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ABSTRACT 

 

Plant architecture is very important because it helps understand the plant 

organization and the interaction between the plant and the environment. In the 

preliminary study with four F1 families, 13 architectural traits were evaluated, and six 

traits were calculated in May of 2014 in College Station, TX to estimate variability, 

phenotypic correlations and principle components. All architectural traits except the 

length of secondary vegetative part, the length of secondary shoots, the branching angle 

between primary and secondary shoots and the internode length of both order level 

shoots differed among the four rose populations. The same traits on different order level 

shoots were generally correlated as were some of the different traits. The most common 

inflorescence structure type observed among rose seedlings was a cyme, although other 

types such as a reversed raceme, raceme, solitary flower and even mixed types and 

unknown types were observed. Based on the result of PCA, the attribute that best explain 

the variability observed in our rose seedlings are the number of nodes on the secondary 

shoot, the length of the reproductive part and the internode length on primary and 

secondary shoots. By combining the preliminary data with that from previous studies, 

we chose six architectural traits for subsequent study. They are plant height, the number 

of primary shoots, the length of the primary shoots, the number of nodes on the primary 

shoots, the number of secondary shoots per primary shoot, and the number of tertiary 

shoots per primary shoot. 



 

iii 

 

In 2015, six rose plant architectural traits were evaluated in May and December 

in College Station, TX to estimate variability and heritability. Most traits showed a 

substantial amount of variability. A random effects model Restricted Maximum 

Likelihood (REML) analysis was used to estimate the genetic components, narrow sense 

heritability and broad sense heritability. Architectural traits demonstrated low to 

moderate narrow sense heritability (0.12-0.50) and low to high broad sense heritability 

(0.25-0.92). Traits with low narrow sense heritability but moderately high to high broad 

sense heritability (number of primary shoots, the length of primary shoots and the number of 

nodes on the primary shoot) indicate an important non-additive genetic component. The 

number of nodes on the primary shoots, and the number of secondary and tertiary shoots per 

primary shoot were greatly affected by the genotype by environment interaction. Most 

families, except for the three with ‘Vineyard Song’ as a parent, did not increase in the 

number of nodes on the primary shoot over the season. In contrast, 11 out of 13 families had 

more secondary and tertiary shoots form during the year. Even among those with increased 

numbers of secondary and tertiary shoots, the number varied among families. For these traits 

selection would need to be done in both seasons whereas with plant height, shoot length and 

the number of primary shoots selection in either the early or late season would be effective. 

A comparison of desirable and undesirable plant growth types indicated that the key 

differences were in the number of primary shoots and in the density of secondary/tertiary 

shoots on the primary shoot, with more desirable types having more than thirty primary 

shoots with multiple secondary/tertiary shoots.  
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Rose is an important ornamental crop 

Roses are members of the Rosaceae, the most important horticultural family in 

the world, admired for their great diversity and various floral characteristics throughout 

history. They are the world’s most important ornamental crops with a production value 

of about 24 billion Euros (Heinrichs, 2008). In the $2.81 billion wholesale US shrub 

market, garden and landscape roses together contribute approximate $400 million in bare 

root and container production (AmericanHort, 2014).  

There are four subgenera under the genus Rosa, which has about 100-250 species 

and over 30,000 commercial cultivars with a wide interspecific and intraspecific cross 

compatibility (Blechert and Debener, 2005; Clains, 2000). The ploidy level in Rosa 

ranges from diploid to decaploid (Byrne and Crane, 2003; Spiller et al., 2011; Jian et al., 

2010; Zlesak, 2009; Ueckert et al., 2015). Most commercial cultivars are diploid, 

triploid, and tetraploid hybrids, which were obtained from multiple wild diploid and a 

few tetraploid rose species (Zhang et al., 2006). The genus is distributed throughout the 

temperate regions of the Northern Hemisphere (Krussmann, 1981). Cultivated roses 

(Rosa L.) are the world’s most popular garden and cut flower plants. Garden roses exist 

in many forms including hybrid teas, shrubs, and polyanthas, which display vast 

diversity of colors and forms and thus serve a multitude of landscape uses. Breeding and 

genetic work of roses is active with much effort expended at developing sustainable 

roses with high aesthetic value and good adaptability for garden use (Byrne, 2014). 
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The role roses play in landscapes is extensive with their use adorning road sides, 

public parks and residential areas. Garden roses provide aesthetic value throughout the 

growing season. Both vegetative and reproductive organs are important in the 

development of an ornamental plant which is of great visual quality. In spite of the 

economic importance of roses relative to other ornamentals, they are of minor 

importance when compared to major food crops and consequently less well studied (De 

Vries, 1996). 

 

1.2 Plant architecture and its importance 

The architecture of a plant depends on the relative arrangement of plant organs 

and its growing environment. It is the expression of a balance between developing 

processes within an organism and external influences exerted by the environment. By 

analyzing plant architecture, we will be able to identify the modes of both internal 

processes and external influences, and make full use of them to realize the breeding goal 

(Barthélémy and Caraglio, 2007). Plant architectural characteristics have been shown to 

be linked to crop yield, and for roses, plant architecture affects their ornamental value 

and flower productivity. Therefore, plant architectural analysis appears to be particularly 

well adapted to assessing both economic and aesthetic value of an ornamental crop such 

as rose, which has a complex architecture (Crespel et al., 2014).  

The scientific research on plant architecture started about 30 years ago 

(Oldeman, 1974; Halle et al., 1978). Early studies were focused on the above-ground 

vegetative structures of tropical trees (Halle and Oldeman, 1970). Since then, the 
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concept of plant architecture has been widely acknowledged and utilized for studying 

plant form, structure and their traits. However, data acquisition of  plant architecture is 

both time-consuming and labor-intensive (Godin, 2000). In the past two decades, the 

development of high-performance computers has made it possible to analyze plant 

growth by simulation techniques, which provide advanced means of denoting and 

presenting plant architecture (tree graphs, multi-scale graphs, object-oriented 

representations, matrices, sets of digitized points) (Godin, 2000). Applicable to any kind 

of plant, architectural analysis has proved to be one of the most efficient means currently 

available for the study of the organization of complex arborescent plants (Barthélémy 

and Caraglio, 2007). 

 

1.3 Work on plant architecture of roses 

For ornamental crops like roses, plant architecture is the key factor determining 

the appearance of the plant and its commercial value (Demotes-Mainard et al., 2009). 

Previous research has shown that the plant architecture of the rose can be altered by 

modification of light intensity. (Kawamura and Takeda, 2002; Niinemets and Lukjanova, 

2003), nitrogen deficiency (Huché-Thélier et al., 2011), temporary water restriction 

(Demotes-Mainard et al., 2013), mechanical stimulation (Morel et al., 2012) and by 

temperature regimes (summer-like versus winter-like conditions) (Khayat and Zieslin, 

1982). 

Roses have been characterized by both quantitative and qualitative 

morphological traits such as size, shape, and the color of petals, hips and sepals, 
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inflorescence architecture, the length of the pedicel, glandular hairs, and prickles 

(Crespel et al., 2013; Girault et al., 2008). In recent years, researchers have constructed 

models of plant architecture in rose bushes to describe their development which has been 

helping us understand the plasticity of rose plant architecture. Demotes-Mainard et al., 

(2009) set up a model to describe the mode of action of organ development and 

coordination in the primary shoot of roses.  The traits they measured were internodes and 

leaflets. The result of their research could be fitted to a linear-plateau model. This 

research not only contributes to analyzing the response of phenotypic development of 

roses to the genotype (G), environment (E) and genotype × environment (G × E) 

interactions, but also has led to the simulation of organs by constructing  a virtual plant 

model based on a radiative transfer model (Chelle and Andrieu, n.d.).  

The plant architecture was objectively characterized by breaking down the plant 

into traits of the growth and branching processes. These traits themselves could be 

morphologically characterized by their number, length and diameter, by the way they are 

connected, and by their positioning in space (i.e., shoot angles). Based on this, roses with 

different shapes (from upright to prostrate) were analyzed for plant architecture (Crespel 

et al., 2013). The architecture of the inflorescence is a crucial characteristic because it is 

largely linked to plant productivity (Upadyayula et al., 2006a, b; Brown et al., 2006). 

However, the genetic determinism of inflorescence architecture is rarely studied, 

especially in woody perennial plants. A recent QTL analysis (Kawamura et al., 2011) of 

the pattern of rose inflorescence development revealed substantial genetic variations in 
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inflorescence traits of garden roses with high broad-sense heritabilities (0.82-0.93) and 

significant genotypic correlations for most traits.  

Crespel et al., (2014) published the result of their preliminary study on the effects 

of genotype and year factors, and their interaction, on six architectural variables. Highly 

significant genotype (G), year (Y) and G × Y interaction were detected for all variables. 

Broad-sense heritability estimates were moderate to high (48% to 98%). This study 

resulted in a hypothesis that genetic analysis based on segregating progeny may be 

useful to explain architectural variability of rose plants. One study with a tetraploid cut 

flower germplasm showed that for some traits such as number of petals, the G × E 

interaction is low and the heritability is high. While for others such as stem width, the 

interaction is higher so that selection for or against these traits is suggested to be done at 

the production location (Gitonga et al., 2014) 
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CHAPTER II 

PRELIMINARY STUDY ON PLANT ARCHITECTURAL TRAITS IN DIPLOID 

ROSES 

 

2.1 Synopsis 

Thirteen architectural traits were evaluated in May of 2014 in College Station, 

TX on seedlings from four F1 families to estimate variability and phenotypic 

correlations. Six architectural traits were calculated based on the 13 traits, and then all 

19 traits were subjected to statistical analysis. The vegetative traits evaluated on both 

primary and secondary shoots were the length of the vegetative part, the number of 

nodes on the vegetative part and the internode length of the shoot. The reproductive 

traits evaluated on both primary and secondary shoots were the length of the 

reproductive part, the number of inflorescence nodes, and the number of flowers on the 

terminal inflorescence. The traits evaluated on the shoot of both order level shoots 

included the length of the shoot and the number of nodes on the shoot. The branching 

angles which included the angle between the primary and the secondary shoots, and that 

between the secondary and the tertiary shoots were evaluated. Inflorescence structure 

type was characterized at the plant level. 

Most architectural traits except the length of secondary vegetative part, the length 

of secondary shoot, branching angle between primary and secondary shoots, and the 

internode length of both order level shoots differed among the four rose populations. The 

same traits on different order level shoots were generally correlated. Significant 



 

7 

 

correlations were also found between the length of the part/shoot (vegetative, 

reproductive and shoot) and the number of nodes on the part/shoot (vegetative, 

reproductive and shoot).  

Based on the principal component analysis, the important variables that 

explained the variability of plant architecture in the preliminary study included: the 

length of the primary and secondary reproductive parts, the internode length of the 

secondary shoot, and the number of nodes on the secondary shoot. 

The most common inflorescence structure type observed among rose seedlings 

was a cyme, others such as a raceme, reversed raceme, solitary flower, mixed types 

(cyme + reversed raceme, cyme + solitary, reversed raceme + solitary) and even a couple 

of unknown inflorescence types were also observed. 

A selection of architecture traits that are most relevant for characterizing rose 

plant architecture were made based on our statistical analysis combined with previous 

studies. The most important traits include the length of shoots, the number of nodes on 

the shoot, branching angles, the number of primary shoots, and a trait for characterizing 

the number of branching orders. Thus, our preliminary analysis resulted in the new 

architectural traits which were evaluated in a subsequent study. They are, plant height 

(correlated with branching angles), the length of the primary shoot, the number of nodes 

on the primary shoot, the number of primary shoots, the number of secondary shoots per 

primary shoot and the number of tertiary shoots per primary shoot. 

 

 



 

8 

 

2.2 Introduction 

2.2.1 Rose domestication and its breeding value 

Roses have great cultural importance due to their symbolic meanings. Meilland 

stated that “No other flower is as universally loved and grown or has a more illustrious 

history than the rose.” (Roberts et al., 2003). Roses have made great contributions to the 

world as landscape plants and, as cut flowers in the floral industry. The essential oils of 

roses are also commonly used in the perfume and cosmetic industries. (Bendahmane et 

al., 2013). The rose is a key ornamental plant in the $2.81 billion wholesale US shrub 

market. Garden roses contribute approximately $400 million to the wholesale US 

domestic bare root and container production. (AmericanHort, 2014).  

Roses have been cultivated since 3,000 BC in China, western Asia and northern 

Africa. Wild roses were first utilized as fences to stop animals (Bendahmane et al., 

2013). The Romans, Greeks, and Persians used domesticated roses as ornaments and for 

medicinal use. Chinese roses were introduced to Europe in 1400s, which lead to the 

development of ‘modern rose cultivars’ via the hybridization among Chinese, European 

and Middle Eastern roses (Raymond, 1999) (Figure 1). Nowadays, there are 30,000 to 

35,000 rose (Rosa × hybrida) cultivars in the world (Blechert and Debener, 2005; 

Gudin, 2003).  According to the US patent record (2010-2013), 10-20% of the roses 

patented in North America were miniatures or hybrid teas while 50-60% are either 

shrubs or floribunda roses (Byrne, 2013). 
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Figure 1. Schematic representation of major steps of modern rose genealogy (Raymond, 
1999).  

