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ABSTRACT

This dissertation examines the following subjects important to hypersonic aerother-

moelastic flows: aerodynamic heating on a double-wedge airfoil, active cooling on a

double-wedge airfoil, and aerothermoelastic panel flutter with deformable supports.

To facilitate this examination, an aerothermoelastic solver was created by coupling

solvers for the structural elasticity and thermal-diffusion equations to a Reynolds-

averaged Navier–Stokes (RANS) solver. Validation studies were performed on the

aerodynamic, aerothermal, and aerothermoelastic configurations of the solver, which

were then used to investigate the aforementioned subjects.

The aerodynamic solver was validated for hypersonic heating simulations by

comparison to the Fay-Riddell equation for the peak heat flux on a circular cylinder

and by comparison to compressible boundary layer flow for heat flux into a flat plate.

A novel investigation was then performed of the heat flux on a double-wedge airfoil,

looking at variations of heat flux due to angle of attack, wall temperature, Mach

number, and altitude.

The aerothermal solver was validated using experimental and computational

data from the hypersonic heating of a spherical protuberance on a flat plate. The

solver was then used in a novel study to analyze the effect of active cooling on the

steady-state skin temperature of a double-wedge airfoil in hypersonic flow. Active

cooling using a piecewise continuous cooling distribution resulted in sufficient tem-

perature reduction, but also results in significant chordwise temperature gradients.

The aerothermoelastic solver was validated using computational data from the
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analysis of panel flutter. The solver was then used to examine the effects of de-

formable structural supports on the flutter dynamics of the panel for the first time.

Deformable supports along existing simply-supported boundaries were shown to be

ineffective at improving resistance to flutter or buckling. Deformable supports within

a panel were shown to increase the flutter resistance threefold and buckling resistance

almost fivefold.
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NOMENCLATURE

Greek

αk Coefficients of the Runge-Kutta time-stepping algorithm

αij Component of the thermal expansion tensor α

α Thermal expansion tensor

γ Ratio of specific heats, cp/cv

δT Test function for temperature

δu Test function for displacement

∆(·) Change in (·)

∂Ω Surface of cell

∂ΩIJ Surface between the dual cells associated with nodes I and J

ε Strain tensor

εij Component of the strain tensor ε

κ Thermal conductivity

λ Non-dimensional pressure parameter

µ Dynamic viscosity

µe Air viscosity at boundary layer edge
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µw Air viscosity at blunt-body wall

ν Poisson’s ratio

ρ Fluid density

ρe Air density at boundary layer edge

ρm Plate material density

ρw Air density at blunt-body wall

σ Stress tensor

σij Component of the stress tensor σ

τw Wall shear stress

τij Component of the shear stress tensor τ

φ Radial basis function

Ξ Generalized force

Linear polynomial, ψ(~x) = b0 + b1x+ b2y + b3z

N Shape function associated with node N

ω Frequency (rad/s)

Ω(t) Volume of a given cell in the grid

ΩI Volume of the dual cell associated with node I
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Roman

a Plate length/width

a Vector of nodal accelerations

c Specific heat capacity of solid material

c Speed of sound

cp Specific heat under constant pressure

cv Specific heat under constant volume

Cijkl Tensor of linear elasticity constants

D Blunt-body diameter

dbi Displacement of boundary node i in x, y, or z

dIJ Distance between nodes I and J

E Young’s modulus

e0 Stagnation energy

f Frequency (1/s)

Fp Vector of forces due to pressure

Fv Vector of viscous forces

F∆T Thermal load
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FcIJ Approximate convective flux

Fc Vector of convective fluxes

FvIJ Approximate viscous flux

ga Non-dimensional aerodynamic damping parameter

h Plate thickness

hw Air enthalpy at blunt-body wall

h0∞ Farfield stagnation enthalpy

(JG)s Stringer torsional rigidity

K Stagnation point velocity gradient at the edge of the boundary layer

Kp Panel effective stiffness (pressure load/displacement)

K Stiffness matrix

M Generalized mass

M Mach number

M Mass matrix

N Number of nodes

N(I) Set of nodes neighboring node I

ni Component of unit normal vector n̂
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p Pressure

pe Pressure at boundary layer edge

Pr Prandtl number

qavg Average heat flux

qFR Peak blunt-body heat flux predicted by Fay–Riddell equation

qi Component of heat conduction vector ~q

Q Vector of conservative state variables

Q∗ Approximate vector of state variables for pseudo-time stepping

QI Vector of state variables averaged over the dual cell associated with node I

RI Residual at node I

R∗ Residual using Q∗

R∗unsteady Residual using Q∗, including source terms from dual-time stepping scheme

SIJ Surface area of surface between the dual cells associated with nodes I and J

t̂IJ Unit tangent vector of the edge from node I to J

T Temperature

t Time

T Vector of nodal temperatures
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~u Flow velocity

~u Vector of structural displacements

~ug Grid velocity

~ur Flow velocity relative to grid face, ~ur = ~u− ~ug

U Specified flow velocity

ui Component of flow velocity vector ~u

u Vector of nodal displacements

Vn Plate upwash velocity

v Vector of nodal velocities

w Plate out-of-plane deformation

~x Location (x, y, and z)

~xbi Location of boundary node i (x, y, and z)

y+ Dimensionless wall distance, y
µ

√
τwρ

y1 Distance from surface to first out-of-plane point

Math

(·)a Relating to the aerodynamic model

(·)s Relating to the structural model
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(·)∞ Farfield conditions

·̂ Unit vector of three components, corresponding to x, y, and z directions

∇ Vector of spatial derivatives

∂(·) Boundary of ·

~· Vector of three components, corresponding to x, y, and z directions

{·}T Vector/matrix transpose
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CHAPTER I

INTRODUCTION

I.1. Problem Statement

Vehicles capable of hypersonic flight have a monopoly on access to space and

are capable of the fastest available means of point-to-point transportation on Earth.

Until the recent advancements in scramjet engines, hypersonic flight has been solely

the domain of rocket-propelled vehicles. As scramjet propulsion continues to im-

prove [1, 2], airbreathing propulsion is set to become a viable option for hypersonic

flight, both with single stage to orbit space access and hypersonic cruise vehicles for

exceptionally fast point-to-point transportation.

The dream of airbreathing propulsion is to overtake rocket propulsion econom-

ically. The economic viability hinges primarily on three aspects of vehicle perfor-

mance: the weight of the airframe, the specific impulse of the engine, and the reusabil-

ity of the aircraft (including maintenance costs and turnaround time). The purpose

of this research is to investigate the key physics behind the structural requirements of

the airframe. The most stringent structural requirements for hypersonic aircraft are

due to the phenomena of panel flutter and thermal buckling, especially when the two

are coupled. Panel flutter can induce significant fatigue on structural elements of the

aircraft, shortening the lifetime of hypersonic vehicles significantly. Furthering the

understanding of aerothermoelastic panel flutter will help define the structural re-

quirements, and reduce need for excessive safety margins and thus the overall weight

1



of structural elements.

Another key element of the weight is the thermal protection system used to pro-

tect the vehicle from the high heat loads associated with hypersonic flight. Modern

heat load mitigation strategies include hot-structure designs, ablation-based ther-

mal protection systems, and active cooling systems. Hot-structure designs seek to

use sufficiently durable materials to allow parts of the structure to reach a near-

equilibrium temperature, while insulating parts of the vehicle that need to remain

cool [3]. Ablative thermal protection systems are typically used for shorter flights

with very high heating rates [4], but are not typically suitable for reusable vehicles

with long flight times, as the weight scales with the amount of total heat dissipation.

Active cooling promises both sufficiently high cooling rates and large amounts of

total heat dissipation [5], but also requires a significant increase in the overall com-

plexity and weight. The benefits of an active cooling system in suppressing panel

flutter will be investigated as a possible means of weight reduction.

I.2. Literature Review

As the computational treatment of hypersonic aerothermoelasticity requires

knowledge of a broad range of disciplines, this review will give a brief historical per-

spective of the fields of hypersonics, aeroelasticity, and computational aerodynamics.

The aeroelastic and aerothermoelastic study of panel flutter will be covered in more

depth. Finally, the recent work in computational hypersonic aerothermoelasticity

will be reviewed.
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I.2.1. Early Work in Hypersonics

The majority of early work in hypersonics was devoted to building up a signifi-

cant body of experimental data [6, 7] and building new models to explain hypersonic

phenomena [8]. Additionally, a number of mathematical and computational meth-

ods were developed for the simulation of hypersonic flow over blunt bodies [9, 10]

and slender bodies with blunted noses [11, 12]. Understanding of basic hypersonic

phenomena enabled the design of early spacecraft and missiles.

I.2.2. Early Work in Aeroelasticity

The study of aeroelasticity stemmed from the need to avoid deleterious phe-

nomena such as flutter. While several studies [13, 14] investigated various aspects

of aeroelasticity, the most pivotal early work was that of Theodorsen [15], whose

model is still in use today. Von Karman applied this theory to gusts and other un-

steady motion [16]. Goland applied these theories to the flutter of a cantilever wing

[17]. These studies increased the basic understanding of aeroelastic phenomena and

helped designers produce lightweight, safe aircraft.

I.2.3. Computational Fluid Dynamics

While the exact definition and starting point of computational fluid dynamics

can be argued, it clearly has its roots in the arbitrary division of a wing surface

or fluid domain. Vortex-lattice [18, 19] and doublet-lattice [20] methods were some

of the earliest to be able to determine the characteristics of arbitrary wings. As

computers improved, the method of characteristics [21] and finite difference formulas
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[22] extended solvable domains to transonic and supersonic flowfields.

I.2.4. Computational Aeroelasticity

In order to use computational fluid dynamics for aeroelastic simulations, the

movement of the solid domain must be accurately represented in the fluid domain.

One theory that is commonly used today is the Geometric Conservation Law (GCL)

first described by [23]. Over the last two decades, a number of papers have been

written by Farhat, Mavriplis and others, evaluating and extending the GCL to a

large number of time discretization schemes [24, 25, 26, 27, 28]. This remains the

basis of accurately computing the effect of moving boundaries for computational fluid

dynamics with a finite-volume framework.

I.2.5. Panel Flutter

Panel flutter is a concern for any vehicles “using a lifting-body concept that will

operate at supersonic/hypersonic Mach numbers” [29]. This is primarily due to the

combined restrictions of low structural weight as required by vehicle design and high

panel stiffness required to prevent flutter. The analysis of panel flutter allows for the

reduction of structural weight by eliminating the need for additional safety factor.

Panel flutter has been analyzed using aerodynamics varying from piston theory

[30, 31] and full linearized potential theory [32, 33] to Navier–Stokes aerodynamics

[34, 35] and surrogate models [36, 37]. The simpler theories can be augmented

with boundary layers [38] or approximate heating [37], depending on the case being

studied.
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A large variety of structural geometries have also been studied. While rect-

angular or two-dimensional infinite panels dominated the majority of early work

[33, 38, 39], triangular panels [40, 31], cylindrical shells [41, 42], and panels with

streamwise or spanwise curvature [43, 44] have all been extensively studied.

Because panel flutter occurs at supersonic and hypersonic speeds, the study of

heated panels is of interest. The primary effect of heating a panel is to lower the

flutter threshold [33]. For sufficiently hot plates, thermal buckling [45] and snap-

through [46, 47] may also occur. These effects have primarily been studying by

applying an arbitrary temperature field to the structure, though more recent work

has investigated the effects of using aerodynamic heating [48, 49, 50].

I.2.6. Hypersonic Aerothermoelasticity

Much of the work in hypersonic aerothermoelasticity could also be mentioned

in discussions on panel flutter, as there is a large overlap in the two disciplines.

In general, however, hypersonic aerothermoelasticity also covers the investigation of

blunt leading edges [51], aerodynamic decelerators, scramjet engines, and full aircraft

simulations [52].

Simulation of aerothermoelastic phenomena typically requires some sort of finite

element method for the structure, though modal methods have also been used with

success. The aerodynamic heating rates have been successfully determined using

Navier–Stokes aerodynamics [53], surrogate methods [36], and approximate heating

techniques such as the Eckert reference enthalpy method [54, 55]. The aerodynamic

loads have been calculated using theories ranging from piston theory to Navier–
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Stokes.

A more thorough overview of recent aerothermoelastic research can be found in

[56].

I.3. Research Problem

The study of panel flutter in the context of a single panel has been thoroughly

explored, though not yet in the context of a full wing analysis. However, these

panels assume relatively simple boundary conditions, such as simply supported, free,

or clamped. In reality, the deformations of the panel are determined by the complete

aeroelastic response of the entire aircraft. For this reason, the present work attempts

to systematically analyze the panel flutter of increasingly complex structures, which

can eventually aid in the aerothermoelastic analysis and design of complete wings

and vehicles.

Because of the importance of the increase in temperature for panel flutter re-

sponse, understanding the aerodynamic heating of the structure is critical for design

of hypersonic vehicles. This work will look at the steady-state heat transfer problem

with aerodynamic heating on the exterior surface of the structure, and cooling on the

interior surface of the structure. The investigation of active cooling over a complete

airfoil in hypersonic flow is novel.

The goal of the present research is to further the understanding of aerother-

moelastic phenomena critical to the design of hypersonic cruise vehicles. The phe-

nomena of interest are the aeroelastic stability of panels supported by an underlying

deformable structure, the effect of realistic thermal loading on the aeroelastic sta-
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bility, and the effectiveness of heat mitigation strategies in suppressing aeroelastic

instabilities.

The present research has been accomplished through the following research ob-

jectives:

• Creation and validation of a coupled solver incorporating a Reynolds-averaged

Navier–Stokes aerodynamic solver, a nonlinear elastic solver, and a thermal

diffusion solver

• Deformable supports are added to panels subject to hypersonic flow, and the

aerothermoelastic response is characterized by determining flutter thresholds

and investigating post-flutter dynamics

• Investigation of active cooling as a means to expand the flight envelope for

sustained hypersonic flight, specifically by increasing the expected panel flutter

boundary and reducing panel susceptibility to thermal buckling

I.4. Original Contributions of Present Work

The novelty of the present work is primarily in the application of existing com-

putational methods to new problems in hypersonic aerothermoelasticity. Specifically,

two aspects of hypersonic flight have been analyzed.

First, the effect of active cooling on the steady-state surface temperature of

a double-wedge airfoil in hypersonic flight was investigated, and several variations

of the distribution of cooling were taken into account, specifically augmenting the

cooling near the leading edge, where the heating rates were highest. To the author’s
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knowledge, this is a significantly more complex geometry than has been studied for

long-term heating with active cooling. Correlations for a given cooling methodology

were obtained by testing the same cooling profile with different average cooling rates.

Second, the aerothermoelastic response of panels with deformable substructures

was analyzed for the first time. Panel flutter thresholds were found for panels sup-

ported by stringers in two configurations, and post-flutter dynamics were also in-

vestigated. The improvement in structural characteristics, both the resistance to

buckling and to flutter was quantified as the thickness of the stringers was increased.

Additionally, an asymmetric mode was discovered for high temperature post-flutter

vibration of simply-supported panels.

I.5. Outline of Dissertation

This work is organized as follows: in Chapter II, the aerodynamic, structural

elastic, and thermal-diffusion models used in the dissertation are presented. Chap-

ter III contains the numerical methods used to discretize and solve the models are

shown. In Chapter IV, the hypersonic aerodynamic solver is validated and novel

studies of a hypersonic double-wedge airfoil using only the aerodynamic solver are

performed. Chapter V describes the validation of the coupled aerothermal solver

and presents the aerothermal studies of a hypersonic double-wedge airfoil with in-

ternal cooling. Chapter VI validates the aerothermoelastic solver and describes the

aerothermoelastic studies of panels with supporting stringers. Finally, Chapter VII

presents both conclusions from the novel work performed in this dissertation and

provides suggestions for future work.
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CHAPTER II

PHYSICAL MODELS

This chapter presents the governing equations of the aerodynamic, elastic, and

thermal-diffusion models and the procedure used to couple them. Each of these three

models were governed by some combination of the conservation of mass, conservation

of momentum, and conservation of energy, along with relevant constitutive relation-

ships. The three models were coupled using a partitioned analysis procedure [57],

where the system was spatially decomposed into partitions.

The first section of this chapter describes the aerodynamics models. The sec-

ond section presents the structural linear elasticity model. This is followed by the

thermal-diffusion model. The final section gives the equations used to couple the

three models.

II.1. Aerodynamics Models

Two aerodynamics models were used in this research. The first aerodynamic

model is governed by the Reynolds-Averaged Navier–Stokes (RANS) equations and

was used for the simulation of viscous heating and for aerothermal analyses. Addi-

tionally, the RANS solver, neglecting viscous effects, was used for one of the aeroe-

lasticity studies. This is referenced as the Euler solver. The second aerodynamic

model was piston theory, which was used for aeroelasticity studies.
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II.1.1. The Reynolds-Averaged Navier–Stokes Model

The RANS equations were applied to a moving control volume through the

Reynolds Transport Theorem using the conservative state vector Q = {ρ, ρux, ρuy,

ρuz, ρe0}T, where ρ is the density of the fluid, u` is the `-component of the velocity,

and e0 is the mass-specific stagnation energy. Additionally, volume forces were ne-

glected and the surface forces were split into pressure and viscous fluxes, Fp and Fv,

respectively.

d

dt

∫
Ω(t)

Q dV = −
∮
∂Ω(t)

[Fp − Fv + Q (~ur · n̂)] dS, (2.1)

where ~ur is the flow velocity relative to the grid face and Ω(t) is the volume of a cell

of the grid (See Appendix A). Fp and Fv are defined as follows, where duplicated

indices imply summation over the possible values of the index:

Fp =



0

n1p

n2p

n3p

niuip


, Fv =



0

niτ1i

niτ2i

niτ3i

−niqi + njuiτij


, i, j = 1, 2, 3, (2.2)

where ni is the ith-component of the unit vector normal to the surface, and qi is

the ith-component of the heat transfer rate per unit area via conduction in the fluid

given by Fourier’s Law:

qi = −κ ∂T/∂xi, i = x, y, z (2.3)
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where κ is the thermal conductivity of the fluid. The pressure p of the fluid particle

is related to the density ρ, temperature T , and gas constant R through the equation

of state: p = ρRT . τij is the component of the viscous stress tensor defined as in

[58, pp.356-357]

τij =


µ

(
∂ui
∂xj

+
∂uj
∂xi

)
, if i 6= j

2µ

(
∂ui
∂xj
− 1

3

∂uk
∂xk

)
, if i = j

, k = 1, 2, 3, (2.4)

where µ is the dynamic viscosity of the fluid.

The effects of turbulence were modeled by the two-equation eddy-viscosity shear

stress transport model [59].

