i+1,j-1)])*... 

                    lx/nx*1.5/us.dy(i,j-1);  

                Dn(i,j)=harmmean([mu(i,j) mu(i+1,j)])*lx/nx*1.5/us.dy(i,j); 

            case xmax-1     % 3/2 control volumes 

                Dw(i,j)=mu(i,j)*ly/ny/us.dx(i-1,j);  

                De(i,j)=mu(i+2,j)*ly/ny/us.dx(i,j);         

                Ds(i,j)=harmmean([mu(i,j-1) mu(i+1,j-1)])*... 

                    lx/nx*1.5/us.dy(i,j-1);  

                Dn(i,j)=harmmean([mu(i,j) mu(i+1,j)])*lx/nx*1.5/us.dy(i,j); 

            otherwise       % regular control volumes 

                Dw(i,j)=mu(i,j)*ly/ny/us.dx(i-1,j);  

                De(i,j)=mu(i+1,j)*ly/ny/us.dx(i,j); 

                Ds(i,j)=harmmean([mu(i,j-1) mu(i+1,j-1)])*... 

                    lx/nx/us.dy(i,j-1);  

                Dn(i,j)=harmmean([mu(i,j) mu(i+1,j)])*lx/nx/us.dy(i,j); 

        end 

    end 

end 

  

% Convection 

for j=2:ymax-1 

    for i=2:xmax-1 

        switch i 
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            case 2          % west 3/2 control volumes 

                Fw(i,j)=rho*u(i-1,j)*ly/ny; 

                Fe(i,j)=rho*(u(i,j)+u(i+1,j))/2*ly/ny; 

                Fs(i,j)=rho*(v(i-1,j-1)+3*v(i,j-1)+2*v(i+1,j-1))/4*lx/nx; 

                Fn(i,j)=rho*(v(i-1,j)+3*v(i,j)+2*v(i+1,j))/4*lx/nx; 

            case xmax-1     % east 3/2 control volumes 

                Fw(i,j)=rho*(u(i-1,j)+u(i,j))/2*ly/ny; 

                Fe(i,j)=rho*u(i+1,j)*ly/ny; 

                Fs(i,j)=rho*(2*v(i,j-1)+3*v(i+1,j-1)+v(i+2,j-1))/4*lx/nx; 

                Fn(i,j)=rho*(2*v(i,j)+3*v(i+1,j)+v(i+2,j))/4*lx/nx; 

            otherwise       % inside control volumes 

                Fw(i,j)=rho*(u(i-1,j)+u(i,j))/2*ly/ny; 

                Fe(i,j)=rho*(u(i,j)+u(i+1,j))/2*ly/ny; 

                Fs(i,j)=rho*(v(i,j-1)+v(i+1,j-1))/2*lx/nx; 

                Fn(i,j)=rho*(v(i,j)+v(i+1,j))/2*lx/nx;                 

        end 

    end 

end 

  

% Peclet numbers 

Pw(2:xmax-1,2:ymax-1)=Fw(2:xmax-1,2:ymax-1)./Dw(2:xmax-1,2:ymax-1);  

Pe(2:xmax-1,2:ymax-1)=Fe(2:xmax-1,2:ymax-1)./De(2:xmax-1,2:ymax-1);  

Ps(2:xmax-1,2:ymax-1)=Fs(2:xmax-1,2:ymax-1)./Ds(2:xmax-1,2:ymax-1);  

Pn(2:xmax-1,2:ymax-1)=Fn(2:xmax-1,2:ymax-1)./Dn(2:xmax-1,2:ymax-1); 

  

% Coefficients 

for i=2:xmax-1 

    for j=2:ymax-1 

        aw(i,j)=Dw(i,j)*powerlaw(Pw(i,j))+max(Fw(i,j),0); 

        ae(i,j)=De(i,j)*powerlaw(Pe(i,j))+max(-Fe(i,j),0); 

        as(i,j)=Ds(i,j)*powerlaw(Ps(i,j))+max(Fs(i,j),0); 

        an(i,j)=Dn(i,j)*powerlaw(Pn(i,j))+max(-Fn(i,j),0); 

    end 

end 

ap=aw+ae+as+an; 

  

  

us.aW=aw; us.aE=ae; us.aS=as; us.aN=an; us.aP=ap; 

  

end 

  

 

 

 

 

 

% U solve implicit x  

 

function [u]=imp_x_u(us,u,p,w) 

  

xmax=size(u,1); 

ymax=size(u,2); 

  

  

% call global variables 

global ly ny 

  

  

aw=us.aW;  

ae=us.aE;  

as=us.aS;  

an=us.aN;  

ap=us.aP; 

  

for j=ymax-1:-1:2 

    % TDMA variables 
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    a=zeros(1,xmax-2); 

    b=zeros(1,xmax-2); 

    c=zeros(1,xmax-3);  

    d=zeros(1,xmax-2); 

    % TDMA Boundary Conditions 

    b(1)=ap(2,j)/w; c(1)=-ae(2,j);  

    d(1)=as(2,j)*u(2,j-1)+an(2,j)*u(2,j+1)+ap(2,j)*u(2,j)*(1/w-1)+... 

        aw(2,j)*u(1,j)+(p(2,j)-p(3,j))*ly/ny;  

    a(xmax-2)=-aw(xmax-1,j); b(xmax-2)=ap(xmax-1,j)/w-ae(xmax-1,j);  

    d(xmax-2)=as(xmax-1,j)*u(xmax-1,j-1)+an(xmax-1,j)*u(xmax-1,j+1)+... 

        ap(xmax-1,j)*u(xmax-1,j)*(1/w-1)+(p(xmax-1,j)-p(xmax,j))*ly/ny;                         

    for i=2:xmax-3 

        a(i)= -aw(i+1,j);  

        b(i)=ap(i+1,j)/w; 

        c(i)= -ae(i+1,j); 

        d(i)=as(i+1,j)*u(i+1,j-1)+an(i+1,j)*u(i+1,j+1)+... 

            ap(i+1,j)*u(i+1,j)*(1/w-1)+(p(i+1,j)-p(i+2,j))*ly/ny; 

    end 

    % Call TDMA function 

    [u(2:xmax-1,j)] = TDMA(a,b,c,d); 

    % Boundary condition: du/dx = 0 

    u(xmax,j)=u(xmax-1,j); 

end 

return; 

 

 

% U solve implicit y 

 
function [u]=imp_y_u(us,u,p,w) 

