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ABSTRACT

We use a transdimensional inversion algorithm, reversible jump MCMC (rjMCMC),

in the seismic waveform inversion of post-stack and prestack data to characterize

reservoir properties such as seismic wave velocity, density as well as impedance and

then estimate uncertainty. Each seismic trace is inverted independently based on

a layered earth model. The model dimensionality is defined as the number of the

layers multiplied with the number of model parameters per layer. The rjMCMC

is able to infer the number of model parameters from data itself by allowing it to

vary in the iterative inversion process, converge to proper parameterization and

prevent underparameterization and overparameterization. We also use rjMCMC

to enhance uncertainty estimation since it can transdimensionally sample different

model spaces of different dimensionalities and can prevent a biased sampling in only

one space which may have a different dimensionality than that of the true model

space. An ensemble of solutions from difference spaces can statistically reduce the

bias for parameter estimation and uncertainty quantification. Inversion uncertainty is

comprised of property uncertainty and location uncertainty. Our study revealed that

the inversion uncertainty is correlated with the discontinuity of property in such a

way that 1) a smaller discontinuity will induce a lower uncertainty in property at the

discontinuity but also a higher uncertainty of the location of that discontinuity and 2)

a larger discontinuity will induce a higher uncertainty in property at the discontinuity

but also a higher ‘‘certainty’’ of the location of that discontinuity. Therefore, there is

a trade-off between the property uncertainty and the location uncertainty. To our

surprise, there is a lot of hidden information in the uncertainty result that we can

actually take advantage of due to this trade-off effect. On the basis of our study
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using rjMCMC, we propose to use the inversion uncertainty as a novel attribute

in an optimistic way to characterize the magnitude and the location of subsurface

discontinuities and reflectors.
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1. INTRODUCTION

1.1 Research Question and Motivation

In the geophysical studies, what we know is the data collected via a variety

of ways and what we don’t know is the model that can honor the real earth and

explain the data. Inversion is the mapping process from data space to model space,

which is an informational conversion from the data to the model. A successful

inversion should answer these three critical questions for most geophysical inverse

problems, that is, how to parameterize the earth model with appropriate parameters,

how to estimate these parameters from the data available and how to assess the

uncertainty. Most geophysical inversion studies in the past century focused on

answering the second question and didn’t put emphasis on the first and the third

questions. Only in the recent couple of decades, geophysicists started to study more

on answering these two questions. On the one hand, an proper parameterization prior

to inversion is a prerequisite rather than an option for a good inversion. On the other,

a complete inversion result should include the parameter estimation as well as the

uncertainty quantification for these parameters since the non-uniqueness of inversion

results is almost inevitable for most inverse problems. This PhD dissertation aims at

tackling all these three crucial questions at the same time with one approach, and in

order to make this research outstanding and distinct from other people’s work, we

put more emphasis on answering the first and the third questions using a modern

inversion algorithm, transdimensional Markov chain Monte Carlo method which will

be explained later on. Although we conducted this research using seismic waveform

data to build the earth model through seismic inversion, the inversion method and

the uncertainty analysis in this dissertation can be generalized to be applied in other

1



geophysical inverse problems as well as those in other scientific areas.

Seismic inversion is a quantitative inference of the interior physical properties

of the earth from seismic data. However, the complexity of the earth properties is

barely well known or even unknown, so a proper parameterization of the earth model

is accordingly unknown and cannot be presumed. Most inversion algorithms, either

deterministic or stochastic, presume a certain parameterization and fix the model

dimensionality (number of model parameters), which may lead to underparameteri-

zation or overparameterization. Underparameterization and overparameterization

may force the inversion to search in a wrong model space of a wrong dimension-

ality. To deal with this issue, the inversion method should be able to allow the

model dimensionality to vary and let the data itself to infer it which means that the

model dimensionality is treated as an unknown parameter that needs to be inverted.

Therefore, we decided to use a transdimensional inversion approach.

In the meanwhile, the transdimensional approach can also enhance the uncertainty

estimation on the grounds that it conducts sampling in different spaces with different

dimensionalities and forces the inversion to favor those spaces which include or are

close to the space of the true model. Hence, the average solution can serve as an

optimal representation of the true model. In a statistical sense, the transdimensional

implementation exerts a less bias for both parameter estimation and uncertainty

quantification compared to the traditional scenario that the inversion is only allowed

to search in a predefined single space which may be distinct from the true model

space. Obviously, if using the traditional inversion methods with an improper param-

eterization, the solution or the ensemble of solutions will be biased and consequently

the uncertainty estimation will also be biased due to the searching in the wrong

model space. Therefore we promoted to utilize the transdimensional approach to

facilitate uncertainty analysis. But before we go deeper into this method, let us first
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have an overview of traditional non-transdimensional algorithms which are widely

used in geophysics.

1.2 Brief Overview of Conventional Algorithms

Many inversion algorithms and their applications in geophysical inverse problems

are well documented. Inversion algorithms are comprised of two major categories,

deterministic and stochastic. Deterministic algorithms have been widely used in

geophysics since a few decades ago in that they generally don’t need many iterations

and are fast to implement. A commonly used deterministic method is the generalized

linear inversion (GLI) (Tarantola and Valette, 1982a; Cooke and Schneider, 1983).

GLI is an iterative process which requires derivative information of an objective

function and a good initial model which can be built based on prior information such

as well logs. The application of GLI in seismic inversion is referred to Hampson et al.

(1984), Tarantola (1986), Mora (1987), Demirbag et al. (1993) and Pan et al. (1994).

Unlike deterministic algorithms which needs a good initial model and produces one

single model as the final solution, stochastic algorithms generally don’t require a good

initial model and they are able to search the entire model space and produce a set of

models which can fit the data within a certain predefined tolerance, and therefore

they can enhance inversion process and uncertainty estimation. However, they need

more computational iterations than deterministic methods in order to search the

model space globally instead of locally. Due to this reason, stochastic approaches

may require a fast forward calculation. Common stochastic methods include Monte

Carlo methods such as Markov chain Monte Carlo (MCMC), Simulated Annealing

(SA), Genetic Algorithm (GA), Neural Network (NN), Swarm Intelligence methods

such as Particle Swarm Optimization (PSO), and Neighborhood Algorithm (NA),

etc.
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MCMC usually adopts the Metropolis-Hastings algorithm which generates a

random walk using a proposal probability distribution. This random walk proposes a

new model based on the current model and also rejects some of the proposed models.

Early introduction is given by Metropolis et al. (1953) and Hastings (1970). MCMC

is generally cast in a Bayesian framework and is widely used in geophysical inversion

(Mosegaard and Tarantola, 1995; Sen and Stoffa, 1995, 1996; Curtis and Lomax, 2001;

Mosegaard and Sambridge, 2002; Sambridge and Mosegaard, 2002; Malinverno and

Briggs, 2004; Malinverno and Leaney, 2005) and particularly in seismic inversion

(Godfrey et al., 1980; Mosegaard et al., 1997; Eidsvik et al., 2004; Hong and Sen,

2009; van der Burg et al., 2009; Martin et al., 2012; Chen and Glinsky, 2014).

SA is an optimization process that simulates the evolution of a physical system

as it cools and anneals into a state of minimum energy (Sen and Stoffa, 2013). This

method is an adaptation of the Metropolis?Hastings algorithm, that is, a Monte Carlo

method to generate sample states of a thermodynamic system. The SA was early

introduced by Kirkpatrick et al. (1983) and then further described by Geman and

Geman (1984), Mitra et al. (1986), Anily and Federgruen (1987a,b), van Laarhoven

and Aarts (1987) and Aarts and Korst (1988). It has been successfully applied in

many geophysical inverse problems (Rothman, 1985, 1986; Basu and Frazer, 1990;

Scales et al., 1992) and especially in the seismic inversion (Sen and Stoffa, 1991; Scales

et al., 1991, 1992; Vestergaard and Mosegaard, 1991; Ma, 2001a,b, 2002; Srivastava

and Sen, 2009, 2010; Tran and Hiltunen, 2012b).

GA, first proposed by Holland (1975), is based on the analogies with genetic

processes of selection, crossover and mutation. Detailed description is referred to

Davis (1987), Goldberg (1989), Buckles and Petry (1992) and Forrest (1993). GA

was first used by geophysicists in the early 1990s (Stoffa and Sen, 1991; Gallagher

et al., 1991; Smith et al., 1992; Scales et al., 1992) and has been used mainly in the
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area of seismic inversion (Stoffa and Sen, 1991; Sen and Stoffa, 1992; Sambridge and

Drijkoningen, 1992; Gallagher and Sambridge, 1994; Mallick, 1995, 1999; Boschetti

et al., 1995, 1996; Morgan et al., 2012; Tran and Hiltunen, 2012a; Padhi and Mallick,

2013, 2014; Li and Mallick, 2015; Fang and Yang, 2015).

NN simulates systems of interconnected ‘‘neurons’’ which exchange messages

between each other. These connections have numeric weights which can be tuned

based on experience so that the neural network is adaptive to inputs and capable

of learning. Its applications in geophysics are described by Calderón-Maćıas et al.

(2000), van der Baan and Jutten (2000) and Poulton (2002). It is both implemented

in seismic inversion (Röth and Tarantola, 1994; Langer et al., 1996; Baddari et al.,

2010) and reservoir chacterization (An et al., 2001; Saggaf et al., 2003; Leite and

Vidal, 2011; Ahmadi et al., 2013; Mohamed et al., 2015).

PSO is a stochastic evolutionary inversion and optimization algorithm originally

inspired by the social behavior of individuals (called particles) in nature such as bird

flocking and fish schooling (Kennedy and Eberhart, 1995). In the PSO, the models,

called particles, are navigated in the model space by following the current optimal

model as well as their individual best location in the moving history. This method is

relatively newer than the above methods, and it is now used to invert geophysical

data and characterize reservoir (Shaw and Srivastava, 2007; Fernández-Mart́ınez

et al., 2008, 2012; Zhe and Gu, 2013).

NA was introduced by Sambridge (1999a,b) for geophysical inverse problems. NA

divides the model space using Voronoi cells and facilitates the global inversion. A

seismic inversion example can be referred to Fliedner et al. (2012).
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1.3 Overview of the Transdimensional Approach, rjMCMC

All the abovementioned conventional methods generally presume a certain param-

eterization and fix the model dimensionality in the inversion process. This will give

rise to issues such as underparameterization and overparameterization. Using too few

parameters will lead to data underfitting and biased solutions. Using more parame-

ters than necessary can lead to the overfitting of data noise and under-determined

parameters with excessive uncertainty (Dosso et al., 2014), not to mention the low

computation efficiency due to the ‘‘curse of dimensionality’’. Therefore, the transdi-

mensional approach can solve this challenge since it treats the model dimensionality

as an unknown to be inverted and uses the data to infer the dimensionality. The

transdimensional approach in our research, rjMCMC, originates from Geyer and

Moller (1994) and Green (1995, 2003). This method has been termed transdimensional

Markov chain by Sisson (2005). Sambridge et al. (2006) and Gallagher et al. (2009)

presented an overview of this algorithm and its applications in Earth science. The

rjMCMC was first applied in geophysics in 2000 in an inversion study of zero-offset

vertical seismic profiles (Malinverno, 2000; Malinverno and Leaney, 2000). Since

then, it has been utilized in a variety of geophysical inverse problems, including

earthquake seismology and tomography (Bodin et al., 2009; Bodin and Sambridge,

2009; Agostinetti and Malinverno, 2010; Bodin et al., 2012a,b; Young et al., 2013; Zul-

fakriza et al., 2014; Kolb and Lekić, 2014; Galetti et al., 2015), geoacoustic inversion

(Dettmer et al., 2010; Dettmer and Dosso, 2012; Steininger et al., 2013; Dettmer et al.,

2013; Dosso et al., 2014), and electrical and magnetotelluric geophysics (Malinverno,

2002; Minsley, 2011; Brodie and Sambridge, 2012; Ray and Key, 2012; JafarGandomi

and Binley, 2013; Ray et al., 2014; Gehrmann et al., 2015). Dadi (2014) and Dadi

et al. (2015) used rjMCMC for seismic impedance inversion, uncertainty estimation
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and well log upscaling. Biswas and Sen (2015) applied it to seismic inversion by using

a synthetic model. In our research, we firstly applied the rjMCMC by using oilfield

data to characterize the petroleum reservoir and assess uncertainty.

1.4 Outline of This Dissertation and Scientific Contributions

In this dissertation, section 1 covers an introduction and literature overview

of conventional inversion methods and the transdimensional approach. In section

2, we implement the trandimensional method in seismic inversion and uncertainty

estimation, and explain how we apply the method in detail. The research work

in section 3 is a more advanced topic compared to section 2, and we use prestack

data to simultaneously invert acoustic/shear impedance and density and conduct

uncertainty quantification since prestack seismic inversion can provide more insights

to understand reservoir’s fluids and lithology which are the important aspects in the

petroleum exploration. In section 4, we concentrate on uncertainty analysis in the

seismic inversion and we find out that the inversion uncertainty (including property

uncertainty and location uncertainty) is correlated with the discontinuity of property.

And we firstly discover that there is a trade-off between the property uncertainty and

the location uncertainty in the inversion. Therefore, we propose to use the inversion

uncertainty as a new attribute to facilitate delineation of subsurface reflectors and

quantify the magnitude of subsurface discontinuities.
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2. SEISMIC WAVEFORM INVERSION AND UNCERTAINTY ESTIMATION

USING TRANSDIMENSIONAL MARKOV CHAIN MONTE CARLO

METHOD

2.1 Introduction

Inversion is the mapping process from data space to model space. Seismic inversion

is a quantitative inference of the interior physical properties of the earth from seismic

data. For most geophysical inverse problems, a successful inversion method should be

able to answer these 3 critical questions altogether. They are 1) how to parameterize

the model with proper parameters, 2) how to estimate these parameters and 3) how to

quantify the uncertainty of parameter estimation. Scientific approaches that answer

the second question have been well documented in geophysical literatures, but most

of them don’t put too much emphasis on solving the first and third questions. The

purpose of this research is to answer all these three questions together by using a

modern inversion algorithm and put more emphasis on tackling the first and third

questions.

As for the first question, the complexity of the earth properties is not well known or

even unknown, so a proper parameterization of the earth model is a necessary process

for a successful and efficient inversion. The model dimensionality is defined as the

number of model parameters to depict the model. Most inversion algorithms, either

deterministic or stochastic, presume a certain parameterization and fix the model

dimensionality, which may lead to underparameterization or overparameterization.

Our objective of seismic inversion is not only to find good models that fit the data but

also to appraise the uncertainty in the inversion results from a sampling procedure.

But the challenge is that if the sampling takes place in a model space which may have
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a very different dimensionality from the true model’s dimensionality, the solution

ensemble may be biased and give rise to biased uncertainty estimation. Therefore,

we used a modern stochastic transdimensional approach known as the reversible

jump Markov chain Monte Carlo (rjMCMC) method (Green, 1995, 2003). This

approach is able to allow the number of parameters to vary and search the model

spaces of different dimensionalities to achieve appropriate parameterizations. It also

enhances the uncertainty quantification by obtaining a set of solutions from these

different spaces. The term reversible jump means the Markov chain is able to jump

back and forth between the different spaces corresponding to different numbers of

model parameters. For a layered model example, this transdimensional process is

accomplished by occasionally proposing to split a layer by adding a layer interface or

merge two adjacent layers by deleting their interface (Malinverno, 2002).

As for the third question, the uncertainty estimation in stochastic inversion is

mainly contingent on the model ensemble collected via a global searching in the

model space. If the above first question were not well addressed, or in other words,

the model were not properly parameterized, the inversion sampler would search in

the wrong model space, and the following consequence would be a biased uncertainty

estimation when assessing the model ensemble. Therefore, the transdimensional

algorithm is promoted to facilitate uncertainty quantification as will be mentioned

later.

The advantage of rjMCMC over other conventional non-transdimensional ap-

proaches is the main motivation of this research, and we introduce the rjMCMC in

the seismic waveform inversion to characterize reservoir properties and assess the

uncertainty. The overview of the rjMCMC and its advantages over other conventional

inversion methods are referred to Section 1.3. In this dissertation, the data refers to

the seismic data including amplitudes, travel times and waveforms so our inversion is
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waveform-based instead of amplitude-based.

