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ABSTRACT

The study of various indicators of nuclear proliferation actions by states can

identify the associated level of risk. This study expands upon previous proliferation

risk work by investigating the number of Enrichment and Reprocessing facilities

a state has based on various historical indicators. These indicators include: (a)

Gross Domestic Product (GDP) Per Capita, (b) Nuclear Electricity Production, (c)

Possession of Nuclear Weapons, (d) Superpower Alliance, (e) Technical Capabilities,

(f) number of Rival ENR facilities, and (g) number of ENR facilities held by a trading

partner. ENR facilities are a vital part of the nuclear fuel cycle, regardless of intent

be it civilian electricity production or weapons production. The number of ENR

facilities is important to measure, as this provides information regarding a state’s

urgency and reasoning for a weapons program.

Data, from A Spatial Model of Nuclear Technology Diffusion by M. Fuhrmann and

B. Tkach, is utilized to develop a predictive model. This dataset includes state data

from 1945-2010, for 56 countries that had at least one operational research reactor.

From the aforementioned indicators, both the number of Rival ENR facilities and

number of ENR facilities held by a trading partner accounted for spatial clustering

of nuclear weapons programs. Spatial clustering provided the opportunity to capture

the dynamic nature of proliferation.

Bayesian networks were used as the investigative tool for this study. These net-

works are directed acyclic graphs that provide the ability to represent conditional

dependence relationships between sets of random variables. This provides the ability

to use information about the state of a random variable to infer additional informa-

tion about the other random variable. Bayesian networks allow for a more visual

approach to developing joint distributions of all important variables that model a
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system. In most cases, there is a plethora of data for Bayesian networks to be con-

structed from. It is possible to inform these networks through expert judgement.

However, due to the limited data available for nuclear weapons history, expert judg-

ments are also required to ensure model specification.

From this study, it was evident that Bayesian networks were an appropriate

tool to capture the dynamics of a potential proliferation threat and the level of

proliferation risk. However, due to the complexity behind nuclear weapons programs

there is always an opportunity for future work. The results from this study compared

favorably to the historical data from Fuhrmann and Tkach, with some potential for

better prediction accuracy. Refined models, with a higher validation rate with respect

to historical data, can be used as a policy tool. These refined models will have the

capability to forecast.
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NOMENCLATURE

AVLIS Atomic Vapor Laser Isotope Separation

CPT Conditional Probability Table

EM Expectation - Maximization

EMIS Electromagnetic Isotope Separation

ENR Enrichment and Reprocessing Facilities

F&T Fuhrmann and Tkach datset

FP Fisson Products

GD Gradient Descent

GDP Gross Domestic Product

HEU Highly Enriched Uranium

IAEA International Atomic Energy Agency

LEU Low Enriched Uranium

MLIS Molecular Laser Isotope Separation

NFC Nuclear Fuel Cycle

NPT Treaty on the Non-Proliferation of Nuclear Weapons

PUREX Plutonium Uranium Redox Extraction

SNM Special Nuclear Material

SWU Separative Work Unit

THOREX Thorium Extraction

TRU Transuranics

UREX Uranium Extraction
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1. INTRODUCTION

The advent of the nuclear age brought with it both peaceful and non-peaceful

nuclear applications. The spread of nuclear weapons technology began in the early

stages of World War II. Currently, nine states have nuclear weapons and multiple

other states possess the capabilities to start a nuclear weapons program. Only five

states are recognized as nuclear weapons states per the Nuclear Non-Proliferation

Treaty (NPT); United States (1945), Russia (1949), United Kingdom (1952), France

(1960), and China (1964). There are four other states that possess nuclear weapons:

India (1974), Israel (N/A), North Korea (2006) and Pakistan (1998). [1] Additional

states that pursued nuclear weapons programs include Iran, Libya, South Africa and

Syria. Besides accounting for current nuclear weapons states, it is also important

to recognize when states initiated a nuclear weapons program, even if the program

has since failed or ceased. There are thirteen cases identifying decisions to initiate a

nuclear weapons programs predating 1975. According to Meyer, a nuclear weapons

program initiation is defined by an explicit governmental decision. [2] In this mod-

ern age, technical capabilities are continuously improving. As a result the threat

of nuclear weapons proliferation is at an all time high. However, various security

protocols such as the NPT and Comprehensive Nuclear Test Ban Treaty and organi-

zations such as the International Atomic Energy Agency have curbed major potential

threats.

“There are indications because of new inventions, that 10, 15, or 20 nations will

have a nuclear capacity, including Red China, by the end of the Presidential office in

1964. This is extremely serious...I think the fate not only of our own civilization, but

I think the fate of world and the future of the human race, is involved in preventing

a nuclear war.” [3] From President Kennedy’s remarks above, it was (and is) obvious
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that nuclear weapons will always be of concern to states on the global stage. The

spread of nuclear weapons signaled the importance to globally emphasize the need

for nuclear security and non-proliferation. Currently, nuclear weapons proliferation

is the focal point of security concerns. [4] Nuclear weapons proliferation can severely

impact strategic planning and have security implications regionally and globally [5].

Thus, it has become increasingly important to study nuclear security and nuclear

proliferation risk.

1.1 Nuclear Non-Proliferation

Nuclear opportunity and Nuclear willingness are key to nuclear weapons prolif-

eration. [4] Nuclear opportunity represents a state’s capability to develop nuclear

weapons, while nuclear willingness represents a state’s motivation. Motivation can

determine whether a state poses a credible threat, while technical capability mea-

sures whether a state can accomplish its goals. Therefore, it must be noted that

proliferation decisions stem from a combination of technical capabilities and motiva-

tion(s).

There are two primary schools of thought regarding nuclear weapons proliferation,

realist and idealist philosophies. Realism relies on the hypothesis that states acquire

nuclear weapons because their security demands it [6]. The realist point of view

focuses on the fact “friends today may become enemies tomorrow” [7]. Thus, based

on this ideology, the driving factor for development is the technical capability of a

state [8]. President Kennedy used the realist ideology, when predicting that 15-20

countries would have nuclear weapons by 1975 [9]. However, historical examples

suggest that the realist ideology is a poor representation of proliferation decisions.

President Kennedy’s quote is a prime example of how this ideology over-predicts

proliferation decisions. The failure of realism to explain proliferation, led to further
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thought being placed on idealism [10].

Idealism relies on the belief that proliferation decisions are dependent on multiple

factors and not just dependent on security alone. Idealism represents the demand

side of proliferation, while realism represents the supply side of proliferation [10]

[6]. Idealism can be applied to three different levels: international, domestic and

the individual level. Each level can impact proliferation decisions differently, thus

highlighting how complex the proliferation decision process can be. These levels can

also be used to assess whether a state is more likely to proliferate. Idealists stress

the importance of meeting international standards by highlighting the importance of

non-proliferation treaties. Idealism suggests that states should be punished if they

do not abide by international norms, to prevent proliferation. However, there have

been historical cases where such logic has backfired. It is also true that societies

that promote openness are more likely to reject the idea of a weapons program [11].

While secretive societies are more likely to pursue a weapons program [7]. The

individual level looks into trends of the leader of a state. Charles de Gaulle is an

example of how individuals dictate proliferation decisions. Gaulle was very keen on

developing a sense of independence and ensuring French sovereignty, based on the

result of previous wars. [12] Therefore, Charles de Gaulle is one of a handful of leaders

that highlight the importance of recognizing the individual level when considering

non-proliferation theories.

It is also important to recognize the different types of proliferation, vertical and

horizontal. Horizontal proliferation refers to non-nuclear states and their attempt to

acquire nuclear weapons. Whereas vertical proliferation refers to nuclear weapons

states attempting to increase their stockpiles and capabilities. The current status

of the nuclear regime dictates that horizontal proliferation is of a higher concern

than vertical proliferation. However, with the cold war serving as a prime exam-
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ple of vertical proliferation it is evident that both types hold equal importance in

global security [13]. The majority of nuclear proliferation research aims to study the

determinants of horizontal nuclear proliferation.

There have been varying arguments reasoning why horizontal proliferation is of

higher importance. Some have pointed to the near absence of major war in the

nuclear era as evidence that nuclear weapons proliferation is beneficial [14]. Authors

like Mueller argue that nuclear weapons and the absence of major war is merely

coincidental [15]. The arguments made by these authors sheds light on their stance

between realism and idealism. Unfortunately, nuclear weapons proliferation is quite

fickle, and requires individual case studies to understand the complexity behind

proliferation decisions.

The chances of nuclear war should increase, with the increase of horizontal pro-

liferation. By definition at least one state in a war should use nuclear weapon(s)

for it to be deemed a “nuclear war”. However the consequences of nuclear weapons

may cause states to be less likely to engage in war. This would indirectly promote

horizontal proliferation, directly asserting the concept of deterrence theory. It is

interesting to note that an increase in nuclear stockpiles could deter other nations

from proliferation.

1.2 Objectives and Motivations

The overall goal of this study is to estimate the number of Enrichment and

Reprocessing (ENR) facilities a state has. This goal will be achieved through the

following objectives:

1. Develop Bayesian network(s) that estimate the number of ENR facilities a state

has at a specific point in time based on input parameters.

(a) This network should reproduce historical examples and incorporate the
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potential to forecast.

(b) Develop multiple networks, by using different learning methods.

(c) Validate network(s) for the following historical examples:

i. Brazil,

ii. India,

iii. South Africa, and

iv. Sweden.

2. Conduct an expert elicitation to better understand the role of different indica-

tors in the development of a state’s ENR facilities.

3. Conduct a sensitivity analysis on the network(s) developed.

(a) Identify factors towards nuclear weapons proliferation and ensure they are

modeled by the represented nodes.

(b) Identify whether certain factors in nuclear weapons proliferation are de-

pendent on one another. Ensure that dependence is shown in the network.

(c) Determine the predicted effect of each node(s) on the dependent variable.

(d) Smooth data by merging yearly data into sets of x (number) years. De-

termine the appropriate number of years to subset.

(e) Estimate the uncertainty in the number of ENR facilities’ by varying the

historical ENR facilities data set.

Each objective is key in achieving the overall goal. The first two objectives aim to

develop the predictive nature of the model. The third objective studies sensitivities

in the model, enabling the option for future use. These developed models can be

further refined to forecast ENR developments, highlighting its use as a policy tool.
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1.3 Previous Work

Previous work has been conducted on nuclear weapons proliferation determina-

tion. Before discussing previous work, it is important to recognize potential pitfalls

when predicting proliferation. According to Montgomery and Sagan [16], there are

five serious problems. First and foremost, there is ambiguity surrounding initiation

and completion dates for nuclear programs. Next, methodologies and data sets are

generally chosen for convenience instead of there relation to empirical questions asked

in the study. Independent variables chosen for proliferation studies overlook impor-

tant factors such as prestige, and bureaucracies. Additionally, findings can ignore

data that is crucial to policy making. [16] A thorough review of the literature was

used to provide background information whilst considering potential pitfalls.

Work done by Corey Freeman and Mike Mella (at Texas A&M) involved compu-

tational networks to assess proliferation determination [5] [10]. Freeman developed

the original Bayesian network to test the following hypothesis, a state’s motivations

directly affect intention’s, which in turn led to the proliferation pathways chosen.

The Freeman network had flexibility as it tested for both states and non-state ac-

tors. Freeman’s work found that motivations determined pathways, while capabilities

affected the success rate. This work established the relative threat an adversary can

pose [10]. Mella expanded upon the Freeman’s network in a couple of ways. The

network was refined to yield the most likely path a state would pursue in developing

nuclear weapons. Additionally, the networks also included dual-use export controlled

technologies to better assess state pathways [5]. This expanded network was tested

for various historical examples. Both networks were successful in predicting prolifer-

ation pathways based on a number of different factors. However, both Freeman and

Mella made multiple suggestions to improve upon their work respectively [5] [10].
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Some suggestions include: conducting expert elicitations, including de-motivating

factors, and testing more historical cases. A plethora of nuclear weapons prolifer-

ation studies provide insight on potential motivators, but do not seem to capture

de-motivating factors [10]. The notion for recommending expert elicitations was to

improve upon weighting factors used by Bayesian network software [5].

