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ABSTRACT

Thermal control is an important aspect of spacecraft design, particularly in the case

of crewed vehicles, which must maintain a precise internal temperature at all times

in spite of sometimes drastic variations in the external thermal environment and

internal heat loads. The successes of the Apollo, Space Shuttle, and International

Space Station programs have shown that this can be accomplished for short-term

missions to the Moon and long-term missions to Low Earth Orbit (LEO); however,

crewed spacecraft traveling beyond LEO are expected to encounter more challenging

thermal conditions with significant variations in both the heat rejection requirements

and environment temperature. Such missions will require radiator systems with high

turndown ratios, defined as the ratio between the maximum and minimum heat

rejection rates achievable by the radiator system. Current radiators are only able to

achieve turndown ratios of 3:1, far less than the 12:1 turndown ratio which is expected

to be required on future missions. An innovative radiator concept, known as a

morphing radiator, uses the temperature-induced shape change of shape memory alloy

(SMA) materials to achieve a turndown ratio of at least 12:1. Predicting the behavior of

morphing radiators requires analysis tools that are capable of accurately representing

the driving physics. However, developing mathematical and computational models

of morphing radiators is challenging due to the presence of a unique type of two-

way thermomechanical coupling. This coupling is not present in traditional, fixed-

geometry radiators and has not been widely considered in the literature. Furthermore,

although many existing simulation tools are capable of analyzing certain types

of thermomechanically coupled problems, general problems involving radiation and

deformation cannot be modeled natively in these tools. This work presents an analysis

framework which has been developed to overcome these present shortcomings. Several
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example problems are used to demonstrate the ability of the framework to simulate

realistic problems involving morphing radiators. In addition, a prototype morphing

radiator was designed, fabricated, and subsequently tested in a thermal environment

similar to one in which the radiator is expected to operate on a future mission.

Following the experimental study, a detailed finite element model of the prototype

was developed and executed using the framework. In spite of some discrepancies

resulting from shortcomings in the SMA constitutive model, the model predictions

generally agree with the experimental data, giving confidence that the framework

is able to accurately represent the thermomechanical coupling present in morphing

radiators.
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1. INTRODUCTION

On April 12, 1961, cosmonaut Yuri Gagarin became the first human to fly in space

when he completed an orbit of the Earth in his Vostok I spacecraft. Less than

one month later, Alan Shepard became the first American astronaut in space and

shortly thereafter, John Glenn became the first American to complete an orbit of the

Earth. In the 55 years that have followed, numerous innovations have made longer

manned spaceflights possible. 1971 saw the launch of the first space station, Salyut I,

operated by the Soviet Union; the United States’ first space station, Skylab, was

launched several years later and flew until 1979. The Russian space station Mir, which

remained in Low Earth Orbit from 1986 to 2001, was the first space station intended

for long-term stays; the record for the longest spaceflight (437 days) was set by a

Russian cosmonaut onboard Mir. In 1998, construction began on the International

Space Station, which has been continuously occupied since November 2, 2000 and is

expected to remain in operation until 2024 or later.

In 1968, Frank Borman, James Lovell, and William Anders became the first

humans to travel beyond Low Earth Orbit (LEO) when they completed ten orbits

of the Moon during the Apollo 8 mission. However, since the final Moon landing

in 1972, no human has traveled beyond Low Earth Orbit. In recent years, there

has been considerable interest in manned space missions beyond LEO: NASA and

other organizations are planning return missions to the Moon as well as subsequent

manned missions to Mars [45]. Unlike the Apollo spacecraft, which were designed

for short-duration missions, future crewed spacecraft will be required to support

long-duration missions with little to no resupply capability. There are a number of

technical challenges which must be overcome in order to make long-term missions

such as these safe and affordable; NASA has published a series of documents outlining
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the specific technology areas in which further development is needed in order to

enable long-term crewed missions beyond Low Earth Orbit. This work focuses on

developments in one of those technology areas, namely that of thermal control.

Modern crewed spacecraft are composed of a number of systems which must

interact in order to ensure the overall success of the mission. Examples of spacecraft

systems include the structures system, which provides mechanical support to all

other systems; the power system, which supplies electrical power to the spacecraft;

and the propulsion system, which allows the spacecraft to change its velocity and

orientation [68]. One of the most important systems onboard every spacecraft is

the thermal control system [18, 68], sometimes known as the thermal management

system [46]. The primary task of the thermal control system (TCS) is to maintain

the temperature of all equipment as well as any occupants onboard within acceptable

ranges over the entire course of the mission [46]. The TCS must be able to accomplish

this goal in spite of any variations in the external thermal environment and internal

heat loads from the other systems, as exceeding the temperature limits can result in

damage to the other systems, potentially leading to mission failure.

The thermal control system is a particularly important aspect of crewed spacecraft,

as crewed vehicles must be able to maintain a precise cabin temperature between 20

and 25◦C at all times to ensure crew safety and comfort [68]. Although the Apollo,

Space Shuttle, and International Space Station programs have demonstrated that

this can be accomplished for short-duration missions to the Moon and long-duration

missions to Low Earth Orbit, future human-rated spacecraft designed for long-term

missions beyond LEO are expected to experience large variations in the external

thermal environment. As a result, these spacecraft will face a more challenging set of

thermal control requirements. In many cases, the heat rejection needs will be contrary

to the capacity of the thermal environment, i.e., the TCS will be required to reject a
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high heat load to a warm orbital environment and a low heat load to colder transit

environments. For example, the mission profile for the now-canceled Altair lunar

lander would have required the TCS to reject 500W to an environment at 4K during

cruise and 4,500W to an environment at 215K during surface operations [17]; future

crewed missions to Mars are expected to encounter a similar set of requirements. This

non-fortuitous relationship between the thermal environment and the heat rejection

needs at the spacecraft level requires a radiator system with a high turndown ratio.

The turndown ratio, defined as the ratio between the maximum and minimum heat

rejection capabilities of the TCS [60], is one of the primary measures of overall TCS

performance. Future missions beyond Low Earth Orbit are predicted to require

turndown ratios of approximately 12:1 [49]. Current radiator systems, which are

only able to achieve turndown ratios of 3:1 [46], are generally sized for the maximum

heat rejection requirement in the warmest continuous environment. This ensures the

spacecraft will never overheat; however, a radiator designed in this manner will be

oversized for periods of low heat rejection and is prone to freezing [49]. TCS design

is further complicated by the need to transport heat from crewed internal portions of

the vehicle to the radiators without risking crew exposure to toxic working fluids.

The aforementioned factors drive the current state-of-the-art TCS architecture

for crewed vehicles: a two-fluid-loop heat transport system in conjunction with body-

mounted or deployable radiators [46]. Figure 1.1 shows a simplified schematic of a

two-fluid-loop thermal control system: an inner loop acquires heat from the cabin and

an outer loop circulates fluid through the radiator system; an interface heat exchanger

allows the two loops to exchange heat while remaining physically isolated from each

other. This architecture allows a nontoxic working fluid (e.g. propylene glycol-water

solution) to be used in the inner loop and a low-freezing-point coolant (most of

which are highly toxic) to be used in the radiator system. Although the two-loop
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Innerzfluidzloop:zNontoxiczworkingzfluid

Cabin
heatzexchanger

Radiator
system

Outerzfluidzloop:zLow-freezing-pointzworkingzfluid

Interface
heatzexchanger

Valve
Pump

Figure 1.1: Schematic of a dual-fluid-loop thermal control system with a traditional
radiator system.

SinglePfluidPloop:PNontoxicPworkingPfluid

Cabin
heatPexchanger

VariablePheatPrej.
radiatorPsystem

Valve
Pump

Figure 1.2: Schematic of a single-loop thermal control system with a variable heat
rejection radiator system.

design achieves a sufficiently high turndown ratio while avoiding crew exposure to

toxic fluids, it does so at the expense of increased system mass and complexity due

to the additional hardware required (e.g. pumps, heat exchangers, etc.); previous

trade studies have shown that a two-loop TCS is approximately 25% heavier than a

similarly-performing single-loop system, such as that shown in Fig. 1.2 [49].

There have been a number of efforts to improve TCS performance by developing

variable heat rejection radiators [27]. Examples include digital radiators [17, 42], roll-
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out fin radiators [33, 55], variable-emissivity radiators [1], and freezable radiators [60].

A recently-proposed radiator known as a variable-geometry, or morphing radiator

achieves variable heat rejection via shape change [8]. Such a design would employ

the temperature-dependent phase change of shape memory alloy (SMA) materials to

reconfigure a radiator’s shape and thus adapt the rate of heat rejection to evolving

vehicle requirements. This type of radiator can achieve the high turndown ratios

necessary to enable single-loop thermal control of a vehicle using a nontoxic, high-

freezing-point working fluid.

Shape memory alloys are metallic materials that exhibit a temperature-activated,

diffusionless phase transformation between two solid phases known as martensite

and austenite. This phase transformation can be used to create solid-state actuators

which are capable of generating approximately 5% actuation strain at stresses on

the order of 500MPa. SMA actuators have already been successfully deployed in

a number of aerospace applications [24, 30]. Examples include stepper motors for

solar flaps onboard a satellite [66, 19], variable geometry chevrons [23, 40, 5, 24] and

slat-cove fillers onboard transport aircraft [64, 65], torque tubes for twisting aircraft

wings [24], and deployment mechanisms for solar arrays onboard a satellite [7, 19, 69].

Shape memory alloys are ideally suited for constructing morphing radiators, as the

inherent temperature dependence of the material allows the radiator to reconfigure

passively with no need for external power, control, or sensing instrumentation.

Figure 1.3 shows a morphing radiator design, known as the flexible design, which

combines the response of shape memory alloy material with a thermally conductive

and linearly elastic biasing structure to create a radiator panel that reconfigures

passively in response to changes in temperature [8]. The radiator consists of a circular

composite panel fixed to the spacecraft along the panel’s line of symmetry. The

panel is given a high-emissivity coating on the inner (concave) surface, shown with
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(a) Closed shape for minimum
heat rejection.

(b) Semi-open shape for inter-
mediate heat rejection.

(c) Open shape for maximum
heat rejection.

Figure 1.3: Schematic representation of a flexible morphing radiator panel. Light and
dark shading represents low- and high-emissivity coatings, respectively.

dark shading, and low-emissivity coating on the outer (convex) surface, shown with

light shading. A shape memory alloy sheet attached to the outermost surface of

the panel allows the radiator to morph between various shapes depending on the

temperature of the panel. When sufficiently cold, the radiator takes on the circular

shape shown in Fig. 1.3a. As the temperature in the radiator increases due to a

warmer ambient environment and/or increase in the heat load, the SMA begins to

open the radiator to an intermediate configuration, such as that shown in Fig. 1.3b.

Figure 1.3c shows the fully-open, maximum-heat-rejection shape. This morphing

behavior is fully reversible: a subsequent decrease in temperature will cause the

radiator to return to the minimum-heat-rejection shape.

Figure 1.4 shows a potential design of a radiator system which incorporates a

number of individual SMA-actuated morphing panels. In this design, warm fluid

from the cabin enters the radiator system via an inlet header, shown in red. The

inlet header distributes the fluid to several parallel flow tubes to which a number

of morphing radiator panels are attached. At the end of the flow tubes, an outlet

header collects the now-cooled fluid and returns it to the cabin. This design allows
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each radiator panel to respond to the local fluid temperature at its attachment point.

In high heat rejection mission phases, all of the panels would take on the open shape

to maximize the heat rejection; this state is shown in Fig. 1.4a. Figure 1.4b shows an

intermediate heat rejection scenario, in which the panels near the outlet header begin

to close to minimize the heat rejection once the working fluid has reached the desired

temperature. Figure 1.4c shows the minimum heat rejection shape, corresponding to

low heat rejection mission phases, in which all of the panels are in the closed, circular

configuration.

Figure 1.5 shows an alternate morphing radiator system, known as the rigid design,

consisting of two rigid radiator panels, each of which is actuated by two coaxial shape

memory alloy torque tubes. Warm fluid from the spacecraft cabin would flow through

the inner torque tube and circulate through the radiator panel. The cooled fluid then

flows back to the spacecraft through the annular region between the two torque tubes.

Insulation placed around the inner torque tube prevents heat from being transferred

from the warm inlet fluid to the cool return fluid through the torque tube. As in

the previous design, one side of each panel is given a high-emissivity coating while

the opposite side is given a low-emissivity coating. The torque tubes allow the rigid

panels to rotate in response to changes in temperature. During periods of high heat

rejection, the torque tubes would orient the panels horizontally as shown in Fig. 1.5a,

which maximizes the view of the high emissivity surface to space and results. As

the fluid temperature decreases, the torque tubes would begin to rotate the panels

toward each other, as shown in Fig. 1.5b. During periods of low heat rejection, the

radiator would take on the fully-closed configuration shown in Figure 1.5c, which

minimizes the view of the high emissivity surface to space.

Both morphing radiator designs—the flexible design shown in Fig. 1.4 and the

rigid design shown in Fig. 1.5—will tend to maintain a fluid outlet temperature in
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(a) Maximum heat rejection: all panels fully open.

(b) Intermediate heat rejection: some panels open; some panels closed.

(c) Minimum heat rejection: all panel fully closed.

Figure 1.4: Proposed morphing radiator system showing inlet and outlet headers and
parallel flow tubes with multiple morphing radiator panels attached.
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SMA torque tubes

Rigid radiator panels

(a) Maximum heat rejection: panels fully open.

(b) Intermediate heat rejection: panels partway open.

(c) Minimum heat rejection: panels fully closed.

Figure 1.5: Alternate morphing radiator system design consisting of two rigid radiator
panels actuated by torque tubes. Light and dark shading represents low- and high-
emissivity coatings, respectively.
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the range of the transformation temperatures of the SMA material (between Af and

Mf ), a behavior that can simplify the design of the TCS. These designs also have the

potential to achieve turndown ratios of at least 12:1 [8], far exceeding the turndown

ratios achievable with current state-of-the-art technology. Adopting a single-loop

TCS with a morphing radiator system will reduce the TCS mass by approximately

25% while also simplifying vehicle design [49]. Thus, the SMA morphing radiator

concept is truly revolutionary in its potential to improve several figures of merit

simultaneously, including decreases in system mass and complexity as well as increases

in reliability and versatility.