2.1.1 Uncertainty Estimation

The knowledge of any object can be subdivided into what we know we know

and what we know we do not know (Ma, 2011; Osypov et al., 2013). The goal of

the uncertainty quantification is to answer what we know we do not know. For

clarification, the uncertainty should not be treated as something we don’t know, but it

is defined as the range of possible outcomes. In the recent years, geophysicists started

to put more emphasis on uncertainty estimation. Uncertainty includes measurement

uncertainty (or data uncertainty) and inference uncertainty (or model uncertainty).

In this study, we focus on inversion inference and model uncertainty so the uncertainty

in this dissertation refers to model uncertainty. Sen and Stoffa (1996) and Scales

and Tenorio (2001) presented overviews of uncertainty quantification in geophysics,

and Duijndam (1988b) in seismic inversion. The uncertainty in geophysical inverse

problems was estimated by various stochastic inversion algorithms, such as MCMC

(Liu and Stock, 1993; Malinverno and Briggs, 2004; Chen and Dickens, 2009; Gunning

et al., 2010; Kwon and Snieder, 2011), SA (Dosso, 2002; Dosso and Nielsen, 2002;

Bhattacharya et al., 2003; Roy et al., 2005; Varela et al., 2006), PSO (Fernández-

Mart́ınez et al., 2012; Rumpf and Tronicke, 2015), and rjMCMC (Dettmer et al.,

2013; Reading and Gallagher, 2013; Dadi, 2014; Galetti et al., 2015; Dadi et al., 2015).

In most of these works, the uncertainty analysis is cast in a Bayesian framework.

2.1.2 Outline of This Section and Scientific Contributions

In this section, we will illustrate the methodology (Section 2.2), apply rjMCMC

using synthetic seismic data (Section 2.3), and then apply it using an oilfield seismic

data to characterize the petroleum reservoir in Norne field, North Sea (Section 2.4).

We will show these following benefits of using rjMCMC in seismic waveform
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inversion.

1. The rjMCMC can infer the model dimensionality from the data itself, achieve

proper parameterizations to prevent underparameterization and overparame-

terization. This approach is able to obtain a family of inverted solutions with

different parameterizations.

2. The inversion uncertainty, which includes property uncertainty and location

uncertainty, is correlated with the discontinuity of property. Larger discontinu-

ity will cause more uncertainty in model property but also more certainty in

location. Hence, the inversion uncertainty caused by major discontinuities will,

however, assist in delineation of layer interfaces or boundary surfaces. This

means that we can use the inversion uncertainty from a positive perspective to

pinpoint the layer interfaces and quantify the magnitude of subsurface disconti-

nuities such as a transition of lithology, which enhances the drilling management.

2.2 Methodology

The inverse problem in this section includes seismic waveform inversion of a 2-D

post-stack data to build a 2-D earth model and uncertainty analysis. The inversion

involves these general steps: 1) stochastically generate an initial model based on

prior information, 2) update the model using rjMCMC iteratively via a data fitting

process that compares the observed data with the modeled data and 3) collect an

ensemble of all the models with good fitness, obtain the average model and estimate

the uncertainty. Each seismic trace is inverted independently based on 1-D layered

model, and then all the inverted 1-D models are combined to make the 2-D earth

model. The model properties to be inverted are comprised of P-wave velocity Vp and
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density ρ of each layer. The inverted P-wave impedance Zp is calculated by Vpρ. The

number of layers is also treated as an unknown, and it will be inferred from the data

through the transdimensional inversion.

2.2.1 Model Parameterization

Our model is represented by m = [Vp, ρ,L, n], where n is the number of lay-

ers, L = [L1, L2, ..., Ln−1] denotes the location of n − 1 interfaces, and Vp =

[Vp1, Vp2, ..., Vpn] and ρ = [ρ1, ρ2, ..., ρn] represent P-wave velocities and densities

of n layers. In the inversion process, the n is unknown so it is initialized with an

arbitrarily chosen number and it is allowed to vary stochastically from the current

iteration to the next. Since seismic inversion uses seismic data sampled by 4 ms or

2 ms, the minimum thickness of a layer that can be detected via seismic inversion is

a few meters. So we can set an upper limit for n, say, 50 for a model which is 200 m

in thickness.

The model space (the allowed ranges of model parameters) for Vp and ρ is

continuous. However the model space for L and n is discrete since the model has to

be spatially discretized in depth or time with a certain given resolution for numerical

computation, say, 1 m. If the inversion depth is from 2000 m to 2200 m with

resolution of 1 m, then there are N = 199 possible values for the depth of an interface

Li, say, 2001, 2002, and so on. However, N should not be confused with n which is

the number of layers.

Nevertheless, the inversion product is not only one single optimized model with one

parameterization, but is a group of good models with different parameterizations which

can fit the data almost equally well regarding the presence of data noise. By statistical

analysis in the following sections, we will show that different parameterization schemes

will have different probabilities in the posterior probability distribution, that is, there
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are more models with proper parameterizations than those with underparameterization

and overparameterization because rjMCMC favours proper parameterizations.

2.2.2 Forward Calculation

Forward calculation or the forward modeling is the process to generate data given

a model. Disregarding the computation expense, the stochastic rjMCMC approach

can adopt forward calculation methods such as Finite Difference Method (FDM),

Finite Element Method (FEM), Spectral Element Method (SEM), etc. However, in

order to obtain inversion results within a short amount of time for large 3D datasets,

it is recommended to use fast forward modeling methods such as the reflectivity

method (Kennett, 1983) and seismic convolution method. Due to the fact that our

study region has simple geological structures without steep reflectors such as salt

diapir, we chose seismic convolution modeling as the forward calculation method in

which the seismic data can be generated by the convolution of the source wavelet

and seismic reflectivity.

2.2.3 Bayesian Inference

In the earth sciences, inversion is usually implemented in two ways. One is to find

a single set of model parameters through optimization of a data misfit function often

combined with some regularization term (Parker, 1994). The other way is through

sampling of an posterior probability density function (PDF) cast in a Bayesian

framework. Standard references for Bayesian inference are by Box and Tiao (1973)

and Smith et al. (1992). Its applications in geophysics are given by Tarantola and

Valette (1982b), Jackson and Matsu’ura (1985), Duijndam (1988a,b), Mosegaard

and Tarantola (1995), Sen and Stoffa (1995, 1996), Malinverno (2000) and Ulrych

et al. (2001). The application specifically in seismic inversion is given by Gouveia

and Scales (1998) and Buland and Omre (2003).
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An inverse problem can be set up in a Bayesian framework which estimates the

posterior probability distribution of the model parameters of interests from prior

information and a likelihood function, sometimes referred to as a fitness (measure

of agreement) or misfit function (measure of disagreement). The misfit function is

also called the error function, objective function, cost function, etc. The Bayesian

inference in the inverse problem can be formulated as follows:

p(m|dobs) =
p(dobs|m)p(m)

p(dobs)
. (2.1)

p(dobs|m) is the likelihood function which is the probability of observing the measured

data given a model m. p(m) is the prior PDF of m, that is, the prior knowledge of

m before the data dobs is considered. p(d) is the probability of the observed data,

and it is usually ignored in the inversion process since it is a constant quantity which

is not contingent on any model. p(m|dobs) is the posterior PDF which indicates how

the prior knowledge of m is updated and constrained after the data information is

incorporated. Generally speaking, the posterior distribution of m is narrower and

more constrained than the prior distribution because the data information is added

to infer the model.

2.2.4 The Prior Information

The prior knowledge of the model can be comprised of miscellaneous information

from different sources. The model priors are the ranges and distributions within which

we think the model parameters are reasonable based on the data such as well logs and

the knowledge of geophysics, geology and rock physics in the real earth. If there are

well logs, we can further constrain these model ranges (or model space). For example,

we can set the range of Vp as from V min
p =2.4 km/s to V max

p =4.0 km/s, and the range

of ρ as from ρmin=2.1 g/cc to ρmax=2.7 g/cc. Since we are using a transdimensional
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approach, the number of layers can vary from an allowed minimum to a maximum,

say, from nmin=2 to nmax=50. The prior distribution of model parameters can be set

as uniform, Gaussian normal or any other type within these ranges. In this study,

we adopted uniform prior distributions for all model parameters because we treated

each model parameter has equal prior probability within its own range before the

inversion is implemented.

The full prior PDF is separated into four terms:

p(m) = p(Vp|n,L)p(ρ|n,L)p(L|n)p(n), (2.2)

where p(n) is the prior on the number of layers, p(L|n) is the prior on the location of

n− 1 interfaces given the number of layers n, and p(Vp|n,L) and p(ρ|n,L) are the

priors on the Vp and ρ models given n and L. These prior PDFs can be formulated

as follows:

p(Vp) =
n∏
i=1

p(Vpi|n), (2.3)

p(Vpi|n)) = 1/(V max
pi − V min

pi ), (2.4)

p(ρ) =
n∏
i=1

p(ρi|n), (2.5)

p(ρi|n)) = 1/(ρmaxi − ρmini ), (2.6)

p(n) = 1/(nmax − nmin), (2.7)

p(L|n) = 1/CN
n−1 =

(n− 1)!(N − n+ 1)!

N !
, (2.8)

where N is total number of possible depths given a certain spatial resolution, and

CN
n−1 = N !

(n−1)!(N−n+1)!
is the number of possible combinations for n−1 layer interfaces

which will occupy n− 1 depths out of N possible depths in total.
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Derived from the above equations, the full prior PDF is written as:

p(m) =
(n− 1)!(N − n+ 1)!

(nmax − nmin)N !
∏n

i=1((V max
pi − V min

pi )(ρmaxi − ρmini ))
. (2.9)

2.2.5 The Likelihood Function

The likelihood function assesses how well a given model can fit the observed data

by computing the difference between the observed data and the modeled data from

forward modeling. The observed data can be written as a combination of the data

produced by the model and data misfit (or data error):

dobs = dmodeled + e = f(m) + e. (2.10)

The difference of the modeled and observed data can be calculated in many ways,

such as the L2-norm error function, a cross correlation (Sen and Stoffa, 1991), and

Shannon’s entropy (JafarGandomi and Binley, 2013). L2-norm is the square root of

the sum of the squares of all the samples (equation (2.11)), whereas the L1-norm is

defined as the sum of the absolute values of all the samples (equation (2.12)).

‖e‖2 =

√√√√ N∑
i=1

e2
i . (2.11)

‖e‖1 =
N∑
i=1

|ei|. (2.12)

In this study, our likelihood function adopted the L1-norm misfit instead of the

L2-norm for two reasons. One is that the L1-norm favours a ‘‘sparse’’ structure

(Oldenburg et al., 1983; Russell, 1988) and this idea is used in the sparse-spike

inversion and deconvolution, which means that a model with few layers will be more
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favorable if it can fit the data well. The other reason is that the L2-norm may lead to

distorted results because it is highly sensitive to data outliers (Claerbout and Muir,

1973).

The L1-norm likelihood function in our inverse problem is written as:

p(dobs|m) ∝ exp

{
−Φ2(m)

2Ndσ2
d

}
, (2.13)

Φ(m) = ‖f(m)− dobs‖1 , (2.14)

where Nd is the number of data samples and σd is a given standard deviation of

the data error e in equation (2.10). σd affects likelihood function and acceptance

probability, and it serves as the data-fitting criterion in the inversion so that a

proposed model with a RMS (root mean square) data-fitting error less than σd will

have more probability to be accepted and a proposed model with an error larger than

σd will be less likely to be accepted.

2.2.6 The Transdimensional Method, rjMCMC

A conventional MCMC method based on a Bayesian inference and the Metropolis-

Hasting algorithm (Metropolis et al., 1953; Hastings, 1970) is able to generate samples

from the posterior probability distribution (PPD) which describes the most likely

model parameters that can fit the data, and it estimates the uncertainty based on

the ensemble of models. A Markov-chain approach usually adopts a random-walk

sampling method that generates a new model m′ stochastically based on the current

model m. The random walk is assumed to be stationary and produces an importance

sampling of the model space after the beginning part of the chain known as the

burn-in period is discarded (Bodin et al., 2012b). The samples from this chain will

provide an approximation to the PPD of the model parameters as well as uncertainty
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quantification thereof. Also on the basis of the MCMC, the rjMCMC allows inference

both on model parameters and model dimensionality. An initial model is selected

randomly and an iterative process is implemented in which the current model is

randomly perturbed and the new model is accepted or rejected according to the

acceptance probability shown by equation (2.15):

α(m′|m) = min

[
1,
p(m′)

p(m)
· p(dobs|m′)
p(dobs|m)

· q(m|m
′)

q(m′|m)
· |J|

]
, (2.15)

where m represents the current model and m′ is the new proposed model. p(m) is the

prior probability, p(dobs|m) presents the likelihood function, and q(m′|m) denotes

the proposal distribution for model perturbation. The matrix J is the Jacobian

of the transformation from m to m′, and |J| proves to be 1 (Bodin et al., 2012b)

for our problems. If the acceptance probability α = 1, the new proposed model

will be accepted. If α < 1, the new proposed model will be accepted only if α is

larger than a random value generated from a uniform distribution (0, 1), otherwise

it will be rejected. If the new proposed model is rejected, the rjMCMC will repeat

for the current iteration and propose another new model until it is accepted. This

process guarantees that each iteration will have a new model so that it can prevent

oversampling in one single model for numerous iterations.

For proposal distribution q(m′|m), a new model is proposed by drawing from this

distribution so that the new model is contingent on the current model m. Our study

sets it either as a Gaussian normal distribution or a uniform distribution centered at

the current model m. If perturbing Vpi or ρi and then proposing a new V ′pi or ρ′i, the

proposal distribution is a Gaussian normal distribution. The proposal distribution is

a uniform distribution if perturbing the location of a interface Li and proposing a
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new L′i. These distributions are written as:

q(V ′pi|Vpi) =
1

σVp
√

2π
exp

{
−

(V ′pi − Vpi)2

2σ2
Vp

}
, (2.16)

q(ρ′i|ρi) =
1

σρ
√

2π
exp

{
−(ρ′i − ρi)2

2σ2
ρ

}
, (2.17)

q(L′i|Li) =
1

∆h
, (2.18)

where σ2
Vp

and σ2
ρ are the given variances of the Gaussian function for the model

perturbation. A larger variance means a greater perturbation, and vice versa. ∆h is

a given perturbation range for moving interface.

Our approach implements the rjMCMC which involves 3 updating strategies

during the random walk, and the inversion will randomly pick one updating strategy

at each iteration.

1. Move an interface: randomly pick one layer interface and perturb its location,

and perturb the geophysical properties (such as Vp and ρ) of the layer either

above or below that interface.

2. Add an interface: randomly choose a location in depth and create a new layer

interface, and perturb the geophysical properties of the layer either above or

below that new interface.

3. Delete an interface: randomly pick one layer interface to remove and perturb

the geophysical properties of the new combined layer.

Since the acceptance or rejection of a new proposed model is contingent on the
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acceptance probability which is governed by the prior ratio p(m′)
p(m)

, the likelihood ratio

p(dobs|m′)
p(dobs|m)

and the proposal ratio q(m|m′)
q(m′|m)

all together. Now let’s take a look at the

formulations of these ratios for different updating strategies respectively.

For the first updating strategy, there is no change of dimension, so the prior

ratio p(m′)
p(m)

= 1, the proposal ratio q(m|m′)
q(m′|m)

= 1, and the likelihood ratio p(dobs|m′)
p(dobs|m)

=

exp
{
−Φ2(m′)−Φ2(m)

2Ndσ
2
d

}
.

For the second updating strategy, a new model m′ is proposed with one more

layer interface, velocity and density. The prior ratio p(m′)
p(m)

= n
N−n+1

, the proposal

ratio q(m|m′)
q(m′|m)

= N−n+1
nq(V ′

p |Vp)q(ρ′|ρ)
, and the likelihood ratio is the same as that in the first

strategy.

For the third updating strategy, a new model m′ is proposed with one fewer layer

interface, velocity and density. The prior ratio p(m′)
p(m)

= N−n+2
n−1

, the proposal ratio

q(m|m′)
q(m′|m)

=
(n−1)q(V ′

p |Vp)q(ρ′|ρ)

N−n+2
, and the likelihood ratio is the same as that in the first

strategy.