Other proliferation risk work utilized logistic models to asses both the nuclear

opportunity and nuclear willingness factors. Papers in the Journal of Conflict Reso-

lution, discuss potential indicators for nuclear proliferation [4]. Jo and Gartzke take

a similar approach to the Singh and Way article, but two dependent variables are

evaluated. The Jo and Gartzke study identifies whether a state has a program, and

a weapon. Additionally, both the Jo and Gartzke and Singh and Way studies avoid

defining classifying nodes but instead determine the dependent variables as a func-

tion of all listed independent variables. Finally, the Jo and Gartzke study continues

to study the independent variables in groups based on its class (technical capability

or motivation) [17].

7



2. NUCLEAR FUEL CYCLE

A review of the Nuclear Fuel Cycle (NFC) is made in this chapter for familiariza-

tion with the ENR facility definition used for this study. This study associates the

development of ENR facilities with a states proliferation status. ENR facilities for

this study are deemed to be sensitive technologies and correlates of nuclear weapons

proliferation. Some states develop weapons capability, but avoid proliferating unless

motivated to do so, more commonly known as nuclear hedging [18].

Special Nuclear Material (SNM) and source material of interest for proliferation

include plutonium, uranium, and thorium. The NFC is the path followed by nuclear

material during its use through a system of interconnected nuclear facilities. It starts

with mining of ore and concludes with disposal of waste. All stages of the NFC can

be seen in Figure 2.1. Additionally, it is important to note that there are two types

of cycles, open and closed [19]. If spent fuel is not reprocessed then the cycle is

classified as an open fuel cycle, whereas if spent fuel is recycled or reprocessed then

it is classified as a closed fuel cycle.
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Figure 2.1: Stages of the Nuclear Fuel Cycle. Reprinted from [20]

The front-end of the NFC consists of five stages prior to fuel entering the reactor.

The first stage is to mine and mill uranium and thorium from the ground. There

are four different methods to mine: open-pit mining, underground mining, in-situ

leaching, and by-product mining. Following the mining, material will be milled

to extract uranium from mined ore. Generally speaking, mining and milling are

considered one stage, since most facilities have the capability to extract and mill

material. The resulting material, concentrated in U3O8 (yellowcake), is shipped to

a conversion facility. Conversion facilities convert U3O8 to UF6 gas, which is then

shipped to a uranium enrichment facility.

Traditional nuclear fuel requires uranium that is slightly enriched in 235U . Nat-

ural uranium contains 99.28% of 238U , 0.711% of 235U , and 0.006% of 234U . Nuclear

fuel used in light water reactors requires uranium to have a concentration varying
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between 2% to 5% of 235U . Enrichment process uses different isotope separation

techniques to increases the concentration of 235U relative to 238U . The most com-

monly used enrichment technologies are gaseous diffusion, gas centrifuge, and to a

limited extent Atomic Vapor Laser Isotope Separation (AVLIS). Some other enrich-

ment technologies include aerodynamic vortex tube, aerodynamic separation nozzle,

chemical exchange, ion exchange, laser molecular separation, and electromagnetic

isotope separation. Once the uranium is enriched, it is passed to a fuel fabrication

facility. Fuel fabrication facilities take the enriched uranium and develop fuel assem-

blies. A fuel assembly is a column of ceramic fuel pellets made of uranium oxide or

mixed-oxide and clad. Each assembly is sealed with zirconium alloy. Fuel fabrication

marks the last stage of the front end of the fuel cycle.

The back-end of the NFC consists of all stages after fuel leaves the reactor (trans-

muter). Depending on the type of cycle (open or closed), the number of stages in the

back end of the NFC can vary. In an open cycle, fuel from the reactor is stored in

a spent fuel pool. After which, the fuel is taken from the spent fuel pool and stored

in dry casks. These dry casks are sent to high level waste management facilities.

In a closed cycle, the first stage in the back-end is fuel reprocessing. Reprocessing

recovers uranium and plutonium isotopes from the used fuel. The second stage in-

volves either uranium or plutonium conversion. Finally, the material is sent to either

enrichment or fuel fabrication facilities, concluding the fuel cycle.

2.1 Weapons Development in Nuclear Fuel Cycle

The two most commonly known types of nuclear fission weapons are gun-type and

implosion type weapons. Both of these require a mass of fissile material (enriched

uranium or plutonium). This mass is assembled in such a way that it can start an

uncontrolled nuclear chain reaction (supercritical mass). In gun-type weapons, a
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piece of sub-critical material is shot into another to initiate this reaction. Whereas,

implosion type weapons compress the sub-critical material through the use of lenses,

a spherical shell of high explosives. Let it be noted that gun-type weapons can use

highly enriched, around 90% or higher, 235U or 239Pu; implosion-type weapons can

use either 239Pu or 235U . Note that uranium based implosion-type weapons are

difficult to manufacture. Nuclear weapons can be made out of any SNM, highly

enriched uranium (HEU), 233U , 239Pu, and 241Pu. Therefore, peaceful applications

of nuclear energy can shorten breakout time, thus increasing a state’s capability to

proliferate [21]. Breakout time is defined as the amount of time required to produce

enough weapons-grade material for one weapon.

While the aforementioned are the most common types of nuclear weapons, there

are a number of other categories of nuclear weapons. States pursuing a program will

normally aim to achieve nuclear capability in the most feasible way possible. It is

easier to achieve such a goal with traditional nuclear weapons as there is a known

track record for these types of weapons (gun and implosion type).

2.1.1 Enrichment

It is important to study enrichment facilities, as nuclear weapons require a higher

enrichment level than nuclear fuel (less than 5% for power reactors). Enrichment is

the process of increasing the ratio of 235U to that of the 238U isotope. 235U has a

higher spontaneous fission rate than 238U, hence the need to enrich uranium. As such,

the number and capacity of enrichment facilities are vital to nuclear proliferation.

The capacity of an enrichment facility is measured in Separative Work Unit

(SWU). The number of SWUs is the quantity directly related to the resources re-

quired to enrich material to a desired level. The main resource required to enrich

material is electrical energy for isotope separation. Thus, SWUs are directly propor-
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tional to the energy consumed to enrich material.

This study accounts for all types of enrichment technologies used in pilot, labo-

ratory or commercial scale plants. However, this study will focus on two of the most

common enrichment technologies in gaseous diffusion and centrifuge technology.

Gaseous diffusion relies on the difference in molecular effusion rates of 235UF6

and 238UF6 through a thin barrier containing millions of pores. As a result, when

the UF6 molecules are kept at the same temperature, a kinetic energy comparison

shows that 235UF6 molecules are faster than 238UF6 molecules. Thus, the separation

of molecules is a result of the relative frequency with which molecules pass through

a small hole, leaving material slightly enriched in 235UF6. It is important to note

that these plants consume about 2,300 - 3,000 kW-hr per SWU produced. Some

operational concerns for gaseous diffusion plants are criticality issues, UF6 leaks,

and plugging of the diffusion barriers by solids [22].

Worldwide, roughly about 80% of enrichment is done using centrifuge technology.

Centrifuges are more common due to a variety of factors that include: feasibility, an

ease to build, and simple operation techniques. Centrifuge technology relies around

the use of a rotating drum or cylinder, where the centrifugal force compresses heavier

238UF6 gas molecules to the outer cylinder.
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Figure 2.2: Counter-current Centrifuge Technology. Reprinted with permission from
[23]

An example of a counter-current gas centrifuge can be seen in Figure 2.2. The

UF6 gas rotating inside the cylinder is subject to acceleration much greater than

gravity. As a result, pressure at the outer radius is much greater than pressure at

the center, causing a higher relative abundance of the heavier isotope to be pushed

around the outer radius.

Some other advanced technologies include: AVLIS, Molecular Laser Isotope Sep-

aration (MLIS), and Electromagnetic Isotope Separation (EMIS).

2.1.2 Reprocessing

Additionally, it is important to study used nuclear fuel reprocessing facilities

because of the non-proliferation concerns associated with the plutonium products.

Each one of the reprocessing methods has its own proliferation concern. The following

three reprocessing methods are quite common, Plutonium Uranium Redox Extrac-

tion (PUREX), Uranium Extraction (UREX), and Thorium Extraction (THOREX).
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Figure 2.3: PUREX Process Reprinted with permission from [24]

First let us examine the PUREX process. As seen in Figure 2.3, this process pro-

duces two separate streams of material (U and Pu). Organizations like the IAEA use

in-depth study of these reprocessing methods to appropriately implement safeguards,

attempting to avoid weapons proliferation or diversion of material.

Initially, the used fuel is prepared for dissolution by separating the fuel matrix

from the cladding. After which, the fuel is dissolved into an aqueous solution (fuel

dissolution). The next step is to prepare dissolved feeds by adjusting valence and

acidity for maximum separation. The next step is to remove decontaminants such as

Fission Products (FP) and Transuranics (TRU). The plutonium is separated from

the uranium, thus developing two separate process streams. Following this, both the

U and Pu are purified in their respective streams. Pu production in this process

makes it a proliferation concern. Potential contamination is the only setback the

Pu stream faces. Otherwise, the Pu produced from the stream is weapons usable,
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specifically when the used fuel is discharged at a very low burn-up.

The UREX process recovers 99.9% of Uranium and 95% Technetium from the

spent fuel. Both of these materials are recored in separate product streams. The

UREX process uses similar tools to the PUREX process, but doesn’t recover pure

plutonium. This difference occurs through a modification in the front end of the

process.

The THOREX process can produce either Pu or U depending on the core con-

figuration used. The THOREX process is extremely similar to the PUREX process;

two product streams (Pu & U vs. Th & U). Details of the THOREX process is

shown in Figure 2.4 The general thorium fuel cycle requires that fast reactors use a

seed-blanket configuration, as seen in Figure 2.5.

Figure 2.4: THOREX Process Reprinted with permission from [25]
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Figure 2.5: Seed-Blanket Core Reprinted with permission from [26]

Based on the seed-blanket configuration, the reactor can produce U, Pu or Th.

The traditional fast reactor configuration can be seen in Table 2.1. When the blanket

region comprises of a mixed oxide fuel containing ThO2 and UO2 (Scenario #3 in

Table 2.1), regardless of the seed material the fuel will transmute into the follow-

ing 233U , 235U and 239Pu. The separation of 239Pu from the uranium is a rather

straightforward process, however proliferators will run into issues when attempting

to separate 233U and 235U as this requires isotope separation and not element sepa-

ration. The preferential scenario is to use a blanket region that comprises of 233UO2

and ThO2 (India’s Goal in Table 2.1). In this case, the fuel will transmute and form

an abundance of 233U .
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Table 2.1: Fast Reactor Core Configurations

Fuel

Scenario Seed Blanket Product

Traditional
Fast Reactor

UO2 Depleted UO2 UO2 + Pu

Scenario #2 UO2 ThO2 ThO2 + 233U
Scenario #3 233UO2 or 235UO2 or PuO2 Depleted UO2 + ThO2

233U + 235U + Pu
India’s Goal 233UO2 ThO2 Th + 233U

As discussed earlier, the listed reprocessing and enrichment methods can produce

significant amounts of SNM, to be used in weapons. Hence, the objective of estimat-

ing the number of ENR facilities a state can possess based on indicators selected in

this study is very important. In the following two chapters the methodology and the

tool for estimation are described.
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3. BAYESIAN NETWORK ANALYSIS

Bayesian networks were used as the predictive model for this investigation. An

overview of Bayesian methodologies should provide insight on how objectives were

met. Bayesian networks are graphical models that represent conditional dependence

relationships between a set of random variables such that information about the

state of one random variable can be used to infer additional information about other

variables. Bayesian networks can be constructed from data and expert judgment,

allowing for comparison and cross-checking of independent results.

Previous work on nuclear weapons proliferation and their indicators have used

different methodologies. For instance, Singh and Way studied correlates of nu-

clear weapons proliferation with Event History Models and Multinomial Lo-

gistic Regressions [4]. Jo and Gartzke studied the effect of determinants on nu-

clear weapons programs and possession through Probit Regression Analysis [17].