II.1.2. Piston Theory

Piston theory [30, 31] was used in this research to calculate the aerodynamic

forces for aeroelastic analyses. Specifically, first-order and third-order piston theory

were used, as presented in [32, 33]. The first-order piston theory equation used in

this study was simply:

∆p =
ρU2
∞√

M2
∞ − 1

(
∂w

∂x
+

1

U∞

∂w

∂t

M2
∞ − 2

M2
∞ − 1

)
, (2.5)

where U∞ is the velocity of the fluid, M∞ is the fluid Mach number, w is the panel

displacement into the fluid, and the upwash velocity Vn can be written as follows:

Vn = U∞
∂w

∂x
+
∂w

∂t

M2
∞ − 2

M2
∞ − 1

(2.6)

At higher Mach numbers, typically at Mach 5 or above,
√
M2
∞ − 1 → M and

M2
∞−2

M2
∞−1
→ 1. Additionally, as Vn

U∞
M∞ increases, the assumptions used for linearization
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of full-order piston theory break down (see Appendix B), and it becomes necessary

to expand to third-order piston theory, which is stated as:

∆p =
ρU2
∞

M∞

Vn
U∞

(
1 +

γ + 1

4

Vn
U∞

M∞ +
γ + 1

12

(
Vn
U∞

M∞

)2
)

(2.7)

For panel flutter studies, the pressure difference is typically separated into a non-

dimensional pressure parameter, λ, and a non-dimensional damping parameter, ga.

These are defined as:

λ =
ρU2
∞√

M2
∞ − 1

a3

h3

12(1− ν2)

E
, ga =

1

π2

ρU∞√
M2
∞ − 1

M2
∞ − 2

M2
∞ − 1

a2

h2

√
12(1− ν2)

ρmE
, (2.8)

where a is the panel length, h is the panel thickness, ν is the Poisson’s ratio, E is

the Young’s modulus, and ρm is the density of the panel material.

The pressure parameter λ is an accurate representation of the pressure forces

when the upwash velocity Vn is significantly less than the speed of sound, c∞. This

is true for small deflections and deflection frequencies. For initial flutter analyses,

when panel deflections are small, any order of piston theory should yield the same

results. Differences between first order and higher-order piston theory models are

only seen in post-flutter analysis.

II.2. Linear Elasticity Model

The elastic behavior of the structure was modeled based on conservation of mo-

mentum, including the effects of thermal expansion. The model follows the equation

[58, pp.232]:

ρm
∂2~u

∂t2
= ∇ · σ, (2.9)
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where u is the vector of displacements and σ is the stress tensor, defined using

Einstein notation [58, pp.3-10] as

σij = Cijkl(εkl − αkl∆T ), (2.10)

where C is the fourth order tensor describing the material constitutive relationship,

ε is the infinitesimal strain tensor, α is the coefficient of thermal expansion, and ∆T

is the temperature difference from the stress-free state.

To close the model, the strain tensor can be related to the displacements by

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.11)

II.3. Thermal Diffusion Model

The unsteady diffusion of heat through the structure was modeled with the

energy conservation equation, expressed in terms of heat conduction as follows:

− ∂(ρmcT )

∂t
=
∂qi
∂xi

, (2.12)

where T is the temperature, and c is the specific heat capacity of the solid. The

components of the heat flux vector qi are defined by (2.3), where κ is the thermal

conductivity of the elastic material.

II.4. Coupling Equations

The aerothermoelastic solver is coupled by enforcing consistency of the displace-

ment, traction, temperature, and heat flux on the shared points of the solvers. There

are three sets of equations needed to fully couple the aerothermoelastic solver. First,

the aerodynamic solver and the structural elastic solver are coupled by equating the
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displacement and traction at every point, ~x, of the shared surface ∂Ω. That is:

σs · n̂ = pan̂+ τ a · n̂ ∀~x ∈ ∂Ω (2.13a)

us = ua ∀~x ∈ ∂Ω, (2.13b)

where σs is the stress tensor for the structure on the surface, pa is the aerodynamic

pressure on the surface, τ a is the viscous stress tensor for the aerodynamic solver, and

us and ua are the displacements on the surface for the structural and aerodynamic

solvers, respectively.

Next, the aerodynamic solver and the thermal-diffusion solver are coupled by

equating the temperature and heat flux on the shared surface.

~qs · n̂ = ~qa · n̂ ∀~x ∈ ∂Ω (2.14a)

Ts = Ta ∀~x ∈ ∂Ω, (2.14b)

where qs and qa are the structural and aerodynamic heat fluxes into the boundary,

respectively, and Ts and Ta are the temperatures of the structure and air at the

undeformed shared boundary.

Finally, the structural elastic solver is coupled to the thermal-diffusion solver

by requiring that the temperature at every location in the structure is equivalent for

both solvers:

Te = Ts ∀~x ∈ Ωs, (2.15)

where Te is the temperature in the structural elastic solver, and Ωs represents the

entire structural domain.
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CHAPTER III

NUMERICAL METHODS

This chapter briefly presents the numerical methods used to calculate the flow

around the airfoil, the temperature distribution within the structure, and the defor-

mation of the structure. The finite volume methodology utilized to solve the RANS

equations (2.1) is presented first, followed by the finite element approach used to

solve both the thermal-diffusion equation (2.12) and the structural elasticity equa-

tion (2.9). This chapter ends with a presentation of the coupling algorithm between

the aerodynamic, thermal-diffusion and structural elasticity models.

III.1. Reynolds-Averaged Navier–Stokes Solver

This section presents the spatial and temporal discretization of the RANS equa-

tions. The methodology presented in previous works [60, 61] was modified to allow

for accurate simulation of hypersonic flow and moving domains. It was also modified

to allow coupling to both the thermal-diffusion solver and the structural elasticity

solver.

III.1.1. Spatial Discretization

A finite volume method was used to solve the RANS equations. The govern-

ing equations were discretized using an unstructured grid with dual cells as control

volumes [60]. The median dual-mesh was adopted herein because of its flexibility of

handling unstructured mixed meshes [62]. The cell-averaged variables were stored at

15



the nodes of the grid, that is, the vertices of the cells.

Equation (2.1) is rewritten for a node I as

d

dt
(ΩIQI) = −

∑
J∈N(I)

∮
∂ΩIJ

[Fp + Fv −Q (~ur · n̂)] dS (3.1)

where QI denotes the vector of state variables averaged over the dual-mesh cell

volume ΩI . Node J belongs to N(I), the set of vertices neighboring node I, and

∂ΩIJ is the surface between nodes I and J .

The surface integral of the convective fluxes was approximated by∮
∂ΩIJ

Fc dS =

∮
∂ΩIJ

(Fp −Q (~ur · n̂)) dS ≈ FcIJSIJ (3.2)

where FcIJ is the approximate convective flux normal to the dual-mesh cell face and

SIJ is the surface area of the face ∂ΩIJ .

The convective flux FcIJ was evaluated using the RoeM scheme [63]. The RoeM

scheme was chosen because it conserves stagnation enthalpy and remedies problems

with shock instabilities, which are both necessary properties for accurate hypersonic

heating calculations.

The surface integral of the viscous fluxes was approximated by∮
∂ΩIJ

Fv dS ≈ FvIJSIJ , (3.3)

where FvIJ is the approximate average viscous flux over the surface ∂ΩIJ . FvIJ was

calculated using an arithmetic average of the state variables and gradients at nodes

I and J . These averages were used to evaluate (2.2), (2.3), and (2.4). At each node,

the least-squares method was used to compute the gradients [64]. Along each edge,
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the edge-direction gradient was replaced by the value calculated from the two nodes:

∇Q · t̂IJ ≡
QJ −QI

dIJ
, (3.4)

where tIJ is the unit vector tangent to the edge connecting nodes I and J and dIJ

is the distance between nodes I and J . This method increases the accuracy of the

solution by preventing decoupling of the viscous fluxes along the edge [65].

Combining (3.2) and (3.3) allows us to rewrite (3.1) in terms of a residual RI :

RI = − ∂

∂t
(ΩQI) =

∑
J∈N(I)

(FcIJ + FvIJ )SIJ (3.5)

The gradients calculated through the least squares method were used to obtain

second-order spatial accuracy. A linear reconstruction of the solution was defined for

a dual-cell defined by node I by the solution and gradient at that node:

Q (~x) = QI +∇QI · (~x− ~xI) (3.6)

For each flux calculation, the edge midpoint was used as the quadrature point for

the integration over the face. The values at the quadrature points were calculated

using (3.6).

III.1.2. Temporal Discretization

The RANS solver was discretized using a dual-time stepping approach [66, p.

212]. The solution at time tn+1 was calculated using existing solutions at times tn

and tn−1 through a second order backwards difference formula:

3

2∆t
(ΩQ)n+1 − 2

∆t
(ΩQ)n +

1

2∆t
(ΩQ)n−1 = −Rn+1. (3.7)
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Since Rn+1 is dependent on the solution at time tn+1, an approximation Q∗

was made to the solution Qn+1, which was iteratively improved through pseudo-time

stepping as follows:

Ωn+1 ∂

∂t∗
Q∗ = −R∗unsteady = −R∗ +

1

2∆t

(
3Ωn+1Q∗ − 4ΩnQn + Ωn−1Qn−1

)
(3.8)

As t∗ → ∞, Q∗ converges to Qn+1. Time-stepping in pseudo-time was ac-

complished through a low-storage n-stage Runge–Kutta time-integration scheme.

Integration from t∗n to time t∗n+1 is shown below:

Q∗(0) = Q∗n

Q∗(k) = Q∗(0) − αk∆tR
∗,(k−1)
unsteady, 1 ≤ k ≤ m (3.9)

Q∗n+1 = Q∗(m)

where αk are the coefficients of the Runge-Kutta matrix [66, p. 182]. The solver

was marched forward in pseudo-time until the norm R∗unsteady was reduced below a

predetermined tolerance, meaning that a steady state solution was reached. Conver-

gence to steady state in pseudo-time was accelerated through several means: local

time stepping, preconditioning, and implicit residual smoothing. Local time stepping

updates the solution at each vertex based on the local CFL stability criterion [67],

rather than limiting the time step to the smallest in the domain. Preconditioning

modifies the eigenvalues of the convective Jacobian in regions of slow flow to re-

duce the difference between the velocities of the acoustic and convective waves [68].

The preconditioning methodology in the present work follows that of [69]. Implicit

residual smoothing increases the stability bounds of the time stepping algorithm by

adding artificial dissipation based on Q∗n+1−Q∗n [70]. This does not affect the steady
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state solution since Q∗n+1 −Q∗n approaches zero as the solution converges.

III.1.3. Parallelization Algorithm

The RANS flow solver was parallelized to reduce the turnaround time. A domain

decomposition approach was used to divide the workload between processes. Com-

munication was accomplished through an overlap at the domain boundaries. The

Message Passing Interface (MPI) paradigm was used to allow scaling to large num-

bers of processes. The current procedure follows that of [61], except that arbitrary

groupings of nodes were allowed and the domain was not split only in layers.

The parallelization procedure was comprised of the following steps:

• Splitting the global mesh into local meshes for each process

• Preprocessing to determine non-local nodes in mesh

• Initializing the RANS solver by creating a list of communication nodes

• Communicating during each time step

III.1.3.1. Mesh Splitting Step

First, the nodes of the global mesh were distributed among n local meshes, where

n is the number of processes used to parallelize the flow solver. The distribution was

accomplished by sorting the nodes in three dimensions and recursively splitting the

global mesh based on the rank of the nodes.

For example, consider a mesh split into eight parts (twice each in x, y, and z).

First, the mesh would have been split in x, resulting in two sets of nodes. The first
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Figure III.1: Visualization of mesh parallelization procedure. Left: Complete mesh.

Filled blue nodes are present on the first process, and empty red nodes are present

on the second process. Right: Mesh split for two processors. Blue cells are present

only on the first process, red cells only on the second, and grey cells are present on

both.

set of nodes would have had all of the nodes with x smaller than the median x-value,

and the second set would have had the all the nodes with x larger than the median.

Both of these sets were then split separately in y, possibly with different median

y-values, and all four of those were finally split in z. This yielded local meshes which

were node-balanced within a single node, with reasonably smooth communication

boundaries. A simple mesh split once in the y-direction is shown in Figure III.1.
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III.1.3.2. Preprocessing Step

In the preprocessing step, the cell, face, and edge information for each process

was determined. For each local node on a process, the cells, faces, and edges con-

nected to that node were necessary to fully define the local processor mesh. These

criteria meant that along the process boundary, there was always an overlap with

the neighboring processes. These overlapping cells are shown in gray in Figure III.1.

The local mesh for each process contained some number of non-local nodes. For

each of those nodes, the process number on which it was local and the local number

on that process was determined. This information was used in the initialization step

to create the final list nodes describing the communication step.

III.1.3.3. Initialization Step

The initialization step was performed once at start-up for the RANS solver.

Each process created two lists: 1) a list of nodes for which data was needed from

other processes (receive nodes) and 2) a list of nodes from which other processes

needed data (send nodes). The receive nodes were exactly the list of nodes created

by the preprocessing step. In order to generate the list of send nodes, each process

performed the following steps:

1. The receive nodes were sorted and counted based on the process for which

those nodes were local (the sending process).

2. The node count for each sending process was sent to that process.

3. The node count was received by each process.
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4. The node list for each sending process with at least one send node was sent to

that process.

5. The node list was received by each process which had at least one send node.

The send node list was created by compiling all of the node lists sent from the

receiving processes. Depending on how the original mesh was split, the same node

could have been required by several processes (i.e. it could have been non-local on

more than one process). However, each node was local on a single process, meaning

that only one process would send the information of any given node.

III.1.3.4. Communication Step

The communication step occurred each time the gradients or state variables at

each node were updated. In this step, each process sent values for its send nodes

to the appropriate receiving processes, and received values for its receive nodes from

the appropriate sending processes. The values of the state variables for each com-

munication node were updated before any further computation.

The details of the communication were determined by the available implemen-

tation of MPI. For older setups, when only MPI 2.0 is available, the parallelization

is accomplished through a series of MPI ISEND and MPI IRECV commands. Each pro-

cess sent an individual message to every process that requested information from it.

Likewise, each process received an individual message from every process from which

it requested information. This meant that for a simulation with n processes, there

were up to 2n(n− 1) individual communications between the processes.

When MPI 3.0 was available, a new feature was used, known as non-blocking
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collective message passing [71]. The procedure which implements this feature,

MPI INEIGHBOR ALLTOALLV, uses a distributed graph topology to communicate all

requested nodes in a single collective communication. The actual amount of data

communication was no less than that in the mass of individual communications, but

the complexity was managed by the MPI commands. The primary benefit of using

collective communications was that they can be optimized for the architecture of the

computer running the simulation.

III.2. Finite Element Solver for Structural Elasticity and Thermal-Diffusion

The finite element method was employed to convert the boundary-value prob-

lems posed in Sections II.2 and II.3 into sets of ordinary differential equations.

Quadratic 20-node serendipity elements were used to discretize the structure. For

each element, the displacement u and temperature T were given by a summation of

shape functions ψ:

~u(~x) =
20∑
N=1

~uNψN(~x) T (~x) =
20∑
N=1

TNψN(~x), (3.10)

where the ~uN and TN are the nodal values at node N of the displacement and

temperature, respectively. ψ is defined as a second order polynomial in x, y, and z

such that:

ψI(~xJ) =

 1, I = J

0, I 6= J

, (3.11)

where ~xJ is the location of node J .
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III.2.1. Discretization of Structural Elasticity Solver

Equation (2.9) was formulated in the weak form using a test function δu. This

is written using Einstein notation as follows:∫
Ω

δu

(
ρm

∂2ui
∂t2

)
dV =

∫
Ω

δu

(
∂

∂xj
σij

)
dV, i = 1, 2, 3 (3.12)

Using integration by parts and Gauss’s divergence theorem, the weak form is

simplified to:∫
Ω

δu

(
ρm

∂2ui
∂t2

)
dV =

∫
∂Ω

(δuσijnj) dS −
∫

Ω

(
∂δu

∂xj
σij

)
dV, (3.13)

where nj is the j component of the unit vector n̂, which is normal to the boundary.

In order to discretize the structural elasticity equation, u and δu were replaced

in (3.13) by shape functions based on (3.10):

ρm

20∑
n=1

[∫
Ω

ψMψNdV
∂2uNi
∂t2

]
=

∫
∂Ω

(
ψMσijnj

)
dS

−
20∑
n=1

[
Cijkl

2

(∫
Ω

∂ψM

∂xj

∂ψN

∂xl
dV uNk +

∫
Ω

∂ψM

∂xj

∂ψN

∂xk
dV uNl

)]

+
20∑
n=1

[
Cijklαkl

∫
Ω

∂ψM

∂xj
ψNdV∆TN

]
, (3.14)

The integrals of the shape function products were evaluated in a preprocessing step,

and (3.14) was simplified to the following:

Me
∂2ue
∂t2

=

∫
∂Ω

(
ψM~t

)
dS −Keue + F∆T,e, (3.15)

where Me is the elemental mass matrix, ~t = σ · n̂ is the traction on the surface of

the element, Ke is the elemental stiffness matrix, F∆T,e is the thermal load on the

element, ue is the vector of nodal displacements for the element, and
∫
∂Ω

(
ψM~t

)
dS

24



is the boundary traction term. Summation of (3.15) over all elements (also known

as assembly) accounts for each of the boundary terms on the interior, while the

remaining terms are determined based on the stresses applied to the boundaries of

the structure.

Assembly of the elemental equations yields the semi-discretized global structural

elasticity equation:

M
∂2u

∂t2
= −Ku + F∆T + Fbound, (3.16)

where M is the global mass matrix, K is the global stiffness matrix, F∆T is the ther-

mal load vector, u is the vector of nodal displacements, and Fbound is the boundary

load vector.

The temporal discretization was accomplished through the Newmark-beta method.

Representing the acceleration, velocity, and displacement at time tn as an, vn, and

un, respectively, the Newmark-beta method defines the following [72]:

un+1 = un + ∆t vn +
∆t2

2
an + β∆t2

(
an+1 − an

)
(3.17a)

vn+1 = vn + ∆t an + γ∆t
(
an+1 − an

)
, (3.17b)

where ∆t is the time step. γ and β are parameters of the Newmark-beta method, and

are set to 0.5 and 0.25, respectively to result in a second-order constant acceleration

scheme.