 

 

From a commercial perspective, important traits in roses include plant 

architecture, flower characteristics (development, architecture, and senescence), and 

resistance to biotic and abiotic stresses (Bendahmane et al., 2013). Currently, garden 

roses that can produce cut flowers with petal color evolution, glossy foliage, attractive 

hips after fall defoliation and vigorous growth types not needing rootstocks are attracting 

more and more attention from both breeders and consumers (Gudin, 2003). Other than 

ornamental characters, rose breeders are challenged to effectively and efficiently develop 
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a rose which has resistance to diseases: black spot, cercospora, powdery mildew, and 

rose rosette virus (Byrne, 2013; Debener and Byrne, 2014). Generally, if the commercial 

cultivars show adaptation to adverse environmental conditions (both biotic and abiotic 

stress), their aesthetic value lasts for a longer time during the growing season, which 

increases their market demand (Nybom, 2009).  

 

2.2.2 Challenges of breeding and approaches to study rose traits  

The present rose cultivars consist of a multispecies complex derived from 

intercrossing of 8-20 species. Most roses are distributed throughout the Northern 

Hemisphere (Krussmann, 1981), and have a wide range of ploidy levels from 2n=2x=14 

to 2n=10x=70 (Roberts et al., 2009; Jian et al., 2010; Ueckert et al., 2015). Among these 

are the dog roses in the Caninae section which are permanent sexual pentaploids with an 

unusual asymmetric meiosis (Lim et al., 2005; Kovarik et al., 2008). More than half of 

wild rose species are polyploid (Vamosi and Dickinson, 2006). Most modern roses are 

diploid, triploid and tetraploid hybrids (Debener and Linde, 2009; Rajapakse et al., 2001; 

Ueckert et al., 2015; Zhang et al., 2006; Zlesak, et al., 2010). Although interploidy 

crosses are done in rose breeding and polyploid germplasm can assist in creating diverse 

genetic combinations, the dynamics of rose ploidy in interploidy crosses is poorly 

understood. In addition to polyploidy of roses, roses are predominantly outcrossing 

highly heterozygous, and suffer from severe inbreeding depression. The paucity of 

knowledge about rose genetics is a major challenge in rose breeding, which makes rose 

breeding mostly based on chance and experiences (Gudin, 2000). As a result, the 
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inheritance patterns of most morphological and physiological traits of roses are hard to 

predict. Thus barriers to the introgression of alleles of interest are the polyploidy and the 

high heterozygosity of the rose. Fortunately roses are vegetatively propagated, and thus 

maintaining specific genetic combinations is easy (Debener and Mattiesch, 1999; 

Rajapakse et al., 2001). 

During the last several decades there has been consistent progress in the 

development of genomic tools to improve our understanding of key traits and breeding 

technology in rose (Byrne 2009; Debener and Byrne, 2014). Multiple flower and disease 

resistance traits controlled by more than 20 major genes have been mapped (Byrne, 

2009), multiple linkage maps been created and BAC libraries have been constructed 

(Biber et al., 2010; Hess et al., 2007; Kaufmann et al., 2003). Since the early 1990s, 

hundreds of RFLPs, AFLPs, SSRs and other markers such as RGAs, PKs, CAPs, SCARs 

have been utilized to create diploid and tetraploid maps (Byrne, 2009; Gar et al., 2011; 

Koning-Boucoiran et al., 2012; Spiller et al., 2011; Chao Yu et al., 2014). QTLs 

controlling various traits including disease resistance, the related resistant gene analogs 

and pathogenesis resistance genes have been placed on the map (Debener and Byrne, 

2014). 

 In 1999, the first diploid map was constructed based on mostly RAPD and AFLP 

markers (Debener and Mattiesch, 1999). Several years later, it was improved by adding 

SSR markers (Yan et al., 2005). The next map was created in a tetraploid population 

(Rajapakse et al., 2001). The third map was developed with AFLP markers in a diploid 

population derived from an interspecific cross between R. wichurana and a dihaploid 
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hybrid (Crespel et al., 2002). Dugo et al., (2005) established another mapping population 

derived from the hybridization of R. wichurana and ‘Blush Noisette’. A map for diploid 

population 97/7 was developed in 2006, based on R. multiflora (Linde et al., 2006). In 

2009, a map was constructed with NBS markers and SSRs in a tetraploid population for 

powdery mildew resistance in the Netherlands (Koning-Boucoiran et al., 2009). The first 

integrated consensus map (ICM) for rose was published by Spiller et al., based on four 

diploid populations in 2010. This map created a standard nomenclature for rose LGs, and 

provided location information regarding important ornamental traits, such as recurrent 

blooming, self-incompatibility, and black spot resistance (Rdr1). It is a good tool for 

marker assisted selection because it integrated the information for highly relevant traits 

of roses. It will further assist in sequencing the whole rose genome in the future (Spiller 

et al., 2011). An autotetraploid linkage map was developed with AFLP, SSR markers 

and three morphological markers (Gar et al., 2011). Chao Yu et al., (2014) developed a 

tetraploid genetic linkage map for roses from AFLPs and SSRs based on a cross 

involving a Chinese traditional rose cultivar which may help to cover more genome 

regions and fill gaps within the linkage groups. With next generation sequencing and 

other novel technologies, the whole picture of the rose genome and important target 

genes will be revealed and understood better. Additionally, the designer nucleases offer 

a potential method of modifying rose DNA to obtain disease resistant roses (Debener 

and Byrne, 2014).  
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2.2.3 TAMU rose breeding and genetics program 

The rose breeding program at Texas A&M University (TAMU) was founded in 

the early 1990s when Dr. Robert E. Basye, a rose breeder established the Endowed Chair 

in Rose Genetics to establish a Rose Breeding and Genetics Program in the Department 

of Horticultural Sciences to continue and expand upon the rose breeding he had been 

doing during his lifetime. Dr. Basye bred roses for more than 50 years in Texas aiming 

to obtain roses that are well adapted to the hot and humid climate of Texas. He wanted 

“healthy rose bushes on which to hang those beautiful flowers” (Aggie Horticulture, 

2014; Texas A&M Rose Breeding and Genetics Program, 2014).  

Some roses Dr. Basye released were “Belinda’s Dream”, “Basye’s Legacy” 

(1966), “Basye’s Purple” (1968), “Basye’s Myrrh Scented Rose” (1980), and “Basye’s 

Blueberry” (1982) (Aggie Horticulture, 2014). The most popular of these would be 

‘Belinda’s Dream’ (large pink, fragrant flowers with good disease resistance) which was 

designated as an “Earth-Kind” rose.  

College Station is located in a warm, humid subtropical climate where roses are 

exposed to foliar diseases, such as black spot and cercospora. In the early stage, the 

research work of TAMU Rose Breeding & Genetics Program was focused on the 

evaluation of rose germplasm (Byrne et al., 2010), the usefulness of the amphidiploid 

approach of incorporating disease resistance (Ma et al., 1997; 2000), the use of markers 

to accelerate the breeding process (Byrne, 2007), the analysis of the diversity of Rosa 

using various marker systems (Kim and Byrne, 1996; Jan et al., 1999; Kiani et al., 2008; 

2009) and optimizing transformation protocols for the rose (Kim et al., 2004a; 2004b).  
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The germplasm the TAMU rose breeding program is using for the development 

of disease resistant roses includes selections from Dr. Basye’s work, and diploid species 

including Rosa wichurana (Byrne, 2007). In 2008, Mr. Ralph Moore who was world-

renowned as the “Father of the Miniature Rose” donated his rose germplasm to the 

TAMU rose breeding program. This was a perfect match for Dr. Basye’s legacy because, 

although Basye roses have good disease resistance, they do not have the diversity of 

ornamental traits found in the Moore germplasm. Based on this fact, the research 

emphasis of the rose breeding program was shifted to combine good traits from the 

germplasm developed by Moore and the good disease resistance from Basye and TAMU 

roses (Texas A&M Rose Breeding and Genetics Program, 2014). Currently, the rose 

breeding research program at TAMU has unreleased selections from both Basye and 

Moore’s rose legacy. 

Since the research program has germplasm including diploids, triploids and 

tetraploids, work on interploidy crosses is ongoing. In addition, with the rapid 

development of genomics, the research team collaborated with partners from South 

Carolina, Germany, Holland, France and Israel to develop both diploid and tetraploid 

maps of the rose (Rajapakse et al., 2001; Zhang et al., 2006; Spiller et al., 2010; Gar et 

al., 2012).  

 

2.2.4 Plant architecture 

Despite the fact that the concept of plant architecture has been widely used in 

studies, no universally accepted definition exists. The understanding of this concept 
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varies with the context. It has been used as a model to describe the growth patterns of a 

plant species (Hallé et al., 1978). In this case, plant architecture involves the rules 

determining the growth and structure of a group of individuals. Plant architecture also 

refers to the structural expression of the growth process of a specific individual. In this 

context, “plant architecture” demonstrates the 3D structure of a plant with topological 

and geometrical traits (e.g. orthotropic (vertical shoot orientation, with radial leaf 

arrangement) vs. plagiotropic (horizontal shoot orientation, with planar leaf 

arrangement) traits). Ross (1981) proposed a similar explanation for plant architecture, 

which is “a set of features delineating the shape, size, geometry and external structure of 

a plant”, or “for the parts of the plant that are above ground, it includes the branching 

pattern, as well as the size, shape and position of leaves and flower organs.” This 

concept was also used in other research fields of plants, e.g. hydraulics (Zimmermann, 

1978; Tyree, 1991), plant growth modelling (de Reffye, 1997) plant measurement 

(Smith, 1984; Sinoquet, 1997), and in carbon partitioning (Perttunen, 1996). 

The formation of plant architecture starts from bud fate, which determines the 

positioning and number of shoots. The initiation period determines the expansion and 

orientation of leaves and internodes, and floral transition determines the number of 

flowers and bloom period. Additionally, stems along with leaves determine the shape 

and growth type of plant, which is very important for aesthetic quality (Boumaza et al., 

2009). 

Plant architecture is useful in the identification of plant species. It can greatly 

influence the cultivation of a plant and its yield, hydraulic efficiency (McCulloh et al., 
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2005), leaf-display efficiency (Pearcy et al., 2005) and disease resistance (Ando et al., 

2007). One of the great successes of the Green Revolution, which largely increased the 

productivity of crops and was based on the modification of plant architecture, wheat 

varieties with shorter and sturdier stems tend to yield more as they are less likely to 

lodge due to wind and rain stress (Peng et al., 1999).  

              

2.2.5 Methods for characterizing plant architecture 

The phenotyping of plant architecture is labor-intensive and time-consuming. 

Plant architecture can be broken into traits: axes and metamers, where a metamer is the 

unit consisting of an internode, a node, its axillary bud and a leaf (White, 1979). Axes 

and metamers could be “morphologically (length, diameter, etc.), topologically (order of 

branching, etc.), and geometrically (branching angle, etc.)” described. (Godin, 1999). 

Plant architecture analysis was done on trees such as walnut (Barthélémy et al., 1995) 

and birch (Caraglio, 1996) first. And then on rose by Morel et al. (2009) and Crespel et 

al. (2014).  

Based on the descriptions above, a representation of plant architecture should 

include: 

• Decomposition information, which refers to the way different traits form a 

whole plant; 

• Geometrical information, referring to the shapes and positioning of the traits. 

The traits are independent one from another; 
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• Topological information, which refers to the hierarchical relationship among 

the traits within the branching system. 

Plant architecture results from the growth and branching processes and thus can 

be objectively characterized, by the length and diameter of the entities 

(morphologically), by determining the way they are connected (succession and 

branching), and by characterizing their orientation in space (i.e., shoot angles) (Godin et 

al., 1999a).  

 

2.2.6 Objectives 

              The goal of this study was to evaluate the variation of 19 plant architectural 

traits in diploid rose populations in order to select the best representing traits of plant 

architecture. Four rose populations in the field were characterized for 19 architectural 

traits in this preliminary study. 

 

2.3 Materials and methods 

2.3.1 Plant materials 

Diploid rose populations (Table 1) were derived from the hybridization of rose 

parents with a range of plant architecture ‘J06-20-14-3’, ‘M4-4’, ‘Old Blush’, ‘Sweet 

Chariot’, ‘Vineyard Song’, ‘Red Fairy’, ‘Little Chief’, ‘J06-30-3-3’, and ‘J06-30-3-6’ 

from 2010-2012 (Figures 2 and 3). The four F1 rose populations used for the preliminary 

study included the families ‘OdBsM4’ (Old Blush × M4-4), ‘SwChM4’ (Sweet Chariot 

× M4-4), ‘J20VySg’ (J06-20-14-3 × Vineyard Song) and ‘J20SwCh’ (J06-20-14-3 × 
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Sweet Chariot) (Table 2, Figure 2). Ten seedlings in each population were selected to be 

evaluated for plant architecture. Segregation of architectural traits was seen among ten 

seedlings in each population. Measurements were made on three shoots that grown from 

base of the plant per seedling. 