Lastly, Kroenig employs Rare Events Logistic Regression to study the corre-

lates of sensitive nuclear assistance [27]. Previous work highlights the use of various

regression analysis types to study nuclear weapons proliferation.

However, work done by Freeman [10] and Mella [5] indicate the potential to use

Bayesian Networks as an analysis tool. Freeman identifies the need for decision

making tools and the ability for models to capture the dynamic nature of prolifer-

ation [10]. Both Freeman and Mella studied proliferation pathways, for non-state

actors and state actors. Additional work done by Elmore [28] highlights the ability

to scientifically define physical realities, such as steps required to acquire SNM, in

Bayesian networks. Evolving Bayesian networks allow continuous updates on new

applicable proliferation technologies [28]. The overall goal is to measure the num-

ber of ENR facilities. The varying dynamic factors that affect ENR development
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prompted the use of Bayesian Networks as an analysis tool.

3.1 Bayes Theorem

To understand Bayes’ theorem, take the following two independent events, H and

E. There is an initial probability for event H, P(H), based on a prior belief about H.

Using P(E) the revised probability of H is represented as P(H|E). Based on this a

conditional probability, P(H|E) can be represented as:

P (H|E) =
P (H ∩ E)

P (E)
(3.1)

The previous equation determines the probability of H occurring given E occurred.

In this case, P (H∩E) represents the probability of both events occurring. Similarly,

P (E|H) =
P (E ∩H)

P (H)
(3.2)

The probability of the intersection of these events are identical. Additionally, the

probability of E is equal to probability of the intersection of H and E plus the proba-

bility of the complement of H (Hc) and E. [5]. The probability of the complement of

H (Hc) is 1−P (H). With some algebraic rearrangement, the generic Bayes’ theorem

becomes:

P (H|E) =
P (E|H)P (H)

P (E|H)P (H) + P (E|Hc)P (Hc)
(3.3)

The above identity theorem establishes the basis of Bayesian networks.

3.2 Bayesian Network(s)

Bayesian networks are probabilistic directed acyclic graphs that rely on Bayes

theorem to represent probabilistic relationships. All of the edges in a graph are

19



directed, and there are no cycles [29]. Bayesian networks represent joint probability

models among given variables [30].

A C

B

Figure 3.1: Bayesian Network

Figure 3.1 represents a Bayesian network with the following set of Edges: E =

(B,A), (B,C). It is important to recognize that there are no undirected edges and

no cycles. A cycle is where in a graph after leaving one vertex and following the

direction of the edges, there is a way to cycle back to the initial vertex. The joint

probability distribution for this network (Figure 3.1) is as follows:

P (A,B,C) = P (A|B) ∗ P (B) ∗ P (C|B). (3.4)

Since A and C are conditionally independent, results in P (A|B,C) = P (A|B) and

P (C|A,B) = P (C|B). This allows for the simplification of the joint probability

distribution. P (A,B,C) represents the joint probability distribution for all nodes

in the network (Figure 3.1). Equation 3.4 can be simplified using Bayes’ theorem,

resulting in:

P (A,B,C) = P (A|B) ∗ P (B) ∗ P (C|B) (3.5)

=
P (B|A) ∗ P (A)

P (B)
∗ P (B) ∗ P (C|B) (3.6)

= P (A) ∗ P (B|A) ∗ P (C|B) (3.7)
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It is important to note that edges in Bayesian networks are connections. As a

result, it must be recognized that a joint probability distribution represented by one

set of edges can equally be represented by another set of edges. Therefore equation

3.7 results in the following Bayesian network.

A C

B

Figure 3.2: Bayesian Network with Reverse Link

Therefore, it can be seen that the joint probability distribution for Figure 3.1 and

Figure 3.2 are identical [31]. From this basic example, a general bayesian network

with nodes X = X1,...,Xn, has the following the joint probability distribution:

P (X) =
n∏

i=1

P (Xi|parents(Xi)) (3.8)

Characteristics of such networks include:

• A set of variables identifying important factors,

• Direct dependencies between variables are represented by directed edges (links)

between the corresponding nodes,

• Each variable has a finite set of mutually exclusive states, and

• Each variable A with parents B1, ...., Bn, will have an corresponding conditional

probability table. [32]

One of the largest challenges when developing probabilistic models is the high

number of combination of results (joint distributions). Therefore, Bayesian networks
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were introduced to avoid further problems. The conditional dependency of one node

to another saves computational time. Instead of storing all possible configurations,

Bayesian networks only require that all possible combinations of states between re-

lated parent and child nodes to be stored [32].

3.3 Bayesian Learning Methods

Once models are developed, a dataset must be identified as the training dataset.

This dataset is trained on the model, and allows the model to develop predictive re-

lationships. After which, a testing dataset can be used to test predictions. However,

in some cases the training dataset doesn’t encapsulate all variables. In such cir-

cumstances, Netica provides two different learning methods, to be used for ”hidden”

variables. ”Hidden” variables are defined as those for which there are no observa-

tions, but are believed to be vital to the developed model. The following two methods

are provided; (i) Expectation - Maximization (EM) and (ii) Gradient Descent (GD).

There are four different types of learning problems that are usually faced when

using Bayesian networks. The learning problems are a result of the combination of

possibilities between the network structure and the status of the data. A network

that has a complete dataset and a known structure only requires statistical parame-

ter estimation. A network with an unknown structure and complete dataset requires

discrete optimization over structures. If the network has a known structure and

an incomplete dataset, it requires parametric optimization (EM, GD methods). Fi-

nally, a network with an unknown structure and incomplete data requires combined

algorithms such as structural EM and mixture models. [33]

It is important to note that it is common practice to have unique training and

testing datasets. However, the dearth of data for nuclear weapons programs forces

this study to use the same training and testing datasets. Chapter 6 will be dedicated
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to identifying the accuracy of results.

3.3.1 Expectation - Maximization

The EM algorithm is deterministic and can be applied to problems that can be

considered incomplete data problems. It is an iterative process that utilizes several

predictive distributions.

The contents of this paragraph are paraphrased from Approximation Methods

for Efficient Learning of Bayesian Networks by Riggselsen [34]. Refer to Riggselsen

for additional details. The EM algorithm consists of two specifics steps, E-step

and the M-step. The E-step predicts missing values given the current best estimate.

Following that, the M-step calculates the parameter estimate using the statistics form

of the E-step and now inputs that as the new best estimate. This process is repeated

to produce a sequence of statistical values. Eventually, this iterative process will

converge towards the true parameter. The convergence time is dependent upon the

number of missing data variables. EM methods are used extensively for parameter

learning and as such would be very useful to develop further models for this study.

3.3.2 Gradient Descent

Gradient Descent is an algorithm used to train a model with the given observa-

tion data. GD methods are more often used to tune a Bayesian network such that

certain nodes represent the anticipated probability. The GD method relies on back

propagation, where local calculations are used to calculate the gradient of error as a

function of the identified parameters (variables). This method is an iterative method

that converges when the gradient is as close to 0 as possible.

It is important to note that gradient descent methods are most commonly used

with neural networks. However, Ramachandran and Mooney devised a method to

incorporate back-propagation methods into Bayesian networks [35]. The proposed
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learning technique suggested to first learn conditional probabilities on Bayesian net-

works. After which, the Bayesian network should be mapped to a multi-layered

neural network. This step is required as the GD method was developed to be used

in neural networks. Once the network is mapped to a neural network, that network

must be trained with the GD method. After this, the trained neural network can be

transformed into a Bayesian network. Luckily, a lot of Bayesian network software is

designed to provide this method intrinsically. [35]

The provided gradient descent option via Netica software, utilizes a “conjugate

gradient descent” method to maximize the probability of the data by adjusting the

conditional probability tables. This algorithm will generally converge faster than

EM learning, this however should not be of concern for this study. [36]
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4. DATA AND MODEL DEVELOPMENT

4.1 Dataset

The forthcoming paper A Spatial Model of Nuclear Technology Diffusion by

Fuhrmann and Tkach captures global patterns of nuclear diffusion from 1950 to

2000, which proves to be a useful dataset for this study. [37] Geo-spatial modeling

aims to capture the concept of geo-spatial contagion, the inter-dependence between

countries. Previous studies have recognized that international diffusion influences the

spread of nuclear technology. The Fuhrmann & Tkach study is not focusing on spa-

tial contagion occurring with explicit militarization of a nuclear program. Instead, it

studies spatial contagion in relation to a perceived nuclear threat. A perceived nu-

clear threat can be defined in a multitude of ways. A common example is obtaining

peaceful dual-use technology, thus enabling states to build nuclear weapons in the

event of a crisis, better known as nuclear hedging.

The accompanying dataset to the Fuhrmann and Tkach paper was chosen for this

study as it captured potential indicators of weapons proliferation. These indicators

include both motivations and technical capabilities. The dependent variable (Ad-

vanced Nuclear Plants) was taken from the Nuclear Latency (NL) dataset. In this

case, Advanced Nuclear Plants measures the number of operating ENR facilities a

state has in a given year. The NL dataset has information on all ENR facilities in

the world from 1939 to 2010.

Table 4.1 summarizes the dataset. It lists countries, the number of years a coun-

try was considered, and the number of ENR facilities per state. Each country is

represented in the dataset based on the existence of an operational research reactor.

This data shows that over 55% of countries considered have not developed ENR

facilities.
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Table 4.1: Summary of Furhmann & Tkach Dataset

State Frequency Number of Ad-
vanced Nuclear
Facilities

State Frequency Number of Ad-
vanced Nuclear
Facilities

Algeria 9 1 Argentina 40 4
Australia 28 2 Austria 38 0
Belarus 7 0 Belgium 42 1
Brazil 41 7 Bulgaria 37 0
Canada 49 3 Chile 24 0
China 40 13 Colombia 33 0
Czechoslovakia 31 1 Democratic Republic of

Korea
33 3

Denmark 41 0 Egypt 37 3
Finland 36 0 France 50 19
Georgia 7 0 German Democratic Re-

public
29 0

German Federal Republic 29 0 Germany 8 6
Ghana 33 0 Greece 39 0
Hungary 39 0 India 42 11
Iran 38 10 Iraq 31 9
Israel 39 4 Italy 39 4
Jamaica 14 0 Japan 41 9
Korea, Republic of 39 0 Latvia 7 0
Libya 17 3 Lithuania 7 0
Mexico 30 0 Netherlands 43 5
Norway 47 1 Pakistan 37 8
Peru 20 0 Poland 40 0
Portugal 39 0 Romania 41 1
Russia 54 31 South Africa 34 5
Spain 40 4 Sweden 44 1
Switzerland 43 0 Taiwan 37 3
Ukraine 7 0 United Kingdom 51 19
Uruguay 20 0 USA 54 46
Venezuela 38 0 Yugoslavia 19 4
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4.2 Procedures

Based on the literature review, the following factors were considered as pertinent

to developing ENR facilities [37]:

1. Technical Capability

(a) GDP per Capita

(b) Nuclear Weapons Arsenal (Binary)

(c) Nuclear Electricity Production

2. Motivation

(a) Super Power Alliance (Binary)

(b) Number of Disputes

(c) Number of ENR Facilities by Rival States

3. Number of ENR Facilities by Trading Partners

After identifying these factors, it is vital to develop two different models. The

first model (basic model) determines the relevancy of the identified factors, while the

second model (tiered model) ensures that a structured approach is used to develop

relationships between certain factors.

The predictive networks(s) developed were simulated through Bayesian networks.

These Bayesian networks were developed using Netica. After eight nodes are devel-

oped, for the basic model, they are linked together with the use of edges. The result

is seen in Figure 4.5, notice that the states of each node have equivalent probabilities.

At this stage, it is necessary to train (provide) the model with data. Model training

enables the model to transform into a predictive model. It must also be noted that
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the historical data was adjusted to fit the discrete constraints of each node, more

information can be found in Section 4.4.1 and Table(s) A.1 to A.4. After the model

is trained with historical data, the resultant model is seen in Figure 4.1.