The goals of this effort are to develop, demonstrate, and evaluate analysis tools

to support the design of future morphing radiator systems such as those described

above. As will be shown, morphing radiators that use thermally-activated smart

materials (e.g. SMAs) for actuation exhibit a complex thermomechanical coupling

which arises due to the constitutive behavior of the material and the presence of

geometry-dependent radiation boundary conditions. This coupling is not present

in traditional, fixed-geometry radiators and has not been widely considered in the

literature. Although many existing simulation tools are capable of analyzing certain

types of thermomechanically-coupled problems, general problems involving radiation

and non-rigid deformation cannot be modeled natively in these tools. To overcome

this present shortcoming, an analysis framework has been developed which employs a

technique known as a partitioned analysis procedure [15]. This approach is character-

ized by decoupling the field equations into separate thermal and structural partitions,

each of which uses its own dedicated solver. The coupling is represented by exchang-

ing field data between the partitions during runtime via boundary conditions. The

partitioned approach is particularly advantageous as it enables existing high-fidelity

analysis tools to be used to simulate general problems involving morphing radiators.
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The remainder of the thesis is organized as follows: Chapter 2 provides background

information regarding radiation heat transfer, describes the constitutive behavior

of shape memory alloys in detail, and explains the nature of the thermomechanical

coupling present in SMA morphing radiators. Chapter 3 discusses the development

of the framework in detail and presents the results of several example problems which

demonstrate its present capabilities. Chapter 4 describes the experimental study

which considered a prototype morphing radiator. In Chapter 5, a detailed model of

the prototype, which allows the physical accuracy of the framework to be evaluated,

is developed and implemented. Finally, Chapter 6 concludes the thesis and provides

suggestions for future work.
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2. BACKGROUND AND THEORY

2.1 Thermal Radiation

Along with conduction and convection, radiation is one of the primary modes of

heat transfer [43, 48]. In contrast to the other two modes, which transfer energy

via molecular interactions, thermal radiation involves the transfer of energy via

electromagnetic waves1. Consequently, radiation does not require a medium in

order for two bodies to exchange energy. Radiation is a complex phenomenon

and a complete description of its nature is beyond the scope of this thesis; for a

comprehensive treatment, the reader is referred to resources such as the works of

Modest [43] or Howell & Siegel [29]. Instead, this section summarizes the aspects of

radiation that most pertain to this work and presents the corresponding equations.

One of the fundamental concepts in the theory of radiation is the black body. A

black body (or surface) is defined as an object (surface) which absorbs all radiation

that strikes it, regardless of the wavelength [31]. The heat flux emitted by a black

body, denoted by q̇eb , depends only on the fourth power of its absolute temperature

T , as given by the Stefan-Boltzmann law,

q̇eb = σT 4, (2.1)

where σ is the Stefan-Boltzmann constant2. Assuming the temperature is uniform

over the body, the rate of emission, in units of power, is given by

Q̇e
b = σAT 4, (2.2)

1In general, the term “radiation” may be used to refer to electromagnetic radiation, particle radia-
tion, or acoustic radiation. In this work, the term will be used exclusively to refer to electromagnetic
radiation

2In SI units, σ = 5.67 · 10−8 W/(m2·K4).
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ni

nj

θi

θj

r

dAi

dAj

Figure 2.1: Radiative heat transfer between two differential areas.

where A is the surface area of the body. An important characteristic of radiation is

its dependence on geometry, which is represented by a quantity known as the view

factor, sometimes referred to as the shape factor, angle factor, or configuration factor.

The view factor from surface i to surface j, which will be denoted by Fi→j , is defined

as the fraction of radiation emitted by surface i which strikes surface j directly. Note

that this definition excludes any radiation that may reflect off of a third surface before

reaching surface j. The view factor between two finite surfaces may be computed via

Fi→j = 1
Ai

∫
Ai

∫
Aj

cos θi cos θj
πr2 dAidAj, (2.3)

where r is the distance between the differential areas dAi and dAj and θi and θj

are defined as shown in Fig. 2.1. It is possible to evaluate this expression for certain

simple geometries, and there are view factor catalogs which provide the view factor

for a number of cases [29]. However, it is difficult or impossible to evaluate Eq. 2.3

analytically for general geometries. Therefore, view factors are often determined

numerically rather than analytically. Note that Fi→j 6= Fj→i in general. The correct
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relationship between Fi→j and Fj→i is given by

AiFi→j = AjFj→i, (2.4)

which is known as the reciprocity theorem [48]. Using the Stefan-Boltzmann law

(Eq. 2.2) and the definition of view factor, the radiation emitted by an isothermal

black surface i that strikes a second isothermal black surface j is given by

Q̇b
i→j = σAiFi→jT

4
i . (2.5)

Likewise, the radiation emitted by surface j that strikes surface i is given by

Q̇b
j→i = σAjFj→iT

4
j . (2.6)

Thus, by applying the reciprocity theorem (Eq. 2.4), the net rate of heat exchange

from surface i to surface j can be written as

Q̇net,b
i→j = Q̇i→j − Q̇j→i = σAiFi→j(T 4

i − T 4
j ). (2.7)

Equations 2.5 and 2.6 imply that the two surfaces exchange energy even if they are at

the same temperature, provided that Fi→j 6= 0. However, the net exchange between

the two surfaces is zero, as stated by Eq. 2.7. For a problem with N isothermal

surfaces, the net radiation from surface i to the other surfaces is given by

Q̇net,b
i =

N∑
j=1

σAiFi→j(T 4
i − T 4

j ), (2.8)
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which represents a set of N equations for 2N unknowns (namely, the temperature

and net heat transfer rate associated with each surface). An additional N equations

result from a complete set of boundary conditions, in which either the temperature

or net heat transfer rate (or a relationship between these quantities) is specified for

each surface. Note that for a general problem involving N black surfaces, there are

N2 view factors.

Most real surfaces do not act like black bodies, therefore, a second concept is intro-

duced: the grey body. A grey body (or surface) is characterized by a nondimensional

term known as the total hemispherical emissivity or simply emissivity, 0 < ε < 1.

The emissivity is defined as the ratio of the energy emitted by the grey body to the

energy emitted if it were black at the same temperature. The heat flux emitted by a

grey body is then given by

q̇eg = σεT 4, (2.9)

and the rate of emission, in units of power, is given by

Q̇e
g = σεAT 4. (2.10)

The rate of heat transfer between two grey surfaces is most easily expressed in terms

of transfer factors, which are analogous to the view factors defined for black surfaces.

However, the transfer factor, which will be denoted by Fi→j, includes radiation

emitted by surface i which reflects off of intermediate surfaces before reaching j.

(Recall that the view factor only considers radiation which travels directly from surface

i to surface j.) Whereas the view factors depend solely on the geometry of the surface

involved, the transfer factors also depend on the emissivities of the two surfaces. Once

the view factors have been determined, the transfer factors can be computed with
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the following procedure. First, a set of intermediate parameters, known as the F̂

parameters is computed via following system of equations [48]

F̂i−j = Fi−j +
N∑
k=1

(1− εk)Fi−kF̂k−j for i, j = 1, 2, ..., N. (2.11)

Although it may seem that Eq. 2.11 is a system of N2 equations with N2 unknowns,

it can instead be solved as N independent sets of equations, each with N unknowns,

which is easier to implement and faster to solve [48]. Once the F̂ parameters have

been computed, the transfer factors can be computed by

Fi−j = εiεjF̂i−j. (2.12)

Then, the net rate of heat transfer from a grey surface i to a second grey surface j

(analogous to Eq. 2.7) is given by

Q̇net,g
i→j = σAiFi→j(T 4

i − T 4
j ). (2.13)

Likewise, for a problem involving N isothermal grey surfaces, the net radiation from

surface i to the other surfaces is given by

Q̇net,g
i =

N∑
j=1

σAiFi→j(T 4
i − T 4

j ). (2.14)

As before, Eq. 2.14 represents a system of 2N equations for N unknowns; the

remaining N equations needed to define the system come from boundary conditions.

2.2 Shape Memory Alloys

Shape memory alloys (SMAs) are a class of smart material with the ability to change

shape in response to variations in temperature and/or stress [34, 50]. This behavior
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is due to a diffusionless phase transformation between two solid phases known as

martensite, which is the low temperature phase, and austenite, which is the high

temperature phase. In the martensite phase, shape memory alloy material is capable

of undergoing large deformation without permanent damage. Upon heating into

the austenite phase, the deformation is recovered, even in the presence of applied

stresses. This behavior can be used to create solid-state actuators which are capable

of generating up to approximately 7% actuation strain at stresses on the order

of 500MPa. One of the most well-known examples of this principle is Boeing’s

Variable Geometry Chevron (VGC), which used shape memory alloys to actuate the

chevrons at the back of an engine nacelle [6, 5, 40]. During takeoff, the chevrons

were canted slightly into the bypass air to reduce engine noise. During cruise, when

the ambient temperature is significantly lower, the SMA-based chevrons retracted

automatically into a low-drag configuration. As the aircraft descended to warmer

conditions for landing, the chevrons returned to their low-noise position. Other

aerospace applications for shape memory alloys include torque tubes for actuating

aircraft control surfaces [24, 26, 59], stepper motors for solar flaps [19], active hinges

for deploying solar arrays on spacecraft [7, 69], and an SMA arm as part of an

experiment onboard the Mars Pathfinder [19].

Shape memory alloys are ideally suited for use in morphing radiators. SMAs have

the highest actuation energy density among smart materials [34]. Additionally, due

to the inherent temperature dependence of the SMA, there is no need for external

power, instrumentation, or control systems in order to achieve the desired heat

rejection variability. Finally, there is already a variety of shape memory material

with transformation temperatures in the ranges needed by a morphing radiator.

There are a number of models that seek to describe the nonlinear and hysteretic

constitutive behavior of shape memory alloys [37, 52, 54]. The model used herein is
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based on the phenomenological model of Lagoudas et al. [35] with modifications to the

hardening functions to allow partial cycles to be represented more accurately. Using

the approach taken by Lagoudas et al. [4, 34, 36], we begin by choosing an appropriate

set of independent state variables. Since the martensitic phase transformation is driven

by changes in stress and temperature, it is natural to select the Cauchy stress tensor

σ and absolute temperature T as the external state variables. Additionally, three

internal state variables are chosen: the transformation strain tensor εt, martensitic

volume fraction ξ, and transformation hardening energy gt. The Gibbs free energy G

for the overall SMA is then defined as a function of the independent state variables

by

G(σ, T, εt, ξ, gt) = (1− ξ)GA(σ, T ) + ξGM(σ, T ) +Gmix(σ, εt, gt). (2.15)

In this expression, GA and GM represent the thermoelastic contributions to the

Gibbs free energy from the austenite and martensite phases, respectively. Assuming

a quadratic stress dependence, GA and GM are given by

GA = − 1
2ρσ : SAσ − 1

ρ
σ : αA(T − T0)

+ c
[
(T − T0)− T ln

(
T

T0

)]
− sA0 T + uA0 , (2.16a)

GM = − 1
2ρσ : SMσ − 1

ρ
σ : αM(T − T0)

+ c
[
(T − T0)− T ln

(
T

T0

)]
− sM0 T + uM0 , (2.16b)
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and the mixing term, which represents the interaction between martensite and

austenite, is given by

Gmix(σ, εt, gt) = −1
ρ
σ : εt + 1

ρ
gt. (2.17)

The parameters S, s0, and u0 represent the compliance tensor, specific reference

entropy, and specific reference internal energy, respectively. Each of these parameters

is assumed to be different for the two phases (i.e., SA 6= SM , etc. in general).

The parameters ρ, c, and α represent the mass density, specific heat, and thermal

expansion tensor, respectively; these parameters are assumed to be constant regardless

of phase. Note that the phase-dependent parameters are assumed to follow the rule of

mixtures in terms of the martensitic volume fraction ξ. For example, the compliance

tensor S(ξ) is defined as

S(ξ) = (1− ξ)SA + ξSM . (2.18)

Applying the Coleman-Noll Procedure [9, 10, 11, 41] to Eq. 2.15 provides the following

expressions for the total strain ε and entropy s:

ε = −ρ∂G
∂σ

= S(ξ)σ +α(ξ)(T − T0) + εt, (2.19)

s = −∂G
∂T

= 1
ρ
σ : α(ξ) + c ln

(
T

T0

)
+ s0(ξ). (2.20)
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The equations governing the evolution of the transformation strain are given by

ε̇t = ξ̇Λt, (2.21a)

Λt =


3
2H

cur(σ̄)σ
′

σ̄
if ξ̇ > 0

εt−r

ξr
if ξ̇ < 0

, (2.21b)

σ′ = σ − 1
3tr(σ)I, (2.21c)

σ̄ =
√

3
2σ
′ : σ′, (2.21d)

Hcur(σ̄) =


Hmin if σ̄ ≤ σ̄crit

Hmin + (Hmax −Hmin)(1− e−k(σ̄−σ̄crit)) if σ̄ > σ̄crit

, (2.21e)

where Λt is the transformation direction tensor, σ′ is the deviatoric part of the

stress tensor, σ̄ is the Mises equivalent stress, and εt−r and ξr are the transformation

strain tensor and martensitic volume fraction at transformation reversal, respectively.

Hmin, Hmax, k, and σ̄crit are experimentally-determined parameters governing the

transformation strain magnitude for full transformation. Likewise, the evolution of

the hardening energy is given by

ġt = f tξ̇, (2.22a)

f t =


1
2a1

(
1 + ξ̂fwd(ξ)n1 − (1− ξ̂fwd(ξ))n2

)
+ a3 if ξ̇ > 0

1
2a2

(
1 + ξ̂rev(ξ)n3 − (1− ξ̂rev(ξ))n4

)
− a3 if ξ̇ < 0

, (2.22b)

ξ̂fwd(ξ) = 1
1− ξf ξ −

ξf

1− ξf , (2.22c)

ξ̂rev(ξ) = 1
ξr
ξ, (2.22d)
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where f t is the hardening function and ξf and ξr are the martensitic volume fraction

at the end of reverse and forward transformation, respectively. The parameters n1, n2,

n3, and n4 are determined experimentally. The transformation criterion is formulated

in terms of a transformation function Φt defined by

Φt =


Π− Y t if ξ̇ > 0

−Π− Y t if ξ̇ < 0
(2.23)

and constrained by

Φt ≤ 0, ξ̇Φt = 0, 0 ≤ ξ ≤ 1. (2.24)

In Eq. 2.23, Π is the thermodynamic driving force, defined by

Π(σ, T, ξ) = σ : Λt + 1
2σ : ∆Sσ +σ : ∆α(T − T0) + ρ∆s0T − ρ∆u0 − f t, (2.25)

where the ∆ operator denotes the difference in a material parameter (i.e., ∆S =

SM − SA, etc.) and Y t is assumed to be a linear function of stress given by

Y t = Y t
0 +Dσ : Λt. (2.26)

In Eqs. 2.22, 2.23, 2.25, and 2.26, ρ∆s0, ρ∆u0, a1, a2, a3, Y t
0 , and D are model

parameters which may be expressed in terms of the phase diagram parameters (Ms,

Mf , As, Af , CA, and CM ) and the transformation strain parameters (Hmin, Hmax, k,
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and σ̄crit) [35]:

ρ∆s0 =
−2

(
CMCA

) [
Hcur(σ) + σ ∂H

cur

∂σ
(σ) + σ

(
1
EM
− 1

EA

)]
CM + CA

∣∣∣∣∣∣
σ=σ∗

, (2.27a)

D =

(
CM − CA

) [
Hcur(σ) + σ ∂H

cur

∂σ
(σ) + σ

(
1
EM
− 1

EA

)]
(CM + CA)

[
Hcur(σ) + σ ∂H

cur

∂σ
(σ)

]
∣∣∣∣∣∣
σ=σ∗

, (2.27b)

a1 = ρ∆s0(Mf −Ms), (2.27c)

a2 = ρ∆s0(As − Af ), (2.27d)

a3 = ρ∆s0

2 (Ms + Af ), (2.27e)

Y t
0 = ρ∆s0

2 (Ms − Af )− a3. (2.27f)

2.3 Thermomechanical Coupling

Problems in which the independent field variables of interest influence each other are

said to be coupled. Thermomechanical coupling is the particular type of coupling that

arises when the temperature field in a body depends on the displacement field and

vice versa. The primary goal of a thermomechanically coupled analysis is to predict

the evolution of these two fields, which may be functions of both time and space. This

section presents the equations which govern a thermomechanically-coupled problem.

