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ABSTRACT 

Precise control of cell death is critical for all organismal survival. Arabidopsis 

receptor-like kinase BAK1 and SERK4 redundantly and negatively regulate cell death 

with elusive mechanisms. By deploying a genetic screen for suppressors of cell death 

triggered by virus-induced gene silencing of BAK1/SERK4 on Arabidopsis knockout 

mutant collections, we identified STT3a, which is involved in N-glycosylation 

modification and cyclic nucleotide-gated channel 20, a nonselective cation channel, as 

important regulators as bak1/serk4 cell death. Systematic investigation of glycosylation 

pathway and ER quality control (ERQC) components revealed distinct and overlapping 

mechanisms operating BAK1/SERK4- and their interacting protein BIR1-regulated cell 

death. Genome-wide transcriptional analysis revealed the activation of members of 

cysteine-rich receptor-like kinase (CRK) genes in the bak1/serk4 mutant. Ectopic 

expression of CRK4 induced STT3a/N-glycosylation-dependent cell death in 

Arabidopsis and Nicotiana benthamiana. Therefore, N-glycosylation and specific ERQC 

components are essential to activate bak1/serk4 cell death, and CRK4 is likely among 

client proteins of protein glycosylation involved in BAK1/SERK4-regulated cell death. 

In addition, our genetic screen revealed that CNGC20 plays an important role in 

bak1/serk4 cell death. Interestingly, in vivo and in vitro assays indicated that BAK1 

directly interacts with and phosphorylates membrane-resident CNGC20. Mass 

spectrometry and mutagenesis analysis revealed that specific phosphorylation sites of 

CNGC20 by BAK1 are indispensable for its function in cell death control. In conclusion, 



 

iii 

 

our findings unravel novel components and provide mechanistic insights into plant cell 

death regulation. 



 

iv 

 

ACKNOWLEDGEMENTS 

Time flies so fast, and my five-year’s graduate study is ending. When I recall this 

experience, I have a lot to be thankful for. First, special thanks to my advisors, Dr. Ping 

He and Dr. Libo Shan for their support, encouragement, guidance and supervision over 

the course of my research and life. I learned a lot from them: they taught me how to do 

research objectively, how to present logically and how to write scientifically. They also 

consistently encourage me to never give up my scientist faith. Their serious attitudes 

toward science impress me a lot and will have a deep imprint in my future work. I also 

appreciate their care for my family. Thanks for holding the baby shower for my daughter 

and inviting my family to parities and picnics. Many thanks also go to my committee 

members, Dr. Wayne Versaw and Dr. Keyan Zhu-Salzman, for their guidance and 

support.  

I am extremely thankful to Dr. Marcos V. V. de Oliveira who helped me a lot in 

my research. He frequently discussed scientific questions with me, which helped me 

grow a lot. Many thanks to Dr. Bo Li, who helped me do a lot of biochemical work in 

the CNGC20 project. In addition, I would like to thank all the lab members for the help, 

not only with the scientific discussion but also for providing a lot of help in my private 

life. Because of all of you, my graduate life was filled with so much love and fun. I 

appreciate all of your help and wish all of us a good future.  

I also want to extend my gratitude to the China Scholarship Council for the 

scholarship.  Without the support, I cannot have the chance to study in the USA. I wish 

my country become more prosperous and thriving.  



 

v 

 

The last but not least, I want to thank my parents and my wife who gave me 

endless encouragement and deep love. I cannot have finished my Ph.D study without 

them. I also want to thank my sweet daughter for bringing me so much happiness. I love 

you forever and wish you to grow happily all the time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vi 

 

NOMENCLATURE 

BAK1                              BRI1-associated Receptor Kinase 1 

BAM1                                   Barely Any Meristem 1  

BKI1                                 BRI1 Kinase Inhibitor  

BR                                Brassinosteroid  

BRI1                              Brassinosteroid Insensitive 1 

CaMBD                                Calmodulin Binding Domain 

CERK1                             Chitin-Elicitor Receptor Kinase 

CLV1                           CLAVATA1    

CNBD                                   Cyclic Nucleotide Binding Domain 

CNGC                          Cyclic Nucleotide-gated Channel 

cNMPs                                Cyclic nucleotide Monophosphates 

CRK                             Cysteine-rich Receptor-like Kinase 

DAMP                                Danger-Associated Molecular Pattern 

DND                                     Defense, no death   

PCD                                        Programmed Cell Death 

dPCD/ePCD                         Development-related PCD/environment-related PCD 

EDS1                                   Enhanced Disease Susceptibility 1  

EF-Tu                                 Elongation Factor-Tu   

EFR                                 EF-Tu Receptor                 

ERL1                            ER-like1   

ERQC                           ER Quality Control  
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FLS2                                 Flagellin Sensitive 2   

HAE                                     HAESA     

HR                                     Hypersensitive Response  

HSL2                                     HAESA-like 2   

LORE                                      LipoOligosaccharide-specific Reduced Elicitation 

LPS                                         Lipopolysaccharide   

LRR                                      Leucine-rich Repeat  

lsd1                                         lesion simulating disease 1 

MAPK                          Mitogen-Activated Protein Kinase 

MDIS1                                    Male Discoverer 1   

MIK1                            MDIS1-interacting Receptor-like Kinase1  

NDR1                                 Non-race-specific Disease Resistance 1  

NLPs                             Necrosis and Ethylene-inducing Peptide 1-like Proteins 

PAD4                                     Phytoalexin Deficient 4  

PAMPs/MAMP                   Pathogen-or Microbe-associated molecular patterns 

PBC                                      Phosphate Binding Cassette   

ReMAX                            Receptor of eMAX /RLP1  

RFO2                                      Resistance to Fusarium Oxysporum-2  

RLK                             Receptor-like Kinase  

RLP                               Receptor-like Protein  

ROS                                     Reactive Oxygen Species  

SA                                Salicylic Acid  
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SAG101                                 Senescence-associated Gene 101  

SERK                             Somatic Embryogenesis Receptor Kinase 

SNC2                                       Suppressor of NPR1, Constitutive-2 

SOBIR1                                   Suppressor Of BIR1-1 

UPR                                     Unfold Protein Response  
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1 INTRODUCTION AND LITERATURE REVIEW 

1.1 Plant receptor-like kinases (RLKs)/receptor-like proteins (RLPs) in diverse 

signaling 

Plants are decorated with bunch of receptor-like kinases (RLKs) and receptor-

like proteins (RLPs) at cell surface to perceive external environment cues and internal 

signals, relaying signaling cascades to target genes and proteins that are central to plant 

growth and development, innate immunity and stress adaptation. Typically, RLKs are 

composed of extracellular domain, a single membrane-spanning region and a 

cytoplasmic kinase domain. RLPs have similar compositions with RLKs except lacking 

cytosolic kinase domain. The Arabidopsis genome encodes around 600 RLKs and 57 

RLPs (Shiu and Bleecker, 2001; Wang et al., 2008a). The largest subgroup of 

RLKs/RLPs are leucine-rich repeat (LRR-RLKs/RLPs) as they contain conserved 

consensus sequence LxxLxxLxLxxNxLt/sgxIpxxLG in their extracellular domains 

(Jones and Jones, 1997; Li and Tax, 2013). Members of LRR-RLKs/RLPs have been 

suggested to function as receptors to perceive plant growth hormone molecules, various 

microbial component-derived peptide ligands or endogenous peptide ligands.  