The tiered model requires a similar approach, where ten nodes are developed and

linked together with the use of edges. However, with the tiered model there are

no available data for two nodes (Tech Capability and Motivation). The identified

learning methods in Section 3.3 were used in addition to the data, thus enabling the

model with predictive capabilities.

Models were ready for use after being developed and trained with relevant datasets.

Netica offers a Java API, which can be used to run large case files. In this situation, a

case file would represent the dataset to be tested on the developed model. Case files

must contain data for nodes in the network, and represent node values as discretized

in the network. One row in a case file represents a specific year for a state, this

dataset has 2241 rows of data. Using the API and R, the Netica model was modified

for each row of data. Once the model is modified, each node is set to a specific state

specified by the data. The dependent nodes probability vector changes as the inputs

to the models change.

The probability vector represents the probability of having a certain number of

ENR facilities. Referencing Table A.3, weighted means are found for each state. The

probability vector and weighted means are multiplied together, resulting in a vector

of values. The summation of these vector values are rounded resulting in the overall

estimate of the number of ENR facilities a state has in that year.

Plots were developed that compare the historical data versus the predictive model

results on a time series x-axis. These plots are developed for each state, to better

visualize the results of the simulations from the Bayesian networks.
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4.3 Indicators

As previously identified, the dependent variable is the number of ENR facilities

a state holds. Exactly ten variables were identified, two of which are classifying

variables, which will be used in a more complex model. The independent variables

account for Nuclear Electricity production, GDP Per Capita, Disputes, Superpower

Alliance and Nuclear Arsenal. Additionally, the average number of ENR plants

possessed by a states rivals and its nuclear trading partners are two variables that

were used from Fuhrmann and Tkachs work that identify inter-dependence between

countries. The classifying variables are technical capabilities and motivations.

After identifying variables, the following topics were studied: key concepts in-

fluencing the phenomena of interest (variables) and the relationship amongst these

variables. This ensures that the variables are related and have an impact on mea-

suring the overall dependent variable.

4.4 Model Development

Bayesian networks were used as the predictive model for this study. Three dif-

ferent models were developed. The first model (basic model) aims to validate that

the independent variables can appropriately measure the number of ENR facilities a

state would have.
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Figure 4.1: Basic Model (Bayesian Network)

The basic model assumes that all predictor variables are conditionally indepen-

dent from one another. Note how there are no edges between the predictor variables

and the classifying variables, which are omitted as it detracts from assessing variable

independence.

After assessing conditional independence, a more advanced model was developed

(hereafter known as the tiered model). This model assumes conditional dependence

of certain independent variables on the classifying variables: Technical Capability

and Motivations. This model adds complexity by acknowledging the decisions and

factors that go into constructing ENR facilities. As discussed before, Nuclear Oppor-

tunity and Nuclear Willingness influence weapons proliferation decisions [4]; these

two categories roughly translate to the classifying nodes in the tiered model. Various

literature has confirmed the complexities of nuclear weapons proliferation, hence the

development of a tiered model. The variables GDP Per Capita, Nuclear Electricity

Production, Nuclear Arsenal, and ENR Facilities-Trading Partners influence a states

technical capability, while ENR Facilities Rival, Disputes, and Superpower Alliance

influence a states motivation.
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Figure 4.2: Tiered Model (Bayesian Network)
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As seen in Figure 4.1, the network contains eight nodes each of which has a

number of states (ranging from two states to five states). When developing such

a network, two key steps are required: node discretization and network training.

Network training provides initial conditional probability tables (CPT) which are

used to allow the model to estimate or predict the dependent variable. This initial

CPT is developed through the distribution of data for each node. The data provided

must have column names that match the node names in the network. For further

details on Bayesian network, please see Section 3.

4.4.1 State Development

In a Bayesian network, each variable has a discrete set of possible states. Regard-

less of the type of variable (continuous or numeric) used in a Bayesian network, it is

necessary to define a mapping from the natural variable domain to a set of chosen

discrete states (e.g. High/Medium/Low). In order to choose appropriate states, the

data for each variable was plotted as a histogram. Each histogram used a different

discrimination techniques. The even spacing technique developed five even breaks in

the data, forcing there to be exactly five states in all of the nodes except for the Nu-

clear Arsenal and Superpower Alliance node. The fixed spacing technique developed

breaks based on user choice. We will later realize that user choice is too arbitrary.

The quantile method develops quantiles using the data provided [38].
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Figure 4.3: State Discrimination for the GDP Cap (LN)

In the Figure 4.3, the aforementioned histograms are plotted for the logged values

of the GDP per capita variable in the dataset. From these plots, it is clear that none

of these breaks are intuitive. After reviewing similar histograms for all independent

variables, it was concluded that state discretization would occur based on natural

breaks in the data. Natural breaks in the data were defined based on the expected

occurrences. For instance, for data to be categorized as high it should not appear

to often in the data. Histograms were used to identify the location of these natural

breaks. A figure of final discretization for a few variables can be seen in Table A.1.
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Figure 4.4: Final State Discrimination

4.4.2 Model Training

A model is only partially developed after nodes and the number of states for each

are identified, commonly known as an untrained model (Figure 4.5). This model cap-

tures an equivalent probability between states for each node, which is extremely rare.

Model training can use a variety of different algorithms, the most common algorithms

include expectation-maximization, gradient descent, and generalized probability dis-

tribution. Further details for the algorithms can be found in section 3.

Figure 4.5: Untrained Basic Model
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Depending on the model structure, it may or may not be required that additional

CPTs are developed for missing data. The basic model did not require additional

CPTs, instead marginal probabilities were developed by training the dataset on the

network. In the case of the tiered model, there is no data for the classifying nodes.

This can be mitigated through the use of specific training methods (EM). Another

option would be to conduct an expert elicitation and aggregate the results. Such a

process will require the development of a CPT.

In the tiered model, technical capability depends on GDP per Capita, Nuclear

Electricity production, Nuclear arsenal and the number of ENR facilities held by

Trading Partners. This classifying node is a bit more complex, as no single parent

node overwhelms the other (See Table A.5). For the development of this CPT, GDP

per Capita and the number of ENR facilities held by Trading Partners were consid-

ered to be more influential than other nodes. As their relative strength increased,

so did a states technical capability. Table A.5 affirms that the two overwhelming

parent nodes are GDP per Capita and the number of ENR facilities held by Trading

Partners. Additionally, if a state were to also possess a nuclear weapons arsenal,

then their technical capability probability is representative of a higher technical ca-

pability. The technical capability probability for a state with a weapons arsenal is

not skewed to represent a low technical capability, but instead is dependent on the

other parent nodes [38]

As a result of the multiple training methods and training through expert elicita-

tion, there are three different tiered models. A correlation statistic will be calculated

to determine the most accurate method for this study.
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5. SIMULATIONS

5.1 Countries Chosen

The following historical examples were chosen to validate the developed networks:

Brazil, India, South Africa, and Sweden. Each of these countries were chosen to

highlight different aspects of nuclear weapons proliferation. These case studies were

examined to ensure historical validation.

5.1.1 South Africa

South Africa was always a country of importance to the United States and United

Kingdom as a source of uranium ore. In 1940, the South African Atomic Energy

Board was formed. In the 1950’s more distinct plans were made for nuclear science

research in South Africa ranging from the development of a research reactor to al-

lowing South African scientists to visit U.S Atomic Energy Commission facilities [39]

[40]. The first South African research reactor (Safari I) went operational in 1965.

Safari I is still in operation, but as of 2005 was converted from HEU fuel to LEU

fuel [41].

Figure 5.1: South African ENR Facilities

As per Fuhrmann and Tkach, it was found that South Africa has five different
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ENR facilities. The Fuhrmann and Tkach study considers South Africa in the dataset

after 1965, as per the definition of when the first research reactor is operational. The

following five ENR facilities were identified:

1. Valindaba (Laser)

2. Valindaba Y-Plant

3. Valindaba Z-Plant

4. Valindaba Z-Plant at Laboratory Enrichment Facility

5. Hot Cell Complex, Pelindaba Nuclear Research Center.

Note that the Valindaba Z-Plant includes two facilities a semi-commercial en-

richment plant, and a laboratory enrichment plant. The laboratory facility was

operational between 1967-1988, while the commercial facility was operation from

1986-1995. Both facilities used aerodynamic isotope separation for enrichment, the

lab scale facility was developed initially to determine feasibility. Location of all ENR

plants can be seen in Figure 5.1. For further information on ENR facilities, please

refer to Fuhrmann and Tkach[37].

South Africa is the only example of a state voluntarily dismantling a nuclear

weapons program. It is essential for this case to be tested as it would determine

whether the nuclear arsenal variable is necessary and functional in the developed

predictive models.

5.1.2 Brazil

Brazil is another interesting case, as it sought nuclear capabilities to rival Ar-

gentina and to gain international prestige. Brazil’s nuclear program began in a very

similar fashion to the South African’s, as they signed a mining agreement with the

United States in 1945. After which, subsequent agreements were signed to transfer

nuclear technology to Brazil. The United State’s “Atoms for Peace” program paved
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the way for Brazil to obtain its first research reactor (IEA-R1), in 1957 [42]. In 1975,

the Brazilian-German deal was signed, ensuring Brazil’s purchase of eight nuclear

power reactors, and pilot-scale technology (plutonium and uranium reprocessing)

from West Germany. This deal was estimated to be between $10-$15 million dollars

[43]. This deal signified Brazil’s interest in developing latent capability.

The pilot-scale facility purchased from West Germany was very similar to the

Trombay facility in India. It’s irradiated fuel throughput, based on fuel burn-up,

could have produced enough plutonium for up-to half a dozen nuclear weapons a

year. The purchased enrichment facility had the capability to produce HEU for

several nuclear weapons per year [44]. Additionally, Brazil’s refusal to sign the NPT

signaled that the German deal facilitated Brazil’s nuclear weapons development.

This is further confirmed when Meyer shows that the Brazil’s nuclear propensity

jumps from 0.1 in 1974 to 0.2 in 1975, as per the definition of nuclear propensity this

is seen as a substantial increase [2].

Figure 5.2: Brazilian ENR Facilities

Fuhrmann and Tkach identified seven different ENR facilities in Brazil. Brazil

was considered in the dataset after 1957, when the first research reactor became
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operational. These seven facilities were identified:

1. Aerospace Technical Center (Institute of Advanced Studies)

2. BRF Enrichment - Aramar Demonstration Center

3. BRN Enrichment (Aramar Isotopic Enrichment Lab)

4. INB Resende - Enrichment Facility

5. INB Resende - Enrichment Facility

6. IPEN - Reprocessing

7. Pilot Enrichment Plant (INB Resende)

Note that once again, a single location (INB Resende) is counted multiple times.

In this case, the three different facilities are a commercial centrifuge plant, an aero-

dynamic isotope separation pilot plant (1979-1989), and an aerodynamic isotope

separation pilot plant (1990-1994).

The Brazilian case study will lend insight to the importance that rivals play in

proliferation decisions. It will also study the importance of a state’s desire to be

considered an international power or as a “regional superpower”.

5.1.3 India

India obtained nuclear weapons as means of deterrence against China and to

protect against their rival Pakistan. Jawarhlal Nehru, the first prime minister of India

would take it upon himself to found the non-aligned movement and advocate nuclear

disarmament. However, Nehru refused to rule out the nuclear option for India. In

1948, India would pass the Atomic Energy Act. Following this, in 1955 India would

construct the Apsara research reactor with British assistance. In 1956, Canada

would agree to supply India with a research reactor (named CIRUS) with higher

power output (40 MW). The Canadian reactor was used to produce weapons-grade

plutonium, signaling Indian interest in a nuclear weapons program. Subsequently, in
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May of 1974 India would successfully test its first nuclear bomb, famously known as

the Smiling Buddha.

