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ABSTRACT 

 

Most of the large, double-stranded DNA (dsDNA) bacteriophages infecting 

Gram-negative hosts utilize multi-protein strategy to lyse the three layers of the host cell 

envelop: the inner membrane (IM), the peptidoglycan (PG), and the outer membrane 

(OM). Four sets of proteins were illustrated in the phage lysis paradigm: holin (IM lesion 

formation), antiholin (inhibition of holin), endolysin (PG degradation), and spanin 

complex (OM disruption).  

The classic myophage T4 has a very unique feature called Lysis Inhibition (LIN) 

for regulating the lysis time in response to the superinfection (when a second T4 or T-

even phage infects a T4-infected cell). The latest results showed that in addition to the 

main antiholin RI, which binds to the periplasmic C-terminal domain of T4 holin T, a 

T4-encoded soluble protein RIII is also required for LIN. Bacterial two-hybrid and Pull-

down assays showed that RIII interacts with the cytoplasmic N-terminus of T. Therefore, 

RIII is considered as a cytoplasmic antiholin of T4.  

For another well-studied coliphage Mu, the detail of its lysis system was obscure 

for decades. The new results suggested that Mu adopts the classic lysis paradigm, 

consists of the newly-identified holin-antiholin pair Gp19 and Gp20, the SAR-endolysin 

Lys, and the spanin complex Gp23/23a. Lys has an N-terminal SAR (Signal-Anchor-

Release) domain, which makes Lys capable of escaping the IM gradually and 

spontaneously. However, unlike other previously studied SAR-endolysins, Lys 

expressed from the plasmid in low level did not lead to cell lysis unless it was co-
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expressed with Gp25, the product of Mu gene 25. The most reasonable explanation is 

that Gp25 is required for the release of Lys from the IM by neutralizing the basic 

residues in the cytoplasmic domain of Lys. Therefore, Gp25 is a novel regulatory factor 

in the phage lysis paradigm that targets SAR-endolysin.  

In sum, these studies proposed new models for lysis regulation. In T4, the current 

model for LIN involves the stabilization of a complex of three proteins in two 

compartments of the cell. In Mu, the discovery of the Gp25 suggested the involvement 

of a new class of protein factor that regulates lysis by targeting endolysin.  
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CHAPTER I 

INTRODUCTION 

 

A brief history of bacteriophage study 

Bacteriophages, also known as phages, are a kingdom of viruses that use bacteria 

as their host (1). The first observation of phage infection was reported by E. H. Hankin 

in 1896, when he noticed the water from Ganga and Yamuna River in India contained 

some sort of biological materials that can go through millipore filters and can kill the 

cholera-causing bacteria (2, 3). A few years after Hankin’s publication, F. W. Twort 

found the micrococcus colonies became transparent after prolonged incubation, and this 

phenomenon seemed contagious since the healthy-looking colonies turned into 

transparent and watery form after being contacted by “transparent” colonies (1, 2). His 

discovery was further backed up by an independent researcher, Felix d’Herelle, who 

became the first scientist to observe “clear zones” form on the lawn of bacteria 

(Coccobacilli), and named these α-microbe “bacteriophage”, literary meaning bacteria-

eating (1).  

D’Herelle’s work contributed tremendously to the establishment of the idea 

“phage therapy” and the foundation for studying the nature of phages, which became 

one of the most important model organisms in modern molecular biology (1). 

Methodology and terminology of phage study developed by D’Herelle include the 

concept of phage “plaque,” which means the clear zone formed by phages on the host 

bacteria lawn; “lysate,” which refers to the filtrate of phage-containing culture; “titer,” 
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which is the estimate of phage concentration in the liquid by counting plaque forming 

unit (pfu) (4). He also discovered that phage infection requires a stage of virus particles 

attaching to the surface of the specific bacteria host. This host-specific attachment is 

now called “phage adsorption”. These preliminary works conducted by d’Herelle, 

which today we can still benefit from, had greatly inspired the discovery of important 

biological issues in successive studies.  

On the other hand, due to a series of problems phage investigators were facing 

(1), research related to the therapeutic usage of phage was stagnated. Following the 

discovery of penicillin in 1928, only a few years after the first phage report, scientists’ 

interest in phages had quickly shifted from using them as therapeutic reagent against 

bacteria related diseases to adopting them as a model organism for studying broader 

biological questions.    

Phage life cycle 

Just like eukaryote-infecting viruses, bacteriophages are intracellular parasites 

with protein and/or membrane coats (capsids) packed with their genetic materials (1, 5) 

. This means they require chemicals, energy, and biological machinery of the host cell 

to reproduce. The life cycle of phages includes mainly five stages: 1) Adsorption to a 

new host and penetration of host cell envelope to inject phage genome; 2) Expression of 

the phage genes; 3) Phage genome replication; 4) Assembly of the progeny virions; 5) 

Escape from the host cell via cell lysis (Figure 1.1) (6). 

The adsorption stage allows phages to transfer their genome (DNA or RNA) into 

the cytoplasm of the host, where they can utilize the host machinery (5). Normally, 
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phages can only adsorb into their specific host, by recognizing receptors on the host cell 

envelop. The form and number of host receptors required for infection depends on the 

host and the phage. For example, a Gram-negative bacteria infecting phage might 

require receptors on the outer membrane (OM) (7, 8), and different receptors on the 

inner membrane (IM) of the cell (9, 10). 

There are two pathways after successful adsorption into host and phage genome 

injection. If the phage genome did not get destroyed by the bacterial defense system, 

such as restriction digestion or CRISPER-Cas (11), some phages might not choose to 

lyse the host cell immediately (12) . Instead, they can co-exist with the host by either 

integrating their genome into the host chromosome and replicate along with it (e.g., λ or 

Mu), or becoming stable plasmids, which replicate separately from the host genome 

(e.g. N15 or P1). This pathway is termed as “lysogeny”, and phages that can undergo 

this pathway are called “lysogenic” or “temperate” (12). Phages that do not have 

lysogenic stage and thus propagate exclusively by vegetative growth, such as T4 or T7, 

are called “lytic” or “virulent” phages.  

 It is important to note that lysogenic phages can undergo the lytic pathway as 

well. The decision making process between lysis or lysogeny has been described at the 

molecular level for phage λ in recent studies (13, 14). It is also possible to force 

lysogenic phages to choose the lytic pathway by mutating critical proteins for lysogeny 

such as lysogenic repressor or integrase. On the other hand, no virulent phage has been 

successfully engineered into a lysogenic phage.  
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Figure 1.1 Life cycle of virulent phage T4.  
The OM or IM of host E. coli cell is represented by grey or blue line, respectively. 
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Phage lysis 

For both lytic and lysogenic phages, host lysis is the last event of the phage 

vegetative cycle, resulting in the release of the progeny particles from the host cells into 

the environment. Numerous studies have attempted to elucidate the phage lysis process 

almost since the first discovery of bacteriophage (15). Here we discuss the Gram-

negative bacteria infecting double-stranded DNA phages, which are the most well 

known and well studied phages, to explain their basic strategy for lysing the host cells. 

dsDNA phages: lysis paradigm 

The cell envelope of Gram-negative bacteria includes three layers: the inner 

membrane (IM), the peptidoglycan layer (PG), and the outer membrane (OM), which 

contains lipopolysaccharide (LPS) on its outer surface (16). To break each of these 

layers, dsDNA phages of Gram-negative bacteria use a multi-gene strategy (17). This 

involves three classes of proteins: holin, the membrane protein which makes lesions 

(“holes”) in the IM; endolysin, the phage lysozyme, which enters into the periplasmic 

space and rapidly degrades peptidoglycan; and spanin, which disrupts the OM to 

complete the lysis (Figure 1.2).  

Holin 

Holins are small IM proteins that have at least one transmembrane domain 

(TMD) and have ability to form lesions or “holes” in the IM (17). Some holins make 

very large holes with a diameters ranging to more than ~300 nm, which is large enough 

to allow the passage of cytoplasmic macromolecules (Figure 1.3) (18). Other holins can 

only form small holes 
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Figure 1.2 The lysis cassette of lysogenic phage λ.  
The size of the products of lysis genes (holin S105, antiholin S107, endolysin R, i-spanin 
Rz, and o-spanin Rz1) are labeled with the number of residues. Adapted from (19).  

 

 

 

 
Figure 1.3 Visualization of λ holin membrane leision. 
An induced prophage observed by cryo-TEM. Inset: close-up view of the area in which a 
lesion is observed in the inner membrane. OM: Outer membrane. IM: Inner membrane. 
The white line indicates the location and extent of the lesion. Scale bar corresponds to 
500 nm. Reprinted with permission from (18). 
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called “pinholes”, with a central lumen of ~2 nm diameter, too small to release 

macromolecules but capable of depolarizing the IM. Holins that make large holes are 

called “canonical holins”, while holins that only makes pinholes are termed “pinholins” 

(20-22). Recent study suggested that these IM holes are lined up by the hydrophilic 

surfaces of at least one amphipathic TMD from holins (23). 

Phage holins which have been studied experimentally to date can be classified 

into three classes by their topology: the class I holin has three TMDs and adopts N-in, 

C-out topology; the class II holin has two TMDs and makes pinholes; the class III holin 

has only one TMD and has N-in, C-out topology. (Figure 1.4) (18, 24). 

The best studied holin is that of phage λ, S105 (17). λ has the holin, endolysin, 

and spanin genes in a small genome section, termed “lysis cassette” (17). In brief, in 

phage λ infections the holin protein S105 encoded from gene S accumulates in the IM 

and forms holes, releasing the cytoplasmic endolysin R into the periplasmic space, 

where it attacks and degrades the PG. As the final step, the spanin complex, which 

consists of Rz and Rz1 proteins, disrupts the OM (19).  
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Figure 1.4 Topologies of holins. 
Prototype class I holin λ S105, class II holin phage 21 S21, and class III holin T4 T. 
Rectangle, TMD; Lines, soluble domains and turns.  
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Despite the existence of three steps, the actual lethal event is the first step 

mediated by holin (19), which is defined as “holin triggering”. The triggering time is 

allele-specific. For λ S105, nearly every single amino acid replacement throughout the 

sequence of the holin altered lysis timing (25, 26). The lesions opened by the holin at 

the triggering time in the IM will collapse the proton motive force (PMF) and release 

the cytoplasmic contents into the periplasm (19). This step immediately ends 

macromolecular synthesis in the cytoplasm and is in effect the termination of the 

productive infection cycle. Therefore, the holin is the molecule that determines the lysis 

time and the length of the infection cycle, thus functioniing as the “clock” of the lysis 

event (25, 27). 

Antiholin 

As the lysis clock, holin defines the timing of the IM hole formation, thus 

decidingthe length of the whole infection cycle (25). To adjust the lysis timing, some 

phages encode an “antiholin”, a protein that interacts directly and specifically with the 

holin and either blocks or delays the triggering time (19). There are two types of 

antiholins which have been experimentally studied so far: an alternative translation 

product from the holin gene itself (28, 29), or the product of distinct gene either in the 

same lysis cassette (24, 30) or in a distant location of the phage genome (31).  

Alternatively translated antiholins have a primary structure identical to the with holin 

except for a few additional amino acids at the N-terminus, like the S107/S105 

antiholin/holin pair in λ (Figure 1.5) (19, 28). With this type of antiholin, there is 
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Figure 1.5 The dual start model of holin and antiholin. 
Top panel: Dual start motifs for λ holin gene. Start codons for each product indicated by 
star; red =antiholin, green = holin (S105). Red and green rectangles indicate Shine-
Dalgarno sequences. Inverted arrows indicate RNA stem-loops that control choice of 
start codons. Reprinted with permission from (32). 
Bottom panel: Topological dynamics of lysis proteins in λ lysis cassette. In the energized 
membrane (PMF = ~180 mV, positive outside), TMD1 of the antiholin form (S107) is 
inhibited from entering (S107) the IM. The R endolysin is shown as a fully active 
muralytic enzyme. The Rz-Rz1 complex is shown with the Rz i-spanin embedded in the 
IM with its N-terminal TMD and its periplasmic domain (elongated oval) disposed in the 
periplasm. Reprinted with permission from (19). 
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normally a set ratio of holin to antiholin, usually 2:1 to 3:1(28, 33), under standard 

growth conditions. This system appears to be involved in fine-tuning the triggering time 

of the holin and avoiding premature lysis, based on the observation that eliminating the 

translational start of the antiholin in the λ system accelerates timing by only a few 

minutes. Mutations that increase the ratio of antiholin to holin can dramatically retard 

the triggering time and even block lysis entirely if an excess of antiholin occurs (28). In 

paradigm phages P1 and P2, antiholins are encoded by distinct genes in their lysis 

cassette (24, 30). In these cases, the elimination of the antiholin had only a small effect 

in terms of accelerating lysis.  

The second type of antiholin is constituted by the r-proteins of T4 and T4-like 

phages (34). This type of antiholin binds to and inhibits the holin, but does so only 

under activating conditions defined by the infection environment (35). This unique 

“real-time” lysis regulation will be described later in this chapter. 

Endolysin 

The term “endolysin” was first used by Jacob et al in 1958 to describe “lytic 

substance” correlated with λ induced bacterial lysis (15), and was later adopted for any 

phage-encoded enzymes involved in cell lysis. Several distinct enzymes that target 

either peptide bonds or glycosidic bonds of peptidoglycan layers can be encoded by 

phage as endolysin (17). For example, the T4 E protein, which sometimes referred as 

“true phage lysozyme” (17), is a glycosidase that hydrolyzes β(1, 4)-glycosidic bonds 

(17, 36), while λ endolysin R is a transglycosylase that also breaks the glycosidic bonds 

but forms a cyclic 1,6-disaccharide product (17). The product of T7 gene 3.5 is an 
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amidase, which cleaves the amide bond between aminoglycosidic subunits and the 

tetrapeptide chain (37). The fact that T4 E can complement the defect of λ endolysin 

indicates that the differences between enzymatic activities of endolysins are 

unimportant to holin function and the overall cell lysis event (17, 38) (Figure 1.6).  

Endolysins can be divided into two classes by the method of getting into the 

periplasm (38, 39). Cytoplasmic endolysins, such as λ R or T4 E, are trapped inside the 

cytoplasm until the holins form IM holes that are large enough for them to pass through 

the membrane bilayer (17). The other type of endolysin, which can escape from the 

cytoplasm without the assistance from holin, is called a SAR-endolysin (SAR 

represents Signal-Anchor-Release). With the N-terminal SAR domain, which is a TMD 

consists of mostly weakly-hydrophobic, polar amino acids residues (e.g. Ala, Gly, Ser, 

and Thr) (40), this type of endolysin is exported to the periplasm in a sec system-

dependent manner, resulting in being‘anchored’ to the IM in an enzymatically inactive 

form . SAR-endo lysin then can be released into the periplasm and be activated by 

structural rearrangement (Figure 1.7). The detailed molecular mechanism of this 

spontaneous release remains unclear (39).  

Experimentally-studied SAR-endolysins include Lyz from phage P1 (40), R21 

from phage 21(41), and Lyz103 (42)from Erwinia amylovora phage ERA103. Based on 

different strategies of enzymatic activation upon release from the membrane, they can 

be classified into two classes (38, 39). The first class of SAR-endolysin, which includes 

Lyz and Lyz103, requires disulfide bond isomerization for  
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Figure 1.6 The Structure of PG. 
The composition of Gram-negative bacteria peptidoglycan and the cleavage sites for 
different phage endolysins. PG is made up of repeating units of N-acetyl muramic acid 
(MurNAc)-N-acetyl glucosamine (GlcNAc) disaccharide. The GlcNAc and MurNAc 
units are connected by a β-glycosidic linkage. Tetrapeptide crosslinks composed of L-
Ala-D-Glu-DAP-D-Ala connect the repeating GlcNAc - MurNAc chains. Endolysins 
cleave various bonds within the PG.OM, outer membrane; PG, peptidoglycan; IM, inner 
membrane; GlcNac, N-acetylglucosamine; MurNac, N-acetylmuramic acid; m-DAP, 
meso-diaminopimelic acid; LPP, lipoprotein. Reprinted with permission from (38).  
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activation (42, 43). In these cases, the SAR-domain is not only required for tethering 

the protein in the IM but also, upon liberation from the membrane, to contribute a free 

thiol and thus cause disulfide bond isomerization and refolding of the protein to form an 

active site cleft (38). In the second class, which is typified by R21, relays on the non-

covalent refolding of the SAR-domain after extraction from the membrane, again 

resulting in the formation of the active site cleft, centered on a catalytic glutamate 

residue (38). Bioinformatic analysis indicated the R21-like activation mechanism is 

prevalent in dsDNA SAR-endolysins (38).  

Even though SAR-endolysins can lyse the cell without holin function, the 

induction of SAR-endolysin alone can only cause gradual and significantly delayed cell 

lysis (22, 40, 43), dependent on the slow release of the SAR endolysins from the 

bilayer. However, the collapse of membrane potential drastically accelerates the release 

of SAR-endolysin and leads to a much accelerated lysis process (20, 22). Therefore, 

even though SAR-endolysin does not rely on the holin-holes to get into the periplasm, 

the holin still plays a significant role for controlling the lysis time by collapsing the 

membrane potential and triggering the immediate release and activation of the SAR 

endolysins (39) (Figure 1.7 and 1.8).  

Spanin  

 The long-established holin-endolysin model of phage lysis held that the 

destruction of the PG by the phage-encoded lysozyme is necessary and sufficient for the 

cell lysis (32). In this model, holin only plays a role in assisting the externalization of 

endolysin, and the disruption of the OM of Gram-negative hosts is not considered as the 
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critical step for releasing the phage progeny virions. The holin-endolysin model was 

first challenged by a study showed that Tn903 insertion on λ gene Rz caused lysis 

defects in the presence of Mg2+ (44). In 1993, a smaller gene was discovered to be 

located in the +1 register within Rz and named Rz1 (45). A few years later, Zhang et al 

(46) introduced amber nonsense mutations into Rz or Rz1 gene without changing the 

amino acid sequence of the other gene. This study revealed that without functional gene 

Rz or Rz1, which were found to encode a 153 aa or 60 aa protein, respectively, the 

infected cells had been transformed in the presence of millimolar scale divalent cations 

(Mg2+) from rod shape to spherical shape instead of been lysed (46). No phage virion is 

released from the infected cells in the absence of Rz/Rz1. These proteins are named 

“spanin” to reflect the prediction that the Rz-Rz1 complex could span from IM to OM 

(47). This study also showed that, in the standard growth condition of E. coli, where 

OM is not stabilized by a high level of divalent cations, the shearing force of shaking 

conditions (e.g. using of orbital shaker for aeration) in the experiments is sufficient for 

lysis to be observed without spanins (47). 
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Figure 1.7 Activation of SAR-endolysin. 
Top: Crystal structure of phage 21 SAR-endolysin R21 in its inactive (in the IM) and 
active (in the periplasm) form. The catalytic triad (E-D-T) is labeled. Reprinted with 
permission from (19, 39).  
Bottom: The schematic view of SAR-endolysin activation. Reprinted with permission 
from (38).  
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Figure 1.8 Comparison of hoin and pinholin system. 
Schematic views of the holin–endolysin (left) and pinholin–SAR endolysin (right) 
pathways to lysis, beginning at the onset of late gene expression (phage morphogenesis) 
period. The inner (IM) and outer membranes (OM) of cells are shown, with holin or 
pinholin (blue ovals) accumulating in the IM. In the bottom figures, upon reaching a 
critical concentration, the holin triggers to form a large micron-scale hole (left). In 
contrast, the pinholin triggers to from many heptameric pinholes (represented by double 
ovals with a channel in between). The orange symbols with the open ‘active site’ 
represent the enzymatically active canonical endolysin accumulating in the cytosol. The 
red symbols with the closed and open ‘active sites’ represent the inactive SAR endolysin 
accumulating in the IM and the activated SAR endolysin released into the periplasm, 
respectively. Reprinted with permission from (19). 
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Rz/Rz1 were not considered as a crucial factor in phage lysis paradigm until 

Rz/Rz1 homologs are found to be widespread in Gram-negative bacteria infecting 

phages (47). Results showing complementation of Rz-/Rz1- lysis defect by phage P2 

genes lysB/lysC (48). T4 genes pseT.3/pseT (47), and T1 gene 11 (47) suggested that 

the role of Rz-Rz1 gene pair is more important than previously thought. Later on, 

studies conducted by Berry et al (49, 50) demonstrated that Rz, an IM protein with an 

N-terminal TMD, interacts with Rz1, an OM lipoprotein, and their interaction is 

required for the disruption of the OM. Therefore, Rz and Rz1 homologs are termed i-

spanin (inner membrane spanin) or o-spanin (outer membrane spanin), respectively. 

There are also unimolecular spanin gene products such as T1 gp11, which has an N-

terminal lipoprotein signal peptide and a C-terminal TMD, is named u-spanin (for 

unimolecular -spanin). More recent reports on spanin function showed that regardless of 

the spanin type, disruption of OM was achieved by the fusion of the IM and OM (51) 

(Figure 1.9).  

Three-step lysis of dsDNA phages 

For dsDNA phages infecting Gram-negative bacteria, a three-step lysis model, 

which involves multiple phage proteins as factors, was suggested by the most up-to-

date results (32). First, holins form holes in the inner membrane, which control the 

release of endolysins into the periplasm by collapsing the membrane potential and/or 

providing the channel in the IM. Second, endolysins attack and destroy the 

peptidoglycan. Finally, spanins fuse IM and OM, removing the last topological barrier 

to lysis.  
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This model also suggests that the lytic event is blocked until holin triggering, to 

prevent the premature lysis, which significantly affects the robustness of the progeny 

virions. Instead of relying on the accumulation of a sole muralytic enzyme for lysis, this 

three step controlling system can adjust the lysis timing for maximizing the yield of the 

progeny virus particles without losing the competition to other phages that infecting the 

similar host. The three-step lysis model reflects how lysis proteins cooperate to achieve 

an efficient yet carefully controlled system to ensure rapid destruction of each layer of 

the cellular envelope when triggered, and also prevents the premature lysis (32).  

T4 lysis and lysis inhibition  

T4 is a classic coliphage belonging to the Myoviridae family. As a dsDNA phage, 

it also requires holin (T, the product of gene t), cytoplasmic endolysin (E, product of e), 

and spanin (PseT.3 - PseT.2 complex, products of pseT.3 and pseT.2) for the lysis, but 

unlike λ-like phages, where the lysis genes are clustered together and under the control 

of a single late promoter, T4 lysis proteins are unlinked in the 170 kb phage genome 

(Figure 1.10). T4 holin T makes big holes (~300nm in diameter) which let soluble 

endolysin E escape into the periplasm through the membrane.  

In a normal T4 infection cycle, the T4 holin T triggers at ~25 min, and lysis 

ensues rapidly, liberating an average burst of ~200 progeny virions. If, however, an 

infected cell undergoes superinfection by another T4 virion after the first 5 min of the 

infection cycle, the infection enters into the lysis inhibited (LIN) state, in which the T 

holin is blocked from triggering (Figure 1.11). LIN was first described by Doermann in 

1948 (52) when he observed the different lysis profiles between the wild type T4 and  
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Figure 1.9 Model for spanin structure and function.  
Two component spanin complexes consist of an integral IM subunit, the i-spanin (Rz) 
and an OM lipoprotein, the lipoprotein o-spanin (Rz1), that interact via a C-terminal/C-
terminal interaction, spanning the periplasm through the meshwork of the peptidoglycan 
(PG). Alternatively, a unimolecular spanin, u-spanin (T1 gp11), which is an OM 
lipoprotein but also has a C-terminal TMD, spans the periplasm as a covalent chain. The 
Rz/Rz1 complex is shown as a heterodimer for simplicity; in vivo, each subunit is 
actually a disulfide-linked homodimer. Reprinted with permission from (32). 
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Figure 1.10 Location of lysis genes on the T4 genome.  
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Figure 1.11 Schematic view of T4 superinfection and Lysis Inhibition (LIN).  
The lysis curves show representative LIN defective mutants (top) and T4wt (bottom) 
lysis profiles (53). 
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T4 lysis mutant (r for rapid lysis) infections. While r mutants completed lysis 

within ~30 min after infection, the cell cultures infected with wild type T4 did not lyse 

for hours. This is because a small fraction of the infected bacterial cells lysed a few 

minutes earlier than others and released ~200 virions per cell. These newly released 

phage virions then superinfect the rest of the infected culture and send an undefined 

LIN “signal” that imposes the LIN state on each superinfected cell. The LIN state can 

be maintained for hours, allowing phage virion assembly to continue in the infected 

cells and accumulate more than 1000 virions per cell.  