Detailed derivations for the proposal ratios are given by Bodin and Sambridge

(2009) and Bodin et al. (2012b). But one difference is that we used n − 1 layers’

interfaces to denote n layers’ locations, and they used the centers (nuclei) of all k

layers, so our n− 1 is equivalent to their k in the formulations. The other difference

is we included terms for density ρ in our equations.

Substituting these ratios into equation (2.15), we will get acceptance probability

for 3 updating strategies respectively as follows:

α(m′|m) = min

[
1, exp

{
−Φ2(m)− Φ2(m′)

2Ndσ2
d

}]
, (2.19)
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α(m′|m) = min[1,
σVp
√

2π

V max
pi − V min

pi

σρ
√

2π

ρmaxi − ρmini

exp{
(V ′pi − Vpi)2

2σ2
Vp

+
(ρ′i − ρi)2

2σ2
ρ

− Φ2(m′)− Φ2(m)

2Ndσ2
d

}],
(2.20)

α(m′|m) = min[1,
V max
pi − V min

pi

σVp
√

2π

ρmaxi − ρmini

σρ
√

2π
exp{−

(V ′pi − Vpi)2

2σ2
Vp

− (ρ′i − ρi)2

2σ2
ρ

− Φ2(m′)− Φ2(m)

2Ndσ2
d

}].
(2.21)

2.2.7 Inversion, Optimization and Sampling

There is a difference between optimization and inversion. Optimization process

aims to find the best model with the lowest misfit between the real data and the

forwardly modeled data. Due to the data noise, the model with the lowest misfit

may not necessarily be the true model for the reasons such as the overfitting of

the noise. The noise will also make the global minimum less outstanding on the

surface defined by the misfit function, so the good local minima and true global

minimum may have almost equal misfits among which it is hard to pick the true

global minimum. But statistically, we believe that good local minima are located

around the global minimum according to a certain distribution such as Gaussian

normal distribution. In most geophysical inverse problems, the goal is not to achieve

one single optimized solution, but instead, to find a set of models fitting the data

and also assess the uncertainty. So the inversion in our research incorporates two

stages. The first stage is the optimization through which an optimized model (or a

good local minimum) near the true model (or global minimum) will be found. This

stage is termed ‘‘burn-in’’ which means the inversion sampler starts from an initial

model of a low likelihood and takes a number of iterations to increase the likelihood

until it reaches an equilibrium level that tends to remain constant (Malinverno,

2002; Agostinetti and Malinverno, 2010). In the second stage which is sampling, the
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inversion sampler is able to jump out of local minima and sample the entire model

space so it can achieve good sampling around the true model. During the sampling

stage, the likelihood will fluctuates about its equilibrium value and then a family

of good models will be collected. In a statistical sense, the average solution of this

ensemble can be regarded as an optimal representation of the true model and the

standard deviation of this solution family can be utilized to quantify the uncertainty.

2.2.8 Uncertainty Analysis and Enhancement by Transdimensional Sampling

The model uncertainty results from the non-uniqueness of the inverted model

given the data. In most inverse problems a set of models may fit the data within a

predefined tolerance through forward calculation. And this set of model solutions

is termed the solution space which is a subset of the model space. Because the

uncertainty is defined as the range of possible outcomes, the measurement of model

uncertainty is a quantification of the size of the solution space in each dimension.

However, a direct measurement of model uncertainty is almost impossible for most

inverse problems in that it is difficult to find a complete set of all the models that

can fit the data especially in a high-dimension model space. Therefore, a stochastic

inversion sampler can be utilized to implement the uncertainty estimation for reason

that it is able to sample the entire model space in all dimensions and collect good

samples which can fit the data. Notwithstanding the group of these samples is not the

complete solution space, they still spread over the solution space. Thus, statistically if

there are enough samples, the standard deviation of these samples in each dimension

is a measurement of the model uncertainty or the size of the solution space in each

dimension.

However, for many inverse problems the dimensionality of the model space is un-

known. For example, the number of layers is unknown when we try to invert acoustic
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impedance in depth for a petroleum reservoir. Hence if we presume a dimensionality

which is quite different from the true model’s dimensionality prior to inversion, or in

another word, if we overparameterize or underparameterize the model, it is very likely

that the inversion process will implement a biased sampling because the inversion

samples in a different dimensional space than the correct dimensional space where

the true model is located. Consequently, the ensemble of inverted model solutions

and the average solution may have a bias, and meanwhile the uncertainty estimation

cannot be implemented properly. Regarding this issue, we use a transdimensional

rjMCMC to enhance inversion and uncertainty estimation on the grounds that the

rjMCMC can sample the spaces with different dimensionalities and achieve appropri-

ate parameterizations to depict the true model. The average model can be used as

an optimal representation of the true model. To quantify the uncertainty, we need

to calculate the standard deviation of the solution ensemble. Since this ensemble

includes models with different parameterizations, we have to downscale these models

with a uniform finer discretization before we calculate the average and the standard

deviation. Statistically this transdimensional implementation introduces less bias

than the sampling only in one single space of a possible wrong dimensionality, and

therefore it enhances the uncertainty estimation.

2.2.9 Calculation of the Average Model and the Uncertainty

An ensemble of inverted models with lowest data misfit will be selected for the

calculation of the average model and the uncertainty. Each model of the ensemble

has different parameterizations with different number of layers and their interfaces’

locations. Hence, in order to calculate the average model and the uncertainty, we

need to downscale all the inverted models in a uniform finer discretization scheme,

say, 0.4 m sampling in depth domain or 0.4 ms sampling in time domain. After this
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downscaling with the same discretization, all the models will be digitized into vectors

or matrices with the same size, so we can easily calculate the mean values of the

model ensemble sample by sample for each time or depth, and can also calculate

the standard deviations of this ensemble sample by sample for each time or depth

for uncertainty quantification. A detailed explanation and the formulations for

calculating the average Model and uncertainty are referred to Section 4.2.4.

However, most data contains random noise (data uncertainty) which will inevitably

propagate into model parameter and model uncertainty. As previously pointed out,

uncertainty includes measurement uncertainty (or data uncertainty) and inference

uncertainty (or model uncertainty). Ideally, the inference uncertainty should be

independent of measurement uncertainty, whereas in reality the data uncertainty

can partially propagate to the model uncertainty. To acquire the average model and

model uncertainty without strongly being affected by data uncertainty, we need to

eliminate or suppress the effect of the random noise on the model and its uncertainty

because we are not expecting a model to explain the unpredictable random noise and

we hope the model uncertainty is driven by the inference but not by the random

noise. Since a complete elimination of noise effect is almost impossible, our goal here

is to suppress it through a lateral moving-average smoothing. The assumption is that

the presence of spatial random noise may possibly lead to slight underestimation of

model parameter and uncertainty in one location and possibly slight overestimation

in its neighboring location, or vice versa. Therefore, this smoothing will assist in

neutralization of estimating model parameter and its uncertainty.

2.2.10 Inversion in Depth Domain and Time Domain

Previously we used terms such as the depth of layer interface which implies a

model in depth domain. However, this method can be implemented in time domain if
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the model is in time domain. And the depth of a layer interface means a certain time

in time domain. All the above equations will be the same if used in time domain but

the only difference is that L has a unit of meter in depth domain, whereas it has a

unit of second in time domain. In our study we implemented rjMCMC inversion in

time domain and the time is two-way travel time(TWT).

2.2.11 Inversion Parameter Setting

Prior to running rjMCMC for an inverse problem, we need to configure rjMCMC

and some parameters.

1. Specify the model priors (including model space and distribution). The model

space is defined by the lower/upper limits of each model parameter including

Vp, ρ, n and L. For example, the model space for Vp is bounded by a given

V min
p and V max

p . Other information such as well logs can be incorporated to

design the model inversion limits. And the prior distributions for all model

parameters are uniform in this study.

2. Specify the proposal distributions for all model parameters. This study sets

Gaussian normal distributions for perturbing Vp and ρ with given σVp and σρ.

Our research suggests that these values be around 25% of the difference between

their corresponding lower and upper limits since a too small perturbation leads

to being trapped in the local minima and a too large perturbation leads to slow

or none convergence. For example, we can set σVp = (V max
p − V min

p )/4 and

σρ = (ρmax − ρmin)/4. And we set uniform distributions for the perturbation of

L and n within given ranges.
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3. Specify the standard deviation of data misfit σd which will constrain the

acceptance probability for a new proposed model. For example, σd can be

set as 10% of the peak amplitude of the data. A larger σd will lead to a

higher probability to accept new proposed models and facilitate sampling and

jumping out of local minima, and a lower σd will enhance local optimization

and exploitation instead of global exploration.

2.3 Synthetic Case Study

We created a synthetic model and a corresponding set of synthetic seismograms

for the first test of seismic waveform inversion by rjMCMC. The true models for

Vp and ρ in time domain are shown by Figure 2.1. This model including a wedge

can test the inversion resolution of rjMCMC and how rjMCMC performs when the

layer is thin. From Vp and ρ, we calculated the acoustic impedance (Zp = Vpρ) and

then generated zero-offset reflectivities in time domain. A synthetic seismic data

with 2 ms sampling interval was generated by the convolution of the reflectivities

and a zero-phase Ricker wavelet with central frequency of 25 Hz. The simulated

seismic data was also added with zero-mean Gaussian random noise with a standard

deviation of 10% of the maximum data value. The noise was added on the amplitude

of each sample so the waveform was slighted distorted and also contained spikes.

This synthetic seismic data with noise (Figure 2.2) was used as the observed seismic

data for the inversion. The synthetic data from this model has 80 traces with a

spacing of 12.5 m.

The properties of the overburden rock above 2 s for the true model and the

model to be inverted are set to be the same with those of the first layer of the true

model. We assumed there was no well log available and we chose constant inversion

lower/upper limits for both Vp and ρ, which are (2.4, 4.0) km/s for Vp and (2.1,
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Figure 2.1: Geophysical properties for the wedge model used to test the rjMCMC
inversion algorithm. (a) P-wave velocity Vp (km/s). (b) Density ρ (g/cc). (c)
Impedance Zp = Vpρ (km/s*g/cc).

2.7) g/cc for ρ. Since the number of layers is unknown, we chose a arbitrary model

as the initial model which has 10 layers with equal interval in time domain and with

the same initial Vp=3.2 km/s and ρ=2.4 g/cc.

The standard deviation of data misfit σd in equation (2.13) was set to be 0.03

which is around 20% of the peak of the seismic data. For the standard deviations of

the proposal distributions for model perturbation, we set σVp and σρ in equation (2.16)

and equation (2.17) to be 0.4 km/s and 0.15 g/cc respectively. In this stochastic

inversion, we treated Vp and ρ as independent variables and we don’t assume a linear

or any other type of relationships between them. However, to imitate the properties

of rocks in the real case, we set lower/upper limits for the ρ/Vp ratio which is between

0.6 and 0.9. The allowed minimum number of layers is 2 and the allowed maximum

is 30. If a new model goes beyond any one of the these bounds, it will be discarded

and rjMCMC will repeat the current step and propose another new model until our

criterion is met.

The inversion was only based on the synthetic seismic data (eg. Figure 2.2) and

was run within the defined model space to recover the true model. We run the
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Figure 2.2: Synthetic seismic data generated from the true model and added with
10%random noise. Displayed by every three traces.

inversion trace by trace for 5,000 iterations. Each trace was inverted independently

as in the seismic waveform inversion for 1-D earth model (see Section 2.2). We chose

the inversion of No.40 trace as an example to illustrate the inversion process. We

calculated the RMS error between the synthetic data and the data modeled from

the inverted model for all iterations. Figure 2.3 indicates that the misfit decreases

rapidly and the rjMCMC finds the low-misfit models after 200 iterations. Since the

goal of our stochastic inversion is to sample the entire model space and achieve good

sampling around the true model and find a set of good models with low misfits, we

kept rjMCMC running for 5,000 iterations so that we would have enough good models

in the solution pool through this sampling stage. This would assist us to get a quality

average model as well as to quantify the uncertainty.

To demonstrate how the rjMCMC can infer the model dimensionality, we plot
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Figure 2.3: RMS error between the data and the modeled data. Displayed for only
the first 1000 iterations (Trace No.40).

the number of layers with iterations (Figure 2.4). Out of 5,000 models from 5,000

iterations, we sorted the models by RMS error and chose 2,500 models with relatively

less RMS errors. A histogram of the number of layers for these models is shown

by Figure 2.5. These figures show that the rjMCMC finds the number of layers

n around 5. A minor overparameterization is allowed by rjMCMC but an major

overparameterization (n > 19) and an underparameterization (n < 5) are excluded

by rjMCMC.
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Figure 2.4: The variation of the number of model layers with iterations (Trace No.40).

We downscaled these chosen models with a uniform finer discretization scheme
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Figure 2.5: Histogram of the number of layers for 2,500 sampled models (Trace
No.40).

in time domain (0.4 ms in this case study). As mentioned in Section 2.2.9, after

this downscaling with the same discretization, all the models will be digitized into

matrices with the same size. Then we computed the average value and the standard

deviation sample by sample for all times.

Inverted Vp, rho and Zp are shown by Figure 2.6. Obviously, the uncertainty

(shown by the error bar) of density is larger than that of Vp. The reason is that

the density is poorly resolved by P-waves (Debski and Tarantola, 1995; Igel et al.,

1996). However, the inverted average density can recover the true density model.

Even though most of the 2,500 sampled models have more than 5 layers, the average

model exhibits 5 layers that is consistent with the true model, which shows that the

rjMCMC is able to infer the model dimensionality.

To illustrate the posterior distribution of the sampled models, we plotted the

histogram and show it for one depth (2120 ms) as an example. Figure 2.7 shows an

asymmetrical distribution, but the average value approximates the true value (Figure

3.6).

We conducted this inversion process for all traces. As mentioned in Section

2.2.9, since each trace had spatial random noise that would propagate into the

inverted results, a lateral moving-average smoothing was applied to suppress the
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Figure 2.6: Inverted models vs. true models (Trace No.40). (a) Vp (km/s). (b) ρ
(g/cc). (c) Zp = Vpρ (km/s*g/cc). The inversion uncertainty (standard deviation) is
represented by the error bar.

noise effect. Finally, we obtained the inverted average models of Vp, ρ and Zp

(Figure 2.8) and assessed their uncertainty (Figure 2.9). To show the effects of the

smoothing, the inverted Zp without smoothing was chosen (Figure 2.10) to compare

with the smoothed results (Figure 2.8(c) and 2.9(c)). Before the smoothing, Zp and

Zp uncertainty exhibits local underestimation or overestimation. After the lateral

moving-average smoothing, the negative effects of the spatial random noise on the

inversion results are suppressed to a large extent.

These inversion results indicate that the true model and the layer interfaces for

Vp, ρ and Zp are almost recovered by the rjMCMC. Looking at the wedge tip, we

found that the inversion can exactly recover the interfaces if layer thickness is no

less than 8 ms (two-way travel time) in time domain which is approximately 12 m in

depth domain. If a layer is too thin, such as a few meters in thickness, then the layer

interfaces will be unresolvable. This is due to the fact that a thin layer with a few

meters in thickness can be added or deleted in a model without obviously changing the
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Figure 2.7: Histogram of sampled models (Trace No.40, depth=2120 ms). (a) Vp
(km/s). (b) ρ (g/cc). (c) Zp = Vpρ (km/s*g/cc).
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Figure 2.8: Inverted average model by rjMCMC. (a) Vp (km/s). (b) ρ (g/cc). (c)
Zp = Vpρ (km/s*g/cc).

seismic waveform because of the destructive interference between the two reflections

from its two boundaries, a phenomenon called seismic tunning effect. Our seismic

wave has a central frequency of 25 Hz which means a wavelength λ of 120 m if Vp is

3 km/s. These results demonstrate an inversion resolution of λ/10. To validate the

inversion quality via data fitting, we computed the modeled seismic data from the

inverted average model (Figure 2.11) and also calculated the seismograms generated

from all the 2,500 sampled models. The standard deviations for all time samples

of the 2,500 seismograms from the 2,500 models are illustrated by the error bars in

Figure 2.12 which shows Trace No.40 as an example. Their standard deviations are

32



CMP number
20 40 60 80

T
im

e 
(m

s)

2000

2050

2100

2150

2200 0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a)

CMP number
20 40 60 80

T
im

e 
(m

s)

2000

2050

2100

2150

2200 0.05

0.1

0.15

0.2

(b)

CMP number
20 40 60 80

T
im

e 
(m

s)

2000

2050

2100

2150

2200 0.2

0.4

0.6

0.8

1

1.2

(c)

Figure 2.9: rjMCMC Inversion uncertainty. (a) Vp uncertainty (km/s). (b) ρ
uncertainty (g/cc). (c) Zp uncertainty (km/s*g/cc)
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Figure 2.10: Inverted average model for Zp before smoothing. (a) Zp = Vpρ
(km/s*g/cc). (b) Zp uncertainty (km/s*g/cc).

quite small compared to the data, and the average standard deviation is computed

to be 0.0098 which is around 7% of the data peak or trough. The data falls into

the range of the error bar, which indicates an accurate data fitting for the model

ensemble.