  

xmax=size(u,1); 

ymax=size(u,2); 

  

% call global variables 

global ly ny 

  

  

aw=us.aW; 

ae=us.aE;  

as=us.aS;  

an=us.aN;  

ap=us.aP; 

  

for i=2:1:xmax-1 

    % TDMA variables 

    a=zeros(1,ymax-2); b=zeros(1,ymax-2); 

    c=zeros(1,ymax-3); d=zeros(1,ymax-2); 

     % TDMA Boundary Conditions 

    b(1)=ap(i,2)/w; c(1)=-an(i,2);  

    d(1)=aw(i,2)*u(i-1,2)+ae(i,2)*u(i+1,2)+ap(i,2)*u(i,2)*(1/w-1)+... 

        as(i,2)*u(i,1)+(p(i,2)-p(i+1,2))*ly/ny;  

    a(ymax-2)=-as(i,ymax-1); b(ymax-2)=ap(i,ymax-1)/w;  

    d(ymax-2)=aw(i,ymax-1)*u(i-1,ymax-1)+ae(i,ymax-1)*u(i+1,ymax-1)+... 

        ap(i,ymax-1)*u(i,ymax-1)*(1/w-1)+an(i,ymax-1)*u(i,ymax)+... 

        (p(i,ymax-1)-p(i+1,ymax-1))*ly/ny;                         

    for j=2:ymax-3 

        a(j)= -as(i,j+1);  

        b(j)=ap(i,j+1)/w; 

        c(j)= -an(i,j+1); 

        d(j)=aw(i,j+1)*u(i-1,j+1)+ae(i,j+1)*u(i+1,j+1)+... 

            ap(i,j+1)*u(i,j+1)*(1/w-1)+(p(i,j+1)-p(i+1,j+1))*ly/ny; 

    end 

    % Call TDMA function 

    [u(i,2:ymax-1)] = TDMA(a,b,c,d); 

end 

% Apply boundary condition 
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u(xmax,:)=u(xmax-1,:); 

return; 

 

 
% V velocity Coefficients 

 
function [vs]=v_coefficient1(vs,u,v,mu) 

  

xmax=size(v,1);  

ymax=size(v,2); 

  

% Initialize coefficients 

aw=zeros(xmax,ymax); 

ae=aw; 

as=aw; 

aN=aw; 

ap=aw; 

Dw=aw; 

De=aw; 

Ds=aw; 

Dn=aw; 

Fw=aw; 

Fe=aw; 

Fs=aw; 

Fn=aw; 

Pw=aw; 

Pe=aw; 

Ps=aw; 

Pn=aw; 

  

% Call global variables 

global rho lx ly nx ny 

  

%Difussion 

for j=2:ymax-1 

    for i=2:xmax-1 

        switch j 

            case 2      % 3/2 control volumes 

                Ds(i,j)=mu(i,j-1)*lx/nx/vs.dy(i,j-1);  

                Dn(i,j)=mu(i,j+1)*lx/nx/vs.dy(i,j); 

                Dw(i,j)=harmmean([mu(i-1,j) mu(i,j)])*... 

                    ly/ny*1.5/vs.dx(i-1,j);  

                De(i,j)=harmmean([mu(i,j) mu(i+1,j)])*ly/ny*1.5/vs.dx(i,j); 

            case ymax-1    % 3/2 control volumes 

                Ds(i,j)=mu(i,j)*lx/nx/vs.dy(i,j-1);  

                Dn(i,j)=mu(i,j+2)*lx/nx/vs.dy(i,j); 

                Dw(i,j)=harmmean([mu(i-1,j) mu(i,j)])*... 

                    ly/ny*1.5/vs.dx(i-1,j);  

                De(i,j)=harmmean([mu(i,j) mu(i+1,j)])*ly/ny*1.5/vs.dx(i,j); 

            otherwise       % inside control volumes 

                Ds(i,j)=mu(i,j)*lx/nx/vs.dy(i,j-1);  

                Dn(i,j)=mu(i,j+1)*lx/nx/vs.dy(i,j); 

                Dw(i,j)=harmmean([mu(i-1,j) mu(i,j)])*ly/ny/vs.dx(i-1,j);  

                De(i,j)=harmmean([mu(i,j) mu(i+1,j)])*ly/ny/vs.dx(i,j); 

        end 

    end 

end 

  

% Convection 

for j=2:ymax-1 

    for i=2:xmax-1 

        switch j 

            case 2          % south 2/3 control volumes 

                Fw(i,j)=rho*(u(i-1,j-1)+3*u(i-1,j)+2*u(i-1,j+1))/4*ly/ny; 

                Fe(i,j)=rho*(u(i,j-1)+3*u(i,j)+2*u(i,j+1))/4*ly/ny; 

                Fs(i,j)=rho*v(i,j-1)*lx/nx; 
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                Fn(i,j)=rho*(v(i,j)+v(i,j+1))/2*lx/nx; 

            case ymax-1     % north 2/3 control volumes    

                Fw(i,j)=rho*(2*u(i-1,j)+3*u(i-1,j+1)+u(i-1,j+2))/4*ly/ny; 

                Fe(i,j)=rho*(2*u(i,j)+3*u(i,j+1)+u(i,j+2))/4*ly/ny; 

                Fs(i,j)=rho*(v(i,j-1)+v(i,j))/2*lx/nx; 

                Fn(i,j)=rho*v(i,j+1)*lx/nx;             

            otherwise       % inside control volumes 

                Fw(i,j)=rho*(u(i-1,j)+u(i-1,j+1))/2*ly/ny; 

                Fe(i,j)=rho*(u(i,j)+u(i,j+1))/2*ly/ny; 

                Fs(i,j)=rho*(v(i,j-1)+v(i,j))/2*lx/nx; 

                Fn(i,j)=rho*(v(i,j)+v(i,j+1))/2*lx/nx;                 

        end 

    end 

end 

                 

% Peclet numbers 

Pw(2:xmax-1,2:ymax-1)=Fw(2:xmax-1,2:ymax-1)./Dw(2:xmax-1,2:ymax-1);  

Pe(2:xmax-1,2:ymax-1)=Fe(2:xmax-1,2:ymax-1)./De(2:xmax-1,2:ymax-1);  

Ps(2:xmax-1,2:ymax-1)=Fs(2:xmax-1,2:ymax-1)./Ds(2:xmax-1,2:ymax-1);  

Pn(2:xmax-1,2:ymax-1)=Fn(2:xmax-1,2:ymax-1)./Dn(2:xmax-1,2:ymax-1); 