Figure 5.3: Indian ENR Facilities

Fuhrmann and Tkach identified eleven different ENR facilities in India. India

was considered in the dataset after 1955, when the first research reactor became

operation. The following facilities were identified:

1. BARC, Trombay (Pilot)

2. BARC, Trombay (Commercial)

3. BARC, Laser Enrichment Plant

4. BARC, Trombay (Reprocessing)

5. BARC, PREFRE (Reprocessing)

6. CAT, Laser Enrichment Plant

7. FRFRP (Reprocessing)

8. KARP, Reprocessing

9. KARP, Laboratory

10. Lead Facility, (Reprocessing)

11. Materials Plant, (Enrichment)
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As identified before, certain locations have multiple facilities. The Indian nu-

clear complex was structured in such a manner that a certain location would posses

multiple fuel cycle capabilities (i.e fuel fabrication, enrichment, reprocessing, and

etc).

The Indian case required two proliferation decisions in 1965 and 1972. The former

was reversed in 1966 thus requiring a second decision. Additionally, both prolifer-

ation decisions highlight the convergence of motivation and a pre-existing technical

capability. It also recognizes that regardless of technical capability, when motiva-

tions change it could lead to decision reversals [2]. There are multiple driving factors

towards the heightened development of the Indian nuclear weapons program. The

primary factor for Indian proliferation was the Chinese nuclear weapon test in 1964.

Border conflicts between the two nations, preempted India to develop a nuclear de-

terrent. At the time, development of nuclear weapons gave India an upper-hand

against Pakistan. It is important to recognize that Pakistan received aid from the

Chinese to further develop their nuclear weapons program. Besides countering rivals,

India sought nuclear weapons to be recognized as a “regional superpower” in Asia.

5.1.4 Sweden

Sweden explored nuclear weapons immediately following World War II, to posses

a form of deterrence against a looming Soviet Union and to maintain political non-

alignment. In its infancy, the Swedish program was a clandestine program within

the Swedish National Defence Research Institute (FOA).

The Swedish program identified local sources of uranium, which were later con-

firmed as one of the richest in the western world by both the UK and USA. The

Swede’s focused on nuclear energy production, with plutonium production as a

byproduct of the system. In 1954, the Swedish nuclear weapons development was
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discussed openly, as a result of the first reactor (R-1) going operational.

Between 1959 to 1962, Sweden and its armed forces regime did not feel compelled

to acquire nuclear weapons. This occurred due to multiple reasons, Sigvard Eklund

becoming the Secretary General of the IAEA, Foreign Minister Unden continuously

promoted international disarmament, and multiple reports by the FOA had shown

the increased costs of a nuclear weapons program developed internally. Instead,

cooperating with the USA would significantly decrease the cost, but would place

restrictions such as foreign inspections. Eventually in 1968, Sweden would sign the

NPT and close the opportunity for a nuclear option [45].

Figure 5.4: Swedish ENR Facilities

Fuhrmann and Tkach identified a lone ENR facility in Sweden.

1. Pilot Plutonium Reprocessing Plant.

This facility was a pilot spent fuel reprocessing plant. This pilot plant began con-

struction in 1946. It was estimated to be operation between 1946 to 1968. Multiple

different sources cite varying dates for when Sweden acquired nuclear latency. How-

ever, all sources cite the development of R-1 and the enrichment plant as indicators

of developing nuclear latency.
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5.2 Model Results

In the following section, we will examine the different models developed with re-

spect to the countries discussed above. The countries selected had key characteristics

relating to geo-spatial contagion.

When provided with inputs for a given state in a year, all the developed models

“backcast” in time the number of ENR facilities a given state would be expected

to have. The result is a probability vector, which corresponds to the estimated

number of ENR facilities a state should have in a particular year, based on the

inputs provided. This probability vector is transformed into a single numeric value,

by a weighted sums approach for each vector value.

5.2.1 Basic Model

The basic model (as seen in Figure 4.1), represents the simplest model, where

all predictor variables are independent of one another. In the following results, it is

important to identify trends, instead of the accuracy of results. Identifying trends

allows for cross-checking of various nodes, it is easily identified when studying binary

nodes such as: nuclear arsenal and superpower alliance.
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Figure 5.5: Geo-spatial results for RSA (Basic)

Results obtained from the basic model for South Africa highlight the extreme

change in the proliferation status of a state. As discussed earlier, South Africa vol-

untarily dismantled their nuclear weapons program in 1989. In 1991, South Africa

would sign the NPT. The predictive model estimates drop drastically from 12 fa-

cilities to 1, between 1990 and 1991. In comparison, there is a similar drop from 4

facilities to 1, in the Fuhrmann and Tkach dataset, between 1988 to 1995. Therefore,

the results above affirm that the model accurately accounts for whether a state has

a nuclear arsenal in a given year or not.

It even goes to show that the nuclear arsenal node is a large driving factor for

estimations. Realistically speaking, when a state makes a decision to voluntary

dismantle, the dismantlement process takes a few years and as a result the decom-
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missioning of other nuclear facilities cane take anywhere from two to ten years. The

results show that the model does not have the capability to capture the entire dis-

mantlement process, which should be considered for future work.

Figure 5.6: Geo-spatial results for Brazil (Basic)

The Brazilian-German deal signed in 1975, signals an interest in nuclear weapons.

This interest in nuclear weapons should inherently affect GDP per capita and nuclear

electricity production. It can be seen in both datasets, following 1975 the number of

ENR facilities increase. there seems to be other factors that cause for a delay and

underestimation in the results provided by the basic model. These factors will be

addressed when studying the tiered model.

Additionally, the Brazilian case also highlights a rivalry between Brazil and Ar-

gentina. However, this is unlike the Indian case as the rivalry does not result in
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confrontation. Argentina furthered its nuclear research in 1983, at which time both

datasets show that Brazilian efforts increased through the development of ENR fa-

cilities. In 1991, both Argentina and Brazil renounced their nuclear rivalry, at which

point it can be seen that the number of ENR facilities decreases.

The Brazilian case study affirms that the basic model has the capability to man-

age complex situations, where multiple factors play into a state’s nuclear weapons

program. In this specific case, technical capability factors, a rivalry, and the need to

be a regional superpower are all highlighted in the estimations provided.

Figure 5.7: Geo-spatial results for India (Basic)

It is important to note that India made two proliferation decisions, one in 1965

and another in 1972. The reversal of the first decision in 1966 has a delayed effect

on the estimation results from 1966 to 1975. Following which, India went into the
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“the Emergency” phase from 1975 to 1977. It is also important to note, that even

though the number of ENR facilities dropped in both the predictive model as well

as the Fuhrmann and Tkach dataset, India conducted its first nuclear test (Smiling

Buddha) in 1974. The Indian case is important to study as it encapsulates the effect

of rivals. China successfully tested its first nuclear weapon in 1964, leading to the

second proliferation decision by India. In fact, the predictive model captures this

and suggests that the number of ENR facilities should increase. In 1972, Pakistan

initialized its weapons program. After which, it can be seen that both the predictive

model and the Fuhrman and Tkach dataset begin trending upwards. Therefore, the

Indian estimation results identify trends based on rivals and disputes both of which

are represented as nodes in the basic model. However, the current model does not

have a node with the capability of capturing proliferation decisions.

Figure 5.8: Geo-spatial results for Sweden (Basic)
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Sweden is a unique case for proliferation in the European region. Sweden had

no interest in becoming a regional superpower, instead the proliferation option was

considered as a means of deterrence against the Soviet Union and other potential

disputes. It is also important to note, that Sweden’s development of nuclear facil-

ities greatly impacted their economy as entities were partially owned by the state.

Therefore an interest in nuclear weapons and developing capabilities in the early to

mid 60’s dictated the increase of the results from the predictive model. This interest

directly correlates to higher economic capacities, a driving factor in the basic model.

There is no particular method to capture the motivation behind proliferation

decisions. However, the factors represented in the basic model (as seen in Figure 4.1)

can potentially be associated with a state’s motivation to proliferate. One factor in

the basic model captures the signing of the NPT. The expected number of Swedish

ENR facilities drops around 1968, Sweden officially agrees to the NPT. In most cases,

the signing of the NPT could be linked with acquiring a superpower alliance.

After examination of the results of all states represented in the data, the trends

in the basic model estimations, be it increasing or decreasing, are consistent with

trends found in the dataset provided by Fuhrmann and Tkach. After ensuring that

the model consistently depicted trends, the next step is to develop a model that has

the capability to match trends consistently but also make more accurate estimates.
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5.2.2 Tiered Model: EM Learning Method

In order to develop accuracy for the estimates while retaining trends, it was

necessary to introduce a hierarchy system. This hierarchy system developed can be

seen in Figure 4.2. This new model, hereafter known as the tiered model, grouped

together the independent predictors into two overarching categories: motivations and

technical capability. After extensive literature review, and examining results from the

basic model it seems evident that proliferation decisions are based on the convergence

of motivation and technical capability. There are exceptions however, when a state’s

motivation is strong enough, it can dictate the development of technical capability

further leading to the development of a nuclear weapons program.

With the introduction of two new variables, technical capability and motivation,

it is necessary to provide data to the model. Providing data to the model allows

the bayesian network to become a predictive tool. In this case, there is no data for

these nodes as there is no way to distinctly measure a state’s motivation or technical

capability. Therefore, when data is missing bayesian networks can be equipped

with two different learning methods, Expectation-Maximization and gradient descent

learning. In this section, the model was trained with the EM learning method. Later

on certain statistical methods will be used to analyze and determine which method

is more appropriate.
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Figure 5.9: Geo-spatial results for RSA (Tiered-EM)

From Figure 5.9, the EM method does not change the fact that the model captures

the presence of the nuclear arsenal node.

The EM method does yield slightly different results compared to those shown

with the basic model in Figure 5.1, specifically magnitude and trends. With regards

to trends, the EM method alleviates the random one year discrepancies, notice in

Figure 5.1 that the estimated number of ENR facilities varies slightly from 1985 to

1990. These one year discrepancies are unwanted as they are most likely anomalies.

It must be noted that the network does not produce an estimate in the form of an

exact number. Instead, it produces a probability vector that must be deciphered and

converted to represent a whole number.

At this point, to yield a better discussion on the estimations provided it is impor-
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tant to study the inputs provided, see Figure 5.10. These inputs will provide insight

on what variable drives the model to make certain estimations.

From Figure 5.10, it is immediately obvious that the nuclear arsenal node is a

driving factor. This affirms that ENR facilities are required for a state to maintain

a sustainable nuclear weapons program. Note that between the late 70’s and 1990,

the major driving factors were a combination of the GDP per Capita and nuclear

electricity production. Therefore, in this case it seems that the model places a higher

emphasis on the true technical capabilities than the motivational profile.

However, the actual development of ENR Facilities (shown in blue) follows the

trend displayed by the number of disputes over time. Such a trend is expected as

the South African’s built nuclear weapons to develop deterrence from a potential

emerging Soviet threat. Therefore the motivational profile consisted of the need for

a deterrence (due to disputes), need for regional prestige, and a growing insecurity

of neighboring countries. It is important to note that alongside voluntary disman-

tlement the motivational profile decreased in 1988 as the South African’s signed a

cease-fire with Cuba and Angola. Thus prompting a decrease in the number of ENR

facilities.

Thus for this case, the actual development of ENR facilities was dependent upon

the motivational profile. Whereas the predictive model seems to indicate that the

technical capabilities drive the development of ENR facilities.
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Figure 5.10: Data for South Africa
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Figure 5.11: Geo-spatial results for Brazil (Tiered-EM)

In comparison to Figure 5.6, the EM method results (Figure 5.11) successfully

mitigates the one year discrepancies shown in the basic model. It seems that in this

case the EM algorithm smooths the results, however this could be a result of the

inputs provided.

Figure 5.12 depicts the change in inputs over time. The predictive model seems

to stay pretty stagnant. The predictive model values technical capabilities such as

GDP Per Capita and nuclear electricity production. It believes that the Brazilian

case was strong enough to have two ENR facilites as soon as the first research reactor

went operational in 1957. However, it is possible for a state to be considered in this

study after ENR facilities have been developed. The predictive model recognizes the

erratic nature of the nuclear electricity production and the number of disputes and
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suggests that an average number of facilities (mostly 3) would suffice for Brazilian

needs.