In the following discussion, the temperature field will be denoted by T = T̂ (x, t) and

the displacement field will be denoted by u = û(x, t), where x represents a point in

the deformed configuration [20, 38]. The evolution of the temperature field in an

anisotropic material is governed by the balance of energy, the local form of which is

given by [34, 51, 58]

ρcṪ = −div(q) + σ : ε̇+ ρr. (2.28)

22



In this equation, ρ and c denote the mass density and specific heat capacity, respec-

tively, Ṫ ≡ ∂T/∂t denotes the partial derivative of the temperature with respect to

time, q is the heat flux, σ is the Cauchy stress tensor, ε̇ is the strain rate, and r rep-

resents an internal heat source per unit mass. The relationship between temperature

and heat flux for a general material is given by

q = −k grad (T ) (2.29)

where k is the second-order thermal conductivity tensor [51] which acts on the gradient

of temperature. The local form of the balance of linear momentum is given by [38]

ρü = div(σ) + b, (2.30)

where ü ≡ ∂2u/∂t2 is the material acceleration and b is the body force vector per

unit volume.

The constitutive equation relating stress and strain in a typical linearly elastic

material is given by

σ = C [ε−α(T − T0)] (2.31)

where C is a fourth-order tensor known as the elasticity tensor and ε is the linearized

strain tensor, given by

ε = 1
2
[
∇u + (∇u)T

]
. (2.32)

For a shape memory alloy, the constitutive equation is given by

σ = C(ξ)
[
ε− εt −α(T − T0)

]
, (2.33)
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Figure 2.2: Diagram showing the phenomena and their relationships in a general
problem involving shape memory alloys and radiation boundary conditions.

where εt denotes the transformation strain which depends on stress and temperature,

as described in Section 2.2.

Figure 2.2 gives a schematic representation of the phenomena and their relation-

ships for a general problem involving shape memory alloys and radiation boundary

conditions. The circles represent the phenomena and the colored overlapping regions

represent relationships between the phenomena. For example, temperature and heat

flux are related via the balance of energy (Eq. 2.28), heat flux and displacement

are related via the geometry-dependent view factors (Eq. 2.8) or transfer factors

(Eq. 2.14), and the shape memory alloy constitutive behavior relates changes in

temperature to changes in displacement (See Sec. 2.2 above). Modeling the behavior

of morphing radiators requires consideration of all three of these phenomena, shown

with the star in the center of the figure. The physics of this class of problem have not

been widely considered in the literature. Ramesh, Balaji, and Venkateshan considered
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the effects of cavity radiation on radiating fins, but the geometry remained fixed

throughout the problem [56]. Naumann likewise conducted optimization of a radiator

with fixed geometry [47]. Juhasz and Peterson present a number of innovative radiator

designs, including variable surface area radiators with roll-out fins, however none of

these designs involve shape memory alloys and therefore do not exhibit the same type

of thermomechanical coupling [33].

Existing codes such as Ansys, Abaqus, NASTRAN, and others are capable of

analyzing many coupled temperature-displacement problems, such as those involving

heat conduction and convection [12, 44, 62]. However, the addition of radiation

boundary conditions increases the complexity of the problem, as any changes in

geometry require view factors to be recalculated. As described in Sec. 2.1, computation

of view factors for general geometry is an expensive operation which requires a

number of calculations proportional to the square of the number of interacting

surfaces [67]. Since traditional radiators have fixed geometry, there has been little

need to include support for such computationally-expensive boundary conditions

within a coupled temperature-displacement analysis; therefore, most simulation codes

only allow radiation boundary conditions to be included in a pure thermal analysis.

The result is that problems involving radiation and deformation are difficult or

impossible to model natively in many existing commercial analysis tools. There are

also external code interfaces which enable existing analysis tools to simulate coupled

problems. One of these, MpCCI [32], was explored for this work. Although MpCCI

is able to exchange temperature data, it is unable to send the displacement field (i.e.,

geometry) to the thermal analysis; therefore, it cannot be used to model the behavior

of morphing radiators. One of the primary goals of this work is to develop a means

by which general problems of this type may be analyzed. The following chapter will

discuss one such approach.
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3. ANALYSIS APPROACH, FRAMEWORK IMPLEMENTATION, AND

EXAMPLE PROBLEMS1

Owing to the two-way coupling between the temperature and displacement fields,

shape memory alloy morphing radiators are challenging to model in most existing

simulation tools. This chapter describes an analysis approach which can be used to

simulate general problems involving morphing radiators. The details of the approach

itself and subsequent implementation are now discussed.

3.1 Analysis Approach

Henceforth, it will be assumed that the structural response is quasi-static, i.e., at

every instant in time, the material is assumed to be in equilibrium. Additionally,

it is assumed that there is no body force. With these assumptions, the structural

equation reduces to

0 = div(σ) (3.1)

and the conservation of energy reduces to

ρcpṪ = −div(q). (3.2)

Note that, as a result of the quasi-static assumption, Eq. 3.1 does not depend explicitly

on time.

Physically, the fields of interest are continuous functions in both space and time.

However, as a result of the nonlinear and hysteretic behavior of the shape memory

alloy (See Sec. 2.2) and the complicated nature of radiation boundary conditions (See
1Portions of this material reprinted from the Proceedings of the Active and Passive Smart

Structures and Integrated Systems Conference (2015), DOI 10.1117/12.2175739 [2], by permission
of SPIE.
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Sec. 2.1), it is difficult or impossible to derive an analytical solution to the system

of equations defined by Eqs. 3.1 and 3.2 for general problems involving morphing

radiators. Therefore, the remainder of this work will be concerned with developing

approximate solutions to this system. The first step in developing an approximate

solution to the governing partial differential equations is to discretize the temperature

and displacement fields in space [57]:

T = T̂ (x, t) =
N∑
i=1

Ti(t)ψi(x) , (3.3a)

u = û(x, t) =
N∑
i=1

ui(t)ψi(x) . (3.3b)

The set of functions denoted by ψi(x) is known as the set of interpolation func-

tions2 [57]. The spatial approximations in Eqs. 3.3a and 3.3b lead to a set of ordinary

differential equations for the nodal variables Ti(t) and ui(t). The fields may also be

discretized in time [57]:

T = T̂ (x, ts) =
N∑
i=1

Ti(ts)ψi(x), s = 0, 1, ... , (3.4a)

u = û(x, ts) =
N∑
i=1

ui(ts)ψi(x), s = 0, 1, ... . (3.4b)

The further approximations in Eqs. 3.4a and 3.4b allow the set of ordinary differential

equations to be converted into a set of algebraic equations. For a thermomechanically
2It is possible to use interpolation functions which depend on both time and space, however, in

this work, it is assumed that the interpolation functions depend on space only.
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coupled problem, the system may be expressed as

Kθθ(T,u) Kθu(T,u)

Kuθ(T,u) Kuu(T,u)



T

u

 =


q(T,u)

f(T,u)

 . (3.5)

In the preceding system, the Kij terms represent the coefficient sub-matrices while

q and f represent generalized structural and thermal loads. In general, each of the

terms in this equation may be a function of the independent variables. For example,

the SMA constitutive behavior, which depends on both temperature and stress (i.e.

displacement) is represented in the Kuu and Kuθ terms. Thus, Eq. 3.5 is a nonlinear,

inhomogeneous system of algebraic equations subject to a set of initial conditions of

the form 
T (0)

u(0)

 =


T (0)

u(0)

 . (3.6)

For problems involving most common types of boundary conditions, the system in

Eq. 3.5 may be solved readily using a numerical technique such as Newton’s method.

However, the introduction of geometry-dependent radiation boundary conditions in

the thermal equation complicates the solution procedure, as this type of boundary

condition depends strongly on both the displacement and temperature. Recall the

expression for the net rate of heat transfer from a grey surface i to the other surfaces

in the problem, given by

Q̇net,g
i =

N∑
j=1

σAiFi→j(T 4
i − T 4

j ), (3.7)

where σ is the Stefan-Boltzmann constant, Ai is area of surface i, and Fi→j is the

transfer factor from surface i to surface j, which is a non-dimensional parameter

defined as the fraction of radiation emitted by the surface i that strikes surface j.
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As described in Chapter 2, these factors are highly dependent on geometry, which

presents an additional challenge when including boundary conditions of this form in

a thermomechanically coupled problem. Furthermore, determination of the transfer

factors is a very computationally-expensive process for arbitrary geometry, requiring

a number of calculations proportional to the square of the number of interacting

surfaces [67]. For non-coupled thermal problems in which the geometry remains fixed

for all time, these factors need only be computed once at the beginning of the analysis;

however, in a coupled analysis, they must be recomputed for every incremental change

in displacement. Since traditional radiators have fixed geometry, there has been little

need to include support for radiation boundary conditions of the form in Eq. 3.7 in a

coupled thermomechanical analysis procedure; therefore, most existing analysis tools

only allow radiation boundary conditions to be included in a pure thermal analysis.

The result is that coupled problems involving radiation boundary conditions are

difficult or impossible to model natively in most existing commercial analysis tools.

This shortcoming may be addressed by moving to a technique known as partitioned

analysis procedure, in which a fully-coupled set of field equations is decoupled into

two or more smaller systems known as partitions that are solved independently of

each other [15, 53]. The partitions are executed incrementally in an alternating series

and exchange data as the solution progresses in order to represent the effect of the

coupling. This approach is frequently employed in fluid-structure interaction (FSI)

problems [13, 28, 70]. For a thermomechanically coupled problem, the system in

Eq. 3.5 is separated into thermal and structural partitions. The thermal partition

may be written as

[
Kθθ(T, ū) Kθu(T, ū)

]
T

ū

 = q(T, ū). (3.8)
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In this expression, the overbar (̄·) is used to indicate that the displacement field is

fixed and specified in the thermal partition. Therefore, temperature field is the only

unknown in this equation. Likewise, the structural partition may be written as

[
Kuθ(T̄ ,u) Kuu(T̄ ,u)

]
T̄

u

 = f(T̄ ,u), (3.9)

where the displacement field is unknown and the temperature field is fixed and specified.

Note that the constitutive behavior of the shape memory alloy is represented in the

coefficient matrices Kuu and Kuθ.

The primary advantage to this approach is that each partition need only solve

for a single unknown field; the thermal partition is responsible for solving for the

temperature field, while the structural partition is responsible for solving for the

displacement field. Since the displacement field (i.e., geometry) remains fixed in

the thermal partition, radiation boundary conditions of the form in Eq. 3.7 are

straightforward to include in the thermal partition. Equations 3.8 and 3.9 can be

rearranged to define operators for the solution process of the thermal and structural

partitions, which will be denoted by

u = S(u, T̄ ) ≡ Kuu
−1
(
f(u, T̄ )−KuθT̄

)
T = T(ū, T ) ≡ Kθθ

−1 (q(ū, T )−Kθuū) .
(3.10)

Note that the above expressions are written in an implicit form, with the independent

field variables appearing on both sides of their respective equations. Now that the

partitions have been defined, a particular execution method must be chosen. There

are a number of methods available, each with its own advantages and disadvantages.

The simplest method, known as the sequential staggered procedure, uses a time-explicit
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Figure 3.1: Flowchart for the staggered solution procedure used to simulate the
thermomechanically coupled behavior of SMA-based morphing radiators. Partitions
are executed in an alternating series.

integration scheme which executes the partitions in an incremental, alternating fashion

and exchanges data between the partitions at each increment [15]. Figure 3.1 shows a

graphical representation of the sequential staggered procedure. The time-discretized

temperature and displacement fields are shown across the top and bottom of the

figure, respectively, and superscripts are used to denote the state of the field at

a particular instant in time (i.e., T (n) ≡ T (tn)). Arrows indicate the flow of data

between the partitions and the simulation time increases from left to right.

The procedure begins with a set of known initial conditions, namely, an initial

temperature field, denoted by T (0) = T (0) and an initial displacement field, denoted

by u(0) = u(0). Since the shape memory alloy behavior is driven entirely by changes

in temperature in the absence of externally-applied forces [34], the thermal partition

is executed first. The thermal partition uses the initial conditions to advance the

temperature field by one time increment, yielding T (1) = T (t1). This temperature

field is then passed to the structural partition, which solves for the displacement field

u(1) = u(t1) corresponding to T (1). At this point, both partitions have been executed
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and the fields of interest have been evolved by one time increment. To begin the

second increment, the geometry (i.e., displacement field) from the first increment,

u(1), is passed to the thermal partition, which advances the temperature field by an

additional time increment, yielding T (2). The new temperature field is subsequently

sent to the structural partition which updates the displacement field accordingly,

yielding u(2). This process simply repeats until the end of the simulation is reached

after a desired number of time increments. Owing to its time-explicit integration

approach, this method gives rise to a first-order time accurate solution method in

time which requires sufficiently small timesteps to achieve accurate results; the nature

of the problem dictates a suitable step time. More advanced methods are capable of

achieving second-order time accuracy at the expense of additional complexity [13],

however, this work has only considered the sequential staggered procedure described

above.

3.2 Framework Implementation

Although the sequential approach described in the previous section could be imple-

mented in a variety of analysis tools, Abaqus was used for this work. A number of

features in Abaqus make it an ideal choice for implementing the framework [12]. In

particular, Abaqus has support for both structural and thermal analysis procedures.

Although there is no fundamental requirement that the thermal and structural parti-

tions be implemented in the same tools, doing so generally simplifies implementation.

In addition, Abaqus has the ability to include custom constitutive models via a

User Material Subroutine (UMAT), which is essential to model the nonlinear and

hysteretic behavior of shape memory alloys described previously. Finally, Abaqus

provides a scripting interface in the Python programming language that enables every

aspect of the analysis to be automated, including model creation, analysis execution,
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and post-processing. This is an essential feature, as it would be prohibitively time

consuming to implement the partitioned approach depicted above manually.

A custom framework was developed in Python to allow the partitions to be created

and executed in an automated fashion; Figure 3.2 shows a diagram of the framework

as implemented. The boxes represent individual analysis runs of the two partitions

(Thermal and Structural), while arrows denote data transfer between the analyses.