Growth type of our rose parents ranges from ground cover/ climbing (slightly 

raised stems close to the ground but not fully climbing), climbing (stems reaching 

outwards and upwards often bending back towards the ground), intermediate (shoots not 

fully extending upright), to completely upright (Figure 3) (Jones, 2013). 

 

Table 1. Diploid rose families evaluated in preliminary study.  

FP1 MP2 
 
Population size 
(phenotyped number) 

Family  
 
Cross 
year 

J06-20-14-3 Sweet Chariot 57 (10) J20SwCh 2010 
J06-20-14-3 Vineyard Song 93 (10) J20VySg 2010 
Sweet Chariot M4-4 118 (10) SwChM4 2010 
Old Blush M4-4 18 (10) OdBsM4 2010 

          1 Female parent 
          2 Pollen parent 
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Figure 2. Pedigree diagram of four rose populations in the preliminary research on rose 
plant architecture. 
 

Table 2. Growth types of various diploid roses.  

Parents Growth types 
Rosa. wichuriana‘Basye’s thornless’ Ground cover/Climbing bush 
Old Blush Upright bush 
J06-30-3-3 
Sweet Chariot 

Intermediate 
Upright bush 

J06-30-3-6 Ground cover/Climbing bush 
Vineyard Song Climbing bush 
M4-4 Climbing bush 
Little Chief 
J06-20-14-3 
Red Fairy 

Intermediate 
Intermediate 
Intermediate 
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Figure 3. Growth type of various diploid roses. 

 
 
2.3.2 Field experiment and trait assessment 

The seedlings of four diploid populations in this study were planted in double 

rows at 1 m × 1 m × 3.5 m spacing. The field is located two miles from Texas A&M 

University in College Station. The soil in this field belongs to the unit “Zack-Boonville-

Zulch” (Figure 4 and Soil survey of Brazos County, Texas), which is dark brown, 

strongly acid fine sandy loam. Our site is marked by the red star in Figure 4. The main 

problem with this type of soil is low fertility, drought, poor drainage due to a claypan 
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and a severe hazard of erosion. The individual plants were planted in rows oriented east 

to west in an open field that receives full sun. Raised beds were constructed in the field 

and black ground cloth was used for weed control. The irrigation was applied as needed 

without the application of fungicides or pesticides during the evaluation. Pruning to 

remove dead tissue and synchronize the growth of the seedlings was conducted in 

March. Each genotype is represented by one plant in the field. The preliminary 

evaluation for plant architecture was done in the field in spring (May) 2014. The climate 

is a humid subtropical climate (Table 3, National Weather Service, 2014). The latitude 

of the location is 30.6504 North and the longitude of it is -96.3226. Plant architecture 

data consisted of qualitative and quantitative traits of growth, branching and the 

flowering process. 

 

Table 3. Monthly temperature and precipitation of 2014 in College Station, TX (National 
Weather Service, 2014)  
 

 Maximum (°C) Minimum (°C) Mean Total precipitation (mm) 
January 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
December 

15.3 
16.8 
19.8 
25.7 
28.8 
32.7 
33.8 
34.8 
32.2 
28.4 
18.8 
17.1 

2.1 
5.6 
7.7 

14.4 
17.3 
23.3 
23.1 
23.7 
21.7 
16.3 
7.4 
8.4 

8.7 
10.3 
13.8 
20.1 
23.1 
28.0 
28.4 
29.2 
27.0 
22.3 
13.1 
12.8 

33 
11 
41 
31 

229 
41 

171 
10 

167 
46 

150 
65 
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Figure 4. General soil map of Brazos County, TX (General Soil Map, Brazos County, 
Texas Side: 1 of 1 < https://texashistory.unt.edu/ark:/67531/metapth130277/m1/1/>). 
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2.3.3 Measurements of the traits of plant architecture 

Plant architecture was characterized based on four categories, vegetative traits, 

reproductive traits, shoot traits and branching angles. Plant architecture was divided into 

the following traits: the number of nodes on the vegetative part and reproductive part, 

and the shoot of primary  (1st order) and secondary  (2nd order) shoots, respectively 

(Figure 5 and 6); the length of vegetative, reproductive parts and  the shoot of primary 

and secondary shoots, respectively (Figure 5 and 6); the internode length of primary and 

secondary shoots (Figure 5), the branching angles between primary and secondary 

shoots, and those between secondary (2nd order) and tertiary (3rd order) shoots (Figure 

7); inflorescence characteristics including the number of flowers on the terminal 

inflorescence on the primary and secondary shoots and inflorescence structure type 

(Figure 8). 

 

  Figure 5. Traits (number, length of nodes and internode length) on the vegetative 
                 part of rose. 
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Figure 6. Traits (number, length of nodes) on the reproductive part of rose 
                and the number of flowers on the terminal inflorescence. 

 

 

                                          

Figure 7. Branching angles on rose. 
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Figure 8. Inflorescence types in Rosa flowers (The Genus Rosa, Ellen Willmott, 1914).  

 

 

2.3.4 Statistical analysis 

The statistical analysis of the phenotypic data, analysis of variance (ANOVA), 

correlation analysis and principal component analysis were carried out using JMP 

software, version 12.0. A multivariate model based on 18 architectural traits was used to 

estimate phenotypic correlations. Correlations were computed on a pair-wise basis for all 

traits. Correlation estimate of r ≥ 0.65 was considered strong to very strong; a correlation 

estimate r between 0.50 and 0.64 was considered moderate; a correlation estimate r between 
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0.30 and 0.49 was considered weak. 

 

2.4 Results 

2.4.1 Results of ANOVA 

One-way ANOVA comparing means of architectural traits among families 

revealed significant differences in most of the architectural traits measured among 

families (Table 4). 

The number of nodes on the vegetative part differed among the four populations 

on both primary and secondary shoots (Tables 4 and 5). The “Old Blush × M4-4” family 

had the lowest number of nodes on the primary (8.4) and secondary vegetative part (6.4). 

The “J06-20-14-3 × Vineyard Song” family had the highest number of nodes on the 

primary vegetative part (17.7), whereas the “Sweet Chariot × M4-4” family had the 

highest number of nodes (10.0) on the secondary shoot of the vegetative part (Table 5). 

The four families differed for the length of the primary vegetative part (Tables 4 

and 6). The “Old Blush × M4-4” family had the shortest primary vegetative part 

(22.5cm), while the “J06-20-14-3 × Vineyard Song” family had the longest primary 

vegetative part (41.9cm) (Table 6). 

Although the vegetative parts varied in both the number of nodes and the length 

for both orders, the internode length was uniform among the families studied (Tables 4 

and 7). 

The number of inflorescence nodes differed among the four populations on both 
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primary and secondary shoots (Tables 4 and 8). Consistent with the number of nodes on 

vegetative parts, the “Old Blush × M4-4” family had the lowest number of inflorescence 

nodes on the primary (2.4) and secondary shoots (1.8). The family that had the most 

inflorescence nodes on both primary (4.7) and secondary (4.4) shoots was “J06-20-14-3 

× Sweet Chariot” (Table 8). 

The length of the reproductive shoot and the number of nodes on the branch, 

(Tables 4, 9 and 10) also differed among the families. The family with the shortest 

reproductive shoots and the least nodes was the “Old Blush × M4-4” family. The family 

with the longest primary reproductive shoot was the “J06-20-14-3 × Sweet Chariot” 

family (9.8cm), while the longest secondary reproductive shoot was in the “J06-20-14-3 

× Vineyard Song” family (7.3cm) (Table 9). The family with the most nodes on the 

primary branch was the “J06-20-14-3 × Vineyard Song” family (21.8), while the family 

with the most nodes on the secondary branch was the ‘Sweet Chariot × M4-4’ family 

(13.8) (Table 10). 

The four families differed for the length of the primary shoot (Tables 4 and 11). 

The “Old Blush × M4-4” family had the shortest primary shoot (29.1cm), while the 

“J06-20-14-3 × Vineyard Song” family had the longest primary shoot (50.3cm) (Table 

11). 

The number of flowers on the terminal inflorescence of both primary and 

secondary shoots differed among families (Tables 4 and 12), with the “Old Blush × M4-

4” family having the fewest flowers on both order level shoots (9.2/6.8), the “J06-20-14-

3 × Vineyard Song” family had the most flowers on the primary inflorescence (25.5), 
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and the “J06-20-14-3 × Sweet Chariot” family had the most flowers on the secondary 

inflorescence (19.4) (Table 12). 

The branching angles between the primary and the secondary shoots did not 

differ among families but those between the secondary and the tertiary shoots did 

(Tables 4 and 13). “J06-20-14-3 × Sweet Chariot” was characterized by the widest 

branching angle (59.0 ̊) and “Sweet Chariot × M4-4” was characterized by the narrowest 

branching angle between secondary and tertiary shoots (42.5 ̊) (Table 13). 

 
 
Table 4. Summary of One-way ANOVA comparing means of architectural traits of four 
families and range (in parenthesis). 

NS, *, **, *** Non-significant or significant at P ≤ 0.05, 0.01, or 0.001, respectively. 
 
 
 
 

Traits Primary shoot Secondary shoot 
Number of nodes on vegetative part *** ** 
 (5-36) (3-14) 
Length of vegetative part (cm) *** NS 
 (13-66) (6-30) 
Number of inflorescence nodes ** *** 
 (1-7) (1-6) 
Length of reproductive part (cm) *** * 
 (4-12) (4-11) 
Number of nodes on the shoot *** *** 
 (6-39) (4-17) 
Length of the shoot (cm) ** NS 
 (17-73) (9-39) 
Number of flowers on terminal inflorescence *** *** 
 (1-37) (3-31) 
Internode length (cm) NS NS 
 (0.7-4.3) (0.9-4.6) 
Branching angles (1st&2nd shoot) NS (2nd&3rd shoot) ** 
 (30 ̊-80 ̊) (25 ̊-75 ̊) 
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Table 5. The number of nodes on the vegetative part for four diploid rose families. 
  

Populations Primary shoot Secondary shoot 

Old Blush × M4-4 8.4 b 6.4 b 

Sweet Chariot × M4-4 11.4 b 10.0 a 

J06-20-14-3 × Vineyard Song 17.7 a 6.7 b 

J06-20-14-3 × Sweet Chariot 10.4 b 8.0 b 

Significance *** ** 

R
2
 0.36 0.33 

n 40 40 
NS, *, **, *** Non-significant or significant at P ≤ 0.05, 0.01, or 0.001, respectively and levels 
not connected by same letter are significantly different. 
 

 

 
 
Table 6. The length of the vegetative part for four diploid rose families (cm).  
 

Populations Primary shoot Secondary shoot 

Old Blush × M4-4 22.5 c 14.6 b 

Sweet Chariot × M4-4 34.1 ab  20.6 a 

J06-20-14-3 × Vineyard Song 41.9 a 17.0 ab 

J06-20-14-3 × Sweet Chariot 25.4 bc  18.6 ab 

Significance *** NS 

R
2
 0.36 0.14 

n 40 40 
NS, *, **, *** Non-significant or significant at P ≤ 0.05, 0.01, or 0.001, respectively and levels 
not connected by same letter are significantly different. 
 

 
 
 



 

30 

 

Table 7. The internode length for four diploid rose families (cm).  
 

Populations Primary shoot Secondary shoot 

Old Blush × M4-4 2.7 a 2.3 a 

Sweet Chariot × M4-4 3.0 a 2.1 a 

J06-20-14-3 × Vineyard Song 2.7 a 2.6 a 

J06-20-14-3 × Sweet Chariot 2.5 a 2.3 a 

Significance NS NS 

R
2
 0.40 0.16 

n 40 40 
NS, *, **, *** Non-significant or significant at P ≤ 0.05, 0.01, or 0.001, respectively and levels 
not connected by same letter are significantly different. 
 

 

 
 
Table 8. The number of inflorescence nodes for four diploid rose families. 
  

Populations Primary shoot Secondary shoot 

Old Blush × M4-4 2.4 b 1.8 b 

Sweet Chariot × M4-4 3.8 a 3.7 a 

J06-20-14-3 × Vineyard Song 4.1 a 3.9 a 

J06-20-14-3 × Sweet Chariot 4.7 a 4.4 a 

Significance ** *** 

R
2
 0.28 0.52 

n 40 40 
NS, *, **, *** Non-significant or significant at P ≤ 0.05, 0.01, or 0.001, respectively and levels 
not connected by same letter are significantly different. 
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Table 9. The length of the reproductive part for four diploid rose families (cm).  
 

Populations Primary shoot Secondary shoot 

Old Blush × M4-4 6.6 c 5.5 b 

Sweet Chariot × M4-4 8.5 ab  6.9 ab 

J06-20-14-3 × Vineyard Song 8.4 b 7.3 a 

J06-20-14-3 × Sweet Chariot 9.8 a 7.2 a 

Significance *** * 

R
2
 0.39 0.18 

n 40 40 
NS, *, **, *** Non-significant or significant at P ≤ 0.05, 0.01, or 0.001, respectively and levels 
not connected by same letter are significantly different. 
 

 
 
 
 
Table 10. The number of nodes on the shoot for four diploid rose families.  
 

