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ABSTRACT

We present a new family of discrete-ordinates (Sn) angular quadratures based on

discontinuous finite elements (DFEM) in angle. The angular domain is divided into

spherical quadrilaterals (SQs) on the unit sphere surface. Linear and quadratic dis-

continuous finite element (LDFE and QDFE) basis functions in the direction cosines

are defined over each SQ, producing LDFE-SQ and QDFE-SQ angular quadratures,

respectively. The new angular quadratures demonstrate more uniform direction and

weight distributions than previous DFEM-based angular quadratures, local refine-

ment capability, strictly positive weights, generation to large numbers of directions,

and 4th-order accurate high-degree spherical harmonics (SH) integration. Results

suggest that particle-conservation errors due to inexact high-degree SH integration

rapidly diminish with quadrature refinement, and tend to be orders of magnitude

smaller than other discretization errors affecting the solution. Results also demon-

strate that the performance of the new angular quadratures without local refinement

is on par with or better than that of traditional angular quadratures for various

radiation transport problems. The performance of the new angular quadratures can

be further improved by using local refinement, especially within an adaptive Sn al-

gorithm.

The effectiveness of DFEM-based angular quadratures in adaptive Sn algorithms

is limited by the accuracy of the mapping algorithms required for passing the angular

flux solution between spatial regions with different angular quadrature refinement.

An “optimal” mapping algorithm should preserve both the shape and the angular

moments of interest from the incoming solution. We present a new mapping al-

gorithm which is nearly “optimal” for mapping sufficiently smooth solutions away
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from octant boundaries. If the mapped solution contains over- and under-shoots,

we apply a fix-up algorithm that uses multi-objective optimization to ensure that

the mapped solution remains within prescribed bounds, and exactly preserves the

0th angular moment of the incoming solution. We have demonstrated the use of the

new mapping and fix-up algorithms for mapping increasing-degree SH functions, and

nearly discontinuous angular flux solutions.

The new angular quadratures along with the new mapping and fix-up algorithms

provide the necessary tools for using DFEM-based angular quadratures in adaptive

Sn algorithms. Future work should include testing various adaptive Sn algorithms,

and their efficient parallel implementation.
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1. INTRODUCTION

In this dissertation, we present a new family of discrete-ordinates (Sn) angular

quadratures based on discontinuous finite elements (DFEM) in angle for solving the

linear Boltzmann transport equation (LBE).[1] The new angular quadratures have

many desirable properties. By design, they are well-suited for adaptive Sn algo-

rithms: they are locally refinable, have strictly positive weights, and lend themselves

to accurate mapping across multiple refinement levels. They also offer advantages

over traditional angular quadratures for standard (non-adaptive) Sn calculations,

producing in many problems more accurate solutions with fewer unknowns. The

new angular quadratures can be generated with large numbers of directions; for ex-

ample, we have generated sets with ≈800,000 directions over all octants. The new

angular quadratures without local refinement can integrate smooth functions with

4th-order truncation error. While many of the preceeding advantages also apply to

previous DFEM-based angular quadratures, [2, 3] the new angular quadratures offer

advantages over their predecessors, which are mainly attributed to more uniform

direction and weight distributions.

Previous studies [2, 3] have shown that the effectiveness of adaptive Sn algorithms

is limited by the accuracy of mapping algorithms required to pass the angular flux

solution between spatial regions with different angular quadrature refinement. An

“optimal” mapping algorithm should preserve both the shape and the angular mo-

ments of interest from the incoming solution. We present a new mapping algorithm

that is nearly ”optimal” for mapping smooth solutions away from octant boundaries

(small pointwise errors are introduced into the mapped solution even when the in-

coming solution lives in the underlying DFEM basis space, due to the preservation of
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the higher angular moments). However, over- and under-shoots (including negativi-

ties) may occur when mapping near solution discontinuities or octant boundaries. To

address these instances, we have devised a fix-up algorithm that uses multi-objective

optimization to ensure the mapped solution remains within prescribed bounds, and

exactly preserves the 0th angular moment of the incoming solution. However, the

fix-up algorithm introduces minor error into the preservation of the higher angular

moments.

In the subsections that follow, we describe the LBE and briefly describe the

contents of the remainder of this dissertation.

1.1 Linear Boltzmann Transport Equation

The LBE is used to model neutral-particle transport in many physical systems,

such as the neutron population in nuclear reactors.[1] The LBE is a particle con-

servation equation in a seven-dimensional phase space: three in position, two in

direction, one in energy, and one in time. The LBE for neutron transport is provided

in Eqn. 1.1, where the left-hand side contains the change rate density plus the loss

terms (i.e., net leakage and total interactions), and the right-hand side contains the

gain terms (i.e., in-scatter and external plus fission source):

1

v (E)

∂Ψ
(
~r, ~Ω, E, t

)
∂t

+ ~Ω · ~∇Ψ
(
~r, ~Ω, E, t

)
+ σt (~r, E, t) Ψ

(
~r, ~Ω, E, t

)
=∫

4π

dΩ′
∫ ∞

0

dE ′σs

(
~r, ~Ω′ · ~Ω, E ′ → E, t

)
Ψ
(
~r, ~Ω′, E ′, t

)
+ q

(
~r, ~Ω, E, t

)
, (1.1)

where

~r = spatial coordinate vector (cm) ,

~Ω = particle unit directional vector ,
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E = particle energy (MeV) ,

t = time (s) ,

v (E) = particle speed
(cm

s

)
,

Ψ
(
~r, ~Ω, E, t

)
= particle angular flux

(
particles

MeV · ster · cm2 · s

)
,

σt (~r, E, t) = total cross-section

(
1

cm

)
,

σs

(
~r, ~Ω′ · ~Ω, E ′ → E, t

)
= scattering cross-section

(
1

cm ·MeV · ster

)
,

and

q
(
~r, ~Ω, E, t

)
= particle source rate density

(
particles

MeV · ster · cm3 · s

)
.

Eqn. 1.1 is an integro-differential equation with a single unknown function Ψ, also

known as the angular flux. Unique solutions for Ψ exist given appropriate boundary

and initial conditions. We define the boundary condition as

Ψ
(
~rs, ~Ω, E, t

)
= F

(
~rs, ~Ω, E, t

)
, ~n (~rs) · ~Ω < 0 , (1.2)

where F is a known function, and ~n (~rs) is the outward normal at point ~rs on the

surface of the problem domain. Eqn. 1.2 assumes the surface of the problem domain

is non-reentrant. We define the initial condition as

Ψ
(
~r, ~Ω, E, t0

)
= F0

(
~r, ~Ω, E

)
, (1.3)

where F0 is a known function representing Ψ at the start of the problem.
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The LBE shown in Eqn. 1.1 was derived under several assumptions.[1] First, we

assume particles do not interact with each other, but only with the background mate-

rial. This assumption is valid since the number of particles in the system is typically

many orders of magnitude less than the number of particles (nuclei and electrons)

in the background material. Second, we assume particles are not affected by out-

side forces (e.g., gravitational, magnetic or electric fields). This assumption allows

particles to travel in straight paths. Third, we assume the quantum-mechanical wave-

lengths of particles are negligible compared to the distances between collisions. This

assumption allows the velocity and position of a particle to be treated as determin-

istic, single-valued quantities. Fourth, we assume nuclei in the background material

move isotropically. This assumption allows particles to see the same background ma-

terial distribution from any incident direction, causing the total cross section to be

independent of particle direction. Therefore, scattering cross sections only depend

on the change in particle direction rather than the incident and exiting directions.

Fifth, we assume all particle interactions occur instantaneously.

1.2 Dissertation Layout

Analytic solutions to the LBE are available only for simple problems. In practice,

each independent variable is discretized in order to form a large set of algebraic equa-

tions that can be iteratively solved. In this research, we focus on angular discretiza-

tion using advanced angular quadratures in the discrete-ordinates (Sn) method. Sec-

tion 2 discusses the Sn method and highlights desirable angular quadrature proper-

ties. A brief discussion of time, energy, and spatial discretization is also provided

for completeness. Section 3 discusses traditional angular quadratures used in the Sn

method, and highlights several of their shortcomings that the DFEM-based angular

quadratures overcome. We then discuss previous DFEM-based angular quadratures,
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[2, 3] which led to the current research. Lastly, we discuss recently developed angular

quadratures, and highlight their differences compared to the DFEM-based angular

quadratures. Section 4 presents the construction of the new DFEM-based angular

quadratures, and discusses their advantages over the previous DFEM-based angular

quadratures. Section 5 presents the new mapping and fix-up algorithms required

for passing the angular flux solution between spatial regions with different angular

quadrature refinement. Section 6 presents the computational results using the new

DFEM-based angular quadratures, and the new mapping and fix-up algorithms. Sec-

tion 7 summarizes the results, draws conclusions, and offers suggestions for future

work.
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2. DISCRETIZATION OF THE LINEAR BOLTZMANN TRANSPORT

EQUATION

This reseach focuses on the angular discretization of the linear Boltzmann trans-

port equation (LBE) using advanced angular quadratures in the discrete-ordinates

(Sn) method. In this section, we discuss the Sn method, and highlight desirable

angular quadrature properties. We also briefly discuss time, energy, and spatial

discretization for completeness.

2.1 Time Discretization

Time discretization partitions the temporal domain into a series of non-overlapping

time steps ∆tn = tn+1 − tn, n = 1 : N . A general approach is to integrate the LBE

(Eqn. 1.1) over each time step and divide by ∆tn:

Ψn+1

(
~r, ~Ω, E

)
−Ψn

(
~r, ~Ω, E

)
v (E) ∆tn

+ ~Ω · ~∇Ψ
(
~r, ~Ω, E

)
+ σt (~r, E) Ψ

(
~r, ~Ω, E

)
=∫

4π

dΩ′
∫ ∞

0

dE ′σs

(
~r, ~Ω′ · ~Ω, E ′ → E

)
Ψ
(
~r, ~Ω′, E ′

)
+ q

(
~r, ~Ω, E

)
, (2.1)

where

Ψ
(
~r, ~Ω, E

)
=

1

∆tn

∫ tn+1

tn

dtΨ
(
~r, ~Ω, E, t

)
, (2.2)

q
(
~r, ~Ω, E

)
=

1

∆tn

∫ tn+1

tn

dtq
(
~r, ~Ω, E, t

)
, (2.3)

σt (~r, E) =

∫ tn+1

tn
dtΨ

(
~r, ~Ω, E, t

)
σt (~r, E, t)∫ tn+1

tn
dtΨ

(
~r, ~Ω, E, t

) , (2.4)
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and

σs

(
~r, ~Ω′ · ~Ω, E ′ → E

)
=

∫ tn+1

tn
dtΨ

(
~r, ~Ω, E, t

)
σs

(
~r, ~Ω′ · ~Ω, E ′ → E, t

)
∫ tn+1

tn
dtΨ

(
~r, ~Ω, E, t

) . (2.5)

Since Ψn is known from the previous time step, Eqn. 2.1 has two unknowns (Ψn+1

and Ψ) requiring a closure relationship, an example of which is:

Ψ
(
~r, ~Ω, E

)
= βΨn+1

(
~r, ~Ω, E

)
+ (1− β) Ψn

(
~r, ~Ω, E

)
. (2.6)

Different choices for β lead to different time discretization methods (e.g., β = 1/2

for Crank-Nicholson or β = 1 for backward Euler). We can eliminate Ψn+1 from

Eqn. 2.1 by applying Eqn. 2.6 to obtain

~Ω · ~∇Ψ
(
~r, ~Ω, E

)
+ σt,eff (~r, E) Ψ

(
~r, ~Ω, E

)
=∫

4π

dΩ′
∫ ∞

0

dE ′σs

(
~r, ~Ω′ · ~Ω, E ′ → E

)
Ψ
(
~r, ~Ω′, E ′

)
+ qeff

(
~r, ~Ω, E

)
, (2.7)

where

σt,eff (~r, E) = σt (~r, E) +
1

v (E) ∆tβ
, (2.8)

and

qeff

(
~r, ~Ω, E

)
= q

(
~r, ~Ω, E

)
+

Ψn

(
~r, ~Ω, E

)
v (E) ∆tβ

. (2.9)

These equations, which are particular to the form of closure chosen above, illustrate

a general truth: time discretization with any degree of implicitness results in a series

of steady-state problems. Therefore, if we can solve steady-state problems, we can

solve discretized time-dependent problems.
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2.2 Energy Discretization

Energy discretization partitions the energy domain into a series of non-overlapping

energy intervals ∆Eg = Eg−1−Eg, g = 1 : G. A general approach is to integrate the

time-differenced LBE (Eqn. 2.7 with over-bars and eff subscript removed) over each

energy interval ∆Eg:

~Ω · ~∇Ψg

(
~r, ~Ω

)
+ σt,g (~r) Ψg

(
~r, ~Ω

)
=∫

4π

dΩ′
G∑

g′=1

σs,g′→g

(
~r, ~Ω′ · ~Ω

)
Ψg′

(
~r, ~Ω′

)
+ qg

(
~r, ~Ω

)
, g = 1 : G , (2.10)

where:

Ψg

(
~r, ~Ω

)
=

∫ Eg−1

Eg

dEΨ
(
~r, ~Ω, E

)
, (2.11)

qg

(
~r, ~Ω

)
=

∫ Eg−1

Eg

dEq
(
~r, ~Ω, E

)
, (2.12)

σt,g (~r) =

∫ Eg−1

Eg
dEσt (~r, E)F (E)∫ Eg−1

Eg
dEF (E)

, (2.13)

σs,g′→g

(
~r, ~Ω′ · ~Ω

)
=

∫ Eg′−1

Eg′
dE ′

∫ Eg−1

Eg
dEσs

(
~r, ~Ω′ · ~Ω, E ′ → E

)
F (E ′)∫ Eg′−1

Eg′
dE ′F (E ′)

, (2.14)

and F (E) is an energy shape function, which is usually determined by solving a

simplified model problem. We can separate the within-group scattering to obtain a

one-group equation:

~Ω · ~∇Ψg

(
~r, ~Ω

)
+ σt,g (~r) Ψg

(
~r, ~Ω

)
=∫

4π

dΩ′σs,g→g

(
~r, ~Ω′ · ~Ω

)
Ψg

(
~r, ~Ω′

)
+ qg,eff

(
~r, ~Ω

)
, g = 1 : G , (2.15)
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where

qg,eff

(
~r, ~Ω

)
= qg

(
~r, ~Ω

)
+

∫
4π

dΩ′
G∑

g′=1,g′ 6=g

σs,g′→g

(
~r, ~Ω′ · ~Ω

)
Ψg′

(
~r, ~Ω′

)
. (2.16)

Therefore, energy discretization results in a series of one-group equations coupled by

the group-to-group scattering term.

2.3 Angular Discretization

Consider the time and energy-differenced LBE (Eqn. 2.15 with subscripts g and

eff removed):

~Ω · ~∇Ψ
(
~r, ~Ω

)
+ σt (~r) Ψ

(
~r, ~Ω

)
= qs

(
~r, ~Ω

)
+ q

(
~r, ~Ω

)
, (2.17)

where qs is the scattering source:

qs

(
~r, ~Ω

)
=

∫
4π

dΩ′σs

(
~r, ~Ω′ · ~Ω

)
Ψ
(
~r, ~Ω′

)
. (2.18)

We begin by expanding the angular flux in qs in terms of spherical harmonics (SH)

functions:

Ψ
(
~r, ~Ω′

)
=
∞∑
l=0

2l + 1

4π

l∑
m̃=−l

φlm̃ (~r)Ylm̃

(
~Ω′
)
, (2.19)

where Ylm̃ is the SH function of degree l and order m̃, and φlm̃ is the angular flux

moment of degree l and order m̃ defined as:

φlm̃ (~r) =

∫
4π

dΩΨ
(
~r, ~Ω

)
Y ∗lm̃

(
~Ω
)
. (2.20)
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Next, we expand the scattering cross section in terms of Legendre polynomials:

σs

(
~r, ~Ω′ · ~Ω

)
=

L∑
l′=0

2l′ + 1

4π
σsl′ (~r)Pl′ (µ0) , (2.21)

where L is the anisotropic scattering order, µ0 = ~Ω′ · ~Ω is the scattering angle cosine,

Pl′ is the Legendre polynomial of degree l′, and σsl′ is the scattering cross section

Legendre expansion coefficient of degree l′ defined as:

σsl′ (~r) =

∫ 1

−1

dµ0σs (µ0)Pl′ (µ0) . (2.22)

We insert Eqns. 2.19 and 2.21 into 2.18 to obtain

qs

(
~r, ~Ω

)
=

∫
4π

dΩ′
L∑
l′=0

2l′ + 1

4π
σsl′ (~r)Pl′ (µ0)

∞∑
l=0

2l + 1

4π

l∑
m̃=−l

φlm̃ (~r)Ylm̃

(
~Ω′
)
.

(2.23)

The SH addition theorem states

Pl′ (µ0) =
1

2l′ + 1

l′∑
m̃′=−l′

Y ∗l′m̃′
(
~Ω′
)
Yl′m̃′

(
~Ω
)
. (2.24)

The SH orthogonality property states

∫
4π

dΩ′Y ∗l′m̃′
(
~Ω′
)
Ylm̃

(
~Ω′
)

= 4πδll′δm̃m̃′ . (2.25)

We apply Eqns. 2.24 and 2.25 to 2.23 to obtain the expanded scattering source:

qs

(
~r, ~Ω

)
=

L∑
l=0

2l + 1

4π
σsl (~r)

l∑
m̃=−l

φlm̃ (~r)Ylm̃

(
~Ω
)
. (2.26)
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We insert Eqn. 2.26 back into 2.17 to obtain

~Ω · ~∇Ψ
(
~r, ~Ω

)
+ σt (~r) Ψ

(
~r, ~Ω

)
=

L∑
l=0

2l + 1

4π
σsl (~r)

l∑
m̃=−l

φlm̃ (~r)Ylm̃

(
~Ω
)

+ q
(
~r, ~Ω

)
. (2.27)

2.3.1 Discrete-Ordinates Method

The Sn method solves Eqn. 2.27 at a set of discrete directions ~Ωm with associated

weights wm,m = 1 : M , and approximates angular integrals using finite sums:

~Ωm · ~∇Ψm (~r) + σt (~r) Ψm (~r) =
L∑
l=0

2l + 1

4π
σsl (~r)

l∑
m̃=−l

φlm̃ (~r)Ylm̃

(
~Ωm

)
+ qm (~r) , m = 1 : M , (2.28)

where

Ψm = Ψ
(
~Ωm

)
, (2.29)

qm = q
(
~Ωm

)
, (2.30)

and

φlm̃ (~r) ≈
M∑
m=1

wmΨm (~r)Y ∗lm̃

(
~Ωm

)
. (2.31)

The set of discrete directions and weights forms an angular quadrature. Therefore,

angular discretization using the Sn method results in a series of equations solved at

discrete directions with angular flux moments formed using Eqn. 2.31.

2.3.2 Desirable Angular Quadrature Properties

The Sn form of the LBE above, combined with information about our solution

quantities of interest and solution characteristics in problems of interest, imply sev-
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eral important properties that angular quadratures should have for maximum utility

in radiation transport problems. In the following subsections, we discuss these prop-

erties in more detail, and thereby enumerate the properties that we seek for the new

angular quadratures presented in this research.

2.3.2.1 Accurate Global Spherical Harmonics Integration

Angular quadratures must integrate Eqn. 2.28 over the global angular domain to

obtain a statement of particle balance:

M∑
m=0

wm~Ωm · ~∇Ψm (~r) +
M∑
m=0

wmσt (~r) Ψm (~r) =

M∑
m=0

wm

L∑
l=0

2l + 1

4π
σsl (~r)

l∑
m̃=−l

φlm̃ (~r)Ylm̃

(
~Ωm

)
+

M∑
m=0

wmqm (~r) . (2.32)

The integral of the streaming term over all angles (i.e., the first term on the left-hand

side of Eqn. 2.32) can be written in terms of the net current density, ~J(~r):

M∑
m=0

wm~Ωm · ~∇Ψm (~r) = ~∇ · ~J (~r) (2.33)

where ~J(~r) =
∑M

m=0wm(~ΩmΨm (~r)). The scalar flux is defined as

φ00 (~r) =
M∑
m=0

wmΨm (~r) . (2.34)

Inserting Eqns. 2.33 and 2.34 into 2.32 produces

~∇ · ~J (~r) + σt (~r)φ00 (~r) =
M∑
m=0

wm

L∑
l=0

2l + 1

4π
σsl (~r)

l∑
m̃=−l

φlm̃ (~r)Ylm̃

(
~Ωm

)
+

M∑
m=0

wmqm (~r) . (2.35)
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Analytically, the integral of SH functions above 0th degree over all angles should be

zero (due to the SH orthogonality property); however, angular quadratures are not

guaranteed to exactly integrate these functions to zero. Therefore, the first term on

the right-side of Eqn. 2.35 becomes

M∑
m=0

wm

L∑
l=0

2l + 1

4π
σsl (~r)

l∑
m̃=−l

φlm̃ (~r)Ylm̃

(
~Ωm

)
=

1

4π
σs0 (~r)φ00 (~r) + ε, (2.36)

where ε is the contamination term consisting of the angular quadrature integration

errors for the SH functions above 0th degree. Inserting Eqn. 2.36 into 2.35, and

recognizing σa = σt − σs0 results in

−~∇ · ~J (~r)− σa (~r)φ00 (~r) +
M∑
m=0

wmqm (~r) + ε = 0. (2.37)

Eqn. 2.37 is a statement of exact particle balance (i.e., net outleakage rate density +

absorption rate density = volumetric source-rate density) if the contamination term

ε is zero, which can only occur if the angular quadrature can exactly integrate SH

functions of up to degree L over the global angular domain.