T4 holin  

T4 holin, which has 218 amino acids, is the largest holin among all the holins 

that have been studied in detail. The name t was inspired by the tragic story of Tithonus 

in Greek mythology, where Tithonus was granted eternal life but only as an old man 

(54). The topology of T is very different from that of λ holin (three transmembrane 

domains (TMDs), class I holin) or phage 21 holin (two TMDs, class II holin), and thus 

has been defined as the prototype class III holin (Figure 1.4). T consists of a single 

TMD, a large, globular shaped C-terminal periplasmic domain (162 aa), and a N-

terminal cytoplasmic domain (34 aa) (Figure 1.12). Since T has only one TMD, it is 

reasonable to presume that this TMD participates in lining the edges of the ultimate 

membrane lesion formed after triggering. However, both the N-terminal (cytoplasmic) 

and C-terminal (periplasmic) domains of T are required for holin function (35). The 

periplasmic domain of T (sT) was co-purified in a complex with the periplasmic 

domain of the T4 main antiholin, RI (sRI) (53, 55). The crystal structure of sRI-sT 
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complex was solved in 2011 by Vladimir Kuznetsov from the laboratory of James 

Sacchettini at Texas A&M university (55), which showed that sT is in a globular shape 

with a single alpha-helix at the N-terminus (close to the TMD) and five α-parallel beta-

sheets connected with loops and turns (53). (Figure 1.13)  

T4 holin genetics 

Missense mutations conferring defective lysis or altered lysis timing are isolated 

in all 3 domains of T (56) (Figure 1.14). The cytoplasmic N-terminal domain (NTD) 

consists of 34 residues, which is by far the largest cytoplasmic domain among all the 

experimentally confirmed holins. The deletion of the first 28 aa of T results in the loss 

of holin function, and four non-functional alleles have been isolated with single amino 

acid change in N-terminus. These residues map to a predicted amphipathic α-helix 

(Figure 1.15) (56). 

In CTD, 13 lysis-defective single missense mutations were found within the 161 

residues, as described by Moussa et al in 2014. These non-functional alleles include 

both dramatic (charge or polarity change) and conservative amino acid changes. They 

are spread widely across the entire domain from residue 63 to the very distal C-terminal 

residue 213. In addition to these alleles, conservative changes of an essential 

periplasmic cysteine pair (C175S, C207S, C175S/C207S) result in absolute lysis defect, 

which indicates that intramolecular disulfide bond formation is required for the proper 

folding and holin function of T (56).  
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Figure 1.12 Topology of T4 holin T -antiholin RI interaction  
T is an inner membrane protein with a single TMD (shown as a black solid cylinder) and 
an amphipathic helix (shown as a grey cylinder). RI has a SAR (Signal Anchor-Release) 
domain (shown as a white rectangle) which allows RI to be spontaneously released in to 
the periplasm. IM, inner membrane (57).   
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Figure 1.13 Structure of RI-T periplasmic domains complex during LIN 
The structure was solved by Vladimir Kuznetsov from the laboratory of James 
Sacchettini at Texas A&M university (55). The periplasmic domain of T (red) binds 
directly with the periplasmic domain of RI (blue). The secondary structure elements are 
labeled for each domain (55, 57). Reprinted with permission from (53). 
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Figure 1.14 Primary structure of the T4 holin. 
Lysis-defective missense alleles are indicated in bold. X indicates positions of stop 
codon mutations that inactivate the protein. The N-terminal domain is underlined and the 
TMD is highlighted in grey. Reprinted with permission from (57).  
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Figure 1.15 Helical wheel projection of T. 
Hydrophilic residues as circles, hydrophobic residues as diamonds, potentially 
negatively charged as triangles, and potentially positively charged as pentagons. 
Hydrophobicity is color coded as well: the most hydrophobic residue is green, and the 
amount of green is decreasing proportionally to the hydrophobicity, with zero 
hydrophobicity coded as yellow. Hydrophilic residues are coded red with pure red being 
the most hydrophilic (uncharged) residue, and the amount of red decreasing 
proportionally to the hydrophilicity. The potentially charged residues are light blue. The 
number shows the hydrophobic moment. The red curve indicates the predicted 
hydrophobic surface. Reprinted with permission from (56, 57).  
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Two aspects of the T-TMD are unusual. First, two studies have shown that in the 

holes formed by the well-studied S105 and S2168 holins, the aqueous lumen of the holes 

are lined by the most hydrophilic surfaces of the holin TMDs. However, the TMD of T 

has no significant hydrophilic surface (Figure 1.15) (56). Second, the presence of only a 

single TMD in a canonical holin is unusual. Most holins contain more than one TMD  

and the only holin that forms its lethal hole with a single TMD is the S2168, the pinholin 

of lambdoid phage 21, which forms small heptameric holes with lumenal diameters of ~ 

2 nm (21, 29, 58). However, as shown in Figure 1.7, S2168 is synthesized as an IM 

protein contains two TMD at first, then activated by the release of its N-terminal TMD, 

which is a SAR-domain (22). In contrast, the S105 holin and all other holins have two 

or more TMDs and make large membrane holes with diameters of micron scale. This 

has led to the thought that to form a large membrane lesion, two or more TMDs may be 

required. We hypothesize that in the mature T hole, the predicted helix in the NTD of T, 

which includes a predicted amphipathic α-helix (56), may be directly involved in the 

hole formation and become a part of the hole wall (Figure 1.15). However, no 

molecular evidence has been found to support this model to date.  

In the TMD, there are 11 missense mutations have been identified that altered the 

T lysis profile (34, 59, 60). However, only the mutations that drastically change the 

charge of the residues (V37E, V39D, V47D, and R50G), or significantly change the 

hydrophobicity of the TMD (W48S) debilitate the holin function (Figure 1.14). Unlike 

other two classes of holins, of which conservative amino acid changes in TMD can lead 

to the lysis-defective phenotype (56), all T-TMD mutations with conservative changes 
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retain the lytic function with delayed lysis time. This may suggest the TMD of T is 

relatively less important for the hole formation compared to other two domains: the N-

terminal and C-terminal soluble domains. 

LIN and T4 superinfection exclusion 

As described above, the LIN state is imposed when a T4 infected E. coli was 

super-infected by another T-even phage (17). Instead of passing into the host 

cytoplasm, the DNA of the secondary infecting phage is ectopically ejected into the 

periplasm, where it is degraded by E. coli endonuclease I (61). The exclusion of the 

secondary infection involves two T4 genes: sp and imm. T4 sp (for “Spackle”) mutants 

were originally isolated as the suppressor of T4 endolysin-defective mutants (62) . 

Later, it turned out that sp encodes a 97 aa periplasmic protein which provides the 

defense against the disrupting of host cell wall by T4 tail baseplate lysozyme, gp5. The 

product of imm gene is an 83 aa membrane protein (63), and is essential for the 

exclusion of secondary phage DNA. However, the mechanism of sp-imm T4 

superinfection exclusion remains unknown.         

The superinfection could be an indicator of the shortage of uninfected host cells 

in the environment. During the LIN state, superinfected host cells accumulate progeny 

virions intracellularly for hours (17), which is beneficial for phages in an environment 

without available hosts. This makes T4 LIN a unique example of phages adjusting their 

lysis timing in response to the environmental condition (64).   
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r gene history and impact 

It is known that LIN has consequences for T4 plaque morphology. Because there 

is a high phage content in the developing plaque, cells around the edges of the growing 

plaque are presumably always being super-infected and are thus in the LIN state (17). 

As a result, wild type T4 forms small and fuzzy-edged plaques. Mutants incapable of 

LIN form larger, sharply-defined clear plaques that are expected from phages that do 

not have a lysogenic cycle (Figure 1.16). These mutants were termed r mutants, for 

“rapid lysis” (64), although this is actually the normal, non-inhibited lysis. Because of 

the dramatic differences in plaque morphology, it was easy to isolate T4 mutants 

defective in LIN. Beginning with Hershey’s work in 1946 (65, 66), seven different 

genetic loci giving r plaques were identified: rI, rIIA/rIIB, rIII, rIV, rV, and rVI (64, 

67). When the T4 genome was sequenced, it turned out that, besides rI and rIII, two of 

these loci corresponded to genes with known roles in lysis or LIN: rIV is sp (68) and rV 

is the T4 holin gene t (69). The rVI locus is lost to history and the most recent r-plaque 

screen did not identify any mutations correspond to rVI (67) .The rII genes (rIIA and 

rIIB) are only required for T4 plating on λ lysogens of E. coli B strains, and appear to 

be involved in preventing abortive infections (64) and fundamentally unrelated to the 

lysis regulation pathway 

r genes directly involved in the regulation of holin mediated lysis 

Gene rI 

Previous studies from the Young laboratory showed that RI, the product of rI 

gene, is a 97 aa membrane protein with one TMD (Figure 1.17) (34, 70). However, the  
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Figure 1.16 Plaque morphology of T4. 
Representative picture of T4D (left) and T4rI- mutants (right) on the lawn of E. coli 
B834.  
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Figure 1.17 Schematic model for T4 lysis inhibition involving antiholin RI. 
RI, initially tethered to the inner membrane (IM), is spontaneously released into the 
periplasm, where it is rapidly inactivated both functionally and proteolytically,when no 
superinfection/LIN signal exists. Also, the membrane-tethered form of RI is not 
competent for inhibiting the holin. When superinfection occurs and a LIN signal exists 
in the periplasmic space, the released RI is stabilized, and is active and competent for 
LIN. Reprinted with permission from (57). 
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RI TMD is a Signal Anchor Release (SAR) domain, which is rich in weakly 

hydrophobic residues, causing it to be gradually and spontaneously released from IM  

into the periplasm (35). Normally, RI is quickly inactivated and subsequently degraded 

by DegP, an E.coli periplasmic protease (35). Therefore it has an average half-life of 

~90 sec in vivo. If the SAR domain is replaced by the cleavable secretion signal of the 

periplasmic protein PhoA, the processed RI protein is stable and accumulates in the 

periplasmic space (35). Induction of the gene encoding of this stable version of RI, 

phoAss-RI, results in stable LIN independent of a superinfection signal and also 

independent of rIII. Therefore, SAR domain is considered to be responsible for the 

instability. These results suggest that the “signal” from the superinfecting virion acts by 

stabilizing RI functionally, allowing it to bind to T and block its triggering (35, 70). The 

periplasmic domain of RI, called sRI, and periplasmic domain of T, called sT, have 

been successfully overexpressed in an E. coli strain which is especially engineered to 

allow the cytoplasmic formation of disulfide bonds (Figure 1.13) (57). The sRI protein 

has been purified and characterized by Samir Moussa (57), and crystallized in 2011 by 

Vladimir Kuznetosov (53, 55) . sRI, which forms a dimer when purified alone, has three 

helices (H1, H2 and H3) connected by short flexible loops. The structure of H2 and H3 

is fixed by a crucial disulfide bond formed between C69 and C75, while the loop 

between H1 and H2 undergoes drastic conformational change when sRI binds to sT 

(Figure 1.13) (53, 55). sT was found to oligomerize and precipitate when eluted from 

affinity columns. Therefore sT was purified in a soluble 1:1 complex with sRI and co-

crystallized with sRI. High-resolution structures of sRI and sRI:sT complex solved by 
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Vladimir Kuznetsov (55) backed up a model suggests that T-RI-RI-T tetramers are 

formed during the LIN state (53).  

Gene rV 

Lytic but LIN-insensitive T holins were originally isolated as rV mutants (18). 

Five rV mutants, including three classic alleles, have been mapped and sequenced to 

date. As summarized by Burch et al, those mutations were located in three different 

topological domains of T: R5K in N-terminal cytoplasmic domain, I39V in TMD, and 

T75I, S80P, and V81G in the CTD (67). These T mutants all trigger at an earlier time 

than the wild type T. In the condition where RI is expressed from a medium-copy 

number plasmid (presumably in a higher expression level than physiological level), 

these rV mutants are sensitive to RI-mediated LIN, but the length of the inhibition is 

significantly shorter than WT (15). Other LIN-defective T mutants associated with 

significantly late-lysis phenotype all map to the CTD (59, 60), but the detailed profile of 

these mutants was not defined. 

Gene rIII 

Compared to other r genes, the role of rIII gene in LIN has been ignored, even 

though T4rIII mutants were first isolated in the 1950s and the gene was mapped and 

sequenced in the early 1990s. The major reason is that, as also found for the rIIA/rIIB 

genes, rIII was thought to be required for LIN only in certain E. coli B strains, but not 

for E. coli K-12, the most widely used laboratory strain. Therefore the participation of 

rIII is not considered as an important part of LIN. However, the most recent report 

about T4rIII phenotype suggests that mutations in rIII gene lead to LIN-defective 
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phenotype in all host backgrounds (67). The result of BLAST search and data analysis 

showed that, with few exceptions, the phages that have RIII homologs also have T 

homologs and RI homologs. These new data suggested that rIII may play an important 

role for LIN.  

rIII was considered to be controlled by early, middle and late promoters (31). 

However, microarray analysis showed that it is transcribed between 5 min to 8 min after 

infection (71). The rIII gene encodes a 82 aa protein which has been predicted to reside 

in the cytoplasm since it has no TMD or secretory signal sequence. The comparison of 

RIII with its homologs shows it is highly-conserved in its C-terminus. From many years 

of isolating T4 mutants with r plaques, Bruch et al acquired a number of non-functional 

rIII mutants includes 12 missense mutations, two nonsense mutations and a flameshift 

mutation (67). Majority of the single-missense mutations of rIII are located in the 

conserved regions, and interestingly, half of these mutations are mapped to the last 10 

aa residues of the RIII, a putative C-terminal β-sheet. This may indicate the C-terminus 

of RIII is critical to its function. However, no molecular analysis of RIII has been done 

so far.  

The LIN signal 

Despite previous efforts for identifying the signal of LIN, the nature of this signal 

is still not understood. One clue about the LIN signal is that T4 phage “ghosts”, in 

which the contents of the capsid have been released by osmotic shock (17), are able to 

adsorb to and kill the uninfected cells with unit efficiency but do not induce LIN in 



 

37 

 

previously infected cells (72). The T4 capsid contains a single copy of 170 kb dsDNA 

molecule with glycosylated hydroxymethylcytosine (HMC) instead of cytosine, and  

about 1000 internal head proteins (IPs) which are required for the inhibition of host 

restriction systems (64). In a normal T4 infection, these contents are normally ejected 

from the phage head and go into the host cytoplasm through the T4 tail tube, which 

makes a temporary pore in the IM. However, by ~5 min after the infection, two T4 

early gene products, Imm (product of gene imm) and Sp (product of gene sp) 

accumulate in the cytoplasmic membrane and periplasm, respectively, and prevent the 

tail tube of superinfecting phage from forming the temporary hole in the IM (61). As a 

result, the contents of the phage capsid are ejected into the host periplasm (17). Since 

T4 ghosts fail to induce LIN, it is reasonable to presume that at least one of the capsid 

contents constitute the LIN signal (53). The IPs are not considered likely as the LIN 

signal because IPs are heterogeneous among the T-even phages (T2, T4, and T6), but 

all of these phages can cause LIN in a T4 infection (53). Also there is no significant 

conservation between different IPs. A T4 or T4-like phage genome DNA that ejected 

from the superinfecting phage heads will end up in the host periplasm and will be 

degraded by periplasmic endonuclease I (73). This event can significantly change the 

concentration of DNA in the periplasm. If single T4 genome DNA is ejected into E. coli 

periplasm, which has 8%-16% of the total cell volume (74), the concentration of DNA 

(nucleotides) in the periplasm could reach ~1000 μg/ml, which is comparable to the 

cytoplasmic DNA concentration of the host cell (~8000μg/ml) (75). This high 

concentration of DNA may affect the properties of the periplasmic space and lead to the 
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imposition of LIN. The absence of HMC-DNA modification has no effect on LIN (53). 

Therefore any external DNA fragments which have been ectopically ejected into the 

periplasm could be the LIN signal candidate. Although an electrophoretic mobility shift 

assay (EMSA) result suggests a weak interaction between purified sRI and 30bp 

dsDNA (54), there is no enough evidence that shows the strong interaction of DNA and 

any lysis protein or antiholin. It is also not clear how the DNA could affect the stability 

and function of the antiholin RI.  

Lysis of phage Mu 

Mu, the transposable phage 

The coliphage Mu was discovered accidentally in 1960s by A. L. Taylor and 

named ‘Mu’ for its ability of causing mutations of the host E.coli after lysogenization 

(76). Mu is a myophage that contains an icosahedral head (~50 nm diameter), a long 

contractile tail, and a baseplate with six short tail fibers attached to it (77). It has a 

36,717kb linear dsDNA genome; however each Mu phage particle contains ~40kb of 

dsDNA in its head capsid, due to ~100bp (left) and ~2,000bp (right) of host DNA 

attached to the each end of the genome as the result of headful packaging (77). Ever 

since its discovery, Mu is especially of interest to researchers for its several unique 

features, including the random integration of phage genome into the host chromosome, 

the replication of phage DNA via transpositions, the distinctive DNA modifications and 

regulation of gene expression by DNA methylation (76). Among these features, the 

most fascinating one is the transposition ability of Mu (78). The study of Mu  
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transposition proved the existence of insertion elements in bacteria for the first time and 

later lead to the establishment of the very first in vitro transposition system (78), which 

significantly pushed forward our knowledge of movable elements of genomes.  

The two main protein factors of transposition are transposase MuA and MuB. 

MuA is a recombinase containing an RNaseH-like domain with catalitic triad DDE (39, 

79); The target DNA activator MuB is critical for finding of the target host DNA 

(Figure 1.18) (77). The infectious Mu transposition can be summarized in four steps: 1) 

During the initial infection, ‘transpososome (or intasome)’ is formed by pairing the attL 

and attR end of the Mu genome injected into the host cytoplasm; 2) MuA makes 

hydrolytic nicks on both phage DNA and the proximate, non-specific target host DNA; 

3) The phage genome is ligated to the host DNA, creating the hybrid of the phage-host 

strand (strand transfer); 4) Transposition is finalized by the removal of the flanking host 

DNA linked with the Mu genome and the repair of gaps Morphogenetic Structures 

Present in Lysates of amber mutants of Mu (77, 80). When Mu becomes lytic, the phage 

and the host enzymes assist the formation of intasome and the creation of the two 

replication forks at the phage-host joint strands, which allows the copying of the whole 

phage genome using the 3’ hydroxyls of host DNA as replication primers without 

excision from the host genome (81). Repetition of this ‘copy-and-paste’ replicative 

transposition can result in >100 copies of the Mu genome in a single host cell. This 

makes Mu the most powerful transposon we know of to date (76). 
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Figure 1.18 Map of phage Mu. 
 Genes with assigned functions are labeled with their names. Adopted from (77).  
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The initial DNA integration and transposition are required for both lytic and 

lysogenic pathway of Mu. The decision of lysogeny or lysis depends on the ratio of 

Repc and Ner repressors (77). Once the Mu lysogen is formed, it is quite stable and 

cannot be induced by UV or DNA-damaging chemicals (77). Therefore, the lytic phase 

of Mu was mainly studied with Muctsmutants, which allow the deactivation of the main 

repressor c protein at 42°C. As a repressor, c not only maintains the lysogeny, but also 

immunizes the lysogen from the phage superinfection (77).             

Mu lysis gene: lys   

Mu is one of the most well-studied phages besides λ and T4, with which Mu 

shares the distinction of having a book entirely dedicated to it (77). However, because 

of the focus and the emphasis on its transposition mechanism, very little study was 

conducted toward the lysis process of Mu. In 1970s and 1980s, the majority of Mu 

genes, both essential or nonessential for Mu growth, were mapped and analyzed by 

either deletion, insertion or nonsense (amber) mutations (82). The most up-to-date 

published annotation of Mu genome lists 55 predicted genes, among which 18 genes 

have undefined function (83). As shown in Figure 1.18, lys is the only gene which was 

identified and assigned with any phenotype related to lysis (84). The amber mutations 

in lys gene abolished lysis and cause the failure of virion release, but did not affect the 

accumulation of the progeny phage particles or the phage morphology (82). However, 

the molecular function of lys or the mechanism of lys-mediated lysis has never been 

studied.  
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Taking advantage of the complete genome sequence of Mu published in 2002 

(83) and the progress in understanding various phage lysis systems, the most recent 

bioinformatics study suggested that product of lys is a SAR-endolysin. Lys, a protein 

consists of 171 aa, is predicted to have a N-terminal SAR-domain and a large C-

terminal soluble domain includes classic T4 E-like catalytic triad sequence 

(ExxxxxxxxDxxxxxT) (Figure 1.19) (40). The fact that Lys does not have any Cysteine 

in it SAR-domain suggests that it is an R21-like SAR-endolysin, which requires the 

conformational change of SAR-domain to activate the enzymatic function (38). This 

prediction brings up a possibility that Mu, as a dsDNA phage infecting Gram-negative 

host, may have a lysis paradigm consists of pinholin, SAR-endolysin and spanins, 

similar to phage 21. Summer et al reported that the product of gene 23 of Mu is an 

equivalent of λ i-spanin Rz, and a newly identified gene 23a which is partially 

overlapped with gene 23 is the o-spanin Rz1 equivalent (47). The fact that spanin gene 

candidates are in proximity of lys (gene 22) suggests Mu might have λ -like ‘lysis 

cassette’. However, none of the Mu gene products fits the topology profile of any 

experimentally characterized holin. Other genes involved in Mu lysis are yet to be 

determined.  

Questions addressed in this dissertation 

 This dissertation describes four major research topics: 

 (1) Determine the molecular function of rIII in T4 lysis inhibition. The function 

of the product of rIII gene, an 82aa protein, was studied in a λ context that mimics the wt 

T4 infection process, and the interaction partner of RIII was identified. A new model for  
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Figure 1.19 Primary structure of Mu SAR-endolysin Lys. 
The SAR-domain is highlighted in Yellow . The catalytic triad residues are marked with 
red (85)..  
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T4 LIN that involves the stabilization of a complex of three proteins in two 

compartments of the cell was proposed. 

  (2) Biochemical/structural characterization of RIII. Un-tagged native RIII 

protein was purified to homogeneity. The character and the structure of RIII were 

studied using various biochemistry methods. The quantification of the RIII protein in the 

T4 infection was carried out to answer the questions regarding to the stoichiometry of 

proteins involved in T4 LIN.  

 (3) Lysis paradigm of phage Mu. The lysis paradigm of a classic phage Mu was 

studied. The holin-antiholin pair, Gp19 and Gp20, was identified and their functions 

were experimentally confirmed. In addition, a new class of protein factor that regulates 

the lysis by activating the endolysin function is discovered and tested by biochemical 

and genetic approaches. 

 (4) Dependence of IM receptor in newly isolated lambdoid phages. It is reported 

that phage λ relies on E. coli mannose transporter complex ManYZ as the IM receptor 

for its DNA penetration. However, mechanism of the interaction between the IM 

receptor and the phage tail proteins remains controversial. Two new lambdoid 

siphophages that strictly require ManYZ complex for their infection were isolated from 

the environmental samples, and their suppressors for manYZ hosts were sequenced to 

study the phage genes involved in the IM receptor interaction.   
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CHAPTER II  

T4 RIII IS A CYTOPLASMIC CO-ANTIHOLIN 

 

Introduction 

The r genes of the T-even phages, first identified by laboratories of the Phage 

Group in the 1940s (52, 65), have a special place in the history of molecular biology. 