Populations Primary shoot Secondary shoot 

Old Blush × M4-4 10.8 b 8.2 c 

Sweet Chariot × M4-4 15.2 b 13.8 a 

J06-20-14-3 × Vineyard Song 21.8 a 10.6 b 

J06-20-14-3 × Sweet Chariot 15.1 b 12.4 ab 

Significance *** *** 

R
2
 0.40 0.46 

n 40 40 
NS, *, **, *** Non-significant or significant at P ≤ 0.05, 0.01, or 0.001, respectively and levels 
not connected by same letter are significantly different. 
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Table 11. The length of the shoot for four diploid rose families (cm).  
 

Populations Primary shoot Secondary shoot 

Old Blush × M4-4 29.1 c 20.1 b 

Sweet Chariot × M4-4 42.7 ab  27.5 a 

J06-20-14-3 × Vineyard Song 50.3 a 24.2 ab 

J06-20-14-3 × Sweet Chariot 35.2 bc 25.8 ab 

Significance ** NS 

R
2
 0.36 0.16 

n 40 40 
NS, *, **, *** Non-significant or significant at P ≤ 0.05, 0.01, or 0.001, respectively and levels 
not connected by same letter are significantly different. 
        

 

 
 
Table 12. The number of flowers on the terminal inflorescence for four diploid rose 
families.  
 

Populations Primary shoot Secondary shoot 

Old Blush × M4-4 9.2 b 6.8 c 

Sweet Chariot × M4-4 21.9 a 12.2 b 

J06-20-14-3 × Vineyard Song 25.5 a 14.9 ab 

J06-20-14-3 × Sweet Chariot 23.2 a 19.4 a 

Significance *** *** 

R
2
 0.39 0.41 

n 40 40 
NS, *, **, *** Non-significant or significant at P ≤ 0.05, 0.01, or 0.001, respectively and levels 
not connected by same letter are significantly different. 
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Table 13. Branching angles for four diploid rose families.  
 

Populations Primary & Secondary Secondary & Tertiary 

Old Blush × M4-4 54.5 a 52.5 a 

Sweet Chariot × M4-4 61.5 a 42.5 b 

J06-20-14-3 × Vineyard Song 56.0 a 58.0 a 

J06-20-14-3 × Sweet Chariot 50.5 a 59.0 a 

Significance NS ** 

R2 0.10 0.32 

n 40 40 
NS, *, **, *** Non-significant or significant at P ≤ 0.05, 0.01, or 0.001, respectively and levels 
not connected by same letter are significantly different. 
 
 
 
 
2.4.2 Results of correlation analysis 

Pearson correlation coefficients between phenotypic architectural traits indicated 

that among the 153 pairs evaluated, nine correlations were high (r ≥0.65), 14 were 

moderate (0.64 ≥ r ≥ 0.50) and 41 correlations were weak (0.49 ≥ r ≥ 0.30) (Tables 14-

17).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         

The conclusions based on correlation coefficients between variables could be 

categorized into two groups. Correlations of the same architectural traits on different 

order level shoots, and correlations between different architectural traits.  

Correlations of the same architectural traits on the different order level shoots 

were evident for the number of nodes on the reproductive part (r = 0.78), the length of 

the reproductive part (r = 0.61), the internode length (r = 0.54) and the number of flowers 
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on the terminal inflorescence (r = 0.77) (Tables 14 and 17). 

As for different architectural traits, the number of nodes on the primary 

vegetative part was highly correlated with the number of nodes on the primary part (r = 

0.97), and moderately correlated with the length of the primary vegetative part (r = 

0.50). The number of nodes on the secondary vegetative part was highly correlated with 

the number of nodes on the secondary shoot (r = 0.90) and the length of the secondary 

vegetative part (r = 0.69). It was moderately correlated with the length of secondary 

shoot (r = 0.63) (Table 15).  

The number of inflorescence nodes on the primary shoot was moderately 

correlated with the length of both primary (r = 0.51) and secondary (r = 0.55) 

reproductive parts. The number of inflorescences nodes on the secondary shoot was 

moderately correlated with the number of nodes on the secondary shoot (r = 0.61), and 

the length of primary and secondary reproductive parts (r = 0.59 and 0.55) (Table 15). 

The number of nodes on the primary shoot was moderately correlated with the 

length of the primary vegetative part (r = 0.52) and the length of the primary shoot (r = 

0.52). The number of nodes on the secondary shoots was moderately correlated with the 

length of the secondary vegetative part (r = 0.69), the length of secondary shoot (r = 

0.68) and the number of flowers on the primary terminal inflorescence (r = 0.50) (Table 

15). 

The length of the primary vegetative part was highly correlated with the length of 

primary shoot (r = 0.99). The length of the secondary vegetative part was highly 

correlated with the length of secondary shoot (r = 0.98) (Table 16). 
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The length of the primary reproductive part was moderately correlated with the 

length of secondary shoot (r = 0.50). The length of the secondary reproductive part was 

moderately correlated with the length of secondary shoot (r = 0.64) (Table 16). 

The number of flowers on the terminal inflorescence of the primary shoot was 

moderately correlated with the number of nodes on the secondary shoot (r = 0.50) and 

highly correlated with the number of flowers on the terminal inflorescence of the 

secondary shoot (r = 0.77) (Table 17) 

     
 
Table 14. Correlations of same traits on different order levels. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

#Nodes on 
reproductive 

Length of 
reproductive 

Internode 
length 

#Flowers 
 

0.78 0.61 0.54 0.77 
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Table 15. Pearson correlation coefficients of architectural traits concerning the number of nodes versus other traits of seedlings 
from four diploid rose families. 
 

 
 
 
 
 
 
 

 

 #Node 
1st 
Veg 

#Node 
2nd 
Veg 

#Node 
1st 
Rep 

#Node 
2nd 
Rep 

#Node 
1

st
  

#Node 
2

nd 
 

Length 
1

st
  

Veg 

Length 
2

nd
  

Veg 

Length 
 1

st 

 Rep 

Length 
 2

nd 

 Rep 

Length 
1st 
 

Length 
2nd 
 

Internode 
1st 
 

Internode 
2nd 

#flw 
1

st
 

#flw 
2

nd
 

∆1&2 ∆2&3 

Length 
1

st
 Veg 0.50 0.12 0.19 0.23 0.52 0.20 1.00 0.22 0.29 0.35 0.99 0.27 0.47 0.22 0.38 0.23 0.11 0.11 

Length 
2

nd
 Veg 0.12 0.69 0.26 0.30 0.18 0.69 0.22 1.00 0.40 0.46 0.26 0.98 0.13 0.43 0.24 0.25 0.10 0.10 

Length 
1

st
 Rep 0.07 0.26 0.51 0.59 0.20 0.48 0.29 0.40 1.00 0.61 0.42 0.50 0.21 0.29 0.40 0.38 0.01 0.16 

Length 
2

nd
 Rep 0.18 0.13 0.55 0.55 0.31 0.35 0.35 0.46 0.61 1.00 0.42 0.64 0.19 0.43 0.31 0.31 -0.05 0.24 

Length 
1st 
 

0.49 0.15 0.25 0.30 0.52 0.25 0.99 0.26 0.42 0.42 1.00 0.33 0.47  0.25  0.42  0.27  0.11   0.13 

Length 
2nd 
 

0.14 0.63 0.36 0.39 0.23 0.68 0.27 0.98 0.50 0.64 0.33 1.00 0.16 0.48  0.28  0.29 0.07   0.14 

Internode 
1st -0.41 -0.24 0.07 -0.05 -0.37 -0.22 0.47 0.13 0.21 0.19 0.47 0.16 1.00 0.54 -0.07  -0.08  -0.01  -0.06 

Internode 
2nd -0.14 -0.33 0.19 0.13 -0.08 -0.20 0.22 0.43 0.29 0.43 0.25 0.48 0.54 1.00 -0.12   -0.04  -0.14  0.20  
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Table 16. Pearson correlation coefficients of architectural traits concerning the length of part/shoot versus other traits of 
seedlings from four diploid rose families. 
 

 
 
 
 
 
 
 
 
 
 
 

                                                             #Node 
1st 
Veg 

#Node 
2nd 
Veg 

#Node 
1st 
Rep 

#Node 
2nd 
Rep 

#Node 
1

st
  

#Node 
2

nd 
 

Length 
1

st
  

Veg 

Length 
2

nd
  

Veg 

Length 
 1

st 

 Rep 

Length 
 2

nd 

 Rep 

Length 
1st 
 

Length 
2nd 
 

Internode 
1st 
 

Internode 
2nd 

#flw 
1

st
 

#flw 
2

nd
 

∆1&2 ∆2&3 

#Node 
1st 
Veg 

1.00 0.25 0.11 0.24 0.97 0.31 0.50 0.12 0.07 0.18 0.49 0.14 -0.41 -0.14 0.41 0.23 0.12 0.22 

#Node 
2nd 
Veg 

0.25 1.00 0.12 0.21 0.27 0.90 0.12 0.69 0.26 0.13 0.15 0.63 -0.24 -0.33 0.39 0.27 0.24 -0.08 

#Node 
1st 
Rep 

0.11 0.12 1.00 0.78 0.36 0.45 0.19 0.26 0.51 0.55 0.25 0.36 0.07 0.19 0.35 0.39 0.19 0.13 

#Node 
2nd 
Rep 

0.24 0.21 0.78 1.00 0.43 0.61 0.23 0.30 0.59 0.55 0.30 0.39 -0.05 0.13 0.43 0.45 0.13 0.09 

#Node 
1

st
 0.97 0.27 0.36 0.43 1.00 0.41 0.52 0.18 0.20 0.31 0.52 0.23 -0.37 -0.08 0.47 0.32 0.16 0.24 

#Node 
2

nd
 

0.31 0.90 0.45 0.61 0.41 1.00 0.20 0.69 0.48 0.35 0.25 0.68 -0.22 -0.20 0.50 0.42 0.25 -0.02 
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Table 17. Pearson correlation coefficients concerning the number of flowers on the inflorescence and branching angles versus 
other traits of seedlings from four diploid rose families. 
 

 
 

 

 

 

 

 

 

 

 #Node 
1st 
Veg 

#Node 
2nd 
Veg 

#Node 
1st 
Rep 

#Node 
2nd 
Rep 

#Node 
1

st
  

#Node 
2

nd 
 

Length 
1

st
  

Veg 

Length 
2

nd
  

Veg 

Length 
 1

st 

 Rep 

Length 
 2

nd 

 Rep 

Length 
1st 
 

Length 
2nd 
 

Internode 
1st 
 

Internode 
2nd 

#flw 
1

st
 

#flw 
2

nd
 

∆1&2 ∆2&3 

#flw 1
st
 0.41 0.39 0.35 0.43 0.47 0.50 0.38 0.24 0.40 0.31 0.42 0.28 -0.07 -0.12 1.00 0.77 0.09  0.15  

#flw 2
nd

 0.23 0.27 0.39 0.45 0.32 0.42 0.23 0.25 0.38 0.31 0.27 0.29 -0.08 -0.04 0.77 1.00 -0.07 0.24  
 ∆1&2 0.12 0.24 0.19 0.13 0.16 0.25 0.11 0.10 0.01 -0.05 0.11 0.07 -0.01 -0.14 0.09 -0.07 1.00 -0.01  
 ∆2&3 0.22 -0.08 0.13 0.09 0.24 -0.02 0.11 0.10 0.16 0.24 0.13 0.14 -0.06  0.20 0.15 0.24 -0.01 1.00 
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2.4.3 Results of principal component analysis 

The principal components 1, 2, and 3 of the PCA accounted for 34.5%, 15.2%, 

and 12.7% of the variability, respectively and so together 62.4% of the total variability.  

The four most important variables that made up the three principal components included 

the length of the secondary reproductive part which accounted for 7.8% of the total 

variability, the length of the primary reproductive part which accounted for 6.6% of the 

total variability, the internode length of the secondary shoot which accounted for 6.1% 

of the total variability, and the number of nodes on the secondary shoot which accounted 

for 4.6% of the total variability (Table 18). 
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Table 18. The important variables that made up three principal components and their importance within each principal 
component.  
 

 
 
 

 

 

 

 

 Important variable 1 Important variable 2 Important variable 3 Important variable 4 

Variable % Variable % Variable % Variable % 

Principal 
component 1 

Length of 2nd 
reproductive part 

16.6 Length of 1st 
reproductive part 

15.0 Internode of 
2nd shoot 

14.1 #Nodes on 
2nd shoot 

10.0 

Principal 
component 2 

Length of 2nd 
reproductive part 

13.6 #Nodes on 
2nd vegetative part 

10.3 Length of 1st 
reproductive part 

9.3 Internode of 
2nd shoot 

7.9 

Principal 
component 3 

#Nodes on 
2nd vegetative part 

13.2 Internode of 
1st shoot 

12.3 #Nodes on 
2nd shoot 

9.3 #Nodes on 
1st vegetative part 

6.1 
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Among the important variables that made up three principal components, the 

length of the primary reproductive part was moderately correlated with the length of the 

secondary reproductive part (r = 0.61) (Table 19). 

 
 
 

Table 19. Correlations between the important variables that made up three principal 
components. 