The order of execution is shown via the numbering in the upper-left corner of each box.

Additionally, the simulation time at the end of each analysis is shown in parentheses

following the partition name.

The framework begins with an initial step (marked 0 in Fig. 3.2), which defines the

initial geometry and temperature field. No analysis takes place during this step; this is

indicated with a dashed border in place of a solid border. The framework then begins

the first increment with the thermal partition (1 ). The thermal analysis evolves the

temperature field for one time increment considering the transient effects of radiation,

conduction, and heat capacitance within the material. The global simulation time

advances by the same time increment, from t0 to t1. Next, the structural partition is

executed (2 ). The structural analysis determines the behavior of the shape memory

alloy in response to the temperature field that was calculated in the first thermal

analysis. This behavior is assumed to be quasi-static; consequently, the global

simulation time does not advance at the completion of the structural analysis. Once

the thermal and structural partitions have completed, the first increment is complete.

To begin the second increment, the framework creates a new instance of the

thermal component (3 ). The newly-created thermal analysis uses the previous

temperature field (from 1 ) as an initial condition, along with the new geometry (from

2 ) to advance the thermal solution by an additional time increment. The global

simulation time also advances from t1 to t2. The new temperature field is passed
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Figure 3.2: Implementation of the staggered solution procedure used by the analysis
framework.

to the subsequent structural analysis and the framework continues executing the

components in an alternating series until the total simulation time is reached.

In the limit that the time increment approaches zero, the framework will approach

the fully-coupled behavior of the problem. Of course, practical limitations prevent

taking arbitrarily small time steps. As the time step decreases, the total number

of increments increases. There is a substantial overhead associated with creating

a new analysis at each step, and this parasitic cost is proportional to the number

of increments. Thus, as the time step decreases, the overhead becomes increasingly

significant.

The remainder of this chapter presents a series of example problems which were

used to demonstrate the application of the staggered solution procedure described

above toward several problems involving morphing radiators.

3.3 Example Problem 1: Rigid Morphing Radiator

The first example problem considers a representative morphing radiator assembly

consisting of three parts: a shape memory alloy torque tube [16, 39] and two identical

thin, rigid, radiator panels. Figure 3.3 shows a schematic diagram of the radiator

assembly used in the example problem. The radiator panels are 1.5m× 1.5m× 1mm.
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Figure 3.3: Diagram of the radiator assembly used in Example Problem 1.

The torque tube is 1.5m in length with an outer diameter of 25mm and an inner

diameter of 24mm. The vertical radiator panel remains fixed for all time and is not

attached to the torque tube. The second radiator panel is attached to the otherwise

unconstrained −x face of the torque tube at a single point (indicated in Fig. 3.3). The

angle between the two panels, denoted by θ, is equivalent to the thermally-induced

actuation angle of the SMA torque tube. The +x face of the torque tube is assigned

a fixed boundary condition that constrains the face against displacement in the x

direction as well as rotation in the yz plane. The torque tube is assumed to have been

trained such that the free end rotates about the x-axis as the shape memory alloy

undergoes strain recovery during the transformation from martensite to austenite [39].

This recovery of tube rotation during heating, known as the shape memory effect [34],

causes the panel to rotate about the x-axis in unison with the free end of the torque

tube.
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The inner surface of each panel is able to radiate to the opposite panel as well as to

the surroundings, while the outer surface of each panel is assumed to be insulated and,

therefore, not capable of emitting radiation. Identical thermal properties (density,

specific heat, and thermal conductivity) are assigned to each of the three parts. A

uniform and constant heat load per unit volume is applied to the entire assembly.

Both panels and the torque tube are assumed to be at the same uniform temperature

throughout the simulations. Additionally, the effect of gravity is neglected. Note that

these assumptions are not required for the computational analysis, but are included

primarily to simplify the development of a mathematical model, which is described

below.

The radiator is initially in the fully-closed configuration (i.e., θ(0)=0) with a

uniform initial temperature of 50K. This temperature is below Ms of the shape

memory alloy; therefore, the torque tube begins in the martensite phase. In this

state, the shape memory alloy is assumed to have a nonzero transformation strain as

a result of previous training [39]. The two panels have no means of heat rejection

in this configuration, since the two radiating surfaces are facing each other directly

and the outward-facing sides are assumed to be insulated. As time progresses, the

temperature in the assembly increases due to the applied heat load until the shape

memory alloy begins to transform into austenite, resulting in the recovery of the

transformation strain and rotation of the torque tube [34]. This causes the rotating

panel to open away from the fixed panel (θ > 0), allowing heat to be rejected to

the surroundings. The shape memory alloy continues to transform until it has fully

transformed into austenite (T > Af ). At this point, the angle between the panels has

reached its maximum (θ = θmax). Note that this particular example problem considers

the behavior of the radiator exclusively under heating (reverse transformation). Table
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Table 3.1: Material properties and other parameters used in the first example problem.

Parameter Value
ε 0.85
cp 329 J/kg·K
ρ 6450 kg/m3

TS 5K
Ms 358K
Mf 300K
As 325K
Af 375K
CM 12.0MPa/K
CA 15.5MPa/K
Hmax 0.0286
βτ 13.2MPa
θmax 135 deg
q̇ 1.0MW/m3

3.1 gives values of material properties and other parameters used in this problem.

These properties correspond to the model of Hartl, et al [25].

A reduced-order model was developed for the first example problem for the purpose

of direct verification. Assuming the temperature is identical in both radiator panels,

there is no net heat exchange between them. This allows the model to simply consider

one of the radiator panels. The energy balance for the panel is given by

mcpṪ = q̇V − σεAFP→S(θ)(T 4 − T 4
S). (3.11)

In the preceding equation, m, V , and T (t) represent the mass, volume, and tempera-

ture, respectively, of the radiator assembly. The temperature of the surroundings,

denoted by TS, is assumed to remain constant. The angle between the two panels

is denoted as θ, and q̇ represents the constant uniform heat load per unit volume.
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The function FP→S(θ) gives the view factor from the panel to the surroundings as a

function of the angle between the two panels according to

FP→S(θ) = 1− FP→P (θ), (3.12)

where FP→P is the view factor for two rectangles sharing a common edge and separated

by an arbitrary angle θ. A general expression for this function may be found in several

rescources [14, 21, 29]; due to its complexity, the expression will not be included here.

In Eqs. 3.11 and 3.12, θ itself is a function of temperature considering the behavior

of the shape memory alloy torque tube. As mentioned above, this example focuses

on the behavior of the torque tube as the shape memory alloy undergoes reverse

transformation from martensite to austenite. A simplified constitutive model was

derived for a torque tube from the three-dimensional shape memory alloy constitutive

model of Lagoudas, et al. [35] and was modified to consider training of torque tubes

via the introduction of an internal back stress [39, 25, 16]. The torque tube is assumed

to be a prismatic cylinder under stress-free conditions such that

M = Jτ

r
= 0, (3.13)

where M is an externally-applied moment, J is the polar moment of area, τ is the

shear stress, and r is the outer radius of the torque tube. For stress-free conditions,

the shear strain in the tube is exclusively due to transformation. Thus, the twist

angle of the tube, denoted by ϕ, can be written as3

ϕ = θ = γL

r
= γtL

r
, (3.14)

3Since the rotating panel is attached to the end of the torque tube, the angle between the
panels (θ) is identical to the twist angle of the torque tube.
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where γ is the engineering shear strain, γt is the shear strain due to transformation,

and L is the length of the torque tube. The evolution equation for the transformation

strain during reverse transformation is

γ̇t = ξ̇Λt
γ Λt

γ = γt−r

ξr
, (3.15)

where γt−r and ξr represent the transformation shear strain and martensitic volume

fraction at transformation reversal, respectively. The torque tube is assumed to have

been cooled to full martensite during manufacturing, thus ξr = 1. This implies that

the initial value of γt, denoted γt0, is identical to γt−r and that

γt = ξΛt
γ. (3.16)

Further, the transformation shear strain at transformation reversal is defined in terms

of the conventional constitutive model parameters Hmax, k, and βt (see. Table 3.1),

per

γt−r = γt0 =
√

3Hmax

[
1− e−k

√
3βτ
]
. (3.17)

Assuming stress-free conditions, the transformation function reduces to

Φt
rev = −ρ∆s0T + ρ∆u0 + 1

2a2 [1 + ξn3 − (1− ξ)n4 ] + a3 − Y t
0 = 0, (3.18)

where ρ∆s0T , ρ∆u0, a2, a3, n3, n4, and Y t
0 are model parameters that are calibrated

from the stress-temperature phase diagram of the shape memory alloy [35].

Equations 3.11, 3.14, 3.16, and 3.18 define a system of equations in four unknown

variables: θ, T , γt, and ξ. Due to the presence of an integral term in the view

factor expression (see [14, 21, 29]) and the nonlinearity introduced by the shape
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memory alloy constitutive model, a closed-form analytical solution does not exist

for this system. Instead, the reduced-order model was implemented in MATLAB

and Simulink. Simulink is a graphical modeling tool integrated with MATLAB that

provides a number of numerical solvers. For this work, the ode45 solver was used

with a maximum step size of 0.5 s.

For the first example problem, the high-fidelity model was executed using the

coupled framework with four different values for the time step: 100 s, 50 s, 20 s,

and 10 s, corresponding to 10%, 5%, 2%, and 1% of the total simulation time. A

maximum step size of 0.5 s was used for the reduced-order model. Three quantities

were tracked throughout the simulations: the radiator temperature (which is assumed

to be uniform), the angle between the panels, and the rate of heat rejection via

radiation of a single panel. For each quantity, two figures are presented; the first

figure shows the time history of the quantity, and the second figure plots the absolute

error in the quantity with respect to the reduced-order model. Figures 3.4–3.6 present

these plots.

Figure 3.4a shows the time history of the temperature in the radiator. The

solution can be understood as having three distinct phases. During the first phase of

the simulation, the temperature of the radiator increases as a result of the applied

heat. Since the radiator is fully closed during this phase, the temperature increase is

linear with time until the temperature reaches As, which occurs at t = 160 s. This

marks the beginning of the second phase, during which the radiator panel opens

away from the fixed panel, from 0 to 135 deg. The temperature increase continues

to be approximately linear with time during the first portion of the second phase,

but as the radiator opens, the slope of the temperature plot decreases. The panel

continues to heat until the temperature reaches Af , which occurs at t = 460 s. In

the final phase, the shape memory alloy has finished transforming into austenite,
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and the rotating panel has reached a steady-state configuration of 135 deg. The

temperature approaches a steady-state value of approximately 385K. Figure 3.4b

shows the error in temperature and illustrates the strong dependency of the accuracy

of the framework on choice of time step. The maximum transient error is 4.3K

occurring at t = 300 s when using a time step of 100 s. As the time step decreases,

the maximum transient error decreases to 0.4K when using a time step of 10 s. The

magnitude of the steady-state error is less than 0.75K for all simulations.

Figure 3.5a shows the time history of the angle between the radiator panels. The

three phases are seen clearly on this plot. The first phase corresponds to θ = 0deg

and ends at t = 160 s. During the second phase, the radiator opens from 0deg to

135 deg. Note that the time history of the panel angle is nonlinear during this phase,

which is a consequence of the nonlinearity in the temperature (see Eqs. 3.15 and

3.18). Figure 3.5a also clearly shows a time lag which is introduced by the framework

due to the combination of an explicit coupled integration procedure and relatively

large time steps. This time lag is the primary cause of the significant transient error

shown in Fig. 3.5b.

The time lag in the geometry also affects the radiation heat transfer rate, which

can be seen in Figures 3.6a and 3.6b. For small time steps, the framework tracks

the reduced-order model closely. For larger time steps, the transient error increases

significantly. In spite of this, the framework solutions all converge upon zero steady-

state error.

In general, the suitability of one value of time step over another will depend on

the nature of the problem. For this particular problem, the simulations all approach

the same steady-state values for each of the quantities of interest. This is because the

steady-state temperature is above the austenitic finish temperature (Af) at which

point the torque tube has a specific, known rotation. In this case, a large time step
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(a) Radiator temperature as computed via the analysis framework and reduced-order model.
Horizontal dashed lines indicate transformation temperatures.
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Figure 3.4: Comparison between the radiator temperature as predicted via the analysis
framework and reduced-order model.
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(a) Radiator panel angle as calculated via the analysis framework and reduced-order model.
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Figure 3.5: Comparison between the panel angle as predicted via the analysis frame-
work and reduced-order model.
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(a) Radiation heat transfer rate as calculated via the analysis framework and reduced-order
model.
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Figure 3.6: Comparison between the heat transfer rate as predicted via the analysis
framework and reduced-order model.
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can be used to quickly obtain an understanding of the long term behavior of the

radiator, perhaps during design studies. Once the design has been selected, a smaller

time step can be used for the same geometry to obtain a more accurate understanding

of the transient of the behavior of the radiator. Alternatively, the framework could be

implemented using a variable time step instead of a fixed time step. This would allow

the time step to be decreased automatically whenever significant geometry change

is occurring. Likewise, when the geometry is no longer changing, the step size can

be increased. The result is a decrease in the number of increments needed by the

framework, and therefore, an increase in overall performance.

3.4 Example Problem 2: Flexible Morphing Radiator

The second example problem considers a flexible radiator panel (See Fig. 1.3), which

begins in the circular configuration. The panel is 10 cm in length with an initial

diameter of 7.75 cm. The total surface area of the panel is approximately 240 cm2.

The panel is composed of a five-ply composite layup consisting of three carbon plies

between two glass fiber plies (see Table 3.2). Each ply has a thickness of 0.127mm

and a volume fraction of 60%. A 0.25mm thick SMA film attached to the outer glass

fiber ply provides the actuation force necessary to allow the panel to open under an

increase in temperature. The material properties for the carbon and glass fiber plies

are given in Table 3.3 and the properties for the shape memory alloy film are given

in Table 3.4. The radiator is assumed to be fixed to the spacecraft along its line of

symmetry, shown in red in Fig 3.7a.

The goal of the simulation is to predict the temperature and deformation responses

to the transient heat load depicted in Fig. 3.8. The heat load consists of three heat

cycles, each of which begins at 2W, increases to 10W, and then returns to 2W.

The load is applied uniformly to the base of the radiator along the line of symmetry
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Table 3.2: Composite layup used in Example Problem 2. Ply 1 is the innermost ply
and ply angles are defined with respect to the circumferential direction.

Ply Material Angle
1 S2 Glass 90◦
2 K1100 Carbon 45◦
3 K1100 Carbon 0◦
4 K1100 Carbon -45◦
5 S2 Glass 90◦
6 SMA -

Table 3.3: Material properties for orthotropic K1100 carbon and S2 glass fiber plies.
2-direction is out of plane [8].