  

% Coefficients 

for i=2:xmax-1 

    for j=2:ymax-1 

        aw(i,j)=Dw(i,j)*powerlaw(Pw(i,j))+max(Fw(i,j),0); 

        ae(i,j)=De(i,j)*powerlaw(Pe(i,j))+max(-Fe(i,j),0); 

        as(i,j)=Ds(i,j)*powerlaw(Ps(i,j))+max(Fs(i,j),0); 

        aN(i,j)=Dn(i,j)*powerlaw(Pn(i,j))+max(-Fn(i,j),0); 

    end 

end 

ap=aw+ae+as+aN; 

  

vs.aW=aw; vs.aE=ae; vs.aS=as; vs.aN=aN; vs.aP=ap; 

  

end 

  

 
% V solve implicit x 

 
function [v]=imp_x_v(vs,v,p,w) 

  

  

xmax=size(v,1); 

ymax=size(v,2); 

  

% call global variables 

global lx nx 

  

% allocate structure array 

aw=vs.aW; 

ae=vs.aE;  

as=vs.aS;  

an=vs.aN;  

ap=vs.aP; 

  

for j=ymax-1:-1:2 

    % TDMA variables 

    a=zeros(1,xmax-2);  

    b=zeros(1,xmax-2); 

    c=zeros(1,xmax-3); 

    d=zeros(1,xmax-2); 

     % TDMA Boundary Conditions 

    b(1)=ap(2,j)/w; c(1)=-ae(2,j);  

    d(1)=as(2,j)*v(2,j-1)+an(2,j)*v(2,j+1)+ap(2,j)*v(2,j)*(1/w-1)+... 

        aw(2,j)*v(1,j)+(p(2,j)-p(2,j+1))*lx/nx;  

    a(xmax-2)=-aw(xmax-1,j); b(xmax-2)=ap(xmax-1,j)/w;  
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    d(xmax-2)=as(xmax-1,j)*v(xmax-1,j-1)+an(xmax-1,j)*v(xmax-1,j+1)+... 

        ap(xmax-1,j)*v(xmax-1,j)*(1/w-1)+ae(xmax-1,j)*v(xmax,j)+... 

        (p(xmax-1,j)-p(xmax-1,j+1))*lx/nx;                         

    for i=2:xmax-3 

        a(i)= -aw(i+1,j);  

        b(i)=ap(i+1,j)/w; 

        c(i)= -ae(i+1,j); 

        d(i)=as(i+1,j)*v(i+1,j-1)+an(i+1,j)*v(i+1,j+1)+... 

            ap(i+1,j)*v(i+1,j)*(1/w-1)+(p(i+1,j)-p(i+1,j+1))*lx/nx; 

    end 

    % Call TDMA function 

    [v(2:xmax-1,j)] = TDMA(a,b,c,d); 

     

    % Apply boundary condition: fully developed flow 

    v(xmax,j)=0;     

end 

return; 

 

 

% V solve implicit y 

 

function [v]=imp_y_v(vs,v,p,w) 

  

  

xmax=size(v,1); 

ymax=size(v,2); 

  

  

% call global variables 

global lx nx 

  

aw=vs.aW; 

ae=vs.aE; 

as=vs.aS; 

an=vs.aN; 

ap=vs.aP; 

  

for i=xmax-1:-1:2 

    % TDMA variables 

    a=zeros(1,ymax-2); b=zeros(1,ymax-2); 

    c=zeros(1,ymax-3); d=zeros(1,ymax-2); 

    % TDMA Boundary Conditions 

    b(1)=ap(i,2)/w; c(1)=-an(i,2);  

    d(1)=aw(i,2)*v(i-1,2)+ae(i,2)*v(i+1,2)+ap(i,2)*v(i,2)*(1/w-1)+... 

        as(i,2)*v(i,1)+(p(i,2)-p(i,3))*lx/nx;  

    a(ymax-2)=-as(i,ymax-1); b(ymax-2)=ap(i,ymax-1)/w;  

    d(ymax-2)=aw(i,ymax-1)*v(i-1,ymax-1)+ae(i,ymax-1)*v(i+1,ymax-1)+... 

        ap(i,ymax-1)*v(i,ymax-1)*(1/w-1)+an(i,ymax-1)*v(i,ymax)+... 

        (p(i,ymax-1)-p(i,ymax))*lx/nx;                         

    for j=2:ymax-3 

        a(j)= -as(i,j+1);  

        b(j)=ap(i,j+1)/w; 

        c(j)= -an(i,j+1); 

        d(j)=aw(i,j+1)*v(i-1,j+1)+ae(i,j+1)*v(i+1,j+1)+... 

            ap(i,j+1)*v(i,j+1)*(1/w-1)+(p(i,j+1)-p(i,j+2))*lx/nx; 

    end 

    % Call TDMA function 

    [v(i,2:ymax-1)] = TDMA(a,b,c,d); 

end 

% Apply boundary condition: fully developed flow 

v(xmax,:)=0;  

return; 
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% P Pressure Coefficients 

 

function [ps]=p_coefficient(ps,us,vs) 

  

xmax=size(ps.x,1);  

ymax=size(ps.y,2); 

  

  

aw=zeros(xmax,ymax); 

ae=aw; 

as=aw; 

an=aw; 

ap=aw; 

  

% Call global variables 

global rho lx ly nx ny 

  

  

for i=2:xmax-1 

    for j=2:ymax-1 

        aw(i,j)=rho*ly/ny/us.aP(i-1,j)*ly/ny; 

        ae(i,j)=rho*ly/ny/us.aP(i,j)*ly/ny; 

        as(i,j)=rho*lx/nx/vs.aP(i,j-1)*lx/nx; 

        an(i,j)=rho*lx/nx/vs.aP(i,j)*lx/nx; 

    end 

end 

  

% BC 

aw(2,:)=0; ae(xmax-1,:)=0; as(:,2)=0; an(:,ymax-1)=0; 

  

ap=aw+ae+as+an; 

  

ps.aW=aw; ps.aE=ae; ps.aS=as; ps.aN=an; ps.aP=ap; 

  

end 

 

 
 

% P solve implicit x 

 

function [pc]=imp_x_p(ps,u,v,pc) 

  

  

xmax=size(pc,1); 

ymax=size(pc,2); 

  

% call global variables 

global rho lx ly nx ny 

  

aw=ps.aW;  

ae=ps.aE;  

as=ps.aS;  

an=ps.aN;  

ap=ps.aP; 