The actual development of ENR facilities was first dependent upon GDP Per

Capita up until 1989. As the GDP Per Capita increased, so did the number of ENR

facilities. This corresponds with the Brazil and German agreement. Additionally,

economies tend to see an boosts following a proliferation decision. After 1989, the

erratic nature of nuclear electricity production and the decreased number of disputes

caused a drop off in the number of ENR facilities held by Brazil. The drop off

in facility count also goes hand in hand with the nuclear cooperation agreement

between Brazil and Argentina in 1991. The result of this agreement was the creation

of the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials

(ABACC).

Thus in this case, the actual number of facilities (F&T model) correspond with

technical capabilities as well as the motivational profile. This example shows the

complexity of a proliferation decision, and how it can be affected by varying factors

over time. The predictive model also represents a combination of technical capabil-

ities and the motivational profile. However, the erratic nature of inputs caused the

estimation to be an average value.
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Figure 5.12: Data for Brazil
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Figure 5.13: Geo-spatial results for India (Tiered-EM)

The basic model (Figure 5.7) captures the two proliferation decisions in 1965 and

1972. However, this is not immediately eminent when studying results from the EM

method, as seen in Figure 5.13.

The predictive model does not capture proliferation decisions, however there is no

variable included in the model to measure decisions. It does however estimate a total

of two ENR facilities from the late 50’s to mid 80’s. This occurs because the technical

capability is relatively low in comparison to the number of disputes during this time

frame. Following the second proliferation decision, India ramped up its technical

capability in order to develop ENR facilities. After, declaring that India was a nuclear

power the predictive model estimates a growth in facilities. This growth corresponds

to the maintenance and growth of the program, but can’t be confirmed without
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explicitly developing a variable to capture this motivation. Such work is out of the

scope of this study. Therefore, the predictive model results delineates three phases

associated with ENR facility development: initial weapons program development

(50’s - 80’s), weapons declaration (88-94), and growth of weapons program (95-2000).

The actual development of ENR facilities corresponds well with disputes, repre-

senting the motivational profile. As per the historical case study provided earlier,

India’s driving factor to proliferate occurred due to its rival neighbors. Initially, the

number of disputes were quite high from the late 50’s to 1965, but the technical capa-

bility did not follow. As a result, the development of ENR facilities was held in check.

It is important to recognize the increase in disputes following the Indo-Pakistani war

in 1971, alongside an increase in technical capabilities. With these increases, and the

second proliferation decision the development of ENR facilities increased from 1972

onwards. Thus once again, the development of ENR facilities does not rely on either

technical capabilities or motivations but instead a combination of both.

For this specific case, the predictive model does not capture certain aspects such

as proliferation decisions. This results from not specifying all potential variables,

which varies from case to case. As such compromises are made as to which variables

are key to recognizing ENR development. However, the predictive model does high-

light the three key phases behind India’s nuclear weapons program. Even though

the predictive model does not match the actual development of ENR facilities, it

highlights a different and more stable route to developing India’s weapons program.

Once again, the combination of technical capability and motivations are the driving

factor behind the predictive model.
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Figure 5.14: Data for India

58



Figure 5.15: Geo-spatial results for Sweden (Tiered-EM)

The results from the EM case are far better than those found using the basic

model (see Figure 5.8). The results found in the predictive model with the EM

algorithm do not seem to differ much from the actual development except for sheer

magnitude.

Sweden was highly motivated to invested nuclear weapons research for deterrence

purposes. The technical capabilities for Sweden don’t seem to be driving factors

for either the results from the predictive model or the actual development of ENR

facilities. Once Sweden signed the NPT, they reached a deal with the USA to provide

materials that would kick start their civilian nuclear program. The drop in the

ENR facilities around 1972 occurs from the singing of the NPT. Nuclear electricity

production as well as the number of disputes Sweden had both decreased as a result.
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It is actually interesting to see this drop in disputes, as Sweden prescribed to political

non-alignment. Note that the NPT signing did not have an impact on the GDP Per

capita, in fact Sweden’s economy continued to grow as a result of further development

of a civilian nuclear program.

The predictive model uses the initial strength of the technical capabilities to sug-

gest that Sweden had the capability to have three ENR facilities. However, in reality

only one ENR facility was operational. Besides the difference in the magnitude, the

trends from the predictive model are identical to that of the actual development of

ENR facilities in Sweden.
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Figure 5.16: Data for Sweden

61



5.2.3 Tiered Model: Sensitivity Analysis

A sensitivity analysis was performed to determine the effect data uncertainty

would have on the developed Bayesian networks. In order to assess data uncertainty,

a 25% decreased was placed upon the dataset provided. The 25% decrease was

specifically placed on the dependent variable (number of ENR facilities) before it was

discriminated (see Table A.3). After the dataset was altered, the same procedure

was followed to train and produce estimates from the tiered model. The models in

this case were also trained with the EM learning method as it was shown to be the

best
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Figure 5.17: Sensitivity Results for all Cases (Tiered-EM)

The Brazilian case tends to follow a very similar trend to that of the actual

number of ENR facilities Brazil had. Additionally, this 25% decrease in the actual

number is reflected in the predictive model as well, the magnitude of the predictive

model results are not larger than those of the actual number in any of the case

studies. This sensitivity analysis seems to have affected the predictive nature of the

model. Notice that the model does not capture the nuclear arsenal node, and the

62



voluntary dismantlement of nuclear weapons. Errors in the dataset can affect the

driving factors in the predictive model.

More specifically, this sensitivity analysis highlights a complication. When plac-

ing this 25% decrease on the dependent variable, this affects the numerical value but

does not affect the categorical value. For example, the 25% decrease on a base of 10

facilities would translate in to 8 facilities, 7.5 to be exact. A state that has 6 to 11

facilities are both categorized in the medium-high range (refer to Table A.3). The

above example falls in the same categorical range. Future work should consider a

different approach for an uncertainty analysis.

Thus it is extremely important to select or develop a dataset appropriately. When

selecting a dataset ensure that it has been cross validated with multiple sources or

has been used extensively.

5.2.4 Tiered Model: Smoothed Results

Central limits (median,mode,mean) were used to smooth the data in three year

time frames based on the type of variable. The data was smoothed to test for

inconsistencies such as those one-year discrepancies found in the results of the basic

models (Figure 5.6 to 5.8).
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Figure 5.18: Smoothed Results for all Cases (Tiered-EM)

Immediately, we see some glaring errors. Both the Brazilian and Indian cases

produce identical results. Neither result matches the historical implications as well

as the actual number of ENR facilities these states had. However, these results do

make sense. When data is smoothed the inherent characteristics of the data change,

especially when each variable is smoothed with a different central limit. For example,

the dependent variable (number of ENR facilities) was smoothed based on the mode

of 3 year subsets; while one of the independent variables (GDP Per Capita) was

smoothed based on the mean of 3 year subsets.

Therefore different central limits applied to smooth each variable introduce un-

certainties in the model. These uncertainties seem to mask the predictive nature of

the model and affect the results obtained. Overall it is unnecessary to smooth data,

especially with studies associated with proliferation risk. This type of smoothing can

mask the intended effect expected from a model.
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5.2.5 Tiered Model: Expert Elicitation Results

An expert elicitation was conducted, as another method to obtain data for nodes

without data. In the Fuhrmann and Tkach dataset, both the Technical Capability

and Motivation nodes do not have data. Therefore, results from the expert elicitation

were used to develop conditional probabilities tables for the model. The expert

elicitation resulted in two CPTs, one for the Technical Capability node and another

for the Motivation node. A detailed explanation of the expert elicitation process can

be found in Appendix C.

After these CPTs were developed, the exact same procedure was used to create

visualizations for each state. Figure 5.19 compares results from the predictive model

(based on the expert elicitation) and the historical data.
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Figure 5.19: Expert Elicitation results for all cases

From Figure 5.19, it seems that the predictive model is much more conservative

than the historical data. This result is expected as knowledge based experts under-

stand both the failures and successes as a result of a weapons program. Experts as

a result will have more conservative answers to the elicitation.
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The expert elicitation based model does not capture the nuclear arsenal node,

which is highlighted in the South African case. In 1989, South Africa voluntarily dis-

mantled nuclear weapons. With regards to the Swedish case, the predictive model

follows an identical trend except between 1989 to 1991. This occurs due to the com-

bined increase in the following independent variables for Sweden: GDP Per Capita,

Nuclear electricity production and the number of disputes. These indicators affect

both the technical capability and motivation nodes, which could be a possible reason

for the increase in the estimated number of ENR facilities between 1989 to 1991

for Sweden. From the Indian case, it seems that motivations are just as much of a

driving factor as technical capabilities. The decrease in disputes between 1970 and

1980 seem to outweigh the technical capabilities when providing estimates. Note, in

Figure 5.13 the technical capabilities drive the estimation far more than any other

nodes.

From Figure 5.19, it seems that experts are more conservative in their approach

to assessing nuclear proliferation. Unfortunately, for these cases it does not seem to

match the historical data. A more extensive expert elicitation could mitigate issues

such as not capturing the nuclear arsenal node.
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6. FURTHER ANALYSIS

There are a few analysis steps required to ensure model specification, which incor-

porates structure and variable definition. After which, model verification is required

to determine its fit with the data. The additional analysis complements the case

studies as it evaluates specific statistics to determine model fit with the data.

First and foremost, it is important that model specification is studied. More

specifically, with Bayesian networks (Figure 4.1 and 4.2) it is important to assess

confidence between existing and non-existing links. The network structure was as-

sessed, with the use of a methodology previously developed by PNNL scientists. This

methodology results in graphical figures that depict dependence or independence of

Bayesian network nodes [46] [47].

Once model specification is ensured, the next step is model verification. Each

model was assessed based on its fit to the data, with the use of the correlation

statistic. There are occurrences where prediction accuracy is not a good measure for

model fit. This occurs because of drastically different dynamic relationships between

nodes for each tested state. As a result the correlation statistics is used to capture

how accurate the predictive model results are. the correlation coefficient is calculated

both on the model and state levels, between the predictive results and “truth” data, in

this case the Fuhrmann and Tkach dataset. Even though other metrics could be used,

the correlation coefficient provides insight on how well predictive models estimated

the number of ENR facilities over time (with respect to trends and magnitude). The

prediction accuracy is also reported for each model for reference purposes.

6.1 Model Analysis

Model specification is required for the tiered model, as it introduces links be-

tween independent variables and also incorporates the use of two intermediate nodes
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(Technical Capability and Motivations). Please refer to Figure 4.2 for the Tiered

model, regardless of the learning method used. Note that when testing variable re-

lationships, it is important to test those that are specified in the model as well as

those that don’t exist. The following variable relationships were tested:

• Disputes and Rivals,

• Disputes and Superpower Alliance,

• GDP Per Capita and Nuclear Electricity Production,

• GDP Per Capita and Superpower Alliance,

• Nuclear Electricity Production and Nuclear Arsenal,

• Nuclear Electricity Production and Trading Partner(s),

• Nuclear Arsenal and GDP Per Capita, and

• Nuclear Arsenal and Trading Partner(s).
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Figure 6.1: Diagnostic Graph for Nuclear Arsenal and Trading Partner

Figure 6.1 depicts the interdependence between Nuclear Arsenal and Trading

partners. Based on literature review, prior to model development, these two nodes

were to be dependent upon one another. It suggests that the presence of a Nuclear

Arsenal would affect the trading partners a state would have.

To decipher Figure 6.1 it is important to recognize the null hypothesis along with

characteristics of the diagnostic graph. The null hypothesis is that the two variables

tested are independent of one another. These diagnostic plots show pairwise compar-

isons of the empirical probability two states of one variable given a particular state of

another variable. In Figure 6.1, each row corresponds to a specific state of the Trad-

ing Partner node. The corresponding yellow and blue bars represent the observed

states of the Nuclear Arsenal variable (No Weapons v. Weapons, respectively). The

length of each bar is dependent upon the number of times these combination of states
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occurs in the provided dataset.