Detailed studies of the first three loci discovered, - rI, rIIAB, and rIII - were foundational 

in working out the fundamentals of inheritance, the genetic code, mutation, 

recombination, DNA repair, and gene structure (86-90). These mutable loci were 

originally discovered by their distinctive plaque morphology: large, clear, sharply-

defined plaques, easily distinguished from the small, fuzzy-edged turbid plaques of the 

parental phages (65). The “r” designation meant “rapid lysis”, which refers to the 

observation that the mutant phages isolated from the r-type plaques caused rapid, 

culture-wide lysis at ~25 min after infection, whereas cultures infected with the parental 

phages continued to increase in mass and accumulated progeny virions intracellularly for 

hours, in a state called “lysis inhibition”(LIN)(66). In the ensuing decades, more loci 

were assigned as r genes based on mutant plaque phenotypes; at one point, there were r 

genes numbered up to rVI that were assigned map positions (67, 91). In 1998, Paddison 

et al. (64) reviewed this field and concluded that only rI, rIII and rV were directly 

involved in LIN, with the other genes causing lysis phenotypes through indirect 

physiological pathways. The rV mutants were shown to be missense alleles of gene t, 

which encodes T, the holin of phage T4 (69). Holins are the master lysis control proteins 
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of Caudovirales (17), acting to terminate the infection cycle by permeabilizing the 

cytoplasmic or inner membrane (IM) at a programmed time. It followed that the simplest 

operational model to explain the involvement of the remaining loci associated with 

direct LIN defects, rI and rIII, would be that the RI and RIII proteins were required to 

inhibit the lethal function of T and thus establish the LIN state (64, 67). 

 More recent studies on T and RI have confirmed aspects of this operational 

model for LIN and provided molecular details for the lysis pathway of T4 (54, 56, 59). 

Like other holins, including the well-studied S105 holin of phage λ, the T holin 

accumulates harmlessly in the host IM until it suddenly forms lethal, micron-scale 

membrane lesions at an allele-specific time. This event, which is defined as holin 

triggering, results in the escape of cytoplasmic endolysin E (product of gene e) (17) into 

the periplasm, where it rapidly degrades the cell wall. In turn, the loss of cell wall 

activates the spanin complex (product of pseT.2 and pseT.3)(47), which then disrupts the 

outer membrane (OM) and completes the release of the progeny. In single infections, T4 

completes this three-step pathway in ~25 min (65). However, if the T4-infected cells are 

super-infected by other T4 (or T-even phages) after the first five minutes of the infection 

cycle, LIN is imposed (92). There has been progress on the molecular basis of LIN (34, 

35, 56, 70). While most holins have two or more transmembrane domains (TMDs) and 

only short soluble loops connecting them (17), the T holin has a unique structure, with 

only a single TMD and significant N- (34 aa) and C-(163 aa) terminal cytoplasmic and 

periplasmic domains, respectively (56, 57) (Figure 2.1).  



 

47 

 

 

Figure 2.1 Topology of T4 holin T -antiholin RI interaction. 
T is an inner membrane protein with a single TMD (shown as a solid cylinder) and an 
amphipathic helix (shown as a white cylinder). RI has a SAR (Signal Anchor-Release) 
domain (shown as a dash line rectangle) which allows RI to be spontaneously released in 
to the periplasm (35). If stabilized by the LIN signal, periplasmic RI binds to the C-
terminal globular periplasmic domain of T. IM, inner membrane.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

48 

 

Moreover, the RI protein was shown to have a SAR (signal anchor release) 

domain, which is a TMD that can escape from the membrane (35). By virtue of this 

domain, RI is secreted initially as a membrane-tethered periplasmic protein and then 

releases into the periplasm where, in single infections, it is degraded rapidly (35, 70). 

However, under LIN conditions, (i.e., when there is superinfection with a second T4 

phage particle), RI is stabilized and accumulates in the periplasm, where it forms a 

complex with the cytoplasmic domain of T and inhibits triggering, thus imposing the 

LIN state. Additionally, if the SAR domain of RI is replaced by a cleavable Signal 

Peptidase I signal sequence, the processed RI protein over-accumulates in the periplasm 

in a stable, mature form, forms the complex with T and imposes LIN without requiring 

the superinfection activation (35, 70). 

Because RI is a specific inhibitor of T, it is formally a member of a diverse class 

of proteins designated as antiholins (24, 33, 93, 94). Moreover, since RI inhibits T only 

under certain physiological conditions, it is the only antiholin known that transduces 

environmental information to effect real-time control of holin function and thus the 

length and fecundity of the phage infection cycle (34). However, despite these 

conceptual and mechanistic advances with T and RI, the genetic basis of the LIN 

phenomenon remains incomplete, some decades after the genetics of the r genes were 

first published, because no role has been found for rIII (65, 86). Although it was 

reported that RIII was not required for LIN on some E. coli K-12 strains (89), rIII shares 

with rI the feature that neither locus can suppress t lysis-null mutations and both loci are 

transcribed from both early and late promoters (64, 71). Recently, rIII was suggested to 
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play a role in the propagation of T4 in slow-growing host cells (95). Here, we present the 

preliminary results of in vivo and in vitro characterization of rIII. The results are 

analyzed in terms of a model that suggests direct molecular involvement of RIII in LIN 

as a new class of antiholin.  

Materials and methods 

Bacterial growth and induction 

 See Table 2.1 for the full list of phages and bacteria strains used in this study. 

Bacterial strains were plated on standard LB-agar plate supplemented with the 

appropriate antibiotics (ampicillin, 100 μg mL-1; chloramphenicol, 10 μg mL-1; 

kanamycin, 40 μg mL-1). A single colony from a LB plate was used to inoculate 3 mL 

overnight culture at 30°C for λ lysogens and 37°C for non-lysogenic E. coli strains, as 

described before (34). Overnight cultures were diluted to A550 ~ 0.03 and grown at 30°C 

or 37°C with aeration. Bacterial growth and lysis were monitored as described (34) using 

a Gilford Stasar III sipping spectrophotometer (Gilford Instrument Inc, Oberlin, OH). 

The λ lysogens were induced as described (34, 59). All plasmid-cloned genes were 

induced with 1 mM isopropyl β-D-thiogalactosidase (IPTG).  

Phage infection and preparation of phage lysates 

 Phage lysates were prepared by adding 10% CHCl3 (v/v) to the E. coli cell 

culture after lysis , in either induced lysogens or by liquid culture infections, as 

described previously (35). The lysate was cleared by centrifugation at 5,000 x g and the 

supernatant was filtered through a 0.22 μm syringe filter. Phage infection experiments 

were carried out as described (34, 35). For liquid culture infections, host E. coli cells  
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Table 2.1 Phages, strains, and plasmids used in Chapter II. 
 
 Phages  Description  Source  

 T4wt Bacteriophage T4D Laboratory 
Stock 

 T4rIII  T4r67. H42 to R (CAU to CGU) mutation in rIII locus. Laboratory 
Stock 

 T4ΔrI  Complete deletion of rI from nt 59204 to nt 59496 in T4D 
genome (35) 

 T4ΔrIII  Complete deletion of rIII from nt 130779 to nt 131042 in 
T4D genome This study 

 λ -t  with holin gene S replaced with T4 holin gene t  (59) 

 λSA52G  cI857 carrying Ala52Gly early lysis allele of S holin 
gene. (26) 

 T4rBB9 W16 to stop (UGG to UGA) mutation in rIII locus Laboratory 
Stock  

 T4rES35 H42 to Q (CAU to CAA) mutation in rIII locus  Laboratory 
Stock 

 T4rES40 K82 to E (AAG to GAG) mutation in rIII locus  Laboratory 
Stock 

 Bacteria Strains  Description  Source  

 CQ21  E. coli K-12 ara leu lacIq purE gal his argG rpsL xul mtl 
ilv  

Laboratory 
Stock 

 CQ21λ-t  CQ21 lysogen carrying -t prophage (59) 
 CQ21λSA52G  CQ21 lysogen carrying SA52G prophage This study  
 BL21(DE3) 
 fhuA::Tn10 

E. coli B ompT rB
- mB

- (PlacUV5::T7 gene1) slyD::Kan 
fhuA::Tn10  

Laboratory 
Stock 

 B834 E. coli B ompT rB
- mB

- met -  Laboratory 
Stock 

 MG1655 E. coli F- λ - ilvG- rfb-50 rph-1  Laboratory 
Stock 

 MDS12 tonA::Tn10    
 lacIq1 

MG1655 with 12 deletions, totaling 376,180 nt including 
cryptic prophages (35) 

 DHP1 E. coli  F- cya-99 araD139 galE15, galK16, rpsL1 (Strr) 
hsdR2 mcrA1 mcrB1 (96) 

 Plasmids  Description  Source  

 pZE12 ColE1 origin; PLlacO-1 (PL promoter with three lacO 
operators); AmpR  (97) 

 pZE12-luc Luciferase gene luc cloned under PLlacO-1 (97) 
 pZE12RI  T4 rI cloned under PLlacO-1  with native SD (34) 
 pZE12RIIIo  T4 rIII cloned under PLlacO-1 with native SD (34) 
 pZE12RIIIs  T4 rIII cloned under PLlacO-1 with plasmid SD  This study 

 pZE12RI-RIII  Tandem clone of rI- rIII inserted between KpnI and XbaI 
site This study 
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Table 2.1 Continued 
 
 Plasmids  Description  Source  
 pET11a-RIII  pBR322 origin, T7 promoter, carrying codon 1-82 of rIII  This study  
 pET11a-RIIIH42R H42 to R (CAU to CGU) mutation in rIII  This study 
 pTB146  bla lacIq PT7::h-sumo (98) 

 pTB146-RIII   Codon 2-82 of rIII gene inserted between SapI and XhoI 
site This study 

 pTB146-nT  Codon 2-34 of t gene inserted between SapI and XhoI site This study 
 pCH364 T18-empty (AmpR);N-terminal tag (96) 
 pKNT25 Empty-T25 (KanR); C-terminal tag  (96, 99) 
 pKT25 T25-empty (KanR); N-terminal tag  (96, 99) 

 pCH364RIII  Codon 2-82 of rIII gene inserted between BamHI and 
EcoRI site  This study  

 pKNT25RIII  Codon 2-82 of rIII gene inserted between XbaI and EcoRI 
site  This study  

 pKT25nT Codon 2-34 of t gene inserted between BamHI and EcoRI 
site  This study 
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Table 2.2 Primers used in Chapter II. 
 
Primer name Sequence Source 

RIIIS CLONING F  CGGTACATTAAACAATTACAACACGCTC  This study  

RIIIS CLONING R  GGCTCTAGATTACTTCAGTGTTACCACAAAGTG  This study  

RIIIS PET F  
GGAATTCCATATGATTAAACAATTACAACACGC

TC  
This study  

RIIIS PET R  GCGGGATCCTTACTTCAGTGTTACCACAAAGTG  This study  

RIII DEL +500 F  
GGGGTACCCATCTGTTAACAAAAAGGAAAAAC

G  
This study  

RIII DEL -500 R  GCTCTAGAGCGTTCAGATTAATCGTTTTCA  This study  

RIII DEL MIX F  
TTTTAATCTCTAACGAGGGAGATTCACTGCCTT

AGTGTGAGC  
This study  

RIII DEL MIX R  
CCGAGTTTTAATCTCTAACGAGGGAGATTCACT

GCCTTAGT  
This study  
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were grown to A550 ~ 0.3 and infected at a multiplicity of infection (MOI) ~ 5. To 

observe plaque morphology, 100 μL overnight cultures of host cells were added to 3 mL 

of LB top agar and immediately poured on standard LB-agar plates. 5 μL of phage 

lysates with proper dilutions were spotted onto the top agar. For complementation 

experiment, BL21(DE3) fhuA::Tn10 cells carrying pET11a vectors were grown to A550 ~ 

1 at 37°C, and induced with 1mM IPTG for 2 h before mixed with LB top agar and 

poured onto LB plates containing proper antibiotics and 1mM IPTG. All plates were 

incubated ~16h at 37°C. The plaque sizes were analyzed using ImageJ software (NIH, 

Bethesda, MD).  

Standard DNA manipulations and sequencing 

 All plasmids used in this study are listed in Table 2.1. Isolation of plasmid DNA, 

DNA amplification by polymerase chain reaction (PCR), DNA transformation, and 

DNA sequencing were performed as previously described (50, 56, 57). Oligonucleotides 

(primers) DNA sequences are listed in Table 2.2. All purified oligonucleotides (primers) 

were purchased from Integrated DNA technologies (Coralville, IA). Restriction and 

DNA-modifying enzymes were purchased from New England Biolabs (Ipswich, MA). 

Manufacturer’s instructions were followed when performing reactions. The DNA 

sequence of all constructs was verified by sequencing service provided by Eton 

Bioscience (San Diego, CA). 

PCR and plasmid construction  

 T4D phage lysate was directly used as the PCR template for cloning out T4 

genes. Pfu DNA polymerase was used for all PCR reactions following standard 
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protocols provided by Promega (Madison, WI). Site-directed mutagenesis was 

performed as described (57). The rIII gene either with its native ribosome binding site 

(GAG) or a stronger ribosome binding site (AGGAG) was cloned into the medium-copy 

IPTG-inducible vector pZE12 (97). Plasmid pZE12-RIIIo and pZE12-RIIIs were 

constructed by inserting T4 DNA from nt 130738 to nt 131080 (RIIIo), or from nt 

130785 to nt 131033 (RIIIs) into pZE12 between KpnI and Xbal sites. Plasmid 

pET11aRIII has the same insertion as pZE12RIIIs between its Ndel and BamHI sites. 

Plasmid pZE12RI-RIII was made by inserting a tandem clone of rI and rIII genes with 

their original ribosome binding site into plasmid pZE12. These plasmids were 

transformed into a CQ21λ-t lysogen, in which the λ holin gene S has been replaced by 

T4 gene t (59). In this system, RI or/and RIII can be expressed in trans to T from pZE12 

plasmids by adding 1mM IPTG after lysogenic induction. A λSA52G lysogen was used as 

a control, since the SA52G confers a ~20 min lysis time, similar to the t gene (26). Plasmid 

pTB146 is a derivative of plasmid pET11a encoding an N-terminal his6-SUMO tag (50, 

98). Plasmids encoding His-SUMO-tagged versions of RIII and nT (the N-terminal 

domain of T), pTB146-RIII and pTB146-nT were constructed by inserting codon 2-81 of 

the rIII gene, or codons 2-34 of the t gene (nt 160218 to nt 160322 of T4 genome), 

respectively, into the pTB146 plasmid between its SapI and XhoI sites.  

Constructing T4 rIII deletion mutant 

 T4∆rIII was constructed by homologous recombination between pZE12-∆rIII 

and T4D, as described previously for T4∆rI (35). pZE12-∆rIII was made by deleting the 

rIII gene from plasmid pZE12-rIII-flank, which contains T4 DNA from nt 130231 to nt 
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131541 between its KpnI and Xbal sites, using our previously described method (100). 

Plasmid pZE12-∆rIII was transformed into E.coli strain MDS12 tonA::Tn10 lacIq1, and 

the transformants were grown to A550 ~ 0.4. The culture was infected with T4D phage at a 

MOI=10 for 3 h at 37°C with aeration, and then lysed by adding 10% v/v CHCl3. T4 rIII 

recombinants in this lysate were enriched three times for early lysis as described (35). 

The enriched lysate was plated on E. coli B834 and screened for r plaque morphology. 

The ∆rIII deletion was confirmed by PCR and sequencing.  

SDS-PAGE and Western blotting 

 SDS-PAGE and Western blotting were conducted as previously described (57). 

10% trichloroacetic acid (TCA) was used to precipitate proteins from the whole-cell 

samples. Reducing sample loading buffer (SLB) supplemented with β-mercaptoethanol 

was used for resuspending protein samples unless otherwise indicated. RIII proteins 

transferred onto PVDF membrane were detected using rabbit polyclonal α-RIII antibody 

purchased from Genscript (Piscataway, NJ). The monoclonal α-his-tag antibody (α-his) 

was purchased from Sigma-Aldrich (Carlsbad,CA). To detect proteins, blots were 

incubated overnight at 4°C with α-RIII or α-his at a dilution of 1:4000 in 3% milk-TBS 

buffer. Blots were developed with the West Femto SuperSignal Chemiluminescence kit 

purchased from Thermo Fisher Scientific (Rockford, IL). The chemiluminescence signal 

was detected using a Bio-Rad Chemidoc XRS (Bio-Rad Laboratories, Hercules, CA). 

Images were obtained and analyzed by Quantity One 1-D Analysis Software (Bio-Rad 

Laboratories, Philadelphia, PA). 

 

http://www.sigmaaldrich.com/safc/facilities/carlsbad-california.html�
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Bacterial two hybrid assay  

 Bacterial two hybrid (B2H) assays were conducted as described previously (96, 

99, 101). Plasmids were constructed by inserting codons 2-81 of the rIII gene, or codons 

2-34 of the t gene into plasmids pCH363, pKNT25, pCH364, and pKT25, as described 

(96). Different pairs of plasmid were transformed into strain DHP1 and grown to A550 ~ 

0.3 in LB with 0.2% glucose and appropriate antibiotics (ampicillin, 50 μg mL-1; 

kanamycin, 25 μg mL-1). For the plate assay, 5 μL of cell cultures were spotted on M9 

minimal media plates supplemented with 0.2% glucose, 40�μg mL-1 X-Gal, 150 μM 

IPTG and proper antibiotics and incubated for 48h at 25°C.  

Pull-down assays  

 Plasmid pET11a and pTB146 derivatives described above were transformed into 

BL21(DE3) fhuA::Tn10 strains. Pull-down assays were conducted as instructed by 

manufacturer protocol from Dynabeads® His-Tag Isolation and Pulldown kit (Thermo 

Fisher Scientific, Rockford, IL). All incubation and reaction was carried out in 4°C and 

beads were collected using DynaMag™-2 Magnet (Thermo Fisher Scientific). All 

samples were resuspended in SLB and boiled for 5 min to elute proteins, which were 

then analyzed by SDS-PAGE and Western blotting were performed as described above. 

Results 

rIII is required for LIN in both E. coli B and K-12 background   

The role of rIII in LIN has been ambiguous, with reports differing in whether rIII 

was required on E. coli B but not K-12 strains (67, 89, 102). In our hands, the classic rIII 

alleleT4r67, which was used as the standard allele in the early T4 genetic map studies, 
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formed r-type plaques on the lawn of both E. coli B834 and MG1655 (Figure 2.2A), 

with somewhat smaller plaques compared to those formed by T4rI, but significantly 

larger than wt T4 plaques (Table 2.3). It was also reported that different T4 rIII mutants 

differed in plaque size, suggesting a possible correlation between the location of 

mutations on rIII locus and plaque morphology (103). However, when we compared 

plaque morphologies of four different T4 rIII defective mutants (T4r67, T4rBB9, 

T4rES35, and T4rES40) on B834, we did not observe significant differences (Table 2.3). 

Nevertheless, as the first step for interrogating the role of rIII in LIN, we constructed an 

rIII deletion allele, T4∆rIII, to eliminate the potential for partial reversion. As shown in 

Table 2.3 and Figure 2.2A, T4∆rIII formed r-type plaques that were larger than wt 

plaques, but smaller than those of T4rI. Moreover, the wt plaque morphology could be 

complemented by a plasmid-borne rIII gene (Figure 2.2B). In infections of both E. coli 

B834 or K-12 cultures under conditions where the wt T4 exhibited LIN, T4∆rIII 

infections showed lysis at ~25 min, in both cases reproducibly later than the lysis time of 

T4∆rI (~18 min), (Figure 2.3A). The simplest notion, based on the established role of RI 

in LIN, is that RI expressed in the T4∆rIII infection causes transient LIN, and that, by 

extension, RIII is required for stable LIN in both E. coli B and K-12 strains.  
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Figure 2.2 Plaque morphologies of T4 and its r mutants.  
(A) Plaque morphology of T4 wt (T4D) and T4 mutants on either E. coli B strain (B834) 
or E. coli K-12 strain (MG1655). The black bar represents 2.5mm. Average plaque sizes 
of T4D, T4∆rIII, T4rIII and T4∆rI on E. coli B834 or E. coli MG1655 are listed in Table 
2.3.  
(B and C) Complementation of r plaque morphology. T4 rIII mutants plated on E. coli 
strains expressing wt RIII restored wt T4 plaque morphology. In B, differences in plaque 
sizes were shown as the ratio of the average phage plaque radius (r) to the average 
plaque radius of T4D plated on B834 (r0). 1, MG1655; 2, BL21(DE3) fhuA::Tn10 no 
plasmid; 3, BL21(DE3) fhuA::Tn10 pET11a pET11a-RIII; 4, BL21(DE3) fhuA::Tn10 
pET11a-RIIIH42R. 
 

 

 

 

A 

B 
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Table 2.3 Mean diameter of phage plaques (mm) 
 

    Host 
 
 
Phage 

 B834  MG1655  BL21(DE3) BL21(DE3)  
pET11a 
RIII  

BL21(DE3) 
pET11a 
RIII-H42R  

BL21(DE3) 
pTB146 

BL21(DE3)  
pTB146-nT 

T4D  0.57 
(±0.04) 

0.67 
(±0.04) 

0.63 
(±0.06) 

0.53 
(±0.05) 

0.57  
(±0.05) 

0.68  
(±0.04) 

1.07 
 (±0.05) 

T4rIII  1.09 
(±0.09) 

1.43 
(±0.07) 

1.07 
(±0.09) 

0.62 
(±0.03) 

0.92  
(±0.08) 

1.32  
(±0.08) 

1.38 
 (±0.06) 

T4rIII  0.92 
(±0.08) 

1.12 
(±0.06) 

0.95 
(±0.07) 

0.52 
(±0.06) 

0.86  
(±0.08) 

1.13  
(±0.08) 

1.17  
(±0.07) 

T4rI  1.29 
(±0.09) 

 

1.88 
(±0.11) 

1.24 
(±0.07) 

1.21 
(±0.03) 

1.34  
(±0.06) 

- - 

T4rBB9  
 

0.89 
(±0.15) 

 

- - - - - - 

T4rES35  1.02 
(±0.05) 

 

- - - - - - 

T4rES40  1.05 
(±0.05) 

- - - - - - 
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Figure 2.3 Lysis curves.  
(A) Lysis in infections of T4 and derivatives infecting E. coli B strain B834 (Left, solid 
line) or K-12 strain MG1655 (right, dotted line). ×, no phage; ●, T4D (wt); ▲, T4∆rI; 
△, T4∆rIII. Cultures were grown to A550 ~ 0.25 at 37°C, then infected with T4 at 
MOI~5.  
(B) Inductions (at t=0) of CQ21λ-t (Left, solid symbols) or CQ21λSA52G (right, open 
symbols) lysogens carrying indicated genes cloned under IPTG control in the context of 
the pZE12 plasmid. Plasmids were also induced by addition of 1mM IPTG at t=0. ×, luc 

(negative control); ▲ and △, RI; ● and ○, RIIIs; ◆ and ◇, RI-RIII.  
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Figure 2.3 Continued. 
(C) RIII missense mutants exhibit intermediate LIN phenotype. CQ21λ-t lysogens 
carrying pZE12 plasmids with indicated genes were induced at t=0. ×, luc; ▲, RI; ●, 
RIIIs; ◆, RI-RIII. Left pane with dotted lines: □, RIIIG24D; ◇, RIIIH42R; ▽, RIIIA70V. 
Right panel with solid lines: □, RI-RIIIG24D; ◇, RI-RIIIH42R; ▽, RI-RIIIA70V. 
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Identification of the RIII protein 

 rIII encodes an 82aa polypeptide without any secretion signals (Figure 2.4A) and 

had not been identified as a protein species in T4-infected cultures. We raised a 

polyclonal antibody against an RIII oligopeptide sequence predicted to be highly 

immunogenic (Figure 2.4A). The RIII protein could be visualized by immunoblotting in 

samples taken from cells infected with T4wt, but not with T4∆rIII (Figure 2.4B); the 

mobility of this RIII species corresponded to a slightly lower molecular mass than 

predicted (8.9 kDa versus 9.3 kDa predicted), presumably due to the high content of 

charged residues (24 out of 82).  

Recapitulating the role of RIII in LIN in the λ context 

To address the role of RIII in LIN, we used a convenient system based on the 

inducible λ  prophage, λ-t, in which the λ holin gene S is replaced by T4 t (59). Not only 

was this hybrid phage previously shown to recapitulate T4 lysis timing and LIN at 

physiological levels of expression, it allows the co-expression  of selected T4 genes 

cloned in inducible plasmid vectors without the confounding effects of T4-mediated host 

DNA degradation and translational repression(34, 56, 59, 60). This system mimics the 

T-dependent lysis in the λ context where effects of T4 genes other than t are excluded. 