Substituting (3.17) into (3.16) results in the following time-stepping scheme:(
K +

1

β∆t2
M

)
un+1 = Fn+1

∆T + Fn+1
bound

+ M

(
1

β∆t2
un +

1

β∆t
vn +

(
1

2β
− 1

)
an
)

(3.18)

Equation (3.18) is solved for un+1 through LU decomposition.
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III.2.2. Discretization of Thermal-Diffusion Solver

The weak form of (2.12) was generated by multiplying it by a test function δT

and integrating over a volume Ω. The weak form is given as follows:∫
Ω

−δT ∂(ρmcT )

∂t
dV =

∫
Ω

δT

(
∂

∂xi
qi

)
dV (3.19)

Application of integration by parts and Gauss’s divergence theorem results in:∫
Ω

−δT ∂(ρmcT )

∂t
dV =

∫
∂Ω

δTqini dS −
∫

Ω

qi

(
∂

∂xi
δT

)
dV (3.20)

Similar to the discretization of the structural elasticity equation, (3.10) is used

to replace T and δT in (3.20):

ρmc
20∑
n=1

[∫
Ω

ψMψNdV
∂TN

∂t

]
= −

∫
∂Ω

ψMqini dS − κ
20∑
n=1

[∫
Ω

∂ψM

∂xi

∂ψN

∂xi
dV TN

]
(3.21)

The integrals of the shape function were evaluated in the preprocessing step, resulting

in the following simplification:

Me
∂Te

∂t
= −

∫
∂Ω

(
ψM~q · n̂

)
dS −KeTe, (3.22)

where Me and Ke are again the elemental mass and stiffness matrices, Te is the

vector of nodal temperatures, and
∫
∂Ω

(
ψMqini

)
dS is the boundary term. Assembly

of the elemental equations yields the semi-discretized thermal-diffusion equation:

M
∂T

∂t
= Qbound −KT, (3.23)

where M and K are again the global mass and stiffness matrices, T is the vector of

nodal temperatures, and Qbound is the boundary flux vector.
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For the thermal-diffusion equations, the alpha-family of approximations is used

[72]:

Tn+1 = Tn + ∆t

(
∂T

∂t

)n
+ α∆t

((
∂T

∂t

)n+1

−
(
∂T

∂t

)n)
(3.24)

with α = 0.5 for Crank-Nicolson’s scheme or α = 0.0 for the Euler forward difference

scheme.

Application of (3.24) to (3.23) yields:

(M + α∆t K) Tn+1 = (M−∆t (1− α) K) Tn

+ ∆t
(
α Qn+1

bound + (1− α) Qn
bound

)
(3.25)

Equation (3.25) is solved for Tn+1 through LU decomposition.

III.3. Coupling Algorithm

A three-way coupling algorithm was implemented to satisfy the boundary con-

ditions in Section II.4. The simplest and most stable [73] means of coupling is

to implement Dirichlet boundary conditions on the fluid, while imposing Neumann

boundary conditions on the solid. Therefore, the traction and heat flux on the surface

are calculated in the RANS solver and given to the structural elastic and thermal-

diffusion solvers as boundary conditions. Likewise, the deformation and tempera-

ture are determined in the structural elastic and thermal-diffusion solvers and set as

boundary conditions in the RANS solver. In the case of (2.13a), (2.14a), and (2.15),

the coupling terms are built into the finite element models as Fbound, Qbound, and

F∆T , respectively. (2.13b) and (2.14b) are applied to the boundary conditions of the

RANS solver.
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For non-matching boundary meshes, the values of force, displacement, temper-

ature, and heat flux at each of the nodes were interpolated to communicate between

the RANS and FEM solvers. For the present study, the nodes were matched on the

shared boundary, so no mapping of values was necessary. The nodal displacements,

forces, heat flux, and temperature were directly communicated using a Message Pass-

ing Interface between the various solvers in the coupled algorithm.

III.3.1. Data Dependencies

The structure of the coupling algorithm is determined by the data dependencies

between the solvers, which are shown in Figure III.2. In order to determine the

flowfield at time tn+1, the RANS solver requires the temperature and position of the

boundary at time tn+1, represented as Tn+1 and xn+1, respectively.

Simultaneous dependencies were avoided between the thermal-diffusion solver

and the RANS solver by implementing the Euler forward difference scheme so that

only qn was required from the RANS solver. While the Euler forward difference

scheme places requirements on the time step to maintain stability, these requirements

are typically less strict than those of the RANS solver, due to the long time scale of

the thermal solution.

In order to integrate using the Newmark-beta scheme, the structural elasticity

solver requires both the boundary forces and internal temperatures at time tn+1, rep-

resented as Tn+1 and pn+1, respectively. Note that the RANS solver and structural

elasticity solver have simultaneous dependencies, which must be resolved through a

method such as interfield iteration [57].
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Figure III.2: Data dependencies in the aerothermoelastic coupled solver.

III.3.2. Aerothermal Coupling

Because the Euler forward difference scheme was used to calculate the evolution

of the temperature in the thermal-diffusion solver, the heat flux was calculated in

the aerodynamic solver at time tn. This was accomplished differently for the RANS,

piston theory, and Euler solvers. With the RANS model, the heat flux was calculated

using Fourier’s Law on the boundary. If the piston theory or Euler solvers were

used, the heat flux into the coupled surface was either specified or calculated using a

convective constant h, such that q = h(T0,∞−Tw). q is the heat flux into the surface,

T0,∞ is the adiabatic wall temperature, and Tw is the current wall temperature. The

convective constant h was chosen depending on the requirements of the simulation.

For the aerothermoelastic studies in Chapter VI, h represented the time required

to heat the panel. Larger h reduced the computational cost of a simulation, while

smaller h provided greater accuracy when determining threshold temperatures.

After communication of the heat flux, the temperature at time tn+1 was calcu-
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lated, communicated to the RANS solver, and used as the boundary condition for

the pseudo-time iteration for time tn+1.

III.3.3. Aeroelastic Coupling

A modified interfield iteration method was applied to satisfy the simultaneous

dependencies of the RANS solver and structural elasticity solver. For standard inter-

field iteration, the entire time step is repeated, with updated boundary conditions for

each iteration, as seen in Figure III.3a. This requires that the lengthy pseudo-time

convergence process for the RANS solver be repeated. The modified method only

requires partial convergence through each iteration, and then updates the original

guess for the RANS solver before the next iteration, as seen in Figure III.3b. This

modification significantly reduces the required number of pseudo-time steps between

iterations, therefore shortening the total computation time.

III.3.4. Aerothermoelastic Coupling

The coupling algorithm was composed of the following steps:

1. The heat flux into the coupled surface at time tn was calculated by the RANS

solver and was passed to the thermal-diffusion solver.

2. The thermal-diffusion solver calculated the temperature in the entire structural

domain at time tn+1 using forward Euler integration. The temperatures of the

full domain were passed to the structural elasticity solver. The temperatures

at the shared boundary were passed to the RANS solver.

3. The forces on the coupled surface were calculated by the RANS solver at time
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(a) Original interfield iteration procedure.
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(b) Modified interfield iteration procedure.

Figure III.3: Comparison of iteration procedures. The steps are as follows: Step 0

– Boundary load prediction using previous time step. Step 1 – Time integration

using Newmark-beta scheme. Step 2 – Correction of boundary position. Step 3 –

Pseudo-time iteration to convergence. Step 3* – Pseudo-time iteration to partial

convergence. Step 4 – Correction of boundary load. Step 5 – Update of initial

guess.

tn and were passed to the structural elasticity solver.

4. The structural elasticity solver calculated the deformations over the entire

structural domain, including the effects of thermal expansion, passing the de-

formation of the shared surface to the RANS solver.

5. The RANS solver partially converged the solution through iteration in pseudo-

time and updated the forces on the shared boundary, passing the corrected

loads to the structural elasticity solver.

6. If the loads had been modified significantly from the previous iteration, steps 4

and 5 are repeated. Otherwise, computation proceeded to the next time step.
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III.3.5. Aerodynamic Domain Grid Deformation

The structural elastic solver specifies the evolving deformation of the structural

domain. As expressed in (2.13b), the deformation of the domains for the aerody-

namic and structural solvers were required to match on the shared boundary. The

deformation of the structural domain is specified by (2.9). The deformation of the

mesh within the aerodynamic domain is only constrained by (2.13b). To maintain a

high quality aerodynamic mesh, radial basis function interpolation [74, 75] was used

to interpolate the deformation on the boundary to the interior of the domain.

The radial basis function interpolation of a scalar function f is defined as [76]:

f(~x) =

Nb∑
i=1

aiφ (‖~x− ~xbi‖) + ψ(~x), (3.26)

where Nb is the number of boundary nodes, φ is the radial basis function, ~x is the

location within the aerodynamic domain, ~xbi is the location of boundary node i,

ψ(~x) = b0 + b1x+ b2y + b3z is a linear polynomial, and the coefficients ai and b0, b1,

b2, and b3 are the solution of the radial basis function interpolation problem. Because

this is a scalar formulation, separate interpolation functions are required to find the

deformation in x, y, and z.

As an interpolation, the evaluation of f on the boundary nodes must be exact:

f(~xbi) = dbi , (3.27)

where dbi is the displacement of boundary node i in x, y, or z. This results in Nb

equations:

f(~xbi) =

Nb∑
j=1

ajφij + ψ(~xbi) = dbi , i = 1, ..., Nb, (3.28)
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where φij = φ
(
‖~xbj − ~xbi‖

)
.

Four additional constraints are necessary because of the four parameters b0, b1,

b2, and b3. These constraints are:

Nb∑
i=1

ai = 0

Nb∑
i=1

ai~xbi = ~0 (3.29)

Together, these Nb + 4 constraints form a system of equations [76]:M P

PT 0


a

b

 =

db

0

 , (3.30)

where a= {a1, a2, . . . , an}T, b= {b0, b1, b2, b3}T, db = {db1 , db2 , . . . , dbn}
T.

M and P are defined as:

M =



φ11 φ12 . . . φ1n

φ21 φ22 . . . φ2n

...
...

. . .
...

φn1 φn2 . . . φnn


P =



1 xb1 yb1 zb1

1 xb2 yb2 zb2

...
...

...
...

1 xbn ybn zbn


Once (3.30) is solved for a and b, (3.26) can be evaluated for each node in

the aerodynamic mesh, resulting in a smooth, high-quality mesh which conforms to

the required deformation on the shared boundary of the structural and aerodynamic

solver.
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CHAPTER IV

HYPERSONIC AERODYNAMICS∗

In this chapter, the stand-alone RANS solver is validated for hypersonic heat

transfer. Once validated, numerical simulations are performed on a hypersonic

double-wedge airfoil, calculating heat flux variations under a variety of flow con-

ditions.

IV.1. Hypersonic Flow Solver Validation

The hypersonic flow solver is the key component of the aerothermal, aeroelastic,

and aerothermoelastic solvers. Consequently, it is critical that it correctly predict

the loads and heat transfer rates. In the original code, the carbuncle phenomenon

caused a great deal of inaccuracy in the heat transfer rate prediction. For this

reason, modifications were made to increase the accuracy of the hypersonic flow

solver. Because very little data exists to validate the coupled solvers, validation

is presented for the stand-alone hypersonic solver. This validation focuses on heat

transfer predictions for known problems.

Two validation cases were performed for the standalone hypersonic flow solver.

The first of these tested the effectiveness of the new flux function, RoeM, which was

implemented to address the carbuncle phenomenon. The validation case, therefore,

∗Reprinted with permission from “Numerical Investigation of Actively Cooled Structures in

Hypersonic Flow” by Robert L. Brown, Kaushik Das, Paul G. A. Cizmas, and John D. Whitcomb,

2014. Journal of Aircraft, Vol. 51, No. 5, 1522-1531, Copyright 2013 by Robert L. Brown, Kaushik

Das, Paul G. A. Cizmas, and John D. Whitcomb.
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is hypersonic flow on a blunt body. The peak heat flux calculated by the flow solver

is compared to that predicted by the Fay-Riddell equation [8].

The second validation case for the standalone hypersonic flow solver tested the

heat flux along a flat plate. It is expected that the heat flux for a flat plate can

be reasonably modeled using compressible boundary layer flow [77]. The heat fluxes

calculated both using the hypersonic solver and boundary layer flow are compared

for a flat plate with no angle of attack.

IV.1.1. Blunt Body Heat Flux in Hypersonic Flow

The heat flux generated by hypersonic flow around a cylinder was predicted using

the RANS flow solver and a semi-empirical equation proposed by Fay and Riddell

[8]. The Fay–Riddell equation predicts the peak heat flux, qFR, at the leading edge

of the cylinder:

qFR = 0.76Pr−0.6(ρeµe)
0.4(ρwµw)0.1

√
K (h0∞ − hw) , (4.1)

where Pr is the Prandtl number, ρe and µe are the density and viscosity behind the

shock, ρw and µw are the density and viscosity at the wall, K is the velocity gradient

at the edge of the boundary layer, h0∞ is the far-field stagnation enthalpy, and hw is

the enthalpy at the wall.

The velocity gradient K at high Mach numbers can be approximated using

Newtonian impact theory and Bernoulli’s equation, which results in [6]:

K =
du

dx

∣∣∣∣
e

≈ U∞
D

√
8ρ∞
ρe

(
1− p∞

pe

)
(4.2)

The edge velocity gradient K predicted using (4.2) is uniformly too large compared

to the experimental data of Korobkin [7], as shown in Figure IV.1. To correct this
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discrepancy, herein a least-squares fit of the experimental data was used to scale

the edge velocity gradient. The scaling factor was found to be 0.958, so that the

expression of the edge velocity gradient becomes

K =
du

dx

∣∣∣∣
e

≈ 0.958
U∞
D

√
8ρ∞
ρe

(
1− p∞

pe

)
. (4.3)

Figure IV.1 shows good agreement of the edge velocity gradient obtained from the

experimental data and the scaled correction to Newtonian theory proposed herein.
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Figure IV.1: Circular cylinder leading edge velocity gradient versus Mach number.

Experimental data [7] is compared to Newtonian impact theory and scaled Newtonian

theory.

The flow over a cylinder with radius 0.5 mm was simulated assuming a wall tem-

perature, Tw, of 800 K and a Mach number, M∞, of 8, at an altitude of 25 km. For

these conditions, the Fay–Riddell equation predicts a peak heat flux of 11.448 MW/m2
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Figure IV.2: Heat flux variation on a hypersonic cylinder. The cylinder has a wall

temperature of 800 K and is subjected to flow at Mach 8 and 25 km altitude. Nu-

merical [RANS] and analytical [Fay–Riddell] predictions are shown.

when using the scaled edge velocity gradient (4.3).

The RANS flow solver described in Section III was used to predict the peak

heat flux on three meshes of increasing refinement. The coarsest mesh had 20 points

evenly spaced over the surface, 1.4 radians in each direction from the stagnation

point. 40 points were distributed normal to the surface to a distance 0.5 mm from

the surface. The height of the cells adjacent to the wall was 1.6 µm for the coarsest

mesh, which was chosen so that the maximum y+ number was approximately 2. With

each successive refinement, the number of points in each direction was doubled, and

the height of the cells adjacent to the wall was reduced by half. RANS simulation

using the finest grid resulted in a peak heat flux prediction of 11.248 MW/m2, which
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is approximately 1.75% less than that predicted by (4.1). The distribution of heat

flux over the front of the cylinder is shown in Figure IV.2. The solutions for all three

meshes are free from the distortions normally associated with the carbuncle effect.

IV.1.2. Heat Flux on a Flat Plate in Hypersonic Flow

The regions away from the leading edge and the inflection points at mid-chord

on a double-wedge airfoil can be reasonably modeled with flat plate boundary layer

governing equations. Since these regions make up most of the surface of the airfoil,

the validation of heat flux rates over a flat plate was performed. Heat flux rates were

calculated for a flat plate parallel to the flow using both the solution to the boundary

layer equations [77] and RANS simulations. This plate was simulated at a speed of

Mach 5 through air at sea level. The temperature of the plate was set to 400 K.

Three meshes of increasing refinement were used to assess solution grid indepen-

dence for RANS simulations. Each mesh covered 50 mm in the x direction, which

was the direction oriented with the flow, and 20 mm in the y direction, which was

normal to the plate. The coarsest mesh had 50 and 100 nodes in the x and y direc-

tions, respectively. The cell adjacent to the wall at the leading edge had a height of

1 µm, which was chosen to yield a y+ number of less than 1 past 2 mm from the

leading edge. The length of the same cell was 100 µm. A constant growth ratio

of 1.076 was used in each direction. For each successive refinement, the number of

nodes in each direction was doubled, and the initial spacing was cut in half.

Figure IV.3 shows the heat flux rates calculated by the RANS solver, compared

to those predicted using the solution to the boundary layer equations. The heat
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Table IV.1: Grid convergence study for a flat plate.

Grid Data [µm] Output Coef.b

Model ∆x1
a ∆y1

a A [kW/m2] k [–]

RANS Coarse 100.0 1.00 487.5 -0.4639

Medium 50.0 0.50 493.6 -0.4806

Fine 25.0 0.25 497.6 -0.4911

Boundary Layer – – 507.0 -0.5000

a x and y grid spacing at the leading edge.
b Coefficients in the equation: qw(x) = A (x/(25mm))

k
.

flux values are nearly identical between the three cases, especially far away from

the leading edge. Table IV.1 shows a summary of results from the three RANS

simulations and the solution to the boundary layer equations. The solution of the

boundary layer equations predicted a curve of the form qw = Axk. Fits to this curve

were calculated for results from each of the RANS simulations. As the mesh was

refined, both coefficients A and k approached the values calculated with boundary

layer analysis, indicating that the RANS solver can accurately capture the heat flux

profile over the flat regions of the airfoil.

IV.2. Heat Flux on a Double-Wedge Airfoil with Isothermal Walls

The flow over the double-wedge airfoil shown in Figure IV.4 was simulated with

the following conditions, chosen to include a representative envelope for a vehicle in

hypersonic cruise: Mach number ranging from 3 to 8, altitude ranging from sea level

to 45 km, and wall temperature ranging from 400 K to 800 K. The geometry of the
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Figure IV.3: Heat flux on a hypersonic flat plate. The heat flux is calculated using

compressible Blasius flow and the RANS solver on a medium and coarse grid.

airfoil was chosen to be the root airfoil of the fin defined by [78, 79], except that

the leading edge was rounded with a radius of curvature of 5 mm. This value was

chosen to avoid the heat flux singularity that occurs as the leading edge diameter,

D, approaches zero in (4.3).

Unless otherwise indicated, the simulations were run with an angle of attack of

0.6 degrees. A grid convergence study was completed first to determine the mesh

that provides the best compromise between accuracy and computational cost. Addi-

tionally, studies were performed to determine the effect of angle of attack, altitude,

speed, and wall temperature on the heat flux into the airfoil.
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Figure IV.4: Double-wedge airfoil geometry. The leading edge is rounded with a

radius of curvature of 5 mm. Without the rounded leading edge, the airfoil would

be 5.2 m long.

IV.2.1. Grid Convergence Study

A grid convergence study was performed to ensure that the solution was grid

independent. High refinement was necessary in regions where the flow direction

changed. For this reason, the grids tested had more nodes near the midpoint and

leading and trailing edges than over the rest of the airfoil. Points were also clustered

near the surface of the airfoil to capture the boundary layer. Figure IV.5 shows

the region of the coarse mesh immediately surrounding the wedge airfoil. For each

successive refinement, the initial spacing along the chord at the leading edge, trailing

edge, and midpoint were halved, and the number of points on the airfoil surface was

doubled. Additionally, the initial spacing normal to the surface of the airfoil was

halved with each refinement.