If two variables are independent, each pair of bars are to be symmetric about x

intercept. Alongside the yellow and blue bars, each row has a point estimate indicated

with a black point. These point estimates have an accompanying confidence interval,

represented by a red or green color over the black point. Confidence intervals will be

green, when they intersect the x-intercept and red otherwise. If a confidence interval

does not intersect with the x-intercept, then the variables are dependent. Thus with

this background information, reviewing Figure 6.1 shows that these two variables are

dependent. Beside the “none” state for Trading Partner, confidence intervals for all

other states do not intersect the x-intercept. As a result, this test rejects the null

hypothesis.

To find all of the diagnostic graphs, see Appendix B. Figure 6.2 shows the diag-

nostic dependence between Nuclear Electricity Production and Trading Partners.

Figure 6.2: Diagnostic Graph for Nuclear Electricity Production and Trading Partner
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For this case, the graph observes all four states for Nuclear Electricity Produc-

tion with respect to the four states of the Trading Partner node. The code used

is instructed to develop an even number of graphs on both sides of the axis, hence

why the high node is repeated three times. This repetition has no bearing on anal-

ysis. From Figure 6.2, the pairwise combination between “Low” and “High” states

for Nuclear Electricity production depict that these two variables are independent.

However to fail to reject the null hypothesis, this must occur for all state pairings

which it doesn’t. Therefore, in this case these variables are also dependent. The

network, seen in Figure 4.2, shows that Nuclear Electricity Production feeds into the

Trading Partner node.

For further dependence analysis, see Appendix B (Figures B.1 to B.6).

There are a few metrics presented that will ensure model verification. As stated

above, the correlation statistics and the predication accuracy will be studied to ensure

the model represents the provided dataset to the best of its ability. Besides assessing

the model with respect to results, the components of the models must also be studied.

The correlation coefficient represents a quantitative measure of dependent be-

tween a set of values. The correlation value identifies the strength of a linear rela-

tionship between two chosen variables. In this case, the two sets of values are results

from the predictive model and the actual number of ENR facilities from the Fuhrman

and Tkach dataset. This coefficient will be tested for each model to identify the best

model. This correlation coefficient ranges from -1 to 1. If the coefficient is 1, then

the there is a very strong linear relationship between the two variables chosen. If

the coefficient is 0, then there is no linear relationship between the two, and finally

if the coefficient is -1, then there is a negative linear relationship between the two.

Prediction accuracy is a percentage value that is displayed as a decimal in Table 6.1.
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The higher the decimal value the more accurate the model in guessing exact values

per year.

Table 6.1: Model Type Analysis

Model Type Correlation Prediction Accuracy
Basic Model 0.45 0.39

Tiered Model (EM) 0.78 0.06
Tiered Model (Gradient) 0.50 0.14
Expert Elicitation Model 0.40 0.05

The Basic Model provides the most accurate results, according to the prediction

accuracy reported. The tiered model, regardless of learning method, introduces two

intermediate (classifier) nodes for which there is no definite data. As a result, the EM

and Gradient descent methods were used to train the model appropriately. These

intermediate nodes introduces some uncertainty as the conditional probability tables

developed are not from definite data. They are based on the parent nodes and an

expected convergence term. Another option was to use expert knowledge to develop

the necessary CPTs for the intermediate nodes. The correlation statistic however

deems this to be poor in comparison to other methods. It must be noted that

the experts consulted seem to take a conservative approach to proliferation, which

probably affected the results in comparison to the historical data.

The correlation values shown in Table 6.1 represent the overall comparison be-

tween the estimated results and the actual number of ENR facilities. However, to get

a better understanding of the strength of these estimations histograms were devel-

oped. The data for the histograms represents correlation coefficients and prediction

accuracy per state. The red line on the correlation coefficient histogram represents

the median value.
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Figure 6.3: Data for Basic Model

From Figure 6.3, the basic model has respectable predication accuracy results.

However, the median correlation coefficient sits at about -0.04. This suggest that

there is no relationship between the sets of data. It is important to recognize the

purpose of the basic model. It was used to determine whether the appropriate

variables were identified to measure the number of ENR facilities.
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Figure 6.4: Data for EM Model
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Figure 6.5: Data for Gradient Model

Figures 6.4 and 6.5 allow for comparison between the two learning methods. Note

that the EM learning method is primarily used when data is missing, as is this case

with the intermediate nodes. The gradient descent method is primarily used to fine

tune models after they are initially trained. From the right side of each figure, we

see that gradient descent model has better prediction accuracy results. However,

prediction accuracy can not be used as an appropriate measure to assess the model

as both have over 20 cases with a 0% accuracy. The left side of each figure indicates

that the median correlation coefficient is slightly higher for the EM model than it is

for the gradient descent model. The overall correlation coefficient for the EM model

(as shown in Table 6.1) is 0.78, while the median correlation coefficient is 0.40. The

gradient descent model has a overall correlation coefficient of 0.50, while the median

correlation coefficient is 0.35. It is important to study both results as the individual

correlation coefficient can be found to be NA, since the actual data suggested that

there were no ENR facilities for that state. This is not a calculation error but instead

just a result of the correlation calculation and the data provided.
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For the state specific correlation values and prediction accuracy, please refer to

Table 6.2. Note that the Indian case had the best correlation coefficient, while the

South African case had the best predication accuracy, regardless of model type. It

is also noteworthy to recognize the drastically different correlation coefficient results

for the Swedish case.

Therefore these results confirm that the EM method is the learning method of

choice when developing advanced models such as the tiered model. This analysis

provides confidence in the EM method results, shown in Section 5.
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Table 6.2: Case Specific Analysis

Country
Basic Model EM Model Gradient Model

Correlation Prediction Accuracy Correlation Prediction Accuracy Correlation Prediction Accuracy

Brazil 0.12 0.28 0.52 0.19 0.52 0.09
India 0.88 0.02 0.90 0.11 0.87 0.22

Sweden 0.46 0.24 0.53 0.00 0.23 0.24
South Africa 0.64 0.36 0.61 0.28 0.68 0.33
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7. CONCLUSIONS

Different Bayesian network models were developed to estimate the correlates of

nuclear proliferation and nuclear energy. This study measured correlates as the

number of Enrichment and Reprocessing facilities a state has. The work on geo-

spatial factors and correlates in Fuhrmann and Tkach complemented this study.

Results from the most refined model, in this case the tiered model with an EM

learning method, produced estimations for the number of ENR facilities a given state

has. These estimations compared reasonably well with the historical data, based

on correlation coefficients and predication accuracy metrics. Estimates from other

models did not perform as well as the tiered model with an EM learning method.

However, these models all produced similar trends to those found in the historical

data categorized by the Fuhrmann and Tkach for nearly all countries during 1945-

2010.

It is possible to further refine these models such that there is better agreement

between estimates and the historical data. This falls in line with the common un-

derstanding that proliferation decisions are quite complex and must be studied on

a case by case basis. This limits potential for research to verify historical data and

potentially forecast the future.

Based on the results from this study, learning methods associated with Bayesian

networks have shown to effectively estimate proliferation indicators. The learning

methods were much more favorable than the results of the expert elicitation. One of

the many pitfalls with expert elicitation is the potential bias that can be introduced.

An unforeseen bias in this elicitation process was the conservative approach shown by

experts. This conservative approach taken by experts resulted in drastically different

estimates than seen in the other models. A more detailed expert elicitation could
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avoid such bias.

From the results and analysis seen in Chapters 5 and 6, the overall goal was met.

This specific study used the number of ENR facilities as a proliferation indicator. The

models did fairly well to represent independent variables related to nuclear history,

as long as these variables were accompanied with data. There are algorithms that

can be used to account for missing data, this is only recommended when there are

a few missing variables. It is highly recommended to develop models for which data

is present or easily accessible. In addition the majority of the objectives were also

fulfilled. However, the results from the sensitivity analysis suggest that future work

needs to be considered, for this specific objective. This study also provided insight

on the use of Bayesian Networks in nuclear weapons proliferation research. From

the work conducted, Bayesian Networks seem to be an appropriate tool to measure

nuclear weapons proliferation especially considering the dynamic nature of both the

NFC and nuclear weapons proliferation.

7.1 Future Work

With these types of studies there are several possible areas for future work. The

first obvious realization is to further specify the networks developed. In order to do

this, the appropriate dataset must also be chosen. The model can only be further

specified if data exists. If it is feasible, data verification is recommended. However,

this is not feasible in most cases as datasets will be upwards of 2,000 lines or more.

Even though the Bayesian network software (Netica) utilized provided inherent

cross-validation methods, it is important to have large datasets. These large datasets

can be split into testing and training data, which can allow the user to preselect the

cross-validation method. This could prevent the need for a learning method algo-

rithm such as the EM or gradient descent methods discussed in this study. Another
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option to prevent the need for learning method algorithms is the use of expert elicita-

tions. A larger sample size for the expert elicitation should produce highly correlated

results with the historical dataset. Larger sample sizes should remove any bias such

as the conservative proliferation estimates seen in Figure 5.19.

Alongside this, it would be pivotal to estimate the total ENR capacity a state

has. This type of measurement would delineate the difference between 10 laboratory

facilities and 3 commercial facilities. In order to complete this exact study with

capacity instead of the sheer magnitude, a dataset would need to be developed.

Unfortunately, capacity data for ENR facilities is not widely accessible for states

currently or historically as this may or may not be confidential information.

A more rigorous uncertainty quantification would provide more insight to the

model. The discrete states in each node created some issues when carrying out an

uncertainty test. With the current model, an impactful uncertainty analysis would

require testing a 50% decrease on the dependent variable.

The current Bayesian Network has the ability to forecast. However, there are

some flaws such as the sensitivity and the need to account for various other indicators.

A more refined model will have the capability to forecast more accurately and the

potential to be used as a policy tool.
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APPENDIX A

ADDITIONAL MODEL DEVELOPMENT

A.1 STATE DISCRETIZATION

Table A.1: Data Discrimination Part 1

GDP Per Capita Nuclear Electricity Production

Low x <= 5.64 -6.21 <= x < 0

Medium-Low 5.64 < x < 8 0 <= x < 2

Medium-High 8 <= x < 10 2 <= x < 6

High 10 <= x 6 <= x

Table A.2: Data Discrimination Part 2

ENR Facilities held by Trading Partners ENR Facilities held by Rivals

None x = 0 x = 0

Low 1 < x < 25 1 <= x < 15

Medium 25 <= x < 60 15 <= x < 27

High 60 <= x 27 <= x

Table A.3: Dependent Variable Discrimination

Number of ENR Facilities

None x = 0

Low 1 <= x < 3

Medium-Low 3 <= x < 6

Medium-High 6 <= x < 11

High 11 <= x
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Table A.4: Binary Variable Discrimination

Super Power Alliance Nuclear Arsenal

Yes x = 1 x = 1

No x = 0 x = 0
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A.2 CONDITIONAL PROBABILITY TABLES

Table A.5: CPT for Technical Capability

Trading Partners GDP Per Capita Nuclear Elec Production Nuclear Arsenal Technical Capability

Low Medium High

None Low Low Weapons 41.6669 36.6665 21.6666

None Low Low No Weapons 56.6668 26.1666 17.1666

None Low Medium-Low Weapons 36.6669 41.6665 21.6666

None Low Medium-Low No Weapons 78.9693 15.4514 5.57923

None Low Medium-High Weapons 24.1667 49.1667 26.6667

None Low Medium-High No Weapons 46.6667 31.6667 21.6667

None Low High Weapons 21.6667 56.6667 21.6667

None Low High No Weapons 36.6667 26.6667 36.6667

None Medium-Low Low Weapons 26.9614 32.5483 40.4903

None Medium-Low Low No Weapons 51.058 34.3454 14.5965

None Medium-Low Medium-Low Weapons 20.8313 36.7818 42.3869

None Medium-Low Medium-Low No Weapons 67.6652 26.0564 6.27838

None Medium-Low Medium-High Weapons 5.64101 36.7495 57.6095
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None Medium-Low Medium-High No Weapons 44.1667 34.1667 21.6667