To provide RIII in trans, the rIII gene was cloned into a medium copy-number plasmid 

vector pZE12 (97). Two isogenic clones were constructed with different Shine-Dalgarno 

(SD) sequences serving the rIII cistron, one the relatively weak native sequence (GAG) 

and the other with a stronger near-consensus sequence (AGGAG). The resulting 

plasmids pZE12RIIIo (original SD sequence) and pZE12RIIIs (strong SD sequence) were  
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Figure 2.4 Structure of RIII and nT. 
(A) Primary structure of RIII and N-terminus of T4 holin T (nT) with LIN-defective and 
lysis-defective   alleles indicated by black arrows. Conserved residues are underlined. 
The shaded area represents the oligopeptide used to raise theα-RIII antibody. Predicted 
secondary structure is indicated: white box, helix; solid line, turn; white arrow, beta-
sheet; grey box, amphipathic helix. 
 (B) RIII protein accumulates during infection. For each sample, 1 A600 equivalent of 
cells was loaded. The α-RIII antibody was used in Western blotting. Black arrow 
indicates predicted molecular mass (9.3kDa) for RIII monomer.  
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transformed into the λ-t t lysogen. Induction of the λ-t lysogen resulted in reproducible 

and sharply defined lysis at ~ 20 min; induction of pZE12RIIIs with IPTG conferred a 

mild but reproducible lysis delay of ~5 min (Figure 2.3B). In contrast, lysis was much 

more severely affected by induction of an isogenic clone of the T4 antiholin gene rI, as 

previously shown (34). Induction of pZE12RIIIo did not affect the lysis timing, probably 

due to the lower protein expression level (Data not shown).  

We next asked if RIII can extend RI-mediated LIN. An isogenic plasmid with rI 

and rIII cloned in tandem was constructed and introduced into the λ-t lysogen. Induction 

of this plasmid, pZE12RI-RIII, led to a drastically delayed LIN compared to induction of 

either pZE12RIIIs or pZE12RI (Figure 2.3B); under these conditions,  the LIN state 

lasted up to 80 min and then gradually deteriorated. Using this system, we tested three 

rIII missense alleles isolated by UV mutagenesis: G24D, H42R, and A70V (67) (Figure 

2.4A). In the absence of RI, two of the alleles, G24D and H42R, exhibited a slight but 

reproducible LIN defect, although the phenotype was subtle due to the relatively small 

effect of the parental rIII allele under these conditions (Figure 2.3C). Co-induction of 

these rIII with rI, however, resulted in distinct intermediate LIN defects, with lysis times 

ranging from 40 min~60 min, indicating these are partially defective alleles, at least in 

the λ  context (Figure 2.3C). The lysis blockage was t-specific, as indicated by the fact 

that isogenic experiments with a λ  holin allele, SA52G, which has an early lysis phenotype 

that matches the normal t lysis time (26), did not show lysis delays in inductions of  

pZE12RIIIs,  pZE12RI or pZE12RI-RIII (Figure 2.3B). Taken together, these data 

indicated that RIII has T-specific antiholin activity. 
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RIII binds to the cytoplasmic N-terminus of T  

 Next we addressed the molecular basis of RIII participation in LIN. The simplest 

hypothesis is, like other antiholins, including RI, RIII affects holin triggering by directly 

binding to holin T and blocking hole formation in the IM. Since RIII has no membrane 

or export signals (Figure 2.4A), the only possible target for RIII is the N-terminal 

cytoplasmic domain of T (nT), which has 34aa, and is required for holin function (56). 

To test this idea, we used the bacterial two hybrid system, based on intragenic 

complementation of CyaA function (101). We fused the nT, wt RIII, and four RIII 

mutant allele sequences to various combinations of the T25 and T18 fragments of CyaA. 

As shown in Figure 2.5A, this system revealed a strong self-interaction of RIII in vivo, 

which was abolished in the G24D allele, partially affected by H42R, and unaffected by 

L43Q or R75C. The transformants carrying plasmids expressing T18-RIII and T25-nT 

resulted in light but reproducible signals (Figure 2.5B), suggesting a relatively weak 

interaction between RIII and nT. Significantly, none of the four RIII mutant fusions 

retained the nT-binding ability (Figure 2.5B). These results correlate with the liquid 

culture lysis results (Figure 2.3C) and indicate the nT-RIII interaction is affected by the 

changes in the lysis-defective alleles. 

 To address the nT-RIII interaction in vitro, we constructed versions of nT and 

RIII tagged at the N-terminus with the His6-Sumo moiety (See Materials and Methods). 

After induction in a T7-based over-expression system, both His6-Sumo-nT and His6-

Sumo-RIII accumulated as soluble forms (Figure 2.6, top panel, lanes 2-5). To detect 

complexes formed in vitro, the SUMO-tagged nT and RIII proteins were bound to  
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Figure 2.5 Bacterial two hybrid assay. 
Bacterial two-hybrid results showing self-interaction of RIII  
(A) and interaction of RIII and N-terminus of T (nT) (B). T18, protein fused to T18 
fragment of CyaA protein; T25, protein fused to T25 fragment of CyaA. Negative 
control (--) indicates T18 or T25 fragments without RIII or nT fusion. 
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Figure 2.6 Pull-down assay using magnetic beads.  
In vitro interaction between nT and RIII. His-Sumo-tagged nT or RIII was bound to α-
his Dynabeads, and RIII protein pulled down by Dynabeads was analyzed by Western 
blotting. His-sumo tag only (lane 1, dash black arrow), His-sumo nT (lane 2 and 4, black 
arrow head), His-sumo RIII (lane 3 and 5, white arrow) are shown in the upper panel as 
the result of western blotting using α-his antibody. RIII protein (solid black arrow) is 
visualized in the bottom panel using α-RIII antibody.  
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magnetic beads, mixed with cell lysates containing wt RIII or mutant RIIIH42R protein, 

fractionated as bound and unbound, and then analyzed by immunoblotting. The results 

showed that both wt RIII and mutant RIIIH42R proteins form complexes with His6-Sumo-

RIII, but only wt RIII complexes with His6-Sumo-nT (Figure 2.6, bottom panel). The 

simplest interpretation is that the H42R mutation completely abrogates the RIII-nT 

interface but not the RIII homo-oligomerization interface, which is consistent with the 

results of the bacterial two-hybrid experiments.  

The cytoplasmic N-terminal domain of T can block lysis inhibition in an RIII-specific 

manner 

 The finding that RIII binds nT in vitro and in E. coli in the context of the two-

hybrids suggested that the r phenotype could be imposed in vivo by titrating the RIII 

produced in a T4 infection with the Sumo-tagged nT derivative. To test this idea, we 

plated T4 on lawns of cells induced for the over-expression of His6-Sumo-nT; under 

these conditions, T4 wt generated plaques distinctly larger and cleared compared to 

those generated on the isogenic control strain expressing the His6-Sumo tag (Figure 2.7). 

Neither T4rIII nor T4∆rIII plaque morphology was affected by overexpression of nT 

(Figure 2.7).  
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Figure 2.7 Rescue of r plaque morphology by overexpression of nT.  
(A) T4 phages were plated on lawns of E. coli BL21(DE3) fhuA::Tn10 carrying control 
plasmid expressing His-sumo-nT (pTB146-nT, bottom panels) or His-sumo (pTB146, 
top panels, neg control). Black bar represents 2.5mm.  
(B) Quantification of plaque sizes were shown as the ratio of the average plaque radius 
(r) to the ratio of T4D plaques plated on pTB146 (r0). Black bar, T4D; Patterned bar, 
T4∆rIII; White bar, T4rIII.  
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Discussion 

 Among the Caudovirales, the lysis timing effected by the holin defines the length 

and fecundity of the phage infection cycle. Mutational analysis has shown that holin-

mediated lysis timing can be drastically altered by single missense changes (56, 60, 104, 

105), leading to the suggestion that this extreme mutational sensitivity is an evolutionary 

fitness factor, allowing phages to mutate rapidly to a radically different length of life 

cycle in response to altered environmental conditions (19). Despite the implied 

correlation between lysis timing and the environment, the T4 LIN phenomenon remains 

the only documented example of real-time regulation of lysis timing. Genetic analysis 

has shown that mutations in two of the classic T4 plaque-morphology loci, rI and rV, the 

latter allelic to the t holin gene, confer an absolute defect in LIN. Our work had shown 

that RI is a secreted protein that is initially synthesized as periplasmic protein tethered to 

the membrane with an N-terminal signal-anchor-release (SAR) domain (35). The 

presence of the SAR domain allows it to release into the periplasm and also confers 

extreme proteolytic instability on RI. Over-expression of the wt rI gene was shown to 

impose a delay on T-holin triggering in the λ context. A chimeric rI gene in which the 

SAR domain was replaced by a cleavable signal sequence generated a proteolytically 

stable periplasmic RI and, expressed in trans to t, imposed a stable LIN state. A model 

has been proposed in which an unknown LIN signal is generated by a super-infecting T4 

virion. Under these conditions, it is suggested that the T4 Spackle and Imm proteins 

force the superinfecting virion to eject its capsid contents ectopically into the host 

periplasm (106). Some component of these virion contents, which include both the T4 
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genomic DNA and ~1000 protein molecules (64, 102), acts as a signal to stabilize the 

periplasmic RI protein. In this model, RI accumulates and binds to the periplasmic 

domain of the T4 holin T in a manner that T triggering is inhibited.(35). Significant 

progress has been made on the RI-T interaction. The soluble domain of RI, sRI, has been 

purified and shown to be largely alpha-helical in structure (57). In addition, the sRI 

molecule was able to bind the soluble domain of T, sT (55, 57), and prevent it from 

aggregation. Crystal structures of sRI and the sRI:sT complex have been determined 

(55). However, major gaps remained in our understanding of the LIN phenomenon. First 

of all, the signal provided by the superinfecting phage is completely unknown. In 

addition, the possible role of other r loci, most notably rIII, was not reflected in the 

model. 

 In this study we have shown that rIII is also unambiguously required for LIN on 

both E. coli  K-12 and B hosts, resolving a long-standing controversy (64, 67). 

Moreover, we have shown the rIII gene expressed in trans to the T4 holin gene t can 

effect a small but reproducible delay lysis in a T-specific manner. In addition, expression 

of rIII significantly stabilized the LIN state imposed by over-expression of wt rI, which 

otherwise imposes a lysis delay that collapses after ~45 min. Since RIII is a cytoplasmic 

protein, the simplest notion is that RIII acts by binding to the short cytoplasmic domain 

of T, nT. Evidence supporting this was obtained from bacterial two-hybrid analysis and 

pull-down assays, which revealed a specific interaction between nT and the full-length 

RIII polypeptide. Importantly, known dysfunctional rIII missense mutations caused a 

defect in the RIII-mediated stabilization of RI-LIN. Finally, bacterial two-hybrid 
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evidence was provided showing that RIII has dimerizing or oligomerizing propensity, 

which may be functionally important in view of the fact that one of the known rIII 

defective missense mutations abrogates the response.  

 Taken together, these results indicate that both RI and RIII are, strictly defined, 

specific antiholins of the T4 holin T, and suggest an expansion of our previous model to 

include inhibitory interactions on both sides of the cytoplasmic membrane (Figure 2.8). 

In this scenario, RI acts as the LIN master regulator by receiving the signal generated by 

the super-infecting virion. Stabilization of RI leads to the formation of RI-T complexes 

that prevent the T protein from participating in the holin triggering pathway. The 

available evidence indicates that holin triggering occurs when the holin reaches a critical 

two-dimensional concentration and forms large oligomers, or rafts, within which the 

lethal holes are formed (19, 23). The simplest notion is that RI may simply block homo-

oligomerization of T and thus T-triggering, which is consistent with the ability of sRI to 

prevent aggregation of sT (70). In our new model, we suggest that RIII participates in 

LIN by stabilizing the RI-T complexes. Indeed, the sRI:sT crystal structures were in the 

form of sT:sRI:sRI:sT hetero-tetramers (55). Thus an attractive notion is that in the onset 

of LIN, T-RI-RI-T heterotetramers are formed providing a symmetric binding site for 

RIII dimers to bind to the cytoplasmic nT domains (Figure 2.8). It should be noted that, 

in this perspective, RIII is the first example of an antiholin with no secretory or 

membrane signal, and also that the RI-RIII combination is the first example of a 

multiple-antiholin system. Since stabilizing RI by removal of the SAR domain can lead  
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Figure 2.8 The current model of LIN involving two antiholins.  
Both RI and RIII are required for the stable LIN.  
(A) In a single phage infection, antiholin RI will be degraded by periplasmic protease 
DegP after spontaneous release into the periplasm. Cell lysis occurs at ~ 25 min.  
(B) In a superinfection, the DNA of a superinfecting T4 phage will be ectopically ejected 
into the periplasm, generating the “signal” to stabilize the periplasmic antiholin RI. This 
leads to accumulation of RI, which then binds the periplasmic domain of T, in a T-RI-
RI-T heterotetramer. This facilitates the binding of cytoplasmic antiholin RIII to the N-
terminus of T. This unique, sandwich-like structure spanning two cell compartments 
robustly blocks participation of T in hole-formation.  
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to stable LIN without the participation of RIII, we propose to designate RI as the 

antiholin with RIII as a co-antiholin.  

 As noted above, major gaps remain in our understanding of the T4 LIN 

phenomenon, which deserves attention not only because of its historical status, but as a 

richly-documented phenomenon that may be important in our understanding of phage 

propagation in liquid culture and in environmental scenarios that may be relevant to 

phage-based the rapeutics . Immediate future efforts will be directed at determining the 

nature of the RIII-nT interaction at the structural level.  
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CHAPTER III  

BIOCHEMICAL AND STRUCTURAL CHARACTERIZATION OF RIII  

 

Introduction 

 For double-stranded DNA phages infecting Gram-negative hosts, the length of 

phage infection cycle is determined by the phage-encoded holin, a small integral 

membrane protein (17, 27) . Holins accumulate harmlessly in the inner membrane (IM) 

until suddenly forming lethal membrane lesions, or holes, at an allele-specific time. This 

event, which is defined as “triggering” (17), causes the release of the phage-encoded 

endolysin into the periplasm, resulting in the degradation of the cell wall and lysis. In 

addition to the holin, some phages encode another protein, an antiholin, to regulate the 

lysis timing by inhibiting the holin through direct protein-protein interaction. Unlike the 

well-studied holin-antiholin system of phage λ  S105 and S107 (28, 33), where the main 

function of antiholin seems to be to prevent premature lysis, phage T4 uses two 

antiholins, the proteins RI (34, 35, 70) and RIII, to delay lysis and does so under specific 

physiological condition; i.e., when the infected cells are superinfected by other T4 or 

other T-even phages (Figure 3.1A) (64, 67, 107). The prolongation of infection cycle can 

last for several hours and result in the intracellular hyper-accumulation of T4 progeny 

virions. The lysis-inhibited state, designated as LIN (Lysis Inhibition), can be viewed as 

a signal transduction event, with the signal being the super-infection event, indicating a 

deficit of available hosts in the environment, and the response being an inhibition of 

holin-triggering (56) . T4 LIN is the only experimentally-determined  
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Figure 3.1 Model for  LIN involving RI and RIII. 
(A)  The model of LIN involving two antiholins. Both RI and RIII are required for the 
stable LIN. The main antiholin RI is stabilized by the LIN signal before binding to the 
C-terminus of holin T. The cytoplasmic antiholin RIII then binds to the N-terminus of T, 
forms a stable inhibitory complex to stop holin T from triggering. 
(B) The primary structure of RIII is shown with residue charges above the sequence. 
Conserved residues  are highlighted. The epitope region for the α-RIII antibody is 
underlined.  
(C) Secondary structure of RIII predicted by Jpred (108) . RIII is predicted to be 77% α-
helix including 17% of coiled-coil helix, and 3.6% of β-strand. Helical structures are 
shown as rectangles, with the N-terminal coiled-coil helix region shaded; sheets are 
shown as grey arrows;  unstructured regions are indicated by solid lines. The N-terminal 
(N-His) or C-terminal (C-His) his-tag is indicated by grey dashed lines.  
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example of a phage adjusting the length of the infection cycle in response to an 

environmental condition (67).  

 The holins that have been studied experimentally consist of two or more 

transmembrane domains (TMDs) separated by short linkers and ending in a C-terminal 

tail rich in basic residues (17, 19). The unique capacity of the T4 holin T (product of 

gene t) for LIN is reflected in its unique primary structure: a small (34 aa) N-terminal 

cytoplasmic domain, a single transmembrane domain (TMD), and a large, globular 

periplasmic C-terminal domain (56, 59). The periplasmic domain of T is crucial for both 

its hole-formation function and its interaction with the main antiholin (34, 70, 109), RI, 

the product of gene rI, one of the T4 r (rapid lysis) loci , which played a significant role 

as a model genetic system during the development of modern molecular genetics more 

than seven decades ago (67). RI has a SAR domain (signal-anchor release), which causes 

it to be exported to the periplasm in a membrane-tethered form and then released from 

the membrane as a soluble periplasmic protein (35). Formation of a complex between 

the soluble form of RI and the periplasmic domain of T is necessary for the imposition 

of LIN (35, 57). Recently we showed that in addition to RI, the product of one of the 

other classic r genes, rIII, is required for the stable maintenance of the LIN state 

(Chapter II).  

 Since RIII is a polypeptide of 82 amino acids (aa) lacking any membrane-

localization or export signal (Figure 3.1B), its likely target for directly effecting lysis 

would be the short N-terminal cytoplasmic domain of T. Indeed, our recent results 

demonstrated that RIII binds to the N-terminus of T (Chapter II). This makes RIII the 



 

78 

 

first antiholin with no membrane domain. Here we report the results of efforts to purify 

RIII and characterize its structure. The results are discussed in terms of a model for the 

RI-T-RIII complex and its role in LIN.  

Materials and methods 

Bacterial growth and induction  

 See Table 3.1 for the list of phages and bacterial strains used in this study. 

Bacterial strains were plated on standard LB-agar plate supplemented with antibiotics 

(ampicillin,100 mg mL-1; chloramphenicol, 10 mg mL-1; kanamycin, 40 mg mL-1 ) when 

appropriate, as described (50, 57). Preparation of cultures, induction of thermoinducible 

λ  lysogens, and induction of strains harboring pET11a over-expression plasmids were 

performed as described (23, 56, 57). Bacterial growth and lysis were monitored using a 

sipping Gilford Stasar III Spectrophotometer (Nova biotech, El Cajon, CA) (34, 56). 

DNA manipulations, sequencing, and plasmid construction 

 All plasmids used and generated in this study are listed in Table 3.1. Isolation of 

plasmid DNA, designing of primers,  DNA amplification by polymerase chain reaction 

(PCR), DNA transformation, and DNA sequencing were performed as previously 

described (50, 57, 70, 110). Restriction and DNA-modifying enzymes were purchased 

from New England Biolabs (Ipswich, MA). Manufacturer’s instructions were followed 

when performing restriction digestion, ligation and all other reactions using New 

England Biolabs enzymes. The DNA sequence of all constructs was verified by Eton 

Bioscience (San Diego, CA) plasmid sequencing service. The RNA stem-loop structure 

was analyzed with UNAFold (111). Plasmid pZE12-RIIIo, pZE12-RIIIs, pET11a-RIII  
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Table 3.1 Phages, strains, and plasmids used in this study 
 
Phages  Description  Source  

T4wt Bacteriophage T4D Laboratory Stock 

T4ΔrI  Complete deletion of rI from nt 59204 to nt 59496 in T4D 
genome 

(35) 

T4ΔrIII  Complete deletion of rIII from nt 130779 to nt 131042 in T4D 
genome 

This study 

λ∆SR  cI857 ∆SR bor∷Kan Laboratory Stock 

Bacteria 
Strains  Description  Source  

BL21(DE3) 
fhuA::Tn10 

E. coli B ompT rB
- mB

- (PlacUV5::T7 gene1) slyD::Kan 
fhuA::Tn10  

Laboratory Stock 

B834 E. coli B ompT rB
- mB

- met -  Laboratory Stock 

MDS12 
tonA::Tn10 
lacIq1 

MG1655 with 12 deletions, totaling 376,180 nt including 
cryptic prophages 

(35) 

MQλ∆SR MC4100 lacIq λ∆SR lysogen  This study 

Plasmids  Description  Source  

pZE12 ColE1 origin; PLlacO-1 (PL promoter with three lacO operators); 
AmpR  

(97) 

pZE12-luc Luciferase gene luc cloned under PLlacO-1 
(97) 

pZE12RIIIo  T4 rIII cloned under PLlacO-1 with native SD (34) 

pZE12RIIIs  T4 rIII cloned under PLlacO-1 with plasmid SD  This study 

pZA32RIIIs 
p15A origin; PLlacO-1 (PL promoter with three lacO operators); 
Carries same rIII insertion as pZE12RIIIs. CamR 

This study 

pET11a-RIII  pBR322 origin, T7 promoter, carrying codon 1-82 of rIII  This study 

pET-HisRIII His6 tag inserted to the N-terminus of rIII This study 

pET-RIIIHis His6 tag inserted to the C-terminus of rIII This study 

pT4T(R-
RzRz1)am 

pBR322 derivative carrying late promoter and lysis cassette of λ 
with S gene replaced by T4 t and all other lysis genes carry 
amber mutation. AmpR. 

(53) 

 

 

 



 

80 

 

Table 3.1   Continued 
 
Primers  Sequence Source 
RIII N-his F CACCATCACGGAGGTATTAAACAATTACAACACGCTC This study 

RIII N-his R ATGGTGATGACCTCCCATTTAAAAATTCTCGTTAG This study 

RIII C-his F CACCATCACGGAGGTTAATTTATTGGAGATTCACTG This study 

RIII C-his R ATGGTGATGACCTCCCTTCAGTGTTACCACAAAGTGAC This study 
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were constructed as described (Chapter II). pET-HisRIII and pET-RIIIHis were created 

by the insertion of hexahistidine codons (CATCATCACCATCACCAC) before the start 

codon (pET-HisRIII )or the stop codon (pET-RIIIHis) of the wild-type rIII allele in the 

pET11a-RIII using primers listed in Table 3.1.  

TCA precipitation, subcellular fractionation, SDS-PAGE and Western blotting  

 Trichloroacetic acid (TCA) precipitation and subcellular fractionation was 

performed as previously described (57). Briefly, cells were collected and concentrated 

by centrifugation, and then disrupted in a small SML-Aminco French pressure cell 

(Spectronic Instruments, Rochester, NY) at 4 °C. The cell lysates were then centrifuged 

at 100,000 x g for 1 h in a  Beckman TLA100.3 rotor to separate the soluble and 

membrane fractions. Equivalent amounts of each samples were precipitated by ice-cold 

TCA (10% final volume) and loaded onto SDS-PAGE gels and analyzed by Coomassie 

blue staining or Western blotting using rabbit polyclonal α-RIII antibody as the primary 

antibody. The epitope for a-RIII antibody is shown in Figure 3.1B. For western blotting, 

the chemiluminescence signal was detected using a Bio-Rad Chemidoc XRS Imager 

(Bio-Rad Laboratories, Hercules, CA). Images were obtained and analyzed by Quantity 

One 1-D Analysis Software (Bio-Rad Laboratories, Philadelphia, PA) and ImageJ (NIH, 

Bethesda, MD).  

Testing stability of RIII protein 

 The stability of RIII protein was tested as described (35). Briefly, the cultures of 

MDS12 tonA::Tn10 lacIq1 strains carrying pZE12-RIIIs or pZE12-luc (negative control) 

were grown to A550 ~ 0.4 at 37°C in 20 mL of LB supplemented with ampicillin, and 
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then divided into two equal aliquots. Each aliquot was diluted into 30 mL with LB-Amp, 

and then grown in 37°C again until A550 ~ 0.4 and induced with IPTG, as described 

above. After aerating for 30 min, chloramphenicol was added into each culture with a 

final concentration of 300 μg mL -1 to stop the protein synthesis (time =0). 5 mL TCA 

precipitation samples were taken from each cultures at 5 min intervals until time = 20 

min. RIII protein was visualized by Western Blotting using a-RIII antibody and analyzed 

by ImageJ (112) . 