Material Property K1100 Carbon Fiber S2 Glass Fiber
ρ 1812 kg/m3 1969 kg/m3

cp 1000 J/kg·K 1000 J/kg·K
k11 = k33 594W/m·K 0.861W/m·K

k22 0W/m·K 0W/m·K
E1 557GPa 54.4GPa
E2 6.23GPa 15.9GPa
ν12 0.318 0.252

G12 = G13 0.451GPa 5.81GPa
G23 0.305GPa 5.69GPa

46



Table 3.4: Material properties for isotropic shape memory alloy film [8, 35].

Material Property Value
ρ 6450 kg/m3

cp 329 J/kg·K
k 22W/m·K
EA 70GPa
EM 30GPa
ν 0.33
Ms 259K
Mf 233K
As 278K
Af 305K
CA 6MPa/K
CM 7MPa/K

Hmin = Hmax = H 3.9%
n1 = n2 = n3 = n4 0.5

(see Fig. 3.7a). The sink temperature is assumed to remain at 10K throughout the

simulation, a condition that might be experienced if the radiator is shadowed from the

sun by a planet or another part of the spacecraft. The convex and concave surfaces

of the radiator are each assigned a radiation boundary condition (see Fig. 3.7b). The

emissivity of the concave surface is 0.91, which corresponds to Martin black paint

N-150-1 [18]. The emissivity of the convex surface is 0.04, which corresponds to a

dark mirror coating composed of SiO-Cr-Al [18].

Per the solution procedure described in Section 3.1, separate thermal and structural

models are employed. For this problem, both models are implemented using a finite

element formulation in Abaqus. Although heat transfer problems are often analyzed

using a finite difference approach, it is advantageous to employ the finite element

method as this enables the use of a single mesh common to both solvers. In particular,

the transfer of data from one model to the other for use in boundary conditions is
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(a) Red surface: fixed boundary condition,
uniform time-varying heat load [2].

(b) Blue surface: Radiation boundary condi-
tion with ε = 0.91; white surface: radiation
boundary condition with ε = 0.04.

Figure 3.7: Finite element model showing structural and thermal boundary conditions.
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Figure 3.8: Heat load applied to the base of the radiator panel [2].
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greatly simplified when the node locations are identical. For this problem, the finite

element mesh consists of 1650 linear shell elements with three integration points

through the thickness of each lamina.

The structural partition is implemented using a quasi-static analysis. The consti-

tutive behavior of the shape memory alloy is included via a user material subroutine

(UMAT) based on the constitutive model of Lagoudas, et al. [35], which is described

in detail in Chapter 2. The structural solver uses a feature known as a restart analysis

in order to stop and resume the simulation while maintaining its associated state

variables (e.g. martensitic volume fraction) and fields (e.g. stress and strain) [12].

This feature is essential to capture the history dependence of the shape memory

alloy constitutive behavior. The thermal solver is implemented with a heat transfer

analysis which is capable of considering geometrically-dependent radiation boundary

conditions. The heat transfer analysis may be either transient or steady-state. For

this particular problem, a transient analysis is used.

The data exchange mechanisms are also simplified by using Abaqus for both

partitions. The thermal model must import the displacement field from the previous

structural solution, which can be accomplished in a straightforward manner. Likewise,

the temperature field can be easily imported by the structural model. When using

dissimilar tools for the partitions, the output data from one program may need to be

modified to match the input format of the other program.

The thermal behavior of the radiator can be understood by investigating the

evolution of the temperature and total heat emitted by the radiator. Figure 3.9 shows

the evolution of the temperature field over the course of the simulation; the maximum,

minimum, and average temperature within the radiator are plotted. Additionally,

the deformed geometry is shown at several points in time with temperature contours

superimposed. The horizontal dashed lines represent the stress-free transformation
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Figure 3.9: Maximum, minimum, and average temperature of the radiator in response
to a time-varying heat load. Insets depict the temperature field within the radiator
at various times [2].

temperatures of the shape memory alloy (Mf < Ms < As < Af). Note that

transformation from martensite to austenite occurs between As and Af (reverse

transformation), while transformation from austenite to martensite occurs between

Ms and Mf (forward transformation). The radiator is initially in the fully-closed

configuration at T = 260K. As the heat load ramps from 2W to 10W, the temperature

in the radiator begins to increase accordingly. After heating for approximately 15min,

the shape memory alloy begins to transform, causing the radiator to begin to open.

By 30min, the radiator reaches a steady-state open configuration with an average

temperature of 302 K. The heat load begins to decrease at 38min and the temperature

decreases rapidly because the radiator is still fully open. As the SMA transforms

50



0 30 60 90 120 150 180
Simulation time, min

0

2

4

6

8

10

12

H
e
a
t 

ra
te

, 
W

Load
Output

Figure 3.10: Total heat output of the radiator in response to the representative
thermal load [2].

into martensite, the radiator begins to close back toward the minimum heat rejection

configuration. A minimum average temperature of 230K is reached just before the

heat load begins to increase again at 70min. The behavior of the radiator during the

two remaining cycles is similar to the first cycle. Figure 3.9 also shows the spatial

variation of the temperature field. In the hot condition (e.g. at t = 30min), the

maximum temperature is 313K in the middle of the panel (above Af), while the

minimum temperature is only 294K at the edges of the panel (below Af). This

implies even if the SMA transforms fully into austenite in the middle of the panel, it

only transforms partially at the edges.

The total heat output of the radiator is plotted in Fig. 3.10 along with the applied

heat load, where both are defined to be positive for the sake of comparison. During

the heating phases (e.g. 0 < t < 30 min), the heat output is smaller in magnitude

than the load. As is seen in Fig. 3.9, this is because some of the energy is going
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Figure 3.11: Maximum, minimum, and average radiation heat flux emitted by the
concave radiating surface. Insets show the variation of heat flux over the radiating
surface at various times [2].

toward increasing the temperature in the radiator panel, which means less energy is

available to be radiated. Likewise, during the cooling phases (e.g. 30 < t < 70 min),

the heat output is higher than the load due to the additional heat given off during

cooling. Figure 3.11 shows the variation of the heat flux emitted by the concave

radiating surface. The heat flux of the convex surface is significantly lower (less

than 20 W/m2) due the surface’s low emissivity; therefore, the data for the convex

surface has been omitted from Fig. 3.11 for clarity. The variation in heat flux is most

pronounced during the hot configuration, with the center of the panel emitting at a

47% higher rate than the outer edges (485 W/m2 vs. 330 W/m2).

52



Figure 3.12: Maximum and minimum view factor to space. Insets show the variation
of the view factor over the radiating surface at various times.

Figure 3.12 shows the maximum and minimum view factor of the elements on the

panel to space. As before, the insets show the spatial distribution at several points in

time. This plot clearly shows how the radiator is able to vary its heat rejection: the

panel begins in the circular configuration at t = 0 with a maximum view factor of 0.51

and a minimum view factor of 0.22. As the panel opens, the view factor increases

significantly to a maximum of 0.90 and a minimum of 0.79. Likewise, as the panel

closes, the view factor decreases. During subsequent cycles, the panel is able to a

slightly more open configuration, which results in a maximum view factor near unity.
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4. EXPERIMENTAL CHARACTERIZATION OF A PROTOTYPE MORPHING

RADIATOR1

Prior to this work, there had been little to no experimental testing of an SMA-

actuated component in an exclusively radiative environment. Cognata et al. conducted

experimental proof-of-concept studies on two SMA-based morphing radiator analogues;

however, these studies were done in a laboratory environment where convection was

the dominant mode of heat transfer [8]. As discussed in Chapter 2, for SMA-

actuated components operating in a convection-dominated environment, changes to

the geometry do not strongly affect the temperature field. Therefore, one of the

primary goals of this work was to design, construct, and subsequently test for the

first time a prototype morphing radiator in a thermal vacuum chamber in order to

create a thermal environment similar to one in which the radiator is expected to

operate on a future mission. In addition to demonstrating the operating principles of

the morphing radiator concept, the data collected during the experiment was used

to evaluate the physical accuracy of the analysis approach discussed in the prior

chapter. The remainder of this chapter describes the design of the morphing radiator

prototype itself as well as the overall test setup and presents the results of the test.

4.1 Morphing Radiator Prototype Design

Figure 4.1 shows the prototype morphing radiator which was designed and fabri-

cated for the experimental study. This prototype uses shape memory alloy wires to

achieve the temperature-induced morphing behavior described in the Introduction

and depicted schematically in Fig. 1.3: at temperatures above the austenite finish
1Portions of this material reprinted from the Proceedings of the 24th AIAA/AHS Adaptive

Structures Conference (2016), DOI 10.2514/6.2016-1568 [3], by permission of the American Institute
of Aeronautics and Astronautics.
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temperature (Af ) of the SMA wire, the radiator takes on an open, semicircular shape;

at temperatures below the martensite finish temperature (Mf ), the radiator takes on

a closed, circular shape. Note that Fig. 4.1 shows the austenitic (high-temperature)

configuration of the radiator prototype, corresponding to Fig. 1.3a. The primary

component is a compliant and thermally conductive copper panel, 7 in (17.78 cm)

long, 3 in (7.62 cm) wide, and 0.007 in (0.1778mm) thick, which is rolled along its

length to form the semicircular shape shown in Fig. 4.1. Ten shape memory alloy

wires rest against the outer surface of the panel and are fixed at each end to the

straight edges using set screws and a pair of terminal blocks fabricated from 0.25 in

(6.35mm) square aluminum stock. The wires are otherwise unconstrained, allowing

them to slide along the panel as they transform locally. Benchtop tests indicated the

need for an additional biasing force beyond that provided by the copper panel alone

to allow the panel to close to the circular shape shown in Fig. 1.3c under cooling; a

1 in (2.54 cm) wide and 0.007 in (0.1778mm) thick 1095 steel closing spring with a

stress-free radius of curvature of 0.7 in (1.778 cm) is attached to the convex side of the

panel for this purpose. In order to increase the rate of heat rejection via radiation in

the open shape, the inside surface of the copper panel is painted with Aeroglaze Z307,

a flexible, high-emissivity polyurethane coating. The outside of the panel remains

unpainted. Note that the total hemispherical emissivities of the Aeroglaze Z307 paint,

unpainted copper, and unpainted steel were measured to be 0.943, 0.047, and 0.143,

respectively with a Surface Optics Corp. ET-100 emissometer. The copper panel is

attached to a 0.375 in (9.53mm) diameter stainless steel flow tube using a thermally

conductive epoxy which allows the radiator to be integrated into a pumped fluid loop

for the experiment.
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(a) Outside of prototype showing primary components.

(b) Inside of prototype showing high-emissivity polyurethane coating.

Figure 4.1: Prototype morphing radiator design at room temperature demonstrating
open shape. Open circles show thermocouple locations.
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4.2 SMA Wire Characterization and Model Calibration

After the prototype itself had been designed, the next task was to select a particular

shape memory alloy wire for the experiment. Traditional SMA actuator wire typically

has an As temperature near 90◦C, which is significantly higher than the setpoint of

most thermal control systems onboard crewed spacecraft. Additionally, achieving

such high temperatures can be difficult when operating in a vacuum chamber whose

walls are below -150◦C. As a result, this particular application called for wire with

transformation temperatures below room temperature, which is sometimes referred

to as pseudoelastic or superelastic.

SAES Getters provided a small quantity of trained NiTi SmartFlex wire with a

diameter of 0.014 in (0.36mm) and an austenite start temperature (As) of -25◦C. This

wire was tested using an isobaric thermomechanical cycle [22] prior to the experiment

in order to fully characterize the behavior of the wire. For this type of test, the wire

was held at a constant stress using a load frame and the temperature was cycled using

a thermal chamber in order to induce transformation (see Fig. 4.2 for a picture of the

load frame and thermal chamber). Figure 4.3 shows the total strain in the wire as a

function of temperature for stresses of 100, 150, 200, and 250MPa. At each stress

level, the temperature was cycled between 60◦C and -60◦C. This plot indicates that

the wire is able to provide up to approximately 6.5% transformation strain with nearly

full recovery. The standard characterization method for shape memory alloys [22]

was applied in order to determine the transformation temperatures at each stress

level; the resulting data is shown in Fig. 4.4. The four transformation surfaces are

shown with dashed lines: the blue lines indicate when transformation from austenite

to martensite occurs; the red lines indicate when transformation from martensite to

austenite occurs. Extrapolating the transformation temperatures to zero stress gives
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Figure 4.2: Photograph showing the load frame and thermal chamber which were
used for the isobaric test.

an estimated zero-stress austenite start temperature (As) of -21.6◦C, which agrees

with the manufacturer-reported As of -25◦C. Although this wire provides sufficient

transformation strain, at low stresses, the martensite transformation temperatures are

far below the freezing point of nontoxic working fluids. Based on this data, each wire

was pretensioned in the prototype in order to increase the martensite transformation

temperatures and allow a nontoxic, water-based working fluid to be used in the

experiment.

Although the isobaric test gives a good understanding of the transformation

behavior of the SMA wire, it does not provide enough data to fully calibrate the

constitutive model described in Chapter 2. In particular, there is no means of
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Figure 4.3: Results of the isobaric test of the 0.014 in (0.36mm) SmartFlex SMA
wire used in the morphing radiator prototype.
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Figure 4.4: Experimentally-determined phase diagram for the SMA wire using the
isobaric test data shown in Fig. 4.3.
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determining EM , the elastic modulus of martensite, from this data. Therefore, a

second test was performed on the wire to allow EM to be determined. For this test,

the wire began in a stress-free configuration at room temperature in the austenite

phase. First, the wire was loaded elastically to 600MPa at a constant strain rate of

0.05%/s. Next, the wire was cooled to -40◦C at a rate of 7◦C/min while the stress

was held at 600MPa to allow the material to transform into martensite. Finally, the

the wire was unloaded elastically at -40◦C.

Figure 4.5 shows the response of the wire in stress-strain space during the second

characterization test. The left diagonal part of the curve represents the elastic

response of pure austenite during loading, while the right diagonal part of the curve

represents the elastic response of pure martensite during unloading2. In order to

determine EA and EM from this data, two tangent lines were fit using the method

of least squares; the slope of each line gives the corresponding value of E. Fig. 4.5

shows the two tangent lines where the length of the lines indicates the subset of the

data used in the least-squares data fits, giving EA = 54.6GPa and EM = 33.2GPa.

Following the procedure outlined by Lagoudas [34, 35], the SMA constitutive

model described in Chapter 2 was calibrated twice, using different assumptions for

the parameters. The model was first calibrated assuming αM ≥ 0 and αA ≥ 0, which

will be referred to as “Calibration 1.” Table 4.1 lists the full set of parameters needed

to define the constitutive response of the wire. Figure 4.6a shows the phase diagram

as determined by the model along with the experimentally-determined transformation

temperatures, which are shown with closed circles. Figure 4.6b shows the model

predictions of the strain in the wire during the isobaric experiment, where grey dashed

lines are used for the experimental data shown in Fig. 4.3. Overall, these figures
2Although it is possible to determine EA from the isobaric data shown in Fig. 4.3, the data

from the second characterization test provides a convenient means of calculating EA and EM

simultaneously.
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Figure 4.5: Stress-strain response of the SMA wire during the second characterization
test showing data fits for EM and EA.

show that Cablibration 1 matches the response wire fairly closely. The austenite

transformation temperatures (shown in red in Fig. 4.6a) are accurately predicted the

model; this can also been on the right side of the loops in Fig. 4.6b. However, there is

slightly more spread in the martensite transformation temperatures and, as a result,

the model does not match the left side of the loops for all stress levels; at 100 and

200MPa, the model matches the martensite transformation temperatures very well,

however, at 150MPa, the model slightly underpredicts the martensite transformation

temperatures and at 250MPa, the model slightly overpredicts them. Note that the

model is able to very accurately predict the maximum total strain as a function of

stress. For example, at 150MPa, the maximum total strain in the wire as predicted

by the model is 6%, which can be seen to match the experimental data very closely.