By comparing Figures 2.8 and Figure 2.9, another important and surprising

phenomenon we discovered is that the high uncertainty of inversion in geophysical

properties conforms exactly with layer interfaces which are the surfaces of discontinuity

in these properties. Supportive and similar observations were recently published by
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Figure 2.11: Synthetic seismic data generated from the true model and added with
noise (black) vs. modeled data generated from the inverted average model (red).
Displayed by every three traces.

Reading and Gallagher (2013) and Galetti et al. (2015) who both used rjMCMC

for uncertainty analysis. By studying the abrupt changes of borehole geophysical

logs, Reading and Gallagher (2013) found that interfaces are sharply defined if there

exists a large lithology contrast. By a tomography study using surface wave, Galetti

et al. (2015) found out that high uncertainty was observed along a discontinuity in

the velocity field and the uncertainty map exhibits some spatial detail of velocity

anomaly. Our study reveals that a larger discontinuity will induce a higher property

uncertainty at the discontinuity and nevertheless a higher ‘‘certainty’’ of the location

of that discontinuity. And for continuous region with zero discontinuity, the property

uncertainty is much lower. Therefore, we point out that there is a trade-off between

the property uncertainty and the location uncertainty in the seismic inversion.

Figure 2.9 shows that the uncertainty trade-off effect for Vp and Zp is stronger that
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Figure 2.12: Comparison of the modeled data from 2,500 inverted models and the
inverted average model with the synthetic data from the true model. Trace No.40
is chosen as an example for display. Black: synthetic seismogram generated from
the true model and added with noise. Red: seismogram generated from the inverted
average model. Red error bars present the standard deviations for all time samples
of the 2,500 seismograms from the 2,500 inverted models (displayed by every two
time samples), and the average standard deviation=0.0098.

that for ρ due to the abovementioned reason that ρ is relatively poorly resolved by

P-waves seismic data. In the following uncertainty analysis, we will choose acoustic

impedance Zp as a typical example. In our study, the phenomenon of high impedance

uncertainty induced by a large discontinuity is due to the fact that if there is a great

change of impedance within a short distance across the interface, for example, the

Zp has a sudden jump from 6 to 8 (km/s*g/cc) across the wedge’s upper boundary,

the inversion therefore has great freedom to choose any value between 6 and 8 in

the transition zone to fit the data equally well as we previously pointed out that a

perturbation in a very thin layer will not obviously change the seismic wiggles. Our

inversion results also indicate that the high impedance uncertainty caused by a large

impedance discontinuity is able to delineate the location of this discontinuity. In

another word, the impedance uncertainty is larger exactly where the discontinuity

is larger. This is due to the fact that a major impedance discontinuity also causes

a large seismic event which however will facilitate locating the discontinuity via

the inversion, and that is why we see clear interfaces delineated by high impedance
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uncertainty in this study (Figure 2.9(c)).

In summary, a larger discontinuity of property will induce 1) more uncertainty in

model property at the discontinuity and 2) more ‘‘certainty’’ of the location of the

discontinuity. The layer’s impedance Zp and the layer’s location L can be regarded

as complementary variables in the seismic inversion since the seismic waveform is

governed by the combined effects from both Zp and L. For example, the impedance

of the layers and the locations of layer interfaces can be perturbed in different ways

to obtain the same seismic wiggles. We firstly pointed out that the seismic waveform

inversion exhibits a trade-off between property uncertainty and location uncertainty

in such a way that the property uncertainty and the location uncertainty exert

a limitation on each other, which means they cannot be simultaneously certain

with high accuracy in one experiment since they are complimentary. To generalize

this discovery in any inverse problems in all disciplines, if there are complimentary

parameters in the model, the inversion of these parameters may comply with the

principle of uncertainty trade-off.

From the above analysis, we can use the uncertainty from a positive perspective

and we propose that the inversion uncertainty from our stochastic inversion can be

designed as a new attribute to assist in delineating the subsurface reflectors and

quantify the magnitude of discontinuities. In section 4 which focuses on uncertainty

analysis using rjMCMC, we will talk more about this phenomenon in detail and how to

use inversion uncertainty in an optimistic way to better delineate subsurface interfaces

and discontinuities and to facilitate drilling planning for petroleum exploration.

Meanwhile, Section 3 will show that the earth model and its layer interfaces

such as the challenging wedge tip can be better recovered by using pre-stack seismic

waveform inversion. This means that although the property uncertainty and the

location uncertainty exert a limitation on one another, by using more data this
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limitation can be changeable. We found out that prestack waveform inversion is

able to resolve a layer as thin as 5 ms TWT in time domain or 7.5 m in depth

domain. This resolution is around λ/16 which is much finer than a typical seismic

resolution of λ/4. Additionally, using pre-stack or angle-stack seismic data, the

rjMCMC can simultaneously invert Vp, Vs and ρ which can be easily converted to

acoustic impedance, shear impedance, Poisson’s ratio, λρ, µρ and other properties

to study the rock physics and DHIs (Direct Hydrocarbon Indicator) and ameliorate

reservoir characterization.

2.4 Case Study Using an Oilfield Data, Norne Field, North Sea

In this inversion application to field data, we used a near-offset stacked seismic

data and one nearby well in the E-segment of the Norne oilfield to characterize Vp, ρ

and acoustic impedance Zp of the reservoir and estimate their uncertainty.

The Norne field is located in the sourthern part of the Nordland II in the Norwegian

Sea. The field size is approximately 9 km by 3 km. The reservoir is sealed by the

Melke shale formation and it consists of four sand formations from top to base:

Garn, Ile, Tofte and Tilje of Lower to Middle Jurassic age. A gas reservoir is mostly

situated in the Garn formation of nearshore facies, the oil reservoir is mainly located

in the Ile and Tofte formations which are shallow marine deposits with channelized

sandstones, and the Tilje formation is mostly sand with some clay and conglomerates

(Rwechungura et al., 2010).

The seismic data of 400 traces is shown by Figure 2.13. The wavelet was extracted

from the seismic data and used it for the forward calculation. And we smoothed

the Vp and density logs to generate a low-frequency trend and then perturbed the

smoothed Vp and density for ±0.5 km/s and ±0.3 g/cc respectively to make the

inversion lower/upper limits (Figure 2.14). The allowed minimum number of layers is
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2 and the allowed maximum is 50. We then upscaled the smoothed logs to blocky logs

with equal interval in time domain and used them as our initial model (Figure 2.14).

The standard deviation of data misfit σd was set to be 10% of the peak amplitude of

the seismic data, and σVp and σρ in equation (2.16) and equation (2.17) were set to

be 0.25 km/s and 0.15 g/cc respectively.

2.3 s 

2.4 s 

2.6 s 

2.5 s 

Figure 2.13: Seismic data of Norne field which is used for rjMCMC inversion.

(a) (b)

Figure 2.14: Initial model (dotted) and inversion lower/upper limits (dotdashed).
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The rjMCMC inversion was run trace by trace for 5,000 iterations and 2,500

inverted models with relatively less data misfits were chosen. The modeled seismic

data was calculated by using the inverted average model for validation. Figure

2.15 and Figure 2.16 indicate that the rjMCMC inverted models can fit the data

with high accuracy. To show how well all the 2,500 chosen models fit the data, we

also computed their seismograms and calculated the standard deviations for each

time sample. Here we picked Trace No.200 as an example to display (Figure 2.17).

The standard deviations are very small compared to the data, the average standard

deviation is 265 (around 5% of the data peak/trough), and the error bar also covers

the data. These indicate a successful data fitting for the model ensemble.

2.3 s 

2.4 s 

2.6 s 

2.5 s 

Figure 2.15: Modeled seismic data from rjMCMC inverted average models.
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2.5 s 

Figure 2.16: The difference between the seismic field data and the modeled seismic

data from rjMCMC inverted average models.
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Figure 2.17: Comparison of the modeled data from 2,500 inverted models and the

inverted average model with the field data. Trace No.200 is chosen as an example for

display. Black: field data. Red: seismogram generated from the inverted average

model. Red error bars denote the standard deviations for all time samples of the 2,500

seismograms from the 2,500 inverted models (displayed by every two time samples),

and the average standard deviation=265.

To show the distribution of the model ensemble, we plotted the histogram and

showed it for the depth at 2500 ms as an example (Figure 2.18). Each histogram
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for a certain depth and a certain trace provides an average value and a standard

deviation. All average values and standard deviations for all depths and all traces

constitute the inverted model and its uncertainty shown afterwards.

2.6 2.8 3.0 3.2 3.4
0

100

200

300

400

500

Vp (km/s)

N
um
be
r
of
m
od
el
s

(a)

2.1 2.2 2.3 2.4 2.5 2.6
0

200

400

600

800

1000

ρ (g/cc)

N
um
be
r
of
m
od
el
s

(b)

6 7 8 9
0

100

200

300

400

500

600

P-impedance (km/s*g/cc)

N
um
be
r
of
m
od
el
s

(c)

Figure 2.18: Histogram of sampled models (Trace No.200, depth=2500 ms). (a) Vp

(km/s). (b) ρ (g/cc). (c) Zp (km/s*g/cc).

We compared our inverted results with those produced by a commercial software,

Hampson-Russell Strata (Version CE8) which uses model-based GLI deterministic

inversion. The rjMCMC inversion results are shown by Figure 2.19 and 2.21 and

2.23, and Hampson-Russell’s results are shown by Figure 2.20 and 2.22 and 2.24. Our

rjMCMC’s results and Hampson-Russell’s results can validate each other since they

are comparable. Both results comply with the published results (Rwechungura et al.,

2010). These figures show that the gas reservoir, the Garn sand formation, is located

around 2.45 s and is characterized by a relatively lower Vp, density and acoustic

impedance (eg. blue in Figure 2.23). Right on the top of the Garn gas sand is the

Melke shale formation which is the reservoir seal and characterized by a relatively

higher Vp, density and acoustic impedance. Right below the Garn gas sand is the oil

zone (brown) which includes the Ile and Tofte formations and has relatively larger
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Vp and ρ than those of the overlying gas sand. Below the oil zone is mainly the Tilje

sand formation (mixed green and yellow).
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Figure 2.19: Inverted Vp by rjMCMC.
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Figure 2.20: Inverted Vp by Hampson-Russell.

42



g/cc 

2.5 

2.2 

2.3 

2.4 

2.3 s 

2.4 s 

2.6 s 

2.5 s 

Figure 2.21: Inverted ρ by rjMCMC.
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Figure 2.22: Inverted ρ by Hampson-Russell.
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Figure 2.23: Inverted Zp by rjMCMC.
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Figure 2.24: Inverted Zp by Hampson-Russell.

Same as conducted in the previous section, by using rjMCMC we produced

uncertainty estimation for Vp, ρ and Zp models which usually can’t be produced by

many commercial softwares. Our uncertainty quantification (Figure 2.25, 2.26 and

2.27) demonstrates that the property uncertainty is relatively larger either wherever
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the SNR (signal to noise ratio) is lower or wherever major discontinuities of the

geophysical properties are encountered. Take acoustic impedance Zp (Figure 2.27) as

an example. A high inversion uncertainty in impedance indicates a large discontinuity

of impedance and a low inversion uncertainty indicates a small discontinuity or just

continuity. Therefore the uncertainty section is actually indicative of the location

(structure) and the magnitude of subsurface discontinuities. As discussed before,

although a discontinuity of property may cause a larger uncertainty in property, it

also facilitates delineating the discontinuity surface or layer interface in the meanwhile.

The high uncertainty in property (thin curves) represents major discontinuities due

to changes of lithology or fluids. However, the uncertainty and the discontinuity of

each property should be considered individually since different properties may have

different discontinuities. For example, the red curve located around 2.44 s indicates

a lithology transition from the overlying Melke shale formation to the underlying gas

sand formation. At this location, there is a larger Vp discontinuity and Vp uncertainty

but a smaller ρ discontinuity and uncertainty. This means Vp has a larger change at

this interface whereas the density’s change is relatively smaller. These results can

help us to understand subsurface geophysical variations from different properties and

also further corroborate that we can optimistically use the inversion uncertainty to

pinpoint the layer interfaces and transitions of lithology and estimate the magnitude

of subsurface discontinuity to facilitate the drilling management.
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Figure 2.25: Vp inversion uncertainty by rjMCMC.
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Figure 2.26: ρ inversion uncertainty by rjMCMC.
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Figure 2.27: Zp inversion uncertainty by rjMCMC.

2.5 Conclusion and Discussion

We demonstrated that rjMCMC can infer the model dimensionality, converge to

proper parameterizations and obtain an ensemble of inverted models with different

parameterizations. The rjMCMC enhances uncertainty quantification and prevents a

biased sampling in one single space which may have a different dimensionality than

that of the true model space. We also validated our results by comparing to those

from the commercial software, Hampson-Russell Strata, which uses model-based GLI

deterministic inversion. The rjMCMC will be extremely attractive if the model has

strong heterogeneity in such a way that some regions have more complexity and need

more parameters to depict but the other regions have less complexity and need fewer

parameters to characterize.

We found out that there is a strong correlation between the inversion uncertainty

and the discontinuity of property. Due to the uncertainty trade-off between property

uncertainty and location uncertainty, the discontinuity of property induces a high

uncertainty in model property at the discontinuity and a high ‘‘certainty’’ of the
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location of the discontinuity. Therefore, we propose to utilize inversion uncertainty

as a novel attribute to assist in delineation of subsurface reflectors and quantify

the magnitude of discontinuities due to the correlation between the uncertainty and

discontinuity.

Since most conventional methods may try to adopt a fine parameterization to

achieve a better resolution in the inversion results, such an overparameterization

will dramatically increase the computation time. The rjMCMC determines a proper

parameterization and thus reduce the time for inversion. However, as any stochastic

inversion algorithm, rjMCMC may also have high computational cost for a high

dimensional problem. In terms of seismic inversion, there is one way to improve the

computational efficiency and reduce the ‘‘curse of dimensionality’’. A large model

and the corresponding data can be subdivided into several windows or blocks with

overlapping tapers, and each window or block can be inverted independently and

the inverted results will be combined afterwards to obtain the final model. Also

rjMCMC is feasible to be implemented not just with 1-D layers but also with 2-D

Voronoi cells (Bodin et al., 2012a) and 3-D Voronoi blocks. To enhance rjMCMC’s

performance in solving high dimensional problems, we propose another way of using

rjMCMC for our future work which involves perturbing, adding and deleting a set

of layers, cells or blocks instead of one single layer, cell or block at each iteration.

This implementation may require an adaptive spatial grouping of these units in

the inversion process. Another scope of using the transdimensional rjMCMC in a

flexible way is to integrate with a forward modeling method that can deal with

irregular discretization or parameterization, such as finite element method (FEM).