Protein purification 

 RIII protein was purified using cation-exchange and gel filtration column 

chromatography. ÄKTA FPLC system, resins, gel filtration columns were purchased 

from GE Healthcare Bio-science (Marlborough, MA). Rotors were purchased from 

Beckman Coulter (Brea, CA). Four liter cultures of BL21(DE3) fhuA::Tn10 carrying the 

plasmid pET11a-RIII were grown in LB at 37°C until A550=0.6, immediately cooled on 

ice for 30 min, supplemented with 1 mM IPTG and aerated  for 24 h  at 16°C . The 

induced cells were harvested by centrifugation in a Beckman JA-10 rotor at 4000 rpm 

for 45 min at 4°C. Cell pellets were resuspended in 5 mL Buffer A (50 mM Tris, 0.5 mM 

EDTA, pH7.0), supplemented with Protease Inhibitor Cocktail (Sigma, St. Louis) and 

100 mg mL-1 final concentrations of DNase I from New England Biolabs (Ipswich, MA) 

and RNase I from Thermo Fisher Scientific (Waltham, MA). Cells were disrupted in a 

French pressure cells and the resulting cell lysates were cleared by centrifugation at 

100,000 x g for 1 h using Beckman TLA100.3 (57) . The supernatant was then rapidly 

filtered through a 0.22 mm syringe filter and passed over SP Sepharose Fast Flow resin 
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(GE Healthcare, Marlborough, MA) calibrated with Buffer A and packed in 24 mL bed 

volume column on ÄKTA FPLC system. After the column was washed with 15 column 

volumes of Buffer A, RIII protein was eluted using Buffer B (50 mM Tris, 0.5 mM 

EDTA, 2 M NaCl, pH7.0). Elution fractions were pooled and concentrated to 500 μL 

final volume with a Vivaspin Turbo 15 MWCO 3000 (Sartorius Corporation, 

Bohemia,NY) and was loaded onto a Superdex200 10/300 GL column which is pre-

equilibrated at room temperature with S200 buffer (50 mM Tris, 0.5mM EDTA, 500 mM 

NaCl, pH7.0). SDS-PAGE, Coomassie blue staining and western blotting were used for 

assessing the peak A280 fractions. Concentration of purified proteins was determined by 

Bradford assay using calculated extinction coefficients, or by amino acid analysis 

service performed by the Protein Chemistry Laboratory, Texas A&M University.  

CD spectroscopy 

 Circular dichroism spectra data were obtained using a Jasco J-815 CD 

spectrometer (Jasco, Eaton, MD). The RIII protein was eluted from Superdex200 in CD 

buffer (50mM Tris, 0.5mM EDTA, 150mM NaCl; pH7.0), and concentrated using a 

Vivaspin Turbo 15 MWCO 3000 to 5mM. Protein concentrations of RIII were 

determined by amino acid analysis. 300 μL samples were loaded into 1.0 mm quartz 

cuvettes and equilibrated to 25°C  for 3 min before being scanned. Scans from 250 to 

190 nm with a 1 nm data pitch and 50nm per min scanning speed were applied to all 

samples. To estimate the protein secondary structure, K2D3 server (113) was used to fit 

all CDs data from 190 to 240 nm that were converted to differential absorption units 

(∆ε), as described (57). 
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Interaction between T and RIII  

 The cytoplasmic membrane vesicles were prepared from MQλ∆SR carrying 

pT4T(R-RzRz1)am plasmid, which is a pBR322 derivative carrying late promoter and 

lysis cassette of λ  with the holin s gene replaced by T4 t (35), but have amber mutation 

on all other lysis genes (endolysin R, spanin Rz and Rz1). A previously described 

protocol was adopted for preparing the cytoplasmic invert vesicles (114) with 

modification. 15 mL cultures were grown until A550 ~ 0.3 (~1.1  108 cells mL-1) at 30°C, 

induced by shifting to 42°C water bath shaker for 15 min and then were kept in 37°C  for 

1 h. Cells were harvested by centrifugation at 1500 x g then washed twice with 50mM 

Tris-HCl buffer, pH=7.0. Bacteria were resuspeded in 2 mL and then passed through a 

small French Press cell for two times. Unlysed cells were collected by a low-speed 

centrifugation. Then, 500 μL of the resulting supernatants were mixed with purified RIII 

(1μM final concentration) and incubated at room temperature for 10 min. The mixtures 

were then centrifuged for 1 h at 100,000 x g in a Beckman TLA100.3 rotor to pellet the 

membrane fractions. The resulting supernatants, membrane vesicle pellets, and the 

whole-cell control were resuspended in 50mM Tris-HCl buffer, pH=7.0, and precipitated 

by adding ice-cold TCA. Equivalent amount of each samples were resuspended in SLB 

and analyzed by SDS-PAGE and Western blotting. 

Quantification of RIII in T4 infection 

 The amount of RIII protein expressed during a T4 infection was quantified as 

described (57) with modification. Cultures of E. coli B834 were grown in LB until A550 

~ 0.3, and then were infected with T4D, T4∆rI or T4∆rIII at a multiplicity of infection 
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(MOI) ~ 10. After 30 min of infection, 10 mL samples were collected and precipitated 

with ice-cold TCA. The samples were collected and resuspended in protein sample 

buffer with reducing reagent (β-mercaptoethanol). Purified RIII protein standards were 

prepared by diluting with S200 buffer, then 50, 25, 12.5, and 6.25 pmol of RIII protein 

were loaded in each well of an SDS-PAGE gel. All samples and standards were analyzed 

by SDS-PAGE gels and Western blotting. Resulting images were analyzed using the 

software ImageJ (NIH). 

DSP Crosslinking 

 A p15A origin, IPTG inducible plasmid pZA32RIIIs was constructed by 

replacing the luc gene in plasmid pZA32-luc (97) with the T4 rIII gene. Dithiobis 

(succinimidyl propionate) (DSP) was obtained from Thermo Fisher (Thermo Scientific, 

Rockford, IL) and a previously described method for crosslinking experiment was 

followed (21). 30 mL of cultures of E. coli MQλ∆SR harboring plasmids pZA32RIIIs 

and pT4T(R-RzRz1)am were pelleted by centrifugation after the induction. The cell 

pellets were washed with 10 mL PBS-Na+ buffer (0.1 M Phosphate, 0.15 M NaCl, pH 

7.2) for three times and then resuspended in 1 mL. DSP was prepared in DMSO and 80 

μL of 10mM DSP solution was added to 320 μL of resuspended cells. The mixture was 

incubated at room temperature for 30 min with agitation. The reaction was stopped by 

adding 8ul of 1 M Tris pH7.5 buffer. 80 μL of DMSO without DSP was used for 

negative control. The cells were then precipitated by 10% TCA and resuspended in 

protein sample loading buffer, with or without reducing reagent (β-mercaptoethanol). 

The results were analyzed by SDS-PAGE and Western blotting, as described above.  
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Results 

RIII accumulates as a soluble protein in the host cytoplasm 

 Our first studies directed at understanding the role of RIII in T4 LIN at a 

molecular level exploited a convenient inducible lysis system based on a λ  prophage in 

which the T4 t holin gene replaced the native λ S gene and the RIII protein was supplied 

in trans from an inducible plasmid vector (Ramanculov, 2001). With this plasmid, in 

which the rIII gene was served by its native Shine-Dalgarno sequence (S-D) (Figure. 

3.2A), no effect of rIII expression was observed on the lysis of induced λ-t. In Chapter II 

we showed that rIII expressed from an isogenic construct with a strong, artificial S-D, 

could temporarily and specifically block λ-t  lysis.  Moreover, this temporary RIII-

mediated lysis inhibition could be stabilized by also supplying the main antiholin RI in 

trans. Using an antibody against an epitope of native RIII, we interrogated rIII 

expression levels under these conditions. The results showed that under the modified SD 

sequence improved RIII accumulation significantly (approximately 50-fold) (Figure. 

3.2B). This increased expression may also be due to the disruption of an RNA secondary 

structure that is predicted to occlude the native SD (Figure. 3.2A). The constructs with 

the artificial SD sequences were designated as pRIIIs and used for all experiments 

described in this study.  

 The main antiholin RI is an unstable protein containing Signal-Anchor-Release 

domain (SAR) that allows RI to be spontaneously secreted into the periplasm (35). 

Unlike RI, RIII is predicted to be cytoplasmic protein without any TMD or signal 

sequence. Subcellular fractionation and Western blotting revealed that RIII does indeed  
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Figure 3.2 Expression level of RIII. 
(A) The region upstream of the rIII start codon in the RNA transcripts of pZE12-RIIIo 
and pZE12-RIIIs are shown with predicted stem loops. The native (GAG; RIIIo 
construct) and artificial (AGGAG; RIIIs construct) S-D regions are labeled with solid 
lines. The start codon of rIII (AUG) is boxed. The direction of transcription is indicated 
with black arrows.  
B) Western blotting results of RIII expressed under different S-D region. 1, pZE12-luc 
(negative control); 2, pZE12-RIIIo, 3, pZE12-RIIIs. Samples were collected after 1h of 
IPTG induction. The black arrow head indicates RIII protein on the blot. Each well was 
loaded with one A550 unit of cells.  
(C) RIII is a soluble protein. MDS12 tonA::Tn10 lacIq1cells carrying pZE12-RIIIs 
culture samples were collected after induced for 1h with 1mM IPTG at 37°C, then lysed 
byp French press. 1, Uninduced negative control; 2, Whole cell sample; 3, Cell pellet 
after centrifugation; 4, Supernatant. The black arrow indicates RIII protein on the blot. 
Wells loaded as in B. 
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accumulate as a cytosolic species (Figure 3.2C); moreover, RIII is stable, with no 

detectable proteolytic instability after >20 min of inhibition of protein synthesis by 

chloramphenicol (Figure 3.2D), compared to the 90 sec half-life of RI under the same 

conditions (6). 

RIII is a predominantly α-helical monomer   

 As the first step in obtaining purified RIII protein, we constructed plasmids based 

on the hyper-expression vector pET11a carrying rIII alleles encoding wild type (wt; 

pET-RIII) RIII, an N-terminal His-tagged RIII (pET-HisRIII), and a C-terminal His-

tagged RIII (pET-RIIIHis). Neither of the His-tagged RIII proteins accumulated as 

monomeric species in SDS-PAGE. Instead, for inductions of both pET-HisRIII and pET-

RIIIHis, nearly all of detectable product accumulated in SDS-resistant oligomers of a 

wide range of molecular masses up to >200 kDa (Figure 3.3A). The predicted secondary 

structure of RIII consists of three alpha-helical domains spanning >75% of the sequence, 

with the N-terminal domain predicted to be a coiled-coil helix domain (Figure. 3.1C). 

The intolerance of RIII for either N- or C- terminal oligohistidine tags suggests that the 

coiled-coil N-terminal helix and the C-terminal extended segments are critical for 

tertiary structure. In contrast, the induction of pET11a-RIII resulted in the high-level 

accumulation of a ~10 kDa species, with an approximate yield of 11 mg L-1 after 2 h of 

induction, based on the intensity of the Coomassie-blue stained band (Figure. 3.3A). 

However, in this over-expression condition only ~50% of RIII was found in soluble 

fraction, indicating that a substantial fraction of the protein was not folded properly and 

thus accumulated in insoluble aggregates. To minimize misfolding, we aerated cultures   
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Figure 3.3 Solubility of RIII. 
(A) His-tagged RIII did not accumulate in the solution. 1-4 shows the whole-cell TCA 
precipitated samples  1, pET11a-RIII; 2, pET11a vector control; 3, pET11a N-his RIII; 
4, pET11a C-his RIII. The black arrow indicates the location of RIII monomer on the 
blot. 
(B) Solubility of overexpressed RIII in different incubation temperature. pET11a-RIII 
plasmid was induced by 1mM of IPTG in BL21(DE3) fhuA::Tn10 cells at 16°C or 37°C, 
as described in Materials and Methods. W, whole cell sample; S, supernatant sample; P, 
pellet sample. Loading was normalized to O.D. unit of 0.3 per each well. 
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Figure 3.3 Continued. 
(C) RIII protein after went through cation exchange column. 5 ul of each fraction was 
collected and mixed with 2XSLB and loaded on each well. FT1 and FT2, representative 
flow through fraction before the elution of RIII protein. 1-5, fraction of RIII eluted from 
SP Fast Flow column.  
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Figure 3.3 Continued. 
(D) Superdex 200 gel filtration of RIII. Elution profile of sRI with major monomer peak 
and minor dimer peak  are indicated as * and **, respectively. Protein standards are 
indicated by solid rectangles at the bottom, from left to right: 150, 66, 29, and  13.7 kDa. 
Inset shows the Coomassie blue stained SDS-PAGE gel of samples collected from 
fraction 1-5, as indicated on the top right. The black arrow indicates RIII monomer.  
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at 16°C overnight after IPTG induction. This resulted in ~ 10 mg/ L accumulation, based 

on Coomassie-blue staining, with >90% soluble (Figure 3.3B). RIII was then purified by 

cation exchange and gel filtration chromatography (Figure 3.3C and Figure 3.4), as 

described in Materials and Methods. The majority of the RIII protein eluted from a gel 

filtration column in a peak corresponding to 10 kDa, which is consistent with 9.3 kDa 

molecular mass predicted for a RIII monomer. A minor peak was observed at ~20 kDa, 

indicating a small fraction of purified RIII eluted as a dimer (Figure. 3.3D). To examine 

if the purified RIII was properly folded, we performed circular dichroism spectroscopy 

(CDs) to analyze the secondary structure of RIII (Figure. 3.5). The CD spectrum was 

consistent with ~ 95% of a-helix, which is higher in α-helix percentage than the 

secondary structure prediction made by Jpred (75%; Figure. 3.1C) (108) , CFSSP (88% 

a-helix) (115),  or I-TASSER (80% a-helix) (116). Taken together, we conclude that RIII 

exists as a highly helical monomer in solution, with a slight tendency to dimerize. 

Interaction between the T Holin and RIII 

 The antiholin RI was shown to form equimolar complexes with the C-terminal 

periplasmic domain of the T holin (55, 60, 70). Results of yeast two-hybrid assays and 

co-precipitation experiments with Sumo-nT hybrids indicated that RIII binds to the 34 aa 

N-terminal domain of T (nT), which is predicted to be cytoplasmic in vivo (Figure. 

3.1A). However, direct interaction of RIII and T in the context of the full length, 

membrane-spanning T protein has not been demonstrated. We addressed the RIII-T 

interaction by DSP  
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Figure 3.4 Purification of RIII. 
(A):Cation exchange chromatography of RIII using SP Fast Flow resin. The A280 
adsorption and Conductivity are shown as black and red line, respectively. Blue arrows 
indicate when the FT samples were taken. The red arrow shows when fractions 1-5 were 
taken. (B) Coomassie blue staining gel of SP Fast Flow column elution fractions same as 
Figure 3C. Black arrow indicates RIII monomer (9.2 kDa) on the SDS-PAGE gel.    
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Figure 3.5 Representative circular dichroism spectra of purified RIII.  
The final concentration is 5 μM. The wavelength range is 190nm to 240nm. The helix 
and sheet percentage based on CDs data is shown.  
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Figure 3.6 Western blotting of cross-linked RIII. 
 RIII forms SDS-resistant oligomers when cross-linked using DSP. E. coli MQλ∆SR 
harboring plasmids pZA32RIIIs and pT4T(R-RzRz1)am were pelleted by centrifugation 
after the induction. 1, negative control without RIII; 2, DMSO control; 3. DSP+. The 
black arrow indicates the location of RIII monomer.  
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crosslinking; multiple RIII species other than monomer were detected under conditions 

where RIII expression was confirmed to delay T-mediated lysis (Figure 3.6), suggesting 

RIII may form transitory oligomeric species in vivo; however, no RIII-T heteromer was 

detected. To assess RIII-binding to T directly, we prepared inverted cytoplasmic 

membrane vesicles from E. coli  cells induced for the t holin gene, incubated these 

vesicles with purified RIII protein, and then assessed whether RIII co-sedimented with 

the membrane material (Figure 3.7A). Western blotting showed that the amount of RIII 

in the soluble fraction decreased significantly after mixing with cells contain T, 

compared to isogenic control lacking the t gene (Figure 3.7B). Under these conditions, 

there are ~1014 molecules of T and ~1013 molecules of RIII in the reaction volume of 500 

μL. These results suggest that, in the absence of RI, soluble RIII binds at least transitory 

to the N-terminal cytoplasmic domain of membrane-embedded T.  

Quantification of RIII protein in T4 infection 

 It has been shown in several systems that the relative amounts of holin and 

antiholin protein can affect lysis timing (26, 117, 118). The stoichiometry of the RI 

antiholin and RIII co-antiholin proteins during T4 infection is thus of interest. We 

performed quantitative Western blotting using purified RIII as the protein standard. As 

described in Materials and Methods, protein samples were harvested from T4-infected 

cells by TCA precipitation, to prevent losses from cell lysis and analyzed for RIII protein 

content by quantitative Western blotting, using purified RIII protein as a standard. Under 

these conditions, RIII could be detected from 5 min after the infection, and accumulated 

up to ~8000 molecules per cell after 30 min of infection, which is comparable to the  
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Figure 3.7 Pull-down of purified RIII protein. 
(A)  Schematic representatiion of the inverted membrane vesicle experiment. In inverted 
membrane vesicles, the N-terminal, cytoplasmic domain of T (nT) is exposed on the 
surface of the vesicle, allowing the direct contact of nT with externally added RIII 
proteins. The T protein on the vesicle then can pull RIII protein into the pellet after 
centrifugation. The grey area represents IM. The black dash line indicates the interface 
of IM originally facing the cytoplasm. PG and OM are omitted for clarity. For details, 
see Materials and Methods.  
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Figure 3.7 Continued. 
(B) RIII binds to full-length T. After the induction of MQλ∆SR cell harboring plasmid 
pT4T(R-Rz-Rz1)am, which express holin T but no other lysis proteins, the culture was 
lysed by French-press. Purified RIII was added to the lysate with a final concentration of 
1 μM, incubated for 30 min at 25 °C. The membrane fraction containing the IM inverted 
vesicles was collected by ultracentrifugation as described. Samples containing 
equivalent amounts of each fraction were analyzed. Left, the Western blot result of 
inverted vesicles experiment. +T, with T holin expression; -T, no T control. W, whole 
cell sample; S, soluble fraction sample; P, pellet fraction sample. The black arrow 
indicates the location of RIII monomer. Right, the ratio of purified RIII in each sample 
was shown as the percentage of the input RIII. Patterned column, the whole cell sample ; 
hite column, the soluble fraction; black column, the pellet. Error bars show the standard 
deviation. 
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level of T (~4000 per cell) and RI (<10000 per cell) (Figure 3.8). The amount of RIII did 

not change drastically after ~30 min, which is the normal lysis time in the absence of 

LIN. There is no significant change in the amount of RIII expressed in T4D and T4∆ rI, 

showing that the absence of rI expression did not affect the production or stability of 

RIII. We conclude that both RI and RIII are expressed at about twice the level of T 

protein, consistent with the notion that inhibition of T holin triggering may involve the 

formation of inhibited ternary complexes containing the bulk of the holin in the infected 

cell, rather than the imposition of lysis inhibition by the formation of “poison” non-

functional complexes. 

Discussion 

 Although still mysterious at the molecular level, it is clear that holin triggering 

terminates the infection cycle and that the timing of the triggering event appears to 

reflect the attainment of a critical two-dimensional concentration of functional holin in 

the membrane (19). It is thus not surprising that in the three most intensively studied 

lysis systems, that of λ, phage 21 and T4, intrinsic holin timing is buttressed with an 

antiholin that functions to inhibit holin triggering (22, 34, 104, 119). In the λ and phage 

21 cases, the holin and antiholin are produced as alternative products of cistrons with 

dual translational starts (28), and the antiholin products exert their inhibitory effect by 

heterodimerizing with the holin product and removing a proportion of the latter from the 

mass-action equation that leads to nucleation of the large two-dimensional aggregates, or 

‘rafts’, within which hole formation presumably occurs (58). Importantly, there is as yet 

no evidence that there is any real-time or physiological regulation of the dual start  
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Figure 3.8 Quantification of RIII in T4 infection.  
Samples were taken at 20min after infection. Black arrow  indicates the location of RIII 
monomer (9.2 kDa)  on the blot; Open arrow head shows the background bands which 
serve as the sample loading control. Purified RIII was used as protein standards with 
indicated amount. 
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systems, which instead seem to have evolved to fixed set points (32). Since λ and phage 

21 are the best-studied class I (3 TMDs; N-out, C-in) and class II (2 TMDs, N-in, C-in) 

holin systems, and these are the two most common types of holins identified in phage 

genomes (85), it is fair to say that real-time or physiological regulation of lysis timing 

has not yet been shown to be important. However, the work reported here provides 

important details to the real-time, environmentally-controlled regulation of lysis timing 

of the T4 T holin, the type member of the much smaller group of class III holins (one 

TMD, N-in, C-out, large globular periplasmic domain).  

 Here we have presented results that show RIII is, as predicted from the absence 

of localization signals, a cytoplasmic protein and that, in T4 infections it is produced at 

levels that are comparable to that of the main antiholin, RI and the holin, T (Figure 3.8). 

RIII is thus the first soluble, cytoplasmic antiholin to be identified. In addition, CD 

analysis of purified RIII protein revealed that the secondary structure is dominated by 

alpha-helix (Figure 3.5); this matches structure predictions that posit three helical 

segments corresponding to N-terminal, middle and C-terminal domains (Figure 3.1). 

Interestingly, the RIII protein proved to be intolerant of oligo-histidine tags at either the 

N- or C-termini. Both N-his and C-his tagged proteins accumulated in heterogeneous 

oligomeric products that were resistant to SDS-PAGE (Figure 3.3C). In contrast, the wt 

protein has normal SDS-PAGE mobility and, in non-denaturing conditions, exhibits a 

tendency to dimerize, with ~5% of the total RIII involved in dimers stable enough to 

survive gel filtration (Figure 3.3). This tendency presumably underlies the capacity for 

self-interaction revealed by our B2H experiments (Figure 2.5). We speculate that the N-
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terminus of RIII (nRIII) is responsible for this self-interaction, based the presence of that 

the N-terminal helical segment has coiled-coil character (Figure 3.1) and the finding that 

the G24D mutant allele abrogates the B2H signal (Figure 2.5). Similarly, based on the 

sensitivity of the B2H signal for RIII and nT to the distal mutants of RIII, we suggest 

that the C-terminal domain of RIII (cRIII) binds to the T protein. In support of this 

overall model, it is notable that the most conserved residues in RIII are in the C-terminus 

of RIII and presumably constitute the homotypic dimerization interface.  

 Although the over-expression of RIII can exert a mild delaying effect on T-

mediated lysis, the major phenotypic effect of RIII is a robust stabilization of RI-

mediated LIN (Figure 2.8). The current model for LIN is that RI, normally extremely 

unstable once released into the periplasm, is stabilized by superinfection by a T-even 

virion, by virtue of the ectopic localization of the contents of the virion head into the 

periplasm (35, 56). It is not known what component of the head contents, which includes 

~103 protein molecules and the 170kb genomic DNA (53), causes the stabilization of RI. 

In any case, the stabilization raises the effective RI concentration and allows the 

formation of RI-T complexes involving the C-terminal globular domain of T (35, 57, 

70). Until now, no comparable mechanism could be proposed for the activation of the 

RIII, since nothing from the superinfecting phage is thought to be transmitted either into 

the cytoplasmic membrane or into the cytoplasm. Recently, a crystal structure was 

determined for the complex between sRI (the RI protein with the SAR domain removed) 

and cT (the soluble periplasmic domain of T), in which sT:sRI:sRI:sT hetero-tetramers 

were the crystal forms (55). If this represents the true situation in vivo, then one 
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consequence of RI activation is to cause the formation of complexes with two nearby 

cytoplasmic nT domains. This leads to the simplest model for the “activation” of RIII, in 

the sense that, as a consequence of the initial binding of activated RI to T,  a pair of nT 

domains appropriately arranged are made available for binding to a dimer of RIII. Thus 

the cytoplasmic complex would be nT:cRIII-nRIII::nRIII-cRIII:nT, where “:” represents 

a nT-nRIII heterotypic interaction and “::” the cRIII-cRIII homotypic interaction (Figure 

2.8). A possible rationale for having a complex with determinants on both sides of the 

membrane is that it allows for the RI determinant to fluctuate significantly in its 

periplasmic concentration, as it would have if the stabilizing signal is just temporary, due 

to degradation of whatever the signaling molecule from the superinfecting phage. It has 

been reported that continued LIN requires re-superinfection at ~8 min intervals, 

presumably to allow the LIN block to collapse if environmental conditions (i.e., dilution 

of existing phages or increased availability of hosts) become more favorable (120). 