A summary of the results is given in Table IV.2, and the chordwise variation

of the heat flux for each of the grids is shown in Figure IV.6. The results showed
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Figure IV.5: Zoomed view of coarse mesh near the double-wedge airfoil.

Table IV.2: Grid convergence study for a wedge airfoil.

Grid Spacings [µm] Heat Flux [kW/m2]

Na ∆sLE
b ∆smid

b ∆sTE
b ∆y1

c qLE
d qavg

d CPU Time [hr]

Coarse 150 1200 8000 1600 200 139.5 1.110 1.06

Medium 300 600 4000 800 100 186.6 1.271 4.68

Fine 600 300 2000 400 50 188.6 1.360 13.16

a Number of points on airfoil.
b Chordwise grid spacing (LE – leading edge, mid – midpoint, TE – trailing edge).
c Grid spacing normal to airfoil surface d Heat flux (LE – leading edge, avg – averaged over airfoil).

no appreciable change in the heat flux as the mesh was refined. The distribution of

heat flux over the airfoil did not significantly change between the medium and fine

grids, indicating that the numerical solution is grid independent.
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Figure IV.6: Heat flux at the airfoil surface calculated by the RANS solver. The flow

was simulated at Mach 5, 45 km altitude, with a wall temperature of 800 K.

IV.2.2. Angle of Attack Variation

This section investigates the dependence of the heat flux on the angle of attack.

The angle of attack of an airfoil is dictated by the flight conditions of the vehicle.

The analysis is motivated by the possibility that a significant change in heat flux due

to angle of attack variation could limit the flight envelope.

In this analysis, the altitude and speed were set to 45 km and Mach 5, respec-

tively. The heat flux profile was calculated over the airfoil as the angle of attack was

varied between -10 and 10 degrees.

Figure IV.7 shows the increase in heat flux due to angle of attack on the bottom

surface of the airfoil for angles of attack from 1 degree to 5 degrees. The leading edge

shows the smallest percentage change due to angle of attack. For all angles of attack,
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local maxima occur near 21% chord (x = 1.1 m), 82% chord (x = 4.3 m), and 100%

chord (x = 5.2 m). The percentage change remains relatively constant over the flat

regions of the airfoil, with disturbances near the inflection point at midchord and at

the trailing edge. At 5 degrees angle of attack, the heat flux increases at most 68%

due to the increased angle of attack, and does not exceed 60% over the first half of

the airfoil, where absolute heat flux values are higher. This is a significant increase

that must be taken into account during the design of cooling systems.

Figure IV.8 shows the heat flux variation with angle of attack for three points

on the bottom surface of the airfoil: 4% chord (x = 0.2 m), 20% chord (x = 1.0 m),

and 82% chord (x = 4.2 m). The average heat fluxes over the entire airfoil and on the

bottom surface are also shown. Although the percentage increase was higher further

from the leading edge, the largest change occurred immediately past the leading edge

of the airfoil.
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due to angle of attack. Flow conditions are Mach 5, 45 km altitude, with a wall

temperature of 800 K.
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IV.2.3. Flight Environment Variation

This section presents the effect of flight conditions on the heat flux into the

airfoil. Simulations were performed for Mach numbers ranging from 3 to 8, for wall

temperatures ranging from 400 K to 800 K, and for altitudes ranging from sea level

to 45 km. These results were then used to develop flight envelopes for different levels

of acceptable heat flux.

Figure IV.9 shows the heat flux variation with Mach number at several chordwise

positions for the subset of the cases run at an altitude of 25 km and a wall temperature

of 800 K. Cooling is required to maintain a wall temperature of 800 K at speeds

exceeding Mach 4. At speeds slower than Mach 4, the adiabatic wall temperature is

cooler than 800 K, and the flow cools the structure instead of heating it.

The cooling requirements at 4% chord (x = 0.2 m) are 3 to 4 times larger than

the heat flux at 20% chord (x = 1.0 m). This difference is significant enough to

suggest that the cooling at the leading edge should be handled separately from cooling

over the rest of the airfoil.

Figure IV.10 shows the limitations to the flight envelope of the double-wedge

airfoil due to the available average cooling and the allowable wall temperature. The

maximum speed increases significantly as altitude is increased for a given heat flux

and wall temperature. To fly at lower altitudes and/or higher speeds, the average

heat flux and/or the allowable wall temperature must be increased. This indicates

a trade-off between the cooling system, the materials and structure, and the flight

envelope of the airfoil.
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CHAPTER V

HYPERSONIC AERODYNAMICS WITH THERMAL COUPLING∗

This chapter presents the validation of the coupled aerothermal solver, followed

by numerical results for a hypersonic double-wedge airfoil with several internal active

cooling profiles.

V.1. Aerothermal Solver Validation – Spherical Protuberance

The validation of the aerothermal solver was designed to ensure the accurate

handling of the communicated heat flux and temperature between the RANS solver

and the thermal-diffusion solver. Since the individual solvers have already been

validated, this was solely a validation of the communication technique. The chosen

validation case was a spherical protuberance of a flat plate in hypersonic flow.

Hypersonic flow over a spherical protuberance has previously been studied ex-

perimentally by [80] and later computationally by [81], which form the basis for the

present simulation. The spherical protuberance used here matched the computa-

tional study in [81] and run 14 in [80]. The protuberance was 28 inches in diameter

with a height of 0.76 inches. It was attached to a flat plate subject to a Mach 6.59

flow at 5 degrees angle of attack, with a boundary layer developed over 57.8 inches,

resulting in a boundary layer height of 12.7 mm.

∗Section V.2 reprinted with permission from “Numerical Investigation of Actively Cooled Struc-

tures in Hypersonic Flow” by Robert L. Brown, Kaushik Das, Paul G. A. Cizmas, and John D.

Whitcomb, 2014. Journal of Aircraft, Vol. 51, No. 5, 1522-1531, Copyright 2013 by Robert L.

Brown, Kaushik Das, Paul G. A. Cizmas, and John D. Whitcomb.
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Table V.1: Spherical protuberance boundary layer grid summary.

si
a (s = 0.82m) sc

b (s = 1.48m)

NLE Ns Ny y1 (µm) y+ NBL y1 (µm) y+ NBL

Coarse 30 80 120 181.7 3.84 38 244.5 4.46 36

Medium 40 130 160 90.9 1.98 65 122.3 2.28 60

Fine 60 210 200 45.4 1.00 91 61.1 1.15 86

a Spherical protuberance inlet location b Location of comparison to experiment

V.1.1. Calculation of Boundary Layer

To determine the boundary layer profile at the inlet of the spherical protuberance

region, a two-dimensional representation of the experimental setup of Glass [80] was

simulated. The simulation was performed on coarse, medium and fine grids, which

are described in Table V.1. Figure V.1 shows the relationship between the 2D flat

plate domain and the 3D spherical protuberance domain. Figure V.2 shows the

coarse mesh for the boundary layer domain.

The results of the grid convergence study can be seen in Figure V.3a, indicating

that the boundary layer given by the medium and fine grids are nearly identical.

The boundary layer on the medium grid was compared to both experimental [80]

and computational [81] data 1.48 m (58.1 inches) downstream of the leading edge.

This comparison is shown in Figure V.3b, and shows that we match both studies in

the region of flow close to the wall. The error increases further from the wall. At

y =50 mm, the error compared to previous computational data is 3.62%, and the

error compared to experimental data is 12.82%. This gives us good confidence in the

boundary conditions of our protuberance domain.
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Figure V.1: 2D and 3D domains for spherical protuberance study. The flat plate has

a rounded leading edge with a radius of curvature 9.65 mm, subject to a Mach 6.59

flow at 5 degrees angle of attack.

Figure V.2: Coarse mesh for 2D boundary layer domain.
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Figure V.3: Boundary layer profile comparison 1.48 m from the leading edge of the

flat plate.

V.1.2. Validation Setup

The domain extended from 1 m (1.41 protuberance lengths) in front of the center

of the dome to 2 m (2.81 protuberance lengths) behind it, with 1 m simulated on

either side. The top surface of the domain was 0.5 m (0.70 protuberance lengths)

from the wall.

The boundary conditions for the spherical protuberance are shown in Figure

V.4. The inlet and top surfaces of the domain were prescribed based on the boundary

layer calculated in Section V.1.1. The bottom surface was a viscous wall, set to a

temperature of 300 K for the grid convergence study, and coupled to the thermal-

diffusion solver for the aerothermal study. The outlet surface was defined by the

static pressure if the flow was supersonic, and defined by the Riemann invariant if
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Figure V.4: Boundary conditions for the spherical protuberance case.

the flow was subsonic. The sides, which are not pictured, were free-stream conditions

at Mach 6.59.

The spherical protuberance was meshed using Pointwise meshing software. The

surface of the dome was divided into five blocks: a square in the center, with four

structured domains surrounding it. These blocks were then smoothed using the

Laplace smoother in Pointwise. An O-grid was created around the dome, and a

structured grid was used in the wake area. The remaining area was filled with an

unstructured domain. The surface mesh can be seen in Figure V.5.

The mesh for the top surface was formed by projection of the surface mesh. The

nodes in the 3D volumes were specified algebraically with a hyperbolic tangent profile.

The spacing on the bottom surface was specified by the desired refinement and zero

curvature was specified on the top surface [82]. The completed three dimensional

mesh is shown in Figure V.6.
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DETAIL

Figure V.5: Surface mesh for the spherical protuberance case with medium in-plane

refinement.

Figure V.6: Spherical protuberance mesh with medium in-plane refinement and

coarse out-of-plane refinement.
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Table V.2: Spherical protuberance grid summary.

Out-of-plane Distribution Surface Mesh

Ny y1 Ncircle
a Nin

b Nout
c ∆s1

d Ntot
e

1 100 100 µm α 160 40 60 2.5 mm 19892

2 160 50 µm β 240 60 70 2.0 mm 39122

3 240 25 µm γ 320 80 80 1.5 mm 63417

a Number of points around circle b Number of points interior to circle
c Number of points exterior to circle d First cell spacing on circle boundary
e Number of total points on surface

V.1.3. Grid Convergence Study

In order to determine an appropriate mesh for the aerothermal validation, the

grid refinement was analyzed separately in the surface plane and perpendicular to

the surface. The heat flux variation due to the out-of plane refinement was analyzed

for three point distributions (labeled 1, 2, and 3). The heat flux variation due to the

refinement of the surface plane was analyzed for three surface meshes (labeled α, β,

and γ). In total, nine meshes were studied, which are indicated through combinations

of the out-of-plane point distributions and surface meshes. For instance, the mesh

generated from the coarsest out-of-plane point distribution and the medium surface

mesh is indicated as Mesh 1β. Details of the out-of-plane distributions and surface

meshes are given in Table V.2.

Figure V.7 shows the comparison between Mesh 2α and Mesh 2γ, which are

the coarsest and most refined surface meshes using the medium out-of-plane point

distribution. The primary difference between the two is in the region of increased
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Figure V.7: Comparison of heat flux between coarse and fine surface meshes with

medium out-of-plane point distribution.

heat flux due to the vortex formed off the sides of the spherical protuberance. For the

case with fine in-plane refinement, there is a clear double-lobed shape of the region

of increased heat flux. For the case with medium refinement, however, the vortex

region is single-lobed.

Figure V.8 shows the comparison between Mesh 1γ and Mesh 3γ, which use the

coarsest and most refined fine out-of-plane point distributions with the finest surface

mesh. There is very little qualitative difference between the two sets of results.

However, the fine case has a uniform increase in heat flux of about 1kW/m2 over the

entire domain. This suggests that the coarse case does not sufficiently resolve the

boundary layer to capture the heat flux.

Figure V.9 shows the comparison between Mesh 3α and Mesh 3γ, which are
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Figure V.8: Comparison of heat flux between coarse and fine out-of-plane point

distributions with fine surface mesh.

formed from the coarse and fine surface meshes using the finest out-of-plane point

distribution. Unfortunately, there is a clear anomaly in the heat flux of Mesh 3α.

Though the precise cause of the anomaly is not clear, the likely cause is the extreme

aspect ratio of the cells in the boundary layer. The aspect ratio has a maximum of

556.9 on the surface of the dome, calculated as the ratio of the maximum edge length

and the minimum edge length for a given cell.

Finally, the average heat flux measurements between the studied grids are com-

pared. Since we are primarily interested in the temperature evolution of the alu-

minum dome, only the dome is taken into account for these comparisons. As can

be seen in Figure V.10, there is very little difference between the two in-plane re-

finements (if the clearly anomalous calculations are omitted), and we approach a
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Figure V.9: Comparison of heat flux between coarse and fine surface meshes with

fine in-plane point distribution. The mesh generated using the coarse surface mesh

has an anomalous hot region, possibly due to excessive grid aspect ratio.
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Figure V.10: Comparison of heat flux averaged over the spherical protuberance for

all studied refinements. Filled symbol indicates anomalous result.

constant value as we refine in the out-of plane direction.

Based on the results from the grid convergence study, Mesh 2α was chosen for

the aerothermal investigation. The coarse in-plane refinement was chosen as there

was not enough difference between the solutions on the coarse and medium grids to

justify increasing the number of nodes by almost a factor of two, unless the finest

out-of-plane point distribution is used. This also motivated the choice of the medium

out-of-plane point distribution, which avoids the anomaly shown in Figure V.9.
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Figure V.11: Mesh used for thermal-diffusion solver.

V.1.4. Aerothermal Results

The aerothermal results require coupling the aerodynamic mesh to a thermal-

diffusion solver mesh. The thermal-diffusion mesh matches the surface mesh of the

aerodynamic solver exactly, and was extruded downward to generate the material

regions. This mesh is shown in Figure V.11. Only the dome itself, the region im-

mediately upstream and part of the downstream region was coupled to the thermal-

diffusion solver, while the rest was held at a constant temperature of 300 K. The

purpose of this was to reduce the size of the thermal-diffusion domain, as the solver

was not as extensively parallelized as the flow solver.

The variation of heat flux over the centerline of the dome is shown in Figure V.12

and is compared to the simulation of Ostoich [81] for thermally perfect gas. Unfortu-

nately, there is a significant discrepancy between the two simulations. However, this

is most likely due to Ostoich’s simulation using the combustion products of methane
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Figure V.12: Variation of the surface heat flux over the centerline of the spherical

protuberance.

and air, which more closely match the experimental setup. This significantly effects

both the ratio of specific heats, γ and the Prandtl number, which was assumed to

be 0.7 in the present analysis. Regardless, the trends of both simulations are nearly

identical, both in time and space.

Figure V.13 shows the temperature of the dome and surrounding ceramic tiling

at t = 5 s. The vortex created on the sides of the spherical protuberance causes

the greatest increase in temperature over the entire domain. The leeward half of the

dome itself also heats up significantly, though to a maximum temperature of 321.6 K,
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T [K]: 300 305 310 315 320 325 330

Figure V.13: Temperature in the thermal-diffusion domain at t = 5 s.

compared to the 330.8 K seen in the vortex region. This matches the trends seen in

[81].

Figure V.14 shows the temperature of the centerline of the thermal-diffusion

domain at t = 1, 5, and 10 s. There is very little variation through the thickness

of the dome, though significant variation can be seen through the thickness of the

ceramic tiling in front of and behind the dome. The thermal gradients present at

the leading and trailing edges of the dome indicate that the effect of thermal contact

between the aluminum dome and ceramic tiling is significant. All of these effects are

mirrored in the analysis by [81].

Although there are significant differences between the current analysis and the

simulations performed by [81], most of the discrepancies are likely due to the use of an

ideal gas model within the aerodynamic solver. All of the trends seen in the previous

analysis were mirrored here, which is a strong indication that the methodology used

is accurate and trustworthy for further analysis.
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Figure V.14: Temperature along the centerline of the thermal-diffusion domain at

t = 1, 5, and 10 s.

V.2. Heat Flux on a Double-Wedge Airfoil with Specified Internal Heat

Flux

This section investigates the resulting wall temperature on a double-wedge airfoil

with a specified internal heat flux. The external geometry of the airfoil was given in

Section IV.2. The internal geometry is specified in Figure V.15. The outer surface

of the airfoil is composed of Ti2AlC, a MAX phase ceramic. The middle layer and

the spars are NiTi, an alloy known for its shape memory properties. The interior

layer is a generic polymer matrix composite. The properties used for the simulation

of these materials is given in Table V.3. The resulting thermal resistance through

the airfoil skin is 0.65 m2K/kW. The change in temperature through the airfoil skin

is less than 20 K for the cases investigated in this section.
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Figure V.15: Geometry of the structure used in the aerothermal study. Each of the

three regions is 0.6 mm thick, for a total thickness of 1.8 mm. The spars are 2.0 mm

thick.

The external wall temperature was calculated for two flight conditions: (a)

Mach 5 at an altitude of 45 km and (b) Mach 8 at an altitude of 25 km. In both

cases, the airfoil had an angle of attack of 0.6 degrees, which caused a slight increase

in temperature on the pressure side compared to the suction side.

The heat flux necessary to maintain an external temperature of 800 K for both

flight conditions is shown in Figure V.16. However, this heat flux profile is complex,

and cannot reasonably be obtained with a real-world cooling system. To reduce the

complexity of the proposed cooling system, only piecewise constant cooling profiles

were investigated herein. Cooling is first applied uniformly over the entire airfoil at

several different levels. Then, the cooling at the leading edge is significantly aug-

mented. The effectiveness of each cooling system is evaluated in terms of reduction

of maximum temperature and minimization of temperature variation over the air-

foil. This analysis was done by coupling the flow and structural solvers described in
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Table V.3: Material thermal properties.

Thermal Cond., Density, Spec. Heat,

k [W/mK] ρ [kg/m3] c [J/kgK]

Ti2AlC 36.3 4110 809.8

SMAa 18.0 6450 836.8

PMCb 1.0 1600 1500.0

a NiTi shape memory alloy. b Polymer matrix composite.
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Figure V.16: Heat flux variation with chordwise position along a double-wedge airfoil.

Flow conditions are Mach 5 and 45 km altitude and at Mach 8 and 25 km altitude

with a wall temperature of 800 K.
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V.2.1. Constant Interior Cooling

In this section, chordwise constant cooling is applied to the interior of the skin

over the entire length of the airfoil. While this is the most straightforward means of

cooling the airfoil, it is also the least efficient.

There is a strong correlation between the temperature on the airfoil and the

applied cooling rate. Figure V.17a shows the airfoil temperature with respect to

cooling rate. Figure V.17b gives the normalized temperature change, which is defined

as ∆T/∆q. ∆T is the decrease in wall temperature due to an increase in the cooling

heat flux ∆q. The normalized temperature change is almost identical for all three

cooling cases, though there is a slight trend towards higher cooling levels being

less effective. This is likely due to increased density in the boundary layer as the

temperature drops.