None Medium-Low High Weapons 21.6667 54.1667 24.1667

None Medium-Low High No Weapons 34.1667 34.1667 31.6667

None Medium-High Low Weapons 18.4484 20.0073 61.5443

None Medium-High Low No Weapons 45.2268 42.0033 12.7699

None Medium-High Medium-Low Weapons 15.1008 39.5449 45.3543

None Medium-High Medium-Low No Weapons 55.9988 30.715 13.2862

None Medium-High Medium-High Weapons 6.50257 36.3525 57.1449

None Medium-High Medium-High No Weapons 58.6354 33.9959 7.36869

None Medium-High High Weapons 21.6667 49.1667 29.1667

None Medium-High High No Weapons 31.6667 31.6667 36.6667

None High Low Weapons 33.1667 33.1667 33.6667

None High Low No Weapons 41.6667 34.1667 24.1667

None High Medium-Low Weapons 29.1667 41.6667 29.1667

None High Medium-Low No Weapons 64.2685 24.4584 11.2731

None High Medium-High Weapons 21.6667 41.6667 36.6667

None High Medium-High No Weapons 56.5239 31.076 12.4001

None High High Weapons 5.62013 39.5197 54.8602
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None High High No Weapons 31.6667 31.6667 36.6667

Low Low Low Weapons 39.1667 39.1667 21.6667

Low Low Low No Weapons 59.1667 23.6667 17.1667

Low Low Medium-Low Weapons 34.1667 41.6667 24.1667

Low Low Medium-Low No Weapons 46.6667 31.6667 21.6667

Low Low Medium-High Weapons 21.6667 51.6667 26.6667

Low Low Medium-High No Weapons 44.1667 34.1667 21.6667

Low Low High Weapons 21.6667 51.6667 26.6667

Low Low High No Weapons 36.6667 31.6667 31.6667

Low Medium-Low Low Weapons 36.6667 39.1667 24.1667

Low Medium-Low Low No Weapons 51.6667 26.6667 21.6667

Low Medium-Low Medium-Low Weapons 31.6667 41.6667 26.6667

Low Medium-Low Medium-Low No Weapons 55.6805 37.5526 6.76693

Low Medium-Low Medium-High Weapons 21.6667 44.1667 34.1667

Low Medium-Low Medium-High No Weapons 44.1667 31.6667 24.1667

Low Medium-Low High Weapons 21.6667 51.6667 26.6667

Low Medium-Low High No Weapons 31.6667 36.6667 31.6667

Low Medium-High Low Weapons 22.7548 35.1215 42.1237
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Low Medium-High Low No Weapons 44.1667 31.6667 24.1667

Low Medium-High Medium-Low Weapons 13.2408 36.837 49.9222

Low Medium-High Medium-Low No Weapons 56.1468 32.8916 10.9616

Low Medium-High Medium-High Weapons 5.46722 23.1091 71.4237

Low Medium-High Medium-High No Weapons 62.2589 32.1348 5.60637

Low Medium-High High Weapons 21.6667 46.6667 31.6667

Low Medium-High High No Weapons 31.6667 36.6667 31.6667

Low High Low Weapons 29.1667 36.6667 34.1667

Low High Low No Weapons 39.1667 36.6667 24.1667

Low High Medium-Low Weapons 26.6667 41.6667 31.6667

Low High Medium-Low No Weapons 39.1667 31.6667 29.1667

Low High Medium-High Weapons 21.6667 36.6667 41.6667

Low High Medium-High No Weapons 61.8232 29.2126 8.96422

Low High High Weapons 21.6667 46.6667 31.6667

Low High High No Weapons 31.6667 36.6667 31.6667

Medium Low Low Weapons 36.6667 39.1667 24.1667

Medium Low Low No Weapons 56.6667 24.1667 19.1667

Medium Low Medium-Low Weapons 31.6667 41.6667 26.6667
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Medium Low Medium-Low No Weapons 44.1667 31.6667 24.1667

Medium Low Medium-High Weapons 21.6667 46.6667 31.6667

Medium Low Medium-High No Weapons 41.6667 34.1667 24.1667

Medium Low High Weapons 21.6667 44.1667 34.1667

Medium Low High No Weapons 31.6667 36.6667 31.6667

Medium Medium-Low Low Weapons 36.6667 36.6667 26.6667

Medium Medium-Low Low No Weapons 41.6667 31.6667 26.6667

Medium Medium-Low Medium-Low Weapons 31.6667 36.6667 31.6667

Medium Medium-Low Medium-Low No Weapons 41.6667 34.1667 24.1667

Medium Medium-Low Medium-High Weapons 21.6667 41.6667 36.6667

Medium Medium-Low Medium-High No Weapons 44.1667 31.6667 24.1667

Medium Medium-Low High Weapons 21.6667 46.6667 31.6667

Medium Medium-Low High No Weapons 26.6667 41.6667 31.6667

Medium Medium-High Low Weapons 31.6667 31.6667 36.6667

Medium Medium-High Low No Weapons 55.4359 33.3438 11.2203

Medium Medium-High Medium-Low Weapons 11.2678 43.2715 45.4608

Medium Medium-High Medium-Low No Weapons 58.445 28.9084 12.6466

Medium Medium-High Medium-High Weapons 5.95907 19.119 74.9219
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Medium Medium-High Medium-High No Weapons 48.5147 39.1882 12.2971

Medium Medium-High High Weapons 21.6667 41.6667 36.6667

Medium Medium-High High No Weapons 31.6667 31.6667 36.6667

Medium High Low Weapons 26.6667 39.1667 34.1667

Medium High Low No Weapons 36.6667 39.1667 24.1667

Medium High Medium-Low Weapons 26.6667 41.6667 31.6667

Medium High Medium-Low No Weapons 28.9438 52.1813 18.8749

Medium High Medium-High Weapons 6.4416 20.8257 72.7327

Medium High Medium-High No Weapons 60.7596 26.2204 13.0201

Medium High High Weapons 7.52629 39.2742 53.1996

Medium High High No Weapons 26.6667 36.6667 36.6667

High Low Low Weapons 31.6667 41.6667 26.6667

High Low Low No Weapons 51.6667 26.6667 21.6667

High Low Medium-Low Weapons 31.6667 36.6667 31.6667

High Low Medium-Low No Weapons 41.6667 31.6667 26.6667

High Low Medium-High Weapons 21.6667 41.6667 36.6667

High Low Medium-High No Weapons 41.6667 31.6667 26.6667

High Low High Weapons 21.6667 41.6667 36.6667
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High Low High No Weapons 29.1667 39.1667 31.6667

High Medium-Low Low Weapons 34.1667 39.1667 26.6667

High Medium-Low Low No Weapons 39.1667 34.1667 26.6667

High Medium-Low Medium-Low Weapons 29.1667 39.1667 31.6667

High Medium-Low Medium-Low No Weapons 39.1667 36.6667 24.1667

High Medium-Low Medium-High Weapons 26.6667 39.1667 34.1667

High Medium-Low Medium-High No Weapons 41.6667 34.1667 24.1667

High Medium-Low High Weapons 21.6667 44.1667 34.1667

High Medium-Low High No Weapons 24.1667 44.1667 31.6667

High Medium-High Low Weapons 26.6667 31.6667 41.6667

High Medium-High Low No Weapons 31.6667 36.6667 31.6667

High Medium-High Medium-Low Weapons 24.1667 36.6667 39.1667

High Medium-High Medium-Low No Weapons 37.2156 45.2321 17.5523

High Medium-High Medium-High Weapons 21.6667 29.1667 49.1667

High Medium-High Medium-High No Weapons 34.1667 36.6667 29.1667

High Medium-High High Weapons 21.6667 36.6667 41.6667

High Medium-High High No Weapons 26.6667 34.1667 39.1667

High High Low Weapons 21.6667 39.1667 39.1667

92



High High Low No Weapons 31.6667 39.1667 29.1667

High High Medium-Low Weapons 21.6667 36.6667 41.6667

High High Medium-Low No Weapons 31.6667 36.6667 31.6667

High High Medium-High Weapons 21.6667 31.6667 46.6667

High High Medium-High No Weapons 31.6667 36.6667 31.6667

High High High Weapons 21.6667 26.6667 51.6667

High High High No Weapons 26.6667 31.6667 41.6667
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A.3 GRADIENT METHOD RESULTS

Figure A.1: Geo-spatial results for RSA (Tiered-Gradient)
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Figure A.2: Geo-spatial results for Brazil (Tiered-Gradient)
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Figure A.3: Geo-spatial results for India (Tiered-Gradient)
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Figure A.4: Geo-spatial results for Sweden (Tiered-Gradient)
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APPENDIX B

CONDITIONAL INDEPENDENCE

B.1 DIAGNOSTICS GRAPHS

Figure B.1: Diagnostic Graph for Disputes and Rivals

Figure B.2: Diagnostic Graph for Disputes and Superpower Alliance
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Figure B.3: Diagnostic Graph for GDP Per Capita and Nuclear Electricity Produc-
tion

Figure B.4: Diagnostic Graph for GDP Per Capita and Superpower Alliance

Figure B.5: Diagnostic Graph for Nuclear Arsenal and GDP Per Capita
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Figure B.6: Diagnostic Graph for Nuclear Electricity Production and Superpower
Alliance
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APPENDIX C

EXPERT ELICITATION

C.1 METHODOLOGY

The expert elicitation asked 18 questions regarding the indicators and structure

of the tiered model. Definitions of the indicators were provided, they are as follows:

• ENR: Enrichment and Reprocessing (facilities)

• ENR facilities held by Trading Partners: The total number of ENR

facilities held by all trading partners of a state.

• ENR facilities held by Rivals: The total number of ENR facilities held by

all rivals of a state.

• Superpower Alliance: A political alliance with a superpower. States under

a nuclear umbrella may value ENR technology less because they can rely on

other states for protection.

• Nuclear Arsenal: States with a nuclear weapons program and more than one

nuclear weapon.

• Technical Capability: Represents a states measure of technical expertise,

monetary funds, and resources specifically geared towards the construction of

ENR facilities.

• Motivation: Represents a states desire or ambition to construct ENR facili-

ties.

• # Of Disputes: The number of disputes a State has with other recognized

States. A dispute is defined as threatening, displaying or using force against
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other state.

Following definitions a list of questions, on a five point likert scale, were devel-

oped. These questions aimed to understand an experts thought process on nuclear

proliferation. An example can be seen below:

Figure C.1: Example Question from the Expert Elicitation

Based on Figure C.1, the expert has selected the boldfaced and underlined option

as the response to the question. This question aims to gage the effect superpower

alliance has on motivations. The tiered model in Figure 4.2 highlights the edge

between these two nodes. Similar to this question, other questions are asked to

assess all the links represented in Figure 4.2 for both the technical capability and

motivation nodes.

The result of each response is coded in an alpha value for that specific node. Alpha

values are coded to be between 0 and 1. For example, in Figure C.1, the response

has an associated alpha value of 0.7. After all the alpha values are collected, CPTs

are developed. The alpha values between all the states were averaged. Note that the

mode and median of these values resulted in the same value, this might occur due

to the small sample size. A very basic example of how the alpha values were used to

develop a CPT can be seen in Table C.1.
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Table C.1: Example Conditional Probability Table

Motivation

Superpower Alliance High Low

TRUE alpha 1-alpha

FALSE 1-alpha alpha

CPTs for the technical capability and motivation nodes were developed by devel-

oping similar tables. These tables had three to four parent nodes on the left hand side

of the table dictating, very similar to that of Table A.5. These CPTs were formed

based on the alpha values derived from the expert elicitation. Following develop-

ment, the CPTs were trained on the Bayesian networks to add an expert elicitation

flair to the predictive nature of the network.

This concluded the model development with the use of an expert elicitation.
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C.2 FURTHER ANALYSIS

Figure C.2 identifies the correlation and predication accuracy plots for the expert

elicitation method.
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Figure C.2: Data for Expert Elicitation Model
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