1.1.1 RLKs/RLPs and plant development 

RLKs/RLPs play important roles in a wide range of physical responses during 

plant life cycle, from zygotic embryogenesis to flowering. For example, brassinosteroid 

insensitive 1 (BRI1) regulates brassinosteroids (BRs) perception and signal initiation 

(Karlova et al., 2006; Li et al., 2002; Nam and Li, 2002); PSKR mediate plant 

architecture, cell proliferation and organ growth (Wang et al., 2015a); ER, ER-LIKE 1 
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(ERL1), ERL2 control stomatal development (Lee et al., 2012; Meng et al., 2015; Shpak 

et al., 2005); CLAVATA1 (CLV1), BARELY ANY MERISTEM 1 (BAM1), BAM2, 

and BAM3 are involved in apical meristem maintenance and development (Clark et al., 

1997; DeYoung et al., 2006). HAESA (HAE) and HAESA LIKE 2 (HSL2) function 

redundantly to regulate floral organ abscission (Jinn et al., 2000; Stenvik et al., 2008). 

Recently, MALE DISCOVERER1 (MDIS1) and MDIS2, and MDIS1-INTERACTING 

RECEPTOR LIKE KINASE1 (MIK1) and MIK2, were found to recognize peptide 

LURE1 to initial the sexual reproduction in Arabidopsis (Wang et al., 2016). 

1.1.2 RLKs/RLPs and plant defense response 

In addition to development, several RLKs/RLPs participate in plant innate 

immunity. For example, FLAGELLIN SENSITIVE 2 (FLS2) confers immunity against 

bacterial flagellin or flg22 (a 22-amino-acid peptide corresponding to the amino (N)-

terminus of flagellin) and initiates downstream immune responses (Chinchilla et al., 

2006); EFR (EF-Tu receptor) initiates elongation factor-Tu (EF-Tu)-triggered immune 

responses (Zipfel et al., 2006). PEPR1 and PEPR2 recognize endogenous peptide pep1 

known as danger-associated molecular pattern (DAMP) and released from plant cell due 

to pathogen infection, to amplify the immune responses (Huffaker et al., 2006; Huffaker 

and Ryan, 2007). Arabidopsis CERK1 (Chitin-Elicitor Receptor Kinase) directly binds 

chitin, a component from fungal cell walls to activate plant immune responses (Liu et al., 

2012). Lipopolysaccharide (LPS) from gram-negative bacteria can be recognized by 

newly identified RLK LipoOligosaccharide-specific Reduced Elicitation (LORE) (Ranf 

et al., 2015). Among RLPs, RLP30 is required for the defense responses triggered by a 
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partially purified proteinaceous elicitor called sclerotinia culture filtrate elicitor 1 

(SCFE1) from the necrotrophic fungal pathogen Sclerotinia sclerotiorum (Zhang et al., 

2013). Another RLP SUPPRESSOR OF NPR1, CONSTITUTIVE-2 (SNC2) is a 

negative regulator in immune responses, as the snc2 mutant exhibit constitutive defense 

response (Zhang et al., 2010). Recently, the Arabidopsis RESISTANCE TO 

FUSARIUM OXYSPORUM-2 (RFO2) was shown to be involved in resistance to the 

fungus Fusarium oxysporum (Shen and Diener, 2013) and RECEPTOR OF eMAX 

(ReMAX)/RLP1 detects ENIGMATIC MAMP OF XANTHOMONAS (eMAX) from 

Xanthomonas (Jehle et al., 2013).  

1.2 Distinctive functions of BAK1/SERK family 

Recent studies have shown that most RLKs/RLPs mentioned above are able to 

heterodimerize with another LRR-RLK, BRI1-associated receptor kinase 1 (BAK1), also 

known as somatic embryogenesis receptor kinases 3 (SERK3) upon cognate ligand 

perception. BAK1/SERK3 belongs to a subfamily of LRR-RLKs with 5 members 

(Chinchilla et al., 2009).  SERKs harbor a relatively short extracellular domain with 5 

LRRs (Boller and Felix, 2009; Chinchilla et al., 2009). SERK5 in the Col-0 ecotype, 

commonly used for most of studies, bears an amino acid polymorphism at a conserved 

site in the kinase domain from the other SERKs, which likely renders a nonfunctional 

kinase (Gou et al., 2012). Accumulating evidence suggests that SERK members 

coordinate a diverse range of distinct cellular functions via interacting with the 

corresponding receptors. 
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1.2.1 Function of BAK1/SERK in development 

BAK1 was first identified in BR signaling from two independent studies. BR, a 

class of polyhydroxysteroid hormone regulating plant growth and development, is 

perceived by its receptor BRI1 (Kinoshita et al., 2005).  Using the BRI1 kinase domain 

as a bait, a yeast two-hybrid screen identified BAK1 as the BRI1 interaction protein 

(Nam and Li, 2002). The other study employed genetic suppressor screening of bri1-5 

which is a weak allele of bri1. Overexpression of BAK1 partially rescued the bri1-5 

mutant phenotype (Li et al., 2002). Upon BL perception, BRI1 releases BRI1 kinase 

inhibitor (BKI1), a negative regulator, and recruits BAK1, resulting in sequential 

reciprocal trans-phosphorylation between BRI1 and BAK1, thereby triggering BR-

mediated signaling (Kim et al., 2009; Wang et al., 2008b). Besides BAK1, SERK1 and 

SERK4 have been shown to interact physically with BRI1 and play redundant yet less 

pronounced roles in BR signaling pathway (Jeong et al., 2010; Karlova et al., 2006). 

Further genetic study indicates that the serk1bak1serk4 triple mutant is complete 

insensitivity to BR treatment (Gou et al., 2012). 

Besides the role in BR signaling, BAK1/SERK also are important players in 

PSK-mediated growth regulation (Tang et al., 2015), EPF-regulated stomatal 

development (Meng et al., 2015) and floral organ abscission with HAE/HSL (Meng et 

al., 2016). 

1.2.2 Essential roles of BAK1/SERK in plant innate immunity 

BAK1 was shown to interact with other ligand-binding receptor-like kinases 

mediating plant innate immune response. The first line of the innate immune responses 
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is triggered by perception of conserved pathogen- or microbe-associated molecular 

patterns (PAMPs or MAMPs) or damage-associated molecular patterns (DAMPs) via 

pattern recognition receptors (PRRs) (Chisholm et al., 2006; Jones and Dangl, 2006). 

BAK1 was shown to form complex with several PRRs, such as FLS2 and EFR. 

(Monaghan and Zipfel, 2012; Schwessinger and Ronald, 2012). Ligand binding to the 

corresponding PRR induces their association with co-receptor BAK1 through 

phosphorylation. Subsequently, BAK1 phosphorylates cytoplasmic kinase BIK1, which 

is further released from the complex (Lu et al., 2011). Activation of PRR complex 

further elicits downstream immune responses, including reactive oxygen species (ROS) 

production, mitogen-activated protein kinase (MAPK) activation and transcriptional 

reprogramming.  

Pep1, originally identified as DAMP in Arabidopsis, induces receptor PERP1 

heterodimerization with BAK1 (Schulze et al., 2010; Tang et al., 2015). BAK1 was also 

required for RLP30-meidated resistance to fungal pathogen Sclerotinia sclerotiorum 

(Zhang et al., 2013). Genetic screening identified a novel receptor like protein (RLP) 

ELR responding to elicitor from potato pathogen Phytophthora infestans. Further study 

revealed that BAK1 was most likely the partner with ELR to transmit downstream 

signaling (Du et al., 2015). Recent study showed that BAK1 played an essential role in 

signal transduction mediated by nlp20 which is a conserved 20aa peptide derived from 

multiple necrosis and ethylene-inducing peptide 1-like proteins (NLPs) (Albert et al., 

2015).  
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1.2.3 Involvement of BAK1/SERK in the cell death control 

BAK1 and SERK4 redundantly and negatively regulate plant cell death with an 

enigmatic mechanism. The bak1serk4 null mutant, but not the cognate single mutants, is 

postembryonic seedling lethal associated with spontaneous cell death and constitutive 

H2O2 production (He et al., 2007). The genome-wide transcriptome analysis showed that 

the genes with significant changes in bak1serk4 do not overlap with those in the bri1 

mutant, suggesting that BAK1 and SERK4-mediated cell death is likely uncoupled from 

the BR-mediated signaling. In addition, the bak1-5 mutant with a mutation in the 

subdomain preceding the catalytic loop, which exhibits reduced kinase activity and 

largely compromised defense responses, is not impaired in the cell death control, as the 

bak1-5serk4-1 double mutant is viable (Schwessinger et al., 2011). However, the bak1-5 

mutant retains normal BR-mediated responses, reconciling uncoupled functions of 

BAK1 and SERK4 in the cell death control and BR-mediated signaling. Furthermore, 

the kinase activity of BAK1 appears critical in the bak1serk4 cell death control, as the 

kinase-inactive variants of BAK1 cannot rescue the bak1serk4 cell death (Wang et al., 

2008b). 