Figures V.18a and V.18b show profiles of normalized temperature reduction

for flow at Mach 5 and 45 km altitude and flow at Mach 8 and 25 km altitude,

respectively. For both cases, the temperature at the leading edge was only slightly

affected by the applied cooling, and was close to the stagnation temperature of the

flow. The constant interior cooling also led to large temperature variations over the

airfoil. As shown in Figures V.18a and V.18b, the exterior wall temperature varied

from 1341 K to 310 K for an interior cooling rate of 1.0 kW/m2 at Mach 5 and

an altitude of 45 km, and from 2754 K to 1238 K for an interior cooling rate of

5.0 kW/m2 at Mach 8 and an altitude of 25 km.

The applied cooling rate was then varied between 0.2 and 1.0 kW/m2 for the

Mach 5 case and between 2.0 and 8.0 kW/m2 for the Mach 8 case. In these cases, in-
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Figure V.18: Chordwise variation of normalized temperature reduction and wall

temperature without cooling.
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creasing the applied cooling rate had almost no effect on the normalized temperature

reduction, which varied by less than 3%.

The application of constant interior cooling either does not adequately cool

the structure near the leading edge or overcools in other regions. Additionally, the

constant cooling results in large temperature variations in the chordwise direction.

V.2.2. Augmented Leading Edge Cooling

In this section, high cooling heat fluxes were applied to the leading edge region

of the thermal protection system, and moderate cooling was applied over the rest of

the airfoil. Two cooling heat flux profiles were considered herein. Profile A consisted

of a cooling rate of 7.5 kW/m2 over the first 4% of the airfoil and a cooling rate

of 0.4 kW/m2 over the rest of the airfoil. Profile B consisted of a cooling rate of

3.75 kW/m2 over the first 8% of the airfoil and a cooling rate of 0.4 kW/m2 over the

rest of the airfoil. Figure V.19 shows the heat flux variation vs. chordwise position

for profiles A and B, and for a heat flux that generates a constant wall temperature

of 800 K.

Figure V.20 shows the normalized temperature reduction for the two cooling

profiles applied on the interior of the airfoil. In both cases, the temperature difference

is normalized by the average interior heat flux. Both the maximum temperature and

the temperature variation over the airfoil were significantly reduced compared to the

constant interior cooling case for comparable values of total cooling. However, the

temperature variation was much more significant near the leading edge, which can

result in large thermal stresses. Table V.4 summarizes the results for the constant
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interior cooling case presented in section V.2.1 and the cases defined by cooling

profiles A and B. While there is still significant room for optimization, the cooling

distributions investigated promise the possibility of useful temperature distributions

across the entire airfoil with relatively simple cooling systems.

Table V.4: Evaluation of cooling schemes.

qavg
a [kW/m2] Tmax

b [K] Tmin
b [K] (∇T )max

c [K/mm]

Const. 1.00 1341 310 0.85

A 0.68 1038 408 4.44

B 0.66 1198 564 2.32

a Average cooling on interior surface of airfoil b Maximum (max) and minimum

(min) temperature c Maximum temperature gradient
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CHAPTER VI

AEROTHERMOELASTIC PANEL FLUTTER

This chapter presents a numerical investigation of aerothermoelastic panel flut-

ter. The first section covers the verification of the coupled aerothermoelastic solver.

Verification is accomplished by comparing the flutter response of a square panel to

that described in [31]. The second section shows the use of the verified solver for

the simulation of panel flutter for several configurations of deformable substructure.

These configurations were motivated by panel concepts presented in [3] and [83]. The

response of the panels with substructure are contrasted to theoretical homogenized

panels, and the importance of simulating the full substructure is highlighted.

VI.1. Aerothermoelastic Solver Verification – Panel Flutter

The verification case for the aerothermoelastic solver was designed to test the

communication between the three coupled solvers (aerodynamic, elastic, and ther-

mal). The chosen verification case was flutter of a square panel subject to hypersonic

flow and temperature variation. We will compare our results to those of Xue and

Mei [31].

VI.1.1. Methodology

The response of a square panel subject to hypersonic flow was studied herein

using the structural elastic and thermal solvers coupled with either a piston theory

or an Euler aerodynamics solver. The results of our analysis, specifically the bound-
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Figure VI.1: Neat panel for aeroelastic panel flutter.

aries between panel responses, will be compared to those of Xue and Mei [31], who

performed eigenvalue analysis on panels.

Xue and Mei [31] used the Finite Element Method defined by von Kármán’s

plate theory for an analysis of the aeroelastic eigensystem. In contrast, the analysis

described herein uses the Finite Element Method for brick elements using the Total

Lagrangian formulation for unsteady aerothermoelastic analysis. Xue and Mei used

simply supported boundaries on all four sides of the panel. To implement a simi-

lar boundary condition, the intersection of the midplane of the panel and the side

surfaces was restrained in displacement (~u = ~0). A diagram of the panel is given in

Figure VI.1.

The panel was discretized using 722 20-node hexahedral brick elements (two

elements through the thickness, and 19 elements along the width and length), as

shown in Figure VI.2. The panel material properties, properties of the airflow, and

the panel dimensions are all given in Table VI.1.

To evaluate the effect of temperature on the stability of the panel, the panel was
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Figure VI.2: Mesh for neat panel.

Table VI.1: Parameters for aeroelastic panel flutter.

Material Properties Air Properties Panel Dimensions

E 200 GPa M∞ 5.0 a 0.5 m

ν 0.3 p∞/λ 2560 Pa h 5.0 mm

ρm 7850 kg/m3 ρ∞/λ 29.7 g/m3 Nx
‡ 19

α 10.5·10−6/K T∞ 300.0 K Ny
‡ 2

κ 237 MW/m2K λ† 0-600 Nz
‡ 19

†Non-dimensional pressure parameter ‡Number of elements in x, y, and z
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slowly heated. To match the analysis of Xue and Mei [31], the spatial distribution

of temperature should remain uniform at every time, which matches the analysis

of Mei [31]. To mimic a uniform temperature distribution with our solver, a heat

flux boundary condition was applied on the top of the panel in the thermal diffusion

solver, and the thermal conductivity of the panel material was increased by a factor

of 106. This was found to reduce the temperature variation in the panel to below

0.2K throughout the entire simulation.

Based on the analytical loading of a panel [84], the critical temperature for a

rectangular panel with length a, width b, and height h is:

∆Tcr =
π2h2

12α(1 + ν)

(
1

a2
+

1

b2

)
(6.1)

VI.1.2. Comparison of Time-domain and Eigensystem Analyses

The method of Xue and Mei [31] produced the boundaries of different panel

behaviors (stable, limit-cycle, buckled, and snap-through). In constrast, the time-

domain aerothermoelastic solver produced a time history of the displacement of each

node of the panel. Each panel behavior given by Xue and Mei [31] can be related to

panel response in the time history of displacement. A stable response is one in which

vibrations in the panel are damped out over time. Limit-cycle oscillations (LCO) are

vibrations which grow exponentially, but are bounded by the nonlinear treatment of

the structural solver. A buckled response is static over time, but is deflected from

the undeformed position. Finally, snap-through is a chaotic response which oscillates

between two buckled equilibrium locations.

The boundary between stable panel response and LCO was determined through
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the following methodology. First, the average displacement, velocity, and kinetic

energy of the panel were calculated over time. Then, a moving polynomial regression

was performed to determine the mean motion of the panel due to thermal stresses.

The mean motion of the panel, however small, overshadowed the initial vibrations

caused as the panel transitioned to LCO, as seen in Figure VI.3. Mean motion was

therefore discarded to isolate the vibration of the panel. This process is discussed

further in Appendix E. Finally, the growth or decay of panel vibration is used to

determine the transition from a stable response to LCO.
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The boundaries between harmonic LCO, non-harmonic LCO, and snap-through

were identified with the phase-plot of average out-of-plane displacement and velocity

and the variation of the panel kinetic energy over time. Repeating patterns in the

phase plot are indicative of LCO. If no repeating pattern exists, the phase plot

is indicative of snap-through. Harmonic LCO is caused by sinusoidal motion of

a single predominant vibrational mode, and can be characterized by an elliptical

phase plot and a smoothly oscillating kinetic energy profile. Non-harmonic LCO

is characterized by a complex repeating phase plot [85] (slowly growing in size due

to the temperature increases over time) and a jagged kinetic energy profile. Snap-

through is characterized by a chaotic phase plot, typically switching between the two

stably buckled locations at random intervals.

Figure VI.4 demonstrates the process of regime identification for panel flutter

at λ = 234. The transition to non-harmonic LCO occurs almost immediately af-

ter the transition to harmonic LCO, so stable harmonic LCO was not witnessed.

Snap-through can also be seen in the kinetic energy profile as a switching between

exponential decay and sudden resurgence to LCO energies. Finally, the transition

to buckling occurs when the panel no longer receives enough energy from the flow

to snap between the buckled states and oscillations around one of the buckled states

are damped out. The average panel displacement will continue to increase as the

temperature is increased.
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Figure VI.4: Panel flutter regime identification for panel flutter at λ = 234 and

gradually increasing temperature. Top left: Average panel kinetic energy as panel

temperature increases. Top right: Phase plot for exponential growth and harmonic

LCO. Bottom left: Phase plot for non-harmonic LCO. Bottom right: Phase plot for

snap-through.
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VI.1.3. Comparison of Panel Response Boundaries

The panel response boundaries are plotted in ∆T–λ space for a given value

of aerodynamic damping (ga constant). It is assumed that the panel behavior is

dependent only on the panel temperature difference ∆T , the nondimensional pressure

parameter λ, and the non-dimensional damping parameter ga. This is not a complete

picture of the dynamics of panel flutter, as the time-history of temperature and

pressure can affect the panel response [46]. However, the present analysis, which

uses relatively slow temperature ramping, generates results similar to the eigensystem

analysis in [31].

Aerodynamic damping is realized in piston theory through the inclusion of the

plate velocity, ∂w
∂t

, which is translated to a nondimensional damping parameter, ga.

The analysis performed in Mei [31] assumes no aerodynamic or structural damping.

Rather, flutter occurs due to the coalescence of two separate vibration modes as the

non-dimensional pressure parameter λ is increased.

A small level of damping is helpful in removing spurious oscillations, while still

allowing the dominant flutter modes to grow. A comparison of the flutter with two

levels of damping (ga = 0.1 and ga = 1.0) is given in Figure VI.5. A higher damping

parameter leads to delayed onset of LCO and also delays the onset of snap-through.

In order to match the simulations performed by Mei [31], the lower value of ga = 0.1

will be used for all piston theory simulations.

Damping in the Euler solver is generated as a natural consequence of moving

boundaries. The aerodynamic damping in simulations using the Euler solver can be

determined by the air properties in Table VI.1 and can be compared to the piston
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Figure VI.5: Time variation of average kinetic energy for panel flutter with two

values of damping.

theory aerodynamic damping through equation 2.8. In this analysis, the damping

can be calculated as ga/λ = 8.54E−04.

The data from simulation at an array of λ values was accumulated to generate

regime boundaries in ∆T − λ space, as seen in Figures VI.6a and VI.6b, which are

comparisons of the calculated boundaries in the current analysis to those calculated

by Mei [31]. In all cases, the boundaries calculated in the current analysis match

those by Mei quite closely, though as damping increases, we expect to stray from his

results.
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Figure VI.6: Comparison of panel flutter regime boundaries. Regimes were calculated

with various aerodynamic models, using [31] as a baseline.

VI.1.4. Response at High Temperature and Pressure

One of the major benefits of simulating in the time domain is the ability to delve

more deeply into panel response beyond harmonic LCO. A study of the dynamic

response was performed to determine when the panel transitioned from harmonic

LCO to non-harmonic LCO. However, the current methodology may be insufficient

to pinpoint when these transitions occur. Non-harmonic flutter can be explained by

the excitation of additional modes [86]. Because the shape of the phase plot and the

kinetic energy of the panel are initially dominated by the primary modal response,

the beginning of growth of additional modes will be initially hidden, and cannot be

used as the metric for transition from harmonic to non-harmonic LCO.
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In the present study, the transition was defined as the point when the non-

harmonic disturbances were responsible for approximately the same amount of kinetic

energy as the harmonic motion, as indicated in Figure VI.4. Proper orthogonal

decomposition or some other modal analysis may prove more suited for determining

the transition between these two vibrational states, as the primary mode of vibration

could be identified and removed from the analysis.

At high values of ∆T , an asymmetric flutter mode becomes apparent. As the

majority of simulations performed in literature were assumed to be symmetric [31,

43], this mode has not been seen in previous studies. However, by looking at the

average displacement of the panel in the direction transverse to the flow, a clear

region of exponential growth was determined as the panel was heated. A comparison

between the symmetric and asymmetric flutter modes is shown in Figure VI.7. The

region of maximum displacement for the symmetric mode moves directly from left

to right, while the region of maximum displacement also moves from top to bottom.

The region of asymmetric panel flutter also overlaps with the chaotic region.

While some portion of the snap-through phenomenon occurs in a symmetric fashion,

as the temperature continues to increase, it too becomes asymmetric. All of the

calculated regime boundaries are shown in Figures VI.8a and VI.8b. Note especially

that additional damping significantly delays both snap-through and the asymmetric

mode, while only mildly affecting the onset of buckling and LCO.

The key results from the study were twofold. First, the aerothermoelastic solver

was verified, as panel flutter regime boundaries found using the solver closely matched

those published in previous studies. Additionally, simulations show that at high
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Figure VI.8: High-temperature panel response boundaries with first order piston

theory and non-dimensional damping parameter ga specified.

temperatures, the assumption of symmetry breaks down, and a non-symmetric flutter

mode begins to dominate. In order to accurately simulate panel response at elevated

temperatures, symmetry cannot be assumed.

VI.2. Panel Flutter with Substructure A

This section investigates panel flutter with a substructure configuration moti-

vated by a preliminary panel design in [83]. This substructure is denoted herein

as the panel with substructure A. Section VI.2.1 defines substructure A, Section

VI.2.2 discusses the modeling and discretization, Section VI.2.3 shows analysis with

ABAQUS, Sections VI.2.4 and VI.2.5 give the rationale and methodology behind

the rescaling of the panel flutter regime boundaries, and and Section VI.2.6 gives the

flutter boundaries for the panel with substructure A.
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VI.2.1. Definition of Substructure A

The design in [83] consisted of a carbon-carbon panel with an array of uniaxial

blades as stiffeners in the flow direction. The panel was secured to the vehicle by

means of a vertical stringer that was bolted to a vertical component of the vehi-

cle substructure. Additionally, the panel was significantly thicker near the vertical

stringer.

The panel with substructure A consisted of a panel and four stringers, located

on each edge of the panel. The panel had a thickness, h, of 5 mm and a width, a,

of 0.5 m. The substructure was defined with two additional parameters, hs and as,

which were the stringer thickness and width, respectively. as was taken as 0.05 a,

and hs was varied from h to 5h. The nodes along the line defined by the intersection

of the panel midplane and the side surfaces, as shown in Figure VI.9, were restrained

in displacement (~u = ~0).

VI.2.2. Discretization

The panel and substructure were discretized using 20-node hexahedral brick

elements, as seen in Figure VI.10. 968 elements were used for the panel (two through

the thickness and 22 along each side of the panel). 320, 640, and 1120 elements (2

through the width of the stringer, 80 along the perimeter, and 2, 4 and 7 through

the stringer thickness) were used to define the substructure with hs = h, 2h, and 5h,

respectively. Elements were clustered near the stringer locations.
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Figure VI.9: Structural domain for aeroelastic panel flutter with stringers along

panel border. Nodes (not shown) along dashed line in bottom view were restrained

in displacement (~u = ~0).

Figure VI.10: Structural mesh used for the panel with substructure A. The stringer

thickness was five times the panel thickness (hs = 5h). 2088 hexahedral elements

were used for this mesh.
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VI.2.3. Analysis of Buckling, Vibration, and Bending

Mei [31] demonstrated analysis the interaction of the buckling and vibrational

modes and the aerodynamic loads through frequency analysis. The aerodynamic

influence on the mode shapes was related to the slope of the top surface of the

panel with respect to the flow direction. As the substructure changed, the in vacuo

vibration mode changed, which in turn modified the effect of the aerodynamic forces

on the panel vibration.

The buckling modes, vibration modes, and bending response of the panel with

substructure A were calculated in ABAQUS and compared to the buckling modes,

vibration modes, and bending response of the panel without stringers. The bending

stiffness of the panel was determined by measuring the maximum displacement in

response to a uniform pressure load on the top surface of the panel.

The primary modes of in vacuo buckling and vibration are shown for hs = 0,

1, 2, and 5h in Figures VI.11 and VI.12, respectively. In each case, the mode shape

remained qualitatively similar as the stringer thickness was increased. The primary

change was a decrease in the twist of the panel about the restrained nodes. In other

words, as the stringer thickness increased, the rotation of the panel became more

restricted along its edges.

The panel response to a pressure load is shown in Figure VI.13. As the stringer

thickness increased, the deformation of the panel decreased. The reduced deforma-

tion was caused by reduction in the twist along the edge of the panel. The stringer

acted as a shaft in torsion, increasing the overall torsional rigidity about the re-

strained nodes. The stringer torsional rigidity was defined as the moment caused by
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Figure VI.11: Buckling modes for one quarter of the panel with substructure A.

Contour levels show out-of-plane displacement mode.
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Figure VI.12: Vibrational modes for one quarter of the panel with substructure A.

Contour levels show out-of-plane displacement mode.
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Figure VI.13: Displacement due to a pressure load of 1 kPa for one quarter of the

panel with substructure A. Deformation exaggerated by a factor of 1000.

the pressure load on one quarter of the panel divided by the twist per unit length

over half of the panel’s width:

(JG)s =
Pressure Moment

Twist per Length
=

∫ a/2
0

∫ a/2
0

pxdxdy

θmax/(a/2)
, (6.2)

where θmax was the twist at the midpoint of the stringer.

The buckling temperature, natural vibration frequency, bending stiffness, and

torsional rigidity for each stringer thickness are given in Table VI.2. The values

for each increased as the stringer thickness increased. However, past hs = 2h, the
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buckling temperature, vibration frequency, and bending stiffness suffered diminishing

returns, while the torsional rigidity increased superlinearly with the stringer thickness

for all thicknesses, as shown in Appendix F.

The stringer becomes rigid as the torsional rigidity approaches infinity. The

panel with rigid stringers was modeled with a width of a− 2as and with nodes along

the entirety of each side surface restrained (~u = 0). The results for this panel are

given in the final row of Table VI.2, which represent an upper bound for a panel with

substructure A.

The diminishing returns of increasing the stringer thickness were caused by the

buckling temperature, vibrational frequency, and bending stiffness asymptotically

approaching those of the panel with rigid stringers. The superlinear increase for

small stringer thicknesses was caused by the superlinear relationship between the

stringer thickness and the torsional rigidity, which is again shown in Appendix F.