 
 #Nodes 

on 2nd 
shoot 
 

Length 
of 
1st rep 
part 
 

Length 
of  
2nd rep 
part 
 

Internode 
of 2nd 

shoot 
 

 
#Nodes on 2nd 
shoot 

 
 

1.0 

   

Length of 
1st rep 
part 

 
0.48 

 
1.0 

  

Length of 2nd  
rep part 

0.35 0.61 1.0  

Internode of 2nd 
shoot 
 

-0.20 0.29 0.43 1.0 

  
 
 
 
2.4.4 Flower inflorescence type 

There are five common inflorescence structure types in Rosa flowers (Willmott, 

1914). Namely, corymb (corymbose), cyme (cymose), panicle (panicled or paniculate), 

umbel (umbellate) and raceme (racemose) (Figure 8). Most common inflorescence 

structure type seen among rose seedlings is a cyme, or paniculiform cyme (looks like 

panicle but the oldest flower is at the tip of the shoots) (Figures 9 and 10) 

(“Inflorescence Types.pdf” n.d.). The number of pedicels observed per peduncle (a 
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pedicel is a stem that attaches a single flower to the inflorescence.) varied from one to 

four. Reversed raceme or false raceme was observed among the rose seedlings (Gray, 

1887) (Figure 11). Mixed inflorescence structure types (cyme and (reversed) raceme) 

were also observed on the rose parent ‘Old Blush’ (Figure 12) and some of the rose 

seedlings. Solitary flowers were found in some rose seedlings (Figure 13). Additionally, 

rose seedlings with unknown inflorescence types were also observed. In these the form 

of the inflorescence is a panicle, but the florets on the terminal inflorescence are of 

different ages and therefore, whether the inflorescence is determinate or indeterminate is 

unknown (Figure 14a, b) Indeterminate inflorescence is defined as “species produce an 

inflorescence meristem that only generates floral meristem from its periphery.” (Bradley, 

et al., 1997). In other words, the apical meristem of the terminal bud from which the 

inflorescence is initiated remains active (indefinite growth) as the inflorescence 

develops, the oldest flowers or buds are those located farthest from the terminal bud, or 

at the base or outside of the inflorescence (“Inflorescence Types.pdf” n.d.). A typical 

type of indeterminate inflorescence is a raceme. Determinate inflorescence is defined as 

“the inflorescence meristem is eventually converted to a floral identity, resulting in the 

production of a terminal flower” (Bradley, et al., 1997) Therefore, the oldest flower is 

located at the end of the stem or in the center of the inflorescence A typical type of 

determinate inflorescence is cyme (“Inflorescence Types.pdf” n.d.). 
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Figure 9. Paniculiform cyme inflorescence (“Inflorescence Types.pdf” n.d. 
<http://bpp.oregonstate.edu/files/bpp/webfm/pdf/bot425/inflorescence%20types.pdf>). 

 

 

 
Figure. 10. Paniculiform cyme inflorescence observed among rose seedlings. 
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Figure 11. Reversed raceme flower inflorescence observed among rose seedlings. 
 

 

 

 

 

 

 

 

 

 

Figure 12. Mixed inflorescence types (Left: raceme; Right: cyme) observed on the rose 
parent ‘Old Blush’. 
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Figure 13. Solitary flower observed among rose seedlings. 

 

           

Figure 14a & b. Terminal inflorescences with unknown inflorescence type observed 
among rose seedlings. 

a b 
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Table 20. Summary of types of inflorescences and number of rose seedlings of each type. 
 

Type of inflorescence Number of seedlings 
Cyme 13 
Cyme + Reversed raceme 9 
Reversed raceme + Solitary flower 4 
Reversed raceme 6 
Solitary flower 2 
Cyme + Solitary flower 2 
Raceme 2 
Unknown 2 

 

 

2.5 Discussions and conclusions 

Plant architecture is description based on the decomposition of the plant into 

traits, specifying their biological type, their shape, their location/orientation in space 

and/or the way these traits are physically related with one another (Godin, 2000). To 

describe plant architecture of roses, we propose characterizing it on the basis of its 

growth (vegetative and reproductive) and branching processes. 

Based on the result of ANOVA (Table 4-13), the four rose families differed 

among each other in all the traits of rose plant architecture in our preliminary study 

except for the length of the secondary vegetative part, the length of the secondary shoot, 

the branching angle between the primary and secondary shoots and the internode length 

on both order level shoots. This suggested a strong genotypic effect for plant architecture 

as was previously reported by Kawamura et al., (2011). 
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 Based on our observations, the primary shoots better predict the size of an 

individual rose plant than do the secondary shoots. Specifically, for a rose plant with a 

relatively upright shape, the length of the primary shoots better determines its height, 

while for a rose plant with a prostrate form (or ground cover type), length of primary 

shoots better determines its width.  

Among our populations, the number of flowers also seemed related to the length 

of pedicels, with the shorter pedicels corresponding to more flowers. This is evident in 

two of the parental roses: ‘Old Blush’ has the fewest flowers per inflorescence and the 

longest pedicel among all rose parents, whereas ‘Sweet Chariot’ has the greatest number 

of flowers per inflorescence and the shortest pedicels.  

The strongest correlations found were those for the same traits (the number of 

nodes and the length) between the vegetative part and shoot on both order level shoots. 

High correlations were found for the same traits (the number of inflorescence nodes and 

flower number) between the primary and secondary organs. Moderate to high 

correlations were found between the number of nodes and the length within the primary 

and/or secondary order shoots. Moderate correlation was found for the same traits the 

length of the reproductive part and the internode length between the primary and 

secondary shoots (Tables 14-17). Kawamura et al., (2011) found correlations for the 

same traits (internode length, the number of nodes of the inflorescence) between the 

primary and secondary order shoots, and thus consistent with our results.  

The number of flowers on the primary inflorescence was weakly to moderately 

correlated to multiple traits including the number of nodes on the primary and secondary 
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vegetative parts, the reproductive parts and shoots, the length of the primary vegetative 

part, the length of primary, secondary reproductive parts and the shoots (Table 17). 

Kawamura et al., (2011) noted good correlations with the number of flowers with 

various inflorescence traits such as the number of nodes (primary and secondary orders), 

internode length (secondary order), and the number of tertiary shoots formed.    

No correlation was seen between the architectural traits concerning branching 

process (branching angles) and growth processes indicating that it was independent of 

both vegetative traits and reproductive growth processes (Table 17). 

Based on the principal component analysis, the important variables that 

explained the variability of plant architecture in the preliminary study included: the 

length of the primary and secondary reproductive parts, the internode length of the 

secondary shoot, and the number of nodes on the secondary shoot. 

 

2.6 Selection on architectural traits best representing rose plant architecture 

The phenotyping work on rose plant architecture involving genetic, 

environmental and G × E interaction analysis requires measurements on a large number 

of rose plants. Therefore, as the process is time-consuming and labor-intensive, it was 

imperative to select fewer traits that were independent (not correlated) with each other.  

A selection of architecture traits that are most relevant for characterizing rose 

plant architecture should meet the following criteria: 

• To represent distinct aspects of variables describing plant architecture, 

i.e., including vegetative traits, reproductive traits, and branching angle; 
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• To explain the architectural variability observed; 

• And to combine correlated variables into one. 

The principal component analysis indicated that key traits in explaining the data 

variation are the following traits: the number of nodes on the secondary shoot, the length 

of reproductive parts on both primary and secondary shoots, and the internode length of 

both primary and secondary shoots. The internode length would be equivalent to the trait 

number of metamers on long axes used by Crespel et al., (2013) and would also reflect the 

average internode length used by Kawamura et al., (2011). 

In addition to these Crespel et al., (2013), Kawamura et al., (2011) and Gitonga et 

al., (2014) also measured plant form by examining number of determined axes (number 

of primary shoots, number of side shoots), plant height, stem length, the branching angles 

(branching angle of the cord in relation to the vertical axis; stem elevation with plant 

height), and branching order number.  

Thus based on our work and that of others, the architectural traits that are important 

are the length of shoot, the number of nodes on the shoot, branching angles, the number 

of primary shoots, and traits for characterizing the number of branching orders.  

All the analysis above resulted in the new architectural traits evaluated in our 

subsequent study. They were, plant height (correlated to branching angles), the length of 

the primary shoot, the number of nodes on the primary shoot, the number of primary 

shoots, the number of secondary shoots per primary shoot and the number of tertiary 

shoots per primary shoot. 
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CHAPTER III 

HERITABILITY OF ROSA SPP. PLANT ARCHITECTURE IN DIPLOID 

ROSES 

  

3.1 Synopsis 

Six rose plant architectural traits were evaluated for two seasons, May and 

December of 2015 in College Station, TX to estimate variability and heritability. 

Seedlings from 13 F1 families were evaluated. Most traits showed a substantial amount 

of variability. A random effects model Restricted Maximum Likelihood (REML) 

analysis indicated that all of the architectural traits demonstrated low to moderate narrow 

sense heritability (0.12-0.50) and low to high broad sense heritability (0.25-0.92). Traits 

with low to moderate narrow sense heritability but high broad sense heritability (plant 

height, number of primary shoots and the length of primary shoots) indicate an important 

non-additive genetic component. The number of nodes on the primary shoots, the number of 

secondary and tertiary shoots per primary shoot showed a strong genotype by environment 

interaction which was a reflection of how the plants grow after the initial spring/early 

summer flush. Most (11 out of 13) families showed an increased number of 

secondary/tertiary shoots per node on the primary shoot in December versus May. The 

comparison of the architectural traits between desirable and undesirable types indicated 

that the key trait for the selection of a desirable growth type is the number of primary 

shoots they produce and secondarily the number of secondary and tertiary shoots 

produced. 
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3.2 Introduction 

3.2.1 Genotype × environment interaction in plant architecture 

Plant architecture is the result of growth and branching processes. The 

components of its variation include genetic, environmental factors and the genotype × 

environment interaction (Crespel et al., 2014). Plant architecture determines a plant’s 

aesthetic value, which strongly affects its economic value. Architecture is also linked to 

yield in rose (number of flowers) as well as other crops such as cowpea, (the number of 

flowers, the number of shoots and pods per plant) (Shimelis and Shiringani, 2010), and 

in wheat (plant height and spike length) (Wu et al., 2012). Various environmental factors 

such as temperature (Khayat and Zieslin, 1982; Battey, 2000), the quantity and quality of 

light (Kawamura and Takeda, 2002; Niinemets and Lukjanova, 2003; Evers et al., 2006; 

Girault et al., 2008; Rameau et al., 2015), water supply (Cameron et al., 2006; Burnett 

and van Iersel, 2008; Demotes-Mainard et al.,  2013; Huché-Thélier et al., 2013) and 

mechanical stimulation (Morel et al., 2012) modify architectural traits such as metamer 

length, the number of shoots and their position along the axis. More research into the 

heredity of architectural characteristics and the G × E interaction are needed to further 

understand and manage plant architecture. 

 

3.2.2 Heritability of architectural traits in rose 

Quantitative studies on the genetic variability of plant architecture are not easy 

(Costes et al., 2004; Segura et al., 2006; 2008), because although the plant constructs its 
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architecture with modular units (leaf, part and shoot) (White, 1979), the architectural 

traits have variation within a plant (Kawamura, 2010). Additionally, because of the 

modular nature in plants, the architecture of plants with the same genes may vary due to 

abiotic (Wu and Stettler, 1997) and biotic (Wei et al., 2013) environmental stresses. 

These properties of plant architecture cause phenotyping bottlenecks and make it 

difficult for predicting genetic variances (Furbank and Tester, 2011). Due to their 

complex plant architecture, it requires much time and space for growth before they are 

able to be characterized for plant architecture. As a result, the studies on genetics of 

woody plant architecture are rare compared with model herbaceous plants such as 

Arabidopsis thaliana and rice (Oryza sativa L.) (Busov et al., 2008). 

Work on rose growth forms has suggested that major genes may be involved in 

the inheritance of loose arching form in Rosa caninae (Wissemann et al., 2006), the 

dwarf character in diploid roses (Dubois and De Vries, 1987), and the sprawling ground 

cover versus spreading bush growth type in a tetraploid rose population (Rajapakse et 

al., 2001).  

More recently, Kawamura et al., (2011, 2015) quantified the genetic variability 

and inheritance of architecture traits in a F1 diploid rose population, and also conducted 

QTL mapping studies of inflorescence architecture. Their research reported high broad-

sense heritability for inflorescence architectural traits in diploid roses. They identified 

key genomic regions controlling the traits and proposed that the genes involved in floral 

initiation are candidate genes controlling the rose inflorescence architecture.  
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3.2.3 Objectives 

The objectives of this study were to evaluate the genetic variation and heritability 

of six plant architectural traits within 13 diploid rose populations and the desirable levels 

of architectural traits for an ideal plant for garden use.  

 

3.3 Materials and methods 

3.3.1 Plant materials 

Diploid rose populations (Table 21) were derived from the hybridization of rose 

parents with diverse plant architecture. Thirteen F1 rose populations were used for this 

study (Figure 15). Based on Peace et al., (2014), we calculated the optimal family size 

representing the important breeding parents in our germplasm for phenotyping and 

genotyping QTL of the targeted traits, which is also both financially and logistically 

feasible to our program. Forty seedlings per family allowed the detection of a QTL of 

10-20% effect with 80-90% probability. Thus for the families whose size is larger than 

40, we evaluated 40 seedlings per family, and for those smaller than 40, we evaluated all 

seedlings. Measurements were made on three shoots that grown from base of the plant 

per seedling for architectural traits. 
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Table 21. Thirteen diploid rose families evaluated.  