1.3 Programmed cell death (PCD) 

PCD is genetically controlled process leading to cell suicide. PCD is essential for 

plant development and stress responses. PCD in animals are well characterized and 

molecular basis is well studied (Bruggeman et al., 2015). In contrast, PCD in plants are 

less clear. It's hallmarks include cytoplasmic shrinkage, chromatin condensation, 

mitochondrial swelling, and plant specific characteristics, such as vacuolization and 
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chloroplast disruption. (Coll et al., 2011). PCD can be divided into development-related 

PCD (dPCD) and environment-related PCD (ePCD). Recent study identified common 

transcriptional signatures in various dPCD contexts (Olvera-Carrillo et al., 2015).  

1.3.1 Hypersensitive response (HR) 

HR, a form of PCD occurring at or near pathogen infection site, is initiated by 

pathogen effector recognition. After recognizing the effectors directly or indirectly by 

nucleotide-binding domain-LRR (NB-LRR) disease resistance proteins, plants utilize 

two separate signaling modules transducing signaling downstream: non-race-specific 

disease resistance 1 (NDR1) regulates coil-coil (CC)-NB-LRR signaling, while the 

enhanced disease susceptibility 1 (EDS1)/ phytoalexin deficient 4 (PAD4)/senescence-

associated gene 101 (SAG101) complex mediates Toll/interleukin-1 receptor (TIR)-NB-

LRR signaling. These signaling leads to SA and ROS production which synergistically 

cause HR which play important role in limiting biotrophic pathogen proliferation (Coll 

et al., 2011).  

The regulation of HR is relatively studied extensively. Insights are gained from 

mutants exhibiting HR-like phenotype, also known as lesion mimic mutants. For 

example, lsd1 (lesion simulating disease resistance), a classic lesion mimic mutant, 

displayed a runaway cell death phenotype. Several components involved in HR were 

identified on the basis of lsd1 mutant. EDS1, PAD4, NDR1 are required for lsd-

mediated cell death in response to pathogen (Bonardi et al., 2011; Roberts et al., 2013). 

In addition, AtMC1 and AtMC2, two types of metacaspases, antagonistically regulate 

HR (Coll et al., 2010). Recent studies indicate cell cycle components regulate effector 
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triggered PCD process. It was demonstrated plant homologs of E2F and Retinoblastoma, 

mammalian cell-cycle regulators, are required for effector-triggered HR (Wang et al., 

2014).  

1.3.2  MEKK1/MKK1/2/MPK4-mediated cell death 

In the pathogen-triggered defense responses, mitogen-activated protein kinase 

(MAPK) cascades have been implicated in transducing signals from upstream receptors 

to the downstream targets (Pitzschke et al., 2009a). Perception of MAMPs induces two 

branches of MAPK cascade activation, MEKK1-MKK4/MKK5-MPK3/MPK6 or 

MEKK1-MKK1/MKK2-MPK4. It was reported that mekk1, mkk1/2 and mpk4 mutant 

exhibited seedling lethal phenotype (Gao et al., 2008). Genetic screening for the 

suppressor of mkk1/mkk2 double mutant identified two suppressors, summ1 and summ2, 

mutation of MEKK2 and R protein. Further analysis indicates that MEKK2 function 

upstream of SUMM2 in MEKK1-MKK1/2-MPK4-mediated cell death signaling (Kong 

et al., 2012; Zhang et al., 2012). 

1.3.3 BIR1-mediated cell death 

BIR1, a BAK1-interacting receptor like kinase, negatively regulate defense 

response, since the bir1 mutant displayed spontaneous cell death, which is suppressed by 

another LRR-RLK SOBIR1 (Suppressor Of BIR1-1) (Gao et al., 2009). In addition, 

overexpression of SOBIR1 led to activate defense response and cell death (Gao et al., 

2009). 
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1.4 Cyclic Nucleotide Gated Channel (CNGC)  

The secondary messengers play an essential role in physiology and signal 

transduction. One group secondary messenger is cyclic-nucleotide monophosphates 

(cNMPs) which includes 3’,5’-cyclic adenyl monophosphate (cAMP), and 3’,5’-cyclic 

guanyl monophosphate (cGMP) (Martinez-Atienza et al., 2007; Newton and Smith, 

2004) while another important secondary messenger is Ca2+. Plants use calcium channels 

to sense and respond the endogenous and environmental stimuli-mediated Ca2+ 

elevation, such as during plant–pathogen interaction (Qi et al., 2010) and development 

process (Frietsch et al., 2007). One reported channel which both binds cNMP and 

uptakes Ca2+ is cyclic nucleotide-gated channel (CNGC). CNGC is a non-selective 

ligand-gated channel protein and present in both animals and plants. Only 6 CNGC 

genes (CNGA1–4, CNGB1, and CNGB3) have been identified in animal genome and 

the biological importance and regulation have been well studied (Cukkemane et al., 

2011). However, plant CNGCs have only been recently investigated and the regulation 

mechanism is still obscure.  

Plant CNGC comprises 6 transmembrane segments (S1-S6) with a pore region (P 

loop) between S5 and S6, one cyclic nucleotide binding domain (CNBD) and one 

calmodulin binding domain (CaMD). In the CNBD, the most conserved region is a 

phosphate binding cassette (PBC), which binds phosphate moiety. The location of 

CNBD and CaMBD differs in mammalian and plant system. In mammals, CNBD 

locates in N-terminal domain and CaMBD locates in C-terminal domain. In plants, both 

CNBD and CaMBD reside in C-terminal overlapping regions (Hua et al., 2003). This 
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may suggest that the regulation mechanism for CNGC in animals and plants is different. 

It has been implicated that CNGC channel gated by cNMP can be blocked upon CaM 

binding to CaMBD (Nawaz et al., 2014).  

The first plant CNGC, HvCBT1 [Hordeum vulgare Camodulin (CaM)-binding 

transporter], was identified in a screen for calmodulin (CaM) binding partners in barley 

(Schuurink et al., 1998), In Arabidopsis, there are totally 20 putative CNGCs which are 

classified into four subfamilies (I-IV) based on sequencing similarity. Group IV was 

further divided into two subgroups (IVA and IVB) (Maser et al., 2001). Several CNGCs 

have been implicated to play important roles in diverse physiological response. 

1.4.1 Ion uptake and homeostasis 

Using electrophysiological methods or heterologous system involved in cation-

uptake deficient yeast (Saccharomyces cerevisiae) and Escherichia coli mutants, 

multiple CNGCs have been shown to involve in the ion uptake and homeostasis. 

CNGC2 is an inwardly-rectified cNMP-gated cation channel and permeable to many 

monovalent cations, but not to Na+ (Chan et al., 2003) . Another CNGC which mediates 

metal uptake is CNGC1, since cngc1 mutant showed enhanced tolerance to toxic Pb2+. 

This is consistent with that CNGC1 preferentially expressed in root (Ma et al., 2006). 