Although rjMCMC is an inversion method and FEM is a forward modeling method,

the similarity of them is that they work with irregular discretization and the difference

is that rjMCMC allows a varying discretization and FEM generally doesn’t. Since the
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stochastic inversion is an iterative process of forward modeling and data fitting, we

propose to integrate rjMCMC and FEM in the following way. Add, delete or perturb

a set of cells or blocks in each iteration to generate a new discretization and conduct

the forward modeling by FEM based on the new discretization for each iteration. In

order to make this idea applicable in 3D earth model which has a large number of

parameters, super computing is required.
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3. SIMULTANEOUS INVERSION OF ACOUSTIC/SHEAR IMPEDANCE AND

DENSITY AND UNCERTAINTY QUANTIFICATION USING

TRANSDIMENSIONAL MARKOV CHAIN MONTE CARLO METHOD

3.1 Introduction

Prestack simultaneous inversion of P-wave velocity Vp(or acoustic impedance Zp),

S-wave velocity Vs (or shear impedance Zs) and density ρ can be useful in lithology

and fluid discrimination. These properties can be transformed to other geophysical

properties such as Poisson’s ratio, λµ and µρ as well as reservoir properties such

as saturation and porosity based on rock physics modeling. All these properties

are useful since they can be served as direct hydrocarbon indicators (DHI) and

discriminate lithology. To detect the fluid content within reservoirs, both P-wave

and S-wave properties of a rock are also required because the P-waves are sensitive

to changes in pore fluid and S-waves are mainly affected by the rock matrix and

relatively unaffected by the pore fluid. Thus the simultaneous inversion provides

more insights to characterize reservoirs than regular impedance (Zp) inversion. The

latter is usually performed using post-stack seismic data, whereas the simultaneous

inversion requires prestack or angle-stack data since the shear wave information is

contained in the variation of reflection coefficients with source-receiver offsets (AVO).

Prestack seismic inversion can be performed with deterministic methods and

stochastic methods. Deterministic methods such as GLI (Generalized Linear Inversion)

and Gauss-Newton algorithm have been used for prestack seismic inversion since

1980s (Tarantola, 1986; Mora, 1987; Demirbag et al., 1993; Pan et al., 1994; Sen

and Roy, 2003; Hampson et al., 2005; Veire and Landrø, 2006; Russell, 2014). It

has also been implemented by a variety of stochastic inversion algorithms, including
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Simulated Annealing (SA) (Sen and Stoffa, 1991; Ma, 2001b, 2002; Varela et al., 2006;

Srivastava and Sen, 2010), Markov chain Monte Carlo method (MCMC) (Eidsvik

et al., 2004; van der Burg et al., 2009; Chen and Glinsky, 2014), Genetic Algorithm

(GA) (Mallick, 1995, 1999; Padhi and Mallick, 2013, 2014; Li and Mallick, 2015),

Particle Swarm Optimization (PSO) (Zhe and Gu, 2013), Neural Network (NN)

(Mohamed et al., 2015). Some of these works are waveform-based inversion and some

are amplitude-based. A comparison is reviewed by Mallick and Adhikari (2015).

The application of rjMCMC in prestack seismic inversion is still new. Biswas and

Sen (2015) applied it to prestack seismic inversion by using a synthetic model. We

firstly applied rjMCMC to a field dataset to simultaneously invert acoustic impedance

Zp, shear impedance Zs and density ρ and implement uncertainty quantification of

these properties. As in Section 2.2.8 we pointed out that the rjMCMC is able to

enhance uncertainty quantification, in this section we also conducted uncertainty

estimation for Zp, Zs and ρ.

In this section, we will illustrate the methodology (Section 3.2), apply rjMCMC

using synthetic prestack seismic data (Section 3.3), and then apply it using an oilfield

angle-stack seismic data to characterize the petroleum reservoir in Norne field, North

Sea (Section 3.4). We will show another scientific contribution in addition to those

in Section 2.3 and 2.4, that is, the prestack waveform inversion using rjMCMC is

able to achieve an inversion resolution of λ/16, where λ is the seismic wavelength.

3.2 Methodology

In this section, we conducted seismic waveform inversion of a 2-D prestack to build

a 2-D earth model and estimate the uncertainty. The inversion includes these general

steps: 1) generate an initial model stochastically based on prior information, 2) update

the model using rjMCMC iteratively through a data fitting process that quantifies the
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misfit between the observed data with the modeled data and 3) collect an ensemble of

all the models with low misfit, obtain the average model and estimate the uncertainty.

To generate data given a model, our forward calculation adopts seismic convolution

modeling in which seismic traces were generated by the convolution of reflectivities

and source wavelet. Reflectivities were computed by the Zoeppritz equation with

different incident angles. Each seismic trace is inverted independently based on 1-D

layered model, and afterwards all the inverted 1-D models are combined to make

the 2-D earth model. The model properties to be inverted are comprised of P-wave

velocity Vp, S-wave velocity Vs and density ρ of each layer. The inverted acoustic

impedance Zp are computed by Vpρ, and the inverted shear impedance Zs by Vsρ.

Zp, Zs and ρ are the properties of interest in this section. The number of layers

is also regarded as an unknown, and it will be inferred from the data through the

transdimensional inversion.

3.2.1 Model Parameterization

The model in this study is represented by m = [Vp,Vs, ρ,L, n], where n is the

number of layers, L = [L1, L2, ..., Ln−1] indicates the location of n− 1 interfaces, and

Vp = [Vp1, Vp2, ..., Vpn], Vs = [Vs1, Vs2, ..., Vsn] and ρ = [ρ1, ρ2, ..., ρn] denote P-wave

velocities, S-wave velocities and densities of n layers. The n is unknown so it is

initialized with an arbitrarily given number and it can vary stochastically from the

current iteration to the next. Due to the fact that seismic inversion uses seismic data

sampled by 4 ms or 2 ms and the minimum thickness of a detectable layer via seismic

inversion is a few meters, we can set an upper limit for n, say, 50 for a model which

is 200 m in thickness.

The model space for Vp, Vs and ρ is continuous, but the model space for L and

n is discrete since the model has to be spatially discretized in depth or time with a
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certain given resolution (also see Section 2.2.1).

3.2.2 Bayesian Inference, Posterior Distribution, Prior Distribution and Likelihood

Function

The Bayesian inference in the inverse problem can be formulated as follows:

p(m|dobs) =
p(dobs|m)p(m)

p(dobs)
. (3.1)

p(dobs|m) denotes the likelihood function which is the probability of observing the

measured data given a model m. p(m) is the prior PDF of m which is the prior

knowledge of m before the data dobs is taken into consideration. p(d) is the probability

of the observed data, and this term is usually ignored in the inversion process for

reason that it is a constant quantity which does not rely on any model. p(m|dobs) is

the PPD which indicates how the prior knowledge of m is updated and constrained

based on the data information through data fitting. Generally speaking, the PPD of

m is narrower and more constrained than the prior distribution.

The prior knowledge of the model can be composed of a variety of different infor-

mation from different sources. The model priors should be designed with reasonable

ranges and distributions based on the data such as well logs and the knowledge of

geophysics, geology and rock physics in the real earth. For example, it is well known

that the density of a rock in the petroleum reservoir is no less than 1 g/cc and no

more than 4 g/cc. When there is well logs available, we can put more constraint on

the model space or the ranges of Vp, Vs and ρ. Since we are using a transdimensional

approach, the number of layers can vary from an allowed minimum to a maximum,

say, from nmin=2 to nmax=50. The prior distribution of model parameters can be set

as uniform, Gaussian normal or any other type within these ranges. In this study,

we chose uniform prior distributions for all model parameters in that we treated each
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model parameter has equal prior probability within its own range.

The full prior PDF is separated into five prior terms:

p(m) = p(Vp|n,L)p(Vs|n,L)p(ρ|n,L)p(L|n)p(n), (3.2)

where p(n) is the prior on the number of layers, p(L|n) is the prior on the location

of n − 1 interfaces given the number of layers n, and p(Vp|n,L), p(Vs|n,L) and

p(ρ|n,L) are the priors on the Vp, Vs and ρ models given n and L. These prior PDFs

can be formulated as follows:

p(Vp) =
n∏
i=1

p(Vpi|n), (3.3)

p(Vpi|n)) = 1/(V max
pi − V min

pi ), (3.4)

p(Vs) =
n∏
i=1

p(Vsi|n), (3.5)

p(Vsi|n)) = 1/(V max
si − V min

si ), (3.6)

p(ρ) =
n∏
i=1

p(ρi|n), (3.7)

p(ρi|n)) = 1/(ρmaxi − ρmini ), (3.8)

p(n) = 1/(nmax − nmin), (3.9)

p(L|n) = 1/CN
n−1 =

(n− 1)!(N − n+ 1)!

N !
, (3.10)

where each model parameter is constrained by given minimum and maximum values,

N is the total number of possible depths given a certain spatial resolution, and

CN
n−1 = N !

(n−1)!(N−n+1)!
denotes the number of possible combinations for n − 1 layer

interfaces which will occupy n− 1 depths out of N possible depths in total.
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The full prior PDF derived from the above equations is written as:

p(m) =
(n− 1)!(N − n+ 1)!

(nmax − nmin)N !
∏n

i=1((V max
pi − V min

pi )(V max
si − V min

si )(ρmaxi − ρmini ))
.

(3.11)

As pointed out in Section 2.2.5 for likelihood function, the L1-norm can favor a

‘‘sparse’’ structure and is less sensitive to data outliers, so it is also adopted in this

section. The L1-norm likelihood function in our inverse problem is written as:

p(dobs|m) ∝ exp

{
−Φ2(m)

2Ndσ2
d

}
, (3.12)

Φ(m) = ‖f(m)− dobs‖1 , (3.13)

where Nd is the number of data samples and σd is a given standard deviation of the

data error. σd can be regarded as an estimation of data noise. The effects of σd is

referred to Section 2.2.5.

3.2.3 The Transdimensional Method, rjMCMC

Same as in Section 2.2.6, the acceptance probability as formulated as follows:

α(m′|m) = min

[
1,
p(m′)

p(m)
· p(dobs|m′)
p(dobs|m)

· q(m|m
′)

q(m′|m)
· |J|

]
, (3.14)

A new model is proposed by drawing from the given proposal distribution q(m′|m)

so that it is contingent on the current model m. Our study sets it either as a Gaussian

normal distribution or a uniform distribution centered at the current model m. The

proposal distribution is a Gaussian normal distribution if perturbing Vpi, Vsi or ρi

and then proposing a new V ′pi, V
′
si or ρ′i. If perturbing the location of a interface Li

and proposing a new L′i, the proposal distribution is a uniform distribution. These
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distributions are written as:

q(V ′pi|Vpi) =
1

σVp
√

2π
exp

{
−

(V ′pi − Vpi)2

2σ2
Vp

}
, (3.15)

q(V ′si|Vsi) =
1

σVs
√

2π
exp

{
−(V ′si − Vsi)2

2σ2
Vs

}
, (3.16)

q(ρ′i|ρi) =
1

σρ
√

2π
exp

{
−(ρ′i − ρi)2

2σ2
ρ

}
, (3.17)

q(L′i|Li) =
1

∆h
, (3.18)

where σ2
Vp

, σ2
Vs

and σ2
ρ are the given variances of the Gaussian function for the model

perturbation. A larger variance means a greater perturbation, and vice versa. ∆h is

a given perturbation range for moving interface.

The rjMCMC implements the same three updating strategies during the random

walk as mentioned in Section 2.2.6. The prior ratio, the likelihood ratio and the

proposal ratio for different updating strategies are formulated as follows.

For the first updating strategy, there is no change of dimension, so the prior

ratio p(m′)
p(m)

= 1, the proposal ratio q(m|m′)
q(m′|m)

= 1, and the likelihood ratio p(dobs|m′)
p(dobs|m)

=

exp
{
−Φ2(m′)−Φ2(m)

2Ndσ
2
d

}
.

For the second updating strategy, a new model m′ is proposed with one more

layer interface, velocity and density. The prior ratio p(m′)
p(m)

= n
N−n+1

, the proposal

ratio q(m|m′)
q(m′|m)

= N−n+1
nq(V ′

p |Vp)q(V ′
s |Vs)q(ρ′|ρ)

, and the likelihood ratio is the same as that in the

first strategy.

For the third updating strategy, a new model m′ is proposed with one fewer layer

interface, velocity and density. The prior ratio p(m′)
p(m)

= N−n+2
n−1

, the proposal ratio

q(m|m′)
q(m′|m)

=
(n−1)q(V ′

p |Vp)q(V ′
s |Vs)q(ρ′|ρ)

N−n+2
, and the likelihood ratio is the same as that in the

first strategy.
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Substituting these ratios into equation (3.14), we will get acceptance probability

for 3 updating strategies respectively as follows:

α(m′|m) = min

[
1, exp

{
−Φ2(m)− Φ2(m′)

2Ndσ2
d

}]
, (3.19)

α(m′|m) = min[1,
σVp
√

2π

V max
pi − V min

pi

σVs
√

2π

V max
si − V min

si

σρ
√

2π

ρmaxi − ρmini

·

exp{
(V ′pi − Vpi)2

2σ2
Vp

+
(V ′si − Vsi)2

2σ2
Vs

+
(ρ′i − ρi)2

2σ2
ρ

− Φ2(m′)− Φ2(m)

2Ndσ2
d

}],

(3.20)

α(m′|m) = min[1,
V max
pi − V min

pi

σVp
√

2π

V max
si − V min

si

σVs
√

2π

ρmaxi − ρmini

σρ
√

2π
·

exp{−
(V ′pi − Vpi)2

2σ2
Vp

− (V ′si − Vsi)2

2σ2
Vs

− (ρ′i − ρi)2

2σ2
ρ

− Φ2(m′)− Φ2(m)

2Ndσ2
d

}].

(3.21)

3.2.4 Calculation of the Average Model and the Uncertainty

Similar as mentioned in Section 2.2.9, firstly, we select an ensemble of inverted

models with lowest data misfit. Each model of the ensemble has different parame-

terizations (different the number of layers and different layer interfaces). For the

calculation of the average model and the uncertainty, we have to downscale all the

inverted models in a uniform finer discretization scheme in time or depth domain.

The method to calculate the average model and the uncertainty is referred to Section

2.2.9, and the detailed formulations are referred to Section 4.2.4.

3.3 Synthetic Case Study

We designed a synthetic model for Vp, Vs, and ρ in time domain, and calculated

acoustic impedance (Zp = Vpρ) and shear impedance (Zs = Vsρ). Vp, Vs, and ρ
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are independent variables and our final goal is to characterize Zp, Zs and ρ. True

model of Zp, Zs and ρ are shown by Figure 3.1. This model including a wedge can

test the inversion resolution of rjMCMC and how rjMCMC performs if the layer is

thin. Using the true model, we calculated the reflectivities based on the Zoeppritz

equation in time domain. A prestack synthetic seismic data sampled by 2 ms was

generated by the convolution of the reflectivities and a zero-phase Ricker wavelet

with central frequency of 25 Hz. To mimic angle gathers that consists of near, mid

and far offsets, each CMP (common midpoint) gather has 3 traces with incident

angles of 5, 15 and 25 degrees. Same as conducted in Section 2.3, the simulated

seismic data was also added with zero-mean Gaussian random noise with a standard

deviation of 10% of the maximum data value. The noise was added on the amplitude

of each sample, and therefore the waveform was slighted distorted and also contained

spikes. This synthetic seismic data with noise was used as the observed seismic data

for the inversion. The model is composed of 80 CMPs with an interval of 12.5 m.

We calculated the synthetic seismic data for each CMP, and here we chose one CMP

in the middle of the model and display the synthetic seismic data (Figure 3.2).
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Figure 3.1: Geophysical properties for the wedge model used to test the rjMCMC
inversion algorithm. (a) Acoustic impedance Zp (km/s*g/cc). (b) Shear impedance
Zs (km/s*g/cc). (c) Density ρ (g/cc).
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Figure 3.2: Synthetic prestack seismic data generated from the true model and added
with 10%random noise. No.40 CMP is chosen for display.

We set the properties of the overburden rock above 2 s for the true model and

the model to be inverted to be the same with those of the first layer of the true

model. The lower/upper inversion limits of the uniform prior distributions for both

Vp, Vs and ρ are set as constants because there was no well log in this case study.

These limits for Vp, Vs and ρ are (2.4, 4.0) km/s, (1.2, 2.4) km/s and (2.1, 2.7) g/cc

respectively. Since the number of layers is assumed to be unknown and the initial

model is arbitrarily chosen which has 10 layers with equal interval in time domain as

well as with the same initial Vp=3.2 km/s, Vs=1.8 km/s and ρ=2.4 g/cc.