Table VI.2: ABAQUS analysis for panel with substructure A.

hs/h Tcr [K] f [s−1] Kp
a[m/MPa] (JG)s [kNm2/rad]

0 35.83 95.53 8.937 2.627

1 58.56 123.8 14.97 5.418

2 87.29 153.2 22.50 11.21

3 106.6 172.2 28.13 19.61

5 124.9 190.2 34.13 41.72

10 140.5 202.7 38.82 116.5

RSb 151.9 216.2 44.21 ∞
a Effective Stiffness (pressure load/displacement) b Rigid Stringers
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VI.2.4. Rescaling Based on ABAQUS Analysis

The ABAQUS analysis was used as a rationale for further renormalization of

the panel response. The generalized mass M and force Ξ of the primary vibrational

mode were found as follows:

M = ρ

∫
Ω

φ2dΩ Ξ =
q√

M2 − 1

∫
∂Ωtop

φz
∂φz
∂x

dS,

where ρ is the density of the panel, φ is the primary vibrational mode shape, q is the

dynamic pressure of the air, M is the Mach number, ∂Ωtop is the top surface of the

panel, and φz is the out-of-plane component of the primary vibrational mode shape.

The nondimensional pressure parameter is proportional to the ratio of the gen-

eralized force and generalized stiffness:

λ ∝ Ξ/K, (6.3)

where K is the generalized stiffness of the mode. K can be rewritten as ω2M, where ω

is the natural frequency of the mode. Assuming that the mode shape has a maximum

value of 1, Ξ and M are related proportionally as follows:

Ξ ∝ qa√
M2 − 1

M ∝ρha2,

where q is the dynamic pressure of the air. Additionally, the natural frequency ω for

a plate is

ω =

√
D

ρha4
,

where D = Eh3

12(1−ν2)
is the bending stiffness of the plate.

A new nondimensional parameter, λ̃ was defined based on proportionality of λ
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Table VI.3: Primary mode data for panel with substructure A.

hs/h f a [s−1] Mb [kg] Ξc/q [m] Ξ/(qMω2) [1/MPa] ∆T̃cr [K]

0 95.53 0.6138 0.0625 2.790 36.1

1 123.6 0.5541 0.0587 1.765 54.2

2 153.2 0.4673 0.0544 1.240 72.7

5 190.2 0.3786 0.0490 0.895 101.2

a Frequency of primary mode b Generalized mass
c Generalized aerodynamic force

to modal values defined in Equation 6.3:

λ̃

λneat
=

Ξ̃

M̃ω̃2

Mω2

Ξ
,

where Ξ̃, M̃, and ω̃ are the generalized aerodynamic force, generalized mass, and

natural frequency for the panel with substructure A, and Ξ, M, and ω are the same

for the panel without stringers.

∆T̃cr was defined as the point at which the panel began buckling in the coupled

solver. This provides a more consistent point of reference than the ABAQUS buckling

temperature, as there were slight discrepancies in the buckling temperatures between

ABAQUS and the coupled solver. These discrepancies were likely caused by the

imprecise means of measuring the buckling temperature in the coupled solver.

For each stringer thickness, the frequency, generalized mass, and generalized

aerodynamic force were found for the primary mode shape in vibration. These data,

along with the ratio used for λ̃ are given in Table VI.3. Additionally, ∆T̃cr is given

in Table VI.3 for each stringer thickness.
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VI.2.5. Rescaling Based on Substructure Mass

Because the stringers add mass to the total system, design studies which use

mass as a cost function should consider the panel response rescaled based on the

total mass of the panel and substructure. In the present analysis, this was done

by defining an effective panel thickness, which was the thickness of a panel with

equivalent mass to the entire system with substructure A. This effective thickness,

heff, is defined as:

heff

h
=
msubA

mneat

=

(
4
hs
h

as
a

(
1− as

a

)
+ 1

)
, (6.4)

where msubA is the mass of the panel with substructure A and mneat is the mass of

the panel without stringers.

This creates an effective pressure parameter λ̄ and an effective critical temper-

ature, ∆T̄cr, which were defined as follows:

λ̄ =
ρU2
∞√

M2 − 1

a3

h3
eff

12(1− ν2)

E
∆T̄cr =

π2

6α(1 + ν)

h2
eff

a2
(6.5)

VI.2.6. Results of Panel Flutter

The panel with substructure A was analyzed using the coupled solver for 17 pres-

sure values, from p∞ = 0.1 bar to p∞ = 16 bar. The analysis techniques described in

Section VI.1.2 were employed to determine the behavior regime boundaries, which

are plotted in Figure VI.14. The addition of stringers positively impacted the sta-

bility of the panel in both flutter and buckling. However, there was a nonlinear

relationship between the stringer thickness and stability improvement.

In general, the incremental increase in stability from hs = 0 to hs = h was larger
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Figure VI.14: Comparison of flutter and buckling boundaries for various stringer

thicknesses, without incorporating the effective thickness.
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Figure VI.15: Comparison of flutter and buckling boundaries for various stringer

thicknesses, using the definition for heff given in Equation 6.4.

than the incremental increase in stability from hs = h to hs = 2h. The incremental

increase in stability from hs = 2h to hs = 5h was far less than expected if a linear

relationship held. In other words, the stability region had diminishing returns as the

stringer thickness was increased. This is explained by effect of the rotational stiffness

of the stringers, as discussed in Section VI.2.3.

The renormalization of the panel flutter regimes using λ̃ and ∆T̃cr is shown in

Figure VI.15. The modal analysis using the in vacuo vibration modes was clearly

not able to explain the behavior of the panel with substructure A. As λ increased,
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the aeroelastic modes of the panel diverge from the in vacuo modes. To rescale λ

accurately, the generalized mass, generalized force, and frequency of the aeroelastic

modes should be determined, meaning that the scaling is nonlinear in λ.
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Figure VI.16: Comparison of flutter and buckling boundaries for various stringer

thicknesses, using the definition for heff given in Equation 6.4.

The regime boundaries are shown rescaled based on mass in Figure VI.16. The

stable region shrank significantly when rescaled based on a panel without stringers

with thickness heff. The resistance to flutter was far more affected than the resis-

tance to buckling. The additional mass required by the presence of the stringers in

substructure A far outweighed the additional torsional rigidity that they provided.
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VI.3. Panel Flutter with Substructure B

This section investigates panel flutter with a substructure configuration moti-

vated by a preliminary panel design in [3]. This substructure is denoted herein as the

panel with substructure B. Section VI.3.1 defines substructure B, Section VI.3.2 dis-

cusses the modeling and discretization, Section VI.3.3 shows analysis with ABAQUS,

Sections VI.3.4 and VI.3.5 explain the rationale and methodology behind the rescal-

ing of the panel flutter regime boundaries, and Section VI.3.6 gives the flutter and

buckling boundaries for the panel with substructure B.

VI.3.1. Definition of Substructure B

The design in [3] consisted of a carbon-carbon panel with arrays of uniaxial

blades as stiffeners in both the flow direction and the transverse direction. The

panel substructure was named an “ortho-grid”, due to the orthogonal placement of

the blades.

The panel with substructure B consisted of four stringers centered one quarter

panel width from each edge. The panel had a thickness, h, of 5 mm and a width, a, of

1 m. The stringers were again defined by hs and as. as was defined as 0.025a, while

hs was defined as h and 3h. The nodes along the line defined by the intersection of

the panel midplane and the side surfaces, as shown in Figure VI.17, were restrained

in displacement (~u = ~0). Additionally, the stringers were restrained in displacement

along the line defined by the intersection of the center plane of each stringer and the

side surfaces, as shown in Figure VI.17, in an attempt to remove the tendency of the

panel to bend downward when heated due to the thermal expansion of the stringers.
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Figure VI.17: Structural domain for aeroelastic panel flutter with stringers on interior

of panel. Nodes (not shown) along dashed lines in bottom view were restrained in

displacement (~u = ~0)
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Figure VI.18: Structural mesh used for the panel with substructure B. The stringer

thickness was three times the panel thickness (hs = 3h). 5024 hexahedral elements

were used for this mesh.

VI.3.2. Discretization

The panel and substructure were defined using 20-node hexahedral brick ele-

ments, as seen in Figure VI.18. 3200 elements were used for the panel (two through

the thickness and 40 along the length and width of the panel). 608 and 1824 ele-

ments were used for the substructure with hs = h and 3h, respectively. Elements

were clustered near the stringer locations.

VI.3.3. Analysis of Buckling, Vibration, and Bending

In this section, the buckling modes, vibration modes, and bending response of

the panel with substructure B are presented and compared to the buckling modes,

vibration modes, and bending response of the panel without stringers. The compu-

tational methodology that was used in Section VI.2.3 was applied for the panel with

substructure B.
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Figure VI.19: Buckling modes for one quarter of the panel with substructure B.

Contour levels show out-of-plane displacement mode.

The primary modes of in vacuo buckling and vibration are shown for a quarter-

panel with stringer thickness hs = 0, 1, 3, and 5h in Figures VI.19 and VI.20,

respectively. As the stringer thickness increased, the mode shape diverged from the

panel without stringers. For higher stringer thicknesses, the deformation in the panel

was concentrated in only the center section of the panel.

The panel response to a pressure load is shown in Figure VI.21. As the stringer

thickness increased, the deformation of the panel decreased dramatically (note the

difference in scale for each deformation). The stringers provided both bending stiff-
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Figure VI.20: Vibrational modes for one quarter of the panel with substructure B.

Contour levels show out-of-plane displacement mode.
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Figure VI.21: Displacement due to a pressure load of 1 kPa for one quarter of the

panel with substructure B.

ness and torsional rigidity to the panel. The bending stiffness of the stringer was

defined as:

Ks =
Pressure Load

Out-of-plane Displacement
=

∫ a/2
0

∫ a/2
0

pdxdy

∆zs
, (6.6)

where ∆zs is the out-of-plane displacement at the midpoint of the stringer.

The buckling temperature, natural vibration frequency, panel bending stiffness,

stringer bending stiffness, and stringer torsional rigidity for each stringer thickness

are given in Table VI.4. The values for each increased as the stringer thickness
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increased. The buckling temperature and vibration frequency began to experience

diminishing returns at hs = 3h, while the panel stiffness was superlinear for each of

the stringer thicknesses tested. Both he stringer bending stiffness and torsional rigid-

ity maintained an approximately quadratic relationship with the stringer thickness

(see Appendix F).

The panel with rigid stringers was modeled with a width of a/2 − as and with

nodes along the entirety of each side surface restrained (~u = 0). The results for this

panel are given in the final row of Table VI.4, which represent an upper bound for a

panel with substructure B.

The diminishing returns of increasing the stringer thickness were caused by the

buckling temperature, vibrational frequency, and bending stiffness asymptotically

approaching those of the panel with rigid stringers. The superlinear increase of

these values at small stringer thicknesses was caused by the quadratic relationship

between the stringer thickness and both the torsional rigidity and bending stiffness

of the stringers.

VI.3.4. Rescaling Based on ABAQUS Analysis

The procedure followed in Section VI.2.4 was used for substructure B. The

generalized mass M and the generalized force Ξ were found and used to generate the

rescaled pressure parameter, λ̃.

For each stringer thickness, the frequency, generalized mass, and generalized

aerodynamic force were found for the primary mode shape in vibration. These data,

along with the ratio used for λ̃, are given in Table VI.5. Additionally, ∆T̃cr is given
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Table VI.4: ABAQUS analysis for panel with substructure B.

hs/h ∆Tcr [K] f [s−1] Kp
a[m/MPa] Ks

a[m/MPa] (JG)s [kNm2/rad]

0 9.112 23.94 0.561 0.757 2.035

1 34.12 37.95 1.502 2.219 5.355

3 112.9 79.46 6.628 11.60 28.59

5 135.6 120.7 14.47 35.55 87.39

10 144.3 172.2 28.86 185.8 422.0

RSb 151.5 194.0 34.66 ∞ ∞
a Effective Stiffness (pressure load/displacement) b Rigid Stringers

in Table VI.5 for each stringer thickness.

Table VI.5: Primary mode data for panel with substructure B.

hs/h f a [s−1] Mb [kg] Ξc/q [m] Ξ/(qMω2) [1/MPa] ∆T̃cr [K]

0 23.94 2.466 0.1251 877.0 9.11

1 37.95 2.227 0.1159 356.7 28.3

3 79.46 1.800 0.0959 83.30 72.7

a Frequency of primary mode b Generalized mass
c Generalized aerodynamic force

There was a substantial difference between the buckling temperatures found in

ABAQUS, ∆Tcr, and the buckling temperature found in the coupled solver, ∆T̃cr.

While the exact cause is difficult to determine, there may be several factors in play.

First, even with the additional restrained nodes along the ends of the stringers, the

panel experienced a downward deflection as the temperature was increased. For a

stringer thickness of hs = 1h, this manifested as an exponentially increasing deforma-
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tion, which made ∆Tcr difficult to pinpoint. For a stringer thickness of hs = 3h, the

panel first deforms downward, then changes to an upward buckling position. This

behavior is documented in Figure VI.22.

A second possible source of error is the specification of restraints in ABAQUS.

The buckling analysis was based on specified restraints along the restrained nodes,

forcing the panel to experience compressive loading. The specified restraints mimic

the thermal expansion of the panel, but there are small differences, such as the lack

of thermal expansion in the out-of-plane direction. The effect of these differences

should be minor compared to the downward deflection experienced before buckling.

VI.3.5. Rescaling Based on Substructure Mass

As in Section VI.2.5, the effective panel thickness for a panel without stringers

with equivalent mass to the system with substructure B. For substructure B, the

effective thickness heff is defined as:

heff =

(
hs
h

as
a

(
2− as

a

)
+ 1

)
h (6.7)

The effective pressure parameter λ̄ and effective critical temperature, ∆T̄cr were

defined as in Equation 6.5.

VI.3.6. Results of Panel Flutter

The panel with substructure B was analyzed using the coupled solver for 14

different pressures ranging from p∞ = 0.2 bar to p∞ = 6.0 bar for the substructure

with thickness hs = 1h and for 25 different pressures ranging from p∞ = 0.1 bar to

p∞ = 16.0 bar for the substructure with thickness hs = 3h. The analysis techniques
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Figure VI.22: Displacement due to temperature increase for one quarter of the panel

with substructure B. Three states are shown: A) initial buckling configuration, B)

transition from initial to primary buckling, and C) primary buckling configuration.
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Figure VI.23: Regime boundary comparison between the panel with substructure B

and a panel without stringers. A – Stable; B – LCO; C – Buckled; D – Snap-through;

E – Buckled with LCO.

from Section VI.1.2 were again used to determine the regime boundaries, which are

plotted for the panel with substructure B in Figure VI.23.

The addition of stringers significantly improved the resistance to both flutter and

buckling. A nonlinear trend was again experienced, with the resistance to buckling

experiencing mildly diminishing returns and the resistance to flutter experiencing

increasing returns. This was expected based on the roughly quadratic increase in the

stringer bending stiffness and torsional rigidity, as seen in Section VI.3.3.
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A new behavior regime was found at high temperatures and relatively low dy-

namic pressures, marked as region E in Figure VI.23. In this regime, the panel and

substructure oscillate about the buckled position, rather than about the undeformed

position. This behavior began from two separate initial states. For λ values below

215, buckling occurred first, and then the panel entered LCO about the buckled

position. The opposite was documented for λ values above 215 but lower than 300.

For those panels, LCO occurred at a lower temperature, and the midpoint of the os-

cillation shifted as the panel additionally buckled. Above λ = 300, the temperature

of the panel was not increased sufficiently to reach buckling.

The renormalization of the panel flutter regimes using λ̃ and ∆T̃cr is shown

in Figure VI.24. The rescaled boundaries were reduced far below the panel flutter

regime boundaries for a panel without stringers. This suggests that the primary in

vacuo vibration mode does not match the aeroelastic vibration mode.

The vibration mode for the aeroelastic case is shown in Figure VI.25. Compared

to the in vacuo vibration mode in Figure VI.20, the location of maximum displace-

ment has moved downstream. The aeroelastic mode had a much larger slope per

displacement, which results in a much larger aerodynamic force. The imbalance of

aerodynamic forces on the two modes is the primary source of disagreement between

the panel with substructure B and the panel without stringers in Figure VI.24.

The regime boundaries are shown rescaled based on mass in Figure VI.16. The

stable region shrunk, as for substructure A. In this case, however, the addition of

stringers results in significantly improved performance, even with the mass taken into

account. After taking the effects of mass into account, adding stringers of thickness
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Figure VI.24: Regime boundary comparison between the panel with substructure B

and a panel without stringers, using ABAQUS analysis as a motivation for rescaling.

A – Stable; B – LCO; C – Buckled; D – Snap-through.
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Figure VI.25: Isolation of aeroelastic vibrational mode for substructure B. Plate

motion occurred at λ = 585, ∆T = 10 K. Mean deformation was average of maximum

and minimum, while vibrational mode was taken to be half of the difference of the

maximum and minimum.
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Figure VI.26: Regime boundary comparison between the panel with substructure B

and a panel without stringers with thickness heff. A – Stable; B – LCO; C – Buckled;

D – Snap-through; E – LCO about buckled deformation.

hs = 3h caused an increase of 208% in the non-dimensional pressure parameter

for LCO with ∆T = 0. An increase of 380% was seen for the in vacuo buckling

temperature for the same case.
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CHAPTER VII

CONCLUSIONS

The main contribution of this work resides in the numerical investigation of

aerothermal and aerothermoelastic phenomena that are more complex than those

previously studied in the context of hypersonic flow. Additionally, the numerical

investigation was done by coupling state-of-the-art aerodynamic, structural elasticity,

and thermal-diffusion codes. Aerothermal simulations were performed on a double-

wedge airfoil with a rounded leading edge, which was simulated with several interior

cooling profiles. Aerothermoelastic simulations were performed on a panel supported

by stringers and subject to hypersonic flow. The following conclusions can be drawn

from the computational studies presented herein:

1. The coupled aerothermoelastic solver provides accurate results for simulations

involving fluid-structure interaction in hypersonic flows. Verification and vali-

dation studies showed that each of the methodologies used produces results in

line with those previously published.

2. Variation in angle of attack caused a significant percentage increase in heat flux

over most of the hypersonic wedge airfoil. A change in angle of attack from 0

to 5 degrees resulted in an increase of the local heat flux by more than 60%.

This increase may limit the operational range of aircraft in hypersonic flight.

3. Flight envelopes can be generated for given wall temperatures and average

heat flux. Although these average analyses do not provide information about
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localized heating, they give an estimation of the cooling necessary to allow

sustained flight at a given exterior wall temperature.

4. Augmented cooling near the leading edge of a hypersonic airfoil can adequately

cool the entire airfoil, but creates large chordwise temperature gradients. Cool-

ing with chordwise constant heat flux is inefficient because of localized high

temperature at the leading edge. The reduction of both the maximum temper-

ature and the temperature gradient requires more sophisticated cooling distri-

butions than those presented herein.