FP1 MP2 
 
Population size 
(phenotyped number in May & Dec) 

Cross year 

J06-20-14-3 Sweet Chariot 57 (40, 40)  2010 
Sweet Chariot J06-20-14-3 25 (25, 25)  2012 
J06-20-14-3 Little Chief 140 (40, 36)  2011 
J06-20-14-3 Red Fairy 130 (40, 39)  2012 
J06-20-14-3 Vineyard Song 93 (40, 37)  2010 
Vineyard Song J06-20-14-3 12 (11, 11) 2010 
M4-4 Sweet Chariot 27 (27, 23)  2010 
Sweet Chariot M4-4 118 (40, 39)  2010 
M4-4 Vineyard Song 10 (5, 5)  2011 
Old Blush J06-30-3-6 112 (40, 36)  2010 
Old Blush M4-4 18 (16, 15)  2010 
Old Blush Red Fairy 158 (40, 40)  2012 
J06-30-3-3 Red Fairy 40 (29, 29)  2010 

   1 Female parent 
   2 Pollen parent 
 

 

Figure 15. Pedigree diagram of 13 rose populations. 
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3.3.2 Field experiment and trait assessment 

The seedlings of 13 diploid populations in this study were planted at a 1 m × 1 m 

× 3.5 m spacing in a field two miles from Texas A&M University in College Station. 

The soil in this field belongs to the Zack-Boonville-Zulch unit (Figure 4 and Soil survey 

of Brazos County, Texas), which is a dark brown, strongly acid fine sandy loam. The 

main problem with this type of soil is low fertility, drought, poor drainage due to a clay 

pan and a severe hazard of erosion. The individual plants were planted in rows oriented 

east to west in an open field. Raised beds were constructed in the field and black cloth 

weed barrier was placed around the rose bushes for weed control. The irrigation was 

applied as needed without the application of fungicides or pesticides during the 

evaluation. Pruning was conducted in March for removing dead tissue and to 

synchronize the growth of the seedlings. Each genotype is represented by one plant in 

the field. The evaluation for plant architecture was done in the field over two seasons in 

2015, spring (May) 2015, and winter (December) 2015 (Table 22). The latitude of the 

location is 30.6504 North and the longitude of it is -96.3226.  
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Table 22. Monthly temperature and precipitation of 2015 in College Station, TX 
(National Weather Service, 2015)  
 

 Maximum (°C) Minimum (°C) Mean Total precipitation (mm) 
January 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
December 

13.7 
15.8 
20.3 
26.3 
28.7 
32.3 
35.4 
36.2 
33.4 
29.6 
21.5 
20.1 

3.5 
4.8 

10.2 
16.6 
19.7 
22.8 
23.4 
23.7 
21.7 
17.1 
11.6 
8.4 

8.6 
10.3 
15.3 
21.4 
24.2 
27.6 
29.4 
29.9 
27.6 
23.3 
16.6 
13.7 

169 
19 

148 
122 
247 
132 
36 

34.5 
44 

224 
128 
205 

 

 

3.3.2.1 Measurements of the traits of plant architecture 

Six traits best representing distinct aspects of plant architecture were selected 

based on the preliminary study (Chapter II) and previous studies on rose architecture 

(Kawamura et al., 2011; Crespel et al., 2013; Gitonga et al., 2014).  They were plant 

height (cm) (Figure 16), the number of primary shoots (Figure 17), the length of the 

primary shoot (cm) (Figure 18), the number of nodes on the primary shoot (Figure 19), 

the number of secondary shoots per primary shoot (Figure 20) and the number of tertiary 

shoots per primary shoot (Figure 21).    
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Figure 16. Plant height (cm) as measured in the genetic study of plant architecture of 13 
diploid rose families. 
 
 
 

 
 

Figure 17. The number of primary shoots as measured in the genetic study of plant 
architecture of 13 diploid rose families. 
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Figure 18. The length of the primary shoots (cm) as measured in the genetic study of 
plant architecture of 13 diploid rose families. 
 
 
 

   

 
 
Figure 19. The number of nodes on the primary shoots as measured in the genetic study 
of plant architecture of 13 diploid rose families. 
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Figure 20. The number of secondary shoots per primary shoot as measured in the genetic 
study of plant architecture of 13 diploid rose families. 

 
 

 

 
 

Figure 21. The number of tertiary shoots per primary shoot as measured in the genetic 
study of plant architecture of 13 diploid rose families. 
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3.3.3 Statistical analysis 

The statistical analysis was conducted by using JMP software, Version 12.  

Frequency distributions of the architectural traits in 13 diploid rose populations were 

subjected to normality analysis (original and transformed by taking log, log10 and 

square root) using the Shapiro-Wilk test. 

The variance components were calculated with the restricted maximum 

likelihood (REML) method assuming all factors as random effects for a more powerful 

estimation (Dieters et al., 1995; Littell, 1996). The model for heritability analysis was: 

Y = µ + Female + Male + Progeny (Female, Male) + Season + Season × Female + 

Season × Male + Season × Progeny (Female, Male). Because we only have one rose 

seedling per genotype, residual was confounded with Season × Progeny (Female, Male). 

The variances of the parents were considered as additive variance (VA), the progeny 

variance were considered as non-additive variance (VD), repeated measurement between 

May and December data variance was considered as variance of the environment (VE), 

the sum of seasonal interactions (VG×E) was also estimated (Connor et al., 2005). Narrow 

(h2) and broad sense (H2), heritability were estimated by the genetic variance from the 

REML model, where VP = (VA+VD+VG×E/E), h2 = VA/VP, H2 = (VA+VD)/VP (Hallauer et 

al., 2010). 

Selected desirable and undesirable growth types were subjected to a comparison 

of means of all six architectural traits among rose families with season to determine key 

traits for the selection of desirable growth types. 

 



 

61 

 

3.4 Results 

3.4.1 Distribution of six architectural traits 

Based on the normality test, the distribution of plant height and the length of the 

primary shoot fit a normal distribution. The transformation of data of the other 

architectural traits did not show substantial improvement of normality. Thus all 

subsequent statistical analyses were based on the original data.  

A substantial amount of variability was associated with plant height (range 17 to 

62 cm, mean of 39 cm in May and range 14 to 64 cm, mean of 38 cm in December, 

Table 23, Figure 22), the number of primary shoots (range 3 to 53, mean of 23 in May, 

and range 3 to 51, mean of 23 in December, Table 23, Figure 23), the length of the 

primary shoot (range 17 to 64 cm, mean of 39 cm in May, and range 14 to 62 cm, mean 

of 37 cm in December, Table 23, Figure 24), the number of nodes on the primary shoot 

(range 3 to 17, mean of 9.5 in May, and range 4 to 18, mean of 10.4 in December, Table 

23, Figure 25). The number of secondary shoots per primary shoot (range 0 to 6, mean of 

2.0 in May, and range 0 to 10, mean of 4.5 in December, Table 23, Figure 26), and the 

number of tertiary shoots per primary shoot (range 0 to 6, mean of 0.7 in May, and range 

0 to 15, mean of 4.2 in December, Table 23, Figure 27) were skewed towards zero. The 

traits that exhibited substantial variability should allow for genetic improvement. 

There were differences among the populations in all of the architectural traits 

measured as well as differences among the data taken in the early (May) versus the late 

(December) season in the number of nodes on the primary shoot, the number of 
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secondary shoots per primary shoot and the number of tertiary shoots per primary shoot. 

Although plant height, the number of primary shoots, and the length of the primary shoot 

were predictable with early season information, the growth of the number of nodes for 

primary/secondary/tertiary varied among the populations during the season (Tables 23-

27). 

 

Table 23. Comparison of seasonal means and range of architectural traits for 13 rose 
families evaluated in the field in May and December of 2015, in College Station, TX. 

NS, *, **, *** Non-significant or significant at P ≤ 0.05, 0.01, or 0.001, respectively 
 

 

 

 

 

 
 
 
 

                  May                 Dec 
Sig. 

 Mean Range Mean Range 
Plant height (cm) 39 (17-62) 38 (14-64) NS 
      
Number of primary shoots 23 (3-53) 23 (3-51) NS 
      
Length of 1st shoot (cm) 39 (17-64) 37 (14-62) NS 
      
Number of nodes on 1st shoot 9.5 (3-17) 10.4 (4-18) *** 
      
Number of 2nd shoots per 1st shoot 2.0 (0-6) 4.5 (0-10) *** 
      
Number of 3rd shoots per 1st shoot 0.7 (0-6) 4.2 (0-15) *** 
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Table 24. Analysis of variance for six architectural traits in 13 diploid rose families 
evaluated in the field in May and December of 2015, in College Station, TX. 

       NS, *, **, *** Non-significant or significant at P ≤ 0.05, 0.01, or 0.001, respectively 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Family Season Family × Season 
Plant height (cm) *** NS NS 
    
Number of primary shoots *** NS NS 
    
Length of 1st shoot (cm) *** NS * 
    
Number of nodes on 1st shoot *** *** *** 
    
Number of 2nd shoots per 1st shoot *** *** *** 
    
Number of 3rd shoots per 1st shoot *** *** *** 
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Table 25. Mean separations of six architectural traits for 13 rose families evaluated in the field in May and December of 2015, 
in College Station, TX. 

         Levels not connected by same letter are significantly different and the mean separation is within a column. 
 

 Plant 
height 
(cm) 

#1st 
shoots 

Length of 1st 
shoots 
(cm) 

#Nodes on 
1st shoot 

#2nd shoots 
per 1st shoot 

#3rd shoots 
per 1st shoot 

J06-20-14-3 × Little Chief 27 f 18 e 32 fg 12.0 ab 4.3 ab 4.1 a 
J06-20-14-3 × Red Fairy 37 d 22 d 42 bc 10.9 bc 3.9 bc 3.0 bc 
J06-20-14-3 × Sweet Chariot 39 cd 27 ab 35 ef 9.1 e 3.0 df 1.7 de 
J06-20-14-3 × Vineyard Song 38 cd 24 bd 43 bc 11.4 bc 2.7 ef 1.0 e 
J06-30-3-3 × Red Fairy 39 bd 21 de 39 cd 9.6 de 3.9 bc 3.5 ac 
M4-4 × Sweet Chariot 32 e 23 bd 36 df 9.4 de 3.3 ce 2.2 ce 
M4-4 × Vineyard Song 38 be 31 ac 54 a 14.1 a 5.8 a 3.7 ae 
Old Blush × J06-30-3-3 39 bd 23 bd 39 ce 8.4 ef 2.4 f 1.6 de 
Old Blush × M4-4 36 de 25 bd 29 g 6.7 f 2.7 df 3.1 ad 
Old Blush × Red Fairy 45 a 13 f 39 cd 9.2 e 2.9 ef 1.6 de 
Sweet Chariot × J06-20-14-3  37 d 23 cd 43 bc 12.9 a 4.4 ab 3.8 ab 
Sweet Chariot × M4-4 41 bc 26 bc 39 cd 10.5 cd 3.8 bd 3.2 ac 
Vineyard Song × J06-20-14-3 45 ab 33 a 48 ab 12.6 ac 2.5 cf 1.1 ce 
n 272 272 272 272 272 272 
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Table 26. Two-way ANOVA comparing means of the length of primary shoot and the 
number of nodes on the primary shoot for 13 rose families characterized in May and 
December of 2015, in College Station, TX.  
 

        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NS, *, **, *** Non-significant or significant at P ≤ 0.05, 0.01, or 0.001, respectively 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Length of 1st 
Shoot (cm) 

#Nodes on 
1st Shoot 

May Dec Sig. May Dec Sig. 
J06-20-14-3 × Little Chief 36 29 NS 11.7 12.3 NS 
J06-20-14-3 × Red Fairy 44 41 NS 10.7 11.1 NS 
J06-20-14-3 × Sweet Chariot 37 34 NS 9.6 8.6 NS 
J06-20-14-3 × Vineyard Song 40 46 * 9.5 13.2 *** 
J06-30-3-3 × Red Fairy 41 37 NS 9.5 9.6 NS 
M4-4 × Sweet Chariot 36 36 NS 8.6 10.1 NS 
M4-4 × Vineyard Song 47 57 * 12.0 16.3 * 
Old Blush × J06-30-3-3 40 38 NS 7.7 9.1 NS 
Old Blush × M4-4 27 30 NS 6.1 7.3 NS 
Old Blush × Red Fairy 40 39 NS 9.1 9.2 NS 
Sweet Chariot × J06-20-14-3  44 41 NS 13.7 12.0 NS 
Sweet Chariot × M4-4 42 37 NS 10.0 11.0 NS 
Vineyard Song × J06-20-14-3 44 52 NS 9.0 16.3 *** 
n 272 272 
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Table 27. Two-way ANOVA comparing means of the number of secondary shoots per 
primary shoot and the number of tertiary shoots per primary shoot for 13 rose families 
characterized in May and December of 2015, in College Station, TX. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          NS, *, **, *** Non-significant or significant at P ≤ 0.05, 0.01, or 0.001, respectively 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
#2nd shoots 

per 1st shoot 
#3rd shoots 

per 1st shoot 
May Dec Sig. May Dec Sig. 