Moreover, LIN is also subject to collapse if the membrane potential is destroyed; loss of 

membrane energization might change the disposition of the TMD of protein T and thus 

alter the binding site of RIII. Future efforts are aimed at determining the details of the 

RIII-nT interaction. 
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CHAPTER IV  

PHAGE MU: A NEW LYSIS REGULATION IN A PARADIGM PHAGE 

 

Introduction  

Mu is a E. coli-infecting myophage with a 36,717kb linear dsDNA genome 

(83). Since its discovery, phage Mu is well known mostly for its fascinating 

transposition ability, which has led to the deciphering of the mechanism of transposition 

of insertion elements in prokaryotes (76) . Mu replicates via a ‘copy-and-paste’ 

transposition mechanism involving random insertion of phage genomes into the host 

chromosome. As a result, more than 100 copies of the Mu genome can be found in a 

single host cell by the end of the infection cycle (79). Therefore Mu is considered as the 

most efficient transposon in nature. The DNA transposition is required for both lytic 

and lysogenic pathways of Mu. The Mu lysogen, unlike some lysogenic phages such as 

λ  or P1, cannot be induced by usual prophage induction methods such as UV or DNA-

damaging chemicals (77). To study the lytic phase of Mu, a series of Muctsmutants, 

which allow the thermal inactivation of the main repressor gpc protein at 42°C, were 

used. As a repressor, gpc not only maintains the lysogeny, but also immunizes the 

lysogen from phage homo-superinfection and thus contributes to the stability of the Mu 

lysogen (77) .  

Compared to its transposition, little study has been conducted regarding host 

lysis,   the last event of the Mu infection cycle (77). For dsDNA phages, the holin-

endolysin-spanin system appears to be the universal answer to an important question: 
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how to conduct efficient and carefully scheduled lysis event. Holins make holes in the 

host inner membrane (IM), thus depolarizing the membrane and opening up a non-

specific channel for cytoplasmic macromolecules, including endolysins to go into the 

periplasm. Endolysins are muralytic enzymes that degrade the peptidoglycan layer in the 

periplasm, and spanins disrupt the outer membrane to complete the lysis event (19). 

However, for Mu there is only one lysis related gene that has been identified to date: 

lys.(77)  

Mu lys, or, as named in the annotated Mu genome,  gene 22, is predicted to 

encode a 171 aa protein with a N-terminal SAR domain, which is a TMD that consists of 

mostly weakly hydrophobic residues, and a large C-terminal soluble catalytic domain 

including the classic catalytic triad sequence, E-7X-D-5X-T that was identified in 

homologs of the canonical true lysozyme, the  T4 endolysin E (121). Therefore, the 

product Lys is considered to be a SAR-endolysin, which is synthesized as an inactive 

membrane protein that is ‘anchored’ in the IM, then is activated by conformational 

change upon escape from the IM. The most recent bioinformatic analysis suggested that 

Lys is a R21-like SAR-endolysin (38).  

lys is mapped between gene 21, which encodes late promoter activator C, and 

gene 23, which encodes a 128 aa IM spanin (i-spanin) with a N-terminal TMD (47). lys 

is the first gene on a late transcription unit, that also includes phage head  morphogenesis 

genes D , E, H and F (genes 27-30)  controlled by late transcription activator C protein 

(77). The most recent annotation effort (47) has identified a new gene, 23a, which is 

partially overlapped with gene 23 and encodes a lipoprotein, s thus unambiguously 
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identifiable as the OM spanin (o-spanin) gene of Mu. The proximity of the spanin gene 

pair (g23/g23a) and the experimentally confirmed endolysin gene (lys) suggests that Mu 

has a λ -like lysis cassette, which includes holin, antiholin, endolysin and spanins (47). 

However, other than the endolysin and i-spanin genes, there are three other genes 

encoding proteins with one or more TMDs in this gene cluster, genes 19, 20, and 25, 

making it unclear which protein could serve as a holin. Here we report the identification 

and analysis of the holin-antiholin gene pair in the Mu lysis cassettes and the discovery 

of a novel cofactor for the SAR-endolysin. The results are interpreted in terms of the 

new model for the pinholin-SAR-endolysin lysis pathway.    

Materials and methods 

Bacterial growth and induction  

 Phages and  bacteria strains used in this study were listed in Table 4.1. When 

plating bacterial strains, standard LB-agar plate supplemented with the appropriate 

antibiotics (ampicillin, 100 μg mL-1; chloramphenicol, 10 μg mL-1; kanamycin, 40 μg 

mL-1) were used (56, 85). Plates were incubated at 30°C for Mucts lysogens and 37°C 

for non-lysogenic E. coli strains as described. For making overnight cultures of strains 

harboring the pBAD plasmid, glucose was added to the LB to a final concentration of 

0.4%, in addition to antibiotics. To start fresh cultures, overnight cultures inoculated 

from single colonies were diluted to A550 ~ 0.03 in LB with antibiotics and grown at 

30°C or 37°C with aeration. Bacterial growth was monitored using a Gilford Stasar III 

sipping spectrophotometer (Gilford Instrument Inc, Oberlin, OH), as described (85). 

Mucts lysogens were induced by shifting incubation temperature from 30°C to 42°C. For 
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λ lysogen induction, cultures were aerated in 42°C for 15 min and then shifted to at 

37°C. pBAD and pZA plasmids were induced by adding arabinose to a final 

concentration of  0.4% (v/v) (122) or 1 mM isopropyl b-D-thiogalactosidase (IPTG) 

(123), respectively . MC4100 araR strains were isolated from the survival colonies after 

plating cells on the TB-agar plates containing 1% (v/v) arabinose and re-streaked on 1% 

arabinose TB plates for two times (124, 125).  

PCR and plasmid construction 

 See Table 4.1 for plasmids used and constructed in this study. Isolation of 

plasmid DNA, DNA amplification by polymerase chain reaction (PCR), DNA 

transformation, and DNA sequencing were conducted as described in previous chapters. 

Mu lysogens and lysates were used as templates for cloning Mu genes. Mu 19, 22 (lys), 

and 25 were cloned in pBAD24 (122) between its unique EcoRI and HindIII sites,  or in 

pBAD33 (119) plasmid between its unique KpnI and HindIII sites, with their native 

ribosome binding Shine-Dalgano (S-D) sequence (plasmids named with “osd”) or with 

stronger S-D sequence (AGGAG) (plasmids named with “ssd”). Lys or Gp25 was tagged 

with the C-myc tag or His6-tag, respectively, by inserting the DNA sequence encoding 

theses tags in at the end of the gene. Gene 22 and 25 mutants were constructed by 

Quick-Change site-directed mutagenesis, as described previously, on pBAD33-g22ssd or 

pBAD24-g25ssd, respectively. To construct a plasmid carrying artificial TMD Gp25 

(Gp25TMDswap), a synthetic dsDNA fragment containing 25 gene with its native TMD 

aa sequence (LISVLALWPYLLPVVAGGAVWAM) replaced by an artificial TMD 

sequence VLLIIVVVVVVVVIILLI (41) (See Table 4.1 for DNA sequences) was 
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ordered from gBlocks® Gene Fragments service provided by Integrated DNA 

Technologies (Coralville, CA) in a purified form. The synthetic dsDNA was then 

digested with EcoRI and HindIII before being ligated into the pBAD24 plasmid.  

Construction and analysis of Mu knockout mutants 

 Construction of Muct sCam knockout mutants were performed as described (118, 

124). Briefly, various flanking regions of the target genes (19, 20, 25 and lys) were 

attached to the cat gene via PCR using primers listed in the Table 4.1. Then, 10-100 ng 

of purified linear dsDNA PCR products was digested with DpnI and transferred into 

MC4100 araR cells carrying Red helper plasmid pKD46 by electroporation. MC4100 

araR cells prior to the electroporation were grown at 30°C in LB supplied with Amp and 

L-arabinose (Ara) and then resuspended in 10% glycerol. The transformants were plated 

onto LB/Cam plates to select Cam-resistant colonies. The cat insertion was confirmed by 

PCR and sequencing. To compare the plaque morphology of Mu wt and mutants, phage 

lysates were prepared from various induced Muctslysogens in a method that have 

previously described. Spot-titer of phages was conducted by spotting 5μl of phage lysate 

serial dilution onto a lawn of MG1655 and then incubating overnight at 42°C. The 

plaque size was analyzed by ImageJ (NIH).  
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Table 4.1 Strains and phages used for Chapter IV. 
 
 Phages Description Source 

 Mucts Phage Mu that carry a ts mutant c protein that can 
be deactivated in 42°C . 

Laboratory 
Stock 

 λQ21 

 ∆(SRRzRz1)21 λ cI857 hy(Q21(SRRzRz1)21::CamR) bor::kan Pang Ting 2009 

 Bacteria Strains Description Source 

 MC4100 
E. coli K-12 F- araD139  (argF-lac)U169 
fhuA rpsL150 relA1 flbB5301 deoC1 ptsF25 
rbsR 

Laboratory 
Stock 

 MG1655 E. coli F- λ - ilvG- rfb-50 rph-1 Laboratory 
Stock 

 MG1655 tonA∷Tn10 MG1655 with Tn10 inserted in tonA gene Laboratory 
Stock 

 MDS12 tonA::Tn10 lacIq1 MG1655 with 12 deletions, totaling 376,180 nt 
including cryptic prophages (35) 

 Plasmids Description Source 

 pS2168 
Phage 21 lysis cassette under its native 
promoter pR’21 on pBR322 backbone; 
encodes S68 only 

(85) 

 pMu19 Isogenic to pS2168; S2168 replaced by Gp19 from 
Mu; (nt 9440-9825 of phage Mu) (85) 

 pMu20 Isogenic to pS2168; S2168 replaced by Gp20 from 
Mu; (nt 9815-9955 of phage Mu) (85) 

 pKD46 (araD-araB)567 lacZ4787(∷rrnB-3)- 
rph-1(rhaD-rhaB)568 hsdR514 (126) 

 pKD3 
(araD-araB)567 lacZ4787 (∷rrnB3)(phoB-
phoR)580 - galU95 uidA3::pir+  recA1 endA9 (del-
ins)∷frt rph-1 (rhaD-rhaB)568 hsdR514 

(124) 

 pBAD24 pBR322 based plasmid with PBAD promoter; araC, 
AmpR (119) 

 pBAD33 pACYC184 based plasmid with PBAD promoter; 
araC, CamR (122) 

 pBAD24-g19-ssd Mu 19 inserted in pBAD24 with plasmid S-D This study 
 pBAD24-g22-osd Mu 22 inserted in pBAD24 with its native S-D This study 
 pBAD24-g22-ssd Mu 22 inserted in pBAD24 with plasmid S-D This study 
 pBAD33-g22-osd Mu 22 inserted in pBAD33 with its native S-D This study 
 pBAD33-g22-ssd Mu 22 inserted in pBAD33 with plasmid S-D This study 
 pBAD33-g22-K6G K6G mutation in g22 gene of pBAD33-g22-ssd This study 
 pBAD33-g22-K7G K7G mutation in g22 gene of pBAD33-g22-ssd This study 
 pBAD33-g22-K9G K9G mutation in g22 gene of pBAD33-g22-ssd This study 
 pBAD24-g25-D71V D71V mutation in 25 gene of pBAD24-g25-ssd This study 
 pBAD24-g25-E87V E81V mutation in 25 gene of pBAD24-g25-ssd This study 
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Table 4.1 Continued.  

 Plasmids Description Source 
 pBAD24-g25-D91V D91V mutation in 25 gene of pBAD24-g25-ssd This study 

 pBAD24-g25-TMDs Native TMD replaced with an artificial TMD 
sequence in 25 of pBAD24-g25-ssd This study 

 pZA32-mycR-lacZ mycR-lacZ replacement of luc in pZA32-luc (123) 
 Description DNA sequence Source 

 Native Gp25 TMD 
TTGATTTCAGTTTTAGCGTTATGGCCTTACCT 
GTTGCCTGTTGTGGCCGGTGGGGCCGTCTG 
GGCGATG 

This study 

 Artificial TMD GTGCTGCTGATTATTGTGGTGGTGGTGGTGG 
TGGTGGTGATTATTCTGCTGATT (41) 
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SDS-PAGE and Western blotting 

 Protein sample preparation, SDS-PAGE and Western blotting were conducted as 

described previously (24). Briefly, the whole-cell samples were taken at various time 

points before or after induction and added with 10% v/v ice-cold Trichloroacetic acid. 

Samples were then washed with cold acetone for 3 times before mixing with SLB. 10% 

Acrylamide SDS gel was used for SDS-PAGE. For Western blotting, 3% (w/v) milk-

TBS buffer was used as blocking solution. His6-tagged or C-myc tagged proteins were 

detected by Sigma-Aldrich (Carlsbad,CA) mouse monoclonal α-his or α-Cmyc primary 

antibody 9E10 purchased from Thermofisher (Waltham, MA) at a dilution of 1:4000 or 

1:1000, respectively. Blots development and visualization were performed as described. 

The band density of the blots was analyzed using ImageJ (112). 

Complementation assay of Mu holin in S21 lysis cassette 

 The pS2168 derivatives pMU19 and pMu20 were constructed as described 

previously (85). pS2168 is a pBR322-based, medium copy-number plasmid carrying the 

phage 21 lysis cassette (SRRzRz1)21 under its native promoter (21). The induction of 

pS2168 thus requires the presence of phage 21 antiterminator Q21. pMu19 and pMu20 

have hybrid lysis cassettes where Mu 19 or 20 replaced S21 holin gene in phage 21 lysis 

cassette (SRRzRz1)21, respectively. pMu19 or pMu20 was transformed into E. coli 

MDS12 tonA::Tn10 lacIq1cells lysogenized by a chimeric phage λ Q21∆(SRRzRz1)21, 

which is a λ phage with all of its lysis genes deleted and had its late transcription 

antiterminator Q replaced by Q21 (21). The induction of this lysogen thus can induce 

pS2168 and its derivative plasmid by transactivation. Lysis profiles were monitored after 
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the induction of lysogens using a Gilford Stasar III sipping spectrophotometer (Gilford 

Instrument Inc, Oberlin, OH), as described (118).  

Results 

Identification of holin and antiholin candidates in My lysis cassette 

 As the first step in identifying the Mu holin, we have analyzed the membrane 

topology of all undefined hypothetical proteins using TMHMM (DTU, Denmark) to 

look for proteins contain at least one TMD. We found three holin candidates: the product 

of gene 19, 20, and 25. As shown in Figure 4.1, all these three genes are closely 

localized to lys, and all of their products are predicted to be integral membrane proteins. 

However, none of the candidates have a topology profile that fits our previously studied 

holin classes (Figure 1.4): Gp19 has four TMDs with both N and C termini in the 

cytoplasm; Gp20 and Gp25 are type II integral membrane proteins with a single N-

terminal TMD, which is similar to T4 holin T, but Gp20 has very small soluble domains 

in cytoplasm and periplasm, and Gp25 has a long cytoplasmic tail instead of the large 

periplasmic domain that T has.  

 To examine the function of these three holin candidates, we have knocked out 

gene 19, 20, lys, or 25 separately in MC4100(Mucts) lysogens and analyzed their lysis 

profiles upon induction. The wt Mucts lysogen started to lyse at ~ 40 min after the 

thermal induction (Figure 4.2A, left). The induction of Mu lys::Cam lysogen did not 

result in lysis, as expected for an endolysin-defect mutant (Figure 4.2A, right). The 

plateau in culture growth reflects the lethal triggering of holin. It was experimentally 

confirmed that the holin-independent lysis caused by the spontaneous release and 
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activation of SAR-endolysin is usually delayed compared to the wt, holin-triggered lysis 

(20). This delay might led to the differences in plaque morphologies of phage 21 wt and 

∆S21 mutant (20). The deletion of gene 19 caused about ~ 20min of delay in lysis timing 

in liquid culture (Figure 4.2A) and notably smaller plaques when plated on the lawn of 

MG1655 compared to those of Mucts wt (Figure 4.2B, middle row). The deletion of g20 

also caused only slightly delayed lysis (~5 min), but the growth of the cell was 

significantly retarded after the induction of the lysogen. The knock-out of 20, in contrast 

to the knock-out of 19, did not affect the plaque morphology (Figure 4.2B, bottom row). 

These results made Gp19 and Gp20 two primary candidates for Mu holin.  

Mu Gp19-Gp20 is a pinholin-antiholin pair 

To study the function of Gp19 and Gp20, we have replaced the S21 pinholin gene 

in plasmid pS2168 with Mu 19 or 20, resulted in plasmid pMu19 or pMu20, respectively. 

pS2168 is a plasmid carrying the entire phage 21 lysis cassette under the control of phage 

21 pR’ late promoter. In this lysogen,  the expression of the plasmid genes is activated in 

trans by  by the induction of prophage through production of the  phage 21 

antiterminator Q21 (20). When induced by thermal shift, as described previously, the 

gene 19 construct (pMu19) supported lysis of the culture with a lysis profile similar to 

that of wt phage 21 lysis cassette construct (pS2168) (Figure 4.2C).  
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Figure 4.1 Prediction of topology and structure of Mu lysis proteins. 
(A) Lysis cassette of Mu.  
(B) Topologies of Lys and holin candidates. 
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Figure 4.1 Continued. 
(C) Primary structure of Lys and three holin candidates. Predicted TMDs are shown as 
red lines. The C-myc tag in Lys and C-his tag in Gp25 is shown in the blue box. The 
artificial TMD that replaced the native TMD of Gp25 is shown above the wt sequence. 
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Figure 4.2 Deletion of gene 19 and 20. 
(A) (Left) Lysis profiles of Mucts wt (open circle), 19∷Cam (Orange circle), 20∷cam 
(pink circle), and (right) lys∷ Cam (red circle) mutants induced at 42 °C.  
(B) Plaque morphology of Mucts wt and mutants. The right panel shows the average size 
of plaques (r) as the ratio to the average size of wt plaques (r0).  
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Figure 4.2 Continued. 
(C) Gp19 can complement S21 in phage 21 lysis cassette. pS2168 (black circle), pS 
2168am (black square), pMu19 (open square), pMu20 (open circle). pMu20 with CHCl3 
added (black triangle) at the time indicated by black arrow (85).. (D) Gp19 does not 
function with the cytoplasmic endolysin. MG1655 (open circle) carrying pZA32- 
cmycR-lacZ (green triangle) alone or with pBAD24-g19-ssd were induced with IPTG or 
arabinose. CHCl3 was added to all samples at the time indicated by black arrow.  
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In contrast, the induction of pMu20 did not cause lysis. The immediate lysis after 

adding CHCl3 (Figure 4.2C, black arrowhead) confirmed that the lack of lysis is not due 

to the shortage of SAR-endolysin (R21), but due to the lack of the functional holin in 

pMu20 construct. The retardation of the culture growth upon induction and the earlier 

lysis in Mu g20::Cam (Figure 4.2A) suggests that Gp20 inhibits the membrane 

toxication from the accumulation of holin to support the robustness of the host cells and 

prevent the premature lysis by blocking holin triggering. Taken together, we assigned 

the function of Mu holin to Gp19, and the function of antiholin to Gp20. 

The presence of SAR-endolysin suggests that the Mu holin is only required for 

the depolarization of the IM for the fast and saltatory release of muralytic enzyme from 

the membrane. Therefore, it is not necessary for Mu to have a canonical holin which 

makes large membrane lesions. However, the phage P1 lysis cassette includes a SAR-

endolysin Lyz and a canonical holin LydA, which forms IM holes that are large enough 

to allow passage of cytoplasmic endolysins (30).To test if Mu Gp19 forms canonical IM 

holes, we co-expressed Mu Gp19 and Cmyc-R-lacZ, which is a hybrid of C-myc tagged 

λ  endolysin R and an intact β-galactosidase with a total size of ~0.5 MDa (123). As 

shown in Figure 4.2D, the expression of Gp19 caused culture growth to plateau at ~ 40 

min, which is the wt Mu lysis time, but did not lyse the cell with the presence of Cmyc-

R-LacZ. These results indicated that Gp19 is a pinholin that only forms small IM holes. 

The TMD prediction result using TMHMM suggested that Gp19 adopts a N-in, C-in 

topology with four predicted TMDs, which is distinct from all three classes of holins that 

have been studied experimentally. (Figure 1.4) 
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Mu gene 25 is required for lysis 

 As mentioned above, we have originally identified three holin gene candidates in 

the proximity of lys: 19, 20 and 25, and have constructed knock-out mutants for each of 

them. After we assigned the holin function to gene 19 and the antiholin function to gene 

20, the lysis system of Mu seems complete, since we have identified all protein factors 

that have been previously identified in  a phage lysis cassette: holin Gp19, antiholin 

Gp20, endolysin Lys, and the spanin complex gp23 and gp23a. However, to our surprise, 

the induction of Mucts 25::Cam prophage did not result in lysis (Figure 4.3A). Instead, 

the growth of the culture reached a plateau after ~ 40 min, indistinguishable from the 

induction of the Mucts lys::Cam. The possibility of the unexpected mutation in other 

lysis genes was ruled out by the sequencing result of the entire Mu lysis cassette in Mucts 

25::Cam lysogen. To examine if the lack of 25-encoded protein is responsible for the 

impeded lysis, we constructed a pBAD24 plasmid carrying a clone of 25 gene with its 

original S-D sequence. The resulting plasmid, pBAD24-g25-osd, was able to restore the 

lysis phenotype when induced in MC4100 araR  Mucts 25::Cam lysogen but no in 

lys::Cam lysogen (data not shown). These results suggest that Gp25, the product of gene 

25, is required in the host lysis event of Mu, despite the presence of a functional version 

of the five known types of lysis proteins.  
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Figure 4.3 Co-expression of Gp25 and Lys. 
(A) Induction of Mucts25∷Cam lysogen (blue square) does  not cause lysis the host. The 
red curve indicates the induction of Mucts lys∷Cam.  
(B) (Left) Induction of pBAD24-g25-ssd (blue circle), pBAD33-g22-ssd separate (red 
triangle) or together (purple diamond) in MG1655 tonA::Tn10. The black curve is the 
cell-only control. (Right) WB using α-Cmyc (left panel) or α-his (right panel) antibody. 
The red or blue arrow indicates the band corresponding to Cmyc-Gp22 or C-his-Gp25, 
respectively.  
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Gp25 assists the function of endolysin 

Since the Lys is a SAR-endolysin that can cause gradual lysis without the holin, 

the only reasonable explanation to the loss of lysis in Mu 25::Cam mutant is that the 

function of SAR-endolysin was abolished without Gp25. To test this hypothesis, we 

constructed two plasmids, pBAD33-lys-Cmyc-ssd and pBAD24-g25-Chis-ssd, to 

express C-myc tagged Lys and C-terminal his-tagged Gp25, respectively. The function 

of C-myc-Lys or C-his-Gp25 was tested by complementation assay with Mu knock-out 

mutants, and both tagged proteins retain wt function. As previously reported (40), 

plasmid-encoded SAR-endolysin can cause lysis without holin or spanin in our 

experimental condition, because once the cell wall was degraded by SAR-endolysin, the 

shearing forces of the shaker flasks (e.g. using of the orbital shakers for aeration) is 

sufficient for complementing the lysis defect associated with spanin mutantss. When 

induced in E. coli MG1655 tonA::Tn10 cells, neither pBAD33-lys-cmyc-ssd nor 

pBAD24-g25-Chis-ssd alone caused lysis (Figure 4.3B, left panel), even though the 

expression of C-myc-Lys or C-his-Gp25 protein was confirmed by Western blotting 

(Figure 4.3B, right panel), but the co-expression of C-myc-Lys and C-his-Gp25 led to 

the lysis at ~50 min (Figure 4.3B). Taken together, Gp25 is a requiredcofactor of Lys 

that activates its muralytic enzyme function.  