Furthermore, CNGC3 was reported to involve in ion homeostasis. Compared with wild 

type, cngc3 mutant had lower germination rates when grown on 100-140mM NaCl, 

while there was no significant difference when grown on KCl or NH4Cl. This suggests 

that CNGC3 can act as Na+ channel. Recently it was reported that CNGC5 and CNGC6 

are Ca2+ permeable channel in guard cell (Wang et al., 2013).  
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1.4.2 The role of CNGC in plant development 

It has been reported that CNGC2 is induced at the early stages of plant 

senescence, suggesting CNGC2 may play a positive role in developmental cell death 

control. Both cngc2 and cngc4 mutant exhibit slow growth and low fertility compared 

with wild type. It has been hypothesized that the phenotype may be caused by 

hypersensitivity to Ca2+  (Chan et al., 2003). Recently several reports indicate that 

CNGC7, CNGC8, CNGC16 and CNGC18 play essential roles in pollen tube tip growth 

(Tunc-Ozdemir et al., 2013a; Tunc-Ozdemir et al., 2013b; Wang et al., 2013; Zhou et al., 

2014). Arabidopsis CNGC14 is required for root gravitropism and CNGC17 participates 

in PSK-mediated signaling (Shih et al., 2015). 

1.4.3 Involvement of CNGC in plant defense response  

Arabidopsis dnd1 and dnd2 (defense, no death), screened from ethyl methane 

sulfonate (EMS) mutated population, were impaired in hypersensitive response (HR) 

which is induced by avirulent pathogens (Yu et al., 1998). The dnd1 mutant carries 

mutation in CNGC2 while the dnd2 mutant bears mutations in CNGC4. Recently it was 

indicated that Ca2+ elevation induced by endogenous peptide, known as DAMP acting to 

induce plant immune response to pathogens, was compromised in cngc2 (Ma et al., 

2012). In addition to CNGC2 and CNGC4, CNGC11 and CNGC12 are also implicated 

in plant immune responses, because cpr22 mutant, which carries a 3kb- deletion 

resulting in a chimeric fusion of CNGC11 and CNGC12, showed autoimmune response 

(Yoshioka et al., 2006).  
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1.4.4 Overview for CNGC20 

There are three independent studies about CNGC20. One study mainly focused 

on CNGC20 localization in Arabidopsis. It was demonstrated that CNGC20 localizes on 

vacuole membrane (Yuen and Christopher, 2013). In contrast, another study showed that 

CNGC20 localizes to plasma membrane and the sequential organization of CaMBD and 

CNBD in CNGC20 differs from other CNGC members in Arabidopsis (Fischer et al., 

2013). The last study mainly addressed the expression pattern of CNGC20 and showed 

that CNGC20 expresses in the epidermis and the mesophyll, mainly in petioles (Kugler 

et al., 2009).  

1.5 Protein glycosylation and ERQC 

Protein glycosylation is an essential post-translational modification of secretory 

and membrane proteins in all eukaryotes (Strasser, 2016). When nascent proteins enters 

ER after translation, they usually go through post-translational glycosylation. Asparagine 

(N)-linked glycosylation, one of the most common glycosylation, plays important roles 

in protein folding, ER quality control, protein stability and protein-protein interactions. It 

is catalyzed by oligosaccharyltransferase (OST) complex which transfers the lipid 

(dolichol)-linked N-glycan precursor Glc3Man9GlcNAc2 (Glc: glucose; Man: mannose; 

GlcNAc: N-acetylglucosamine) to the acceptor proteins. After transferring of N-glycan 

precursor to acceptor proteins, the terminal two glucose residues of the oligosaccharides 

are subsequently removed by glucosidase I and glucosidase II (RSW3 in Arabidopsis), 

and then recognized by the ER chaperone-like lectins, calnexin (CNX) and calreticulin 

(CRT3) for proper protein folding and secretion. The incompletely- or mis-folded 
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proteins will be recognized by UDP-glucose:glycoprotein glucosyltransferase (UGGT) 

for additional CNX/CRT cycles and another round of folding. ER-localized HSP70 

proteins, BiPs, and their associated factors ERdj3 and SDF2 also play important roles to 

prevent export of misfolded proteins, especially the nonglycosylated ones. Proteins with 

native conformation after ERQC will be exported to the Golgi apparatus for further 

modifications, such as formation of complex and hybrid N-glycans catalyzed by 

stepwise enzymatic reactions, including 1,2-N-acetylglucosaminyltransferase I 

(CGL1/GNTI), -mannosidase II (HGL1/MANII), GNTII, 1,2-xylosyltransferase 

(XYLT), 1,3-fucosyltransferase (FUCTa and FUCTb), 1,3-galactosyltransferase 

(GALT) and 1,4-fucosyltransferase (FUCTc).  

Protein glycosylation is a vital part of the ER protein quality control. 

Dysfunctional protein glycosylation and folding may trigger ER stress, termed as unfold 

protein response (UPR). The UPR is a strategy to maintain the ER hemostasis and it is 

exerted by decreasing the amount of expressed protein amount, increasing expression of 

molecular chaperones to remove misfolded protein, as well as employing ER-associated 

protein degradation (ERAD) to deal with misfolded proteins (Wang et al., 2015b). 

Several important ER-localized proteins are involved in the UPR process, such as 

activating transcription factor 6 (ATF6), protein kinase RNA-like ER kinase (PERK) 

and inositol-requiring protein 1α (IRE1α) (Liu et al., 2002; Wang et al., 2015b). With 

accumulation of unfolded proteins, the molecular chaperone BiP binding to the 

misfolded protein activates the kinase activity of IRE1α, regulating cleavage of the 

transcriptional factor XBP1 (Wang et al., 2015b). Another member of the UPR, PERK 
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phosphorylates eukaryotic translation initiation factor 2α (eIF2α) and weakens protein 

translation (Harding et al., 1999). While the third member, ATF6, is released from the 

ER and is cleaved by site 1 and site 2 proteases in Golgi (S1P and S2P), generating a 

cytoplasmic transcription factor that activates expression of chaperones involved in 

protein folding and degradation (Ye et al., 2000).  

1.6 Objective and importance for the study 

Programmed cell death (PCD) has essential role in plant growth and 

development, and adaption for the stresses. A detailed characterization and signal 

transduction for PCD will help us engineer the crops with high yield and durable 

resistance.  

We aim to obtain suppressors of bak1/serk4 cell death by virus-induced gene 

silencing of BAK1/SERK4 on Arabidopsis knockout mutant collections. Furthermore, we 

want to understand mechanisms behind bak1/serk4 cell death by combining genetic, 

biochemical studies on these suppressors. 
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2   SPECIFIC CONTROL OF ARABIDOPSIS BAK1/SERK4-REGULATED CELL 

DEATH BY PROTEIN GLYCOSYLATION* 

2.1 Summary 

Precise control of cell death is essential for all organismal survival. Arabidopsis 

BAK1 and SERK4 redundantly and negatively regulate cell death with elusive 

mechanisms. By deploying a genetic screen for suppressors of cell death triggered by 

virus-induced gene silencing of BAK1/SERK4 on Arabidopsis knockout collections, we 

identified STT3a, a protein involved in N-glycosylation modification, as an important 

regulator of bak1/serk4 cell death. Systematic investigation of glycosylation pathway 

and ER quality control (ERQC) components revealed distinct and overlapping 

mechanisms operating BAK1/SERK4- and their interacting protein BIR1-regulated cell 

death. Genome-wide transcriptional analysis revealed the activation of members of 

cysteine-rich receptor-like kinase (CRK) genes in the bak1/serk4 mutant. Ectopic 

expression of CRK4 induced STT3a/N-glycosylation-dependent cell death in 

Arabidopsis and Nicotiana benthamiana. Therefore, N-glycosylation and specific ERQC 

components are essential to activate bak1/serk4 cell death and CRK4 is likely among 

client proteins of protein glycosylation involved in BAK1/SERK4-regulated cell death. 