However, Calibration 1 is unable to predict the gradual strain recovery as the wire
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transforms into austenite under heating. This can be seen along the upper portion of

each isobaric loop: the total strain at each stress level remains constant until the Ms

temperature, whereas the experimental data indicates that the wire begins to recover

the stress well before the Ms temperature.

In order to better capture this effect, the model was calibrated a second time

assuming αM < 0, which will be referred to as “Calibration 2.” Table 4.1 lists the

resulting parameters, while Fig. 4.7 shows the phase diagram and isobaric response for

Calibration 2. Figure 4.7 shows that setting αM = −5·10−5 allows the model to capture

the gradual recovery much more accurately than when αM = 0 in Calibration 1. Note

that the transformation temperatures are slightly lower than those for Calibration 1,

and Hmin and Hmax have decreased as a result of the negative expansion coefficient.
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Table 4.1: Calibrated model parameters for the 0.014 in (0.36mm) diameter SmartFlex
wire.

Model Parameter Calibration 1 Calibration 2
EM 33.2GPa 33.2GPa
EA 54.6GPa 54.6GPa
νM 0.33 0.33
νA 0.33 0.33
αM 0 · 10−6 m/(m·◦C) −5 · 10−5 m/(m·◦C)
αA 1 · 10−6 m/(m·◦C) 1 · 10−6 m/(m·◦C)
Mf 197.7K 196.2K
Ms 206.5K 204.9K
As 255.8K 254.8K
Af 264.5K 263.5K
CM 4.26MPa/K 4.29MPa/K
CA 4.60MPa/K 4.58MPa/K
Hmin 2.00% 1.40%
Hmax 6.48% 5.88%
k 0.0123MPa−1 0.0123MPa−1

σ̄crit 20MPa 20MPa
n1 1.00 1.00
n2 0.87 1.00
n3 1.00 1.00
n4 0.87 0.51
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(a) SMA constitutive model phase diagram (Calibration 1).
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(b) SMA constitutive model prediction of the isobaric response of the wire (Calibration 1).

Figure 4.6: Phase diagram and isobaric response as determined by the SMA constitu-
tive model (Calibration 1).
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(a) SMA constitutive model phase diagram (Calibration 2).
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(b) SMA constitutive model prediction of the isobaric response of the wire (Calibration 2).

Figure 4.7: Phase diagram and isobaric response as determined by the SMA constitu-
tive model (Calibration 2).
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4.3 Morphing Radiator Prototype Fabrication Procedure

Figure 4.8 shows the major steps required to fabricate the test specimen. The

procedure began with a flat copper panel which was cut to the desired size (7 in× 3 in)

out of 0.007 in annealed copper shim stock. One side of the panel was treated

with Aeroglaze 9924 primer and then painted with Aeroglaze Z307, a flexible, high-

emissivity polyurethane coating. The other side was left unpainted. Figure 4.8a

shows the painted side of the panel. The panel was then rolled uniformly along

its length to form a semicircle; the Aeroglaze Z307 paint proved to be durable and

flexible enough to allow the panel to be rolled without damaging the paint. A 3/8 in

diameter stainless steel flow tube was then attached to the panel using Arctic Silver

Thermal Adhesive. Figure 4.8b shows the panel after being rolled and attached to

the flow tube. In this photograph, the panel is resting on top of an assembly jig

which was used to hold the specimen in place during the remainder of the assembly

procedure. The jig consisted of a curved aluminum plate with a radius of curvature

of 5 in. A layer of tape was placed on the jig to protect the painted surface of the

panel from damage and a slot allowed the panel to be placed on the jig with the

painted side facing down as shown in Fig. 4.8c. After positioning the panel on the jig,

the aluminum terminal blocks were then attached to the edges of the copper panel

as shown in Fig. 4.8d. Next, the steel closing spring was placed on the panel and

secured with set screws in the terminal blocks as shown in Fig. 4.8e. The final step

was to add the SMA wires. This consisted of passing each wire through its respective

guide hole in the terminal blocks, pretensioning the wire by suspending 5.33 lb from

each end with a pair of locking pliers, and subsequently tightening the corresponding

set screw. Figure 4.8f shows the fully constructed specimen after attaching the SMA

wires.
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(a) Flat copper panel after being painted
with high-emissivity polyurethane coating.

(b) After rolling panel and attaching flow
tube.

(c) On assembly jig. (d) After attaching terminal blocks.

(e) After attaching spring steel strip. (f) After attaching SMA wires.

Figure 4.8: Sequence showing fabrication procedure for morphing radiator prototype.
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Figure 4.9: Photograph showing morphing radiator on the assembly jig just prior to
being installed in the vacuum chamber.

The specimen was transported to the vacuum chamber on the assembly jig to

prevent any damage from handling. Figure 4.9 shows the radiator prototype and

assembly jig resting inside the vaccum chamber immediately before the radiator was

installed. Note that the thermocouple leads are also visible in this photograph.
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4.4 Experimental Setup

The prototype morphing radiator was incorporated into a simple fluid loop which

used an SP Scientific RC211 pump with an integrated heater and refrigerator to

vary the fluid temperature. The fluid loop used Dynalene HC-50 as the working

fluid, a nontoxic water-based coolant with a freezing point below -50◦C. The flow

rate of the system was set sufficiently high to ensure the fluid temperature at the

radiator outlet remained within 0.5◦C of that at the radiator inlet; given the high

flow rate and high heat capacity of the working fluid relative to the radiator panel,

the result is a boundary condition which closely approximates a uniform temperature

boundary condition. The fluid loop and radiator were installed in a small, high-vacuum

environment chamber located at NASA Johnson Space Center. The cylindrical test

section has a diameter of 17 in (43 cm) and a depth of 23 in (58 cm) and is surrounded

by a temperature-controlled shroud that provides a surface to which the radiator can

reject heat. The radiator was suspended in the center of the test section with the

high-emissivity surface facing downward. This position allowed the panel to be viewed

through a small glass window on the door of the test section. Figure 4.10 shows

the overall experimental setup, with the chamber itself, the temperature-controlled

pump outside the chamber, and the working fluid lines passing into and out of the

test section via ports on the side of the chamber. Ten Type T thermocouples were

attached to the test specimen at the locations shown in Fig. 4.1 to measure the

temperature at key points on the panel and a digital camera was attached to the

outside of the window on the chamber to record the radiator’s deformation.

Prior to the start of the experiment, the pump was turned on and the fluid

temperature was increased from room temperature to 65◦C. The chamber was pumped

down to a pressure of 10−5 torr and the shroud was cooled with liquid nitrogen until
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Thermal vacuum chamber

Temperature-controlled pump

Test section

Working fluid lines

Figure 4.10: Photograph showing experimental setup, including thermal vacuum
chamber and pump [3].

it reached a temperature of -178◦C. The experiment began with a 10-minute dwell

period to allow the system to reach equilibrium. Next, the working fluid was cooled to

-45◦C and maintained at -45±4◦C for 20 minutes. The fluid was then heated to 60◦C

over the next 3 hours. Figure 4.11 shows the fluid temperature at the radiator inlet

and outlet as measured by the two immersion thermocouples. This plot clearly shows

that the fluid temperature remained nearly constant across the radiator throughout

the experiment.
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Figure 4.11: Time history of the working fluid temperature at radiator inlet and
outlet.

4.5 Results and Discussion

Figure 4.12 shows the evolution of the temperature in the panel as measured by

two of the attached thermocouples. The warmest temperatures are experienced by

thermocouples 1 and 3 (see Fig. 4.1 for thermocouple numbering and locations), which

are attached to the panel nearest to the flow tube, while the coolest temperatures are

experienced by thermocouples 4, 6, 7, and 9, which are located along the edge of the

panel farthest from the flow tube. As expected, these temperatures follow the trend

of the fluid temperature, which is shown above in Fig. 4.11. At the beginning of the

experiment, the difference between the maximum and minimum panel temperatures

is approximately 25◦C. As the fluid temperature decreases, the temperature field in
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Figure 4.12: Time history of maximum and minimum panel temperatures. Vertical
dashed lines correspond to images shown in Fig. 4.13.

the panel becomes more uniform. Likewise, as the fluid temperature increases, the

temperature difference begins to increase.

While the temperature provides a straightforward means to characterize the

thermal response of the radiator, it is more difficult to quantitatively describe the

radiator’s structural response (i.e. deformation) using the images captured during

the test. Figure 4.13 shows three such images corresponding to key times during

the experiment: Fig. 4.13a shows the initial shape of the radiator at the start of the

experiment; Fig. 4.13b shows the closed shape reached by the radiator at the minimum

fluid temperature; Fig. 4.13c shows the recovered shape at the end of the experiment.

Note that the time corresponding to each image is marked with vertical dashed lines

in Fig. 4.12. Due to imperfections in the prototype, the panel is not symmetric: in

each image, the left half of the panel appears to be slightly more open than the right
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(a) Nearly semicircular shape
for maximum fluid tempera-
ture (t=10min).

(b) Nearly circular shape for
minimum fluid temperature
(t=43min).

(c) Recovered shape at
the end of the experiment
(t=250min).

Figure 4.13: Images of morphing radiator specimen at three points during the test
demonstrating the desired temperature-induced actuation behavior [3].

half. Based on these images, it was decided to use two circular arcs to approximate

the panel geometry, one for each half of the panel. Then, the radius of curvature of

each arc provides a straightforward way to describe the deformation of the panel. A

Matlab script employing the method of least squares was developed to fit arcs to each

of a total of 18 images; the resulting data is shown in Fig 4.14. The upper and lower

dashed lines in this figure correspond to an ideal, symmetric semicircular and circular

shape, respectively. This plot clearly shows that the panel was able morph between a

nearly semicircular shape at the beginning of the experiment (see Fig. 4.13a) and

a nearly circular shape when the fluid temperature reached its minimum value (see

Fig. 4.13b). It is interesting to note that the difference between the left and right

radii, a measure of the asymmetry in the panel attributable to small fabrication

errors/imperfections, remains approximately constant throughout the experiment.

It is challenging to describe the behavior of the shape memory alloy wires over the

course of the experiment due to the temperature variation along the length of each

wire: the local temperature at the material point in the wire nearest to the flow tube is
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Figure 4.14: Time history of radius of curvature of left and right sides of morphing
radiator panel.

higher than that at a material point at the edge of the panel near the terminal blocks.

As a consequence, the wires do not transform uniformly along their length. Therefore,

instead of considering the behavior of the entire wire, it is more helpful to consider

the response of a single material point in the SMA wire. In particular, consider

the material point nearest to the flow tube, which is also the warmest point in the

wire. Figure 4.15 shows a simplified version of the experimentally-determined phase

diagram shown above in Fig. 4.4 which will be used to explain the transformation

behavior of this material point over the course of the experiment. Assume the material

point begins at 1, in the austenite phase at approximately 60◦C and with an initial

stress of 500MPa. It should be noted that since there was no means of directly

measuring the stress in the wire during the experiment, the values of the stress in

this discussion should be understood as estimated values. No transformation occurs
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as the material point cools from 1 to 2 ; the temperature simply decreases while the

stress remains at its initial value of 500MPa. Beginning at 2, the material point

transforms from austenite to martensite as the temperature continues to decrease.

As the material point transforms, the stress decreases due to the linearly elastic

biasing load caused by the closing spring. This stress relaxation, in turn, causes the

martensite finish temperature (shown with the leftmost dashed line) to decrease. The

result is that the material point is unable to fully transform into martensite once the

temperature reaches -45◦C at 3. As the temperature increases, no transformation

occurs between 3 and 4. At 4, the material point begins to transform into austenite,

increasing the stress in the process. This shifts the austenite finish temperature

(shown with the rightmost dashed line) upward, preventing the material point from

fully transforming into austenite (5 ). This diagram explains why the radiator was

unable to fully recover the initial semicircular shape by the end of the experiment:

even though the temperature returned to its initial value, the stress in the wires at

the end of temperature cycle is less than that at the beginning of the experiment.
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Figure 4.15: Phase diagram for the SMA wire showing the thermomechanical path
experienced by the point nearest to the flow tube [3].
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5. EVALUATION STUDIES

5.1 Thermal Finite Element Model

Although the data presented in the previous chapter gives an understanding of the

morphing radiator’s thermomechanical behavior over the course of the test, it is

not possible to directly compute the radiator’s rate of heat rejection from this data.

Instead, a finite element model of the prototype was developed using the thermal

module in Abaqus to allow this quantity to be determined. The model uses the data

shown in Fig. 4.14 to construct an idealized representation of the radiator geometry

corresponding to each radius pair. A constant temperature boundary condition is

applied to the copper panel at the location of the flow tube using the corresponding

maximum temperature measured in the panel (shown in Fig. 4.12). Radiation

boundary conditions are applied to the surface of the panel using the emissivity values

given in Sec. 4.1 and the panel is assumed to be radiating to an environment at

-180◦C, which was the measured temperature of the liquid-nitrogen-cooled chamber

shroud during the experiment. The thermal response of the panel was assumed to be

quasi-steady state, as the temperature field evolved over the course of several hours in

the experiment. The model is meshed with 510 8-node quadratic shell elements with

temperature degrees of freedom. The model was executed for each pair of radii from

Fig. 4.14 along with the corresponding maximum panel temperature from Fig. 4.12.

The minimum temperature as computed by the model is plotted in Fig. 5.1 along with

the minimum temperature measured by the thermocouples during the experiment.

This figure shows that the minimum temperature as computed by the finite element

model closely matches the experimental data, which gives confidence in the thermal
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Figure 5.1: Comparison between the minimum panel temperature measured during
the experiment and computed via the thermal finite element model.

analysis procedure in Abaqus, including its implementation of radiation boundary

conditions.