In certain practical problems of interest, the angular flux solution is smooth,

and thus can be well-approximated by a SH expansion of degree K over the global

angular domain. In this case, Eqn. 2.31 suggests that the angular quadratures must

accurately integrate SH functions of up to degree L + K over the global angular

domain to accurately form the angular flux moments.

2.3.2.2 Accurate Local Angular Flux Integration

The largest component of the scattering source is the isotropic term (i.e., the

φ00 term). Therefore, it is important for angular quadratures to accurately integrate

the angular flux itself. In many practical problems of interest, this requires accurate

13



integration of functions that are not smooth, but rather are peaky, nearly discontin-

uous, and have significant magnitudes only in small local angular regions. This is

illustrated in Fig. 2.1, which plots a high-energy angular flux solution as a function of

azimuthal angle for a fixed location in an infinite lattice of circular fuel pins in water.

Fig. 2.1 shows the angular flux solution is peaky, and nearly discontinuous even for a

relatively simple radiation transport problem. In many practical problems of inter-

est, the particular local angular regions containing the majority of the angular flux

may not be the same for different spatial regions. Therefore, in order to accurately

form the angular flux moments for practical radiation transport problems, angu-

lar quadratures must accurately integrate piecewise discontinuous functions whose

discontinuities can occur anywhere in the angular domain. In addition, uniform

quadrature directions and weights are desired because non-uniformity leads to dif-

ferences in the integration of two functions that are simply rotations or translations

of each other.

Inaccurate local integration of the angular flux solution may lead to ray effects.

Consider the radiation transport problem illustrated in Fig. 2.2 containing a circular

isotropic source surrounded by vacuum.[4] The quantities of interest are the 0th

angular flux moments (i.e., scalar fluxes) at spatial points A and B. Fig. 2.3 plots

the angular flux solution as a function of azimuthal angle at spatial points A and B,

along with the directions for an evenly-distributed eight-point angular quadrature.

The angular quadrature will produce a scalar flux of zero at spatial point A, since

none of the quadrature directions happen to pass through a non-zero portion of its

angular flux solution. However, the angular quadrature will produce a scalar flux

of erroneously high value at spatial point B, since one of the quadrature directions

happens to pass through its angular flux solution maximum. Fig. 2.4 plots the

resulting scalar flux spatial distribution containing artificial peaks and valleys known

14



!
Figure 2.1: Angular flux solution at a fixed location in an infinite lattice of circular
fuel pins in water.

as ray effects. In order to mitigate ray effects, angular quadratures must accurately

integrate the angular flux solution over small local angular regions.

We also note certain quantities of interest may involve integrating the angular

flux solution multiplied by different degree SH functions over specific local angular

regions. For example, the rate at which particles leave a surface requires the angular

quadratures to accurately integrate Ψ× ~n · ~Ω over local angular regions.

2.4 Spatial Discretization

Spatial discretization partitions the spatial domain into a set of non-overlapping

spatial cells, Vk, k = 1 : K. The following procedure applies DFEM spatial discretiza-

tion [5] to the time, energy, and angular differenced LBE provided in Eqn. 2.28. We

begin by selecting the basis functions bkj(~r), j = 1 : Jk for each spatial cell k. The

DFEM method approximates the angular flux solution as a linear combination of the

15



Figure 2.2: Circular isotropic source surrounded by vacuum. Quantities of interest
are the scalar fluxes at spatial points A and B.

Figure 2.3: Angular flux solution at spatial points A and B. Red lines indicate the
eight evenly-distributed angular quadrature directions.
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Figure 2.4: Scalar flux spatial distribution showing prominent ray effects.

selected basis functions:

Ψm (~r) ≈ ψm (~r) ≡
Jk∑
j=1

ψkjbkj (~r) , ~r ∈ Vk (2.38)

We use the Galerkin method, which requires that weighted integrals of the transport

equation be satisfied, with the chosen basis functions serving also as the weight

functions. That is, the i-th weighted-integral equation is obtained by multiplying

Eqn. 2.28 by bki(~r) and integrating over the volume of the problem. This reduces to

an integral over the k-th cell, because bki(~r) = 0 outside of the k-th cell. We obtain:

∫
Vk

d3rbki (~r)
[
~Ωm · ~∇Ψm (~r) + σt (~r) Ψm (~r)

]
=∫

Vk

d3rbki (~r)

[
L∑
l=0

2l + 1

4π
σsl (~r)

l∑
m̃=−l

φlm̃ (~r)Ylm̃

(
~Ωm

)
+ qm (~r)

]
,
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m = 1 : M , i = 1 : Jk , k = 1 : K. (2.39)

Next, we apply Green’s theorem to the leakage term (i.e., first term on the left-hand

side of Eqn. 2.39) to obtain

∫
∂Vk

d2rbki (~rkl)~n·~ΩΨm (~rkl)+

∫
Vk

d3r
[
−Ψm (~r) ~Ω · ~∇bki (~r) + bki (~r)σt (~r) Ψm (~r)

]
=∫

Vk

d3rbki (~r)

[
L∑
l=0

2l + 1

4π
σsl (~r)

l∑
m̃=−l

φlm̃ (~r)Ylm̃

(
~Ωm

)
+ qm (~r)

]
,

m = 1 : M , i = 1 : Jk , k = 1 : K, (2.40)

where ∂Vk is the surface of cell k, and ~rkl is a point on surface l of cell k. We insert

the DFEM angular flux approximation (Eqn. 2.38) into Eqn. 2.40 to obtain

∫
∂Vk

d2rbki (~rkl)~n · ~ΩΨm (~rkl) +

Jk∑
j=1

ψkj

∫
Vk

d3r
[
−bkj (~r) ~Ω · ~∇bki (~r) + bki (~r)σt (~r) bkj (~r)

]
=

∫
Vk

d3rbki (~r)

[
L∑
l=0

2l + 1

4π
σsl (~r)

l∑
m̃=−l

φlm̃ (~r)Ylm̃

(
~Ωm

)
+ qm (~r)

]
,

m = 1 : M , i = 1 : Jk , k = 1 : K. (2.41)

Lastly, the surface terms are set to the upstream ψ values on each surface:

Ψm (~rkl) =

 ψm
(
~r−kl
)
, ~nkl · ~Ω > 0

ψm
(
~r+
kl

)
, ~nkl · ~Ω < 0

 , (2.42)

where ~r+
kl is immediately outside surface l of cell k, and ~r−kl is just inside. Therefore,

spatial discretization results in a series of equations solved over each spatial cell.
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2.5 Iterative Solution

A general approach for solving the fully-discretized LBE is to perform an outer

iteration that involves the solution of each energy group’s equation, with some group-

to-group scattering terms evaluated using the previous iterate. Within each energy

group, we perform an inner iteration, which solves the fully-discretized LBE using

the latest inner iteration’s scalar flux for the within-group scattering source, and the

latest outer iteration’s scalar flux for the external-group scattering source. The inner

iteration is converged when the difference in scalar flux between inner iterations is

within tolerance for each spatial cell. The outer iteration is converged when the

difference in scalar flux between outer iterations is within tolerance for each spatial

cell in each energy group. There are many variations on this basic inner/outer

iterative procedure. See [6] for a more complete discussion.

2.6 Summary

In this section, we discussed the time, energy, angular, and spatial discretiza-

tion of the LBE (Eqn. 1.1). Each discretization method is an approximation of the

continuous function, which introduces some level of discretization error. As dis-

cussed in Section 2.3.2, the Sn method for angular discretization introduces particle-

conservation error if the angular quadratures do not exactly integrate SH functions

of up to the scattering order over the global angular domain. Ray effects (i.e., ar-

tificial peaks and valleys in the scalar flux spatial distribution) may occur if the

angular quadratures do not accurately integrate the angular flux solution over local

angular regions, which produces incorrect angular flux moments. The next section

describes traditional angular quadratures used in the Sn method, and discusses some

of their deficiencies, which the DFEM-based angular quadratures overcome. We

then present previous DFEM-based angular quadratures, which led to the current
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research. Lastly, we discuss recently developed angular quadratures, and highlight

their differences compared to DFEM-based angular quadratures.
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3. DISCRETE-ORDINATES ANGULAR QUADRATURES

In this section, we describe angular quadratures [1, 7, 8, 9] that have been widely

used for many years in the discrete-ordinates (Sn) method, and discuss several of

their shortcomings which led to the development of discontinuous finite element

(DFEM) based angular quadratures. We then describe previous DFEM-based angu-

lar quadratures, [2, 3] which led to the current research. Lastly, we discuss several

recently developed angular quadratures, [10, 11, 12, 13] and highlight their differences

compared to DFEM-based angular quadratures.

3.1 Traditional Angular Quadratures

This research focuses on angular quadratures used in the Cartesian coordinates

system shown in Fig. 3.1. The unit directional vector ~Ω can be described by the

polar and azimuthal angles (θ, γ) or the directional cosines:

µ = Ωx = cos γ sin θ , (3.1)

η = Ωy = sin γ sin θ , (3.2)

and

ξ = Ωz = cos θ . (3.3)

Since ~Ω is a unit vector, the squares of its directional cosines sum to unity:

µ2 + η2 + ξ2 = 1 . (3.4)

An angular quadrature is a set of discrete directions (µm, ηm, ξm) with associated

weights wm,m = 1 : M . Quadrature directions with the same ξ are defined to be
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Figure 3.1: Cartesian coordinate system. Unit directional vector ~Ω can be described
by the polar and azimuthal angles (θ, γ) or the directional cosines (µ, η, ξ).

on the same polar level. Triangular angular quadratures have a triangular direction

distribution i.e., the highest polar level (with ξ closest to unity) has one direction,

the second highest has two, and so on. Rectangular angular quadratures have the

same number of directions on each polar level. If the number of directions on each

polar level is equal to the total number of polar levels, then the angular quadrature

may be considered a square angular quadrature. We note that the new DFEM-based

angular quadratures, in their current form, are not compatible with the algorithms

most widely used for Sn transport calculations in cylindrical coordinates, because

their directions are not aligned along polar levels. We leave the development of

DFEM-based angular quadratures for Sn transport calculations in the cylindrical

coordinates system as future work.

The directions and weights of traditional angular quadratures are typically gen-

erated to exactly integrate as high-degree spherical harmonics (SH) functions as pos-

sible over the global angular domain. An exception is the Quadruple Range (QR)

angular quadrature family, which is generated to exactly integrate SH functions over
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each octant.[7, 8] Therefore, traditional angular quadratures can exactly integrate

the scattering source (Eqn. 2.36), and avoid introducing particle-conservation errors,

even for problems with highly anisotropic scattering. However, traditional angular

quadratures inaccurately form the angular flux moments (Eqn. 2.31) when the an-

gular flux solution is not a smooth function over the entire angular domain, which

occurs even for simple radiation transport problems. Traditional angular quadra-

tures are also static (i.e., directions and weights are selected before run-time and

kept constant throughout the solution process) and uniform (i.e., directions and

weights cannot be added to local angular regions), which is computationally ineffi-

cient for radiation transport problems that may need additional angular resolution

only for local angular regions.

3.1.1 Level Symmetric

Level Symmetric (LS) angular quadratures are triangular and rotationally invari-

ant to 90◦ rotations about any axis.[1] Due to the strict symmetry constraints, there

is only one degree of freedom in choosing the quadrature directions. An order-N (de-

noted SN) LS angular quadrature contains N (N + 2) /8 directions per octant. The

weights are chosen to exactly integrate SH functions of as high-degree as possible

over the global angular domain. However, negative weights are produced above the

S22 LS angular quadrature. The S16 LS angular quadrature is shown in Fig. 3.2. LS

angular quadratures produce non-uniform direction and weight distributions, which

increase local integration error as discussed in Section 2.3.2.2. In addition, LS angu-

lar quadratures are designed to integrate smooth functions over the global angular

domain, and thus poorly integrate functions over local angular regions.
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Figure 3.2: S16 Level Symmetric angular quadrature over the first octant. Weights
are proportional to the dot area.

3.1.2 Gauss-Chebyshev

Gauss-Chebyshev (GC) angular quadratures consist of a one-dimensional (1D)

Gauss quadrature over the polar domain, and a 1D Chebyshev quadrature over the

azimuthal domain.[9] GC angular quadratures can be generated to be triangular or

rectangular. GC angular quadratures can be generated for arbitrarily large numbers

of directions without producing negative weights. The S16-like GC angular quadra-

ture is shown in Fig. 3.3. Fig. 3.4 shows the square GC angular quadrature containing

eight polar levels, and Fig. 3.5 shows the rectangular GC angular quadrature contain-

ing eight polar levels with three quadrature directions per polar level. GC angular

quadratures show more uniform direction and weight distributions than LS, which

reduces local integration error. GC angular quadratures also produce directions on

discrete polar levels, which makes them amenable for use in Sn transport calculations
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in cylindrical coordinates.
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Figure 3.3: S16-like Gauss-Chebyshev angular quadrature over the first octant.
Weights are proportional to the dot area.

3.1.3 Quadruple Range

Quadruple Range (QR) angular quadratures exactly integrate SH functions of as

high-degree as possible over each octant.[7, 8] Due to the algebraic complexity of

solving the required non-linear equations, QR angular quadratures have so far been

produced for only up to 18 polar levels and 36 azimuthal directions. The S16-like QR

angular quadrature is shown in Fig. 3.6. Fig. 3.7 shows the rectangular QR angular

quadrature containing 18 polar levels with four quadrature directions per polar level.

QR angular quadratures show less uniform direction and weight distributions than

GC, with larger weights near the center of the octant. In addition, QR angular

quadratures are only designed to accurately integrate smooth functions over entire

octants, and thus may not have accurate sub-octant integration.
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Figure 3.4: Square Gauss-Chebyshev angular quadrature containing eight polar levels
over the first octant. Weights are proportional to the dot area.
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Figure 3.5: Rectangular Gauss-Chebyshev angular quadrature containing eight po-
lar levels with three directions per polar level over the first octant. Weights are
proportional to the dot area.

3.2 Discontinuous Finite Element Based Angular Quadratures

DFEM-based angular quadratures partition the global angular domain into a set

of non-overlapping angular regions ∆Ωi, i = 1 : I. We define DFEM basis functions
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Figure 3.6: S16-like Quadruple Range angular quadrature over the first octant.
Weights are proportional to the dot area.
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Figure 3.7: Rectangular Quadruple Range angular quadrature containing 18 polar
levels with four directions per polar level over the first octant. Weights are propor-
tional to the dot area.

in the direction cosines bij

(
~Ω
)
, j = 1 : J over each ∆Ωi, where J is the number of

degrees of freedom. For example, linear discontinuous finite element (LDFE) basis
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functions have four degrees of freedom, and are linear in the directional cosines:

bij

(
~Ω
)

= cj + cµ,jµ+ cη,jη + cξ,jξ , j = 1 : 4 . (3.5)

We note bij is identically zero outside of ∆Ωi. The bij unknowns (i.e., c-coefficients

in Eqn. 3.5) are determined by requiring bij to be cardinal functions at J selected

quadrature directions. For example, using LDFE basis functions requires solving the

following linear system to determine the c-coefficients for each angular region:



1 µ1 η1 ξ1

1 µ2 η2 ξ2

1 µ3 η3 ξ3

1 µ4 η4 ξ4





c1 c2 c3 c4

cµ,1 cµ,2 cµ,3 cµ,4

cη,1 cη,2 cη,3 cη,4

cξ,1 cξ,2 cξ,3 cξ,4


=



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


. (3.6)

We expand the angular flux solution in each ∆Ωi using its DFEM basis functions:

Ψi

(
~Ω
)
≈ ψi

(
~Ω
)
≡

J∑
j=1

Ψijbij

(
~Ω
)
, (3.7)

where Ψij are the basis function expansion coefficients. Since bij are cardinal func-

tions at the selected directions, Ψij are equal to the angular flux solution evaluated

at the selected directions:

Ψij = Ψi

(
~Ωij

)
. (3.8)

We apply Eqn. 3.8 to 3.7 to obtain

Ψi

(
~Ω
)
≈

J∑
j=1

Ψi

(
~Ωij

)
bij

(
~Ω
)
. (3.9)
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We can now apply Eqn. 3.9 to the integration of the angular flux solution over each

∆Ωi to obtain ∫
∆Ωi

dΩΨi

(
~Ω
)
≈

J∑
j=1

Ψ
(
~Ωij

)
wij , (3.10)

where

wij =

∫
∆Ωi

dΩbij

(
~Ω
)
. (3.11)

The set of directions ~Ωij and weights wij, j = 1 : J forms the DFEM-based angular

quadrature for ∆Ωi.

DFEM-based angular quadratures have two main advantages over traditional an-

gular quadratures. First, DFEM-based angular quadratures are designed to integrate

functions over individual local angular regions. Therefore, their accuracy does not

depend on the function being smooth across multiple local angular regions. In con-

trast, traditional angular quadratures (e.g., LS, GC and QR) are designed to integrate

functions that are smooth over at least an entire octant. Therefore, DFEM-based

angular quadratures should more accurately integrate non-smooth functions, such as

the near-discontinuous angular flux solutions commonly produced in radiation trans-

port problems of interest. Second, DFEM-based angular quadratures support local

refinement (i.e., add directions to specific angular regions) by recursively partitioning

only the angular regions requiring additional angular resolution. This increases the

computational efficiency of radiation transport problems requiring additional angular

resolution only for specific angular regions.

A potential drawback of DFEM-based angular quadratures is the inexact in-

tegration of high-degree SH functions over the global angular domain, producing

particle-conservation errors when the scattering order is greater than the DFEM

basis-function order. Another potential concern is that this same lack of exact in-

tegration of high-degree SH functions may cause the DFEM-based angular quadra-
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tres to be less accurate than other angular quadratures for problems with relatively

smooth solutions. However, as discussed in the results section, the integration error

of high-degree SH functions rapidly decreases as we increase the number of quadra-

ture directions. In fact, it decreases by a factor of 16 for every factor of 4 increase in

the number of quadrature directions. Our limited testing demonstrates the particle-

conservation error for a problem with anisotropic scattering is negligibly small com-

pared to the error for a given quantity of interest.

3.2.1 Jarrell and Adams’ Linear Discontinuous Finite Element Based Angular

Quadratures Over Spherical Triangles

Jarrell and Adams developed DFEM-based angular quadratures using LDFE ba-

sis functions in the direction cosines defined over spherical triangular (ST) tessella-

tions of the unit sphere surface [2, 3] as shown in Fig. 3.8. We term their angular

quadratures as LDFE-ST angular quadratures. Fig. 3.9 shows the 64-point per oc-

tant LDFE-ST angular quadrature over the first octant of the unit sphere.

3.2.2 Extension to Alternative Tessellations

The LDFE-ST angular quadratures have hexagonal rings of directions that form,

and much larger weights near the center of the octant as shown in Fig. 3.9. This type

of non-uniformity increases local integration error by preferentially weighting angular

regions with a higher density of directions or larger weights. In this dissertation, we

investigate the use of spherical quadrilateral (SQ) tessellations of the unit sphere

surface to produce more uniform direction and weight distributions. The use of SQs

over the unit sphere has been successful in other applications, such as discontinuous

Galerkin transport for weather modeling.[14] The reduction in local integration errors

may result in more accurate angular flux moments for radiation transport problems

with discontinuous (or nearly discontinuous) angular flux solutions.
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Figure 3.8: Spherical triangular tessellations over the first octant of the unit sphere.
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Figure 3.9: Sixty-four point per octant LDFE-ST angular quadrature over the first
octant. Weights are proportional to the dot area.

31



3.2.3 Extension to Higher-Order DFEM Basis Functions

Jarrell and Adams only investigated the use of LDFE basis functions in the

direction cosines. The research presented here extends the DFEM-based angular

quadrature methodology to quadratic basis functions, thereby paving the way toward

higher-order DFEM-based angular quadratures that exactly integrate higher-degree

SH functions. This may be important for radiation transport problems with highly

anisotropic scattering.

3.2.4 Improvement in Mapping Algorithms

Jarrell and Adams found the use of LDFE-ST angular quadratures in adaptive

Sn algorithms to be limited by the accuracy of mapping algorithms required to pass

the angular flux solution between spatial regions with differently-refined LDFE-ST

angular quadratures. Their mapping algorithm produced over- and under-shoots

(including negativities) in the mapped angular flux solution, and only preserved the

normal partial current. The Jarrell and Adams mapping algorithm interpolates the

incoming angular flux solution using the underlying LDFE basis functions in order

to obtain the mapped angular flux solution:

Ψj

(
~Ωj

)
=

Ninc∑
k=1

Ψk

(
~Ωk

)
bk

(
~Ωj

)
, j = 1 : Nmap , (3.12)

where j and k are the indices for the mapped and incoming angular flux solutions,

respectively. The following conservation factor is then applied to ensure the normal

partial current is preserved:

Fconserve =

∑Ninc

k=1

(
~Ωk · ~n

)
wkΨk∑Nmap

j=1

(
~Ωj · ~n

)
wjΨj

. (3.13)
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The research presented here aims to develop an “optimal” mapping algorithm, which

should preserve both the shape and the angular moments of interest from the incom-

ing angular flux solution.