Gp25 does not affect the accumulation of Lys 

 Previously, SAR-endolysin was illustrated as a membrane-anchored muralytic 

enzyme that can be released into periplasm, where it gets activated and degrades the cell 

wall, in a sec system-dependent and membrane-potential dependent manner. Although 
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the holin defines the lysis timing and helps to achieve the saltatory and rapid lysis, the 

release and activation of SAR-endolysin is considered to be independent from any phage 

encoded proteins (40). However, without the presence of Gp25, Mu Lys did not respond 

to the membrane depolarization by the holin triggering (Figure 4.2A) or the adding of 10 

mM KCN (Figure 4.4). To examine if higher expression level of the protein can lead to a 

Gp25-independent lysis, we have constructed four different Lys-encoding plasmids, 

pBAD33-lys-osd, pBAD24-lys-osd, pBAD33-lys-ssd, and pBAD24-lys-ssd, which have 

different expression level of Lys when induced. Compare to the lowest Lys expression 

level (pBAD33-lys-osd), other three plasmids (pBAD24-lys-osd, pBAD33-lys-ssd, and 

pBAD24-lys-ssd) have 2-fold, 10-fold, and 50-fold increased Lys expression, 

respectively. All of these four plasmids caused lysis when co-expressed with Gp25. 

However, when expressed alone, only pBAD24-lys-ssd, which has 50-fold increase in 

protein expression level, can cause lysis independently (Figure 4.5A). This result 

brought up a question if Gp25 helps Lys by up-regulating the protein expression or by 

stabilizing Lys. As reported by Tran et al, in the case of T4 antiholin RI protein, the 

SAR-domain caused instability of the protein and resulted in a rapid protein degradation 

in the periplasm (35). In contrast to T4 RI, which has a half-life of ~90 sec, Lys is stable 

in vivo (Figure 4.5B). Also, as shown in Figure 4.3B, the accumulation of Lys was not 

affected by the co-expressed Gp25 (Figure 4.3B, right panel). These results suggest that 

Gp25 is activating Lys in a way other than stabilizing the protein.  
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Figure 4.4 Lys did not respond to KCN.  
pBAD33-g22-osd was induced by arabinose in MG1655 tonA∷Tn10 alone (red 
triangles) or with pBAD24-g25-ssd (purple diamonds). The black circle represents 
uninduced control. 10mM of KCN was added at 25min after induction (indicated by a 
black arrow) in samples represented by open symbols.  
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Figure 4.5 Accumulation of Lys. 
(A) Induction of Lys from various pBAD vectors using the native 22 S-D (osd) or 
artificial S-D (ssd). 1, pBAD33-g22-osd; 2, pBAD33-g22-ssd; 3, pBAD24-g22-osd; 4, 
pBAD24-g22-ssd. The right panel shows the Western blotting (WB) results level of Lys 
accumulation from the equivalent amount of samples taken from 1-4. The expression 
level was mentioned as the fold to the lowest level (Lane 1).  
(B) Lys is stable in the cell. +, WB positive control of Lys; CAM-, no chloramphenicol 
added; CAM+, added with 300ug/mL of chloramphenicol at time=0.  
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Figure 4.6 Alignment of Mu Lys and phage 21 SAR-endolysin R21.  
The identical residues are labeled with red rectangles. The predicted SAR-domain is 
highlighted in yellow. The catalytic triad (E-D-T) is indicated by red asterisks. The 
conserved triple Glycine (GGG) linker in the SAR-domain is indicated by a blue line. 
The positively charged residues (R and K) in the N-terminal cytoplasmic ‘tail’ are 
indicated with open red boxes.  
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The N-terminal charged residues blocks Lys function 

Previously published articles reported that Lys in a R21-like SAR-endolysin, 

which does not require the disulfide bond isomerization but the refolding of the SAR-

domain to activate the enzymatic function (38). The SAR-domain of Lys contains a 

triple-Glycine region (Figure 4.6), which is very similar to the turn region between two 

parallel helices formed in the SAR-domain of R21 in the periplasm. This suggests that 

Lys might undergo the similar SAR-endolysin refolding, which results in the 

stabilization of the catalytic Glu (37). However, despite the homology between Lys and 

R21, there is no evidence that R21 requires any phage-encoded cofactor for activation. By 

comparing the primary structure of Lys and R21, we realized that there are more 

positively charged residues in the N-terminus of Lys (K6, K7, and K9) than in R21 (R6 

and K7) (Figure 4.7A). It is known that adding positively charged residues to the N-

terminus of SAR-domain abolishes its ability of escaping the IM (21, 22, 109) and thus 

‘locks’ the protein in the membrane even when the membrane is depolarized. Therefore, 

we hypothesized that the lysine residues at the N-terminusof Lys are impeding the 

release of Lys from the IM, and  thus blocking the activation of this muralytic enzyme.  

To test this hypothesis, we constructed pBAD33 plasmids encoding the single 

missense lysine substitutions, Lys K6G, K7G, and K9G and analyzed their function with 

or without the presence of Gp25 (See Materials and Methods). All Lys mutants are 

functional as endolysin with the co-expression of Gp25 (Figure 4.7B). The K6G 

mutation fastened the lysis time (at ~ 40 min) compared to other mutants and wt Lys 

(lysis at ~ 50min). Strikingly, the expression of Lys K6G alone led to the lysis at ~ 40 
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min, with a lysis profile nearly identical to that of co-expression with Gp25 (Figure 

4.7C). K7G mutant alone also caused lysis, but the lysis time is delayed and the decrease 

in the cell density was very gradual (Figure 4.7C). K9G showed identical lysis profile to 

the wt Lys. Lys K6G and K7G mutants are thus named as sel mutants, representing 

“self-dependent endolysin”. The protein expression level of Lys wt and mutants were 

analyzed and compared by Western blotting, and no significant increase in protein 

accumulation was detected. In fact, K7G and K9G had slightly lower expression level 

compared to wt Lys. In sum, the N-terminal lysines are responsible for the dependence 

of Lys to Gp25, most likely by blocking the release of Lys to the periplasm.     

Both TMD and the cytoplasmic domain are involved in Gp25 function 

Gp25 is predicted to be a 99 aa type I integral membrane protein with a 

negligibly short periplasmic domain (two aa) and a large C-terminal cytoplasmic domain 

(74 aa). BLAST analysis indicated that Gp25 shares no homology to any protein with 

assigned function, although significantly related homologs were found in  Mu-like 

prophages. The alignment of Gp25 and homologs suggested that the TMD of Gp25 is 

less conserved than the C-terminal cytoplasmic domain (Figure 4.8). Since we proposed 

that Lys is locked in the membrane by positively charged residues in its N-terminus, the 

highly conserved negatively charged residues in Gp25 are of interest because they could 

play a role in neutralizing the charges in Lys N-terminal tail to assist the release of Lys.  
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Figure 4.7 Lysis curve of Lys sel mutants 
(A) All of the Lys mutants (K6G, K7G, and K9G) are functional as SAR-endolysin with 
the presence of Gp25. g22, pBAD33-g22-ssd; g25, pBAD24-g25-ssd. All samples are 
induced at time=0 with 0.4% arabinose. Host cell, MG1655 tonA::Tn10. The black line 
indicates the induction of wt Lys (g22) and Gp25 (g25).  
(B) Lys sel mutants K6G (red triangle) and K7G (pink triangle) mutants can cause lysis 
without Gp25.  
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Figure 4.7 Continued 
(C) Lys sel mutants did not change the accumulation of Lys significantly. The red arrow 
indicates the corresponding band of Cmyc-Lys.  
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In fact, mutating highly conserved negatively charged residues in the distal C-

terminus of Gp25 (D71 and E91) completely abolished the activation of Lys (Figure 

4.9A), suggesting the cytoplasmic domain of Gp25 is needed for its function. We also 

replaced the original Gp25 TMD region (residue 3-25) to an artificial TMD 

(VLLIIVVVVVVVVIILLI), which has been experimentally tested (41), to examine if 

the TMD is involved for Gp25 function. The change in TMD did not affect the 

membrane topology of Gp25, but blocked its function (Figure 4.9B). These results 

indicated that both cytoplasmic domain and TMD of Gp25 is critical for its function as a 

cofactor of SAR-endolysin Lys.  

Discussion 

 Prior to this work, lys was the only gene that have assigned with a host lysis-

related function in Mu genome. Here we have reported the identification of other 

important genes the Mu lysis cassette: the holin gene 19, the antiholin gene 20, the 

spanins pair 23/23a, and gene 25, which encodes a novel class of lysis regulatory factor.  

 Gp19 is a new class of holin. We have shown that the product of Mu 19 can halt 

the cell growth when expressed from a medium copy number plasmid and complement 

the holin S2168 in the phage 21 lysis cassette (Figure 4.2C), but cannot cause lysis when 

expressed with a cytoplasmic endolysin (Figure 4.2D). Therefore, we concluded that 

protein Gp19 is a pinholin, which releases the endolysin by the depolarization of the IM 

rather than the formation of large membrane lesions. There are three phages have been 

reported to adopt the “pinholin and SAR-endolysin” lysis system so far: phage 21,   
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Figure 4.8 Alignment of Gp25 homologs.  
The predicted TMD of Gp25 is indicated by a black line. The fully conserved residues are indicated by red asterisks. Identical 
homologs of Gp25 are omitted for clarity. Black arrows indicate the mutated residues. 
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Figure 4.9 Lysis curve of Gp25 mutants. 
(A) Mutation in the C-terminus abolished the function of Gp25. The location of point 
mutation (D71V, E87V, and E91V) in indicated by black arrows in A. The black line 
indicates the induction of wt Lys (g22) and Gp25 (g25). The red triangle indicates the 
induction of Lys (pBAD33-g22-ssd) without Gp25.  
(B) Native TMD is required for Gp25 function. g22, pBAD33-g22-ssd; g25 TMDs, 
pBAD24-g25-TMDs, which encodes Gp25 with an artificial TMD. The WB result in the 
right panel shows the accumulation of Gp25-TMDs.  
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Figure 4.10 New class of holin. 
(A) Potential hydrophilic surface on helical TMDs of Mu pinholin Gp19. The 
hydrophilic residues are shown as yellow circles, the hydrophobic residues are shown as 
green diamonds, the potentially negatively charged residues are shown as triangles, and 
the potentially positively charged residues are shown as pentagons. The blue arches 
indicate the predicted lumen surface (85).  
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Figure 4.10 Continued. 
(B) Model of the membrane topology of holins. The prototypes of each holin class were 
shown: Y (phage P2) and S105 (phage λ), class I; S21 (phage 21), class II; T (phage T4), 
class III; and Mu Gp19, class IV. Topology and boundary residues for TMD1, -2 , -3, 
and -4 are predicted by TMHMM. The first and the last aa of each TMD is indicated by 
residue numbers. The number of positively charged (+) or negatively charged (-) 
residues in the cytoplasmic or periplasmic domain are indicated (85).   
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phage фKMV, and phage TP712 (127). Their pinholins (S2168, KMV44, and holTP712) 

are all classified as the class II holin, which has one TMD and a N-terminal SAR-

domain and forms pinholes. Class II holin is synthesized as an integral membrane 

protein with two TMDs, then the N-terminal TMD, which is a SAR-domain, needs to 

exit the IM to activate the hole-forming function upon the holin triggering (22). 

However, Gp19 is predicted to have four TMDs (Figure 4.1C and Figure 4.10A) and 

does not have N-terminal SAR-domain. This topology does not fit match any 

experimentally-confirmed holin (Figure 4.10B). Also, as indicated by To et al, holins 

with more than two TMDs usually form large holes and have two amphipathic TMDs 

lining up the membrane lumens (23). In contrast, the pinholin S2168, which has only one 

TMD remaining in the IM after the triggering, has only one TMD surface exposed to the 

lumen of the pinhole. The helical wheel projection of Gp19 suggested that only TMD3 

has a relatively hydrophilic face (Figure 4.10A). None of other TMDs has the nature of 

either amphipathic helix or SAR-domain (Figrue 4.10A). Taken together, we designated 

Gp19 as the prototype of the class IV holin: holin that has four TMDs with an N-in and 

C-in topology and forms pinhole.  

Gp25 is a novel factor in the dsDNA phage lysis paradigm. The data presented 

here showed that without functional Gp25, Mu gene 25-mediatedlysis was blocked even 

with the presence of holin and SAR-endolysin (Figure 4.2A). Gp25, a 99 aa membrane 

protein, is predicted to contain a N-terminal TMD and a large cytoplasmic domain 

(Figure 4.1) and has no homology to any protein except gp25 from other Mu-like 

phages.At first, Gp25 was one of the Mu holin candidates we have proposed. However, 
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unexpectedly, the thermal-induction of Mucts 25::Cam lysogen resulted in a halt in 

culture growth and stasis, but no lysis was observed. The similarity of the lysis profiles 

between Mucts25::Cam and Muctslys::Cam mutants suggested that the loss of Gp25 

impeded the function of Lys. Since Lys is a SAR-endolysin, it is considered to be 

capable of escaping the IM in a host sec system-dependent nature. No phage-encoded 

protein was reported to be critical for the release and activation of the SAR-endolysin. 

However, our results showed that without Gp25, Lys did not respond to the membrane 

depolarization caused by holin triggering or by the adding of energy poison such as 

KCN. Analysis of Lys sel mutants revealed that the basic residues in the N-terminal tail 

were responsible for the crippled SAR-endolysin function of Lys (Figure 4.7). Taken 

together, the role of Gp25 is most likely to neutralize the effect of positively charged 

residues in the N-terminus of Lys and thus assist the escaping of Lys from the IM. Due 

to the lack of the periplasmic domain, it is very unlikely for Gp25 to interact with Lys 

after Lys was released from the IM. Therefore, either TMD or C-terminal cytoplasmic 

domain of Gp25 must be involved in the interaction with Lys, with a mechanism that is 

yet to be understood. The simplest idea is that the C-terminal domain of Gp25 forms a 

micro-environment around the extreme N-terminus of Gp22. In this microenvironment, 

the pK of one or both of Lys 6 and Lys7 is lowered to ~7-8, resulting in deprotonation of 

the Lys residue(s). Once the Lys residue is no longer charged, the SAR domain can exit 

the bilayer and refold to active conformation.  

Our model for Mu lysis paradigm is summarized in Figure 4.11. Before the lysis 

time, the pinholin Gp19 is inhibited by the antiholin Gp20, and the crippled SAR-
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endolysin Lys is secured in the inactive form in the IM. When both Gp19 and Gp25 are 

accumulated to the critical level, the pinholin Gp19 triggers and opens up pinholes in the 

IM, and then Lys is released from the depolarized IM with the help of cofactor Gp25. In 

sum, Mu is the first phage that was identified with two different regulators for two 

protein targets in the lysis paradigm: the antiholin Gp20 inhibits pinholin Gp19, and the 

endolysin cofactor Gp25 assists the activation of SAR-endolysin Lys. The most 

reasonable explanation for this double-regulator system is to prevent premature lysis. 

The future direction includes the mutational analysis of holin Gp19, the confirmation of 

class IV holin topology, the visualization of the Mu-hole, isolation of spontaneous Lys 

sel mutants, and the protein-protein interaction between targets and regulators in the 

lysis paradigm.       
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Figure 4.11 Current model of Mu lysis paradigm.  
Holin Gp19 (yellow) is inhibited by antiholin Gp20 (pink) until the designated lysis time. The 
triggering of holin de-energizes the IM, makes proton motive force (PMF) drop to zero. Then 
SAR-endolysin Lys (red) is released from the IM with the help of cofactor Gp25 (blue) and 
degrades the PG. Finally, OM is disrupted by spanins.  
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CHAPTER V  

N15-LIKE PHAGES DEPEND ON MANYZ FOR INFECTION 

 

Introduction 

Despite the re-emergence of phage as potential antibacterials (2) and as a 

modality for manipulation of the microbiota of the human body (128), the molecular 

pathways by which phage achieve specific adsorption and efficient transfer of the viral 

DNA into the host cytoplasm are poorly understood features of the phage infection cycle 

(7). Among the best studied systems for study of this pathway is the canonical 

siphophage λ. Phage λ has two virion features involved in specific adsorption: the central 

tail spike, formed by three copies of the J protein, and the four side tail fibers (STFs), 

each formed by three copies of the Stf and Tfa proteins (129). In the adsorption pathway, 

the tail spike binds specifically to the trimeric maltoporin LamB in the outer membrane 

(OM) of Escherichia coli. Indeed, only the C-terminal domain of the J protein is 

required for the specific LamB binding (129). The STFs interact with the major E. coli 

OM porin OmpC, also trimeric; although this interaction is dispensable, the presence of 

the wt side tail fibers results in a ~10-fold increase in the λ adsorption rate (130).  

 The steps subsequent to the final, energy-dependent, irreversible LamB binding 

remain obscure, in part because of decades-old genetics studies. In 1974, in the course of 

a selection for bacterial mutants with new host-specific restriction properties, Scandella 

and Arber isolated E. coli pel (for penetration of λ ) mutants which allow normal λ 

adsorption but progress to a productive burst or lysogenization event only rarely (2-10% 
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of infections). Inductions of pel strains lysogenized by λ yielded lytic bursts at the 

normal time and with normal yield of virions, indicating that the pel defect is at the level 

of DNA entry into the cytoplasm (9). Support for this notion was obtained from 

experiments showing that λ DNA was not subject to host restriction in pel infections (9) 

and that, in negative-stain electron micrographs, phages adsorbed to pel hosts had full 

heads, whereas phages adsorbed to wt hosts had empty heads (9). Nevertheless, phages 

adsorbed to a pel host could not be eluted in either active or inactive form.  

These early findings suggested that Pel played an important role in the 

penetration of the cytoplasmic membrane by the λ DNA. Genetic mapping in E. coli 

indicated that the pel locus coincided with ptsM, the locus encoding the mannose 

phosphotransferase system (131). Fine structure analysis using cloned ptsM restriction 

fragments indicated that the pel phenotype was due to mutations in manY and manZ, 

encoding the PTS enzyme II subunits II-AMan and II-BMan, respectively (131). 

Interestingly, the pel phenotype was 100% associated with defects in mannose import, 

but many manYZ import-defective mutants exhibited no Pel defect, and physiological 

experiments indicated that inhibition of ManYZ import function did not affect  λ 

infectivity. These results indicated that although ManYZ was required for λ DNA 

penetration, its sugar import function was not (131).  

Overall, these findings suggest that λ DNA penetration requires host protein 

complexes at each membrane:  the LamB maltoporin at the OM and the ManYZ PTS 

complex at the IM. However, no coherent model has been proposed for the pathway of 

the 30 MDal λ DNA across either membrane, much less for how the two host proteins 
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are involved. Moreover, λ genetics, normally a powerful tool for clarifying molecular 

mechanisms, has in this case proved somewhat confusing. The original pel mutants had 

been isolated in multiple selections using λvir and λcI, and exhibited a plating deficiency 

of ~10-6 for those phages (9). The severe plating defect allowed Scandella and Arber to 

isolate λ suppressors able to plate on the pel hosts: hp mutants (for host-range of pel) (9). 

These hp mutants were subjected to deletion and recombinational mapping and found to 

map to two tail genes, V and H (10). V is the major tail protein and H, at the time known 

only as a minor tail component, is now known to be the tape-measure protein, which, as 

a trimer, occupies the central cavity of the tail tube (132). Some of the λhp mutants 

exhibited a temperature-sensitive (ts) lethal plating phenotype; all of the λhpts alleles 

mapped to V (10). Later, Roessner et al  (133) reported that the H protein was ejected 

from the tail along with the DNA upon interaction with solubilized LamB receptor or 

LamB mounted in liposomes, leading to the notion that H served as a DNA pilot protein, 

as had been shown for ssDNA phages (134), deploying from the tail after its irreversible 

attachment to LamB and interacting directly and specifically with the ManYZ in the IM.  

Here we report results from initial experiments aimed at resolving these issues 

and addressing generally the molecular mechanism of siphophage DNA penetration. The 

results, which include the isolation and characterization of novel N15-like phages 

dependent on manYZ, are discussed in terms of the current model for this paradigm 

phenomenon.  
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Materials and methods 

Bacterial growth and induction  

 Phages and bacteria strains used in this research were listed in Table 5.1. 

Standard LB-agar plates supplemented with antibiotics (ampicillin, 100 μg mL-1; 

chloramphenicol, 10 μg mL-1; Kanamycin, 40 μg mL-1) were used for plating bacteria. 

Plates were incubated at 37°C unless otherwise indicated. Overnight cultures and fresh 

cultures were prepared as described in previous chapters. The cell mass was estimated 

by measuring absorption at 550 nm wavelength using a Gilford Stasar III sipping 

spectrophotometer (Gilford Instrument Inc, Oberlin, OH). 

PCR, plasmid construction, and bacterial genome modification 

 See Table 5.1 for plasmids used and constructed in this study. Standard DNA 

manipulations and sequencing were conducted as described in previous chapters. 

Plasmid pMLB113-manY and pMLB113-manZ were constructed by inserting gene manY 

and manZ cloned from the genome of E. coli MG1655 into pBR322 based, IPTG-

inducible medium copy-number plasmid pMLB113 between its EcoRI and HindIII sites. 

The insertion was confirmed by plasmid DNA sequencing service provided by Eton 

Bioscience (San Diego, CA). To delete gene manX, manY, manZ, lamB, or tonB from the 

MG1655 genome, P1 transduction using the phage P1 virulent strain, P1vir, was 

performed as described. The Keio strains (135) with desired genes replaced with  a 

KanR marker were used as the donor. The deletion of the gene in MG1655 was 

confirmed by PCR.  
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Table 5.1 Phages, strains, and plasmids used in Chapter V. 
 
Phages Description Source 

λ105 λ cI857 Laboratory 
Stock 

λ20  λ b221 cI-; contains ~10kb deletion in the chromosome Laboratory 
Stock 

λ128  λ b221 cI-; contains ~5kb deletion in the chromosome Laboratory 
Stock 

N15 Wild type N15 Laboratory 
Stock 

phi80 Wild type phi80 Laboratory 
Stock 

Scandella Coliphage Isolated from sewage sample This study 
SirWerner Coliphage Isolated from sewage sample This study 
Bacteria Strains Description Source 
BW25113 E. coli  Keio correction parental strain (135) 
BW manY∷Kan E. coli  Keio manY∷Kan mutant (135) 

MG1655 E. coli F- λ- ilvG- rfb-50 rph-1 Laboratory 
Stock 

MG1655 
tonA∷Tn10 tonA knock-out mutant by insertion of Tn10 Laboratory 

Stock 
MG1655 
tonB∷Kan 

tonB replaced by KanR gene; made by P1 transduction using 
Keio correction as the donor This study 

MG1655 
lamB∷Kan lamB gene replaced by KanR gene This study 

MG1655 
manX∷Kan manX gene replaced by KanR gene This study 

MG1655 
manY∷Kan manY gene replaced by KanR gene This study 

MG1655 
manZ∷Kan manZ gene replaced by KanR gene This study 

Plasmids Description Source 
pMLB113 pBR322 origin, IPTG inducible plasmid. AmpR. (49) 
pMLB113-ManY pMLB113 carrying manY gene from MG1655 This study 
pMLB113-ManZ pMLB113 carrying manZ gene from MG1655 This study 
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Phage infection, mutagenesis, and sequencing 

        Phage preparations were made by the “plate lysate” method, as described 

previously. Briefly, 100 μL of original phage lysates were mixed with 100 μL of the 

permissive strain cultures, and then added to the LB top agar (0.75% agar) and 

immediately poured onto the standard LB plates. After incubated overnight at 37°C, the 

top agar layer was disrupted and collected into a 15 mL Falcon tube and mixed with 5 

mL LB medium containing 1% CHCl3 (v/v). The mixture was then cleared by 

centrifugation at 5,000 x g and the supernatant was filtered through a 0.22 mm syringe 

filter. To observe plaque morphology, phage infection experiments were carried out as 

described (19, 21). Five μL of serial-diluted phage lysates were spotted onto the lawn of 

host cells to determine the PFU (plaque forming unit). The efficiency of plating (EOP) 

was calculated as described. Phage particles were concentrated and purified by CsCl-

gradient ultracentrifugation following the standard protocol provided by the Center for 

Phage Technology (College Station, Texas, https://cpt.tamu.edu/ ). 