  

for j=ymax-1:-1:2 

     % TDMA variabless 

    a=zeros(1,xmax-2); 

    b=zeros(1,xmax-2); 

    c=zeros(1,xmax-3); 

    d=zeros(1,xmax-2); 

   % TDMA Boundary Conditions 

    b(1)=ap(2,j)-3/2*aw(2,j); c(1)=-ae(2,j)+0.5*aw(2,j);  

    d(1)=as(2,j)*pc(2,j-1)+an(2,j)*pc(2,j+1)+rho*(u(1,j)-u(2,j))*ly/ny+... 

        rho*(v(2,j-1)-v(2,j))*lx/nx;  

    a(xmax-2)=-aw(xmax-1,j)+0.5*ae(xmax-1,j);  
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    b(xmax-2)=ap(xmax-1,j)-3/2*ae(xmax-1,j);  

    d(xmax-2)=as(xmax-1,j)*pc(xmax-1,j-1)+an(xmax-1,j)*pc(xmax-1,j+1)+... 

        rho*(u(xmax-2,j)-u(xmax-1,j))*ly/ny+... 

        rho*(v(xmax-1,j-1)-v(xmax-1,j))*lx/nx;                         

    for i=2:xmax-3 

        a(i)= -aw(i+1,j);  

        b(i)=ap(i+1,j); 

        c(i)= -ae(i+1,j); 

        d(i)=as(i+1,j)*pc(i+1,j-1)+an(i+1,j)*pc(i+1,j+1)+... 

            rho*(u(i,j)-u(i+1,j))*ly/ny+rho*(v(i+1,j-1)-v(i+1,j))*lx/nx; 

    end 

    % Call TDMA function 

    [pc(2:xmax-1,j)] = TDMA(a,b,c,d); 

    % dp/dx=constant 

    pc(1,j)=3/2*pc(2,j)-0.5*pc(3,j);                % west 

    pc(xmax,j)=3/2*pc(xmax-1,j)-0.5*pc(xmax-2,j);   % east 

end 

return; 

 

 
% P solve implicit y 

 

function [pc]=imp_y_p(ps,u,v,pc) 

  

xmax=size(pc,1); 

ymax=size(pc,2); 

  

% call global variables 

global rho lx ly nx ny 

  

% allocate structure array 

  

aw=ps.aW;  

ae=ps.aE; 

as=ps.aS; 

an=ps.aN; 

ap=ps.aP; 

  

for i=xmax-1:-1:2 

    % TDMA variables 

    a=zeros(1,ymax-2); b=zeros(1,ymax-2); 

    c=zeros(1,ymax-3); d=zeros(1,ymax-2); 

   % TDMA Boundary Conditions 

    b(1)=ap(i,2); c(1)=-an(i,2);  

    d(1)=aw(i,2)*pc(i-1,2)+ae(i,2)*pc(i+1,2)+as(i,2)*pc(i,1)+... 

        rho*(u(i-1,2)-u(i,2))*ly/ny+rho*(v(i,1)-v(i,2))*lx/nx;  

    a(ymax-2)=-as(i,ymax-1); b(ymax-2)=ap(i,ymax-1);  

    d(ymax-2)=aw(i,ymax-1)*pc(i-1,ymax-1)+ae(i,ymax-1)*pc(i+1,ymax-1)+... 

        +an(i,ymax-1)*pc(i,ymax)+rho*(u(i-1,ymax-1)-u(i,ymax-1))*ly/ny+... 

        rho*(v(i,ymax-2)-v(i,ymax-1))*lx/nx;  

    for j=2:ymax-3 

        a(j)= -as(i,j+1);  

        b(j)=ap(i,j+1); 

        c(j)= -an(i,j+1); 

        d(j)=aw(i,j+1)*pc(i-1,j+1)+ae(i,j+1)*pc(i+1,j+1)+... 

            rho*(u(i-1,j+1)-u(i,j+1))*ly/ny+rho*(v(i,j)-v(i,j+1))*lx/nx; 

    end 

    % Call TDMA function 

    [pc(i,2:ymax-1)] = TDMA(a,b,c,d); 

end 

% dp/dx=constant 

pc(1,:)=3/2*pc(2,:)-0.5*pc(3,:);               % west 

pc(xmax,:)=3/2*pc(xmax-1,:)-0.5*pc(xmax-2,:);  % east 

return; 
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% Velocity Correction 

 

function [u,v]=vel_correction(us,vs,u,v,pc) 

  

% Call global variables 

global lx ly nx ny 

  

% calculate velocity correction 

  

% u velocity 

  

for i=2:size(u,1)-1  

    for j=2:size(u,2)-1 

        u(i,j)=u(i,j)+ly/ny/us.aP(i,j)*(pc(i,j)-pc(i+1,j)); 

    end 

end 

% v velocity 

for i=2:size(v,1)-1 

    for j=2:size(v,2)-1 

        v(i,j)=v(i,j)+lx/nx/vs.aP(i,j)*(pc(i,j)-pc(i,j+1)); 

    end 

end 

  

end 

 

 
% T1 Temperature Coefficients Duct 1 

 
function [ts]=t_coefficient1(ts,u,v,T,k_vec) 

  

  

xmax=size(T,1);  

ymax=size(T,2); 

  

% Initialize coefficients 

  

aw=zeros(xmax,ymax); 

ae=aw; 

as=aw; 

an=aw; 

ap=aw; 

Dw=aw; 

De=aw; 

Ds=aw; 

Dn=aw; 

Fw=aw; 

Fe=aw; 

Fs=aw; 

Fn=aw; 

Pw=aw; 

Pe=aw; 

Ps=aw; 

Pn=aw; 

  

% Call global variables 

global rho cp lx ly nx ny  

  

%Difussion 

for j=2:ymax-1 

    for i=2:xmax-1 

        Dw(i,j)=harmmean([k_vec(i-1,j) k_vec(i,j)])/cp*ly/ny/ts.dx(i-1,j);  

        De(i,j)=harmmean([k_vec(i,j) k_vec(i+1,j)])/cp*ly/ny/ts.dx(i,j); 

        Ds(i,j)=harmmean([k_vec(i,j-1) k_vec(i,j)])/cp*lx/nx/ts.dy(i,j-1);  