3.3 Other Angular Quadratures

Many different angular quadratures have been proposed for integrating functions

over the surface of the sphere in addition to those described above. In this subsec-

tion, we select some of these that have been considered for Sn radiation transport,

and briefly discuss their key properties.[10, 11, 12, 13] We highlight some of their

advantages over traditional angular quadratures, and their differences compared to

DFEM-based angular quadratures.

3.3.1 Spence’s Arbitrary Order, Non-Classical, Gauss-Type Angular Quadratures

Spence developed arbitrary order, non-classical, Gauss-type angular quadratures

using a known method to generate the abscissae and weights for Gauss-type quadra-

tures that exploits the relationship between orthogonal polynomials and the Gauss-

type quadrature rules.[10] The Spence angular quadratures can be used to generate

the Quadruple Range (QR) angular quadratures to large numbers of directions, by

avoiding the need to iteratively solve the non-linear moment equations.[7, 8] The

Spence angular quadratures may be generated over user-specified ranges of the az-

imuthal and polar angular domains,[10] suggesting accurate local SH function in-

tegration, and the possibility of local refinement. However, neither of those claims

have been published to date.

3.3.2 Ahrens and Beylkin’s Rotationally Invariant Angular Quadratures

Ahrens and Beylkin developed angular quadratures that are rotationally invari-

ant under the icosahedral group.[11] The Ahrens and Beylkin angular quadratures
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are similar to the Sobolev [15] angular quadratures, which are also invariant un-

der certain rotational groups. The Ahrens and Beylkin angular quadratures project

quadrature directions from the faces, edges and vertices of an iscosahedron onto the

surface of the unit sphere, and are designed to integrate very high-degree SH func-

tions (angular quadratures exactly integrating up to 210-degree SH functions have

been generated).[11] Unlike the DFEM-based angular quadratures, the Ahrens and

Beylkin angular quadratures do not appear amenable to local refinement.

3.3.3 Brown, Chang and Clouse’s Locally Refined Quadrature Rules

Brown, Chang and Clouse developed angular quadratures which tessellate the

surface of the unit sphere using triangles.[12] One quadrature direction is required

to pass through the center of each triangle. A quadratic programming problem is

solved to generate quadrature weights that exactly integrate SH functions up to a

specified degree. The Brown, Chang and Clouse angular quadratures support local

refinement by recursively partitioning specific triangles on the surface of the unit

sphere. Unlike the DFEM-based angular quadratures, the Brown, Chang and Clouse

angular quadratures are generated to exactly integrate SH functions over the global,

rather than local, angular domain.

3.3.4 Fromowitz and Zeigler’s Evenly-Spaced Angular Quadratures

Fromowitz and Zeigler developed angular quadratures with as uniform direction

distribution as possible over the surface of the unit sphere.[13] The weight of each

quadrature direction is equal to the surface area of the patch on the unit sphere

formed by the space between each quadrature direction and their neighbors. The Fro-

mowitz and Zeigler angular quadratures reduce ray effects for problems with strong

streaming paths. Unlike DFEM-based angular quadratures, the Fromowitz and Zei-

gler angular quadratures only exactly integrate 0th-degree SH functions. Higher-
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degree SH functions are integrated with 1st-order accuracy as a function of the num-

ber of directions. Therefore, the Fromowitz and Zeigler angular quadratures may

not be suitable for problems with anisotropic scattering.

3.3.5 Summary

As previously discussed, many different angular quadratures have been proposed

for integrating functions over the surface of the sphere. In this subsection, we dis-

cussed a few selected angular quadratures that have been considered for Sn radiation

transport that possess certain characteristics that we seek for the new DFEM-based

angular quadratures: accurate local SH integration, ability to be locally refined, and

uniform quadrature direction and weight distributions.
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4. DISCONTINUOUS FINITE ELEMENT BASED ANGULAR

QUADRATURES OVER SPHERICAL QUADRILATERALS

In this section, we present the construction of a new family of discrete-ordinates

(Sn) angular quadratures based on discontinuous finite element (DFEM) basis func-

tions in the direction cosines. The angular domain is divided into cones subtended

by spherical quadrilaterals (SQs) on the surface of the unit sphere. Linear and

quadratic discontinuous finite element (LDFE and QDFE) basis functions in the di-

rection cosines are defined over each SQ. The quadrature directions and weights are

chosen to exactly integrate the underlying basis functions. We discuss advantages

the new (LDFE-SQ and QDFE-SQ) angular quadratures have over previous DFEM-

based angular quadratures, [2, 3] which can be attributed to having more uniform

direction and weight distributions.

4.1 Angular Quadrature Construction

We present the construction of the new (LDFE-SQ and QDFE-SQ) angular

quadratures which can be summarized in four steps: 1) tessellate the surface of

the unit sphere into SQs; 2) select J quadrature directions for each SQ, where J is

the number of degrees of freedom for a given DFEM basis function order; 3) solve

for the basis function unknowns by requiring the basis functions to be cardinal func-

tions at the selected quadrature directions; and 4) determine the quadrature weights,

which are the basis functions integrated over each SQ.

4.1.1 Spherical Quadrilateral Tessellation

The construction of the new angular quadratures begins by inscribing a cube into

the unit sphere as shown in Fig. 4.1. To maintain rotational symmetry between each
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octant, the angular quadratures are generated over one octant then rotated to the

rest. Therefore, we only consider the corner of the cube belonging to the first octant

(µ > 0, η > 0, and ξ > 0). The cube faces in each octant are divided into sub-squares

as shown in Fig. 4.2, and projected onto the surface of the unit sphere to form SQs

as shown in Fig. 4.3. The cone subtended by each SQ represents a unique partition

of the angular domain. To maintain rotational symmetry within each octant, the

angular quadratures are generated over one of the cube faces within each octant,

then rotated to the rest. Therefore, we consider only the cube face perpendicular to

the µ-axis in the first octant. We note the above symmetry requirements are imposed

only for uniformly-refined angular quadratures. Locally-refined angular quadratures

may select specific SQs to further partition.

Figure 4.1: Corner of the cube inscribed into the first octant of the unit sphere.

4.1.2 Discontinuous Finite Element Basis Functions in the Direction Cosines

We define DFEM basis functions in the direction cosines bij

(
~Ω
)
, j = 1 : J over

each SQ i, where J is the number of degrees of freedom. For LDFE-SQ angular

quadratures, we use LDFE basis functions in the direction cosines, which have four
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Figure 4.2: One of the cube faces divided into sub-squares.

Figure 4.3: Sub-squares projected onto the surface of the unit sphere forming spher-
ical quadrilaterals.

degrees of freedom, and are linear in the direction cosines:

bij

(
~Ω
)

= cj + cµ,jµ+ cη,jη + cξ,jξ , j = 1 : 4 . (4.1)

We note that bij is identically zero outside of SQ i. The bij unknowns (i.e., c-

coefficients in Eqn. 4.1) are determined by requiring bij to be cardinal functions at

four selected quadrature directions. Therefore, we solve the following linear system
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to find the c-coefficients for each SQ:



1 µ1 η1 ξ1

1 µ2 η2 ξ2

1 µ3 η3 ξ3

1 µ4 η4 ξ4





c1 c2 c3 c4

cµ,1 cµ,2 cµ,3 cµ,4

cη,1 cη,2 cη,3 cη,4

cξ,1 cξ,2 cξ,3 cξ,4


=



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, (4.2)

Fig. 4.4 plots four sample LDFE basis functions over a SQ.
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Figure 4.4: Sample linear discontinuous finite element basis functions in the direc-
tion cosines over a spherical quadrilateral. Stars indicate the quadrature direction
associated with each basis function. While the basis functions sum to one at every
point in the SQ, each individual basis function has negative values and values that
exceed one.
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For QDFE-SQ angular quadratures, we use QDFE basis functions in the direction

cosines, which have nine degrees of freedom and are quadratic in the direction cosines:

bij

(
~Ω
)

= cj + cµ,jµ+ cη,jη + cξ,jξ + cµη,jµη + cµξ,jµξ + (4.3)

cηξ,jηξ + cξ2,jξ
2 + cµ2−η2,j

(
µ2 − η2

)
, j = 1 : 9 .

Again, bij is identically zero outside of SQ i, and the bij unknowns (i.e., c-coefficients

in Eqn. 4.3) are determined by requiring bij to be cardinal functions at nine selected

quadrature directions. Therefore, we solve the following linear system to find the

c-coefficients for each SQ:



1 µ1 · · · µ2
1 − η2

1

1 µ2 · · · µ2
2 − η2

2

...
...

. . .
...

1 µ9 · · · µ2
9 − η2

9





c1 c2 · · · c9

cµ,1 cµ,2 · · · cµ,9
...

...
. . .

...

cµ2−η2,1 cµ2−η2,2 · · · cµ2−η2,9


= (4.4)



1 0 · · · 0

0 1
. . . 0

...
...

. . .
...

0 0 · · · 1


.

Figs. 4.5 and 4.6 plot nine sample QDFE basis functions over a SQ.

4.1.3 Weight Determination

As discussed in Section 3.2, the weight of each quadrature direction is the integral

of its associated DFEM basis function (i.e., the basis function for which it is cardinal)

over its SQ. We define local (x̃, ỹ) coordinates over the cube face perpendicular to

the µ-axis in the first octant as shown in Fig. A.1. The LDFE (Eqns. 4.1) and QDFE
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Figure 4.5: Sample quadratic discontinuous finite element basis functions in the
direction cosines over a spherical quadrilateral (1-4). Stars indicate the quadrature
direction associated with each basis function. While the basis functions sum to one
at every point in the SQ, each individual basis function has negative values and
values that exceed one.

(Eqn. 4.3) basis functions can be transformed to the (x̃, ỹ) coordinates by using the

following relationships derived in Appendix A.1:

µ =
a

r
, (4.5)

η =
x̃

r
, (4.6)
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and

ξ =
ỹ

r
, (4.7)

where a = 1/
√

3 and r =
√
x̃2 + ỹ2 + a2. The resulting LDFE basis functions are

bij (x̃, ỹ) = cj + cµ,j
a

r
+ cη,j

x̃

r
+ cξ,j

ỹ

r
, j = 1 : 4 , (4.8)

and the resulting QDFE basis functions are

bij (x̃, ỹ) = cj + cµ,j
a

r
+ cη,j

x̃

r
+ cξ,j

ỹ

r
+ cµη,j

ax̃

r2
+ cµξ,j

aỹ

r2
+ (4.9)

cηξ,j
x̃ỹ

r2
+ cξ2,j

ỹ2

r2
+ cµ2−η2

a2 − x̃2

r2
, j = 1 : 9 .

The integration of the DFEM basis functions over each SQ i is performed over the

sub-square SQ i is projected from in the (x̃, ỹ) coordinates:

wij =

∫
∆x̃i

∫
∆ỹi

dx̃dỹ|J |bij (x̃, ỹ) , (4.10)

where J = a/r3 is the Jacobian mapping from the (x̃, ỹ) coordinates to the surface

of the unit sphere as derived in Appendix A.1. One-dimensional Gauss-Legendre

quadratures (using 32 points, above which no changes to machine precision are ob-

served) are used to perform the double integral in Eqn. 4.10. The sum of the weights

over all octants is normalized to 4π.

4.1.4 Direction Determination

As discussed in Sections 4.1.2 and 4.1.3, the placement of the quadrature di-

rections in each SQ fully determines its DFEM basis functions, which subsequently

determines its weights. To determine the placement of the quadrature directions in

each SQ, we divide each sub-square into sub-sub-squares as shown in Fig. 4.7. One
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quadrature direction starting from the unit sphere origin is required to pass through

each sub-sub-square as shown in Fig. 4.8. To reduce the degrees of freedom in the

placement of the quadrature directions, each direction is required to lie on the radius

of its sub-sub-square as shown in Fig. 4.9.

We use a multi-variate Secant method to iteratively place the quadrature direc-

tions such that each resulting weight equals the surface area of the SQ projected by

its sub-sub-square. This results in a geometric angular quadrature, ensuring strictly

positive weights and providing a physical significance to the weight distribution. We

define the following ratio for each sub-sub-square i:

ρi =
d

L
, (4.11)

where d is the distance of the quadrature direction along the sub-sub-square radius,

and L is the total length of the sub-sub-square radius. The multi-variate Secant

method begins by making an initial guess for the sub-sub-square ratios ρ
[0]
i (e.g.,

0.5), and calculating the resulting weights w
[0]
i . Next, the weights are re-calculated

by individually perturbing each ratio by a small factor ε (e.g., 0.25):

ρ
[1]
i = ρ

[0]
i + ε . (4.12)

The initial w
[0]
i and new w

[1]
i weights are stored into a weight matrix:

W [1] =



w
[0]
1 w

[0]
2 · · · w

[0]
J

w
[1]
11 w

[1]
21 · · · w

[1]
J1

...
...

. . .
...

w
[1]
1J w

[1]
2J · · · w

[1]
JJ


, (4.13)
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where wij is the quadrature weight in sub-sub-square i produced by perturbing the

ratio of sub-sub-square j. We consider ratio i to be converged if row i and the first

row in the weight matrix are equal. If no ratios are converged, then we solve the

following linear system to get the change in ratios δi for the next iteration:



w
[1]
11−w

[0]
1

ρ
[1]
1 −ρ

[0]
1

w
[1]
12−w

[0]
1

ρ
[1]
2 −ρ

[0]
2

· · · w
[1]
1J−w

[0]
1

ρ
[1]
J −ρ

[0]
J

w
[1]
21−w

[0]
2

ρ
[1]
1 −ρ

[0]
1

w
[1]
22−w

[0]
2

ρ
[1]
2 −ρ

[0]
2

· · · w
[1]
2J−w

[0]
2

ρ
[1]
J −ρ

[0]
J

...
...

. . .
...

w
[1]
J1−w

[0]
J

ρ
[1]
1 −ρ

[0]
1

w
[1]
J2−w

[0]
J

ρ
[1]
2 −ρ

[0]
2

· · · w
[1]
JJ−w

[0]
J

ρ
[1]
J −ρ

[0]
J





δ1

δ2

...

δJ


=



SA1 − w[0]
1

SA2 − w[0]
2

...

SAJ − w[0]
J


, (4.14)

where SAi is the surface area of the SQ projected by sub-sub-square i. If one or

more ratios are converged, we eliminate the corresponding rows and columns from

Eqn. 4.14. Lastly, we calculate the ratios for the next iteration:

ρ
[2]
i = ρ

[1]
i + δi . (4.15)

The multi-variate Secant iterations are repeated until |δi| is less than the user-

prescribed tolerance for all sub-sub-squares. We note convergence becomes more

difficult with refinement. We found the algorithm described here can converge to

|δi| ≤ 10−7 for up to 161,376 and 146,016 directions over all octants for the LDFE-

SQ and QDFE-SQ angular quadratures, respectively.

4.1.5 Spherical Quadrilateral Tessellation for Uniform Weights

As discussed in Section 3.2, a uniform weight distribution is desired to reduce

local integration errors. Therefore, we set the sub-sub-square divisions in the (x̃, ỹ)

coordinates such that the surface areas of their projected SQ are as uniform as

possible. We group sub-sub-squares for each cube face within an octant into rings
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starting from the upper-right corner as shown in Fig. 4.10. The ideal SQ surface

area producing a uniform weight distribution is

SAideal, sq =
π

6Nsq

, (4.16)

where Nsq is the number of sub-sub-squares on the cube face within an octant, and

π/6 = 4π/(8 × 3) is the total solid angle associated with the cube face within an

octant. Therefore, the ideal surface area for each ring i is

SAideal, i = SAideal, sqNsq, i , (4.17)

where Nsq, i is the number of sub-sub-squares in ring i. The sub-sub-square divisions

are set such that Eqn. 4.17 is satisfied for each ring. However, Eqn. 4.16 may not be

satisfied for each sub-sub-square since the SQ surface areas may differ within a ring.

The resulting maximum-to-minimum (resp., maximum-to-average) weight ratios are

no greater than 1.3 (resp., 1.1) for up to 161,376 and 146,016 directions over all

octants for LDFE-SQ and QDFE-SQ angular quadratures, respectively.

4.1.6 Refinement Strategy

For uniformly-refined LDFE-SQ and QDFE-SQ angular quadratures, we specify

a refinement parameter n, and divide each of the three cube faces within an octant

into (n + 1)2 sub-squares. The number of quadrature directions per octant as a

function of n for LDFE-SQ and QDFE-SQ angular quadratures are

NLDFE-SQ
dirs,oct = 12 (n+ 1)2 , (4.18)
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and

NQDFE-SQ
dirs,oct = 27 (n+ 1)2 , (4.19)

respectively. Table 4.1 shows the number of LDFE-SQ and QDFE-SQ angular

quadrature directions per octant as a function of n. The LDFE-ST and LS an-

gular quadrature direction counts are also provided for comparison. For LDFE-ST,

the number of directions per octant as a function of n is given by

NLDFE-ST
dirs,oct = 4 (n+ 1)2 , (4.20)

where for each n the base triangle per octant is divided into (n+1)2 triangles. For LS,

we use the standard refinement parameter definition for LS-like angular quadratures

[1] given by

NLS
dirs,oct =

n (n+ 1)

8
, (4.21)

where n must be an even number between 2 and 24 (highest n with strictly positive

weights). We see major differences between the direction counts per octant for the

DFEM and LS angular quadratures for each n, which highlights the difficulty in

establishing a common refinement parameter for different angular quadratures.

For locally-refined LDFE-SQ and QDFE-SQ angular quadratures, we select spe-

cific sub-squares to refine. The refinement of an LDFE-SQ sub-square divides it into

four sub-squares by using the old sub-sub-square divisions as the new sub-square

divisions. Similarly, the refinement of a QDFE-SQ sub-square divides it into nine

sub-squares. We define the original sub-square as the parent, and the new sub-squares

it produces as the daughters.
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Table 4.1: Number of directions per octant for LDFE-SQ, QDFE-SQ, LDFE-ST and
LS as a function of refinement parameter n.

n LDFE-SQ QDFE-SQ LDFE-ST LS
0 12 27 4 NA
1 48 108 16 NA
2 108 243 36 1
3 192 432 64 NA
4 300 675 100 3
5 432 972 144 NA
6 588 1323 196 6
7 768 1728 256 NA
8 972 2028 324 10
9 1200 2700 400 NA
10 1452 3267 484 15
25 8112 18252 2704 NA
40 20172 45387 6724 NA

4.2 Comparison of New and Previous DFEM-Based Angular Quadratures

As discussed in Section 3.3, the previous DFEM-based (LDFE-ST) angular quadra-

tures developed by Jarrell and Adams [2, 3] used spherical triangular tessellations of

the unit sphere surface, which produced non-uniform direction and weight distribu-

tions. The LDFE-ST angular quadratures formed hexagonal rings of directions with

much larger weights near the center of the octant as shown in Fig. 3.9. Fig. 4.11

shows the 108-point per octant LDFE-SQ and QDFE-SQ angular quadratures, which

have much more uniform direction distributions than LDFE-ST. Additionally, as dis-

cussed in Section 4.1.5, the LDFE-SQ and QDFE-SQ angular quadratures have a

maximum-to-minimum weight ratio of no greater than 1.3 - significantly lower than

5.1 for LDFE-ST. We note that the LDFE-SQ angular quadratures appear to have

a more uniform direction distribution than QDFE-SQ. This is a result of the direc-

tion placement strategy discussed in Section 4.1.4. While the non-uniformity of the
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QDFE-SQ direction placement could conceivably reduce accuracy in some problems,

we observed no negative impact on the results provided in Section 6.
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Figure 4.6: Sample quadratic discontinuous finite element basis functions in the
direction cosines over a spherical quadrilateral (5-9). Stars indicate the quadrature
direction associated with each basis function. While the basis functions sum to one
at every point in the SQ, each individual basis function has negative values and
values that exceed one.

49



Figure 4.7: LDFE-SQ (left) and QDFE-SQ (right) sub-sub-square divisions are de-
lineated by dotted lines.

Figure 4.8: LDFE-SQ (left) and QDFE-SQ (right) directions are indicated by the
arrows. One quadrature direction is required to pass through each sub-sub-square.
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Figure 4.9: LDFE-SQ (left) and QDFE-SQ (right) sub-sub-square radii delineated by
red lines. One quadrature direction (indicated by the black dots) must pass through
each sub-sub-square radii.

0 0.1 0.2 0.3 0.4 0.5 0.60

0.1

0.2

0.3

0.4

0.5

0.6

x̃

ỹ
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Figure 4.10: Sub-square (black lines) and sub-sub-square (red lines) divisions are set
such that the weight of each ring of sub-sub-squares equals the ideal weight for a
uniform sub-sub-square spherical quadrilateral surface area distribution.
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Figure 4.11: 108-point per octant LDFE-SQ (left) and QDFE-SQ (right) angular
quadratures. Sub-square and sub-sub-square divisions are delineated by the black
and red lines, respectively. Weights are proportional to the dot area.
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5. MAPPING

In this section, we present a new mapping algorithm for passing the angular

flux solution between spatial regions with differently-refined DFEM-based angular

quadratures. As discussed in Section 3.2.4, an “optimal” mapping algorithm should

preserve both the shape and the angular moments of interest from the incoming

solution. We present a new mapping algorithm which is nearly “optimal” for mapping

smooth solutions away from octant boundaries (small pointwise errors are introduced

into the mapped solution even when the incoming solution lives in the underlying

DFEM basis space, due to the preservation of the higher angular moments). However,

over and under-shoots (including negativities) occur when mapping near solution

discontinuities and octant boundaries. To address these instances, we present a new

fix-up algorithm that uses multi-objective optimization (MOOP) to ensure that the

mapped solution satisfies a set of prescribed limits. The mapping exactly preserves

the 0th angular moment of the incoming solution while preserving the higher angular

moments of interest as well as possible.