J06-20-14-3 × Little Chief 3.3 5.3 *** 2.0 6.3 *** 
J06-20-14-3 × Red Fairy 3.0 4.7 *** 1.2 4.8 *** 
J06-20-14-3 × Sweet Chariot 2.2 3.8 *** 0.7 2.7 ** 
J06-20-14-3 × Vineyard Song 0.8 4.6 *** 0.1 1.9 * 
J06-30-3-3 × Red Fairy 2.9 4.9 *** 1.4 5.7 *** 
M4-4 × Sweet Chariot 1.9 4.7 *** 0.6 3.8 *** 
M4-4 × Vineyard Song 2.0 7.7 *** 1.3 6.0 * 
Old Blush × J06-30-3-3 1.1 3.7 *** 0.1 3.1 *** 
Old Blush × M4-4 0.7 4.8 *** 0.2 5.9 *** 
Old Blush × Red Fairy 1.7 4.0 *** 0.3 3.0 *** 
Sweet Chariot × J06-20-14-3  4.4 4.4 NS 2.3 5.3 *** 
Sweet Chariot × M4-4 2.6 5.0 *** 1.1 5.4 *** 
Vineyard Song × J06-20-14-3 2.0 3.0 NS 0.5 1.8 NS 
n 272 272 
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Figure 22. Distribution of plant height measured in May (upper) and December (lower), 
2015 in College Station, Texas of for 13 rose families x5 = 39 cm, SD5 = 8.80 and n5= 
385; x12 = 38 cm, SD12 = 9.52 and n12 = 375 (10 seedlings died). 
 

 

 

 
Figure 23. Distribution of the number of the primary shoots measured in May (upper) 
and December (lower), 2015 in college Station, Texas of for 13 rose families x5 = 23, 
SD5 = 11.02 and n5 = 385; x12 = 23, SD12 = 10.69 and n12 = 375 (10 seedlings died). 
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Figure 24. Distribution of the length of the primary shoots (cm) measured in May 
(upper) and December (lower), 2015 in College Station, Texas of for 13 rose families x5 
= 39 cm, SD5 = 9.05 and n5 = 385; x12 = 37 cm, SD12 = 9.18 and n12 = 272. 
 

 

 

 
Figure 25. Distribution of the number of nodes on the primary shoot measured in May 
(upper) and December (lower), 2015 in College Station, Texas of for 13 rose families x5 
= 9, SD5 = 2.86 and n5 = 385; x12 = 10, SD12 = 2.92 and n12 = 272. 
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Figure 26. Distribution of the number of secondary shoots per primary shoot measured 
in May (upper) and December (lower), 2015 in College Station, Texas of for 13 rose 
families x5 = 2, SD5 = 1.56 and n5 = 385; x12 = 5, SD12 = 2.05 and n12 = 272. 
 

 

 

 
Figure 27. Distribution of the number of tertiary shoots per primary shoot measured in 
May (upper) and December (lower), 2015 in College Station, Texas of for 13 rose 
families x5 = 1, SD5 = 1.39 and n5 = 385; x12 = 4, SD12 = 3.52 and n12 = 272. 
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3.4.2 Heritability analysis: field study of 13 rose families in May and December of 2015 

As various rose families differ dramatically in the length and the number of 

nodes on their shoots, the data for the number of secondary shoots and the number of 

tertiary shoots were expressed on a per node on the primary shoot basis to standardize 

the data. 

The six architectural traits measured exhibited low to high broad sense 

heritability (0.25-0.92) and low to moderate narrow sense heritability (0.12-0.50) (Table 

28), which indicated that architectural traits are feasible targets of rose breeding. 

            Plant height measured at the plant level, was found highly heritable with a 

moderate narrow sense heritability (h2 = 0.50) and high broad sense heritability (H2 = 

0.82), which was consistent with estimates previously reported by Gitonga et al., (2014) 

(H2 = 0.82) and a little lower than that by Kawamura et al., (2015) (H2 = 0.88) (Table 

28).  

            The number of primary shoots had a low narrow sense heritability (h2 = 0.27) and 

high broad sense heritability (H2 = 0.92), indicating a strong non-additive genetic 

component which accounted for approximately 60% of total phenotypic variance and 

was more than twice that of the narrow sense estimate for this trait (Table 28). Previous 

studies evaluated the number of long axes (shoots have five or more metamers: an 

internode, a node, an axillary bud and a leaf) and the number of determined axes (axes 

terminated in a flower bud or a flower) (Crespel et al., 2013; 2014), which are equivalent 

to some extent to the traits of the number of primary shoots in our study. The broad 

sense heritability for the number of long axes and the number of determined axes 
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reported by Crespel et al., (2014) were 0.70 and 0.64 respectively, and thus were lower 

than that of the number of primary shoots (H2 = 0.92) (Table 28) in our study. 

The length of the primary shoot showed low additive variation (h2 = 0.20) and 

high broad sense heritability (H2 = 0.64) (Table 28). This is higher than a previous report 

by Crespel et al., (2014) on the length of the long axes (H2 = 0.48). Non-additive genetic 

variance component accounted for approximately 32% of phenotypic variance compared 

to 15% (Table 28) for the additive genetic component. The number of nodes on the 

primary shoot revealed low narrow sense heritability (h2 = 0.12) and moderate broad 

sense heritability (H2 = 0.46) (Table 28). A previous study reported the broad sense 

heritability of the number of metamers (an internode, a node, an axillary bud and a leaf) 

of the long axes which should be a good estimator of the number of nodes on primary 

shoots in our study. According to Crespel et al., (2014), the broad sense heritability of 

the number of metamers is 0.95 which is higher than that found in our study on the 

number of nodes on a primary shoot (H2 = 0.46) (Table 28). 

The number of secondary shoots per primary node had low narrow sense 

heritability (h2 = 0.17) and broad sense heritability (H2 = 0.25) (Table 28). As for the 

number of tertiary shoots per primary node, narrow sense heritability is low (h2 = 0.16) 

while broad sense heritability is moderate (H2 = 0.40) (Table 28).  
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Table 28. Variance component, broad sense heritability (H2), and narrow sense heritability (h2) for six plant architectural traits 
evaluated in the field in May and December of 2015, in College Station, TX. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
N: number of observations; VA = additive genetic variance; VD = non-additive genetic variance; VG = genetic variance 
(additive and non-additive); VE = environmental variance; VG×E = genotype × environmental variance; VP = phenotypic 
variance; VP = (VA+VD+ VG×E/E); h2 = VA/VP, H2 = (VA+VD)/VP.

Traits N R2 
           Variances 

 h2                 H2 
VA VD VG VG×E VP 

Plant height (cm) 750 0.70 56.4 36.9 93.3 
 

40.1 113.4  0.50       0.82 

Number of 1st shoot 750 0.90 35.8 85.2 121.0 
 

22.1 132.1  0.27       0.92 

Length of 1st shoot (cm) 544 0.68 17.9 38.7 56.6 
 

62.4 87.9  0.20       0.64 

Number of nodes on 1st shoot 544 0.61 1.2 3.2 4.4 
 

10.1 9.5  0.12       0.46 
Number of 2nd shoots 
per 1st node 544 0.46 0.0033 0.0014 0.0047 

 
0.028 0.019  0.17       0.25 

Number of 3rd shoots  
per 1st node 544 0.48 0.011 0.017 0.028 

 
0.083 

 
0.055   0.16       0.40 
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3.4.3 Genotype by environment interaction 

Among six architectural traits, plant height and the number of primary shoots 

showed weak genotype by environment interaction as indicated by the low VG×E  to VG 

ratios (0.43 and 0.18, respectively) (Table 29), reflecting genotypic consistency across 

seasons. The length of the primary shoot was moderately affected by genotype by 

environment interaction (VG×E /VG ratios of 1.10, respectively) (Table 29). A strong 

genotype by environment interaction was found for the number of nodes on the primary 

shoot, the number of secondary shoots and tertiary shoots per primary node (VG×E /VG 

ratios of 2.30, 5.96 and 2.96, respectively) which was a reflection of how the plant grows 

after the initial spring/early summer flush (Table 29). Genotype by environment 

interaction has been described as differential response of genotypes to the environment 

in which they are grown (Bernardo, 2010). If such interactions exist in the case of 

specific genotypes across specific environments, selection on the basis of performance 

for a given trait cannot be practiced in one environment if the plant is expected to 

perform the same in another (Allard et al., 1964). 
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Table 29.  Genotypic variance, variance for genotype × environment interaction and 
ratio of variance of  the genotype × environment interaction to the total genetic variance 
for six plant architectural traits evaluated in the field in May and December of 2015, in 
College Station, TX. 
 

     N: number of observations; VG = genetic variance (additive and non-additive); VE =          
     environmental variance; VG×E = genotype × environmental variance. 
 
 
 
 
 
3.4.4 Two-way ANOVA comparing family, season and family by season means 
 

For the architectural traits subjected to two-way ANOVA comparing family, 

season and family by season means, most (11 out of 13) families showed an increased 

number of secondary/tertiary shoots per node on the primary shoot (Table 30). Among 

those with increased number of secondary and tertiary shoots, the number seen in 

December at the end of the season varies among populations as well. The ‘Old Blush × 

M4-4’ family had the highest (0.64/0.78 secondary/tertiary shoots per primary shoot 

node) and the ‘Vineyard Song × J06-20-14-3’ family had the lowest (0.30/0.15 

Traits N 
Variances  

VG VG×E VG×E/VG  

Plant height (cm) 750 93.3 
 

40.1 0.43  

Number of 1st shoot 750 121.0 
 

22.1 0.18  

Length of 1st shoot (cm) 544 56.6 
 

62.4 1.10  

Number of nodes on 1st shoot 544 4.4 
 

10.1 2.30  
Number of 2nd shoots per 1st 
node 544 0.0047 

 
0.028 5.96  

Number of 3rd shoots per 1st 
node 544 0.028 

 
0.083 2.96  
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secondary/tertiary shoots per primary shoot node) number of second and third level 

shoots forming (Table 31).   

 

Table 30. Two-way ANOVA comparing means of the number of secondary shoots per 
primary node and the number of tertiary shoots per primary node for 13 rose families 
characterized in May and December of 2015, in College Station, TX.  
 

 
#2nd shoots 
per 1st node 

#3rd shoots 
per 1st node 

May Dec Sig. May Dec Sig. 
J06-20-14-3 × Little Chief 0.28 0.45 *** 0.18 0.54 *** 
J06-20-14-3 × Red Fairy 0.29 0.43 *** 0.11 0.46 *** 
J06-20-14-3 × Sweet Chariot 0.22 0.45 *** 0.06 0.29 *** 
J06-20-14-3 × Vineyard Song 0.08 0.36 *** 0.01 0.17 * 
J06-30-3-3 × Red Fairy 0.35 0.52 *** 0.19 0.62 *** 
M4-4 × Sweet Chariot 0.23 0.49 *** 0.06 0.41 *** 
M4-4 × Vineyard Song 0.19 0.59 *** 0.19 0.35 NS 
Old Blush × J06-30-3-3 0.13 0.41 *** 0.00 0.38 *** 
Old Blush × M4-4 0.11 0.64 *** 0.03 0.78 *** 
Old Blush × Red Fairy 0.18 0.44 *** 0.03 0.32 *** 
Sweet Chariot × J06-20-14-3  0.33 0.37 NS 0.17 0.44 *** 
Sweet Chariot × M4-4 0.25 0.47 *** 0.11 0.51 *** 
Vineyard Song × J06-20-14-3 0.26 0.30 NS 0.05 0.15 NS 
n 272 272 

         NS, *, **, *** Non-significant or significant at P ≤ 0.05, 0.01, or 0.001, respectively. 

 

 

 
 
 
 
 
 
 
 
 



 

76 

 

Table 31. Mean separations among families of the number of secondary shoots per 
primary node and the number of tertiary shoots per primary node for 13 rose families 
characterized in May and December of 2015, in College Station, TX  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Levels not connected by same letter are significantly different and the mean separation is 
within a column. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
#2nd shoots 
per 1st node 

#3rd shoots 
per 1st node 

May Dec May Dec 
J06-20-14-3 × Little Chief 0.28 ad 0.45 bf 0.18 a 0.54 ac 
J06-20-14-3 × Red Fairy 0.29 ac 0.43 bf 0.11 ab 0.46 be 
J06-20-14-3 × Sweet Chariot 0.22 de 0.45 bf 0.06 bd 0.29 ef 
J06-20-14-3 × Vineyard Song 0.08 g 0.36 e 0.01 d 0.17 f 
J06-30-3-3 × Red Fairy 0.35 a 0.52 ab 0.19 a 0.62 ab 
M4-4 × Sweet Chariot 0.23 ce 0.49 bf 0.06 bd 0.41 be 
M4-4 × Vineyard Song 0.19 bg 0.59 ac 0.19 a 0.35 af 
Old Blush × J06-30-3-3 0.13 fg 0.41 cf 0.00 d 0.38 cf 
Old Blush × M4-4 0.11 fg 0.64 a 0.03 cd 0.78 a 
Old Blush × Red Fairy 0.18 ef 0.44 bf 0.03 cd 0.32 df 
Sweet Chariot × J06-20-14-3  0.33 ab 0.37 de 0.17 a 0.44 be 
Sweet Chariot × M4-4 0.25 cd 0.47 bf 0.11 ab 0.51 bd 
Vineyard Song × J06-20-14-3 0.26 ae 0.30 df 0.05 ad 0.15 df 
n 272 272 
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3.4.5 Definition of desirable growth type 
 

An assessment of desirable and undesirable combinations of horticultural traits 

was carried out. We hypothesized that the plant architecture of a desirable plant is 

different from that of an undesirable one. Generally, rose plants that grow to waist to 

shoulder height (Waliczek et al., 2015), with relatively compact shape and evenly-

distributed flowers are considered as desirable (Figure 30a-d) (Boumaza et al., 2009).  