                                                

*Reprinted with permission from “Specific control of Arabidopsis BAK1/SERK4-regulated cell death by 

protein glycosylation” by Marcos V.V.de Oliveira#, Guangyuan Xu#, Bo Li#, Luciano de Souza Vespoli, 

Xiangzong Meng, Xin Chen, Xiao Yu, Suzane Ariádina de Souza, Aline C. Intorne, Ana Marcia E. de A. 

Manhães, Abbey L. Musinsky, Hisashi Koiwa, Gonçalo A. de Souza Filho, Libo Shan and Ping He, 2016. 

Nature Plants, 2, 15218, Copyright 2016 by Nature Publishing Group.   
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2.2 Introduction 

Plant receptor-like kinases (RLKs) regulate diverse biological processes ranging 

from plant growth, developm SPECIFIC CONTROL OF ARABIDOPSIS BAK1/SERK4-

REGULATED CELL DEATH BY PROTEIN GLYCOSYLATION ent, symbiosis to 

immunity (Belkhadir et al., 2014; Shiu and Bleecker, 2003). BRI1 is a receptor for plant 

brassinosteroid (BR) hormones involving in plant growth and development (Li and 

Chory, 1997) and FLS2 is a receptor for bacterial flagellin or flg22 (a 22-amino acid 

peptide derived from flagellin) involving in plant immunity (Gómez-Gómez and Boller, 

2000). Both BRI1 and FLS2 interact with a subgroup of RLKs, named somatic 

embryogenesis receptor kinases (SERKs), which consist of five members in 

Arabidopsis. Except for SERK5, likely a nonfunctional kinase in Col-0 background 

(Gou et al., 2012), SERK1, SERK2, SERK3 and SERK4 are involved in a wide range of 

physiological responses (aan den Toorn et al., 2015). SERK1 and SERK2 play a crucial 

and redundant role in male gametophyte development (Albrecht et al., 2005; Colcombet 

et al., 2005). SERK3, also known as BAK1, and SERK4 function in plant immunity by 

association with FLS2 and other immune receptors (Chinchilla et al., 2007; Heese et al., 

2007; Postel et al., 2010; Roux et al., 2011). SERK1, BAK1 and SERK4 function in BR 

signaling by association with BRI1 (Gou et al., 2012; Li et al., 2002; Nam and Li, 2002). 

SERK1, SERK2, BAK1 and SERK4 regulate stomatal patterning via EPF peptide 

ligand-induced association with ERECTA family RLKs (Meng et al., 2015). In addition, 

SERK1, SERK2 and BAK1 regulate PSK peptide hormone-mediated root growth via 

association with its receptor PSKR (Ladwig et al., 2015; Wang et al., 2015a).  
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In addition, BAK1 and SERK4 negatively regulate plant cell death process (He et 

al., 2007; Kemmerling et al., 2007). The bak1-4/serk4-1 null mutant is postembryonic 

seedling lethal associated with spontaneous cell death and constitutive H2O2 production 

(He et al., 2007). In contrast to the well-defined signaling framework of BAK1/SERK-

mediated plant growth and immunity, the mechanisms underlying BAK1/SERK4-

regulated cell death control are poorly understood. Notably, BIR1, a BAK1-interacting 

RLK, also negatively regulates cell death and the bir1 mutant exhibits postembryonic 

seedling lethality, which depends on another RLK SOBIR1 (Gao et al., 2009). It remains 

unknown whether same or distinct mechanisms operate bir1 and bak1/serk4 cell death. 

As no viable seeds produced by the bak1-4/serk4-1 null mutant plants, the conventional 

forward genetic screen of bak1/serk4 cell death suppressors is not feasible. Here, we 

have developed an Agrobacterium-mediated tobacco rattle virus (TRV)-based virus-

induced gene silencing (VIGS) system (Burch-Smith et al., 2006) with TRV-RNA2 

vector harboring fragments of both BAK1 and SERK4.  Mutants that suppress bak1/serk4 

cell death were identified via VIGS screening of Arabidopsis T-DNA insertion lines. We 

report that protein glycosylation pathway and specific ER quality control (ERQC) 

components are essential for bak1/serk4 cell death. Transcriptomic analysis revealed that 

the plasma membrane-associated genes, including members of cysteine-rich receptor-

like kinase (CRK) genes, were highly enriched among up-regulated genes in bak1-

4/serk4-1. Further biochemical and genetic investigations suggest that CRK4 is one of 

the client proteins of protein glycosylation involved in the BAK1/SERK4-regulated cell 

death process. 
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2.3 Materials and methods  

2.3.1 Plant materials and growth conditions  

Arabidopsis accessions Col-0 and C24 (wild-type, WT), various mutants and 

transgenic plants used in this study were grown in soil (Metro Mix 366) in a growth 

room at 23°C, 60% relative humidity, 70 μE m-2s-1 light with a 12-hr light/12-hr dark 

photoperiod for two-weeks before VIGS assay or 30 days for protoplast isolation. The 

bak1-4, serk4-1, sobir1-12, stt3a-1, hgl1-1, rsw3-1, fucTa/fucTb/xylT, erdjb3b-1, sdf2-2 

and crt3-1 mutants and NahG transgenic plants were reported previously (Kang et al., 

2008; Koiwa et al., 2003; Meng et al., 2015; Sun et al., 2014). The ire1a/ire1b and 

bzip60/bzip28 double mutants were obtained from Dr. Stephen H. Howell (Deng et al., 

2013). The sets of confirmed Arabidopsis T-DNA insertion lines (CS27941, CS27943 

and CS27944), stt3a-2, ost3/6 (SALK_067271C), stt3b-2 (SALK_078498C), stt3b-3 

(Salk_134449C), alg3 (SALK_040296C), alg10-1 (SAIL_515_F10), alg12 

(SALK_200867C) and crk4 (CS859967) were obtained from the Arabidopsis Biological 

Resource Center (ABRC) and confirmed by PCR using primers listed in the table. 

Seedlings were grown on agar plates containing ½ Murashige and Skoog medium 

(½MS) with 0.5% sucrose, 0.8% agar and 2.5 mM MES at pH 5.7, in a growth chamber 

at 23°C or 30°C, 70 μE m-2s-1 light with a 12-hr light/12-hr dark photoperiod.  

2.3.2 Plasmid construction and generation of transgenic plants  

To generate VIGS BAK1/SERK4 construct, fragments of BAK1 (319 bp) and 

SERK4 (310 bp) were PCR amplified from Arabidopsis Col-0 cDNA with primers listed 

in Table S5, digested with EcoRI and NcoI for the SERK4 fragment, and NcoI and KpnI 
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for the BAK1 fragment, and ligated with the pYL156 (pTRV-RNA2) vector pre-cut with 

EcoRI and KpnI(Burch-Smith et al., 2006). To generate VIGS constructs for individual 

genes, fragments of SERK4 (310 bp), CLAI (541 bp), MEKK1 (520 bp) and BIR1 (491 

bp) were PCR amplified from Arabidopsis Col-0 cDNA using primers listed in Table S5, 

digested with EcoRI and KpnI, and ligated into the pYL156 (pTRV-RNA2) vector pre-cut 

with EcoRI and KpnI. All the clones were confirmed by sequencing.  