5.1 Mapping Algorithm Derivation

Mapping algorithms are required to pass the angular flux solution between spa-

tial regions with differently-refined DFEM-based angular quadratures. Figs. 5.1

and 5.2 illustrate mapping between the parent and daughter sub-squares (defined

in Section 4.1.6) for LDFE-SQ and QDFE-SQ angular quadratures, respectively. We

define coarse-to-fine mapping as passing the solution from a parent sub-square to

its daughters, and fine-to-coarse mapping as passing the solution from a group of

daughter sub-squares to their common parent. The mapping algorithms presented

in this section map across only one refinement level but can be recursively applied
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to map across multiple refinement levels. An “optimal” mapping algorithm should

preserve both the shape and the angular moments of interest from the incoming

solution. The following equality, if it can be enforced, ensures the mapped solution

Ψmap,j, j = 1 : Nmap preserves the angular moments of interest from the incoming

solution Ψinc,k, k = 1 : Ninc:

Nmap∑
j=1

wmap,jYln

(
~Ωmap,j

)
Ψmap,j =

Ninc∑
k=1

winc,kYln

(
~Ωinc,k

)
Ψinc,k , (5.1)

where (wmap,j, ~Ωmap,j), j = 1 : Nmap is the angular quadrature for the mapped solu-

tion, (winc,k, ~Ωinc,k), k = 1 : Ninc is the angular quadrature for the incoming solution,

and Yln(~Ω) is the spherical harmonic (SH) function for the (l, n)-th angular mo-

ment. For LDFE-SQ angular quadratures, we are interested in preserving the 0th

and 1st angular moments since, as discussed in Section 6.1, the LDFE-SQ angular

quadratures exactly integrate the 0th and 1st-degree SH functions. For QDFE-SQ

angular quadratures, we are interested in preserving the 0th through 2nd angular

moments since the QDFE-SQ angular quadratures exactly integrate the 0th through

2nd-degree SH functions.

5.1.1 Fine-to-Coarse Mapping

For LDFE-SQ fine-to-coarse mapping, we have four equations (Eqn. 5.1 preserv-

ing the 0th and 1st angular moments) and four unknowns in the mapped solution,
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Fine%to%coarse%

Coarse%to%fine%

Figure 5.1: LDFE-SQ mapping between a parent sub-square and its daughter sub-
squares. Sub-squares and sub-sub-squares are delineated by solid and dotted lines,
respectively. Dots indicate quadrature directions.

Fine%to%coarse%

Coarse%to%fine%

Figure 5.2: QDFE-SQ mapping between a parent sub-sqaure and its daughter sub-
squares. Sub-squares and sub-sub-squares are delineated by solid and dotted lines,
respectively. Dots indicate quadrature directions.

which results in the following linear system:



wc,1 · · · wc,4

wc,1µc,1 · · · wc,4µc,4

wc,1ηc,1 · · · wc,4ηc,4

wc,1ξc,1 · · · wc,4ξc,4





Ψc,1

Ψc,2

Ψc,3

Ψc,4


=



∑16
m=1wf,mΨf,m∑16

m=1 wf,mµf,mΨf,m∑16
m=1 wf,mηf,mΨf,m∑16
m=1wf,mξf,mΨf,m


, (5.2)
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where f and c denote the fine (incoming) and coarse (mapped) angular quadrature

quantities, respectively. Eqn. 5.2 is solved for the mapped solution Ψc,n, n = 1 : 4.

For QDFE-SQ fine-to-coarse mapping, we have nine equations (Eqn. 5.1 pre-

serving the 0th through 2nd angular moments) and nine unknowns in the mapped

solution, which results in the following linear system:



wc,1 · · · wc,9

wc,1µc,1 · · · wc,9µc,9

wc,1ηc,1 · · · wc,9ηc,9

wc,1ξc,1 · · · wc,9ξc,9

wc,1µc,1ηc,1 · · · wc,9µc,9ηc,9

wc,1µc,1ξc,1 · · · wc,9µc,9ξc,9

wc,1ηc,1ξc,1 · · · wc,9ηc,9ξc,9

wc,1ξ
2
c,1 · · · wc,9ξ

2
c,9

wc,1
(
µ2
c,1 − η2

c,1

)
· · · wc,9

(
µ2
c,9 − η2

c,9

)





Ψc,1

Ψc,2

Ψc,3

Ψc,4

Ψc,5

Ψc,6

Ψc,7

Ψc,8

Ψc,9



= (5.3)



∑81
m=1wf,mΨf,m∑81

m=1wf,mµf,mΨf,m∑81
m=1 wf,mηf,mΨf,m∑81
m=1wf,mξf,mΨf,m∑81

m=1wf,mµf,mηf,mΨf,m∑81
m=1wf,mµf,mξf,mΨf,m∑81
m=1 wf,mηf,mξf,mΨf,m∑81
m=1wf,mξ

2
f,mΨf,m∑81

m=1 wf,m
(
µ2
f,m − η2

f,m

)
Ψf,m



,

where f and c denote the fine (incoming) and coarse (mapped) angular quadrature
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quantities, respectively. Eqn. 5.3 is solved for the mapped solution Ψc,n, n = 1 : 9.

5.1.2 Coarse-to-Fine Mapping

For LDFE-SQ coarse-to-fine mapping, we have four equations (Eqn. 5.1 preserv-

ing the 0th and 1st angular moments) and 16 unknowns in the mapped solution,

which results in an under-determined system. We close the system by projecting the

fine solution onto the coarse LDFE basis functions:

Ψf,m =
4∑

n=1

Ψ̃c,nbc,n

(
~Ωf,m

)
, m = 1 : 16 . (5.4)

Eqn. 5.4 is applied to the four equations resulting in the following linear system:



∑16
m=1wf,mbc,1

(
~Ωf,m

)
· · ·

∑16
m=1wf,mbc,4

(
~Ωf,m

)
∑16

m=1 wf,mµf,mbc,1

(
~Ωf,m

)
· · ·

∑16
m=1 wf,mµf,mbc,4

(
~Ωf,m

)
∑16

m=1wf,mηf,mbc,1

(
~Ωf,m

)
· · ·

∑16
m=1wf,mηf,mbc,4

(
~Ωf,m

)
∑16

m=1 wf,mξf,mbc,1

(
~Ωf,m

)
· · ·

∑16
m=1 wf,mξf,mbc,4

(
~Ωf,m

)


(5.5)



Ψ̃c,1

Ψ̃c,2

Ψ̃c,3

Ψ̃c,4


=



∑4
n=1wc,nΨc,n∑4

n=1wc,nµc,nΨc,n∑4
n=1wc,nηc,nΨc,n∑4
n=1wc,nξc,nΨc,n


.

Eqn. 5.5 is solved for Ψ̃c,n, n = 1 : 4, which are inserted back into Eqn. 5.4 to obtain

the mapped solution Ψf,m,m = 1 : 16.

For QDFE-SQ coarse-to-fine mapping, we have nine equations (Eqn. 5.1 pre-

serving the 0th through 2nd angular moments) and 81 unknowns in the mapped

solution, which results in an under-determined system. We again close the system
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by projecting the fine solution onto the coarse QDFE basis functions:

Ψf,m =
9∑

n=1

Ψ̃c,nbc,n

(
~Ωf,m

)
, m = 1 : 81 . (5.6)

Eqn. 5.6 is applied to the nine equations resulting in the following linear system:



∑81
m=1 wf,mbc,1

(
~Ωf,m

)
· · ·

∑81
m=1 wf,mbc,9

(
~Ωf,m

)
∑81

m=1 wf,mµf,mbc,1

(
~Ωf,m

)
· · ·

∑81
m=1 wf,mµf,mbc,9

(
~Ωf,m

)
∑81

m=1 wf,mηf,mbc,1

(
~Ωf,m

)
· · ·

∑81
m=1 wf,mηf,mbc,9

(
~Ωf,m

)
∑81

m=1 wf,mξf,mbc,1

(
~Ωf,m

)
· · ·

∑81
m=1 wf,mξf,mbc,9

(
~Ωf,m

)
∑81

m=1 wf,mµf,mη
f
mbc,1

(
~Ωf,m

)
· · ·

∑81
m=1 wf,mµf,mηf,mbc,9

(
~Ωf,m

)
∑81

m=1 wf,mµf,mξ
f
mbc,1

(
~Ωf,m

)
· · ·

∑81
m=1 wf,mµf,mξf,mbc,9

(
~Ωf,m

)
∑81

m=1 wf,mηf,mξ
f
mbc,1

(
~Ωf,m

)
· · ·

∑81
m=1 wf,mηf,mξf,mbc,9

(
~Ωf,m

)
∑81

m=1 wf,mξ
2
f,mbc,1

(
~Ωf,m

)
· · ·

∑81
m=1 wf,mξ

2
f,mbc,9

(
~Ωf,m

)
∑81

m=1 wf,m

(
µ2
f,m − η2f,m

)
bc,1

(
~Ωf,m

)
· · ·

∑81
m=1 wf,m

(
µ2
f,m − η2f,m

)
bc,9

(
~Ωf,m

)



(5.7)



Ψ̃c,1

Ψ̃c,2

Ψ̃c,3

Ψ̃c,4

Ψ̃c,5

Ψ̃c,6

Ψ̃c,7

Ψ̃c,8

Ψ̃c,9



=



∑9
m=1 wc,mΨc,m∑9

m=1 wc,mµc,mΨc,m∑9
m=1 wc,mηc,mΨc,m∑9
m=1 wc,mξc,mΨc,m∑9

m=1 wc,mµc,mηc,mΨc,m∑9
m=1 wc,mµc,mξc,mΨc,m∑9
m=1 wc,mηc,mξc,mΨc,m∑9

m=1 wc,mξ
2
c,mΨc,m∑9

m=1 wc,m

(
µ2
c,m − η2c,m

)
Ψc,m



.

Eqn. 5.7 is solved for Ψ̃c,n, n = 1 : 9, which are inserted back into Eqn. 5.6 to obtain

the mapped solution Ψf,m,m = 1 : 81.
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5.2 Fix-Up Algorithm Derivation

The mapping algorithms presented in Section 5.1 are nearly “optimal” when

mapping sufficiently smooth solutions away from octant boundaries (small pointwise

errors are introduced into the mapped solution even when the incoming solution lives

in the underlying DFEM basis space, due to the preservation of the higher angular

moments). However, over- and under-shoots (including negativities) may occur when

mapping near solution discontinuities or octant boundaries. If the mapped solution

does not satisfy a set of prescribed limits (in this research we use either the analytical

or empirical limits; Section 7 suggests alternative methods):

Ψmin ≤ Ψmap,j ≤ Ψmax , j = 1 : Nmap , (5.8)

then we apply a fix-up algorithm which recasts the mapping problem as a multi-

objective optimization problem (MOOP). MOOP minimizes the total difference be-

tween a set of objective functions and their associated goals, while ensuring that the

solution satisfies a set of constraints.[16] The fix-up algorithm ensures the mapped

solution satisfies the prescribed limits, and preserves the 0th angular moment to ma-

chine precision, while preserving the higher angular moments of interest as well as

possible.

For LDFE-SQ fix-up, the objective functions Zi, i = 1 : 3 are the 1st angular

moments of the mapped solution:

Z1 =

Nmap∑
j=1

Ψmap,jµmap,jwmap,j , (5.9)

Z2 =

Nmap∑
j=1

Ψmap,jηmap,jwmap,j , (5.10)
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and

Z3 =

Nmap∑
j=1

Ψmap,jξmap,jwmap,j . (5.11)

Their associated goals Gi, i = 1 : 3 are the 1st angular moments of the incoming

solution:

G1 =

Ninc∑
k=1

Ψinc,kµinc,kwinc,k , (5.12)

G2 =

Ninc∑
k=1

Ψinc,kηinc,kwinc,k , (5.13)

and

G3 =

Ninc∑
k=1

Ψinc,kξinc,kwinc,k . (5.14)

For QDFE-SQ fix-up, the first three objective functions Zi, i = 1 : 3 are the same

as Eqns. 5.9 to 5.11. The remaining objective functions Zi, i = 4 : 8 are the 2nd

angular moments of the mapped solution:

Z4 =

Nmap∑
j=1

Ψmap,jµmap,jηmap,jwmap,j , (5.15)

Z5 =

Nmap∑
j=1

Ψmap,jµmap,jξmap,jwmap,j , (5.16)

Z6 =

Nmap∑
j=1

Ψmap,jηmap,jξmap,jwmap,j , (5.17)

Z7 =

Nmap∑
j=1

Ψmap,jξ
2
map,jwmap,j , (5.18)

and

Z8 =

Nmap∑
j=1

Ψmap,j

(
µ2

map,j − η2
map,j

)
wmap,j . (5.19)
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We note that Eqn. 5.19 preserves µ2−η2 rather than µ2, η2 or each individually. This

can be understood by considering the relationship between the directional cosines

provided in Eqn. 3.4: µ2 + η2 + ξ2 = 1, which suggests satisfying Eqn. 5.18 also

preserves 1− µ2− η2. SHs must be independent functions, and thus µ2− η2 is used.

The first three goals Gi, i = 1 : 3 are the same as Eqns. 5.12 to 5.14. The

remaining goals Gi, i = 4 : 8 are the 2nd angular moments of the incoming solution:

G4 =

Ninc∑
k=1

Ψinc,kµinc,kηinc,kwinc,k , (5.20)

G5 =

Ninc∑
k=1

Ψinc,kµinc,kξinc,kwinc,k , (5.21)

G6 =

Ninc∑
k=1

Ψinc,kηinc,kξinc,kwinc,k , (5.22)

G7 =

Ninc∑
k=1

Ψinc,kξ
2
inc,kwinc,k , (5.23)

and

G8 =

Ninc∑
k=1

Ψinc,k

(
µ2

inc,k − η2
inc,k

)
winc,k . (5.24)

The following equality constraint preserves the 0th angular moment from the

incoming solution:
Nmap∑
j=1

Ψmap,jwmap,j =

Ninc∑
k=1

Ψinc,kwinc,k . (5.25)

Additional inequality constraints are set to ensure the prescribed limits in Eqn. 5.8

are satisfied.

The goal programming (GP) method combines the objectives and goals of the

MOOP into a single-objective optimization problem (SOOP), which can be solved

using any standard linear program (LP), e.g., Simplex or Interior Point methods.[16,
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17, 18, 19] We chose to use the simplest version of the Simplex method (i.e., the

revised Simplex method)[17] as a proof-of-concept due to its robustness and simplicity

in implementation. As discussed in Section 7, future work should investigate the use

of other LPs to optimize the speed of the fix-up algorithm. Appendix B discusses the

GP method, derives the standard form of the SOOP required for LPs, and provides

the revised Simplex method pseudocode for the fix-up algorithm.

5.3 Adaptive Strategies

This research provides the necessary tools to effectively use DFEM-based an-

gular quadratures within an adaptive Sn algorithm. The new DFEM-based angular

quadratures, along with the new mapping and fix-up algorithms, can be directly used

within the adaptive Sn algorithm presented by Jarrell and Adams. [2] Its effective

implementation in parallel Sn codes is left for future work. We present a simplified

adaptive Sn algorithm, which only considers local refinement (i.e., ignores coarsen-

ing). This simplified adaptive Sn algorithm will be used to generate locally-refined

angular quadratures for testing the new mapping and fix-up algorithms in Section 6.

In adaptive Sn algorithms, the spatial domain is decomposed into quadrature

regions, which are allowed to have differently-refined DFEM-based angular quadra-

tures. The new mapping and fix-up algorithms are used to pass the angular flux

solution between quadrature regions. After every user-specified number of source

iterations, the angular flux solution is tested at each quadrature region boundary to

determine if any angular regions (i.e., SQs) need to be refined (i.e., replaced with its

daughter sub-squares as defined in Section 4.1.6).

To determine if a SQ needs to be refined, we first apply the new mapping algo-

rithm to obtain the mapped angular flux solution for its daughter SQs Ψmap,j, j =

1 : Ndaughters. Next, we sweep across the quadrature region using the latest itera-
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tion’s boundary conditions and scattering source, to obtain the swept angular flux

solution for the same daughter SQs Ψswept,j, j = 1 : Ndaughters. Lastly, we calculate

the difference between the mapped and swept angular flux solutions:

∆Ψj = |Ψmap,j −Ψswept,j| , j = 1 : Ndaughters . (5.26)

If any ∆Ψj exceeds both of the following limits at any quadrature region boundary,

then we refine the SQ containing quadrature direction j:

∆Ψj > εpwΨswept,j , (5.27)

and

∆Ψj > εoc
joctant(
~Ωj · ~n

) , (5.28)

where εpw is the pointwise error tolerance, εoc is the octantwise error tolerance, and

joctant is the octant current defined as

joctant =

∑M
m=1wm

(
~Ωm · ~n

)
Ψm∑M

m=1wm
, (5.29)

where m is the index of the directions in the same octant as direction j. Eqn. 5.28 is

imposed to prevent the over-refinement of SQs with angular flux solution near zero.
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6. RESULTS

In this section, we present computational results using the new LDFE-SQ and

QDFE-SQ angular quadratures, and the new mapping and fix-up algorithms. We also

test the LDFE-ST, Level Symmetric (LS), triangular Gauss-Chebyshev (GC), and

triangular Quadruple Range (QR) angular quadratures. We note that only triangular

(not rectangular) GC and QR angular quadratures were tested since previous testing

[2, 3] showed similar results for triangular and rectangular GC angular quadratures,

and higher performance for triangular over rectangular QR angular quadratures for

radiation transport problems similar to the ones performed in this research.

6.1 Angular Quadrature Performance

We demonstrate the ability of the LDFE-SQ and QDFE-SQ angular quadratures

to: (1) accurately integrate increasing-degree spherical harmonics (SH) functions;

(2) accurately form the scalar flux for both simple and complex radiation transport

problems, while producing particle-conservation errors that are small compared to

other discretization errors for radiation transport problems with anisotropic scat-

tering; (3) decrease local integration errors compared to the previous DFEM-based

angular quadratures; and (4) increase computational efficiency for certain radiation

transport problems by using local refinement. The radiation transport problems were

performed using PDT,[20, 21] a massively parallel discrete-ordinates (Sn) transport

code developed at Texas A&M University using the STAPL library.[22, 23]

6.1.1 Spherical Harmonics Integration

As discussed in Section 2.3.2, angular quadratures must accurately integrate SH

functions of increasing degree in order to avoid particle-conservation errors, and
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to accurately form angular flux moments. The LDFE-SQ and QDFE-SQ angu-

lar quadratures were tested to integrate up to 24th-degree SH functions. Due to

the octant rotational symmetry of the LDFE-SQ and QDFE-SQ angular quadra-

tures, integrations were only performed over the first octant. The computational

results show LDFE-SQ and QDFE-SQ angular quadratures exactly integrate up to

1st and 2nd-degree SH functions, respectively. The LDFE-SQ and QDFE-SQ angu-

lar quadratures both integrate all higher-degree SH functions tested with 4th-order

accuracy as a function of angular mesh length, defined as

h =
1√

number of directions
. (6.1)

That is, decreasing h by a factor of n reduces the integration error by n4. The

reference solutions were obtained analytically. Figs. 6.1 to 6.3 plot integration error

as a function of h for selected SH functions (µη, µ3ηξ and ξ3µ6ξ15). We have tested

many other polynomials, and all results are similar to those shown. The LDFE-SQ

and QDFE-SQ angular quadratures were tested up to 161,376 and 146,016 directions

over all octants, respectively. We note that one might expect the LDFE-based and

QDFE-based angular quadratures would exhibit 2nd-order and 3rd-order integration

accuracies, respectively. We do not have a theoretical explanation for the observed

higher accuracy, which is also seen with the LDFE-ST angular quadratures.

6.1.2 One-Cell Problem

The one-cell problem demonstrates the ability of the LDFE-SQ and QDFE-SQ

angular quadratures to accurately form the scalar flux for a simple radiation transport

problem. The one-cell problem is a cube with 1.0 cm sides made of pure-absorber

material (Σa = 1.0 cm−1) containing uniformly-distributed isotropic source (q =

1.0 neutron/cm3s · ster) surrounded by vacuum. The piecewise linear discontinuous
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Figure 6.1: Integration error for µη over the first octant using LDFE-SQ. Integration
error for µη using QDFE-SQ is exact to machine precision.

finite-element method (PWLD) is used for spatial discretization.[24] The one-cell

problem was performed using PDT. Fig. 6.4 plots scalar flux error as a function of h.