The standard deviation of data misfit σd in equation (3.12) was set to be 0.03 which

is around 20% of the peak of the seismic data. Regarding the standard deviations of

the proposal distributions for model perturbation, we set σVp , σVs and σρ in equation

(3.15), (3.16) and (3.17) to be 0.4 km/s, 0.3 km/s and 0.15 g/cc respectively (see
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Section 2.2.11). In this stochastic inversion, Vp, Vs and ρ are independent variables so

we don’t assume a linear or any other type of relationships between them. However,

to imitate the properties of rocks in the real case, we set lower/upper limits for the

Vs/Vp ratio as (0.5, 0.66) and ρ/Vp ratio as (0.6, 0.9). The allowed minimum number

of layers is 2 and the allowed maximum is 30. If a new model goes beyond any one of

the abovementioned bounds, it will be discarded and rjMCMC will repeat the current

step and propose another new model until our criterion is satisfied.

The synthetic seismic data (eg. Figure 3.2) plus the above model priors were used

to conduct the inversion to recover the true model. We ran the inversion CMP by

CMP for 5,000 iterations and each CMP is inverted independently as in the seismic

waveform inversion for 1-D earth model (see Section 3.2). To assess the inversion

process, we chose one CMP as a demonstration example. We calculated the RMS

(root mean square) error between the synthetic data and the modeled data for all

iterations, which is shown by Figure 3.3. The rjMCMC finds the low-misfit models

in the first few hundred of iterations. Since the purpose is to sample the entire model

space, achieve good sampling around the true model and find a set of good models

with low misfits, we kept rjMCMC running for 5,000 iterations. So there would be

enough good models in the solution pool through the sampling stage for us to get a

quality average model and conduct uncertainty quantification.

To illustrate that the rjMCMC is able to infer the model dimensionality, the

number of layers with iterations was plotted (Figure 3.4). Same as we did in Section

2.3, we sorted 5,000 models from 5,000 iterations by RMS error and chose 2,500

models with relatively less RMS errors. A histogram of the number of layers for these

models is shown by Figure 3.5. These figures indicate that the rjMCMC finds the

number of layers n around 5. A minor overparameterization is allowed by rjMCMC

but an major overparameterization (n > 15) and an underparameterization (n < 5)
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Figure 3.3: RMS error between the data and the modeled data. Displayed for only
the first 500 iterations (No.40 CMP).
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Figure 3.4: The variation of the number of model layers with iterations (No.40 CMP).

We downscaled these chosen models with a uniform finer discretization scheme

(0.4 ms in time domain) to make a solution set. As mentioned in Section 3.2, all the

models will be digitized into matrices with the same size after this downscaling with

the same discretization. Then we calculated the average model of this set sample

by sample in time domain and used it as the final inverted model, and computed

the standard deviations of this set sample by sample in time domain to estimate the

uncertainty.
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Figure 3.5: Histogram of the number of layers for 2,500 sampled models (No.40
CMP).

Inverted Zp, Zs and rho are shown as an example (Figure 3.6). Obviously, the

uncertainty (shown by the error bar) of Zp or Zs is less than that of density. The

reason is that the density is poorly resolved by P-waves seismic data (Debski and

Tarantola, 1995; Igel et al., 1996). However, the inverted average density statistically

approximates the true density model.

(a) (b) (c)

Figure 3.6: Inverted models vs. true models (Trace No.40). (a) Zp (km/s*g/cc).
(b) Zs (km/s*g/cc). (c) ρ (g/cc). The inversion uncertainty (standard deviation) is
represented by the error bar.
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As we found in Section 2.3 for post-stack seismic inversion, the prestack inversion

also substantiates that although most of the 2,500 sampled models have more than 5

layers, the average model presents 5 layers that is accordant with the true model,

which means that the rjMCMC is capable of inferring the model dimensionality. To

show the posterior distribution of the sampled models, we plotted the histogram and

show it for one depth (2120 ms) as an example. Figure 3.7 indicates an asymmetrical

distribution, but the average value is close to the true value (Figure 3.6).
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Figure 3.7: Histogram of sampled models (Trace No.40, depth=2120 ms). (a) Zp
(km/s*g/cc). (b) Zs (km/s*g/cc). (c) ρ (g/cc).

This procedure was conducted for all CMPs. Because each CMP gather had

spatial random noise that would propagate into the inverted results as mentioned in

Section 2.2.9, a lateral moving-average smoothing was applied to reduce the noise

effect. Finally, we acquired the inverted average models of Zp, Zs and ρ (Figure 3.8)

and appraised their uncertainty (Figure 3.9).

These inversion results indicate that the true model and the layer interfaces for

Vp, ρ and Zp are almost recovered by the rjMCMC. Looking at the wedge tip, we

found that the inversion can exactly recover the interfaces if layer thickness is no

less than 5 ms (two-way travel time) in time domain which is approximately 7.5 m
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Figure 3.8: Inverted average models by rjMCMC. (a) Zp (km/s*g/cc). (b) Zs
(km/s*g/cc). (c) ρ (g/cc).
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Figure 3.9: rjMCMC Inversion uncertainty. (a) Zp uncertainty (km/s*g/cc). (b) Zs
uncertainty (km/s*g/cc). (c) ρ uncertainty (g/cc).

in depth domain. Our seismic wave has a central frequency of 25 Hz which means

a wavelength λ of 120 m if Vp is 3 km/s. These results demonstrate an inversion

resolution of λ/16. To validate inverted results, we computed the modeled seismic

data from the inverted average model and here we chose one CMP to display (Figure

3.10). To show how well all the 2,500 sampled models fit the synthetic data, we also

computed their seismograms and calculated the standard deviations for each time

sample. Here we picked the mid-offset seismogram of No.40 CMP as an example to

display (Figure 3.11). The standard deviations are very small compared to the data,
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the average standard deviation is 0.0061 (around 5% of the data peak/trough), and

the error bar also covers the data. These indicate a successful data fitting for the

model ensemble.
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Figure 3.10: Synthetic seismic data generated from the true model and added with
noise (black) vs. modeled data generated from the inverted average model (red).
No.40 CMP is chosen for display.

Similar as the post-stack inversion results in Section 2.3, the prestack inversion

study also reveals that a larger discontinuity will induce a higher property uncertainty

at the discontinuity and nevertheless a higher ‘‘certainty’’ of the location of that

discontinuity. And for continuous region with zero discontinuity, the property

uncertainty is much lower. Therefore, we further corroborate that there is a trade-off

between the property uncertainty and the location uncertainty in the seismic inversion

either using post-stack or prestack data. Figure 3.9 shows that the uncertainty trade-
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Figure 3.11: Comparison of the modeled data from 2,500 inverted models and the
inverted average model with the synthetic data from the true model. The mid-
offset (angle=15◦) trace of No.40 CMP is chosen as an example for display. Black:
synthetic seismogram generated from the true model and added with noise. Red:
seismogram generated from the inverted average model. Red error bars denote the
standard deviations for all time samples of the 2,500 seismograms from the 2,500
inverted models (displayed by every two time samples), and the average standard
deviation=0.0061.

off effect for Zp and Zs is stronger that that for ρ due to the abovementioned reason

that ρ is relatively poorly resolved by P-waves.

In Section 2.3, we found that post-stack seismic waveform inversion obeys a trade-

off between property uncertainty and location uncertainty in such a way that the

property uncertainty and the location uncertainty exert a limitation. However, this

limitation can be changed by using prestack seismic waveform inversion, which means

that the trade-off relationship can be altered if there are more data used. Comparing

the inverted acoustic impedance Zp in Section 2.3 and 3.3, prestack inversion produce

lower Zp uncertainty (Figure 3.9(a)) than that by post-stack inversion (Figure 2.9(c)).

Meanwhile, the model boundaries are better delineated and the inversion resolution

is upgraded from λ/10 to λ/16 if using prestack inversion (compare Figure 3.8(a)

with Figure 2.8(c)).

Therefore, prestack seismic inversion makes further enhancements and assists us

to use the uncertainty in an optimistic perspective and to facilitate delineating the

subsurface reflectors and quantify the magnitude of discontinuities.
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3.4 Case Study Using an Oilfield Data, Norne Field, North Sea

In this inversion application to field data, we characterized Zp, Zs and ρ of

a petroleum reservoir in the E-segment of the Norne oilfield and estimate their

uncertainty by using one nearby well and three angle stacks which are near-offset

stacked (5 − 15◦), mid-offset stacked (15 − 30◦) and far-offset stacked (30 − 40◦)

seismic data which has been corrected for geometrical spreading and time migrated

by the data provider. The average angles for the three angle stacks are 10◦, 22.5◦

and 35◦ respectively. Since these seismic stacks have been time migrated, their traces

for the same CMP are corresponding to the same reflection point. We created an

angle gather from these three stacks, and each CMP consists of three traces from the

three stacks respectively. The geological information about the Norne field is referred

to Section 2.4.

The wavelet was extracted from the seismic data and used it for the forward

calculation. The Vp, Vs and density logs were smoothed to generate a low-frequency

trend and then were perturbed for ±0.5 km/s, ±0.4 km/s and ±0.3 g/cc respectively

to make the inversion lower/upper limits (Figure 3.12). The initial model was

generated by upscaling the smoothed logs to blocky logs with equal interval in time

domain (Figure 3.12). The standard deviation of data misfit σd were set to be 12.5%

of the peak amplitude of the seismic data, and σVp , σVs and σρ in equation (3.15, 3.16

and 3.17) were set to be 0.25 km/s, 0.2 km/s and 0.15 g/cc respectively (see Section

2.2.11).
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(a) (b) (c)

Figure 3.12: Initial model (dotted) and inversion lower/upper limits (dotdashed).

The studied region has 400 CMPs. The rjMCMC inversion was run CMP by

CMP for 5,000 iterations and 2,500 models with relatively lower data misfit were

selected. The modeled seismic data was computed by using the inverted average

model for validation. Here we chose No.200 CMP as an example to display (Figure

3.13). The standard deviations for all time samples of the 2,500 seismograms from

the 2,500 sampled models are illustrated by the error bars in Figure 3.14 which shows

the mid-offset trace of No.200 CMP as an example. Their standard deviations are

quite small compared to the data, and the average standard deviation is calculated

to be 194 which is around 5% of the data peak or trough. The data falls into the

range of the error bar. These figures indicate that the rjMCMC inverted models can

fit the data with high accuracy.
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Figure 3.13: Modeled prestack seismic data from rjMCMC inverted average models

(red) vs. seismic field data (black). No.200 CMP is chosen for display.
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Figure 3.14: Comparison of the modeled data from 2,500 inverted models and the

inverted average model with the field data. The mid-offset (angle=22.5◦) trace of

No.200 CMP is chosen as an example for display. Black: field data. Red: seismogram

generated from the inverted average model. Red error bars represent the standard

deviations for all time samples of the 2,500 seismograms from the 2,500 inverted models

(displayed by every two time samples), and the average standard deviation=194.
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To show the distribution of the model ensemble, we plotted the histogram and

showed it for the depth at 2500 ms as an example (Figure 3.15). Each histogram

for a certain depth and a certain trace provides an average value and a standard

deviation. All average values and standard deviations for all depths and all traces

constitute the inverted model and its uncertainty shown afterwards.
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Figure 3.15: Histogram of sampled models (No.200 CMP, depth=2500 ms). (a) Zp

(km/s*g/cc). (b) Zs (km/s*g/cc). (c) ρ (g/cc).

We compared our inverted results with those produced by the commercial software,

Hampson-Russell Strata (Version CE8) which uses model-based GLI deterministic

inversion. The rjMCMC inversion results are shown by Figure 3.16, 3.18 and 3.20,

and Hampson-Russell’s results are shown by Figure 3.17, 3.19 and 3.21. Results from

our rjMCMC are comparable with those from Hampson-Russell, which means they

can validate each other. Both results are in accordance with the published results

(Rwechungura et al., 2010). The gas reservoir, the Garn sand formation, is located

around 2.45 s and is characterized by a relatively lower Zp, Zs, and density (eg. blue

in Figure 3.16). The Melke shale formation, right on the top of the Garn gas sand,

is the reservoir seal and characterized by a relatively higher Zp, Zs, and density.
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The oil reservoir (brown) right below the Garn gas sand incorporates the Ile and

Tofte formations and has relatively larger impedance and density than those of the

overlying Garn. Below the oil zone is mainly the Tilje sand formation (mixed green

and yellow). These results are consistent with those in Section 2.4.
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Figure 3.16: Inverted Zp by rjMCMC.

9.2 

6.4 

km/s *g/cc 

7.1 

7.8 

8.5 

2.3 s 

2.4 s 

2.6 s 

2.5 s 

Figure 3.17: Inverted Zp by Hampson-Russell.
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Figure 3.18: Inverted Zs by rjMCMC.
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Figure 3.19: Inverted Zs by Hampson-Russell.
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Figure 3.20: Inverted ρ by rjMCMC.
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Figure 3.21: Inverted ρ by Hampson-Russell.

Same as conducted in the previous section, by using rjMCMC we produced

uncertainty estimation for Zp, Zs and ρ models which usually can’t be produced by

many commercial softwares. Our uncertainty quantification (Figure 3.22, 3.23 and

3.24) demonstrates that the property uncertainty is relatively larger either wherever
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the SNR (signal to noise ratio) is lower or wherever major discontinuities of the

geophysical properties are encountered. Take acoustic impedance Zp (Figure 2.27)

as an example. A larger Zp discontinuity induces a higher inversion uncertainty in

Zp, and a continuity or a smaller discontinuity yields a lower inversion uncertainty.

Therefore the Zp uncertainty is actually indicative of the location (structure) and the

magnitude of subsurface Zp discontinuities. This applies for Zs and ρ as well. The

high uncertainty in property (thin curves) caused by major discontinuities to assist

in delineating the discontinuity surfaces or layer interfaces which usually indicate

changes of lithology or fluids. For example in Figure 3.22, the red curve located around

2.44 s indicates a lithology transition from the overlying Melke shale formation to

the underlying gas sand formation. At this location, we have a large Zp discontinuity

and Zs uncertainty, whereas we have a small Zs discontinuity and Zs uncertainty

(Figure 3.23). As previously pointed out, S-waves are relatively unaffected by the

pore fluid. These results assist us to understand the reservoir from different properties

and further substantiate that the inversion uncertainty can be used optimistically as

an attribute to accurately locate the layer interfaces (transitions of lithology or fluids)

and estimate the magnitude of discontinuity to enhance the drilling management.
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Figure 3.22: Zp inversion uncertainty by rjMCMC.
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Figure 3.23: Zs inversion uncertainty by rjMCMC.
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Figure 3.24: ρ inversion uncertainty by rjMCMC.

3.5 Conclusion

Via synthetic study and comparison with a commercial software, we have shown

that prestack seismic waveform using rjMCMC is able to invert acoustic/shear

impedance and density with high accuracy and achieve a high inversion resolution of

λ/16 in terms of locating layer interfaces. From the prestack seismic inversion, we also

found out that the inversion uncertainty is strongly correlated with the discontinuity

of property in a way that the former is able to depict the location (structure) and the

magnitude of the discontinuity. Due to the uncertainty trade-off between property

uncertainty and location uncertainty in prestack inversion, a larger discontinuity of

property will induce a higher uncertainty in property at the discontinuity but also

a more ‘‘certainty’’ of the location of the discontinuity. These prestack inversion

results are in accordance with those post-stack inversion results in Section 2.4.
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4. UNCERTAINTY ANALYSIS USING TRANSDIMENSIONAL MARKOV

CHAIN MONTE CARLO METHOD

4.1 Introduction

Uncertainty is inherent in every stage of the quantitative inference of subsurface

properties via geophysical data. Uncertainty estimation facilitates decision-making in

the oil and gas exploration and production business. Since uncertainty is defined as

the range of the ensemble of possible outcomes, the uncertainty estimation should

be able to quantify how each outcome is deviated from the ensemble. In geophysics,

uncertainty is comprised of measurement uncertainty (or data uncertainty) and

inference uncertainty (or model uncertainty). Data uncertainty includes systematic

and random errors in measurements and is essentially a characterization of the

dispersion of a measurement (Ma, 2011). Inference uncertainty is caused by a variety of

errors or inaccuracy in methodology, interpretation, modeling, etc. Both uncertainties

can be estimated through statistical analysis of the probability distribution of possible

outcomes. In this section, our uncertainty analysis concentrates on the model

uncertainty.