The CRK4 and CRK5 genes were amplified from Col-0 cDNA with primers 

containing BamHI or NcoI at N terminus and StuI at C terminus (Table S5), and ligated 

into a plant protoplast expression vector pHBT with a CaMV 35S promoter at N-terminus 

and HA epitope-tag at C-terminus. The point mutations of CRK4N181Q and CRK4N286Q 

were generated by site-directed mutagenesis with primers listed in Table S5. To 

construct the pCB302 binary vector containing CRKs for Agrobacterium-mediated 

transient expression assay in Nicotiana benthamiana, the CRKs fragment was released 

from the pHBT vector digested with BamHI or NcoI and StuI and ligated into the 

pCB302 binary vector. The Est::CRK4 binary vector construct was generated by 

inserting the PCR products of CRK4 open reading frame with an HA epitope-tag at its C-

terminus from the pHBT-CRK4-HA vector into the pER8 vector using XhoI and SpeI 

sites (Meng et al., 2015). All the clones were confirmed by sequencing.  

STT3a complementation transgenic plants in the stt3a-2 background were 

reported previously (Koiwa et al., 2003). Arabidopsis transgenic plants were generated 

using Agrobacterium-mediated transformation by the floral-dip method. For estradiol 

induction of CRK4 expression, the detached leaves of Est::CRK4 T1 transgenic plants 
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were treated with 10 μM estradiol for 24 hr and the transgene expression was detected 

using immunoblotting with α-HA antibody. 

2.3.3 Arabidopsis protoplast and Nicotiana benthamiana transient assays  

For Arabidopsis protoplast transient expression, protoplasts from WT or stt3a 

mutant were transfected with HA-tagged CRKs in the pHBT vector and incubated for 12 

hr. Proteins were isolated with 2 x SDS loading buffer and subjected to immunoblot 

analysis with anti-HA antibody.  

For N. benthamiana transient expression, Agrobacterium tumefaciens strain 

GV3101 containing pCB302 vector was cultured in LB medium at 28ºC for overnight. 

Bacteria were harvested by centrifugation and re-suspended with buffer (10 mM MES, 

pH5.7, 10 mM MgCl2, 200 μM acetosyringone) at OD600=0.75. Leaves of four-week-old 

soil-grown N. benthamiana were hand-infiltrated using a needleless syringe with 

Agrobacterium cultures. Leaf samples were collected 36 hr after infiltration for protein 

isolation and immunoblot analysis. Cell death phenotype was observed and leaf pictures 

were taken 4 days after infiltration under UV light with a ChemiDoc system.  

2.3.4 Trypan blue and DAB staining 

Trypan blue staining and 3, 3'-diaminobenzidine (DAB) staining were performed 

according to procedures described previously with modifications (Gao et al., 2013). 

Briefly, the excised plant tissues were immersed in trypan blue staining solution (2.5 

mg/mL trypan blue in lactophenol [lactic acid: glycerol: liquid phenol: H2O = 1:1:1:1]) 

or DAB solution (1 mg/mL DAB in 10 mM Na2HPO4 and 0.05% Tween 20). Samples 

were vacuum-infiltrated for 30 min and then incubated for 8 hr at 25ºC with gentle 
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shaking at 75 rpm. Subsequently, samples were transferred to trypan blue destaining 

solution (ethanol: lactophenol = 2:1) or DAB destaining solution (ethanol: acetic acid: 

glycerol = 3:1:1) and incubated at 65ºC for 30 min. The samples were then incubated in 

fresh destaining solution at room temperature until complete destaining. Pictures were 

taken under a dissecting microscope with samples in 10% glycerol. 

2.3.5 Agrobacterium-mediated virus-induced gene silencing (VIGS) assay  

Plasmids containing binary TRV vectors pTRV-RNA1 and pTRV-RNA2 

derivatives, pYL156-BAK1/SERK4, pYL156-SERK4, pYL156-MEKK1, pYL156-BIR1, 

pYL156-GFP (the vector control) or pYL156-CLA1 were introduced into Agrobacterium 

tumefaciens strain GV3101 by electroporation. Agrobacterium cultures were first grown 

in LB medium containing 50 μg/ml kanamycin and 25 μg/ml gentamicin for overnight 

and then sub-cultured in fresh LB medium containing 50 μg/ml kanamycin and 25 μg/ml 

gentamicin supplemented with 10 mM MES and 20 μM acetosyringone for overnight at 

28°C in a roller drum. Cells were pelleted by 4200 rpm centrifugation, re-suspended in a 

solution containing 10 mM MgCl2, 10 mM MES and 200 μM acetosyringone, adjusted 

to OD600 of 1.5 and incubated at 25°C for at least 3 hr. Agrobacterium cultures 

containing pTRV-RNA1 and pTRV-RNA2 derivatives were mixed at a 1:1 ratio and 

inoculated into the first pair of true leaves of two-week-old soil-grown plants using a 

needleless syringe. The pYL156-CLA1 construct, which leads to plant albino phenotype 

two weeks after Agrobacterium infiltration, was included as a visual marker for VIGS 

efficiency.  
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2.4 Results 

Arabidopsis wild-type (WT) Col-0 plants silenced with BAK1/SERK4 showed 

severe growth defects with chlorotic leaves and dwarfism two weeks after 

Agrobacterium-inoculation, which resembled bak1-4 plants silenced with SERK4 (Fig. 

1a). RT-PCR analysis revealed the reduced transcripts of BAK1 and SERK4, but not 

SERK1 or SERK2 in BAK1/SERK4-silenced plants (Fig. 1b). Trypan blue and 3,3'-

diaminobenzidine (DAB) staining indicated that WT plants upon silencing of 

BAK1/SERK4 or the bak1-4 mutant silenced with SERK4 displayed spontaneous cell 

death and the elevated H2O2 accumulation (Fig. 1c). In addition, these plants showed 

increased level of PR1 and PR2 gene expression (Fig. 1d). The bak1-4/serk4-1 cell death 

is partially dependent on plant defense hormone salicylic acid (SA) (He et al., 2007). 

Consistently, the transgenic plants carrying the bacterial salicylate hydroxylase gene 

NahG and the sid2 mutant which is deficient in SA biosynthesis partially suppressed the 

cell death and H2O2 production triggered by VIGS of BAK1/SERK4 (Fig. 1e & 2a). 

Taken together, these results demonstrate that silencing of BAK1/SERK4 via VIGS 

phenocopies cell death observed in the bak1-4/serk4-1 null mutant.  

We tested whether bak1/serk4 cell death depends on SOBIR1, which is required 

for bir1 cell death.  Similar with the bir1 null mutant, WT plants silenced of BIR1 by 

VIGS showed the cell death (Fig. 1f). The dwarfism and leaf chlorosis associated with 

silencing of BIR1 were almost completely suppressed in sobir1-12 (Fig. 1f). 

Interestingly, the sobir1-12 mutant did not affect the cell death triggered by VIGS of 

BAK1/SERK4 (Fig. 1f). We further generated the bak1-4/serk4-1/sobir1-12 triple 
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mutant, which showed the same level of seedling lethality, elevated cell death and H2O2 

accumulation with bak1-4/serk4-1 (Fig. 1g). Activation of resistance (R) protein-

mediated defense is a common mechanism of plant cell death. However, the pad4 and 

ndr1 mutants, which had impaired R protein pathways, did not significantly suppress the 

cell death caused by VIGS of BAK1/SERK4 (Fig. 1h), suggesting that activation of R 

protein-mediated defenses may not play a major role in bak1/serk4 cell death. In 

contrast, the pad4 mutant largely alleviated the cell death caused by silencing of BIR1 

(Fig. 2b). Consistently, the BAK1/SERK4-regulated cell death does not require R 

proteins RPS2 and RPM1 (Fig. 2c). Together, the data indicate distinct mechanisms 

underlying BAK1/SERK4- and BIR1-regulated cell death.  
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 Figure 1. The sobir1 mutant did not suppress bak1/serk4 cell death.  