For instance, a desirable plant has well-distributed flowers (Figure 28a, b) while the 

undesirable one has perimeter flowers (Figure 29a, b). 

Rose seedlings with an empty center, due to nodes that do not produce shoots or 

leaves on the lower part of vegetative shoots (see Figure 31a), long flower shoots (Figure 

31b-d), and a non-compact and open shape (Figure 31c, d) are considered as undesirable. 

The value of six architectural traits measured on some of the rose seedlings with 

desirable and undesirable (Table 32) growth types were examined. 

The comparison of the architectural traits between desirable and undesirable 

types (Table 33) indicated that both types differ little in plant height, shoot length or the 

number of nodes per shoot. The key trait that differentiates these groups were the 

number of primary shoots they produced and secondarily the number of secondary and 

tertiary shoots produced. These are the traits that determine the fullness of the plant 

which is an important factor affecting its aesthetic value. A rose plant with many 

primary shoots looks full. However, fewer primary shoots can be compensated by more 

side shoots to attain a good level of fullness. A desirable growth type has more than 

thirty primary shoots frequently combined with multiple secondary and tertiary shoots. 
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Figure 28a & b. Desirable growth type with evenly-distributed flowers. 
 
 

 
Figure 29a & b. Undesirable growth type with perimeter flowers. 

 
 

a b 

a b 
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Figure 30a-d. Rose seedlings with desirable growth type. 

a b 

c d 
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Figure 31a-d. Rose seedlings with undesirable growth type. 

       

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

a 

c d 

b 
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Table 32. The architectural traits of rose seedlings selected with desirable and undesirable growth types. 

 
 
 
 
 

Rose seedlings with desirable growth types 
selected (family) 

Plant 
height 
(cm) 

#1st 
shoots 

Length    
of 

1st shoot 
(cm) 

#Nodes 
on 

1st shoot 

#2nd shoots 
per 1st 
shoot 

#3rd 

shoots per 
1st shoot 

11112-N005 (M4-4 × Vineyard Song) 
10071-N010 (Vineyard Song × J06-20-14-3) 
10074-P35 (J06-20-14-3 × Sweet Chariot) 
10074-N078 (J06-20-14-3 × Sweet Chariot) 
10043-N049 (Sweet Chariot × M4-4) 

45 
58 
36 
56 
60 

52 
36 
51 
50 
42 

34 
40 
37 
48 
32 

6 
12 
9 
8 
7 

1 
5 
3 
5 
5 

0 
7 
0 
5 
6 

Rose seedlings with undesirable growth 
types selected (family) 

Plant 
height 
(cm) 

#1st 
shoots 

Length    
of 

1st shoot 
(cm) 

#Nodes 
on 

1st shoot 

#2nd shoots 
per 1st 
shoot 

#3rd 

shoots per 
1st shoot 

10074-N011(J06-20-14-3 × Sweet Chariot ) 
10038-N100 (Old Blush × J06-30-3-6) 
10071-N006 (Vineyard Song × J06-20-14-3) 
12062-N001 (Old Blush × Red Fairy) 
10075-N013 (M4-4 × Sweet Chariot) 

45 
38 
38 
62 
18 

10 
6 
23 
16 
10 

35 
43 
61 
62 
26 

6 
7 

13 
12 
6 

1 
2 
0 
4 
1 

0 
0 
0 
0 
0 
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Table 33. Compare means of six architectural traits between desirable and undesirable 
growth types.  
 

 Desirable Undesirable Significance 

Plant height (cm) 51.0 40.2 NS 

#1st shoots 46.2 13.0 *** 

Length of 1st shoot (cm) 38.2 45.4 NS 

#Nodes on 1st shoot 8.4 8.8 NS 

2nd shoots per 1st shoot 3.8 1.6 * 

3rd shoots per 1st shoot 3.6 0 * 

          NS, *, **, *** Non-significant or significant at P ≤ 0.05, 0.01, or 0.001, respectively 

 

 

3.5 Discussions and conclusions  

Most architectural traits evaluated in our study were associated with high 

phenotypic variability, while the number of secondary and tertiary shoots were skewed to 

zero. Variability is a major component in the estimation of heritability, and both are 

necessary for genetic improvement.  

The six architectural traits measured exhibited low to high broad sense heritability 

(0.25-0.92) and low to moderate narrow sense heritability (0.12-0.50). Broad-sense 

heritability (H2) has been used as an index of reliability of phenotypic selection for genetic 

characters (Holland et al., 2003), and the accuracy of QTL analysis depends largely on the 

level of H2 (Beavis, 1998).  As the rose is a vegetatively propagated crop, the non-additive 

genetic component of the variation can be captured easily by clonal propagation. Our results 

combined with previous studies (Kawamura et al., 2015; Crespel et al., 2014) that reported 
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high broad sense heritability for several architectural traits of garden roses, indicated that 

rose plant architecture is a feasible target for rose breeding. Architectural traits with low 

narrow sense heritability but moderately high to high broad sense heritability such as the 

number of primary shoots, the length of the primary shoot and the number of nodes on the 

primary shoot in our study suggested important non-additive effects. 

Architectural traits were affected by genotype by environment effect to different 

extents. Plant height and the number of primary shoots were highly heritable and consistent 

over seasons, and thus can be reliably and accurately measured and selected in any season of 

the year. While the number of secondary shoots and tertiary shoots per primary showed 

lower heritabilities and tended to increase in number as the season progressed. The extent of 

this side shoot growth varied by population (high G × E interaction). This would indicate 

that selection in the early season would not predict the final number of secondary/tertiary 

shoots forming throughout the year. Therefore, selection in both the early and late season is 

recommended. 

Pruning is an economical and practical technique for plant growth control 

(Hassanein, 2010). Younis et al., (2013) studied on the effect of different pruning times 

during the winter months on the growth of Rosa centifolia and concluded that pruning 

during early winter increases the plant height, the number of shoots and other vegetative 

characteristics of rose plants. The study of Saffari et al., (2004) revealed that the pruning 

time at first week of March had the most significant effect on the increase of plant height. 

Therefore, further studies on the timing and type of pruning to improve rose plant 

architecture are recommended. 



 

84 

 

The comparison of the architectural components between desirable and undesirable 

types indicated that the key traits for the selection of a desirable growth type are the number 

of primary shoots and the number of secondary and tertiary shoots produced. Of these traits, 

the number of primary shoots will be the easiest to improve as it has a moderately low 

narrow sense heritability but a high broad sense heritability indicating strong non-additive 

genetic effects. The other two traits, have low narrow sense heritability and low to moderate 

broad sense heritabilities indicating a more difficult path to increasing their numbers by 

selection. 

Future studies could focus more on the development of inflorescence components. 

Our ultimate goal is to select rose plants that not only have desirable growth types, but also 

bloom consistently throughout the year. The next step would be to track the flowering 

behavior of the plant throughout the year. This would include the development of shoots and 

the pattern of flower opening among the various levels of inflorescences as they develop and 

relate it to the flower intensity and flower distribution on the plant throughout the growing 

season. As we do these field studies on a range of roses (cultivars, desirable and undesirable 

growth types) and rose populations, the temperature data needs to be recorded to assess the 

effect of temperature on rose growth and flower production. 
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CHAPTER IV  

SUMMARY 

 In the preliminary study, we characterized rose plant architecture on the basis of its 

growth (vegetative and reproductive) and branching processes. Most architectural 

components differed among four rose families, suggesting a strong genotypic effect for plant 

architecture. The strongest correlations found were those for the same traits (the number of 

nodes and the length) between the vegetative part and shoot on both order level shoots. High 

correlations were found for the same traits (the number of inflorescence nodes and flower 

number) between the primary and secondary organs. Moderate to high correlations were 

found between the number of nodes and the length within the primary and/or secondary 

order shoots. Moderate correlation was found for the same traits the length of the 

reproductive part and the internode length between the primary and secondary shoots. No 

correlation was seen between the architectural traits concerning branching process 

(branching angles) and growth processes indicating that it was independent of both 

vegetative traits and reproductive growth processes. 

Most architectural traits evaluated in our major study were associated with high 

phenotypic variability, while the number of secondary and tertiary shoots were skewed to 

zero. The six architectural traits measured exhibited low to high broad sense heritability and 

low to moderate narrow sense heritability. Additionally, architectural traits were affected by 

genotype by environment effect to different extents. Plant height and the number of primary 

shoots were highly heritable and consistent over seasons, while the number of secondary 

shoots and tertiary shoots per primary showed lower heritabilities and tended to increase in 

number as the season progressed. The comparison of the architectural components between 
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desirable and undesirable types indicated that the key traits for the selection of a desirable 

growth type are the number of primary shoots and the number of secondary and tertiary 

shoots produced. 
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APPENDIX A 

SCATTER PLOTS FOR HIGHLY AND MODERATELY CORRELATED TRAITS 
 (R ≥ 0.65 AND 0.64 ≥ R ≥ 0.50) 

 

 
Figure A1. Left: scatter plot of correlation between the number of nodes on the primary 
shoot and the number of nodes on the vegetative part of the primary shoot. Right: scatter 
plot of correlation between the number of nodes on the secondary shoot and the number 
of nodes on the vegetative part of the secondary shoot. 
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Figure A2. Left: scatter plot of correlation between the length of the vegetative part on 
the secondary shoot and the number of nodes on the vegetative part of the secondary 
shoot. Right: scatter plot of correlation between the number of nodes on the reproductive 
part of the secondary shoot and the number of nodes on the reproductive part of the 
primary shoot. 
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Figure A3. Left: scatter plot of correlation between the number of nodes on the 
secondary shoot and the length of the vegetative part of the secondary shoot. Right: 
scatter plot of correlation between the number of nodes on the secondary shoot and the 
length of the secondary shoot. 
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Figure A4. Left: scatter plot of correlation between the length of the vegetative part on 
the secondary shoot and the length of the secondary shoot. Right: scatter plot of 
correlation between the number of flowers on the terminal inflorescence of the 
secondary shoot and the number of flowers on the terminal inflorescence of the primary 
shoot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R2=0.59 
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Figure A5. Left: Scatter plot of correlation between the length of the vegetative part on 
the primary shoot and the length of the primary shoot. Right: scatter plot of correlation 
between the number of nodes on the reproductive part of the secondary shoot and the 
number of nodes on the secondary shoot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R2=0.98 R2=0.38 
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Figure A6. Left: scatter plot of correlation between the length of the vegetative part on 
the primary shoot and the length of the primary shoot. Right: scatter plot of correlation 
between the length of the vegetative part of the primary shoot and the number of nodes 
on the primary shoot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R2=0.25 R2=0.27 
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Figure A7. Left: scatter plot of correlation between the number of nodes on the 
reproductive part of the primary shoot and the length of the reproductive part of the 
primary shoot. Right: scatter plot of correlation between the number of nodes on the 
reproductive part of the primary shoot and the length of the reproductive part of the 
secondary shoot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R2=0.30 R2=0.26 
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Figure A8. Left: scatter plot of correlation between the number of nodes on the 
reproductive part of the secondary shoot and the length of the reproductive part of the 
primary shoot. Right: scatter plot of correlation between the number of nodes on the 
reproductive part of the secondary shoot and the length of the reproductive part of the 
secondary shoot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R2=0.35 R2=0.30 
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Figure A9. Left: scatter plot of correlation between the number of nodes on the 
vegetative part of the secondary shoot and the length of the secondary shoot. Right: 
scatter plot of correlation between the number of nodes on the primary shoot and the 
length of the primary shoot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R2=0.39 R2=0.29 
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Figure A10. Left: scatter plot of correlation between the number of nodes on the 
secondary shoot and the number of flowers on the terminal inflorescence of the primary 
shoot. Right: scatter plot of correlation between the length of the reproductive part of the 
primary shoot and the length of the reproductive part of the primary shoot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R2=0.25 R2=0.37 
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Figure A11. Left: scatter plot of correlation between the length of the reproductive part 
of the primary shoot and the length of the secondary shoot. Right: scatter plot of 
correlation between the length of the reproductive part of the secondary shoot and the 
length of the secondary shoot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R2=0.25 R2=0.41 



 

109 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A12. Scatter plot of correlation between the internode length of the primary shoot 
and the internode length of the secondary shoot. 
 
 
 

R2=0.29 
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