The reference solution was generated using the finest LDFE-ST angular quadrature

available containing 524,288 directions over all octants. The computational results

show the LDFE-SQ and QDFE-SQ angular quadratures form the scalar flux with

4th-order accuracy as a function of h - significantly better than LS at 1.5-order,

triangular GC at 2nd-order, and on-par with triangular QR and LDFE-ST angular

quadratures also at 4th-order. The LDFE-SQ and QDFE-SQ angular quadratures

were tested up to 161,376 and 146,016 directions over all octants, respectively.
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Figure 6.2: Integration error for µ3ηξ over the first octant using LDFE-SQ and
QDFE-SQ.

6.1.3 Pin-Cell Problem

The pin-cell problem provides a qualitative measure of local integration error for

the traditional and DFEM-based angular quadratures. As discussed in Section 2.3.2,

ray effects (i.e., artificial peaks in the scalar flux spatial distribution) are caused by

the inability of angular quadratures to accurately integrate the angular flux solution

over local angular regions. A desirable angular quadrature should minimize the

magnitude and wavelength of ray effects. The pin-cell problem is a two-dimensional

pin with 0.5 cm radius made of pure-absorber material (Σa = 1.0 cm−1) containing

uniformly-distributed isotropic source (q = 1.0 neutron/cm3s · ster) surrounded by

vacuum. The PWLD method is used for spatial discretization. The pin-cell problem
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Figure 6.3: Integration error for µ3η6ξ15 over the first octant using LDFE-SQ and
QDFE-SQ.

was performed using PDT. The spatial mesh used for this problem is shown in

Fig. 6.5.

Fig. 6.6 plots scalar flux contours moving away from the pin using LS, triangular

GC, triangular QR, LDFE-ST, LDFE-SQ and QDFE-SQ angular quadratures with≈

100 directions. Analytically, the scalar flux should produce perfectly circular contours

of decreasing magnitude moving away from the pin. However, the computational

results show significant ray effects for all angular quadratures at such low angle

counts. The S24 (78-point per octant) LS angular quadrature (greatest number of

directions with strictly positive weights) produces the most pronounced (i.e., highest

peaks and longest wavelengths) ray effects among the quadratures tested here. The
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Figure 6.4: Scalar flux error for the one-cell problem using LS, triangular GC, trian-
gular QR, LDFE-ST, LDFE-SQ and QDFE-SQ.

78-point per octant triangular GC and triangular QR angular quadratures produce

significantly less pronounced ray effects than LS. The 64-point per octant LDFE-

ST angular quadrature produces slightly more pronouned ray effects than triangular

GC and triangular QR, which may be partially attributed to having less directions

(next available refinement produces 256 directions per octant). The 108-point per

octant LDFE-SQ and QDFE-SQ angular quadratures produce less pronounced ray

effects than LDFE-ST, which may be partially attributed to having more directions

(previous refinement produces only 48 directions per octant). Fig. 6.7 plots scalar

flux contours moving away from the pin using triangular GC, LDFE-ST, LDFE-SQ

and QDFE-SQ angular quadratures with ≈ 1000 directions per octant. The results
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Figure 6.5: Spatial mesh used for the pin-cell problem. Red and green regions
indicate source and vacuum materials, respectively.

show ray effects are nearly eliminated for all of these angular quadratures at such high

angle counts for the specified distances away from the pin. We note that pronounced

ray effects would re-appear using these angular quadratures as we move farther away

from the pin.
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Figure 6.6: Scalar flux contours for the pin-cell problem using LS (top left), triangular
GC (top right), triangular QR (middle left), LDFE-ST (middle right), LDFE-SQ
(bottom left) and QDFE-SQ (bottom right) with ≈ 100 directions per octant.
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Figure 6.7: Scalar flux contours for the pin-cell problem using triangular GC (top
left), LDFE-ST (top right), LDFE-SQ (bottom left) and QDFE-SQ (bottom right)
with ≈ 1000 directions per octant.

6.1.4 Spherical Source Problem

The spherical source problem provides a quantitative measure of local integration

error for the traditional and DFEM-based angular quadratures. The spherical source

problem consists of a spherical source surrounded by vacuum. The spherical source

has a radius of 1.0 cm, and is made of a pure-absorber material (Σa = 1.0 cm−1)

containing uniformly-distributed isotropic source (q = 1.0 neutron/cm3s · ster). The

spherical source problem used a ray-tracing method where the scalar flux at a spatial
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point ~r outside of the spherical source is defined as

φ (~r) =
q

Σa

M∑
m=1

wm (1− exp (−Σa`m)) , (6.2)

where M is the total number of quadrature directions, wm is the weight of quadrature

direction m, and `m is the chord length for direction m starting from spatial point

~r through the spherical source. The quantity of interest (QOI) is the scalar flux at

thousands of spatial points distributed across a spherical surface of radius d = 5.0 cm

concentric with the spherical source. We select the spatial points such that the

directions from within the spherical source to each spatial point remains in the first

octant. Analytically, the scalar flux should remain constant regardless of position, if d

is fixed. However, computational results show the calculated scalar flux changes with

position due to angular quadrature local integration error. As discussed in Section

6.1.3, a desirable angular quadrature should minimize the magnitude and wavelength

of these scalar flux oscillations, also known as ray effects. The reference solution was

generated using the finest LDFE-ST angular quadrature available containing 524,288

directions over all octants.

Fig. 6.8 plots scalar flux error as a function of spatial position using LS, trian-

gular GC, triangular QR, LDFE-ST, and the directional adaptive mesh refinement

(DAMR) angular quadrature provided by Brown et al. [12] with ≈70 directions per

octant. The 78-point per octant LS angular quadrature (greatest number of direc-

tions with strictly positive weights) produces the most prominent ray effects including

the most negative error peaking (-6.6E-1) and the highest root-means-square (RMS)

error (2.6E-1). The 78-point per octant triangular GC angular quadrature produces

much less prominent ray effects than LS as evident by its lower error peaking (-2.7E-1

to 2.7E-1) and RMS error (9.4E-2). The 78-point per octant triangular QR angu-
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lar quadrature also produces less prominent ray effects than LS, but has comparable

negative error peaking (-5.9E-1). The 64-point per octant LDFE-ST angular quadra-

ture was run using slightly less directions since the next available refinement produces

256 directions per octant. The results show LDFE-ST angular quadrature produces

three very large error peaks with the highest positive error peaking (7.1E-1). The

location of the peaks center around the hexagonal rings of direction that form as

discussed in Section 3.2.2. The 64-point per octant DAMR angular quadrature was

run with the same number of directions as LDFE-ST, since the next available refine-

ment also produces 256 directions per octant. The results show the DAMR angular

quadratures produce less prominent ray effects than LDFE-ST including lower error

peaking (-3.8E-1 to 6.4E-1), and lower RMS error (1.7E-1). Table 6.1 summarizes

the above results.

Table 6.1: Summary of the results for the spherical source problem using LS, trian-
gular GC, triangular QR, LDFE-ST, and DAMR with ≈70 directions per octant.

Parameter LS GC QR LDFE-ST DAMR
Direction count 78 78 78 64 64
Minimum error -6.6E-1 -2.7E-1 -5.9E-1 -4.4E-1 -3.8E-1
Maximum error 5.7E-1 2.7E-1 3.8E-1 7.1E-1 6.4E-1
RMS error 2.6E-1 9.4E-2 1.5E-1 2.0E-1 1.7E-1

Fig. 6.9 plots the scalar flux error as a function of detector position using triangu-

lar GC, triangular QR, LDFE-SQ and QDFE-SQ with ≈105 directions per octant.

Overall, the 105-point per octant triangular QR angular quadrature produces the

most prominent ray effects including the most negative (-3.5E-1) and positive (3.1E-

1) error peaking, and the highest RMS error (9.7E-2). The 105-point per octant

triangular GC angular quadrature produces less prominent ray effects than triangu-

74



1

2

3

4

5

0
1

2
3

4
5

1

1.5

2

2.5

3

3.5

4

4.5

5

 

x

LS error for 78 directions

y 

z

R
el

at
iv

e 
Er

ro
r

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

1

2

3

4

5

0
1

2
3

4
5

1

1.5

2

2.5

3

3.5

4

4.5

5

 

x

GC error for 78 directions

y 

z

R
el

at
iv

e 
Er

ro
r

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

1

2

3

4

5

0
1

2
3

4
5

1

1.5

2

2.5

3

3.5

4

4.5

5

 

x

QR error for 78 directions

y 

z

R
el

at
iv

e 
Er

ro
r

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

1

2

3

4

5

0
1

2
3

4
5

1

1.5

2

2.5

3

3.5

4

4.5

5

 

x

LDFE−ST error for 64 directions

y 

z

R
el

at
iv

e 
Er

ro
r

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

1

2

3

4

5

0
1

2
3

4
5

1

1.5

2

2.5

3

3.5

4

4.5

5

 

x

DAMR error for 64 directions

y 

z

R
el

at
iv

e 
Er

ro
r

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 6.8: Scalar flux error as a function of position for the spherical source problem
using LS (top left), triangular GC (top right), triangular QR (center left), LDFE-ST
(center right), and DAMR (bottom) with ≈70 directions per octant. Color scales
are identical.
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lar QR as is evident from its lower error peaking (-2.4E-1 to 2.3E-1) and RMS error

(7.2E-2). The 108-point per octant LDFE-SQ and QDFE-SQ angular quadratures

produce lower positive error peaking (1.8E-1 and 1.9E-1, respectively) than both tri-

angular GC and triangular QR angular quadratures. The LDFE-SQ and QDFE-SQ

angular quadratures produce negative error peaking (-3.5E-1 and -2.5E-1, respec-

tively) that is similar to triangular GC and triangular QR. Table 6.2 summarizes the

above results.
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Figure 6.9: Scalar flux error as a function of position for the spherical source problem
using triangular GC (top left), triangular QR (top right), LDFE-SQ (bottom left),
and QDFE-SQ (bottom right) with ≈105 directions per octant. Color scales are
identical.
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Table 6.2: Summary of the results for the spherical source problem using triangular
GC, triangular QR, LDFE-SQ, and QDFE-SQ with ≈105 directions per octant.

Parameter GC QR LDFE-SQ QDFE-SQ
Direction count 105 105 108 108
Minimum error -2.4E-1 -3.5E-1 -3.5E-1 -2.5E-1
Maximum error 2.3E-1 3.1E-1 1.8E-1 1.9E-1
RMS error 7.2E-2 9.7E-2 7.3E-2 6.7E-2

Fig. 6.10 plots the scalar flux error as a function of position using triangular GC,

LDFE-ST, LDFE-SQ, QDFE-SQ, and DAMR with ≈1000 directions per octant. The

1024-point per octant LDFE-ST angular quadrature produces the most prominent

ray effects including the most negative (-5.3E-2) and positive (6.3E-2) error peaking,

and the highest RMS error (1.2E-2). This is true despite the fact that the LDFE-ST

angular quadrature has a slightly larger number of directions. The location of the

most positive error peaks once again center around the hexagonal rings of directions

that form. Table 6.3 summarizes the above results.

Table 6.3: Summary of the results for the spherical source problem using triangular
GC, LDFE-ST, LDFE-SQ, QDFE-SQ, and DAMR with ≈1000 directions per octant.

Parameter GC LDFE-ST LDFE-SQ QDFE-SQ DAMR
Direction count 990 1024 972 972 1024
Minimum error -3.6E-2 -5.3E-2 -3.5E-2 -3.7E-2 -3.8E-2
Maximum error 2.8E-2 6.3E-2 3.8E-2 3.5E-2 4.5E-2
RMS error 8.0E-3 1.2E-2 1.0E-2 9.7E-3 1.1E-2

Fig. 6.11 plots the RMS error as a function of angular mesh length. The re-

sults show the RMS error reduces by 2nd-order as a function of h for all angular

quadratures except LS.
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Figure 6.10: Scalar flux error as a function of position for the spherical source problem
using triangular GC (top left), LDFE-ST (top right), LDFE-SQ (center left), QDFE-
SQ (center right), and DAMR (bottom) with ≈1000 directions per octant. Color
scales are indentical.
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Figure 6.11: RMS error as a function of angular mesh length h for LS, triangular
GC, triangular QR, LDFE-ST, LDFE-SQ, QDFE-SQ and DAMR.

6.1.5 Kobayashi Problem

The Kobayashi problem [25] demonstrates the ability of the LDFE-SQ and QDFE-

SQ angular quadratures to accurately form the scalar flux for a complex radiation

transport problem. The particular Kobayashi problem is a rectangular block made

of pure-absorber material (Σa,1 = 1.0 cm−1) containing a duct (Σa,2 = 10−4 cm−1)

with sharp, discontinuous bends as shown in Fig. 6.12. The void duct inlet contains

a uniformly-distributed isotropic source (q = 1.0 neutron/cm3s · ster and Σa,3 =

1.0 cm−1). The Kobayashi problem used a ray-tracing method where the scalar flux
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at a spatial point ~r outside of the source is defined as

φ (~r) =
q

Σa,3

M∑
m=1

wmexp (−Σa,1`m,1 − Σa,2`m,2) (1− exp (−Σa,3`m,3)) , (6.3)

where M is the total number of quadrature directions, wm is the weight of quadrature

direction m, `m,1 is the path length along direction m starting from spatial point

~r through the rectangular block made of pure-absorber material, `m,2 is the path

length along direction m starting from spatial point ~r through the duct, and `m,3 is

the path length along direction m starting from spatial point ~r through the source at

the duct inlet. The QOI is the scalar flux near the duct outlet, specifically at (35 cm,

95 cm, 35 cm). The LDFE-SQ and QDFE-SQ angular quadratures were tested up to

161,376 and 146,016 directions over all octants, respectively. The published reference

solution [25] was used to calculate the scalar flux errors.
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Figure 6.12: Problem setup for Kobayashi problem with pure-absorber shielding
(blue), uniformly-distributed isotropic source (red) and duct (green).
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We note that other versions of the Kobayashi benchmark problem include scat-

tering. In this research, we chose the pure-absorber version because the addition of

scattering tends to smooth the angular variation of the angular flux, thereby making

it easier for angular quadratures to integrate. Other pure-absorber problems could

have been chosen for this study, and we recognize the duct does not play a large

role in the solution when there is no scattering. We chose the Kobayashi benchmark

problem because it is well-known, and has a well-vetted published reference solution.

6.1.5.1 Uniform Refinement

Fig. 6.13 plots scalar flux error as a function of h, which shows the order of

convergence has decreased for all DFEM angular quadratures compared to the simple

one-cell problem from Section 6.1.4. The computational results show LS angular

quadrature produces scalar flux error that oscillates with refinement, and remains

above 100% until S24 (greatest number of directions with strictly positive weights).

The remaining angular quadratures (i.e., triangular GC, triangular QR, LDFE-ST,

LDFE-SQ and QDFE-SQ) all produce scalar flux errors that decrease by ≈2nd-order.

6.1.5.2 Local Refinement

As discussed in Section 3.3, LDFE-SQ and QDFE-SQ angular quadratures sup-

port local refinement by recursively refining only the angular regions requiring addi-

tional resolution. For the Kobayashi benchmark problem, only the angular regions

within the cone-of-angle between the source at the duct inlet and the spatial point

of interest at the duct outlet (35 cm, 95 cm, 35 cm) contribute to the QOI. We can

reduce memory and run-time requirements without losing accuracy by refining only

the angular regions within the cone-of-angle. Fig. 6.14 illustrates the local refinement

process beginning with a uniformly-refined LDFE-SQ angular quadrature followed by

several local refinement steps, which recursively refine the angular regions contained
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Figure 6.13: Scalar flux error at the duct outlet (35 cm, 95 cm, 35 cm) for the
Kobayashi problem using uniform LS, triangular GC, triangular QR, LDFE-ST,
LDFE-SQ and QDFE-SQ.

within the cone-of-angle. Fig. 6.15 plots scalar flux error as a function of h using

locally-refined LDFE-SQ angular quadrature, which shows the order of convergence

increases from ≈2nd-order using uniform refinement to ≈4th-order using local re-

finement. The difference in scalar flux error between the uniform and locally-refined

LDFE-SQ angular quadratures increases with refinement. For example, the uniform

LDFE-SQ angular quadrature with h ≈2E-2 produces a relative error of ≈2E-1,

whereas the locally-refined LDFE-SQ angular quadrature with approximately the

same h produces a relative error of ≈2E-3.
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Figure 6.14: LDFE-SQ sub-square (black lines) and sub-sub-square (red lines) divi-
sions after three local refinements for the Kobayashi problem. Top left figure shows
the initial uniform LDFE-SQ angular quadrature.

6.1.5.3 Artificial Angular Smoothing

In this subsection, we demonstrate the concept of artificial angular smoothing

caused by poor spatial discretization (i.e., false scattering or numerical diffusion).[26,

27] We re-ran the Kobayashi problem using uniform angular quadratures with PWLD

spatial discretization in PDT. Figs. 6.16 and 6.17 plot scalar flux error as a func-

tion of h using 1.0 cm and 0.5 cm spatial mesh lengths, respectively. The reference

solutions were obtained using the triangular GC angular quadrature with 263,168

directions over all octants. The reference solutions represent the angularly resolved

solution for the given spatial discretization including its artificial angular smoothing.
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Figure 6.15: Scalar flux error at the duct outlet (35 cm, 95 cm, 35 cm) for the
Kobayashi problem using locally-refined LDFE-SQ.

The computational results show LS angular quadrature continues to produce scalar

flux error that oscillates with refinement, and remains above 100% until S24. The re-

maining angular quadratures produce scalar flux errors that also continue to decrease

by ≈2nd-order at intermediate refinement. However, at high refinement, triangular

GC, LDFE-ST, LDFE-SQ and QDFE-SQ angular quadratures produce scalar flux

errors that rapidly decrease due to artificial angular smoothing of the angular flux

caused by poor spatial discretization. The degree of angular smoothing increases

with larger spatial mesh lengths, producing angular flux that are easier for angular

quadratures to integrate. This is evident by comparing Figs. 6.16 and 6.17 showing

significant decrease in the magnitude of the change in scalar flux errors (from 12 to 7

decades) as we decrease spatial mesh length from 1.0 cm to 0.5 cm. For example, the
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scalar flux error using S128 GC angular quadrature with 1.0 cm spatial mesh length

is ≈1.0E-7 whereas the scalar flux error using the same angular quadrature with

0.5 cm spatial mesh length is ≈1.0E-4. The performance gap between triangular GC

and the DFEM-based angular quadratures should further decrease with increasing

spatial resolution, since triangular GC relies on having smooth angular flux solution

for accuracy. The scalar flux error plot with increasing spatial resolution should

approach the semi-analytic solution provided in Fig. 6.13, which contains no spatial

discretization error.
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Figure 6.16: Scalar flux error at the duct outlet (35 cm, 95 cm, 35 cm) for the
Kobayashi problem using 1.0 cm spatial cells with uniform LS, triangular GC, tri-
angular QR, LDFE-ST, LDFE-SQ and QDFE-SQ.
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Figure 6.17: Scalar flux error at the duct outlet (35 cm, 95 cm, 35 cm) for the
Kobayashi problem using 0.5 cm spatial cells with uniform LS, triangular GC, tri-
angular QR, LDFE-ST, LDFE-SQ and QDFE-SQ.

6.1.6 IM-1 Problem

The Impurity-Model-1 (IM-1) problem from the Texas A&M Center for Exascale

Radiation Transport demonstrates the ability of the LDFE-SQ and QDFE-SQ an-

gular quadratures to accurately form the scalar flux for a problem with anisotropic

scattering, while producing particle-conservation errors that are small compared to

other discretization errors affecting the solution. The purpose of the IM-1 experi-

ment is to infer the impurity concentration within a graphite slab, with impurities

modeled as an equivalent boron concentration. The IM-1 experiment is illustrated

in Fig. 6.18, consisting of an AmBe source surrounded by high-density polyethelene

(HDPE). An air channel connects the AmBe source to a block of graphite. A boron
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trifluoride (BF3) detector is placed on the other side of the graphite block to measure

the exiting neutron flux. The absorption rate in the BF3 detector is used to deter-

mine the impurity concentration within the graphite slab. The IM-1 experiment is

modeled using 4th-order (P4) scattering. Previous testing have indicated that the

calculated absorption rate in the BF3 detector does not change significantly using

above 3rd-order (P3) scattering. The majority of the anisotropic scattering is due to

carbon-12 in the graphite and polyethylene as well as hydrogen in the polyethylene.

Fig. 6.19 plots the carbon-12 neutron elastic scattering probability per unit cosine,

in the center-of-mass reference frame, for various neutron energies, which shows scat-

tering is forward-peaked (i.e., much more likely to scatter with a cosine angle close to

one) at some higher neutron energies (>2.0E6 eV) and backward-peaked at others.

The QOIs for this problem are the absorption rate error in the detector, and the

maximum particle-conservation error over all spatial cells as a function of h. The

absorption rate is

R =
Ne∑
i=1

Ns∑
j=1

Σa,iΦijVj , (6.4)

where Ne is the total number of energy groups, Ns is the total number of spatial cells

within the detector, Σa,i is the absorption cross section for energy group i, Φij is the

scalar flux for energy group i in spatial cell j, and Vj is the volume of spatial cell j.

The particle-conservation error for each spatial cell is

ε =
G− L
G

, (6.5)

where G is the gain rate (from external sources, scattering sources, and inflow),

and L is the loss rate (from absorption and outflow). The IM-1 problem uses the

PWLD method for spatial discretization along with a 99-group structure for energy
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discretization (see Section 2.2 for a discussion on energy discretization).