More importantly, this model can be used to compute the radiator’s total rate of

heat rejection over the course of the experiment, which is plotted with the square

markers and solid line in Figure 5.2. As expected, the heat rejection rate is relatively

high, 5.93W, at the beginning of the experiment when the fluid temperature is

warmest and the radiator is in its most open configuration. As the fluid temperature

decreases and the radiator closes, the heat rejection rate dramatically decreases

to 0.92W. The rate of heat rejection increases as the temperature subsequently

increases and the panel returns to its open configuration. Taking the ratio between

the maximum and minimum heat rejection values gives an estimated turndown ratio

(Q̇max:Q̇min) of 6.4:1. To understand the effect of the morphing behavior on the
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turndown ratio, the finite element model was executed again assuming the radiator

remained in its initial, nearly-semicircular shape throughout the experiment. The

heat rejection rate of this fixed-geometry (i.e. non-morphing) radiator is shown with

the circular markers and dashed line in Fig. 5.2. Starting at approximately 30min,

the fixed-geometry radiator has a higher rate of heat rejection than the morphing

radiator. The maximum heat rejection rate remains at 5.93W, however, the minimum

heat rejection rate increases 1.46W, giving a turndown ratio of 4.1:1. These results

show that the morphing behavior led to an increase of nearly 60% in the turndown

ratio versus an equivalent fixed-geometry radiator panel.
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5.2 Thermomechanically Coupled Finite Element Model

It is important to note that the preceding model was only intended to predict the

thermal behavior of the morphing radiator prototype. In order to predict both

the structural and thermal behavior, a fully-coupled model was developed in order

to evaluate the physical accuracy of the analysis approach described in Chapter 3.

Figure 5.3b shows the geometry of the corresponding finite element model which was

developed for this evaluation study. The model includes each of the parts shown in

Fig. 5.3a, with the exception of the flow tube, which was left out of the model. Rather

than modeling each individual wire, the wires are homogenized into two “wire bundles”

with a rectangular cross-section whose area is equal to the total cross-sectional area of

five wires. Small regions near the ends of the wire are given elastic material properties

to improve the stability of the numerical solution. The model takes advantage of

the symmetry of the prototype in order to reduce the computational domain to one

quarter of that shown in Fig. 5.3b. Table 5.1 gives the thermoelastic properties for the

various materials used in the finite element model, while Table 4.1 gives additional

parameters needed to define the constitutive behavior of the shape memory alloy wires.

The goal of the model is to predict the evolution of both the temperature field and

displacement field in the radiator when subjected to the conditions of the experiment.

As described above, this requires a special analysis procedure that decouples the

thermal and structural aspects of the problem into separate partitions which exchange

data to capture the coupling.

The thermal partition is implemented using an uncoupled thermal analysis proce-

dure in Abaqus. This procedure supports geometry-dependent radiation boundary

conditions of the form in Eq. 2.14. The panel, spring, and terminal block are meshed

using 4-node elements with temperature degrees of freedom (DS4 elements), while
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(a) Photograph of morphing radiator test
specimen.

(b) Finite element model of morphing radi-
ator prototype.

Figure 5.3: Morphing radiator test specimen and corresponding finite element model.

(a) Boundary conditions for thermal parti-
tion.

(b) Boundary conditions for structural par-
tition.

Figure 5.4: Boundary conditions for the thermal and structural partitions.
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the wire is meshed with 8-node elements (DS8 elements). Figure 5.4a shows the

problem domain with the thermal boundary conditions superimposed. To capture the

temperature change induced by varying the fluid temperature, a uniform temperature

boundary condition is defined along the upper edge of the panel according to experi-

mental data recorded by a thermocouple attached to the panel at this location. The

other symmetric edge is given an insulated boundary condition. Two thermal contact

conditions are included to allow the parts to exchange heat; the contact conditions

assume zero thermal resistance between the parts. Radiation boundary conditions are

included on both sides of the panel and the convex side of the spring; owing to their

relatively small area, radiation is neglected from the wires and terminal block region.

The structural partition is responsible for solving for the time history of the

displacement field and is implemented in Abaqus using a nonlinear implicit dynamic

analysis procedure considering finite rotations. Figure 5.4b shows the boundary

conditions for the structural partition. Symmetry boundary conditions are used along

the edges of symmetry. Tie constraints are used to attach the wire and closing spring

to the panel. In particular, the spring and wire are both tied to the panel at their ends

to simulate the effect of the terminal blocks. The wire is not tied to the panel along

its entire length; rather, a frictionless contact condition is prescribed between the wire

and panel which prevents the nodes of the meshed wire from penetrating the surface

of the panel. The spring and panel are meshed with 4-node reduced-integration shell

elements (S4R elements), while the wire is meshed with 8-node fully-integrated brick

elements (C3D8 elements). The constitutive behavior of the shape memory alloy is

included via a user material subroutine (UMAT) in Abaqus which implements the

constitutive model of Lagoudas et al. [35].

The two partitions are given identical meshes: the panel is meshed with 1416

4-node shell elements, the spring is meshed with 440 4-node reduced-integration
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elements, and the wire bundle is meshed with 60 8-node fully-integrated solid elements.

Although there is no fundamental requirement that the meshes be identical between

the partitions, doing so simplifies the implementation, as there is no need to interpolate

or extrapolate between dissimilar meshes.

As described above, in order to capture the effects of the coupling, there must be

a means by which the partitions can exchange data as the simulation progresses. In

particular, the thermal partition must be provided with the displacement from the

previous increment (see Fig 3.1). This is accomplished using the Import Part feature

in Abaqus, which allows the deformed geometry from one analysis to be imported

into a new analysis. The temperature field from the previous increment is used as an

initial condition and the uniform temperature and radiation boundary conditions are

then applied to the imported geometry. Additionally, the structural partition must

be provided with the current temperature field. In Abaqus, this can be accomplished

using a Predefined Field which has an option to specify the temperature field using

the results of a previous analysis. Due to the hysteretic behavior of shape memory

alloy material [34], the structural partition must also be able to consider the full

history of the displacement field. A feature known as a restart analysis in Abaqus is

able to retain the state of the material, including stresses and internal state variables.

The partitions were integrated into the custom framework Python which is

responsible for executing the partitions in an alternating series and passing the

requisite field data between them. The framework was executed a total of 16 times,

once for each of the entries in Table 5.2. The outcome of each analysis is indicated in

the “Result” column. Only five runs completed successfully; during the remaining

runs, the structural model failed to converge. Note that all of the analysis runs which

used SMA Calibration 2 failed at approximately t = 30min.
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Table 5.2: Summary of the individual analysis runs of the fully-coupled model. See
Table 4.1 for the parameters corresponding to SMA Calibration 1 and 2.

ID SMA Cal. Thermal Response Timestep Result
1 1 Transient 30min Failed at t = 150min
2 1 Transient 15min Failed at t = 120min
3 1 Transient 10min Failed at t = 100min
4 1 Transient 5min Completed
5 1 Quasi-steady state 30min Completed
6 1 Quasi-steady state 15min Completed
7 1 Quasi-steady state 10min Completed
8 1 Quasi-steady state 5min Completed
9 2 Transient 30min Failed at t = 30min
10 2 Transient 15min Failed at t = 30min
11 2 Transient 10min Failed at t = 30min
12 2 Transient 5min Failed at t = 30min
13 2 Quasi-steady state 30min Failed at t = 30min
14 2 Quasi-steady state 15min Failed at t = 30min
15 2 Quasi-steady state 10min Failed at t = 30min
16 2 Quasi-steady state 5min Failed at t = 25min
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Figure 5.5: Comparison between panel temperatures measured during the experiment
and computed via the fully-coupled model implemented using the analysis framework
(Analysis 4).

Figure 5.5 shows the evolution of the minimum temperature as predicted by

Analysis 4 along with the maximum and minimum temperatures recorded during

the experiment; the solid lines are used to represent the experimental data, while

the circles show the results from the finite element model. As described above, the

maximum temperature from the experiment is used as a boundary condition in

the finite element model. Therefore, the minimum panel temperature provides the

primary comparison for the temperature field. Between t = 0min and t = 15min,

the temperature field matches very closely because there is no geometry change

occurring during this period. The panel begins to close soon after the maximum

temperature begins to decrease and continues to do so until the temperature reaches

its minimum value at t = 45min. During this period, the model predictions match the

experimental data closely, although the model predicts a slightly lower temperature
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Figure 5.6: Comparison between panel radius of curvature measured during the
experiment and computed via the fully-coupled model implemented using the analysis
framework (Analysis 4).

than was recorded during the experiment. During the period between t = 45min and

t = 60min, the model does a very good job of predicting the temperature. During the

remainder of the experiment, the radiator begins to warm up and begins to recover

its initial shape in the process.

Figure 5.6 compares the radius of curvature from Analysis 4 to the experimental

data; as before, solid lines represent the experimental data, while the model prediction

is shown with circular markers. Up to t = 60min, the model predictions closely

match the experimental data corresponding to the left side of the panel (recall that

asymmetry in the panel meant that the left and right sides of the panel had different

a different radius of curvature). In particular, the model is able to accurately predict

the minimum radius of curvature between t = 45 and t = 60min. However, during

the remainder of the simulation, there appears to be a significant lag in the model
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predictions relative to the experimental data, i.e., the experimental radiator began to

open soon after t = 60min, whereas the model predicted that the radiator stayed

closed much longer, until t = 130min. In order to understand why this is the case, it

is important to revisit Figs. 4.6b and 4.7b, which give the SMA constitutive model

predictions of the isobaric response of the SMA wire used in the experiment. In

particular, Fig. 4.6b gives the prediction corresponding to Calibration 1, which is the

calibration that was used in Analysis 4. As described above, although Calibration

1 matches the transformation strain magnitude and transformation temperatures

very closely, it is not able to predict the gradual strain recovery seen along the upper

portion of each isobaric loop of the experimental data. This inability to capture

gradual transformation is one of the primary shortcomings of the SMA constitutive

model used in this work and is the is the primary source of the significant error

seen in Fig. 5.6. Although Calibration 2 is able to better represent the behavior of

the SMA wire (see Fig. 4.7b), each of the analyses that used Calibration 2 failed to

converge (see Table 5.2). In spite of the significant transient error, the model matches

the experimental data once again at the end of the experiment (t = 250min).

Figure 5.7 shows the evolution of the total heat rejection rate as predicted by

Analysis 4. In addition, the heat rejection rate predicted by the uncoupled thermal

model discussed in Section 5.1 is also plotted as the solid line labeled “Experiment.”

In spite of the discrepancies seen in the previous plot, the model appears to predict

the heat rejection rate fairly closely. Note that the model slightly overpredicts the

heat rejection rate, which is a consequence of the symmetry assumption used in the

coupled model; in the physical prototype, the right side of the panel was slightly

more closed than the left side, which results in a slightly lower heat rejection rate.

Figures 5.8 and 5.9 show the results from two of the other anlayses in Table 5.2.

In particular, Fig. 5.8 presents the results of Analysis 3, which used a timestep of
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Figure 5.7: Comparison between panel heat rejection rate determined via the uncou-
pled model and computed via the fully-coupled model implemented using the analysis
framework (Analysis 4).

10min instead of 5min. These results are notable because the model predictions of

radius of curvature appear to match the experimental data much more closely than

the predictions of Analysis 4 shown in Fig. 5.6. Unfortunately, the structural model

failed to converge at t = 100. Figure 5.9 shows the results of Analysis 8, which used

a timestep of 5min (identical to Analysis 3), but assumed the thermal response was

quasi-steady state instead of transient.

These results demonstrate the ability of the framework to predict the behavior of

the prototype morphing radiator over the course of the experiment, giving confidence

in the partitioned analysis procedure described in Chapter 3.
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Figure 5.8: Temperature, radius of curvature, and heat rejection as computed via the
fully-coupled model (Analysis 3).
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Figure 5.9: Temperature, radius of curvature, and heat rejection as computed via the
fully-coupled model (Analysis 8).

91



6. CONCLUSIONS AND FUTURE WORK

As discussed previously, morphing radiators exhibit a unique type of thermomechanical

coupling which most existing analysis tools are incapable of modeling. In order to

overcome this present shortcoming, a multiphysics framework has been developed

which allows general problems involving morphing radiators to be modeled using

existing analysis tools. The framework relies on a technique known as a partitioned

analysis procedure. Chapter 3 described the implementation of the partitioned

approach in detail and presented the results from several example problems, which

successfully demonstrated the ability of the approach to model complex and realistic

problems involving morphing radiators. Following the initial development of the

modeling framework, a morphing radiator prototype was designed, fabricated, and

subsequently tested in a thermal vacuum chamber to simulate the thermal conditions

which might be experienced by the radiator on a future mission. The test, discussed

in detail in Chapter 4, successfully demonstrated the desired temperature-induced

morphing behavior which drives the ability of the morphing radiator to vary its

heat rejection. Chapter 5 described a detailed finite element model of the morphing

radiator prototype which was developed and implemented in the analysis framework,

allowing the physical accuracy of the framework to be evaluated. Some discrepancies

were noted; however, these are primarily due to shortcomings in the ability of the

SMA constitutive model to represent the behavior of the wire, rather than underlying

errors in the framework itself.

By decoupling the problem into separate structural and thermal partitions, the

shortcomings present in existing analysis tools are bypassed, allowing complex

geometrically-dependent radiation boundary conditions to be considered along with

the constitutive behavior of shape memory alloy material. This represents powerful
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and novel analysis capability, as there is a present lack of software packages that

can simulate this class of problem. Simulations such as those presented here will

be essential in understanding the interaction of morphing radiators with the overall

thermal control system in the full range of mission environments. Thus, this work

represents an important step in the process of deploying morphing radiators in future

space missions.

However, it is important to note that the present approach does have several

fundamental limitations. Chief among these is the significant execution time required

to simulate a problem using the framework, stemming from the inefficiencies inherent

in the implementation. Most of the results presented required at least six hours of

runtime on a desktop workstation; several of the more complex examples required

over 24 hours. This severely restricts the utility of the framework, particularly during

the early stages of the design process. Future work could address these shortcomings

in order to increase the accuracy, efficiency, and overall utility of the framework.

The serial execution method used in this work requires each analysis to wait for

the preceding one to complete before it can access field data. Lower-level coupling

mechanisms could provide direct access to the field data during execution, rather

than only upon completion of the analysis. Alternate coupling methods could also be

implemented which are able to achieve second-order time accuracy. This would allow

larger time steps to be used, decreasing the total number of increments needed to

simulate a given problem. Future efforts could also focus on implementing efficient

and versatile reduced-order models which are able to execute in seconds, thereby

expediting the early stages of the design process. Further, although not directly related

to this work, improvements to the SMA constitutive model could be implemented to

better capture the gradual transformation seen in the SMA wire used in the morphing

radiator prototype.
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APPENDIX A

A COMPARISON BETWEEN THERMOELASTIC AND SHAPE MEMORY

ALLOY BI-MATERIAL ACTUATORS

Most materials expand or contract when subjected to changes in temperature. This

behavior can be employed to create a bi-material strip, a device which uses differences

in the thermal expansion coefficient of two materials to induce bending in response to

temperature change. A typical bi-material strip consists of two strips of material with

dissimilar thermal expansion coefficients that are bonded together along their length.

Upon an increase in temperature, the two materials expand by different amounts,

thereby causing the strip to bend in the direction transverse to the bond line. Thus,

differential thermal expansion offers a potential alternative means of morphing a

radiator panel in place of shape memory alloys. This appendix presents a first-order

comparison between these two actuation methods.