        Dn(i,j)=harmmean([k_vec(i,j) k_vec(i,j+1)])/cp*lx/nx/ts.dy(i,j); 

    end 

end 
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% Convection 

for j=2:ymax-1 

    for i=2:xmax-1 

        Fw(i,j)=rho*u(i-1,j)*ly/ny; Fe(i,j)=rho*u(i,j)*ly/ny; 

        Fs(i,j)=rho*v(i,j-1)*lx/nx; Fn(i,j)=rho*v(i,j)*lx/nx;                 

    end 

end 

  

% Peclet numbers 

Pw(2:xmax-1,2:ymax-1)=Fw(2:xmax-1,2:ymax-1)./Dw(2:xmax-1,2:ymax-1);  

Pe(2:xmax-1,2:ymax-1)=Fe(2:xmax-1,2:ymax-1)./De(2:xmax-1,2:ymax-1);  

Ps(2:xmax-1,2:ymax-1)=Fs(2:xmax-1,2:ymax-1)./Ds(2:xmax-1,2:ymax-1);  

Pn(2:xmax-1,2:ymax-1)=Fn(2:xmax-1,2:ymax-1)./Dn(2:xmax-1,2:ymax-1); 

  

% Coefficients 

for i=2:xmax-1 

    for j=2:ymax-1 

        aw(i,j)=Dw(i,j)*powerlaw(Pw(i,j))+max(Fw(i,j),0); 

        ae(i,j)=De(i,j)*powerlaw(Pe(i,j))+max(-Fe(i,j),0); 

        as(i,j)=Ds(i,j)*powerlaw(Ps(i,j))+max(Fs(i,j),0); 

        an(i,j)=Dn(i,j)*powerlaw(Pn(i,j))+max(-Fn(i,j),0); 

    end 

end 

   

ap=aw+ae+as+an; 

  

%Coefficients at the baffles 

  

[ap]=blockage(ap); 

  

  

ts.aW=aw; ts.aE=ae; ts.aS=as; ts.aN=an; ts.aP=ap; 

  

end 

 

 
% T2 Temperature Coefficients Duct 2 

 

function [ts]=t_coefficient1(ts,u,v,T,k_vec) 

  

  

xmax=size(T,1);  

ymax=size(T,2); 

  

  

  

aw=zeros(xmax,ymax); 

ae=aw; 

as=aw; 

an=aw; 

ap=aw; 

ap2=aw; 

Dw=aw; 

De=aw; 

Ds=aw; 

Dn=aw; 

Fw=aw; 

Fe=aw; 

Fs=aw; 

Fn=aw; 

Pw=aw; 

Pe=aw; 

Ps=aw; 

Pn=aw; 
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% Call global variables 

global rho cp lx ly nx ny  

  

%Difussion 

for j=2:ymax-1 

    for i=2:xmax-1 

        Dw(i,j)=harmmean([k_vec(i-1,j) k_vec(i,j)])/cp*ly/ny/ts.dx(i-1,j);  

        De(i,j)=harmmean([k_vec(i,j) k_vec(i+1,j)])/cp*ly/ny/ts.dx(i,j); 

        Ds(i,j)=harmmean([k_vec(i,j-1) k_vec(i,j)])/cp*lx/nx/ts.dy(i,j-1);  

        Dn(i,j)=harmmean([k_vec(i,j) k_vec(i,j+1)])/cp*lx/nx/ts.dy(i,j); 

    end 

end 

  

% Convection 

for j=2:ymax-1 

    for i=2:xmax-1 

        Fw(i,j)=rho*u(i-1,j)*ly/ny; Fe(i,j)=rho*u(i,j)*ly/ny; 

        Fs(i,j)=rho*v(i,j-1)*lx/nx; Fn(i,j)=rho*v(i,j)*lx/nx;                 

    end 

end 

  

% Peclet numbers 

Pw(2:xmax-1,2:ymax-1)=Fw(2:xmax-1,2:ymax-1)./Dw(2:xmax-1,2:ymax-1);  

Pe(2:xmax-1,2:ymax-1)=Fe(2:xmax-1,2:ymax-1)./De(2:xmax-1,2:ymax-1);  

Ps(2:xmax-1,2:ymax-1)=Fs(2:xmax-1,2:ymax-1)./Ds(2:xmax-1,2:ymax-1);  

Pn(2:xmax-1,2:ymax-1)=Fn(2:xmax-1,2:ymax-1)./Dn(2:xmax-1,2:ymax-1); 

  

% Coefficients 

for i=2:xmax-1 

    for j=2:ymax-1 

        aw(i,j)=Dw(i,j)*powerlaw(Pw(i,j))+max(Fw(i,j),0); 

        ae(i,j)=De(i,j)*powerlaw(Pe(i,j))+max(-Fe(i,j),0); 

        as(i,j)=Ds(i,j)*powerlaw(Ps(i,j))+max(Fs(i,j),0); 

        an(i,j)=Dn(i,j)*powerlaw(Pn(i,j))+max(-Fn(i,j),0); 

    end 

end 

  

  

ap=aw+ae+as+an; 

  

%Coefficients at the baffles 

  

[ap2]=blockage(ap2); 

ap2=fliplr(ap2); 

ap2=flipud(ap2); 

ap=ap2+ap; 

  

  

  

ts.aW=aw; ts.aE=ae; ts.aS=as; ts.aN=an; ts.aP=ap; 

  

end 

 

 

% T1 solve implicit x (Duct1) 

 

function [T1]=imp_x_t1(ts,T1,T2,w) 

  

  

xmax=size(T1,1); 

ymax=size(T1,2); 

  

% Load global variable 

global k q ly ny  
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aw=ts.aW;  

ae=ts.aE;  

as=ts.aS;  

an=ts.aN;  

ap=ts.aP; 

  

  

  

for j=2:ymax-1 

    % TDMA variables 

    a=zeros(1,xmax-2);  

    b=zeros(1,xmax-2); 

    c=zeros(1,xmax-3); 

    d=zeros(1,xmax-2); 

   % TDMA Boundary Conditions 

    b(1)=ap(2,j)/w; c(1)=-ae(2,j);  

    d(1)=as(2,j)*T1(2,j-1)+an(2,j)*T1(2,j+1)+ap(2,j)*T1(2,j)*(1/w-1)+... 

        aw(2,j)*T1(1,j);  

    a(xmax-2)=-aw(xmax-1,j)+0.5*ae(xmax-1,j);  

    b(xmax-2)=ap(xmax-1,j)/w-3/2*ae(xmax-1,j);  

    d(xmax-2)=as(xmax-1,j)*T1(xmax-1,j-1)+an(xmax-1,j)*T1(xmax-1,j+1)+... 