Air	

Wood	

Boron-HDPE	

AmBe	(Source)	

HDPE	

Air-HDPE	

Graphite	

BF3	(Detector)	

Boral	

Al	

Figure 6.18: Problem setup for the IM-1 problem. Materials as marked.

Fig. 6.20 plots the absorption rate error (equivalent to a weighted scalar-flux

error, with lower-energy groups having more weight) in the BF3 detector, and the

maximum particle-conservation error over all spatial cells as a function of h. Due to

the large computational resources required to run this problem, we could not perform

a high-direction angular quadrature run to obtain the reference solution. Instead,

the reference solution was found by fitting

Rref −Rh = ChP , (6.6)

where Rref is the reference absorption rate, Rh is the absorption rate for a given h,
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Figure 6.19: Carbon-12 neutron elastic scattering probability per unit cosine, in the
center-of-mass reference frame, for various neutron energies.

C is a constant, and P is the error convergence rate. The results show absorption

rate error decreases by ≈2.5-order for all DFEM-based angular quadratures, and the

maximum particle-conservation error decreases by ≈4th-order as a function of h. We

note that the particle-conservation error is several orders of magnitude lower than

the absorption rate error for all h.

6.1.7 Criticality Problem

This subsection demonstrates the ability of the LDFE-SQ and QDFE-SQ angular

quadratures to accurately calculate the eigenvalue (keff) of a simple criticality prob-

lem, while producing particle-conservation errors that are small compared to other

discretization errors affecting the solution. The criticality problem at hand is a two-

dimensional square with 12 cm sides surrounded by vacuum. The square is composed
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Figure 6.20: QOI (absorption rate) error and maximum particle-conservation error
as a function of angular mesh length.

of uranium (U-235 and U-238 composite) and modeled using a 33-group structure

for energy discretization (see Section 2.2 for a discussion on energy discretization)

with third-order (P3) scattering. The problem was run in PDT using the PWLD

method for spatial discretization.

The computational results show the DFEM angular quadratures (i.e., LDFE-

ST, LDFE-SQ and QDFE-SQ) produce small particle-conservation errors (≈1E-8

to 1E-9) for this particular problem even at low direction counts. Fig. 6.21 plots

k-eff error as a function of h using triangular GC, LDFE-ST, LDFE-SQ and QDFE-
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SQ angular quadratures. The reference solution was obtained using an 8256-point

per quadrant triangular GC angular quadrature. The LDFE-ST, LDFE-SQ and

QDFE-SQ angular quadratures were tested up to 4096, 3888 and 5292 directions

per quadrant, respectively. The computational results show the DFEM angular

quadratures rapidly converge to the reference solution before plateauing at the k-eff

error tolerance of 1E-6. The triangular GC angular quadrature converges to the

reference solution by 2nd-order.
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Figure 6.21: K-eff error as a function of angular mesh length using triangular GC,
LDFE-ST, LDFE-SQ and QDFE-SQ.
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6.2 Mapping Performance

We demonstrate the ability of the new mapping and fix-up algorithms to pass

increasing-degree SH functions, and the angular flux solution for a difficult radia-

tion transport problem between differently-refined LDFE-SQ and QDFE-SQ angu-

lar quadratures. As discussed in Section 5, an “optimal” mapping algorithm should

preserve both the shape and the angular moments of interest from the incoming

solution.

6.2.1 Spherical Harmonics Mapping

For certain radiation transport problems of interest, the angular flux solution

is smooth, and thus can be well-approximated by SH expansions. However, for

other problems of interest, the angular flux solution may be discontinuous or nearly

discontinuous in angle. Therefore, it is important to demonstrate the new mapping

and fix-up algorithms can accurately pass both increasing-degree SH functions and

discontinuous functions in angle between differently-refined LDFE-SQ and QDFE-

SQ angular quadratures. As discussed in Section 5, we are interested in preserving

the 0th and 1st angular moments for LDFE-SQ mapping, and the 0th through 2nd

angular moments for QDFE-SQ mapping. The fix-up algorithm is applied when the

mapped solution does not satisfy prescribed limits, which are set as the analytic

minimum and maximum for the given angular-flux function. For LDFE-SQ coarse-

to-fine (resp., fine-to-coarse) mapping, in this subsection we pass SH functions over

the first octant from a 192-point per octant to a 768-point per octant (resp., a

3072-point per octant to a 768-point per octant) LDFE-SQ angular quadrature. For

QDFE-SQ coarse-to-fine (resp., fine-to-coarse) mapping, we pass SH functions from

a 243-point per octant to a 2187-point per octant (resp., a 19,683-point per octant

to a 2187-point per octant) QDFE-SQ angular quadrature. Figs. 6.22 to 6.33 plot
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the LDFE-SQ and QDFE-SQ mapped results over the azimuthal (γ) and polar (θ)

angular domains in the first octant. The meshed surface represents the analytic

solution, and the color of each mapped solution point represents its relative error

compared to the analytic solution. Tables 6.4 to 6.6 summarize the LDFE-SQ and

QDFE-SQ mapped results.

6.2.1.1 Linear Spherical Harmonics Function

Consider the following linear SH function:

f
(
~Ω
)

= 1 + µ+ η + ξ . (6.7)

Figs. 6.22 and 6.23 show the LDFE-SQ coarse-to-fine and fine-to-coarse mapped so-

lutions, respectively. The results show both coarse-to-fine and fine-to-coarse LDFE-

SQ mapping preserves the 0th and 1st angular moments to machine precision (MP)

defined as ≤1E-12 relative error. The relative error in the coarse-to-fine mapped

solution ranges from -4.2E-3 to +4.6E-3, and does not require fix-up. The relative

error in the fine-to-coarse mapped solution ranges from -9.2E-2 to +9.3E-2, and

requires fix-up. The fix-up algorithm produces a mapped solution which satisfies

the prescribed limits, and preserves the 0th angular moment to MP, but introduces

≈1.0E-9 relative error into the 1st angular moment preservation.

Figs. 6.24 and 6.25 show the QDFE-SQ coarse-to-fine and fine-to-coarse mapped

solutions, respectively. The results show both coarse-to-fine and fine-to-coarse QDFE-

SQ mapping preserves the 0th through 2nd angular moments to MP. The relative

error in the coarse-to-fine mapped solution ranges from -8.2E-3 to +1.4E-2, and

requires fix-up. The fix-up algorithm produces a mapped solution which satisfies

the prescribed limits, and preserves the 0th angular moment to MP, but introduces

≈1.0E-8 and ≈1.0E-7 relative errors into the 1st and 2nd angular moment preserva-
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Figure 6.22: LDFE-SQ coarse-to-fine mapping for f(~Ω) = 1 + µ+ η + ξ from a 192-
point to a 768-point per octant LDFE-SQ angular quadrature without fix-up (not
required).

tions, respectively. The relative error in the fine-to-coarse mapped solution ranges

from -2.6E-3 to +3.5E-3, and also requires fix-up. The fix-up algorithm produces a

mapped solution which satisfies the prescribed limits, and preserves the 0th angular

moment to MP, but introduces ≈1.0E-8 and ≈1.0E-7 relative errors into the 1st

and 2nd angular moment preservations, respectively. We note that simple interpo-

lation of the QDFE basis functions for mapping linear SH functions should produce

mapped solutions that have no error relative to the analytic solution, since the linear

SH function lives in the basis space for both the coarse and fine QDFE-SQ angu-

lar quadratures. The mapped solution should also exactly preserve the 0th and 1st

angular moments, which only require the integration of up to 2nd-degree SH func-

tions (shown to be exact in Section 6.1.1). Errors in the mapped solution relative to

the analytic solution are introduced by the requirement of the QDFE-SQ mapping

to exactly preserve the 2nd angular moments, which requires integration of up to
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Figure 6.23: LDFE-SQ fine-to-coarse mapping for f(~Ω) = 1 + µ + η + ξ from a
3072-point to a 768-point per octant LDFE-SQ angular quadrature without (top)
and with (bottom) fix-up.

3rd-degree SH functions.

6.2.1.2 Fifth-Degree Spherical Harmonics Function

Consider the following 5th-degree SH function:

f
(
~Ω
)

= 1 + µ5 + η5 + ξ5 . (6.8)
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Figure 6.24: QDFE-SQ coarse-to-fine mapping for f(~Ω) = 1 + µ + η + ξ from a
243-point to a 2187-point per octant QDFE-SQ angular quadrature without (top)
and with (bottom) fix-up.

Figs. 6.26 and 6.27 show the LDFE-SQ coarse-to-fine and fine-to-coarse mapped solu-

tions, respectively. The results show both coarse-to-fine and fine-to-coarse LDFE-SQ

mapping preserves the 0th and 1st angular moments to MP. The relative error in the

coarse-to-fine mapped solution ranges from -1.2E-2 to +9.8E-3, and requires fix-up.
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Figure 6.25: QDFE-SQ fine-to-coarse mapping for f(~Ω) = 1 + µ + η + ξ from a
19,683-point to a 2187-point per octant QDFE-SQ angular quadrature without (top)
and with (bottom) fix-up.

The fix-up algorithm produces a mapped solution which satisfies the prescribed lim-

its, and preserves the 0th angular moment to MP, but introduces ≈1.0E-6 relative

error into the 1st angular moment preservation. The relative error in the fine-to-

coarse mapped solution ranges from -2.9E-1 to +3.0E-1, and requires fix-up. The
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majority of the error is attributed to over- and under-shoots near the octant bound-

aries. The fix-up algorithm produces a mapped solution which satisfies the prescribed

limits, and preserves the 0th angular moment to MP, but introduces ≈1.0E-7 relative

error into the 1st angular moment preservation.
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Figure 6.26: LDFE-SQ coarse-to-fine mapping for f(~Ω) = 1 + µ5 + η5 + ξ5 from a
192-point to a 768-point per octant LDFE-SQ angular quadrature without (top) and
with (bottom) fix-up.

98



0
0.5

1
1.5

0
0.5

1
1.5
1

1.5

2

2.5

3

 

ae
 

f(1
)

R
el

at
iv

e 
Er

ro
r

−0.2

−0.1

0

0.1

0.2

0
0.5

1
1.5

0
0.5

1
1.5
1

1.5

2

2.5

3

 

ae
 

f(1
)

R
el

at
iv

e 
Er

ro
r

−0.2

−0.1

0

0.1

0.2

Figure 6.27: LDFE-SQ fine-to-coarse mapping for f(~Ω) = 1 + µ5 + η5 + ξ5 from a
3072-point to a 768-point per octant LDFE-SQ angular quadrature without (top)
and with (bottom) fix-up.

Figs. 6.28 and 6.29 show the QDFE-SQ coarse-to-fine and fine-to-coarse mapped

solutions, respectively. The results show both coarse-to-fine and fine-to-coarse QDFE-

SQ mapping preserves the 0th through 2nd angular moments to MP. The relative

error in the coarse-to-fine mapped solution ranges from -3.2E-2 to +1.8E-2, and

requires fix-up. The fix-up algorithm produces a mapped solution which satisfies

99



the prescribed limits, and preserves the 0th angular moment to MP, but introduces

≈1.0E-7 relative error into both the 1st and 2nd angular moment preservations. The

relative error in the fine-to-coarse mapped solution ranges from -5.7E-3 to +6.7E-3,

and requires fix-up. The fix-up algorithm produces a mapped solution which satisfies

the prescribed limits, and preserves the 0th angular moment to MP, but introduces

≈1.0E-9 and ≈1.0E-8 relative errors into the 1st and 2nd angular moment preserva-

tions, respectively.

6.2.1.3 Discontinuous Function

Consider the following discontinuous function:

f
(
~Ω
)

=

 1, ∆γ and ∆θ ∈ (π/8, 3π/8)

0, Elsewhere
. (6.9)

Figs. 6.26 and 6.27 show the LDFE-SQ coarse-to-fine and fine-to-coarse mapped solu-

tions, respectively. The results show both coarse-to-fine and fine-to-coarse LDFE-SQ

mapping preserves the 0th and 1st angular moments to MP. The absolute error in the

coarse-to-fine mapped solution ranges from -1.0E0 to +1.0E0, and requires fix-up.

The majority of the error is attributed to over- and under-shoots near the solu-

tion discontinuity. The fix-up algorithm produces a mapped solution which satisfies

the prescribed limits, and preserves the 0th angular moment to MP, but introduces

≈1.0E-3 relative error into the 1st angular moment preservation. The absolute error

in the fine-to-coarse mapped solution ranges from -8.9E-1 to +9.6E-1, and also re-

quires fix-up. The majority of the error is again attributed to over- and under-shoots

near the solution discontinuity. The fix-up algorithm produces a mapped solution

which satisfies the prescribed limits, and preserves the 0th angular moment to MP,

but introduces ≈1.0E-4 relative error into the 1st angular moment preservation.
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Figure 6.28: QDFE-SQ coarse-to-fine mapping for f(~Ω) = 1 + µ5 + η5 + ξ5 from a
243-point to a 2187-point per octant QDFE-SQ angular quadrature without (top)
and with (bottom) fix-up.

Figs. 6.32 and 6.33 show the QDFE-SQ coarse-to-fine and fine-to-coarse mapped

solutions, respectively. The results show both coarse-to-fine and fine-to-coarse QDFE-

SQ mapping preserves the 0th through 2nd angular moments to MP. The absolute

error in the coarse-to-fine mapped solution ranges from -1.0E0 to +1.0E0, and re-

quires fix-up. The majority of the error is attributed to over- and under-shoots near
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Figure 6.29: QDFE-SQ fine-to-coarse mapping for f(~Ω) = 1 + µ5 + η5 + ξ5 from a
19,683-point to a 2187-point per octant QDFE-SQ angular quadrature without (top)
and with (bottom) fix-up.

the solution discontinuity. The fix-up algorithm produces a mapped solution which

satisfies the prescribed limits, and preserves the 0th angular moment to MP, but

introduces ≈1.0E-3 relative error into both the 1st and 2nd angular moment preser-
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Figure 6.30: LDFE-SQ coarse-to-fine mapping for f(~Ω) = 1, ∆γ,∆θ ∈ (π/8, 3π/8),
, 0 elsewhere from a 192-point to a 768-point per octant LDFE-SQ angular quadra-
ture without (top) and with (bottom) fix-up.

vations. The absolute error in the fine-to-coarse mapped solution ranges from -5.3E-1

to +5.7E-1, and requires fix-up. The majority of the error is again attributed to over

and under-shoots near the solution discontinuity. The fix-up algorithm produces a

mapped solution which satisfies the prescribed limits, and preserves the 0th angular

moment to MP, but introduces ≈1.0E-4 relative error into both the 1st and 2nd
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Figure 6.31: LDFE-SQ fine-to-coarse mapping for f(~Ω) = 1, ∆γ,∆θ ∈ (π/8, 3π/8),
, 0 elsewhere from a 3072-point to a 768-point per octant LDFE-SQ angular quadra-
ture without (top) and with (bottom) fix-up.

angular moment preservations.

6.2.2 Three-Region Problem

The three-region problem demonstrates the ability of the new mapping and

fix-up algorithms to accurately pass the angular flux solution between spatial re-
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Figure 6.32: QDFE-SQ coarse-to-fine mapping for f(~Ω) = 1, ∆γ,∆θ ∈ (π/8, 3π/8),
, 0 elsewhere from a 243-point to a 2187-point per octant QDFE-SQ angular quadra-
ture without (top) and with (bottom) fix-up.

gions with differently-refined DFEM-based angular quadratures (i.e., quadrature

regions) for a difficult radiation transport problem. The three-region problem is

a 10 cm × 1 cm × 100 cm rectangular box made of pure-absorber material (Σa =

0.3 cm−1) surrounded by vacuum. The rectangular box is divided into three quadra-

ture regions along the x-dimension. The left, center and right quadrature regions
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Figure 6.33: QDFE-SQ fine-to-coarse mapping for f(~Ω) = 1, ∆γ,∆θ ∈ (π/8, 3π/8),
, 0 elsewhere from a 19,683-point to a 2187-point per octant QDFE-SQ angular
quadrature without (top) and with (bottom) fix-up.

span x ∈ (0 cm, 1 cm), x ∈ (1 cm, 9 cm) and x ∈ (9 cm, 10 cm), respectively. A

uniformly-distributed isotropic source (q = 100.0 neutron/cm3s · ster) is placed into

the left quadrature region. The PWLD method is used for spatial discretization.

The three-region problem is a difficult mapping problem because the thin profile in

the y-dimension and the tall profile in the z-dimension causes the incident angular
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flux solution at the right quadrature region interface (x = 9 cm) to be very peaked

around µ = 1. As shown in Section 6.2.1, the mapping algorithm has difficulty map-

ping near solution discontinuities (or near discontinuities). The QOIs are the mapped

solution errors, and the moment preservation errors across the right quadrature re-

gion interface. The reference solution is obtained by setting all three quadrature

regions to the same refinement, which eliminates mapping errors. We compare the

results using (1) the new mapping algorithm without fix-up, (2) the new mapping

algorithm with fix-up, and (3) the previous mapping algorithm suggested by Jar-

rell and Adams presented in Section 3.2.4. We run the three-region problem using

both uniform and locally-refined angular quadratures. The locally-refined angular

quadratures are obtained using the adaptive algorithm presented in Section 5.3.

6.2.2.1 Uniform Mapping

For uniform mapping, we increase the LDFE-SQ angular quadrature refinement

going from the left to the right quadrature regions. Table 6.7 shows the LDFE-SQ

direction count per octant in each quadrature region with refinement. Fig. 6.34 shows

the reference angular flux solution at the right quadrature region interface, generated

by running with the same highly-refined (98,304 directions per octant) LDFE-SQ

angular quadrature in each quadrature region to avoid introducing mapping errors.

We show only the angular flux solution for the positive µ directions, since particles

travel only from left to right across the right quadrature region interface. We also

note that we are showing only the angular flux solution for the spatial node at

(9 cm, 0 cm, 0 cm) since the other three spatial nodes at the right quadrature region

interface are simply reflections of each other.

Fig. 6.35 shows the mapped angular flux solution across the right quadrature

region interface using the previous Jarrell and Adams mapping algorithm. The com-
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Figure 6.34: Reference angular flux solution at the right quadrature region interface
for the three-region problem. The position and color of the points indicate quadrature
direction and angular flux solution magnitude, respectively. Results are shown only
at (9 cm, 0 cm, 0 cm) since the results in the other three spatial nodes at this interface
are simply reflections of each other.

putational results show the shape of the incoming angular flux solution is not well-

preserved as evident by comparison with the reference solution in Fig. 6.34. The

minimum and maximum angular flux values also exceed the empirical limits estab-

lished by the reference solution, including negativities. The magnitude by which

the empirical limits are exceeded increases with refinement. We also note that, as

discussed in Section 3.2.4, the Jarrell and Adams mapping algorithm preserves only

the normal partial current (i.e., µ-component of the 1st angular moments for this

problem).

Fig. 6.36 shows the mapped angular flux solution using the new mapping algo-

rithm without fix-up. The computational results show the shape of the incoming

angular flux solution is well-preserved. Additionally, the 0th and 1st angular mo-

ments are preserved to MP. However, minor negativities are present in the mapped

angular flux solution near µ = 1, which decrease in magnitude with refinement.
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Figure 6.35: Mapped angular flux solution across the right quadrature region inter-
face using the previous Jarrell and Adam’s mapping algorithm. Top left, top right,
bottom left, and bottom right show the results for runs 1 through 4, respectively,
described in Table 6.7. Results are shown only at (9 cm, 0 cm, 0 cm) since the results
in the other three spatial nodes at this interface are simply reflections of each other.

Fig. 6.37 shows the mapped angular flux solution using the new mapping algo-

rithm with fix-up. The prescribed limits for this problem were obtained empircally

using the reference solution. The results show fix-up preserves the shape of the in-

coming angular flux solution, satisfies the prescribed limits (which also eliminates

negativities), and preserves the 0th angular moment to MP. However, minor errors

are introduced into the 1st angular moment preservation, which decreases with re-

finement.
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Figure 6.36: Mapped angular flux solution across the right quadrature region inter-
face using the new mapping algorithm without fix-up. Top left, top right, bottom
left, and bottom right show the results for runs 1 through 4, respectively, described
in Table 6.7. Results are shown only at (9 cm, 0 cm, 0 cm) since the results in the
other three spatial nodes at this interface are simply reflections of each other.

Tables 6.8 and 6.9 provides the angular moment preservation errors, and the

angular flux extrema using the new mapping algorithm without and with fix-up,

respectively. Fig. 6.38 plots the RMS error of the mapped angular flux solution

across the right quadrature region interface as a function of the average angular

mesh length hcell-ave defined as

hcell-ave =
1√∑Ncells

i=1 Ndirs,i

Ncells

, (6.10)
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Figure 6.37: Mapped angular flux solution across the right quadrature region inter-
face using the new mapping algorithm with fix-up. Top left, top right, bottom left,
and bottom right show the results for runs 1 through 4, respectively, described in
Table 6.7. Results are shown only at (9 cm, 0 cm, 0 cm) since the results in the
other three spatial nodes at this interface are simply reflections of each other.

where Ncells is the total number of spatial cells, and Ndirs,i is the total number of

directions in spatial cell i. Fig. 6.38 shows the new mapping algorithm (with or

without fix-up) reduces the RMS error by 2nd-order, whereas the previous Jarrell

and Adams mapping algorithm shows less than 1st-order reduction. Fig. 6.39 plots

the maximum absolute error in the mapped angular flux solution across the right

quadrature region interface as a function of hcell-ave, which shows the new mapping

algorithm (with or without fix-up) reduces the maximum absolute error by 2nd-order,
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whereas the previous Jarrell and Adams mapping algorithm shows an increase with

refinement.
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Figure 6.38: RMS error of the mapped angular flux solution across the right quadra-
ture region interface using the new mapping with and without fix-up, and the previ-
ous Jarrell and Adam’s mapping.