 (a) Silencing of BAK1/SERK4 by VIGS causes plant dwarfism and leaf chlorosis. Plants 

were photographed two weeks after inoculation of Agrobacterium carrying indicated 

VIGS vectors in bak1-4 or WT plants. Bar = 1 cm. (b) RT-PCR analysis of 

BAK1/SERK4-silenced plants upon VIGS. Expression of BAK1, SERK4, SERK1 and 

SERK2 was analyzed by RT-PCR from WT plants two weeks after VIGS. UBQ1 was 

used as an internal control. (c) Silencing of BAK1/SERK4 by VIGS triggers cell death 

and H2O2 production. Trypan blue staining for cell death (upper panel) and DAB 

staining for H2O2 production (lower panel) are shown from true leaves of VIGS plants. 

Bar = 2 mm. (d) Silencing of BAK1/SERK4 by VIGS induces PR1 and PR2 expression. 

The data are shown as mean ± SE from three independent repeats. The different letters 

denote statistically significant difference according to one-way ANOVA followed by 

Tukey test (p<0.05). (e) The BAK1/SERK4-regulated cell death is partially SA-

dependent. Plants silenced with CLA1 (Cloroplastos alterados 1) showed albino 

phenotype as a visual marker of VIGS efficiency. NahG and sid2 plants upon VIGS of 

BAK1/SERK4 remained greener with reduced leaf chlorosis than WT. Bar = 1 cm. (f) 

The BAK1/SERK4-regulated cell death is SOBIR1-independent. Bar = 1 cm. (g) The 

sobir1-12 mutant did not suppress bak1-4/serk4-1 cell death in the bak1-4/serk4-

1/sobir1-12 mutant. Seedlings were grown on ½MS plate and photographed at 16 days 

after germination (top panel, Bar = 1 cm). Cotyledons were stained with trypan blue for 

cell death (middle panel) and DAB for H2O2 accumulation (bottom panel). Bar = 1 mm 

in middle and bottom panels. (h) The BAK1/SERK4-regulated cell death is PAD4 and 

NDR1-independent. Bar = 1 cm. 

The above experiments were repeated at least three times with similar results.  
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Figure 2. BAK1/SERK4-regulated cell death is partially suppressed in NahG and 

sid2, and independent of RPS2 and RPM1. 

(a) NahG and sid2 but not pad4 partially suppress cell death and H2O2 production 

triggered by VIGS of BAK1/SERK4. True leaves of WT, pad4, NahG and sid2 after 

VIGS of BAK1/SERK4 or a vector control were stained with trypan blue for cell death 

(upper panel) and DAB for H2O2 accumulation (lower panel). Bar = 2 mm. (b) Plant 

phenotypes of Col-0 WT and pad4 after VIGS of a vector control (Ctrl), BIR1 or CLA1. 

Bar = 1 cm. (c) Plant phenotypes of WT, rps2 and rpm1 plants after VIGS of a vector 

control, BAK1/SERK4 or CLA1. Bar = 1 cm. 

To identify components involved in BAK1/SERK4-regulated cell death, we 

carried out a VIGS-based genetic screen of a sequence-indexed library of Arabidopsis T-

DNA insertion lines. After screening ~6000 homozygous lines, a series of mutants were 

isolated based on the suppression of cell death by silencing of BAK1/SERK4. One 
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mutant (line CS800052 with an annotated T-DNA insertion at STAUROSPORIN AND 

TEMPERATURE SENSITIVE3 [STT3a], stt3a-2 [Fig. 4a]) largely suppressed the 

dwarfism and leaf chlorosis triggered by VIGS of BAK1/SERK4 (Fig. 3a). MEKK1, a 

MAP kinase (MAPK) kinase kinase downstream of BAK1/SERK4 in flagellin signaling, 

is also involved in cell death regulation (Gao et al., 2008). Silencing of MEKK1 by 

VIGS in WT plants resulted in severe dwarfism and cell death (Fig. 3a). However, the 

stt3a-2 mutant did not suppress MEKK1-regulated cell death (Fig. 3a), suggesting 

different mechanisms underlying BAK1/SERK4- and MEKK1-regulated cell death. The 

data also suggest that stt3a-2 did not affect the gene silencing machinery. RT-PCR 

analysis demonstrated a similar silencing efficiency of BAK1/SERK4 by VIGS in WT 

and stt3a-2 mutant (Fig. 4b). Furthermore, the cell death and elevated H2O2 

accumulation caused by VIGS of BAK1/SERK4 were almost completely abolished in 

stt3a-2 (Fig. 3b). Compared with WT, stt3a-2 showed much reduced accumulation of 

PR1 and PR2 genes upon VIGS of BAK1/SERK4 (Fig. 3c). Another T-DNA insertion 

mutant stt3a-1, which is in the ecotype C24 background, also suppressed the cell death 

by silencing of BAK1/SERK4 (Fig. 3d). Furthermore, transformation of a genomic 

fragment containing the STT3a gene into stt3a-2 restored BAK1/SERK4-regulated cell 

death (Fig. 3e & 4c). To investigate if stt3a-2 could genetically suppress bak1-4/serk4-1 

seedling lethality and defense activation, we generated the bak1-4/serk4-1/stt3a-2 triple 

mutant. The bak1-4/serk4-1/stt3a-2 triple mutant overcame seedling lethality of bak1-

4/serk4-1 and resembled WT plants at two-week-old stage when grown on ½MS 

medium plates (Fig. 3f & 4d). In addition, cell death, H2O2 accumulation, and PR1 and 
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PR2 expression were significantly ameliorated in bak1-4/serk4-1/stt3a-2 compared with 

those in bak1-4/serk4-1 (Fig. 3g & 3h). The stt3a-2 mutant also partially suppressed 

VIGS of BIR1-induced cell death (Fig. 4e & 4f). The elevated expression of PR1 and 

PR2 was also significantly reduced in stt3a-2 silenced with BIR1 (Fig. 4g). This is 

consistent with that STT3a is required for the activation of defense responses in the bir1 

genetic mutant (Zhang et al., 2015). 
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Figure 3. The stt3a mutants suppress BAK1/SERK4-regulated cell death. 

(a) The stt3a-2 mutant suppresses growth defects triggered by VIGS of BAK1/SERK4 

but not MEKK1. Bar = 1 cm (b) The stt3a-2 mutant suppresses cell death (left panel) and 

H2O2 production (right panel) by VIGS of BAK1/SERK4. Bar = 2 mm. (c) The stt3a-2 

mutant suppresses PR1 and PR2 expression by VIGS of BAK1/SERK4. (d) The stt3a-1 

mutant suppresses growth defects by VIGS of BAK1/SERK4. Plant phenotypes are 

shown from WT (C24) and stt3a-1 two weeks after VIGS. Bar = 1 cm. (e) 

Complementation of the stt3a-2 mutant with STT3a restores growth defects by VIGS of 

BAK1/SERK4. CL#2-3 and CL#9-1 are two homozygous complementation lines. Bar = 1 

cm. (f) The stt3a-2 mutant rescues the seedling lethality of the bak1-4/serk4-1 mutant. 

Seedlings were grown on ½MS plate and photographed at 16 days after germination. Bar 

= 1 cm. (g) The alleviated cell death and H2O2 accumulation in bak1-4/serk4-1/stt3a-2. 

Bar = 2 mm.  (h) The reduced PR1 and PR2 expression in bak1-4/serk4-1/stt3a-2.  The 

data in c & h are shown as mean ± SE from three independent repeats. The different 

letters denote statistically significant difference according to one-way ANOVA followed 

by Tukey test (p<0.05).  

The above experiments were repeated three times with similar results. 
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Figure 4. The BIR1-regulated cell death is STT3a-dependent. 