        ap(xmax-1,j)*T1(xmax-1,j)*(1/w-1);                         

    for i=2:xmax-3 

        a(i)= -aw(i+1,j);  

        b(i)=ap(i+1,j)/w; 

        c(i)= -ae(i+1,j); 

        d(i)=as(i+1,j)*T1(i+1,j-1)+an(i+1,j)*T1(i+1,j+1)+... 

            ap(i+1,j)*T1(i+1,j)*(1/w-1); 

    end 

    % Call TDMA function 

    [T1(2:xmax-1,j)] = TDMA(a,b,c,d); 

     

 for i=2:xmax 

T1(i,1)=(T2(xmax+1-i,ymax-1)+T1(i,2))/2; 

T1(i,ymax)=(T2(xmax+1-i,2)+T1(i,ymax-1))/2; 

end 

     

    % dT/dx=constant 

    T1(xmax,j)=3/2*T1(xmax-1,j)-0.5*T1(xmax-2,j); 

end 

  

return; 

 

 

 

% T2 solve implicit x (Duct2) 

 

function [T2]=imp_x_t2(ts,T2,T1,w) 

  

xmax=size(T2,1); 

ymax=size(T2,2); 

  

% Load global variable 

global k q ly ny  

  

aw=ts.aW;  

ae=ts.aE;  

as=ts.aS;  

an=ts.aN;  

ap=ts.aP; 

  

  

  

for j=2:ymax-1 

     % TDMA variables 

    a=zeros(1,xmax-2); b=zeros(1,xmax-2); 
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    c=zeros(1,xmax-3); d=zeros(1,xmax-2); 

    % TDMA Boundary Conditions 

    b(1)=ap(2,j)/w; c(1)=-ae(2,j);  

    d(1)=as(2,j)*T2(2,j-1)+an(2,j)*T2(2,j+1)+ap(2,j)*T2(2,j)*(1/w-1)+... 

        aw(2,j)*T2(1,j);  

    a(xmax-2)=-aw(xmax-1,j)+0.5*ae(xmax-1,j);  

    b(xmax-2)=ap(xmax-1,j)/w-3/2*ae(xmax-1,j);  

    d(xmax-2)=as(xmax-1,j)*T2(xmax-1,j-1)+an(xmax-1,j)*T2(xmax-1,j+1)+... 

        ap(xmax-1,j)*T2(xmax-1,j)*(1/w-1);                         

    for i=2:xmax-3 

        a(i)= -aw(i+1,j);  

        b(i)=ap(i+1,j)/w; 

        c(i)= -ae(i+1,j); 

        d(i)=as(i+1,j)*T2(i+1,j-1)+an(i+1,j)*T2(i+1,j+1)+... 

            ap(i+1,j)*T2(i+1,j)*(1/w-1); 

    end 

    % Call TDMA function 

    [T2(2:xmax-1,j)] = TDMA(a,b,c,d); 

     

    for i=2:xmax 

T2(i,1)=(T1(xmax+1-i,ymax-1)+T2(i,2))/2; 

T2(i,ymax)=(T1(xmax+1-i,2)+T2(i,ymax-1))/2; 

end 

  

  

     

    % dT/dx=constant 

    T2(xmax,j)=3/2*T2(xmax-1,j)-0.5*T2(xmax-2,j); 

  

end 

  

return; 

 

 

% T1 solve implicit y (Duct1) 

 

function [T1]=imp_y_t1(ts,T1,T2,w) 

  

xmax=size(T1,1); 

ymax=size(T1,2); 

  

% Load global variable 

global k q ly ny 

  

% allocate structure array 

aw=ts.aW; 

ae=ts.aE; 

as=ts.aS; 

an=ts.aN; 

ap=ts.aP; 

  

for i=2:1:xmax-1 

    % TDMA variables 

    a=zeros(1,ymax-2); b=zeros(1,ymax-2); 

    c=zeros(1,ymax-3); d=zeros(1,ymax-2); 

     % TDMA Boundary Conditions 

    b(1)=ap(i,2)/w; c(1)=-an(i,2);  

    d(1)=aw(i,2)*T1(i-1,2)+ae(i,2)*T1(i+1,2)+as(i,2)*T1(i,1)... 

        +ap(i,2)*T1(i,2)*(1/w-1);  

    a(ymax-2)=-as(i,ymax-1);  

    b(ymax-2)=ap(i,ymax-1)/w;  

    d(ymax-2)=aw(i,ymax-1)*T1(i-1,ymax-1)+ae(i,ymax-1)*T1(i+1,ymax-1)+... 

        ap(i,ymax-1)*T1(i,ymax-1)*(1/w-1)+... 

        an(i,ymax-1)*T1(i,ymax);                         

    for j=2:ymax-3 

        a(j)= -as(i,j+1);  
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        b(j)=ap(i,j+1)/w; 

        c(j)= -an(i,j+1); 

        d(j)=aw(i,j+1)*T1(i-1,j+1)+ae(i,j+1)*T1(i+1,j+1)+... 

            ap(i,j+1)*T1(i,j+1)*(1/w-1); 

    end 

    % Call TDMA function 

    [T1(i,2:ymax-1)] = TDMA(a,b,c,d);    

    

     

T1(i,1)=(T2(xmax+1-i,ymax-1)+T1(i,2))/2; 

T1(i,ymax)=(T2(xmax+1-i,2)+T1(i,ymax-1))/2; 

end 

%  dT/dx=constant 

T1(xmax,:)=3/2*T1(xmax-1,:)-0.5*T1(xmax-2,:);     

return; 

 

 

 

% T2 solve implicit y (Duct2) 

 

function [T2]=imp_y_t2(ts,T2,T1,w) 

  

xmax=size(T2,1); 

ymax=size(T2,2); 

  

% Load global variable 

global k q ly ny 

  

  

aw=ts.aW;  

ae=ts.aE; 

as=ts.aS; 

an=ts.aN; 

ap=ts.aP; 

  

for i=2:2:xmax-1 

   % TDMA variables 

    a=zeros(1,ymax-2); b=zeros(1,ymax-2); 

    c=zeros(1,ymax-3); d=zeros(1,ymax-2); 

     % TDMA Boundary Conditions 

    b(1)=ap(i,2)/w; c(1)=-an(i,2);  

    d(1)=aw(i,2)*T2(i-1,2)+ae(i,2)*T2(i+1,2)+as(i,2)*T2(i,1)... 