6.2.2.2 Locally-Refined Mapping

For locally-refined mapping, we start with the coarsest (12 directions per oc-

tant) LDFE-SQ angular quadrature in each quadrature region. The adaptive algo-

rithm presented in Section 4.4 is then applied to generate the locally-refined angular

quadrature for each quadrature region. For this problem, we set εpw = 0, and vary
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Figure 6.39: Maximum error of the mapped angular flux solution across the right
quadrature region interface using the new mapping with and without fix-up, and the
previous Jarrell and Adam’s mapping.

εoc between 0.01 and 0.3 to avoid over-refining SQs with angular flux solutions near

zero. Figs. 6.40 to 6.42 plot the reference angular flux solution at the left and right

quadrature region interfaces (x = 1 cm and x = 9 cm), and at the right boundary

of the problem domain (x = 10 cm). The reference solutions were generated by

using the same highly-refined LDFE-SQ angular quadrature (98,304 directions per

octant) in each quadrature region to eliminate mapping errors. We note that we are

showing only the angular flux solution for the spatial nodes at (1 cm, 0 cm, 0 cm),

(9 cm, 0 cm, 0 cm) and (10 cm, 0 cm, 0 cm) since the angular flux solution for the

other three spatial nodes at each interface are simply reflections of each other. We

113



also show only the angular flux solution for the positive µ directions, since particles

travel only from left to right across each of the interfaces.
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Figure 6.40: Reference angular flux solution at the left quadrature region interface for
the three-region problem. The position and color of the points indicate quadrature
direction and angular flux solution magnitude, respectively. Results are shown only
at (1 cm, 0 cm, 0 cm) since the results in the other three spatial nodes at this interface
are simply reflections of each other.

Figs. 6.43 to 6.45 plot the quadrature direction distribution for the positive µ

octants for each quadrature region as we vary εoc, and Table 6.10 summarizes the

direction counts. Figs. 6.40 shows the reference angular flux solution at the left

quadrature region interface is relatively smooth. Therefore, the adaptive algorithm

does not require the angular quadrature in the left quadrature region to undergo

significant local refinement (except for εoc = 0.01 where the tolerance is sufficiently

low) as shown in Fig. 6.43. Figs. 6.41 and 6.42 show both the reference angular

flux solution at the right quadrature region interface and the right boundary of

the problem domain are nearly discontinuous near µ = 1. Therefore, the adaptive
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Figure 6.41: Reference angular flux solution at the right quadrature region interface
for the three-region problem. The position and color of the points indicate quadrature
direction and angular flux solution magnitude, respectively. Results are shown only
at (9 cm, 0 cm, 0 cm) since the results in the other three spatial nodes at this interface
are simply reflections of each other.

algorithm requires the SQs near µ = 1 for both the angular quadratures in the

center and right quadrature regions to undergo significant local refinement as shown

in Figs. 6.44 and 6.45.

Figs. 6.46 to 6.49 show the incoming and mapped angular flux solutions across the

left and right quadrature region interfaces, respectively, as we vary εoc. The mapped

angular flux solutions are generated by using the new mapping algorithm without

fix-up. We note that the mapped angular flux solution across each quadrature region

interface preserves the 0th and 1st angular moments to machine precision. However,

over- and under-shoots (including negativites) appear in the mapped solution across

the left quadrature region interface near µ = 0 as shown in Figs. 6.46 and 6.47 .

Fig. 6.50 plots the cell-average scalar flux as a function of angular mesh length for

the spatial cell immediately after mapping across the right quadrature region inter-
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Figure 6.42: Reference angular flux solution at the right problem boundary for the
three-region problem. The position and color of the points indicate quadrature di-
rection and angular flux solution magnitude, respectively. Results are shown only at
(10 cm, 0 cm, 0 cm) since the results in the other three spatial nodes at this interface
are simply reflections of each other.

face. We note that the uniform angular quadrature results use the typical definition

of h (Eqn. 6.1), whereas the locally-refined results use hcell-ave (Eqn. 6.10). Fig. 6.50

does not show improvement in scalar flux error convergence using the adaptive algo-

rithm provided in Section 4.4. This can be understood by the following argument.

Table 6.10 shows the number of directions in the left quadrature region is over a mag-

nitude lower than that of the center quadrature region. Therefore, mapping across

the left quadrature region interface requires recursively applying the mapping algo-

rithm in order to map across multiple refinement levels for SQs near µ = 1 as shown

in Figs. 6.46 and 6.47. This introduces mapping errors that are propagated to the

right quadrature region interface. Even though the mapping errors are minor at the

left quadrature region interface, they become more important at the right quadra-

ture region interface where the majority of the angular flux occurs near µ = 1. This
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Figure 6.43: Quadrature direction distribution for the positive µ octants in the left
quadrature region for εoc = 0.3 (top left), εoc = 0.2 (top right), εoc = 0.1 (bottom
left) and εoc = 0.01 (bottom right).

results in an angular flux distribution which produces an incorrect scalar flux at the

right quadrature region interface. We note that as the adaptive algorithm stands,

there is no way for the left quadrature region to know that the right quadrature re-

gion requires the angular flux solution at µ = 1 to be calculated with such precision.

One possible way to circumvent this problem is to use “goal-oriented” testing that

uses adjoint calculations to estimate where errors may arise in the solution, and thus

where local angular refinement should occur. [28]
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Figure 6.44: Quadrature direction distribution for the positive µ octants in the center
quadrature region for εoc = 0.3 (top left), εoc = 0.2 (top right), εoc = 0.1 (bottom
left) and εoc = 0.01 (bottom right).
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Table 6.7: Number of directions per octant in each quadrature region for the uniform
three-cell problem.

Run Left Center Right
1 96 384 1536
2 384 1536 6144
3 1536 6144 24576
4 6144 24576 98304

Table 6.8: Moment preservation error and mapped angular flux solution range for
the uniform three-cell problem using the new mapping algorithm without fix-up.

Run ε0 εµ εη εξ Ψmin Ψmax

1 MP MP MP MP -5.77E-2[a] 2.98E-1
2 MP MP MP MP -3.81E-2[a] 5.09E-1
3 MP MP MP MP -8.65E-3[a] 5.92E-1
4 MP MP MP MP -8.18E-4[a] 6.12E-1[a]

[a] Does not satisfy the prescribed limits

Table 6.9: Moment preservation error and mapped angular flux solution range for
the uniform three-cell problem using the new mapping algorithm with fix-up.

Run ε0 εµ εη εξ Ψmin Ψmax

1 MP 3.97E-3 9.70E-3 1.66E-3 0.00E0 2.98E-1
2 MP 3.40E-4 4.61E-3 2.84E-4 0.00E0 5.09E-1
3 MP 5.43E-6 1.64E-4 1.01E-6 0.00E0 5.92E-1
4 MP 1.27E-7 2.02E-5 7.18E-8 0.00E0 6.08E-1

Table 6.10: Total number of directions in the positive µ octants in each quadrature
region for the locally-refined three-cell problem.

Run εpw εoc Left Center Right
1 0.00 0.30 240 3048 2952
2 0.00 0.20 288 4020 3864
3 0.00 0.10 480 8508 8052
4 0.00 0.01 4848 25320 22824
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Figure 6.45: Quadrature direction distribution for the positive µ octants in the right
quadrature region for εoc = 0.3 (top left), εoc = 0.2 (top right), εoc = 0.1 (bottom
left) and εoc = 0.01 (bottom right).
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Figure 6.46: Incoming (left column) and mapped (right column) angular flux solu-
tions across the left quadrature region interface for εoc = 0.3 (top row) and εoc = 0.2
(bottom row). Results are shown only at (1 cm, 0 cm, 0 cm) since the results in the
other three spatial nodes at this interface are simply reflections of each other.
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Figure 6.47: Incoming (left column) and mapped (right column) angular flux solu-
tions across the left quadrature region interface for εoc = 0.1 (top row) and εoc = 0.01
(bottom row). Results are shown only at (1 cm, 0 cm, 0 cm) since the results in the
other three spatial nodes at this interface are simply reflections of each other.
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Figure 6.48: Incoming (left column) and mapped (right column) angular flux solu-
tions across the right quadrature region interface for εoc = 0.3 (top row) and εoc = 0.2
(bottom row). Results are shown only at (9 cm, 0 cm, 0 cm) since the results in the
other three spatial nodes at this interface are simply reflections of each other.
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Figure 6.49: Incoming (left column) and mapped (right column) angular flux so-
lutions across the right quadrature region interface for εoc = 0.1 (top row) and
εoc = 0.01 (bottom row). Results are shown only at (9 cm, 0 cm, 0 cm) since the
results in the other three spatial nodes at this interface are simply reflections of each
other.
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7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this dissertation, we presented a new family of discrete-ordinates (Sn) angular

quadratures based on discontinuous finite-elements (DFEM) in angle. The angular

domain is divided into cones subtended by spherical quadrilaterals (SQs) on the sur-

face of the unit sphere. Linear and quadratic discontinuous finite element (LDFE

and QDFE) basis functions in the direction cosines are defined over each SQ, pro-

ducing LDFE-SQ and QDFE-SQ angular quadratures, respectively. The directions

and weights are chosen to exactly integrate the underlying basis functions. The new

angular quadratures are an extension of the LDFE-ST angular quadratures devel-

oped by Jarrell and Adams, [2, 3] which define LDFE basis functions in angle over

spherical triangles. The use of SQs, combined with our algorithm for defining SQ

boundaries and the location of the quadrature directions in each SQ, produces more

uniform direction and weight distributions, thereby reducing local integration errors.

The QDFE-SQ angular quadrature demonstrates the use of higher-order DFEM ba-

sis functions within the DFEM-based angular quadrature methodology. The new

angular quadratures are locally refinable, have strictly positive weights that corre-

spond to a geometric tessellation of the unit sphere surface, and can be generated for

large numbers of directions (sets with up to ≈800,000 directions over all octants have

been generated). These properties make the new angular quadratures well-suited for

adaptive Sn algorithms. A potential downside of the new angular quadratures is the

inexact integration of spherical harmonics (SH) functions above linear for LDFE-SQ

or quadratic for QDFE-SQ, which leads to particle-conservation errors for radiation

transport problems with scattering order above 1st-order for LDFE-SQ or 2nd-order
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for QDFE-SQ. However, computational results show that the new angular quadra-

tures integrate high-degree SH functions with 4th-order accuracy (i.e., if the average

SQ diameter decreases by a factor of 2, then the integration error decrease by a

factor of 24 = 16) given uniformly refined quadratures (no local refinement). For

this reason, the particle-conservation errors from using the new angular quadratures

for a radiation transport problem with anisotropic scattering must rapidly diminish

with quadrature refinement, a characteristic observed in our computational results.

In the limited testing to date, maximum cellwise conservation errors are orders of

magnitude lower than the discretization errors in the quantities of interest (such

as absorption rates) in the calculations. This result could be different for different

quantities of interest in different problems, and may be different if locally refined

quadratures are used. Overall, the computational results indicate that the perfor-

mance of the new angular quadratures without local refinement is comparable to or

better than that of traditional angular quadratures. Their performance can be fur-

ther improved by using local refinement, which can significantly reduce the number

of directions required to achieve a given accuracy, as computational results presented

here have demonstrated for some problems.

Previous studies have shown that the effectiveness of DFEM-based angular quadra-

tures in adaptive Sn algorithms was limited by the accuracy of the mapping algo-

rithms required to pass the angular flux solution between spatial regions with differ-

ent angular quadrature refinement. An “optimal” mapping algorithm should preserve

both the shape and the angular moments of interest from the incoming angular flux

solution. We have presented a new mapping algorithm which is nearly ”optimal” for

mapping sufficiently smooth solutions away from octant boundaries (small pointwise

errors are introduced into the mapped solution even when the incoming solution

lives in the underlying DFEM basis space, due to the perservation of the higher
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angular moments). However, the mapped solution may contain over- and under-

shoots (including negativities) when mapping near solution discontinuities or octant

boundaries. To address these instances, we have developed and presented a fix-up

algorithm, which uses multi-objective optimization (MOOP) to ensure the mapped

solution satisfies a set of prescribed limits, and preserves the 0th angular moment to

machine precision (MP). However, the fix-up algorithm introduces minor errors into

the preservation of angular moments above 1st-order for LDFE-SQ or 2nd-order for

QDFE-SQ.

The new angular quadratures, along with the new mapping and fix-up algorithms,

provide the necessary tools for using DFEM-based angular quadratures in adaptive

Sn algorithms. The next section discusses areas of potential future work including:

(1) testing of various adaptive Sn strategies, and their efficient implementation on

massively-parallel machines; (2) generalizing the new angular quadratures to arbi-

trary DFEM basis function order, which may lead to hp-adaptivity in angle; (3)

theorizing the 4th-order error reduction shown by LDFE-SQ angular quadrature for

integrating high-degree SH functions; (4) developing additional angular tessellation

schemes by projecting other platonic solids onto the surface of the unit sphere; (5)

applying the new angular quadratures to radiation transport problems in cylindrical

geometry; (6) determining prescribed limits for the fix-up algorithm based on the

discrete maximum principle applied to the linear Boltzmann transport equation; (7)

improving the computational speed of the fix-up algorithm for use in larger Sn appli-

cations; (8) preserving the normal partial current instead of the 0th angular moment

to MP in the fix-up algorithm; and (9) increasing weight distribution uniformity by

allowing the SQ mesh lines on the surface of the inscribed cube to be skewed.
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7.2 Future Work

7.2.1 Implementation and Testing of Adaptive Sn Algorithms

The goal of this research was to provide the necessary tools for effectively using

DFEM-based angular quadratures within an adaptive Sn algorithm: (1) DFEM-

based angular quadratures with improved properties; and (2) new mapping and

fix-up algorithms for “optimally” passing the angular flux solution between spatial

regions with different angular quadrature refinement. Future work should include

testing of various adaptive Sn algorithms using the tools developed in this research.

Of particular interest is the adaptive Sn algorithm provided by Jarrell and Adams,

[2, 3] which suffered mainly from the lack of an accurate mapping algorithm. The

research presented herein has demonstrated the use of a simplified version of their

adaptive Sn algorithm (ignoring coarsening), which produced desirable results (e.g.,

locally-refining angular regions containing the largest angular flux variations, and

preventing the over-refinement of angular regions with angular flux solution near

zero). However, much more extensive testing is an important next step.

The use of adaptive Sn algorithms may lead to certain spatial regions having

many more quadrature directions than others. If the problem domain is simply

partitioned based on spatial decomposition, then the processors containing spatial

regions with more quadrature directions will require additional computational effort.

This poses a load-balancing issue, which negatively impacts parallel efficiency since

the computational work is not evenly distributed among the processors. Future

work should include the development and testing of a partitioning and/or solution

algorithm that addresses this load-balancing issue.
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7.2.2 hp-Adaptivity in Angle

hp-Adaptivity refers to an adaptive algorithm that can update both the mesh

size, h (i.e., h-adaptivity) and the degree of the underlying basis function, p (i.e., p-

adaptivity). Previous studies have shown that hp-adaptivity can lead to exponential

error convergence, as opposed to converging at a polynomial rate as demonstrated by

h-adaptivity with a constant p.[29] The adaptive Sn algorithm provided by Jarrell and

Adams may be classified as an h-adaptive method since it changes only the angular

partition (i.e., width of some SQs on the surface of the unit sphere). Their adaptive

Sn algorithm could be extended to an hp-adaptive method by adjusting both the

angular partitioning and the order of the underlying DFEM basis functions. Future

work should include: (1) generalization of the new angular quadratures to higher-

order (above quadratic) DFEM basis functions, and (2) development of hp-adaptive

Sn algorithm rules.

7.2.3 Theoretical Study of 4th-Order Convergence

The computational results in this study showed LDFE-SQ angular quadratures

are capable of integrating high-degree (above linear) SH functions with 4th-order

accuracy (i.e., reducing the average SQ width by a factor of 2, reduces the integration

error by a factor of 24 = 16). Jarrell and Adams observed the same rapid convergence

with LDFE-ST angular quadratures. From approximation theory, collocation onto

piecewise linear functions would be expected to produce results that are at most

2nd-order accurate. Therefore, the LDFE-SQ angular quadratures may be classified

as super-convergent. Future work should attempt a theoretical understanding of this

phenomenon.
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7.2.4 Alternative Tessellation Schemes

Both the new (LDFE-SQ and QDFE-SQ) and previous (LDFE-ST) DFEM-based

angular quadratures project platonic solids (i.e., a cube and an octahedron, respec-

tively) onto the surface of the unit sphere. There are five platonic solids: tetahedron

(four faces), cube (six faces), octahedron (eight faces), dodecahedron (12 faces), and

icosahedron (20 faces). Platonic solids share the following characteristics: (1) all

vertices lie on a sphere, (2) angles formed between any two faces are equal, (3) all

faces are polyhedral, (4) all solid angles subtended by each face are equal, and (5)

all vertices are surrounded by the same number of faces.[30] The most interesting of

the three remaining platonic solids is the icosahedron, which most closely resembles

a sphere, thereby possibly producing more uniform direction distributions. In addi-

tion, the 20 triangular faces can be divided into 60 quadrilaterals, each with the same

subtended solid angle. This suggests the possibility of even more uniform quadra-

ture direction and weight distributions than were achieved in the present work, which

could further reduce local integration errors.

7.2.5 Extension to Sn Problems in Cylindrical Geometry

The main difference between cartesian and cylindrical geometry for Sn radiation

transport is the derivative term with respect to the azimuthal angle in cylinders.

Traditionally, the angular derivative term is discretized using a weighted differencing

scheme [1] that assumes quadrature directions lying along constant polar levels (fixed

Ωz), solved in an ordered manner (i.e., from azimuthal angle γ = π to γ = 0). The

new LDFE-SQ and QDFE-SQ (and the previous LDFE-ST) angular quadratures do

not force sets of directions to lie on discrete polar levels, and thus cannot be used in

existing cylindrical-geometry Sn codes. Instead, we suggest two potential methods for

using DFEM-based angular quadratures for Sn radiation transport in cylindrical ge-
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ometry: (1) development of a product angular quadrature using 1D Gauss-Legendre

(GL) quadrature for the polar angular domain and 1D DFEM-based angular quadra-

ture for the azimuthal angular domain; and (2) development of a DFEM-consistent

discretization method for the angular derivative term, which allows the use of the

new LDFE-SQ and QDFE-SQ angular quadratures in cylindrical geometry by sweep-

ing through the angular domain one SQ at a time, from the most inward-directed to

the most outward-directed. This would resemble the familiar cell-by-cell “sweep” in

the spatial domain that is the basis for many Sn iterative sweeps.

The first method discretizes the polar angular domain using 1D GL quadrature,

and the azimuthal angular domain using 1D DFEM-based angular quadrature. For

each discrete polar level, we partition the azimuthal angular domain into a set of

non-overlapping angular bins ∆γi, i = 1 : I. We define 1D DFEM basis functions in

angle bij(γ), j = 1 : J over each ∆γi where J is the number of degrees of freedom.

For example, 1D LDFE basis functions have two degrees of freedom, and are linear

in the directional cosine:

bij (γ) = cj + cµ,jµ , j = 1 : 2, (7.1)

where µ = cos(γ). We note that Stone [4] investigated DFEM-based angular quadra-

tures for 2D Cartesian geometry where the basis functions are linear in both µ =

cos(γ) and η = sin(γ). Cylindrical geometry does not require basis functions that

are linear in both µ and η since by reflective symmetry ψ(γ) = ψ(−γ) (i.e., ψ is

an even function of γ, and thus the sine term is zero). The bij unknowns (i.e., the

c-coefficients in Eqn. 7.1) are determined by requiring bij to be cardinal functions

at J selected quadrature directions. For example, using 1D LDFE basis functions

requires solving the following linear system to determine the c-coefficients for each
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angular bin:  1 µ1

1 µ2


 c1 c2

cµ,1 cµ,2

 =

 1 0

0 1

 . (7.2)

The weight of each quadrature is the integral of its associated basis function over its

angular bin:

wij =

∫
∆γi

dγbij (γ) . (7.3)

The set of J directions and weights forms the 1D DFEM angular quadrature for ∆γi.

The traditional weighted differencing scheme for the angular derivative term can

be used with the GL-DFEM angular quadrature. Alternatively, a DFEM-consistent

discretization scheme for the angular derivative term can be obtained by (1) expand-

ing the angular flux solution in each angular bin using its underlying DFEM basis

functions, and (2) taking up to the N -th (where N is the DFEM basis function order)

azimuthal moment of the linear Boltzmann transport equation (LBE) in cylindrical

geometry over each angular bin. This results in N + 1 moment equations, and N + 3

unknowns for each angular bin. The unknowns in each angular bin are the angular

flux solutions at N + 1 quadrature directions, and the angular flux solutions at the

angular bin edges. The system is closed by recognizing the angular flux solution at

the incoming edge is known from the upstream angular bin (or the starting direction

at γ = π), and the solution at the outgoing edge can be approximated by evaluat-

ing the underlying DFEM basis functions. Therefore, each angular bin requires an

(N + 1)× (N + 1) linear solve to obtain the angular flux solutions at the quadrature

directions.