Isolation of manY-dependent phages  

 To isolate manY-dependent coliphages, liquid sewage samples collected from 

College Station wastewater treatment plant (College Station, TX) were centrifuged and 

filter-sterilized before applying on the lawn of BW25113. Each single plaque was 

picked, purified and the resulting lysate was used to spot onto BW 25113 manY::Kan, 

which is a manY deletion mutant from the Keio collection (135) . The lysates that grew 

on the parental Keio collection strain (Table 5.1) but failed to form plaques on the lawn 

of BW25113manY::Kan were collected, purified, propagated, and visualized by 
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negative-stain electron microscopy at the Microscopy & Imaging Center at Texas A&M 

University (College Station, TX). DNA sequencing was conducted as described (136). 

Phage hp mutants were isolated either as the spontaneous plaque-forming suppressors 

appearing on the lawn of the manYZ deletion strain, as described (9) or isolated after UV 

irradiation (137). To obtain the genomic sequence of newly isolated phages, the phage 

DNA was extracted using Wizard® Genomic DNA Purification Kit (Promega, Madison, 

WI) and sequenced using the high-throughput sequencing method provided by 454 Life 

Sciences (Branfold, CT). Quality-controlled trimmed reads were assembled to a single 

contig at 15.2-fold coverage using Velvet version 1.2.10 (138). Phage genes were 

predicted using GeneMarkS (139) and corrected using software tools available on the 

Center for Phage Technology (CPT) Galaxy instance (https://cpt.tamu.edu/galaxy-pub/) .  

Complementing the deletion of ManYZ from proteins expressed in trans  

 The complementation assay was carried out as described (140) with 

modification. The MG1655 cells harboring pMLB113-manY or pMLB113-manZ were 

mixed with top agar and poured onto the LB plates supplied with appropriate antibiotics. 

Even though pMLB is an IPTG-inducible plasmid, no inducer was used in those LB 

plates because the basal level of ManYZ expression due to the leaky promoter Plac from 

the plasmid is sufficient for the phenotypic analysis (140). The manYZ-dependent or 

independent phages were then spotted on the top agar containing the host bacteria. All 

plates were incubated at 37°C degree overnight.      
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Results 

Isolation of novel ManY/ManZ dependent coliphages 

A filtered sewage sample from a local source was plated onto lawns of E. coli 

BW25113, which is the parental strain of the Keio Collection (131), and plaques picked 

and tested against BW25113manY::Kan. Two isolates that formed plaques on the lawn 

of BW25113 but not BW25113manY::Kan were propagated on the permissive host, 

purified by CsCl gradient ultracentrifugation, and visualized by negative-stain electron 

microscopy (EM). EM images revealed that both phages were  λ -like siphophages with 

long, flexible tails of ~100 nm long, and isometric capsids of a size indicative of T=7 

quasi-equivalent symmetry (Figure 5.1). Even though these two phages have nearly 

identical morphologies, they formed distinct plaques on the lawn of BW25113. One 

phage formed clear plaques with ~1 mm diameter, the other one formed turbid and 

smaller plaques (Figure 5.2A). We named the clear-plaque forming phage Scandella, and 

the turbid plaque forming phage SirWerner, from the authors of the original pel report: 

Dorothea Scandella and Werner Arber (9)  

The genome of Scandella and SirWerner were extracted and sequenced. The 

results of genomic analysis suggested that Scandella was most closely related to the 

lambdoid coliphage N15 (97% identity over 86% of the genome) (Figure 5.3). 

SirWerner was highly similar to N15 as well, especially the head and tail morphogenesis 

genes, but also shared exhibited extensive mosaic similarities with coliphage λ and 

lambdoid coliphage phi80 (89% identity to phi80 over 58% of the genome), notably in 

the DNA  
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Figure 5.1 Electron microscopy image of phages.  
Scandella (left) and SirWerner (right).       
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Figure 5.2 Plating morphology of various lambdoid phages. 
Phages are plated on MG1655 and MG1655 ∆manYZ strains.  
(A) λ 105, 20, 128, Scandella and SirWerner.  
(B) λ 105 and N15.  
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replication, late gene regulation and lysis gene regions (Figure 5.3). Interestingly, in 

SirWerner the similarity showed a dramatic breakpoint at the C-terminal end of the J 

tail-spike protein (Figure 5.3, red arrow), after which it became highly similar to the J 

protein of phi80 (data not shown).  

ManYZ complex is required for the infection of N15-like phages 

To provide a more reliable host background for testing plating efficiency or 

Scandella and SirWerner, we deleted manX, manY, and manZ genes from the E. coli 

MG1655 genome using P1 transduction. Using these MG1655 mutant strains, we 

observed 7 to 8-log reduction in the EOP  of Scandella and SirWerner on manY and 

manZ strains, but not on manX strain (Figure 5.2 and Table 5.2). These results confirmed 

that both Scandella and SirWerner require manY and manZ for forming plaques on E. 

coli, but do not need manX. In WT E. coli, ManY and ManZ form a complex in the IM 

as part of the mannose permease (141). Although all three proteins encoded from 

manXYZ genes are required for the sugar transport and phosphorylation, a previous study  

(141) suggested that the cytoplasmic protein ManX is not required for the DNA 

penetration of phage λ, probably because ManX does not affect the structure of the 

ManYZ complex in the IM. To test if the expression of ManYZ protein in trans can 

restore the plating efficiency, we have cloned manY and manZ separately in a medium 

copy number plasmid pMLB113. When pMLB113-manY or pMLB113-manZ was 

transformed into manY or manZ strains, respectively, the basal expression level from the 

Plac promoter is sufficient to restore the EOP for Scandella and SirWerner (Table 5.2). 

However, the expression of ManY in trans did not rescue the deletion of 
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Table 5.2 Plating efficiency of  phages on ManYZ deletion strains. 
 

 

Scandell

a 
SirWerner λ105 λ20 λ128 N15 

phi8

0 

Outer 
Membrane 
Receotor 

? fhuA lamB lamB lamB tonA ? 

IMR manYZ tonB, 
manYZ manYZ manYZ manYZ manYZ ? 

E.O.P  (compare to MG1655 WT) 

MG1655 1 1 1 1 1 1 1 

MG1655  
manX::kan 0.8 1.7 1.3 1.0 0.9 N/A N/A 

MG1655 
manY::kan 4.2x10-7 0 0.1 6.3x10-5 8.1x10-6 0 1.01 

MG1655 
manZ::kan 2.5x10-8 0 0.21 2.1x10-5 5.7x10-5 0 0.97 

MG1655 
lamB ::kan 2.2 2.1 0 0 N/A N/A N/A 

MG1655  
tonB::kan 1.4 0 N/A N/A N/A N/A N/A 

MG1655 
manY::kan 
pMLB-
manY 

2.0 1.7 N/A N/A N/A N/A N/A 

MG1655 
manZ::kan 
pMLB-
manZ 

1.8 1.0 N/A N/A N/A N/A N/A 
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manZ (data shown). These results suggested the complex of ManYZ is required for the 

infection of Scandella and SirWerner.      

Since the genomes of both Scandella and SirWerner share similarity to N15 and 

phi80 genome, we also plated those phages, neither of which have been reported to rely 

on any IM receptor for infection, on manYZ deletion strains. N15 did not plate on the 

manY host, as expected (Figure 5.2). However, the EOP of phi80 was not affected by the 

loss of manY (Table 5.2). We also plated three different λ phages with various genome 

sizes on the manYZ deletion hosts. λ105, which has a genome size nearly identical to the 

parental strain λpapa, showed only ~10 fold reduction in EOP. This result is replicable 

with other λ strains that have genome size similar to λ papa (data not shown). However, 

λ20 and λ128 showed much more significant (~10-5) EOP reduction, which is very 

similar to what was reported for full-length λ  in the original pel report (9). The linkage 

between the dependence on manYZ and the size of the phage genome remains 

mysterious.  

Scandella and SirWerner hp mutants carry mutation in their H genes  

To understand which gene is responsible for the dependence of ManYZ complex, 

we isolated spontaneous plaque-forming hpsuppressors (hp = host range of pel) on manY 

or manZ strains. The mutant frequency was ~10-9 plaque-forming mutants per input 

phage for Scandella plated on manY- or manZ- strains, and was ~10-10 for SirWerner 

plated on manZ- strains. The Scandella hp mutants isolated on MG1655 manY::Kan or 

MG1655 manZ::kan were named ScanYhp or ScanZhp, respectively. The SirWerner hp 

mutants isolated on MG1655 manZ::kan were  
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named WerZhp. We were not able to isolate any spontaneous SirWerner hp mutants on 

manY hosts. However, WerYhp was isolated from a SirWerner lysate which had been 

subjected to UV mutagenesis and plated on MG1655 manY::Kan. All hp mutants were 

capable of forming plaques on manYZ deletion strains with very high efficiency (Table 

5.3). Interestingly, hp mutants isolated on the manY- strain can infect manZ- strains, or 

vice versa. This indicates that hp mutants can completely bypass the requirement for 

ManYZ complex for infection.  

The genome of four different hp mutants were sequenced and annotated. In 

contrast to the original pel article that reported hp mutants carried mutations in both tape 

measure gene protein gene H and the tail tube gene V, all of our spontaneous hp mutants 

only carry mutations in their H genes (Figure 5.4 and Table 5.4). WerYhp, which is 

mutated by UV irritation, carries a mutation in both the H gene and the tail cap gene U 

(Table 5.4). Surprisingly, all of four mutations in H gene were mapped from codon 298 

to 313, which is inside the coding region for a predicted alpha-helix (Residue 297 to 

315) in H protein. The concentration of hp mutations in this region strongly suggested 

that this alpha-helical structure plays an important role in the dependence of IM receptor 

for phages. The 297-315 is fully conserved between Scandella, SirWerner and N15, but 

diverse in λ and phi80 (Figure 5.4). Although this might explain why phi80 does not 

require manYZ for the infection, it cannot explain the variation of manYZ dependency in 

the λ genome- size variants (λ105, λ20, and λ128), since there is no difference in the H 

genes based on our sequencing results (data not shown).    
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Figure 5.3 Schematic representation of the Scandella, SirWerner, λ , and N15 genomes.  
Each open reading frame is represented by a pentagon with the following color schemes: Orange, phage head and tail; Yellow, 
the tape measure protein H; Purple, DNA replication; Cyan, repressors; Blue, terminases; Pink, lysis; Light Green: DNA 
integration, recombination, modification, and plasmid partitioning. Αnti-terminator Q homologs are labeled in dark green and 
marked with red asterisks. The red arrow indicates the C-terminus of SirWerner J protein.  
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Figure 5.3 Continued 
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Figure 5.4 Alignment of λ, Scandella, SirWerner, N15, and phi80 H protein. 
The length of each protein is indicated. Residues 280-319 of H proteins in N15-like phages are enlarged, and the predicted 
alpha-helix region is labeled with a yellow box. The fully conserved aa residues are indicated by black asterisks. The diverse 
residues were highlighted in cyan. The mutated residues in hp mutants are indicated above the alignment. Green, Scandella hp 
mutants; Red, SirWerner hp mutants.    
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Table 5.3 Plating efficiency of hp mutants on ManYZ deletion strains. 
 

Host  Scandella  
WT ScanYhp1  ScanZhp1  SirWerner 

WT  WerYhp1 WerZhp1 

E.O.P  (compare to MG1655 WT) 

WT  1 1.0  0.8  1 1.3 0.8 

manY::kan  4.2x10-7  0.9  1.3  0  0.7  0.9  

manZ::kan  2.5x10-8  0.9  0.9  0 0.8  1.0  

 

 

 

 

 
Table 5.4  Plating efficiency of hp mutants on ManYZ deletion strains. 
 

 ScanYhp1  ScanZhp1  WerYhp1 WerZhp1  

Parental  Scandella  Scandella SirWerner SirWerner 

Selection 
Host  manY::kan  manZ::kan  manY::kan  manZ::kan  

Origin  Spontaneous 
mutation  

Spontaneous 
mutation  UV mutagenesis  Spontaneous 

mutation  

Mutation  

H gene 
TCC (Ser) to 
TAC (Tyr) 
codon 301 

H gene  
GCT(Ala) to 
GTT(Val) 
codon 313  

H gene 
TCA (Ser) to TTA 
(Leu) codon 298 
U gene 
ATG (Met) to 
ATA (Ile), codon 
103  

H gene 
GCG (Ala) to 
GTG (Val), 
codon 299  

 



 

156 

 

Discussion 

 The dependence of λ DNA injection on the host IM receptor ManYZ was first 

reported in 1970s (9). However, contemporaneously with the work of Scandella and 

Arber, a pel mutant designated as GL1 was accidentally isolated by the group of S. 

Emmons while working with λ variants with different size chromosomes. On the GL1 

host, the λ plating defect was dependent on the size of the phage chromosome; so full-

length λcI plated normally, but the plating efficiency dropped logarithmically with the 

decreasing size of the chromosome of λ deletion mutants, reaching 10-6 host for 

deletions of >20%. Subsequently, these findings on the chromosome-length dependency 

were confirmed and generalized for other pel alleles by Elliott and Arber (142) despite 

the earlier report of 10-6 plating defects (for full-length λ) that allowed the selection and 

mapping of the hp mutants. In fact, new pel selections were done successfully, using 

λb221, carrying a 22% deletion (i.e., a 36 kb chromosome versus 45.6 kb for full length 

λ). How the original pel isolations and the subsequent selections for the λ hp V  and H 

suppressor mutants were achieved using full-length λ  phage has not been resolved. Our 

results suggested that λ20 and λ128 (deletion for 20% and 10% of the genome, 

respectively) showed significant decrease in EOP (Figure 5.2). The H gene from all λ 

strains used in this study was sequenced but no mutation was found (data not shown). 

Complete genome sequencing is needed to compare the differences between λ 105, λ 20, 

and λ 128.  

 λ, N15, Scandella and SirWerner all require ManYZ as their IM receptor, but 

their OM receptors vary. The interaction between λ and its OM receptor LamB (MalL) 
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has been extensively studied with single-molecule and single-cell methods based on 

fluorescent tags (141). It was found that LamB is positioned in unexplained spiral 

patterns along the long axis of the cell and is also found at the poles (143)  Moreover, a 

substantial portion of LamB labeled in this way exhibited two-dimensional mobility 

within the spiral pattern. Real-time fluorescent video microscopy revealed that both λ 

phage tails and complete virions move about the surface of the host in a LamB-

dependent fashion before usually localizing at the cell pole and, in the case of the 

complete virions, effecting the transfer of the phage DNA into the cytoplasm. It should 

be noted that these studies were done with the normal “laboratory” λ, which is now 

known to be λstf , rather than with true wt λ, so it is unknown what the effect of the Stf 

tail fibers would be on the path, extent and velocity of the two-dimensional walk 

observed. In contrast to λ, N15 and its close relative SirWerner utilize the OM ferroporin 

TonA (FhuA) for adsorption (Table 5.2). As part of the outer membrane ferrichrome 

transport system, TonA forms the OM transporter for ferrichrome-iron with the IM 

protein TonB (TonA 2009). TonB is also required for the TonA-dependent phage 

adsorption, and is thought to provide free energy for the opening and closing of the  

TonA porin. The OM receptor for Scandella is unknown, but we have shown that 

Scandella does not require any of the common phage OM receptors: LamB, TonA, 

OmpA, OmpC, OmpF, or PhoE, since Scandella grew normally on Keio lamB, tonA, 

ompA, ompC, ompF, or phoE mutants (data not shown). Therefore, the requirement of 

ManYZ complex seems to be independent of the choice for the OM receptor for the 

lambdoid phages we have examined in this study.  
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 A detailed model for the dependence of λ on ManY has been elaborated by Edgar 

et al (143) who addressed the λ infection pathway using a variety of single-molecule and 

single-phage fluorescence methods. These authors confirmed that λ infections occurred 

nearly always at the cell poles and that λ DNA could be localized to the polar cytoplasm 

immediately after the onset of infection. Importantly, they reported that a GFP-ManY 

chimera also localized to the poles of E. coli. Based on these findings, a model was 

proposed in which λ binds to the LamB maltoporin, after which the λ -LamB complex 

migrates to the cell pole where it interacts with other host proteins, leading to ManY-

dependent DNA ejection into the polar cytoplasm. While this model is attractive, it does 

not address how the phage-LamB complex finds its polar destination, how it “senses” 

the presence of ManY in the polar cytoplasmic membrane, how H and V are involved 

with the DNA penetration function of ManY despite the obvious topological disparities, 

or how decreasing the size of the λ gDNA makes ManY essential. Thus the penetration 

of the DNA from the canonical siphophage l still lacks a clear conceptual framework, 

despite the paradigm status of the phage and the well-known facility of its genetics. 
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CHAPTER VI  
CONCLUSIONS AND FUTURE DIRECTIONS 

 

Host lysis and the regulation of the lysis are of interests to researchers for 

decades, almost ever since the discovery of bacteriophage (17). In this dissertation, 

different regulatory strategies targeting different factors in the lysis paradigm are 

discussed in two classic myophages: T4 and Mu.  

New finding in T4 Lysis Inhibition  

 Lysis Inhibition, or LIN, the unique feature of T4 for controlling lysis timing, is 

considered as one of the fundamental questions of modern molecular biology (53). 

Despite being first reported by future Nobel Laureat A. D. Hershey in 1946, the function 

of r genes and the molecular basis of LIN were surprisingly poorly understood until very 

recently. Works from this laboratory by Ramanculov, Tran, and Moussa have elucidated 

that the binding of antiholin RI to holin T is crucial for the inhibition of T hole-

formation (34, 57, 70). The most up-to-date model of LIN shows that RI, which is 

synthesized as an integral membrane protein with an N-terminal SAR-domain that 

allows RI to undergo spontaneous integration into and subsequent escape from from the 

inner membrane. The SAR-domain also contributes to the instability of RI in the 

periplasm, as RI is quickly degraded by E. coli periplasmic protease DegP after being 

released from the IM. However, when RI receives the ‘signal’ of superinfection sent 

from the secondary infecting T4 or T-even phages, it is stabilized and binds to the 

periplasmic domain of T. If the structures observed in crystals reported by Kuznetsov et 
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al. reflect biologically meaningful complexes, the LIN complex involves T-RI-RI-T 

hetero tetramers (55). This model gives RI a very important role in LIN, not only as an 

inhibitor of holin T, but also as a detector of superinfection signal to decide the length of 

the infection cycle in response to the amount of available host cells in the environment.  

Even though the proposed RI-T LIN model is attractive, it has been challenged 

by the fact that another r-gene, rIII, seems to be crucial for LIN in addition to RI (64, 

67). The work described in this dissertation has provided molecular evidence for the 

following new findings: 1) The product of gene rIII is a stable, highly alpha-helical 

soluble protein which is mostly monomeric but also forms homo-dimers in vivo and in 

vitro; 2) Together with the main holin RI, RIII can significantly extend the LIN period in 

a T-specific fashion; 3) RIII binds to the cytoplasmic N-terminus of T in an allele-

specific manner. These findings led to a conclusion that RIII is an antiholin that inhibits 

the holin by direct protein-protein interaction.        

RIII, the cytoplasmic antiholin 

Two types of antiholins distinguished by the purpose of the holin inhibition have 

been studied previously: The first type, represented by λ S107, blocks holin function to 

prevent premature lysis. The other type, which used to have RI as the only member, 

regulates the lysis time to maximize the yield of phage progenies in a shortage of host 

cells. Nevertheless, two common features shared by all of these antiholins are 1) Direct 

protein-protein interaction with the holin; and 2) having at least one TMD. It is not 

surprising that antiholins require a TMD, since their interaction partners, holins, are 

integral membrane proteins (17). However, results presented in Chapter II and III of this 
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dissertation showed that RIII does not have any membrane-associated domain. These 

results suggested that RIII is the first soluble antiholin.  

The presence of the 34 aa cytoplasmic domain of holin T (nT), which is the 

longest cytoplasmic domain among all of experimentally studied holins, is what makes  

the unique cytoplasmic antiholin-holin interaction possible. The expression of his-sumo-

tagged nT from the plasmid led to the formation of rIII-type plaques in wt T4 infection, 

suggesting that the excess amount of nT titered out the RIII protein produced in the T4-

infected host cells (Figure 2.7). The mutational analysis of T revealed that nT is required 

for the holin function (6), and the prediction of amphipathic alpha-helix in nT indicated 

that nT is involved in the membrane lesion formation (54). Further experiments, possibly 

including work with the nT peptide in vitro, will be necessary to evaluate this model. 

The interaction surface between RIII and T is also unclear. Out of 11 RIII non-functional 

mutants, as summarized in Bruch et al in 2011, six of them are in the last 10 aa of the 

protein. Interestingly, mutation (aa change or deletion) of the very last residue, Arg82, 

abolished the function of RIII (Figure 2.4). Bacterial two hybrid assays suggested that 

G24D mutation, which is the only LIN-defective allele in the N-terminal region,  not 

only abolished the interaction with nT but also completely blocked the RIII self-

interaction (Figure 2.5). These data indicate that RIII has at least two different functional 

domains for dimerization / oligomerization or holin interaction. For nT, there is no 

evidence that any rV mutant, isolated as alleles that retain holin function but does not 

respond to antiholin) was identified to be RIII insensitive (56, 59, 60). Screening for nT 

mutants that do not interact with RIII, or RIII mutants that does not bind to nT but still 
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retains self-interaction ability using bacterial two hybrid will permit the identification of 

the interaction sites.  

A new factor in the lysis paradigm 

Chapter VI has presented the preliminary results in the course of a study for 

identifying protein factors in the phage Mu lysis cassette. Besides the SAR-endolysin 

Lys (40), this study revealed that Mu uses a pinholin Gp19 and an antiholin Gp20 for 

controlling the timing of membrane depolarization, just like other dsDNA coliphages 

except that the pinholin has an unprecedented membrane topology with four TMDs 

(Figure 4.8). However, these studies also revealed that the Mu SAR endolysin Lys 

(Gp22) cannot be activated without the expression of an integral membrane protein 

Gp25. Gp25 does not share homology to any protein with known function. The knock-

out of gene 25 in Mucts lysogen led to the blockage of the lysis with a lysis profile very 

similar to that of Mu lys mutant (Figure 4.3). Unlike other experimentally tested SAR-

endolysins, the expression of Lys alone does not lyse the cell unless being co-expressed 

with Gp25 or being expressed in a ~50x higher level. The expression of Gp25 with Lys 

can lyse the cell without changing the accumulation level of Lys. These data strongly 

suggested that Gp25 plays a role in assisting the activation of Lys other than regulating 

the expression level of Lys. Therefore, Gp25 is considered as the novel factor in the 

classic lysis paradigm that regulates SAR-endolysin.  

The question regarding to the nature of Gp25 function is however, not solved yet. 

As shown in Figure 4.5, positively charged residues in the N-terminal cytoplasmic ‘tail’ 

crippled the SAR-endolysin function of Lys, likely by blocking the release of Lys from 
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the IM. Since Gp25 does not have any periplasmic domain, it is very unlikely that Gp25 

is capable of activating Lys via affecting its conformational change in the periplasm. 

Taken together, the most reasonable and straightforward hypothesis is that Gp25 

activates SAR-endolysin by assisting the release of Lys from the membrane. Based on 

this hypothesis, it is important to know whether Gp25 binds to Lys directly or not. 

Interestingly, as a protein with a highly charged cytoplasmic domain, Gp25 has no 

lysines among its 24 charged aa (11 positively charged, 13 negatively charged). In fact, 

arginine is the most abundant aa (11%) in Gp25. This feature makes it difficult for 

demonstrating the interaction between Gp25 and Lys using the most widely-used 

crosslinking methods, which require Lys residues for covalent bond formation. Other 

methods such as yeast or bacterial two hybrid assays, immunoprecipitation or other pull-

down type assays may have to be used.  

Another question yet to be answered is why Mu needs to have an additional 

protein factor in the lysis paradigm to control Lys. Neither Mucts Lys::Cam nor Mucts 

25::Cam formed plaques on the lawn of E. coli host, as expected. According to the data 

presented in Figure 4.5, a single aa change in the Lys N-terminal tail (sel mutation) can 

bypass the dependence of Gp25. However, attempts to isolate spontaneous revertants as  

plaque formersfrom Mucts 25::Cam was not successful (data not shown). It is possible 

that in the context of the phage genome, , the sel mutation may cause  premature 

activation of Lys before holin triggering, thus leading to a reduction in the yield of 

progeny phage particles. Mutational analysis of both Gp25 and Lys under the conditions 
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that lysis can be constantly monitored may reveal more details about the functional 

domain of Gp25 and the significance of Lys-Gp25 interaction.          
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