5. Post-flutter dynamics of even a simple panel should be simulated without the

assumption of symmetry. At high temperatures, an asymmetric mode exists

which grows to dominate the flutter of the panel.

6. The addition of stringers modifies both the in vacuo and aeroelastic mode

shapes and eigenvalues for both vibration and buckling. The change in the

in vacuo mode provides a reasonable estimate of how the panel flutter regime

boundaries of the panel will change, but the aeroelastic mode is needed for

accurate rescaling.

7. Stringers are most effective when providing both bending stiffness and torsional

rigidity to the panel. In other words, ideal stringer placement will prevent both

out-of-plane displacement and local rotation of the panel.

8. Aeroelastic modes tend to have larger deformations downstream. In order to

provide greater resistance to LCO, it may be beneficial to place either stronger

or more stringers downstream to restrict the aeroelastic mode.
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CHAPTER VIII

FUTURE WORK

The goal of this work was to advance the state of the art towards the simulation

of aerothermoelastic phenomena for complete hypersonic aircraft. Future work would

seek to expand upon the advances made in this work:

1. Aerothermal studies of airfoils and wedges should be performed using cool-

ing conditions based on convective heat transfer, which would more accurately

model internal coolant flow and allow for the design of cooling systems, includ-

ing concepts such as coolant consumption per second of flight.

2. The addition of radiative heat transfer to the aerothermal simulation would

increase the accuracy of the aerothermal simulations, especially as the Mach

number and wall temperature are increased.

3. More detailed analysis of the post-flutter response of the panel should be per-

formed, detailing the decomposition of the response into aerothermoelastic vi-

bration modes. Investigation of multi-mode vibration and transition to chaos

would provide a more precise view of the boundary between LCO and snap-

through.

4. An expansion of the model to a panel containing a larger number of stringers

and further expansion to a full wing could provide insight for design studies of

hypersonic vehicles.
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5. The coupling of long-term aerothermal analysis using active cooling with aerother-

moelastic flutter simulation would facilitate the investigation of active cooling

as a means of panel flutter suppression.

6. Navier–Stokes aerodynamics or the Eckert reference enthalpy method would

enable more realistic heating patterns to be used in the simulation of panel

flutter, which is especially important for situations in which the heating rate

is high relative to the material thermal conductivity.
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APPENDIX A

REYNOLDS TRANSPORT THEOREM FOR A MOVING MESH

If we take a material volume Ωm(t), and assume that it instantaneously coincides

with a stationary control volume Ωc, the Reynolds Transport Theorem states that

for some conserved quantity ℵ:

D

Dt

∫
Ωm(t)

ℵ dV =

∫
Ωc

∂

∂t
(ℵ) dV +

∮
∂Ωc

ℵ(~u · n̂) dS =

∫
Ωc

~fb dV +

∮
∂Ωc

~fs dS, (A.1)

where ~u is the fluid velocity and ~fb and ~fs are the body and surface sources, respec-

tively.

Similarly, if we define an arbitrarily moving volume Ω(t), also assuming that it

coincides with our control volume at time t, we obtain:

d

dt

∫
Ω(t)

ℵ dV =

∫
Ωc

∂

∂t
(ℵ) dV +

∮
∂Ωc

ℵ(~ug · n̂) dS, (A.2)

where ~ug is the velocity of the moving boundary.

Next, we solve for
∫

Ωc
∂
∂t

(ℵ)dV and substitute this into (A.1), obtaining:

d

dt

∫
Ω(t)

ℵ dV −
∮
∂Ωc

ℵ(~ug · n̂) dS +

∮
∂Ωc

ℵ(~u · n̂) dS =

∫
Ωc

~fb dV +

∮
∂Ωc

~fs dS (A.3)

Finally, we recognize that for our moving mesh, the quantity of interest is the

change in time of the conserved quantity, averaged over a cell in the mesh. Therefore,

we solve (A.3) for d
dt

∫
Ω(t)
ℵ dV , letting ~ur be the relative velocity between the fluid

and the grid, ~ur = ~u− ~ug:

d

dt

∫
Ω(t)

ℵ dV = −
∮
∂Ωc

ℵ(~ur · n̂) dS +

∫
Ωc

~fb dV +

∮
∂Ωc

~fs dS (A.4)
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APPENDIX B

PISTON THEORY DERIVATION

Piston theory is based on the Method of Characteristics. Referring to [87,

pp.285-299], we define characteristic lines for one-dimensional compressible flow as:

C+ :
dx

dt
= u+ a C− :

dx

dt
= u− a (B.1)

Along these lines, it can be shown that:

along C± : du± dp

ρa
= 0 (B.2)

Integration along C± yields:

J± =

∫ (
du± dp

ρa

)
= u±

∫
dp

ρa
(B.3)

Using the definition of the speed of sound a =
√

γp
ρ

, along with the assumption

of isentropic flow, we define dp and ρ as functions of a as follows:

p = c1T
γ
γ−1 = c2a

2γ
γ−1

dp = c2
2γ

γ − 1
a( 2γ

γ−1
−1)da

ρ =
γp

a2
= c2γa

( 2γ
γ−1
−2)

We can now define dp
ρa

in terms of a and integrate:∫
dp

ρa
=

∫
2da

γ − 1
=

2a

γ − 1

This gives us a simple relationship for J±:

J± = u± 2a

γ − 1
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p2, a2 
shock

Figure B.1: Alternate domain used in piston theory.

Piston theory compares a hypersonic flowfield to the flow on a piston moving

at some speed Vn. This is the situation shown in Figure B.1. p∞ and a∞ are the

pressure and speed of sound of the non-moving air, while p2 and a2 are the pressure

and speed of sound behind the shock (or expansion) caused by the moving piston.

Letting J± be constant through the shock, we find that:

Vn ±
2a2

γ − 1
= 0± 2a∞

γ − 1

a2 = a∞ ∓
γ − 1

2
Vn

a2

a∞
= 1∓ γ − 1

2

Vn
a∞

T2

T∞
=

(
a2

a∞

)2

=

(
1∓ γ − 1

2

Vn
a∞

)2

p2

p∞
=

(
T2

T∞

) γ
γ−1

=

(
1∓ γ − 1

2

Vn
a∞

) 2γ
γ−1

Piston theory gives the pressure on the piston surface. For this reason, we are

interested in the left running wave, or C−. Therefore, we arrive at the following

equation for full-order piston theory:

p2

p∞
=

(
1 +

γ − 1

2

Vn
a∞

) 2γ
γ−1

(B.4)
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l theorem:

(1 + y)r ≈
N∑
k=0

(
r

k

)
yk

≈ 1 + ry +
r(r − 1)

2!
y2 +

r(r − 1)(r − 2)

3!
y3 . . . ,

where N is the order of approximation. Note that this approximation is only valid

for y << 1.

Application of the binomial theorem to Equation B.4 as a third order approxi-

mation is performed by substituting y = γ−1
2

Vn
a∞

and r = 2γ
γ−1

:

p2

p∞
≈ 1 +

2γ

γ − 1

γ − 1

2

Vn
a∞

+
1

2

2γ

γ − 1

(
2γ

γ − 1
− 1

)(
γ − 1

2

Vn
a∞

)2

+
1

6

2γ

γ − 1

(
2γ

γ − 1
− 1

)(
2γ

γ − 1
− 2

)(
γ − 1

2

Vn
a∞

)3

Simplification yields the expected coefficients:

p2

p∞
≈ 1 + γ

Vn
a∞

+
γ(γ + 1)

4

(
Vn
a∞

)2

+
γ(γ + 1)

12

(
Vn
a∞

)3

p2 − p∞ ≈ γp∞
Vn
a∞

(
1 +

γ + 1

4

(
Vn
a∞

)
+
γ + 1

12

(
Vn
a∞

)2
)

∆p ≈ ρ∞U
2
∞

M∞

Vn
U∞

(
1 +

γ + 1

4

(
Vn
U∞

M∞

)
+
γ + 1

12

(
Vn
U∞

M∞

)2
)

The final equation is in the same form as Equation 2.7.
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APPENDIX C

GEOMETRIC CONSERVATION LAW AND IMPLEMENTATION IN

BACKWARDS DIFFERENCE FORMULA

Starting from the semi-discrete Navier-Stokes equations derived for a moving

mesh (3.1):

d

dt
(ΩiQi) = −

∑
j∈N(i)

∮
∂Ωij

[Fp + Fv −Q (~ur · n̂)] dS (3.1)

A state of constant flow is assumed: Q = Q∗. The viscous forces are dependent

on flow gradients, and therefore drop out, resulting in the following:

d

dt
(ΩiQ

∗) = −
∑
j∈N(i)

∮
∂Ωij

[
F∗p −Q∗ ((~u∗ − ~ug) · n̂)

]
dS (C.1)

Recognizing that F∗p and ~u∗ are constant and are integrated over a closed surface,

all of the remaining terms are multiplied by Q∗, which can be divided out:

d

dt
Ωi =

∑
j∈N(i)

∮
∂Ωij

(~ug · n̂)dS (C.2)

Equation C.2 is a statement of the Geometric Conservation Law (GCL). In order

to satisfy the GCL, the face velocities must be defined in terms of d
dt

Ωi. To find this,

we set Qi = Q∗ for the second-order backwards difference formula (3.7):

3

2∆t
Ωn+1Q∗ − 2

∆t
ΩnQ∗ +

1

2∆t
Ωn−1Q∗ = Q∗

∫ tn+1

tn

∑
j∈N(i)

∫
∂Ωij

(~ug · n̂)dS dt (C.3)
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With full temporal and spatial discretization, integration over the closed surface

∂Ωij is performed at time ti+1. This results in:

1

2∆t

(
3(Ωn+1 − Ωn)− (Ωn − Ωn+1)

)
=
∑
j∈N(i)

(~ug · n̂)(n+1)Sn+1
ij , (C.4)

where (~ug · n̂)(n+1) is the grid velocity that should be applied when calculating the

convective flux through the face.

Equation (C.4) relates the change in volume to the face velocity. This relation-

ship becomes clearer if we split the cell volume changes into their contribution from

various faces.

Ωn+1 − Ωn =
∑
j∈N(i)

∂Ω
(n+1)
ij (C.5)

where ∂Ω
(k)
ij is the volume swept by face ∂Ωij between ti and ti+1. This substitution

yields:

1

2∆t

∑
j∈N(i)

(
3∂Ω

(n+1)
ij − ∂Ω

(n)
ij

)
=
∑
j∈N(i)

(~ug · n̂)(n+1)Sn+1
ij (C.6)

In order to satisfy (C.6), it is sufficient to equate each element of the left-hand

side to the corresponding element of the right-hand side:

(~ug · n̂ij)(n+1) =
3∂Ω

(n+1)
ij − ∂Ω

(n)
ij

2∆tSn+1
ij

(C.7)

This value can now be used to calculate fluxes within the moving grid.
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APPENDIX D

MEDIAN DUAL-MESH GEOMETRY

A median dual-mesh approach was used to discretize the domain for the RANS

solver. One of the primary benefits of the dual-mesh is that it allows the values

used for computation to be stored at the nodes of the original mesh. Figure D.1

shows a 2D projection of the median dual-mesh alongside the original mesh. In two

dimensions, a dual-cell for a given node is defined by the median points of edges and

the centroids of cells neighboring that node. In three-dimensions, a dual-cell for a

given node is defined by the median points of edges, centroids of faces, and centroids

of cells neighboring that node.

As can be seen in Figure D.1, the median-dual methodology described above is

sufficient to handle the transition between quadrilateral and triangular cells. This is

the primary benefit of the median-dual cell mesh. However, for large volume ratios

between cells (such as the top and bottom of the triangular part of the mesh), the

node defining the dual-cell begins to deviate from the actual location of the dual-cell

centroid.

This has the potential to interfere with the linear reconstruction used for second-

order calculations. For the sake of consistency, the value assigned to a node should

be the average value of the solution over the dual-cell defined by the node. However,

if the node is not the centroid of the dual-cell, then the average value of the linear

reconstruction is not identically equal to the value at the node, which is an inconsis-

tent formulation. The same argument can be made for the quadrature points of the
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1	

Figure D.1: 2D projection of median dual-mesh (red dashed lines) shown with orig-

inal mesh (black lines).

faces. For this reason, the volume ratio between cells should be kept to a minimum.
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APPENDIX E

MOVING REGRESSION ANALYSIS

A polynomial regression analysis of a dataset (x,y), where y ≈ c0 + c1x + . . .+

cm−1x
m−1 + cmxm can be simplified to a least squares problem using the polynomial

basis P. The data and polynomial parameters are defined in the current analysis as:

x =



x1

x2

...

xn−1

xn


y =



y1

y2

...

yn−1

yn


c =



c0

c1

...

cm−1

cm


,

where n is the size of the dataset, and

P =



1 x1 x2
1 . . . xm1

1 x2 x2
2 . . . xm2

...
...

...
. . .

...

1 xn−1 x2
n−1 . . . xmn−1

1 xn x2
n . . . xmn


,

where m is the order of the polynomial regression.

This can be written as a system of n dependent linear equations as y ≈ Pc and

simplified to a system of m independent linear equations as PTy ≈ PTPc. This

equation is then solved for the polynomial coefficients c.

The moving polynomial regression uses only points in the local neighborhood
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of the data point in question. This means that to approximate a value yi, only the

points (x, y)k, k = i − `...i + ` are used in the polynomial regression. This allows a

simple polynomial to form a reasonable approximation of sections of the very complex

data created by panel flutter simulations.
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APPENDIX F

PANEL RESPONSE TO A PRESSURE LOAD

In this appendix, the response to a pressure load is investigated for panels

with substructures A and B. In particular, the underlying relationships between

the stringer thickness and the translational and rotational stiffness of the stringers

is determined.

F.1. Panel with Substructure A

The panel with substructure A used stringers which modified the torsional rigid-

ity of the panel along its edges. In ABAQUS, a 1000 Pa load was applied to the

entire panel. The maximum panel displacement ∆z and maximum rotation on the

stringer θ were noted. These data were used to determine the effective panel stiffness

and stringer torsional rigidity in Section VI.2.3.

Table F.1 shows the raw displacement and rotation data from ABAQUS, the

final relationship based on a power law analysis, and the intermediate data used for

the analysis. The idea behind the power law analysis is that the various quantities

follow a relationship governed by the equation Ah = A0 + (A1 − A0)(hs/h)k, where

Ah is the quantity of interest, A0 is the value provided by the panel, and A1 −A0 is

the incremental increase provided by a stringer with thickness hs = h.

No clear relationship exists between the stringer thickness and the panel stiff-

ness, except that it is sublinear. As discussed in VI.2.3, the panel is asymptotically

approaching the case with rigid stringers, and this is difficult to capture with a power
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Table F.1: ABAQUS analysis for panel with substructure A.

hs/h ∆z [µm] Kp,h/Kp,0
Kp,h−Kp,0
Kp,1−Kp,0 θs [rad] JGh/JG0

JGh−JG0

JG1−JG0
kJG

0 111.9 1.000 0.000 7.436E-04 1.000 0.000 —

1 66.82 1.675 1.000 3.605E-04 2.062 1.000 —

2 44.44 2.518 2.248 1.743E-04 4.267 3.075 1.621

3 35.55 3.148 3.181 9.962E-05 7.465 6.085 1.644

5 29.30 3.819 4.176 4.681E-05 15.88 14.01 1.640

10 25.76 4.344 4.953 1.677E-05 44.34 40.80 1.611

law analysis.

The relationship between the stringer thickness and the torsional rigidity is

shown to be approximately as follows:

JGh = JG0 + (JG1 − JG0)(hs/h)1.63,

where JGh is the torsional rigidity of the panel and stringer, JG1 is the rotational

stiffness for hs/h = 1, and JG0 is the torsional rigidity from the panel alone. Based

on the power of the exponent, the relationship between the stringer thickness and

torsional rigidity is more than linear and less than quadratic.

F.2. Panel with Substructure B

The panel with substructure B used stringers which modified the bending stiff-

ness of the panel through reduction of the effective panel width and the addition

of torsional rigidity along its stringers. In ABAQUS, a 1000 Pa load was applied

to the entire panel. The maximum panel displacement ∆z, the maximum stringer

displacement ∆zs, and maximum rotation on the stringer θ were noted. These data
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were used to determine the effective panel stiffness, stringer bending stiffness, and

stringer torsional rigidity in Section VI.3.3.

Table F.2 shows the raw displacement and rotation data from ABAQUS, the

final relationship based on a power law analysis, and the intermediate data used for

the analysis.

Table F.2: ABAQUS analysis for panel with substructure B.

hs/h ∆zp [µm] ∆zs [µm]
Ks,h−Ks,0
Ks,1−Ks,0 kKs θs [rad] JGh−JG0

JG1−JG0
kJG

0 1782.5 1289.2 0.000 — 3.85E-3 0.000 —

1 665.78 450.70 1.000 — 1.46E-3 1.000 —

3 150.88 86.231 7.498 1.834 2.73E-4 7.999 1.893

5 69.109 28.129 24.10 1.977 8.94E-5 25.71 2.017

10 34.650 5.3818 128.2 2.108 1.85E-5 126.5 2.102

The panel displacement ∆zp is similar to the stringer displacement ∆zs, but

diverges at higher stringer thicknesses. As discussed in VI.2.3, the panel is asymp-

totically approaching the case with rigid stringers, and this is difficult to capture

with a power law analysis.

The relationship between the stringer thickness and both the stringer bending

stiffness Ks and torsional rigidity JGs was approximately quadratic.
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APPENDIX G

CASE GENERATION PROCEDURE

In order to run an aerothermoelastic simulation in the solver discussed in Chap-

ter III, the following data is needed:

• Beta mesh files

– Volume meshes (matching for structural and thermal solvers)

– Surface meshes for Neumann boundary conditions

• UNS3D mesh files

• Files containing coupling information (cfd2fea.dat and fea2cfd.dat).

• Input files describing individual run

The following sections will detail how each of these files is generated.

Beta Mesh Files

Beta requires a volume mesh for any problem, and additionally requires surface

meshes for any surfaces that are coupled or have Neumann boundary conditions.

Both the Beta volume mesh file and the Beta surface mesh file have the following

format:

• Header, consisting of:

#nodes, #elements, #dimensions
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• Spatial coordinates for each node:

node # (0 based), xi, yi, zi

• Cell to node connectivity for each element:

element # (0 based), # nodes/element, node 0, node 1, ..., node n-1

In practice, the mesh is generated in UGRID format in a grid generation program

such as Pointwise. The UGRID format allows inclusion of boundary conditions on

the surfaces of the volume, which can be used to define which surfaces are needed

for the boundary conditions.