The second method extends the DFEM-consistent discretization scheme to the

new LDFE-SQ and QDFE-SQ angular quadratures. The new angular quadratures

distribute directions uniformly rather than concentrating them by polar level. In-
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stead of solving the angular flux solution along constant polar levels, we may sweep

through the angular domain one SQ at a time, from the most inward-directed to

the most outward-directed by (1) expanding the angular flux in each SQ using the

underlying DFEM basis functions in angle, and (2) taking up to the N -th (where N

is the DFEM basis function order) moment of the LBE in cylindrical geometry over

each SQ. This results in (N + 1)2 moment equations, and (N + 1)2 + 4 unknowns

for each SQ. The unknowns in each SQ are the angular flux solutions at (N + 1)2

quadrature directions, and the angular flux solutions at the SQ edges. The system is

closed by recognizing the solution at the incoming edge is known from the upstream

SQ, and the solution at the outgoing edges may be found by interpolating the un-

derlying DFEM basis functions. Therefore, each SQ requires an (N + 1)2× (N + 1)2

linear solve to obtain the angular flux solutions at the quadrature directions.

7.2.6 Fix-Up Limits Based on Discrete Maximum Principle

As discussed in Section 5.2, the fix-up algorithm is applied if the mapped solution

does not satisfy a set of prescribed limits. In this dissertation, the prescribed limits

were based on either analytic or empirical solutions. Neither of those methods may be

possible or feasible for real-world applications. Ideally, the prescribed limits would

come from the maximum principle, which states the solution for a given partial

differential equation with set boundary and initial conditions must satisfy certain

bounds. The bounds on the analytic LBE solution on a given spaital cell with a

given source are known and simple. However, spatial discretization schemes violate

these bounds, introducing unphysical extrema. Future work could develop a discrete

version of a maximum principle for spatial discretization schemes of interest in order

to obtain prescribed limits for the fix-up algorithm. We note that the fix-up algorithm

should not try to cancel out other discretization errors, such as those introduced by

137



spatial discretization. For example, if the spatial discretization produces a negative

solution at the quadrature region interface, then the discrete maximum principle that

we envision should be allowed to assign a negative lower bound.

7.2.7 Increase Speed and Accuracy of Fix-Up Algorithm

The fix-up algorithm in this dissertation used the revised Simplex method for

solving the required multi-objective optimization problem (MOOP). As discussed in

Section 5.2, the revised Simplex method was chosen as a proof-of-concept due to

its robustness and simplicity in implementation. As discussed in Appendix B, there

are many other types of linear programs including other variants of the Simplex

method that are designed to increase the speed and accuracy of the Simplex method,

particularly for larger problems. Future work should optimize the speed and accuracy

of the fix-up algorithm by testing different linear programs, particularly if higher-

order (above quadratic) DFEM basis functions are used.

7.2.8 Preservation of Normal Partial Current in Fix-Up Algorithm

As discussed in Section 5.2, the fix-up algorithm imposed an equality constraint

to preserve the 0th angular moment (i.e., scalar flux) of the incoming angular flux

solution. However, the scalar flux has no physical significance when mapping across

a spatial interface. Instead, future work should investigate the preservation of the

normal partial current to MP:

~J =

Nmap∑
m=1

(
~Ωm · ~n

)
wmψm , (7.4)

where ~n is the outward unit normal vector of the spatial interface. The preservation

of the normal partial current ensures particle balance when mapping across a spatial

interface using the fix-up algorithm.
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7.2.9 Exact QDFE-SQ Mapping of Linear Functions

As discussed in Section 6.2.1, simple interpolation of the QDFE basis functions

for mapping linear SH functions should produce mapped solutions that have no error

relative to the analytic solution, since the linear SH functions live in the basis space

for both the coarse and fine QDFE-SQ angular quadratures. The mapped solution

should also exactly integrate the 0th and 1st angular moments, which only require

the integration of up to 2nd-degree SH functions (shown to be exact in Section

6.1.1). Errors in the mapped solution relative to the analytic solution are introduced

by the requirement of the QDFE-SQ mapping to exactly preserve the 2nd angular

moments, which requires integration of up to 3rd-degree SH functions. Future work

should modify the QDFE-SQ mapping algorithm such that no errors are introduced

into the mapping of linear SH functions.

7.2.10 Increase Weight Distribution Uniformity Using Skewed Mesh Lines

As discussed in Section 4.1.5, SQs are projected from divisions on the cube face

that are required to be either horizontal or vertical. Fig. 7.1 shows the SQs resulting

from evenly placing the divisions on each cube face, which shows the projected

SQs are smaller near the center of the octant even though the surface area of the

quadrilaterals on the cube face are equal. Fig. 7.2 shows the SQs resulting from

using the division placement strategy provided in Section 4.1.5, which ensures the

total surface area of all the SQs belonging to the same “ring” (see Section 4.1.5

for details) are equal to what it should be in a perfectly uniform SQ surface area

distribution. The results show the SQs have a more uniform surface area distribution

than in Fig. 7.1, but are still not perfectly uniform since SQs within the same ring

do not necessarily have equal surface areas. One possible way to achieve a even more

uniform SQ surface area distribution would be to allow the divisions on the cube
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face to skew. This additional degree of freedom would allow quadrilaterals on the

cube face closer to the center of the octant to be made larger in order to offset the

inherent decrease in surface area of the projected SQ.
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Figure 7.1: Spherical quadrilaterals using even division placement on the cube face.
Blue and red lines indicate spherical quadrilaterals projected from sub-square and
sub-sub-square divisions, respectively.
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Figure 7.2: Spherical quadrilaterals using the division placement strategy from Sec-
tion 4.1.5. Blue and red lines indicate spherical quadrilaterals projected from sub-
square and sub-sub-square divisions, respectively.
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APPENDIX A

SPHERICAL QUADRILATERAL INTEGRATION MATHEMATICS

A.1 Background

As discussed in Section 3.2, quadrature weights are determined by integrating

discontinuous finite element (DFEM) basis functions in the direction cosines over

spherical quadrilaterals (SQs) on the surface of the unit sphere, which is difficult

since the SQ boundaries are not constant. Therefore, we transform the basis functions

from the surface of the unit sphere to the surface of the inscribed cube from which

the SQs were projected. The integration of the basis functions over the cube face is

simple since the boundaries are constant. In this appendix, we derive the Jacobian

required to transform the basis functions from the surface of the unit sphere to the

surface of the inscribed cube.

A.2 Relationships Between Unit Sphere and Cube Face

Fig. A.1 shows the (x̃, ỹ) coordinates on the cube face perpendicular to the µ-axis.

The vector from the unit sphere origin to any point in the (x̃, ỹ) domain represents

a unique direction ~Ω. From simple geometry, we can establish the following relation-

ships between the polar and azimuthal angles (θ, γ), and the (x̃, ỹ) coordinates:

cos γ =
a√

a2 + x̃2
, (A.1)

sin γ =
x̃√

a2 + x̃2
, (A.2)

cos θ =
ỹ√

a2 + x̃2 + ỹ2
, (A.3)
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and

sin θ =

√
a2 + x̃2√

a2 + x̃2 + ỹ2
, (A.4)

where a = 1/
√

3 is the length of the inscribed cube in the first octant. Inserting

Eqns. A.1 through A.4 into the following directional cosine identities:

µ = cos γ sin θ , (A.5)

η = sin γ sin θ , (A.6)

and

ξ = cos θ , (A.7)

results in

µ =
a

r
, (A.8)

η =
x̃

r
, (A.9)

and

ξ =
ỹ

r
, (A.10)

where r =
√
a2 + x̃2 + ỹ2. Eqns. A.8 to A.10 are the relationships between the

surface of the unit sphere and the surface of the inscribed cube.

A.3 Jacobian Derivation

The Jacobian required to transform the basis functions from the surface of the

unit sphere to the (x̃, ỹ) coordinates on the surface of the inscribed cube is

|J | =

∣∣∣∣∣∣∣
∂ξ
∂x̃

∂ξ
∂ỹ

∂γ
∂x̃

∂γ
∂ỹ

∣∣∣∣∣∣∣ . (A.11)
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Eqns. A.1 and A.2 show

∂γ

∂ỹ
= 0 . (A.12)

Therefore, Eqn. A.11 becomes

|J | =
∣∣∣∣∂γ∂x̃ ∂ξ∂ỹ

∣∣∣∣ . (A.13)

We solve for ∂γ/∂x̃ using Eqn. A.1 or A.2:

∂γ

∂x̃
=

a

a2 + x̃2
. (A.14)

We solve for ∂ξ/∂ỹ using Eqn. A.3:

∂ξ

∂ỹ
=

a2 + x̃2

(a2 + x̃2 + ỹ2)3/2
. (A.15)

Inserting Eqns. A.14 and A.15 into A.13 results in

|J | = a

r3
, (A.16)

where r =
√
a2 + x̃2 + ỹ2.
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Figure A.1: (x̃, ỹ) coordinates on surface of the inscribed cube perpendicular to the
µ-axis. The vector from the unit sphere origin to any point in the (x̃, ỹ) domain

represents a unique direction ~Ω.
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APPENDIX B

MULTI-OBJECTIVE OPTIMIZATION FIX-UP

B.1 Background

As discussed in Section 4.3, an “optimal” mapping algorithm should preserve both

the shape and the angular moments of interest from the incoming solution. The new

mapping algorithm is nearly “optimal” for mapping sufficiently smooth solutions

away from octant boundaries. However, over- and under-shoots (including negativ-

ities) may occur in the mapped solution if mapping near solution discontinuities or

octant boundaries. To address these instances, we apply a fix-up algorithm which

uses multi-objective optimization problem (MOOP) to ensure the mapped solution

satisfies a set of prescribed limits, and preserves the 0th angular moment to machine

precision (MP) defined as ≤ 10−12 relative error. However, MOOP introduces minor

error into the preservation of higher angular moments.

MOOP minimizes the total difference between a set of objective functions and

their associated goals, while ensuring the solution satisfies a set of constraints. For

LDFE-SQ mapping, the objective functions (Eqns. 5.9 to 5.11) and goals (Eqns.

5.12 to 5.14) preserve the 1st angular moments as well as possible. For QDFE-

SQ mapping, the objective functions (Eqns. 5.9 to 5.11; 5.15 to 5.19) and goals

(Eqns. 5.12 to 5.14; 5.20 to 5.24) preserve the 1st and 2nd angular moments as well

as possible. An equality constraint (Eqn. 5.25) is imposed to preserve the 0th angular

moment to MP, and multiple inequality constraints (Eqn. 5.8) are imposed to ensure

the prescribed limits are satisfied.
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B.2 Goal Programming Method

The goal programming (GP) method reduces the MOOP into a single-objective

optimization problem (SOOP), which can be solved using any standard linear pro-

gram (LP) e.g., Simplex or Interior Point methods.[16, 17, 18, 19] The GP method

minimizes the total difference Ztotal between a set of objective functions Zi, i = 1 :

Ngoals and their associated goals Gi, i = 1 : Ngoals:

Minimize Ztotal =

Ngoals∑
i=1

δ+
i + δ−i , (B.1)

where:

Zi −Gi = δ+
i − δ−i , i = 1 : Ngoals . (B.2)

Eqns. B.1 and B.2 along with the inequality (Eqns. 5.8) and equality (Eqns. 5.25)

constraints constitute the SOOP. We note δ+
i and δ−i are strictly positive values.

B.3 Standard Form

LPs require the SOOP to be written in standard form. We begin by adding

artificial variables a to the equality constraints. Eqn. B.2 becomes

Zi − δ+
i + δ−i + ai = Gi , i = 1 : Ngoals . (B.3)

The 0th angular moment preservation constraint (Eqn. 5.25) becomes

Nmap∑
j=1

Ψjwj + a =

Norig∑
k=1

Ψkwk . (B.4)
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For ≥ inequality constraints, we add surplus s′ and artificial a variables. The lower

limit of Eqn. 5.8 becomes

Ψj − s′j + aj = Ψmin , j = 1 : Nmap . (B.5)

For ≤ inequality constraints, we add slack s variables. The upper limit of Eqn. 5.8

becomes

Ψj + sj = Ψmax , j = 1 : Nmap . (B.6)

We must minimize the sum of the artificial variables to return to the original system.

Therefore, we add the artificial variables to Eqn. B.1 resulting in

Minimize Zg =

Ngoals∑
i=1

δ+
i + δ−i +M

Nart∑
`=1

a` , (B.7)

where M is an arbitrarily large constant. The use of M to increase the importance of

minimizing the artificial variables is referred to as the Big-M method in literature.[16]

Eqns. B.3 to B.7 is the standard form of the SOOP.

B.3.1 Fine-to-Coarse Fix-up

LPs require the standard form of the SOOP to be written in matrix notation.

Eqns. B.8 to B.10 show: (1) matrix-A containing the left-hand coefficients of the

constraints (Eqns. B.3 to B.6), (2) vector-b containing the right-hand values of the

constraints, and (3) vector-c containing the coefficients of the minimization problem

(Eqn. B.7) for LDFE-SQ fine-to-coarse fix-up. The matrix form of the SOOP for

QDFE-SQ fine-to-coarse fix-up is analogous.
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b =



∑Norig

k=1 Ψkwkµk∑Norig

k=1 Ψkwkηk∑Norig

k=1 Ψkwkξk∑Norig

k=1 Ψkwk

ψmin
...

ψmin

ψmax
...

ψmax



(B.9)

c =



0

...

0

1

...

1

0

...

0

M

...

M

0

...

0



(B.10)

B.3.2 Coarse-to-Fine Fix-up

Testing showed using the same prescribed limits for every mapped direction causes the

mapped solution to significantly alter the shape of the incoming solution. Therefore, we set

unique limits for each mapped direction based on the mapped solution without fix-up. We

define bad ordinates as directions with mapped solution outside the prescribed limits, and

good ordinates elsewhere. We begin by setting the mapped solution for all bad ordinates

ψ‘
m,m = 1 : Nbad to the nearest prescribed limit:

ψ
′
m =

 ψmin if ψm < ψmin

ψmax if ψm > ψmax

, m = 1 : Nbad , (B.11)
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where ψm is the mapped solution for the bad ordinates without fix-up. Next, we calculate

the net change in the 0th angular moment caused by applying Eqn. B.11:

∆φnet =

Nbad∑
m=1

wm

(
ψ
′
m − ψm

)
. (B.12)

If ∆φnet > 0, then we have removed 0th angular moment from the system. Therefore, we

must add the same amount of 0th angular moment to the good ordinates to maintain 0th

angular moment preservation. We set the lower limits of the good ordinates ψn, n = 1 :

Ngood as the mapped solution without fix-up:

ψmin,n = ψn , n = 1 : Ngood . (B.13)

The upper limit of each good ordinate is the minimum of either the solution required to

preserve the 0th angular moment φinc assuming each other good ordinate is set to their

lower limit, or the prescribed upper limit:

ψmax,n = min

ψmax,
φinc −

∑Ngood

n′=1,n′ 6=nwn′ψmin,n′ −
∑Nbad

m=1 wmψ
′
m

wn

 . (B.14)

If ∆φnet < 0, then we have added 0th angular moment to the system. Therefore, we must

remove the same amount of 0th angular moment from the good ordinates to maintain 0th

angular moment preservation. We set the upper limits of the good ordinates ψn, n = 1 :

Ngood to the mapped solution without fix-up:

ψmax,n = ψn , n = 1 : Ngood . (B.15)

The lower limit of each good ordinate is the maximum of either the solution required to

preserve the 0th angular moment assuming each other good ordinate is set to their upper
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limit, or the prescribed lower limit:

ψmin,n = max

ψmin,
φinc −

∑Ngood

n′=1,n′ 6=nwn′ψmax,n′ −
∑Nbad

m=1 wmψ
′
m

wn

 . (B.16)

The above changes require modifications to the SOOP posed by Eqns. B.3 to B.7. The

LDFE-SQ objective functions become

Z1 =

Ngood∑
n=1

Ψgood,nµgood,nwgood,n , (B.17)

Z2 =

Ngood∑
n=1

Ψgood,nηgood,nwgood,n , (B.18)

and

Z3 =

Ngood∑
n=1

Ψgood,nξgood,nwgood,n . (B.19)

The associated goals become

G1 =

Ninc∑
k=1

Ψinc,kµinc,kwinc,k −
Nbad∑
m=1

Ψbad,mµbad,mwbad,m , (B.20)

G2 =

Ninc∑
k=1

Ψinc,kηinc,kwinc,k −
Nbad∑
m=1

Ψbad,mηbad,mwbad,m , (B.21)

and

G3 =

Ninc∑
k=1

Ψinc,kξinc,kwinc,k −
Nbad∑
m=1

Ψbad,mξbad,mwbad,m . (B.22)

The changes in QDFE-SQ objective functions and goals are analogous. The equality con-

straint for 0th angular moment preservation becomes

Ngood∑
n=1

Ψgood,nwgood,n + a =

Ninc∑
k=1

Ψinc,kwinc,k −
Nbad∑
m=1

Ψbad,mwbad,m . (B.23)
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The inequality constraints for the prescribed limits are now set to the new limits presented

in Eqns. B.14 and B.16:

Ψn − s′n + an = Ψmin,n , n = 1 : Ngood , (B.24)

and

Ψn + sn = Ψmax,n , n = 1 : Ngood . (B.25)

Eqns. B.26 to B.27 show matrix-A containing the left-hand coefficients of the constraints

(Eqns. B.3; B.23 to B.25), and vector-b containing the right-hand values of the constraints.

Vector-c containing the coefficients of the minimization problem (Eqn. B.7) for LDFE-SQ

coarse-to-fine fix-up remains the same as Eqn. B.10. The matrix form of the SOOP for

QDFE-SQ coarse-to-fine fix-up is analogous.
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b =



∑Ninc
k=1 Ψinc,kµinc,kwinc,k −

∑Nbad
m=1 Ψbad,mµbad,mwbad,m∑Ninc

k=1 Ψinc,kηinc,kwinc,k −
∑Nbad

m=1 Ψbad,mηbad,mwbad,m∑Ninc
k=1 Ψinc,kξinc,kwinc,k −

∑Nbad
m=1 Ψbad,mξbad,mwbad,m∑Ninc

k=1 Ψinc,kwinc,k −
∑Nbad

m=1 Ψbad,mwbad,m

ψmin,1

...

ψmin,Ngood

ψmax,1

...

ψmax,Ngood



(B.27)

B.4 Simplex Method

We chose to use the Simplex method [16, 17, 18, 19] for solving the SOOP required for

fix-up, due to its robustness and simplicity in implementation. The Simplex method begins

with an initial feasible solution, which sets the non-basic variables (Ψ, δ+, δ− and s′) to zero

resulting in non-zero basic variables (a and s) to satisfy the SOOP constraints (Eqn. B.3

to B.6). Each iteration of the Simplex method exchanges a basic variable with a non-basic

variable such that Ztot (Eqn. B.7) decreases, while the solution remains feasible.[16] The

Simplex method moves from vertex to vertex of the feasible solution region, and is applied

until an optimal feasible solution is found in which Ztot can no longer decrease. We test

the most simple variant of the Simplex method, known as the Revised Simplex method,

[17, 18] which represents the Simplex method as linear algebra computations. We note other

methods (e.g., Bartels-Golub, Forrest-Tomlim, Reid, etc) have been developed to improve

the speed and accuracy of the Simplex method, particularly for SOOPs requiring large

sparse systems, or producing ill-conditioned matrices.[17] However, the SOOPs for LDFE-

SQ and QDFE-SQ fix-up does not require solving particularly large systems, nor produce

ill-conditioned matrices during our testing. The Revised Simplex method pseudocode is
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provided in Algorithm 1. The input parameters are the matrices for the SOOP presented

in Sections B.3.1 and B.3.2. The output variables are vector-df containing the mapped

solution with fix-up, and vector-CB containing the indices in df corresponding to each

mapped direction.
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Input : A, b, c (Inputs defined in Section B.3.1)
Output: df , cB

1 Set Ψ, δ+, δ−, s′ to 0 (Variables not in the basis)
2 Set a, s to satisfy constraints (Variables currently in the basis)
3 Form B (Columns of A for variables in the basis)
4 Checkpoint 1

5 Compute B−1

6 Compute d = B−1b
7 Determine cV (Entries of c for variables not in the basis)
8 Determine cB (Entries of c for variables in the basis)
9 Determine V (Columns of A for variables not in the basis)

10 Compute c̃V = cV − cBB−1V
11 Find most negative c̃V entry, store index in j
12 if min (c̃V ) ≥ 0 then
13 Return df ≡ d (Final solution)
14 Return cB (Variable indices for d)
15 End Program

16 end

17 Compute w=B−1aj (aj is the jth column of A)
18 Find smallest, positive ratio di/wi
19 Swap column i in B with aj
20 Swap column j in A with bi (bi is the ith column of B)
21 return Checkpoint 1

Algorithm 1: Revised Simplex Method
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