Since an ensemble of an infinite number of models may explain the data within

a predefined tolerance in most inverse problems, our uncertainty estimation is a

measurement of the ranges of this model ensemble, which requires enough inverted

models to be collected from this ensemble for statistical analysis. Our uncertainty

analysis using rjMCMC is cast in a Bayesian framework since the posterior probability

distribution (PPD) is quantifiable, and the standard deviation of the PPD is a direct

measurement of uncertainty.

The uncertainty estimation in geophysical inverse problems has been conducted by
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various stochastic inversion algorithms, such as Markov chain Monte Carlo method

(MCMC) (Liu and Stock, 1993; Malinverno and Briggs, 2004; Chen and Dickens, 2009;

Gunning et al., 2010; Kwon and Snieder, 2011), Simulated Annealing (SA) (Dosso,

2002; Dosso and Nielsen, 2002; Bhattacharya et al., 2003; Roy et al., 2005; Varela

et al., 2006), Particle Swarm Optimization (PSO) (Fernández-Mart́ınez et al., 2012;

Rumpf and Tronicke, 2015), and reversible jump Markov chain Monte Carlo method

(rjMCMC) (Dettmer et al., 2013; Reading and Gallagher, 2013; Dadi, 2014; Galetti

et al., 2015; Dadi et al., 2015). Particularly in seismic inversion, Dadi (2014) and Dadi

et al. (2015) applied rjMCMC in seismic impedance inversion, uncertainty estimation

and well log upscaling. Biswas and Sen (2015) used it for prestack seismic inversion by

using a synthetic model. The applications of rjMCMC in data uncertainty estimation

were conducted by Bodin et al. (2012a,b). Methods such as SA and PSO are classified

as optimization methods which aim to converge to the global minimum but possibly

get trapped in local minima due to data noise. And their convergence is controlled

by the parameters set by the workers. Therefore, the inherent nature of optimization

methods may lead to underestimation of uncertainty. Furthermore, the conventional

inversion methods such as MCMC, SA, and PSO presume and fix the number of

model parameters and may lead to a bias sampling in one model space, whereas the

rjMCMC can transdimensionally search different spaces and look for models with

different parameterization to prevent a bias sampling a single space.

We conducted the uncertainty analysis via a prestack seismic inversion problem

using rjMCMC and revealed that the inversion uncertainty is correlated with disconti-

nuities in material properties and it follows a trade-off between property uncertainty

and location uncertainty. Compared to the previous sections, we will here carry out

an uncertainty analysis to study the trade-off effects more completely. Sections 2.3,

2.4, 3.3 and 3.4 have shown that a larger discontinuity will induce a larger uncertainty
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in model property but also a larger ‘‘certainty’’ in location. In addition to the above

point, this section will adopt a different synthetic model to also substantiate that

a smaller discontinuity will induce a less uncertainty in model property but also a

larger uncertainty in location. We will illustrate the methodology (Section 4.2), apply

rjMCMC for uncertainty analysis using a synthetic model (Section 4.3), and then

discuss more on the uncertainty from the inversion study of the petroleum reservoir

in Norne field, North Sea (Section 4.4).

4.2 Methodology

In this section, we implemented seismic waveform inversion of a 2-D prestack

data to build a 2-D earth model and quantify the uncertainty in the same way shown

by Section 3.2. The illustration of the inverse problem is also referred to Section 3.2.

4.2.1 Model Parameterization

The earth model incorporates geophysical properties such as P-wave velocity Vp,

S-wave velocity Vs and density ρ of each layer and also the number of layers, which

can be written as m = [P,L, n]. Here n is the number of layers, L = [L1, L2, ..., Ln−1]

represents the location of n − 1 interfaces, and P = [P1, P2, ..., Pn] denotes the

geophysical properties such as Vp, Vs and ρ of n layers. Since n is unknown, it is

initialized with an arbitrarily chosen number and allowed to vary stochastically from

the current iteration to the next. Seismic data is usually sampled by 4 ms or 2 ms,

so the minimum thickness of a detectable layer via seismic inversion is a few meters.

So we can set an upper limit for n, say, 50 for a model which is 200 m in thickness.

The model space for P is continuous. However for L and n, the model space is

discrete since the model has to be spatially discretized in depth or time with a given

sampling (also see Section 2.2.1).
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4.2.2 Bayesian Inference, Posterior Distribution, Prior Distribution and Likelihood

Function

As in the previous sections, the Bayesian inference in the inverse problem can be

formulated as follows:

p(m|dobs) =
p(dobs|m)p(m)

p(dobs)
. (4.1)

The full prior PDF is separated into four terms:

p(m) = p(P|n,L)p(ρ|n,L)p(L|n)p(n), (4.2)

where p(n) is the prior on the number of layers, p(L|n) on the location of n − 1

interfaces given the number of layers n, and p(P|n,L) on the geophysical properties

given n and L. These prior PDFs can be formulated as follows:

p(P) =
n∏
i=1

p(Pi|n), (4.3)

p(Pi|n)) = 1/(Pmax
i − Pmin

i ), (4.4)

p(n) = 1/(nmax − nmin), (4.5)

p(L|n) = 1/CN
n−1 =

(n− 1)!(N − n+ 1)!

N !
, (4.6)

where each model parameter is constrained by given minimum and maximum values,

N is total number of possible depths given a certain spatial resolution, and CN
n−1 =

N !
(n−1)!(N−n+1)!

is the number of possible combinations for n− 1 layer interfaces which

will occupy n− 1 depths out of N possible depths in total.
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The full prior PDF is written as:

p(m) =
(n− 1)!(N − n+ 1)!

(nmax − nmin)N !
∏n

i=1(Pmax
i − Pmin

i )
. (4.7)

For our problems, the likelihood function based on the L1-norm is written as:

p(dobs|m) ∝ exp

{
−Φ2(m)

2Ndσ2
d

}
, (4.8)

Φ(m) = ‖f(m)− dobs‖1 , (4.9)

where Nd is the number of data samples and σd is a given standard deviation of the

data misfit and can be regarded as an estimation of data noise. The effects of sigmad

is referred to Section 2.2.5.

4.2.3 The Transdimensional Method, rjMCMC

A new model is proposed by drawing from the predefined proposal distribution

q(m′|m) so that it is contingent on the current model m. Our study sets it either

as a Gaussian normal distribution or a uniform distribution centered at the current

model m. If perturbing Pi and then proposing a new P ′i , the proposal distribution is

a Gaussian normal distribution N(Pi, σP ). If perturbing the location of a interface

Li and proposing a new L′i, the proposal distribution is a uniform distribution. These

distributions are written as:

q(P ′i |Pi) =
1

σP
√

2π
exp

{
−(P ′i − Pi)2

2σ2
P

}
, (4.10)

q(L′i|Li) =
1

∆h
, (4.11)
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where σ2
P is the given variance of the Gaussian function for the perturbation of the

geophysical properties. A larger variance means a greater perturbation, and vice

versa. ∆h is a given perturbation range for moving interface.

The prior ratio, the likelihood ratio and the proposal ratio for different updating

strategies are formulated as follows (refer to Section 3.2.3).

For the first updating strategy, there is no change of dimension, so the prior

ratio p(m′)
p(m)

= 1, the proposal ratio q(m|m′)
q(m′|m)

= 1, and the likelihood ratio p(dobs|m′)
p(dobs|m)

=

exp
{
−Φ2(m′)−Φ2(m)

2Ndσ
2
d

}
.

For the second updating strategy, a new model m′ is proposed with one more layer

interface, velocity and density. The prior ratio p(m′)
p(m)

= n
N−n+1

, the proposal ratio

q(m|m′)
q(m′|m)

= N−n+1
nq(P ′|P )

, and the likelihood ratio is the same as that in the first strategy.

For the third updating strategy, a new model m′ is proposed with one fewer layer

interface, velocity and density. The prior ratio p(m′)
p(m)

= N−n+2
n−1

, the proposal ratio

q(m|m′)
q(m′|m)

= (n−1)q(P ′|P )
N−n+2

, and the likelihood ratio is the same as that in the first strategy.

Substituting these ratios into equation (2.15), we will get acceptance probability

for 3 updating strategies respectively as follows:

α(m′|m) = min

[
1, exp

{
−Φ2(m)− Φ2(m′)

2Ndσ2
d

}]
, (4.12)

α(m′|m) = min[1,
σP
√

2π

Pmax
i − Pmin

i

exp{(P ′i − Pi)2

2σ2
P

− Φ2(m′)− Φ2(m)

2Ndσ2
d

}],
(4.13)

α(m′|m) = min[1,
Pmax
i − Pmin

i

σVp
√

2π
exp{−(P ′i − Pi)2

2σ2
P

− Φ2(m′)− Φ2(m)

2Ndσ2
d

}].
(4.14)
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4.2.4 Calculation of the Uncertainty

An ensemble of inverted models with lowest data misfit are selected in the first

stage. Each model of the ensemble has different parameterizations (different number

of layers and different layer interfaces). To calculate the uncertainty, we have to

downscale all the inverted models in a uniform finer discretization scheme in time or

depth domain. Then all the models will be digitized into vectors or matrices with the

same size, so we can easily calculate the standard deviations of this ensemble sample

by sample for each time or depth for uncertainty quantification.

Take a 1-D layered model as the example for uncertainty quantification. Suppose

we collect M inverted models with good data fitness. Each model is denoted by

mj = [Pj,Lj, nj], where j = 1, 2, ...,M , nj is the number of layers for the model

mj, Lj = [Lj1, L
j
2, ..., L

j
nj−1

] represents the locations (depths) of all layer interfaces

and Pj = [P j
1 , P

j
2 , ..., P

j
nj ] denotes the property of all layers. Since each model has

different parameterizations with a different nj and Lj, they need to be downscaled

with a uniform finer discretization as follows. mj = [Pj
d,Ld, Nd], the subscript

‘‘d’’ means ‘‘downscaled’’, Nd is the total number of finer layers after downscaling,

Ld = [Ld(1), Ld(2), ..., Ld(Nd−1)] and Pj
d = [P j

d(1), P
j
d(2), ..., P

j
d(Nd)] represent the interface

locations and the property of all layers for model mj. Now that Nd is the same

for all M models, and since the inversion ‘‘window’’ is fixed, that is, every model

has the same depth of the top and bottom, so Ld = [Ld(1), Ld(2), ..., Ld(Nd−1)] is

the same for all M models as well. Obviously, before downscaling the size of

Pj = [P j
1 , P

j
2 , ..., P

j
nj ] is nj which varies for different models, but after downscaling

the size of Pj
d = [P j

d(1), P
j
d(2), ..., P

j
d(Nd)] is Nd which is the same for all models.

For example, consider a subsurface 2-layer model and a 5-layer velocity model

in time domain, P1 = [3.2, 3.8] km/s and P2 = [2.8, 3.1, 3.4, 3.7, 4.3] km/s. The
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top and bottom for these two model is (2, 3) s, so interface location L1 = [2.5] s,

L2 = [2.2, 2.4, 2.6, 2.8] s. If both of them are downscaled by, say, 0.1 km as a new

depth interval, they will both have 10 layers and the same interfaces L = [2.1, 2.2,

2.3, . . . , 2.8, 2.9] s. The new velocity model P1
d = [3.2, 3.2, 3.2, 3.2, 3.2, 3.8, 3.8, 3.8,

3.8, 3.8] and P2
d = [2.8, 2.8, 3.1, 3.1, 3.4, 3.4, 3.7, 3.7, 4.3, 4.3]. The average model

is Pd = [3.0, 3.0, 3.15, 3.15, 3.3, 3.6, 3.75, 3.75, 4.05, 4.05] km/s and the standard

deviation is σ = [0.28, 0.28, 0.07, 0.07, 0.14, 0.28, 0.07, 0.07, 0.35, 0.35] km/s which

characterizes the velocity uncertainty. We can see that only till downscaling will we

able to compute the average and the standard deviation for all M models. In this

section, we choose a very fine sampling interval for downscaling, say, 0.4 ms.

The average model is represented by m = [Pd,Ld, Nd]. The formulations for the

average model property are written as:

Pd = [Pd(1), Pd(2), ..., Pd(Nd)], (4.15)

Pd(k) =
1

M

M∑
j=1

P j
d(k), (4.16)

where k = 1, 2, ..., Nd. And the property uncertainty, or the standard deviation of M

models, is calculated as follows:

σ = [σ(1), σ(2), ..., σ(Nd)], (4.17)

σ(k) =
1

M

M∑
j=1

(P j
d(k) − Pd(k))

2. (4.18)
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4.3 Synthetic Case Study

The synthetic studies in previous sections point out a high uncertainty is caused

by a large discontinuity, the following study is going to show if there is a small

discontinuity, how it would affect the uncertainty differently from a large discontinuity.

Then we will be able to understand quantitatively how the magnitude of discontinuity

influence the uncertainty.

We made a synthetic wedge model for Vp, Vs, and ρ in time domain, and calculated

acoustic impedance (Zp = Vpρ) and shear impedance (Zs = Vsρ). This model has 5

layers with Vp = (3.2, 2.8, 3.2, 3.35, 3.7) km/s, Vs = (1.9, 1.65, 1.9, 2.0, 2.2) km/s and

ρ = (2.35, 2.2, 2.35, 2.45, 2.6) g/cc from the top down. The wedge has a relatively

lower Zp, Zs and ρ which represents a gas reservoir. The synthetic true model

implies interface discontinuities as follows: Vp = (−0.4,+0.4,+0.15,+0.35) km/s,

Vs = (−0.25,+0.25,+0.1,+0.2) km/s and ρ = (−0.15,+0.15,+0.1,+0.15) g/cc,

which means a relatively larger discontinuity at the first, second and fourth interfaces,

and a relatively smaller discontinuity at the third interface. Vp, Vs, and ρ are

independent variables and our final goal is to characterize Zp, Zs and ρ. True model

of Zp, Zs and ρ are shown by Figure 4.1. Using the true model, we calculated the

reflectivities with different incident angles based on the Zoeppritz equation in time

domain. We convolved the reflectivities with a zero-phase Ricker wavelet with central

frequency of 25 Hz to generate synthetic seismic data with 2 ms sampling interval.

To mimic angle gathers comprised of near, mid and far offsets, each CMP (common

midpoint) gather has 3 traces with incident angles of 5, 15 and 25 degrees. Same as

implemented in previous sections, the simulated seismic data was also added with

zero-mean Gaussian random noise with a standard deviation of 10% of the maximum

data value. The noise was added on the amplitude of each sample, so the waveform
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was slighted distorted and also contained spikes. This synthetic seismic data with

noise was used as the observed seismic data for the inversion. The wedge model is

comprised of 80 CMPs with an interval of 12.5 m. We generated synthetic seismic

data for each CMP, and here we chose one CMP to display the seismic data (Figure

4.2).
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Figure 4.1: Geophysical properties for the wedge model used to test the rjMCMC
inversion algorithm. (a) Acoustic impedance Zp (km/s*g/cc). (b) Shear impedance
Zs (km/s*g/cc). (c) Density ρ (g/cc).

The properties of the overburden rock above 2 s for the true model and the model

to be inverted are set to be the same with those of the first layer of the true model.

Constant inversion lower/upper limits for Vp, Vs and ρ are (2.5, 4.1) km/s, (1.3,

2.5) km/s and (2.1, 2.7) g/cc respectively. Since the number of layers is unknown,

the initial model is arbitrarily chosen which has 10 layers with equal interval in time

domain as well as with the same initial Vp=3.3 km/s, Vs=1.9 km/s and ρ=2.4 g/cc.

To imitate the properties of rocks in the real case, we set lower/upper limits for the

Vs/Vp ratio as (0.5, 0.66) and ρ/Vp ratio as (0.6, 0.9). The allowed minimum number

of layers is 2 and the allowed maximum is 30. If a new model goes beyond any one

of these bounds, it will be discarded and rjMCMC will repeat the current step and
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Figure 4.2: Synthetic prestack seismic data generated from the true model and added
with 10%random noise. No.40 CMP is chosen for display.

propose another new model until all these criteria are satisfied.