The UGRID file is converted via a utility program named BetaPrep (short for

Beta Preprocessor). Given a UGRID file and a short input file to specify filenames,

BetaPrep can generate the volume and surface mesh using either 8-node brick and 4-

node surface elements or 20-node brick and 8-node surface elements (the undeformed

edges are assumed to vary linearly in space). The source code for BetaPrep is given

in a separate appendix.

UNS3D Mesh Files

UNS3D also requires a volume mesh, and also requires a separate file with the

cell to node connectivity information, which is used primarily for output to Tecplot

format.

The UNS3D volume mesh has the following format:

• Header information, organized as follows:

#elements, #nodes, #edges, #faces, #boundary faces
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• Spatial coordinates for each node:

xi, yi, zi

• Boundary face to node information and boundary condition:

#points on boundary face, node 1, node 2 ..., node n, boundary condition

ID #

• Cell to face information

#faces in element face 1, face 2, ..., face n

• Face to edge information

#edges in face edge 1, edge 2, ..., edge n

• Edge to node information

node 1, node 2

The cell to node connectivity file has the following format:

• Header information, organized as follows:

Similar to the Beta mesh file generation, the UNS3D mesh file is generated first

in UGRID format using a grid generation program such as Pointwise. This UGRID

file is given to a preprocessing program known as Prep along with a short input file to

specify file names. Prep then generates the volume mesh file and the cell connectivity

file. The source code for Prep is given in a separate appendix.

Once the mesh has been generated, it must still be split for parallelization us-

ing domain decomposition. This is done using a utility called SplitMesh. Given a
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volume mesh file and a cell connectivity file, SplitMesh gives volume mesh and cell

connectivity files for each processor along with a file that contains the local node

number, processor, and global node number for every node in the mesh (named

“loc2glob.dat ###”, where ### is the number of processors for the split). The

“loc2glob” file has the following format:

• Header information, organized as follows:

# of total nodes (includes some repeats), # of global nodes, maximum

# of nodes on a single processor, # of processors

• For each node on every processor (may be repeats of nodes in a global sense):

Local node #, Processor #, Global node #

Coupling Information Files

There are two files that contain the interpolation data between UNS3D and

Beta. The first, titled “cfd2fea.dat” contains the interpolation from the UNS3D

surface mesh to the Beta surface mesh. The second, titled “fea2cfd.dat” contains

the interpolation from the Beta surface mesh to the UNS3D surface mesh. It has the

following format:

• For each destination node:

Destination node #, Source flag, Number of source nodes, Source node

1, Source weight 1, ..., Source node n, Source weight n

The source flag indicates whether the node for the interpolation is based on a

node in the UNS3D mesh (a value of 1) or a node in the Beta mesh (a value of 0).
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The coupling file is generated in a two step process. First, the desired surface

mesh is extracted from the UNS3D volume mesh. Typically, the entire viscous wall

is used to generate the surface mesh, though a subset could be used. This is done

with a simple program named SurfaceMesh.

The UNS3D and Beta surface meshes are then compared in a program call

BetaInterp, which once again has a simple input file containing the names of the

surface files and the output interpolation files. BetaInterp uses an octree sort to

match nodes between the two surfaces, which has more efficient scaling than a brute

force search.

At this point, BetaInterp is designed only for matching interfaces (nodes on each

surface are located at the same point in space). It could easily be expanded to non-

matching interfaces using Moving Least Squares or another interpolation methodol-

ogy. Again, the source code is given in a separate appendix.

Run Input Files

This section contains the input files which control how each solver runs. Addi-

tionally, any additional required input files are defined for each solver.

UNS3D Input

UNS3D requires an input file in the following format:

&cardf

title = "Spherical Protuberance" ! Title of Run

tecplot_name = "plt/SP_io7.plt" ! Name of Tecplot format file

dump_tecplot = T ! Logical for Tecplot output

case_name = "yp/SP_io7" ! Name of surface output file

dump_yplus = T ! Logical for surface output

rsdfile = "dat/io7.dat" ! Text output file
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relative_V = F ! Output option for velocities

! ! (removes frame rotation)

/

&cardg

gridfile = "mesh/vol.mesh" ! Filename for volume mesh (base file)

c2nfile = "mesh/c2n.def" ! Filename for connectivity

/

&cardh

filedin = "out/sp6.out" ! Filename for restart input

filedout = "out/sp7.out" ! Filename for restart output

tempin = "out/vol.q12" ! Filename for unsteady input

/

&cardi

fileturin = "out/none3.tur" ! Filename for turbulence restart input

fileturout = "out/none4.tur" ! Filename for turbulence restart output

/

&cardj

profin = "prof.in" ! Filename for inlet profile

use_profin = .false. ! Option for profile or constant vel. inlet

/

&cardk

/

&card0

noblade = 1 ! Number of domains for annular periodicity

igeom = 1 ! Annular/linear periodicity, if applicable

inbc = 6 ! Inlet boundary condition type

ioutbc = 3 ! Outlet boundary condition type

ispet = 0 ! Wall boundary condition (0 - adiabatic,

! ! 1 - isothermal with twall, 2 - coupled to beta_t)

iwall = 3 ! Inviscid wall boundary condition

/

&card1

istep = 1 ! 1 for restart, 0 for initial case

readq12 = F ! Option for reading unsteady restart input

iturm = 1 ! 1 for turbulent restart,

! ! 0 for initial turbulence

npseudotimesteps = 3000 ! Number of pseudo-time steps for each time step

mtime = 200 ! Number of time steps in real time

/

&card2

preconditioned = .true. ! Option for preconditioning of inviscid fluxes

iorder = 2 ! Spatial order of accuracy specification

use_limiter = .true. ! Option for limiter use

invis = F ! Option for inviscid/viscous flows

lamin = F ! Option for laminar/turbulent flows
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mstg = 4 ! Number of stages in Runge-Kutta integration

irhsm = 0 ! Number of implicit residual smoothing iterations

lsgg = 3 ! Type of gradient calculation (3 -> WENO)

steady = F ! Option for steady/unsteady flows

typlim = 5 ! Type of limiter calculation (5 -> Flux Limiter)

fluxtype = 3 ! Type of flux calculation (3 -> RoeM)

/

&card2a

imp = .false. ! Disable linearized implicit calculation

/

&card3

cfl = 0.5d0 ! Courant-Friedrichs-Lewy number (pseudo-time step)

dtimedim = 0.001d0 ! Real-time step

/

&card4

tintens = 0.002d0 ! Turbulent intensity

tlength = 0.001d0 ! Turbulent length scale

u0 = 0.035d0 ! Initial Mach number (and inlet for supersonic)

alfaz = 0.0d0 ! Rotation of inlet velocity toward z-axis (first)

alfax = 0.0d0 ! Rotation of inlet velocity about x-axis (second)

/

&card5

ptot = 101413.d0 ! Total pressure at inlet

ttot = 228.22d0 ! Total temperature at inlet

pback = 101325d0 ! Back pressure at outlet

twall = 300.0d0 ! Wall temperature for ispet = 1

/

&card6

pref = 101325d0 ! Reference pressure for nondimensionalization

tref = 288.15d0 ! Reference temperature for nondimensionalization

scale = 1.0 ! Nondimensionalization spatial scale

/

&card7

/

&card8

omegax = 0.0d0 ! Rotation speed (in RPM)

/

&card9

echo = F ! Option for output verbosity

debug = F ! Option for output verbosity

intev_freq = 1 ! Frequency of integration output in real-time steps

intev_freq_pt= 3000 ! Frequency of integration output in pseudo-time steps

res_freq = 1 ! Frequency of residual output in real-time steps

res_freq_pt = 1000 ! Frequency of residual output in real-time steps

itersave = 25 ! Frequency of restart output in real-time steps
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q_corrctn_limit = 1.d-12 ! Limit for residuals before iteration stops

q_corrctn_ratio = 7.0d0 ! Limit for residual ratio to initial residual before

! ! iteration stops

MonitorMaxMach = F ! Option for Mach number monitoring

MonitorMaxTemp = F ! Option for temperature monitoring

MaxMachThreshold = 2.5 ! Threshold for Mach number monitoring

reset_iter_counter = F ! Option for restart file

Force_l = T ! Option for force integration and reporting

makemovie = T ! Option for movie generation

mov_start_num = 1 ! Start number for movie generation

movie_freq = 25 ! Frequency of frame recording for movie generation

! ! in real-time steps

/

&card10

/

&cardforced

def_type = "beta" ! Type of deformation, can be:

! ! "none" -- no deformation

! ! "beta" -- deformation specified by Beta

! ! "rbf_plunge" -- linear motion of airfoil

! ! "rbf_pitch" -- angular motion of airfoil

! ! "fromfile" -- Deformation specified in file

def_wave = "cos" ! Time variation of forced deformation

amp = 1.0 ! Amplitude of forced deformation

forced_freq = 1.0 ! Frequency of forced deformation

sparse_rbf = .true. ! Option specifying use of MUMPS for radial

! ! basis function interpolation

pitch_rrat = 0.1d0 ! Size of support for RBF interpolation

l2gfile = "mesh/loc2glob.dat" ! "loc2glob" filename

forced_file = "mesh/vol.def" ! Filename for deformed mesh

ea(1) = 0.0 ! Elastic axis for pitch deformation

ea(2) = 0.0 ! Elastic axis for pitch deformation

axisdir = 3 ! Axis direction for pitch deformation

/

&cardrom

/

&cardprecon

eps_minur = 0.035d0 ! Minimum relative velocity for preconditioning

/

&vortex

/

&beta

UNS3D_GROUP_KEY = 0 ! Communication key for coupling

BETAS_GROUP_KEY = 1 ! Communication key for coupling

BETAT_GROUP_KEY = 2 ! Communication key for coupling
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flux_factor = 1.0d0 ! Factor to multiply heat flux

subit_freq = 50 ! Number of pseudo-time steps between each

! ! subiteration in aeroelastic coupling

/

Beta Structural Input

Beta-S requires an input file in the following format:

createModel

TransientElasticityImplicitLinearModel // Defines structural model

exitcreateModel

ReadTitle

simple.beta // Title of run

setVerboseFlag 0 // Determines how much is written to screen

SolverSettings

SetSolverVerboseFlag 0 // Determines how much is written to screen

setStorageMethod MKLpardiso // Setting for how matrices are stored

setReorderingScheme PAR // Reordering scheme

UseMultiCoreSolver 10 // How many cores may be used (OpenMP)

ExitSolverSettings

BasicElement::SetAnalysisType

1 // Geometrically non-linear analysis

CreateElements

968 // Number of elements in mesh

TransientElasticityElement3D // Type of element

all // Uniform element type

-1

exitCreateElements

openFile Orthotropic.matlib ReadMaterials // Opens another file to read materials

openFile 3Dplate.b3d ReadMesh // Opens another file to read mesh

setNumDofPerNode // Set dimension of run to 3

3 all

-1

SetElementProperty // Set material for elements
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selectElementMaterial

all 1 // All elements set to material 1

-1

SetElementProperty // Integration order for elements

setIntegrationOrder

all 3

-1 0 0

DefineCurve // Define a piecewise linear curve

// Curve 0: Time Vs Load

// Used for traction in x and z directions

0.0 0.0

120.0 0.0

exitDefineCurve

DefineCurve // Define a piecewise linear curve

// Curve 1: Time Vs Load

// Used for traction in y direction

0.0 0.0d0

0.01 -1.0d0

0.02 0.0d0

200.0 0.0d0

exitDefineCurve

ReadLoads // Set up Neumann conditions

SurfaceTraction

3Dplate.b2d CFDMPI 1 0 // Couple surface in input file to CFD

// Surface File -- Traction type -- Local Comm Key -- UNS3D Comm key

end

SurfaceTraction

3Dplate_bot.b2d 0 1 0 // Create constant load based on curves

// x, z -- Curve 0

// y -- Curve 1

end

exitReadLoads

CreateNodeGroup // Set up nodes for Dirichlet conditions

// Nodes on a line: (x1, y1, z1) to (x2, y2, z2)

NodeSet1 OrderedNodesOnLine -0.25 0.0 -0.25 0.25 0.0 -0.25

NodeSet1 OrderedNodesOnLine -0.25 0.0 0.25 0.25 0.0 0.25

NodeSet2 OrderedNodesOnLine -0.25 0.0 -0.25 -0.25 0.0 0.25

NodeSet2 OrderedNodesOnLine 0.25 0.0 -0.25 0.25 0.0 0.25

NodeSet3 NodesOnPlane 1 0.0 // All nodes on plane x = 0

NodeSet3 NodesOnPlane 1 0.5
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NodeSet4 NodesOnPlane 3 0.0

NodeSet4 NodesOnPlane 3 0.5

exitCreateNodeGroup

readConstraints // Define Dirichlet conditions

NodeSet1 1 // Restrain NodeSet1 in x direction

NodeSet1 2 // Restrain NodeSet1 in y direction

NodeSet1 3 // Restrain NodeSet1 in z direction

NodeSet2 1

NodeSet2 2

NodeSet2 3

exitreadConstraints

SetElementProperty

SetElementTemperature // Define initial temperature of elements

all 0.0

-1 0 0

ReadTransientAnalysisParameters

InitialVelocityAllNodes 0.0 // Sets initial velocity of nodes

SaveRestartData ate_restart.bin // Saves data for restart

// LoadRestartData // Loads restart data (commented for first run)

SetTimeStep 0.0001 // Time step

SetNumTimeStep 50000 // Number of time steps

SetOptionalOutTimeStepSize 0.0001 // Frequency of output

SetMPIGroupKey 1 // Communication key of Structural

CoupleToThermalwithMPI 2 // Communication key of Thermal

SetdeltaThermalUpdateT 0.0001 // Update frequency with Thermal

CoupleToCFDwithMPI 0 4223 // Communication key of UNS3D and

// // number of nodes in communication

SetNewmarkBeta 0.25 // Parameters for time-stepping

SetNewmarkGamma 0.5 // Parameters for time-stepping

IterateWithCFD 5 1.0e-6 // Subiteration procedure with UNS3D

exitReadTransientAnalysisParameters

ReadOptionalOutput // Additional output

displacements 10 // Write the displacements every 10 iterations

exitReadOptionalOutput

DoAnalysis // Run the analysis

end

The structural material file (named “Orthotropic.matlib” in the input above)
has the following format:
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ElasticMaterialWithDensity // Type of material

1 "Soft Orthotropic Material" // Reference Number and

readModuli

200.0e9 200.0e9 200.0e9 // Young’s Modulus

0.3 0.3 0.3 // Poisson’s Ratio

76.923e9 76.923e9 76.923e9 // Shear Modulus

7850 // Density

readThermalExpansionCoefficients

3.5e-006 3.5e-006 3.5e-006 // Coefficient of Thermal Expansion

exitElasticMaterial

exitReadMaterials

Beta Thermal Input

Beta-T requires an input file in the following format:

createModel

TransientHeatTransferModel // Defines thermal model

exitcreateModel

ReadTitle

simple.beta // Title of run

setVerboseFlag 0 // Determines how much is written to screen

SolverSettings

setSolverVerboseFlag 0 // Determines amount written to screen

setStorageMethod mklpardiso // Setting for how matrices are stored

setSparseSolverMaxIterations 100000 // Maximum solver iterations

setSparseSolverTolerance 1e-8 // Tolerance for solver

replaceZeroDiagonal 1.0 // Avoid singular matrix

SetReorderingScheme PAR // Reordering scheme for matrix

setUsePreviousFillInOrdering 1 // Option for fill-in ordering

UseMultiCoreSolver 10 // How many cores may be used (OpenMP)

ExitSolverSettings

UseMultiCoreAssembly max

BasicElement::SetAnalysisType

0 // Linear analysis

maxResidual

1e-5 // Residual required to advance
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CreateElements

968 // Number of elements in mesh

TransientHeatTransferElement3D // Type of element

all // Uniform element type

-1

exitCreateElements

openFile ThermalMaterial.mat ReadMaterials // Opens another file to read materials

openFile 3Dplate.b3d ReadMesh // Opens another file to read mesh

setNumDofPerNode // Only one temperature per node

1 all

-1

SetElementProperty // Set material for elements

selectElementMaterial

all 1 // All elements set to material 1

-1

SetElementProperty // Integration order for elements

setIntegrationOrder

all 3

-1 0 0

CreateNodeGroup // Set nodes for Dirichlet BC

NodeSet1 NodesOnPlane 1 0.0

NodeSet1 NodesOnPlane 1 0.5

NodeSet2 NodesOnPlane 3 0.0

NodeSet2 NodesOnPlane 3 0.5

exitCreateNodeGroup

readConstraints // Define Dirichlet BC (if applicable)

exitreadConstraints

ReadLoads // Set up Neumann conditions

SurfaceFlux

3Dplate.b2d CFDMPI 2 0 // Couple surface in input file to CFD

// Surface File -- Traction type -- Local Comm Key -- UNS3D Comm key

end

exitReadLoads

setTimeIntegrationAlpha 0.0 // Alpha for integration method (set to Euler)

setTimeUnit seconds // Time unit (only affects output)
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ReadOptionalOutput

concentration 1 // Output (concentration gives temperature)

exitReadOptionalOutput

ReadTransientAnalysisParameters

InitialConditions 0.0d0 // Set initial Temp to 0

SaveRestartData ate_restart.bin // Restart filename

// LoadRestartData // Loads restart data (commented for first run)

SetTimeStep 0.0001 // Time step

SetNumTimeStep 50000 // Number of time steps

SetMPIGroupKey 2 // Communication key of Thermal

CoupleToMechanicalWithMPI 1 // Communication key of Structural

SetdeltaThermalUpdateT 0.0001 // Frequency of output

CoupleToCFDWithMPI 0 4223 // Communication key of UNS3D and

// // number of nodes in communication

exitReadTransientAnalysisParameters

DoAnalysis // Run the analysis

end
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The thermal material file (named “ThermalMaterial.mat” in the input above)
has the following format:

TransientHeatTransferMaterial

1 "Aluminium Heat Transfer Material" // Reference Number and Name

ReadDensity

2.7e03 // Density of Material

ReadSpecificHeat

902.0 // Specific Heat of Material

ReadConductivity

237.0 237.0 237.0 // Thermal Conductivity of Material

ExitTransientHeatTransferMaterial

ExitReadMaterials

G.1. Codes Included as Separate Files

The following FORTRAN 90/95 codes are included as separate files:

• BetaInterp (Interpolation generator between Beta and UNS3D)

• BetaPrep (Conversion code from .ugrid file to Beta mesh file)

• Prep (Conversion code from .ugrid file to UNS3D mesh file)

• SplitMesh (Parallelization preprocessing code)

• SurfaceMesh (Surface extraction code for UNS3D mesh files)

Each code is compressed as a tarball (.tgz) file. Inside the tarball, the source

code and a makefile are included, which should be enough to generate an executable

with a suitable FORTRAN 90/95 compiler, such as gfortran.

Also included are the subroutines which were modified or added to the RANS

solver. These are included as a separate tarball named RANS subs.tgz.
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