        +ap(i,2)*T2(i,2)*(1/w-1);  

    a(ymax-2)=-as(i,ymax-1);  

    b(ymax-2)=ap(i,ymax-1)/w;  

    d(ymax-2)=aw(i,ymax-1)*T2(i-1,ymax-1)+ae(i,ymax-1)*T2(i+1,ymax-1)+... 

        ap(i,ymax-1)*T2(i,ymax-1)*(1/w-1)+... 

        an(i,ymax-1)*T2(i,ymax);                         

    for j=2:ymax-3 

        a(j)= -as(i,j+1);  

        b(j)=ap(i,j+1)/w; 

        c(j)= -an(i,j+1); 

        d(j)=aw(i,j+1)*T2(i-1,j+1)+ae(i,j+1)*T2(i+1,j+1)+... 

            ap(i,j+1)*T2(i,j+1)*(1/w-1); 

    end 

    % Call TDMA function 

    [T2(i,2:ymax-1)] = TDMA(a,b,c,d);    

  

    T2(i,1)=(T1(xmax+1-i,ymax-1)+T2(i,2))/2; 

    T2(i,ymax)=(T1(xmax+1-i,2)+T2(i,ymax-1))/2; 

end 

  

% dT/dx=constant 

T2(xmax,:)=3/2*T2(xmax-1,:)-0.5*T2(xmax-2,:);     

return; 
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% Residual 

 

function [Ru,Rv,Rp,Rt,R]=residuals(us,vs,ts,u,v,p,T,IT,R) 

  

% Call global variables 

global rho lx ly nx ny umax 

  

% u velocity residual 

  

xmax=size(u,1); ymax=size(u,2); 

tempora1=zeros(xmax,ymax); tempora2=zeros(xmax,ymax); 

  

for j=2:ymax-1 

    for i=2:xmax-1 

        tempora1(i,j)=abs(us.aP(i,j)*u(i,j)-us.aW(i,j)*u(i-1,j)-... 

            us.aE(i,j)*u(i+1,j)-us.aS(i,j)*u(i,j-1)-... 

            us.aN(i,j)*u(i,j+1)-ly/ny*(p(i,j)-p(i+1,j))); 

        tempora2(i,j)=abs(us.aP(i,j)*u(i,j)); 

    end 

end 

Ru=sum(tempora1(:))/sum(tempora2(:)); 

  

% v velocity residual 

  

xmax=size(v,1); ymax=size(v,2); 

tempora1=zeros(xmax,ymax); tempora2=zeros(xmax,ymax); 

  

for j=2:ymax-1 

    for i=2:xmax-1 

        tempora1(i,j)=abs(vs.aP(i,j)*v(i,j)-vs.aW(i,j)*v(i-1,j)-... 

            vs.aE(i,j)*v(i+1,j)-vs.aS(i,j)*v(i,j-1)-... 

            vs.aN(i,j)*v(i,j+1)-lx/nx*(p(i,j)-p(i,j+1))); 

        tempora2(i,j)=abs(vs.aP(i,j)*v(i,j)); 

    end 

end 

Rv=sum(tempora1(:))/sum(tempora2(:)); 

  

% P pressure residual 

xmax=size(p,1); ymax=size(p,2); 

temp=zeros(xmax,ymax); 

  

for j=2:ymax-1 

    for i=2:xmax-1 

        temp(i,j)=abs(rho*((u(i-1,j)-u(i,j))*ly/ny+... 

            (v(i,j-1)-v(i,j))*lx/nx)); 

    end 

end 

Rp=sum(temp(:))/(rho*umax*ly); 

  

% T temperature residual 

xmax=size(T,1); ymax=size(T,2); 

tempora1=zeros(xmax,ymax); tempora2=zeros(xmax,ymax); 

  

for j=2:ymax-1 

    for i=2:xmax-1 

        tempora1(i,j)=abs(ts.aP(i,j)*T(i,j)-ts.aW(i,j)*T(i-1,j)-... 

            ts.aE(i,j)*T(i+1,j)-ts.aS(i,j)*T(i,j-1)-ts.aN(i,j)*T(i,j+1)); 

        tempora2(i,j)=abs(ts.aP(i,j)*T(i,j)); 

    end 

end 

Rt=sum(tempora1(:))/sum(tempora2(:)); 
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R(1,IT)=Ru; R(2,IT)=Rv; R(3,IT)=Rp; R(4,IT)=Rt; 

  

  

end 

 

 

% Velocity at nodal points  

 

function [u,v] = postprocess(us,vs,u,v) 

  

  

xmax=size(u,1);  

ymax=size(u,2); 

  

% calculate x velocity on nodal points 

u(xmax+1,:)=u(xmax,:); 

u(2:xmax,1:ymax)=(u(1:xmax-1,1:ymax)+u(2:xmax,1:ymax))/2; 

  

  

xmax=size(v,1); 

ymax=size(v,2); 

  

% calculate y velocity on nodal points 

v(:,ymax+1)=v(:,ymax); 

v(1:xmax,2:ymax)=(v(1:xmax,1:ymax-1)+v(1:xmax,2:ymax))/2; 

 

 

% Bulk Temperature (Duct1)  

 

function [T_bulk1,rho_bulk1,Nu]=Tbulk1(T1,rho1,ts1,rhos1,uc1) 

  

% Call global variables 

global k lx ly nx ny EntL h Th Pit q ExiL 

  

     

     

for i=1:size(T1,1) 

u_ave1(i)=trapezoid(ts1.y(i,2:end-1),uc1(i,2:end-1))/ly; 

T_bulk1(i)=trapezoid(ts1.y(i,2:end-1),uc1(i,2:end-1).*T1(i,2:end-1))/u_ave1(i)/ly; 

rho_bulk1(i)=trapezoid(rhos1.y(i,2:end-1),uc1(i,2:end-1).*rho1(i,2:end-1))/u_ave1(i)/ly; 

end 

  

  

Mu1T=round(EntL/lx*nx)+round(Th/lx*nx+1); % Index of viscosity matrix 

Mu0T=round(EntL/lx*nx+1); 

Mu1B=round(EntL/lx*nx)+round(((Pit-(abs(Pit-Th)/2))+Th)/lx*nx+1); 

Mu0B=round(EntL/lx*nx)+round((Pit-(abs(Pit-Th)/2))/lx*nx+1); 

j=1; 

     

while Mu1B<(nx+2-round(ExiL/lx*nx)) 

     