Consider an initially curved radiator panel whose cross-section is a circular arc of

radius r0 at temperature T0, as shown in Fig. A.1a. The primary goal of this study is

to design the panel such that it is deforms to a more open configuration with r > r0

as shown in Fig. A.1b upon an increase in temperature (T > T0) and in the absence

of externally applied forces. To do this, we will assume that the panel is a bi-material

strip where Material 1 is defined to be the material on the inner (i.e., concave) side

of the panel and Material 2 is defined to be the material on the outer (i.e., convex)

side of the panel (see Fig. A.2).
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(a) Reference configuration with radius of
curvature r0 at temperature T0.

(b) Deformed configuration with radius of
curvature r > r0 at temperature T > T0.

Figure A.1: Reference and deformed configurations of a morphing radiator panel.

(a) Reference configuration with radius of
curvature r0.

(b) Deformed configuration with radius of
curvature r > r0.

Figure A.2: Reference and deformed configurations of a bi-material strip used to
actuate a morphing radiator panel.
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To begin, consider the general equation governing the change in curvature of a

bi-material strip in the absence of external forces, which is given by [61, 63]

∆κ = 1
r
− 1
r0

= 6(1 +m)2∆ε
t
[
3 (1 +m)2 + (1 +mn)

(
m2 + 1

mn

)] , (A.1)

where n = E2/E1 is the ratio between the extensional stiffnesses of the two materials,

m = t2/t1 is the ratio between the thicknesses of the two strips, t = t1 + t2 is the

overall thickness of the composite strip, and ∆ε = ε2 − ε1 is the differential strain.

In this case, r > r0 ⇐⇒ ∆κ < 0, which implies that ∆ε < 0 ⇐⇒ ε1 > ε2. In

other words, Material 2 must expand less than Material 1 in order for the bi-material

strip to open the panel. To simplify the discussion, we will define a nondimensional

parameter ζ by

ζ = 6(1 +m)2

3 (1 +m)2 + (1 +mn)
(
m2 + 1

mn

) , (A.2)

which allows Eq. A.1 to be written as

∆κ = ζ∆ε
t
. (A.3)

Rearranging this expression to solve for the overall thickness of the panel gives

t = ζ∆ε
∆κ . (A.4)

In order to design the most thermally-efficient radiator panel, we wish to maximize

the overall thickness (t) for a given change in curvature (∆κ). Therefore, in Eq. A.4,

we will treat ∆κ as a known constant and ζ and ∆ε as design variables. It can be

shown that the maximum value of ζ is 1/4. Furthermore, it can also be shown that

for every value of n > 0, there is a particular value of m for which ζ = 1/4. Thus, for
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this first-order investigation, we will simply assume that m is chosen in this manner

such that we can substitute ζ = 1/4 into Eq. A.4, giving

tmax = ∆ε
4∆κ. (A.5)

Clearly, in order to maximize the thickness of the panel, we must maximize the

differential strain. We begin by assuming both Material 1 and Material 2 are

thermoelastic. In this case, the differential strain is given by

∆ε = (α2 − α1)∆T. (A.6)

If we assume a fairly generous ∆T of 100◦C and choose aluminum for Material 1

(α1 = 22.2 · 10−6 ◦C−1) and copper for Material 2 (α2 = 16.6 · 10−6 ◦C−1), we compute

∆εthermoelastic = −0.56%. (A.7)

If we now replace Material 2 with a shape memory alloy which has an initial transfor-

mation strain of εt in the reference configuration, the differential strain is given by

∆ε = (α2 − α1)∆T − εt ≈ −εt. (A.8)

For many shape memory alloys, the maximum transformation strain is approximately

5% [34], thus

∆εSMA = −5%. (A.9)

Comparing Eqs. A.7 and A.9, we see that the shape memory alloy bi-material strip is

able to achieve a differential strain magnitude approximately two orders of magnitude

higher than an equivalent bi-material strip composed of two thermoelastic materials.
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Consequently, the panel which uses shape memory alloys is able to be approximately

two orders of magnitude thicker than the thermoelastic panel for a given change in

curvature.
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APPENDIX B

NUMERICAL VERIFICATION OF THE HEAT TRANSFER ANALYSIS

PROCEDURE USING RADIATION BOUNDARY CONDITIONS IN ABAQUS

This verification study considers a pair of radiator panels which are attached to a pipe

containing a cooling fluid. Figure B.1a shows a schematic diagram of the radiator

assembly under consideration. The assembly consists of two panels which share a

common edge along x = 0 and are separated by an angle of 90◦. Each panel has

length a and width b. The thickness of the panels is denoted by t. Coolant fluid is

assumed to be passing through the small gap shown in the lower-left of Fig. B.1a. The

shaded surfaces are painted with a high-emissivity paint, and therefore are radiating

surfaces; all other surfaces, as well as the −z face of Panel 1 and the −y face of Panel

2 are assumed to be insulated. The panels are composed of an isotropic material with

thermal conductivity k.

The temperature variation through the thickness can be neglected by assuming

that the thickness of the panels is small relative to their width and height and that

the thermal conductivity is sufficiently high. This allows the panels to be represented

as a pair of rectangular surfaces, as shown in Fig. B.1b. The thermal boundary

conditions are also shown in this figure. The effect of the coolant is modeled by

specifying the temperature (T = Tc) of both panels along the common edge1; this is

shown with a red line. All remaining edges are insulated, which is shown with the

blue lines. As described above, the +z face on Panel 1 and the +y face of Panel 2

are radiating surfaces, while the −z face of Panel 1 and the −y face of Panel 2 are

assumed to be insulated. The radiator assembly is surrounded by a nonparticipating
1A convection boundary condition would be more suitable to model the behavior of the fluid;

however, the constant-temperature boundary condition was chosen to simplify the problem.
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(a) Three-dimensional radiator geometry. (b) Two-dimensional domain with thermal bound-
ary conditions.

Figure B.1: Schematic diagrams depicting radiator geometry and thermal boundary
conditions.

vacuum which is at temperature T∞. The two panels share identical geometry and

boundary conditions. Therefore, it is only necessary to model a single panel, as the

radiation exchange between the two panels can be taken into account without the

need to mesh both panels.

The goal is to predict the steady-state thermal behavior of the radiator panels

considering the effects of conduction and grey-body radiation. The primary quantities

of interest for this problem are the minimum radiator temperature, the minimum and

maximum radiation heat flux, and the total heat rejected by both panels.

The values for the selected geometric and material parameters are given in

Table B.1. The problem will be solved for multiple values of emissivity in the range

0.1-1.0 to determine the effect of surface coating on the performance of the radiator.

The radiation boundary condition adds significant complexity to the problem

because of the nature of radiation heat transfer. A detailed description of the black-
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Table B.1: Values for problem parameters.

Param. Value
a 1.0m
b 1.0m
t 5.0 cm
k 167W/m·K
ε 0.1-1.0
Tc 310K
T∞ 50K

and grey-body radiation theories is beyond the scope of this Appendix; however, a

brief summary of the important details will be presented. The following discussion is

based on the texts of Howell & Siegel [29] and Nellis & Klein [48].

In a conduction-convection problem, a given element can only exchange heat with

its immediate neighbors via conduction and with the surroundings via convection. In

a general radiation problem, any given element exchanges heat via radiation with

every other element in the mesh as well as with the surroundings. Consider two

arbitrary elements: element Ωi at temperature Ti and element Ωj at temperature Tj.

Assuming black-body radiation (ε = 1), the net rate of heat transfer from Ωi to Ωj

by radiation (denoted as Qb
i→j) is given by

Q̇b
i−j = σAiFi−j(T 4

i − T 4
j ), (B.1)

where σ is the Stefan-Boltzmann constant (in SI units, σ = 5.67e-8 W/m2K4), and

Ai is the area of Ωi. The term Fi→j is known as the view factor. The view factor is

defined as the fraction of radiation emitted by Ωi that goes directly to Ωj and is a

function of the geometric configurations of both surfaces. The view factor between any
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two surfaces must lie between zero and unity. The next section gives the expressions

used to compute the view factors for this problem.

For grey-body radiation (ε < 1), the equation is modified by using the transfer

factor (denoted as Fi−j) in place of the view factor:

Q̇g
i→j = σAiFi→j(T 4

i − T 4
j ) (B.2)

The transfer factor is analogous to the view factor in Eq. B.1, except that the transfer

factor accounts for the fact that the emissivity of the two surfaces is less than unity.

If all surfaces are black, Eq. B.2 reduces to Eq. B.1 as Fi→j = Fi→j in this case.

Recall from Sec. 2.1 that the transfer factors Fi→j can be determined from the view

factors Fi→j by first computing a set of intermediate parameters, known as the F̂i→j

parameters [48]:

F̂i−j = Fi−j +
N∑
k=1

(1− εk)Fi−kF̂k−j for i, j = 1, 2, ..., N. (B.3)

Once the F̂ parameters have been computed, the transfer factors can be computed

by

Fi−j = εiεjF̂i−j. (B.4)

Assuming the temperatures of each element are specified and the view factors/transfer

factors have been computed, the net heat transfer rate from Element i can be

determined with the following expressions2:

Q̇net,b
i =

Ns∑
j=1

Q̇b
i−j = σAi

Ns∑
j=1

Fi−j(T 4
i − T 4

j ). (B.5)

2The surroundings can be treated as an additional surface, therefore, Ns = N + 1, where N is
the number of elements.
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Q̇net,g
i =

Ns∑
j=1

Q̇g
i−j = σAi

Ns∑
j=1

Fi−j(T 4
i − T 4

j ). (B.6)

Note that the above equations are expressed in terms of the element temperature,

denoted by T . This is because black- and grey-body radiation theory assume that each

surface is isothermal, which is not generally the case for a finite element. However,

provided the temperature variation over a given element is relatively small, the element

can be treated as isothermal for the radiation calculations. For this project, the

element temperature (Ti) is defined to be the temperature at the center of the element.

This can be interpolated from the nodal temperatures (un) and the interpolation

functions ψn evaluated at (ξ, η) = (0, 0) as

Ti =
Nn∑
n=1

unψn(0, 0), (B.7)

where Nn denotes the number of nodes in the element.

For this problem, an analytical expression for the view factor between two arbitrary

rectangular panels lying in perpendicular planes (Fig. B.2a) is given in Modest [43]:

2AiFi→j = f(y2, z2, x3)− f(y2, z1, x3)− f(y1, z2, x3) + f(y1, z1, x3)

+ f(y1, z2, x2)− f(y1, z1, x2)− f(y2, z2, x2) + f(y2, z1, x2)

− f(y2, z2, x3 − x1) + f(y2, z1, x3 − x1) + f(y1, z2, x3 − x1)

− f(y1, z1, x3 − x1) + f(y2, z2, x2 − x1)− f(y2, z1, x2 − x1)

− f(y1, z2, x2 − x1) + f(y1, z1, x2 − x1).

(B.8)
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(a) General configuration. Fi→j is defined
in Eq. B.8 in terms of F 39

1→2.
(b) Configuration 39. F 39

1→2 is defined in
Eq. B.9.

Figure B.2: Schematics of geometry used in view factor expressions.

In this expression, f = F 39
1→2, which is the view factor between perpendicular rectangles

of the same length, sharing a common edge, and separated by an angle of 90◦:

F 39
1→2(w, h, l) = 1

πW

W tan−1 1
W

+H tan−1 1
H
−
√
H2 +W 2 tan−1 1√

H2 +W 2

+ 1
4 ln

(1 +W 2)(1 +H2)
1 +W 2 +H2

[
W 2(1 +H2 +W 2)

(1 +W 2)(H2 +W 2)

]W 2[
H2(1 +H2 +W 2)

(1 +H2)(H2 +W 2)

]H2
,

(B.9)

with the following definitions for H and W :

H = h/l,

W = w/l.
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For a problem with Ns radiating surfaces3, there will be a total of N2
s view factors. It

is convenient to store the view factors in a matrix. In general, the view factor matrix

is not symmetric, as Fi→j 6= Fj→i in general.

The most straightforward way to implement this problem is to treat it as a

two-dimensional conduction problem with a special type of boundary condition.

This approach builds upon the two-dimensional heat transfer finite element model

developed by Reddy [57]. The details of the conduction model are discussed at length

in this textbook and will be not presented here, as the stiffness matrix and load

vector remain unchanged. The matrix representation of the finite-element model for

two-dimensional conduction is given by

[K(U)]{U} = {F}, (B.10)

where K is the assembled coefficient matrix, U is the vector of nodal temperatures

to be determined, and F is the assembled source vector. This model can be extended

by adding an additional vector to the right side of the equation, which represents the

nodal contributions from the radiation boundary condition:

[K(U)]{U} = {F}+ {G}. (B.11)

The primary challenge is that the radiation calculations described in the previous

section are expressed in terms of element quantities, whereas Eq. B.11 is written in

terms of nodal quantities. However, it is straightforward to transform between the

two representations. Consider an element Ωi. The element temperature (Ti) was
3The surroundings can be treated as an additional surface, therefore, Ns = N + 1, where N is

the number of elements.
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defined above as the interpolated temperature at the center of the element:

Ti =
Nn∑
n=1

unψn(0, 0), (B.12)

where Nn denotes the number of nodes in the element. This is done for each element

in the mesh. Next, Eq. B.6 is used to compute the net rate of heat transfer from Ωi.

Finally, this load is distributed evenly among the nodes in the element:

{Gi}n = Q̇net
i

Nn

, n = 1, ..., Nn (B.13)

where the subscript n denotes the local node number. It is a simple task to transform

from the local node numbering to the global node numbering in order to add the

contributions to the global G vector. Clearly, this vector depends on all the nodal

temperatures. Thus, Eq. B.11 can be understood in the following manner:

[K(U)]{U} = {F}+ {G(U)}. (B.14)

This expression differs from Eq. B.10 because U appears on both sides of the equation.

Following the procedure for a nonlinear stiffness matrix, the solution at iteration r− 1

(Ur−1) is used to compute G as follows:

[K(Ur−1)]{Ur} = {F}+ {G(Ur−1)}. (B.15)

This expression clearly shows that the radiation boundary condition is an additional

source of nonlinearity. For this problem, the direct iteration method was used to

solve Eq. B.15. When using an initial temperature equal to the fluid temperature

(310K), the program required fewer than five iterations to converge.
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The Abaqus model was created with the parameters that are defined in the

Problem Statement. Thermal shell elements with temperature degrees of freedom

were used to provide the closest match to the 2D model described above. The

temperature was assumed to be constant through the thickness of the elements.

The simulation was conducted using a Heat Transfer analysis in Abaqus, which is a

nonlinear solution procedure capable of modeling conduction as well as grey-body

radiation.

Tables B.2 and B.3 present the numerical results of the verification study for the

linear and quadratic elements. The results from the two models agree very closely,

giving a high degree of confidence in heat transfer analysis and radiation boundary

conditions in Abaqus.
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