The standard deviation of data misfit σd in equation (4.8) was set to be 0.03

which is around 20% of the peak of the seismic data. For the standard deviations of

the proposal distributions for model perturbation, we set σVp , σVs and σρ in equation

(4.10) to be 0.4 km/s, 0.3 km/s and 0.15 g/cc respectively (see Section 2.2.11).

We ran the inversion CMP by CMP for 5,000 iterations and each CMP is inverted

independently as in the seismic waveform inversion for 1-D earth model (see Section

3.2). To assess the inversion process, we chose one CMP as a demonstration example.

Figure 4.3 shows the RMS (root mean square) error between the synthetic data and

the modeled data for all iterations, and it illustrates that the rjMCMC finds the

low-misfit models in the first few hundred of iterations.

Similar as the studies in previous sections, we kept rjMCMC running for 5,000
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Figure 4.3: RMS error between the data and the modeled data. Displayed for only
the first 1000 iterations (No.40 CMP).

iterations so that we would have enough good models in the solution pool through

the sampling stage, which assisted us in getting a quality average model as well as in

uncertainty quantification. The number of layers versus iteration number was plotted

to illustrate that the rjMCMC is able to infer the model dimensionality (Figure

4.4). Out of 5,000 models from 5,000 iterations, we sorted the models by RMS error

and chose 2,500 models with relatively lower data RMS errors. A histogram of the

number of layers for these sampled models is shown by Figure 4.5. These figures

show that the rjMCMC infers the number of layers n to be around 5. A minor

overparameterization is allowed by rjMCMC whereas an major overparameterization

(n > 15) and an underparameterization (n < 5) are abandoned by rjMCMC.

We downscaled these chosen models with a uniform finer discretization scheme in

time domain (0.4 ms in this study) to make a solution set. As mentioned in Section

4.2.4, after this downscaling with the same discretization, all the models will be

digitized into matrices with the same size. Then we calculated the average model

of this set sample by sample in time domain and used it as the final solution, and

computed the standard deviations of this set sample by sample in time domain to

appraise the uncertainty.
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Figure 4.4: The variation of the number of model layers with iterations (No.40 CMP).
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Figure 4.5: Histogram of the number of layers for 2,500 sampled models with low
misfit (No.40 CMP).

Inverted Zp, Zs and rho are shown as an example (Figure 4.6). As previously

pointed out in Section 2.3 and 3.3, the uncertainty (shown by the error bar) of Zp or

Zs is less than that of density. The reason is that the density is poorly resolved by

P-waves seismic data (Debski and Tarantola, 1995; Igel et al., 1996), but the inverted

average density statistically approximates the true density model.

To show the posterior distribution of the sampled models, we plotted the his-

togram and show it for one depth (2080 ms) as an example. Figure 4.7 indicates an

asymmetrical distribution, but the average value is almost the same as the true value

(Figure 4.6).

We implemented this process for all CMPs. Due to the reason that each CMP
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Figure 4.6: Inverted models vs. true models (Trace No.40). (a) Zp (km/s*g/cc).
(b) Zs (km/s*g/cc). (c) ρ (g/cc). The inversion uncertainty (standard deviation) is
represented by the error bar.
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Figure 4.7: Histogram of sampled models (Trace No.40, depth=2080 ms). (a) Zp
(km/s*g/cc). (b) Zs (km/s*g/cc). (c) ρ (g/cc).

gather had spatial random noise that would propagate into the inverted models

as mentioned in Section 2.2.9, a lateral moving-average smoothing was applied to

suppress the noise effect. Finally, we obtained the inverted average models of Zp, Zs

and ρ (Figure 4.8) and quantified their uncertainty (Figure 4.9).

These inversion results obtained from the 2,500 inverted models show that the

true model and the layer interfaces for Vp, ρ and Zp are almost recovered by the
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Figure 4.8: Inverted average models by rjMCMC. (a) Zp (km/s*g/cc). (b) Zs
(km/s*g/cc). (c) ρ (g/cc).
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Figure 4.9: rjMCMC Inversion uncertainty. (a) Zp uncertainty (km/s*g/cc). (b) Zs
uncertainty (km/s*g/cc). (c) ρ uncertainty (g/cc).

rjMCMC.

To assess the data fitting for inversion results, we computed the modeled seismic

data from the inverted average model and here we chose one CMP to display (Figure

4.10). To show how well all the 2,500 sampled models fit the synthetic data, we also

computed their seismograms and calculated the standard deviations for each time

sample. Here we picked the mid-offset seismogram of No.40 CMP as an example

to display (Figure 4.11). The standard deviations are quite small compared to the

synthetic data, the average standard deviation is 0.0062 (around 7% of the data
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peak/trough), and the data falls into the range of the error bar. These indicate a

successful data fitting for the model ensemble.
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Figure 4.10: Synthetic seismic data generated from the true model and added with
noise (black) vs. modeled data generated from the inverted average model (red).
No.40 CMP is chosen for display.

Since the true model was designed with three interfaces (first, second and fourth)

of relatively larger discontinuity and one interface (third) of smaller discontinuity, the

inversion uncertainty in impedance (Figure 4.9(a)) shows that the third interface has

a smaller uncertainty in impedance than those of the other three interfaces. However,

the third interface is less sharply defined than the other interfaces as well. This shows

that a smaller discontinuity will induce a less uncertainty in impedance around the

interface but also give rise to more uncertainty of the interface’s location.

To sum up, a larger discontinuity of property will induce 1) more uncertainty
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Figure 4.11: Comparison of the modeled data from 2,500 inverted models and the
inverted average model with the synthetic data from the true model. The mid-
offset (angle=15◦) trace of No.40 CMP is chosen as an example for display. Black:
synthetic seismogram generated from the true model and added with noise. Red:
seismogram generated from the inverted average model. Red error bar represent the
standard deviations for all time samples of the 2,500 seismograms from the 2,500
inverted models (displayed by every two time samples), and the average standard
deviation=0.0062.

in model property at the discontinuity but also 2) more ‘‘certainty’’ of the location

of the discontinuity. And a smaller discontinuity will induce 1) less uncertainty in

model property at the discontinuity but also 2) more uncertainty of the location of

the discontinuity. This synthetic study shows the trade-off effects from two opposite

cases while the studies in previous sections only focuses the first case. It shows that

the property uncertainty and the location uncertainty exert a limitation on each

other so they cannot be simultaneously certain with high accuracy.

4.4 Case Study Using an Oilfield Data, Norne Field, North Sea

Here we use the inversion results from Section 3.4 for a more detailed uncertainty

analysis as follows. Previously in the synthetic study, we have pointed out a large

property discontinuity results in a large property uncertainty and a small location

(or structural) uncertainty and a small discontinuity has an opposite effect. The

inversion of this field data substantiates this statement furthermore. Disregarding

the negative effects from the low SNR (signal to noise ratio) in the deeper region, we
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found out the uncertainty results (Figure 4.15, 4.16 and 4.17) generally delineate the

geological structure shown by Figure 4.12, 4.13 and 4.14. The higher uncertainty in a

property (red) indicates a larger discontinuity of that property. The lower uncertainty

(white) indicates a smaller discontinuity. Even there exists no discontinuity, there is

still some uncertainty since the uncertainty does always exist, but non-discontinuity

(continuous) regions exhibit the lowest uncertainty. So we can interpret the lowest

uncertainty in a property as the indicator of continuity of that property.

9.2 

6.4 

km/s *g/cc 

7.1 

7.8 

8.5 

2.3 s 

2.4 s 

2.6 s 

2.5 s 

Figure 4.12: Inverted Zp by rjMCMC. The inversion procedure is described in Section
3.4.

Next, let’s focus on the discontinuity of this reservoir. For example, at time

around 2.44s where there is a transition from shale to gas sand, the Zp uncertainty is

very large at the interface (Figure 4.15), which shows there is major Zp discontinuity.

However, at the same location, the Zs uncertainty (Figure 4.16) is much lower than

that in the surrounding regions, which indicates the Zs discontinuity is small there.

These results honor the fact that P-waves are sensitive to changes in pore fluid and

S-waves are relatively unaffected by the pore fluid. Furthermore, the ρ uncertainty
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Figure 4.13: Inverted Zs by rjMCMC. The inversion procedure is described in Section
3.4.

(Figure 4.17) shows fewer sharp discontinuity surfaces which means the density is

relatively more continuous than Zp. This is consistent with the fact that the density

for the whole region has small variations and the most values are in the range of (2.2,

2.5) g/cc, and also the variation over the average for density is around 15%, while

that for Zp is around 35%. This is why Zp discontinuity (uncertainty) presents more

discontinuity interfaces than those for ρ in this reservoir.

All the above studies in this dissertation inspired us to use the uncertainty as a

novel attribute optimistically to assist in pinpointing the location of the subsurface

reflectors and quantify the magnitude of discontinuities. And when the uncertainty

and the discontinuity of different properties are analyzed together, the Zp, Zs and ρ

uncertainties can give us comprehensive insights to better understand the subsurface

characteristics from different ways.
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Figure 4.14: Inverted ρ by rjMCMC. The inversion procedure is described in Section
3.4.
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Figure 4.15: Zp inversion uncertainty by rjMCMC. The inversion procedure is

described in Section 3.4.
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Figure 4.16: Zs inversion uncertainty by rjMCMC. The inversion procedure is

described in Section 3.4.
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Figure 4.17: ρ inversion uncertainty by rjMCMC. The inversion procedure is described

in Section 3.4.
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4.5 Conclusion and Discussion

From different studies with synthetic or field and post-stack or prestack data in

this dissertation, our uncertainty analysis shows that the inversion uncertainty is

correlated with the discontinuity of property and complies the uncertainty trade-off

between property uncertainty and location uncertainty. On one other, a smaller

discontinuity of property induces less uncertainty in property at the discontinuity

and nevertheless more uncertainty of the location of the discontinuity. On the other,

a larger discontinuity leads to more uncertainty in property at the discontinuity and

nevertheless more ‘‘certainty’’ of the location of the discontinuity. Therefore, we

propose to utilize inversion uncertainty as a new attribute to depict the magnitude

and the location (structure) of subsurface discontinuities and reflectors that normally

are related to a transition of lithology or fluid content. This discovery may be

generalized in any inverse problem in all disciplines because the uncertainty trade-off

can be a general principle in any inverse problem as long as there are complementary

parameters to be inverted.

The word ‘‘uncertainty’’ sounds scary since we tend to think it is something

negative and we are trying to avoid. However, this may not be true because when we

have more uncertainty in something, we may have more certainty in its complementary

partner according to the uncertainty trade-off. This also means we can not have

certainty with high accuracy in both complementary partners (such as A and B) in

the same experiment by the same method. If we want to have certainty in both A

and B, we can conduct two independent experiments and use different approaches.

One experiment focuses on constraining A with higher certainty, whereas the other

experiment with a different method focuses on constraining B. The combined results

may give certainty on both. Since there are lots of surprising hidden information in
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the uncertainty for us to understand the research target in different perspectives, a

geophysicist or any inversion scientist may not necessarily treat the uncertainty as

a negative result because we may also have more certainty on the other side of the

coin even if we have uncertainty on one side.
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5. CONCLUSION AND DISCUSSION

5.1 Conclusion

This dissertation demonstrates that the transdimensional rjMCMC can answer

together these three critical questions that arise in addressing inverse problems, that

is, how to parameterize the earth model with appropriate parameters, how to estimate

these parameters from the data available and how to assess the uncertainty. The

main focus of this research is to put more emphasis on discussing the first and the

third questions through seismic waveform inversion using post-stack and prestack

data. This is a relatively new topic, and relevant recent literature includes Dadi

(2014) and Biswas and Sen (2015).

We have shown that the rjMCMC is able to infer the model dimensionality from

the data itself and achieve proper parameterizations so that it can prevent under-

parameterization and overparameterization. We have also demonstrated that this

method can facilitate uncertainty estimation on the grounds that the transdimen-

sional sampler searches different spaces of different dimensionalities which are close

to that of the true model. Statistically, the average and the standard deviation of the

solution ensemble can yield a less bias compared to the scenario that the inversion is

implemented in only a predefined single space whose dimensionality may be distinct

from that of the true model space. Additionally, by using this algorithm in prestack

seismic waveform inversion, we obtained a high resolution of inversion results which

is λ/16, where λ is the seismic wavelength.

A critical scientific contribution of this research is that we discovered that the

uncertainty in an inverse problem may conform with a trade-off between property

uncertainty and location uncertainty if there are complementary parameters in the
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model. This is due to the reason that geophysical properties and the location are

complementary in the inversion. This discovery along with our research results reveals

that we can utilize the inversion uncertainty as an attribute that is able to depict the

model discontinuity. A larger discontinuity of property will induce a higher uncer-

tainty in model property and a less uncertainty in location. A smaller discontinuity

will induce a lower uncertainty in model property and a higher uncertainty in location.

In the seismic exploration, we can use the inversion uncertainty to understand the

location and the magnitude of subsurface discontinuities and reflectors which usually

represent a transition of lithology and fluids.

5.2 Discussion

The transdimensional inversion method, rjMCMC, is not only feasible for the

geophysical inverse problems in which the model parameterization is usually unknown,

but also for any inverse problem that has the same issue. This tool will be extremely

attractive if the model has strong heterogeneity and complexity in such a way that

some regions are more complicated and need more parameters to depict but the other

regions are less complicated and need fewer parameters to characterize. Due to the

flexibility of the transdimensional MCMC, it infers the model dimensionality and

converges to proper parameterizations which may depict the model in a more optimized

way than using a uniform discretization for the whole model as implemented in most

traditional inversion methods. Therefore, it is able to prevent overparameterization

in more complicated region and prevent underparameterization in a less complicated

region. For instance, as for a reservoir upscaling problem whose goal is to find

an optimal upscaled model that can be handled by computer efficiently and can

also fit the data via reservoir simulation, it can be treated as an inverse problem

and a transdimensional implementation can facilitate building a upscaled reservoir
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model with a proper discretization and use more parameters to characterize the more

complex part and fewer parameters to depict the less complex part.

The research examples in this dissertation conducted rjMCMC inversion based

on 1-D layered earth model. However, this method is able to be implemented in

2-D and 3-D earth model using Voronoi cells (Bodin et al., 2012a) and 3D Voronoi

blocks. To solve problems in these settings, we propose to use rjMCMC in another

way which involves adding, deleting and perturbing a set of cells or blocks in stead

of one single cell or block at each iteration. This approach may require adaptive

grouping of these units. Another scope of using the transdimensional rjMCMC is to

integrate with a forward modeling method that can handle irregular discretization or

parameterization, such as finite element method (FEM). The similarity of rjMCMC

and FEM is that they work with irregular discretization. The differences are that

1) rjMCMC is an inversion method whereas FEM is a forward modeling method

and 2) rjMCMC allows a varying discretization but FEM generally doesn’t. Since

the stochastic inversion is an iterative process of forward modeling and data fitting,

we propose to integrate rjMCMC and FEM in the following way. Add, delete or

perturb a set of cells or blocks in each iteration and conduct the forward modeling

based on the new discretization using FEM for each iteration. In order to make this

idea feasible with 3D earth model which has a large number of parameters, super

computing is required.

To generalize our discovery that the seismic inversion complies with the trade-off

between property uncertainty and location uncertainty, we put forward that an

inverse problem may conform with the principle of uncertainty trade-off as long

as there are complementary parameters to be inverted in one experiment and we

may not have ‘‘certainty’’ with high accuracy in both complementary partners in

one experiment. However, if we want to have certainty in both, we may need to
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have two independent experiments which might require different approaches so that

one experiment with one certain approach can constrain one parameter and the

other experiment with a different approach can constrain the complementary partner.

Conceptually, we do need a refreshment of the philosophical view of uncertainty. A

geophysicist or any inversion scientist may not necessarily treat the uncertainty as a

negative result because whenever we have more uncertainty on something, we may

also have more certainty on the others, which means that there are lots of hidden

information in the uncertainty which can be taken advantage of to understand the

research target in different perspectives.
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