     

 for i=Mu0B+1:1:Mu1B 

u_ave1(i)=trapezoid(ts1.y(i,round(h/ly*ny+1):end-1),uc1(i,round(h/ly*ny+1):end-1))/ly; 

T_bulk1(i)=trapezoid(ts1.y(i,round(h/ly*ny+1):end-1),uc1(i,round(h/ly*ny+1):end-

1).*T1(i,round(h/ly*ny+1):end-1))/u_ave1(i)/ly; 

rho_bulk1(i)=trapezoid(rhos1.y(i,round(h/ly*ny+1):end-1),uc1(i,round(h/ly*ny+1):end-

1).*rho1(i,round(h/ly*ny+1):end-1))/u_ave1(i)/ly; 

 end 

  

 for i=Mu0T+1:1:Mu1T 

u_ave1(i)=trapezoid(ts1.y(i,2:(ny+2-round(h/ly*ny))),uc1(i,2:(ny+2-round(h/ly*ny))))/ly; 

T_bulk1(i)=trapezoid(ts1.y(i,2:(ny+2-round(h/ly*ny))),uc1(i,2:(ny+2-

round(h/ly*ny))).*T1(i,2:(ny+2-round(h/ly*ny))))/u_ave1(i)/ly; 
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rho_bulk1(i)=trapezoid(rhos1.y(i,2:(ny+2-round(h/ly*ny))),uc1(i,2:(ny+2-

round(h/ly*ny))).*rho1(i,2:(ny+2-round(h/ly*ny))))/u_ave1(i)/ly; 

  

 end 

  

    Mu0T=round(EntL/lx*nx)+round((Th+Pit)*j/lx*nx+1); 

    Mu1T=round(EntL/lx*nx)+round((Th+((Th+Pit)*j))/lx*nx+1); 

    Mu1B=round(EntL/lx*nx)+round(((Pit-(abs(Pit-Th)/2))+Th+((Th+Pit)*j))/lx*nx+1); 

    Mu0B=round(EntL/lx*nx)+round(((Pit-(abs(Pit-Th)/2))+((Th+Pit)*j))/lx*nx+1); 

     

     

    j=j+1; 

end 

  

hconv=2*k/(ly/ny)*((T1(:,1)-T1(:,2))./(T1(:,1)-T_bulk1(:))); 

Nu=hconv*2*ly/k; 

     

figure(1) 

plot(ts1.x(:,1),Nu,'LineWidth',2) 

xlabel('Channel length, L [m]','FontSize',10) 

ylabel('Nu','FontSize',10) 

  

end 

 

  

  

  

end 

 

 

% Bulk Temperature (Duct1) 

 

function [T_bulk2,Nu]=Tbulk2(T2,ts2,uc2) 

  

% Call global variables 

global k lx ly nx ny EntL h Th Pit q ExiL 

  

     

     

for i=1:size(T2,1) 

u_ave2(i)=trapezoid(ts2.y(i,2:end-1),uc2(i,2:end-1))/ly; 

T_bulk2(i)=trapezoid(ts2.y(i,2:end-1),uc2(i,2:end-1).*T2(i,2:end-1))/u_ave2(i)/ly; 

end 

  

  

  

Mu1T=round(EntL/lx*nx)+round(Th/lx*nx+1); % Index of viscosity matrix 

Mu0T=round(EntL/lx*nx+1); 

Mu1B=round(EntL/lx*nx)+round(((Pit-(abs(Pit-Th)/2))+Th)/lx*nx+1); 

Mu0B=round(EntL/lx*nx)+round((Pit-(abs(Pit-Th)/2))/lx*nx+1); 

j=1; 

     

while Mu1B<(nx+2-round(ExiL/lx*nx)) 

     

     

 for i=nx+2-Mu0T:-1:nx+2+1-Mu1T 

u_ave2(i)=trapezoid(ts2.y(i,round(h/ly*ny+2):end-1),uc2(i,round(h/ly*ny+2):end-1))/ly; 

T_bulk2(i)=trapezoid(ts2.y(i,round(h/ly*ny+2):end-1),uc2(i,round(h/ly*ny+2):end-

1).*T2(i,round(h/ly*ny+2):end-1))/u_ave2(i)/ly; 

 end 

  

 for i=nx+2-Mu0B:-1:nx+2+1-Mu1B 

u_ave2(i)=trapezoid(ts2.y(i,2:(ny+2-round(h/ly*ny+1))),uc2(i,2:(ny+2-

round(h/ly*ny+1))))/ly; 

T_bulk2(i)=trapezoid(ts2.y(i,2:(ny+2-round(h/ly*ny+1))),uc2(i,2:(ny+2-

round(h/ly*ny+1))).*T2(i,2:(ny+2-round(h/ly*ny+1))))/u_ave2(i)/ly; 
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 end 

  

      

    Mu0T=round(EntL/lx*nx)+round((Th+Pit)*j/lx*nx+1); 

    Mu1T=round(EntL/lx*nx)+round((Th+((Th+Pit)*j))/lx*nx+1); 

    Mu1B=round(EntL/lx*nx)+round(((Pit-(abs(Pit-Th)/2))+Th+((Th+Pit)*j))/lx*nx+1); 

    Mu0B=round(EntL/lx*nx)+round(((Pit-(abs(Pit-Th)/2))+((Th+Pit)*j))/lx*nx+1); 

     

    j=j+1; 

end 

  

hconv=2*k/(ly/ny)*((T2(:,1)-T2(:,2))./(T2(:,1)-T_bulk2(:))); 

Nu=hconv*2*ly/k; 

  

    % 3. Plot T_bulk and Tw as function of x 

% figure(5) 

% plot(ts2.x,T_bulk2,'LineWidth',2) 

% xlabel('Channel length, L [m]','FontSize',18) 

% ylabel('Temperature [K]','FontSize',18) 

  

figure(2) 

plot(ts2.x(:,1),Nu,'LineWidth',2) 

xlabel('Channel length, L [m]','FontSize',10) 

ylabel('Nu','FontSize',10) 

  

% % 4. Plot loca Nusselt number as a function of x 

% figure(4) 

% h=2*k/(ly/ny)*((T(:,1)-T(:,2))./(T(:,1)-T_bulk1(:))); 

% Nu=h*2*ly/k; 

% plot(ts.x(:,1),Nu,'LineWidth',2) 

% xlabel('Channel length, L [m]','FontSize',24) 

% ylabel('Local Nusselt number, Nu','FontSize',24) 

end 

 

 

 

 

 