(a) Scheme of the STT3a gene and T-DNA insertion sites in stt3a-1 (CS6388) and stt3a-

2 (CS800052). Solid bars indicate exons and lines indicate introns. Arrows indicate the 

T-DNA insertion sites. (b) The stt3a-2 mutant did not affect the BAK1/SERK4 VIGS 

efficiency. Expression of BAK1 and SERK4 in WT and stt3a-2 plants two weeks after 

VIGS of a vector control or BAK1/SERK4 was analyzed by RT-PCR. UBQ1 was used as 

an internal control. (c) PCR confirmation of complementation lines. The DNA from WT, 

stt3a-2 and complementation homozygous lines #2-3 and #9-1 was PCR amplified with 

the indicated primers to confirm the transformation of STT3a gene. The plasmid DNA 

from the binary vector pCB301 containing the genomic DNA of STT3a was used as a 

positive control. HPT: Hygromycin phosphotransferase gene from the pCB301 vector. 

The primer pair of LP and RP amplified the genomic DNA fragment of STT3a and the 

primer pair of LBb1 and RP amplified the T-DNA insertion from the stt3a-2 mutant.  (d) 

Fresh weight of 16-day-old seedlings of WT, bak1-4/serk4-1, stt3a-2 and bak1-4/serk4-

1/stt3a-2 grown on ½MS plate. The data are shown as means ± SE (n = 15). The 

different letters denote statistically significant difference according to one-way ANOVA 

followed by Tukey test (p<0.05). (e) Plant phenotypes of WT and stt3a-2 after VIGS 

with a vector control or BIR1. Bar = 1 cm.  (f) Expression of BIR1 in WT and stt3a-2 

plants after VIGS of a vector control or BIR1. (g) The stt3a-2 mutant suppresses PR1 

and PR2 expression triggered by VIGS of BIR1. The expression of PR1 and PR2 was 

normalized to the expression of UBQ10. The data are shown as mean ± SE from three 

independent repeats. The different letters denote statistically significant difference 

according to two-way ANOVA followed by Tukey test (p<0.05).  
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Plant cell death and defense activation are often modulated by temperature and 

other environmental factors (Hua, 2013). When grown on ½MS medium plates, seedling 

lethality of bak1-4/serk4-1 was largely ameliorated at 30ºC when compared with that at 

23ºC (Fig. 5a & 5b). The elevated expression of PR1 and PR2 in bak1-4/serk4-1 was 

also reduced when grown at 30ºC (Fig. 5c). The alleviation of seedling lethality and 

growth defects of bak1-4/serk4-1 by the elevated temperature was a relatively subtle 

effect for plants grown on soil (Fig. 5d). However, the bak1-4/serk4-1/stt3a-2 triple 

mutant grew significantly better on soil at 30ºC than that at 23ºC (Fig. 5d). The bak1-

4/serk4-1/stt3a-2 mutant could ultimately develop to maturity and occasionally produce 

some viable seeds when grown on soil at 30ºC. 
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Figure 5. Temperature dependence of bak1/serk4 cell death. 

(a) Plant phenotype of WT and the bak1-4/serk4-1 mutant at 23ºC and 30ºC. Seedlings 

were grown on ½MS plates with 12/12 hr light/dark in a growth chamber. The picture 

was taken 16 days after germination. Bar =1 cm. (b) The PCR confirmation of bak1-

4/serk4-1 mutant plants grown at 30ºC with the indicated primers. The primer pair of LP 

and RP amplified the genomic DNA fragment of BAK1 and the primer pair of LBb1 and 

RP amplified the T-DNA insertion. (c) Relative PR1 and PR2 expression in WT and the 

bak1-4/serk4-1 mutant at 23ºC and 30ºC. Seedlings grown on ½MS plates at different 

temperatures were harvested at 16 days after germination. The expression of PR1 and 

PR2 was normalized to the expression of UBQ10. The data are shown as mean ± SE 

from three independent repeats. The different letters denote statistically significant 

difference according to two-way ANOVA followed by Tukey test (p<0.05). (d) Plant 

phenotype of WT, bak1-4/serk4-1, stt3a-2 and bak1-4/serk4-1/stt3a-2 mutants at 23ºC 

and 30ºC on soil. Pictures of the bak1-4/serk4-1 mutant were taken at 16 days after 

germination. Pictures for WT, stt3a-2 and bak1-4/serk4-1/stt3a-2 mutants were taken at 

25 days after germination. Bar = 1 cm. 

STT3 is the catalytic subunit of the oligosaccharyltransferase (OST) complex 

that is involved in protein N-glycosylation modifications (Fig. 6a) (Koiwa et al., 2003). 
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There are two family members of STT3, STT3a and STT3b, in Arabidopsis. The 

mutations in STT3b (stt3b-2 and stt3b-3) did not affect the cell death by silencing of 

BAK1/SERK4, suggesting the specific function of STT3a in this process (Fig. 6b). This is 

consistent with the observation that STT3a, but not STT3b, is involved in Arabidopsis 

salt and osmotic stresses (Koiwa et al., 2003). In addition to the catalytic STT3 subunit, 

the OST complex also consists of several non-catalytic subunits that regulate substrate 

specificity, stability, or complex formation (Farid et al., 2013). The highly conserved 

subunit OST3/6 regulates overall protein glycosylation and is involved in plant 

immunity by controlling biogenesis of the EF-Tu receptor EFR (Farid et al., 2013). The 

ost3/6 mutant also suppressed BAK1/SERK4-regulated cell death (Fig. 6b). 

The OST complex transfers the lipid (dolichol)-linked N-glycan precursor 

Glc3Man9GlcNAc2 (Glc: glucose; Man: mannose; GlcNAc: N-acetylglucosamine) to the 

acceptor proteins in the endoplasmic reticulum (ER) (Fig. 6a) (Liu and Li, 2014; Pattison 

and Amtmann, 2009). The N-glycan precursor is preassembled by a series of 

glucosyltransferases encoded by asparagine-linked glycosylation (ALG) proteins (Fig. 

6a). Loss-of-function of some ALG proteins prevented assembly of the N-glycan 

precursor and reduced protein N-glycosylation effeciency in Arabidopsis (Farid et al., 

2011; Hong et al., 2012). The alg10, but not alg3 or alg12 mutant, suppressed 

BAK1/SERK4 silencing-mediated cell death (Fig. 6c), suggesting that proper assembly of 

N-glycan precursor is essential in bak1/serk4 cell death. ALG10 catalyzes the last step of 

N-glycan precursor assembly by transferring the terminal glucose residue to the 

precursor, an essential step for the OST complex recognition. The Arabidopsis alg10 
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mutant had a severe defect in protein N-glycosylation and increased sensitivity to salt 

stress (Farid et al., 2011). 

After transferring of N-glycan precursor to the acceptor proteins by the OST 

complex, the terminal two glucose residues of the oligosaccharides are subsequently 

removed by glucosidase I and glucosidase II (RSW3 in Arabidopsis), and then 

recognized by the ER chaperone-like lectins, calnexin (CNX) and calreticulin (CRT3) 

for proper protein folding and secretion (Fig. 6a) (Liu and Li, 2014; Pattison and 

Amtmann, 2009). The incompletely- or mis-folded proteins will be recognized by UDP-

glucose:glycoprotein glucosyltransferase (UGGT) for additional CNX/CRT cycles and 

another round of folding (Fig. 6a) (Howell, 2013; Liu and Li, 2014; Pattison and 

Amtmann, 2009). ER-localized HSP70 proteins, BiPs, and their associated factors ERdj3 

and SDF2 also play important roles to prevent export of misfolded proteins (Fig. 6a) 

(Howell, 2013). Some specific ERQC components, such as CRT3, UGGT, ERdj3b and 

SDF2, were genetically implicated in the protein folding and degradation of mutated bri1 

receptor and immune receptor EFR and in BIR1-mediated cell death (Haweker et al., 

2010; Jin et al., 2009; Jin et al., 2007; Li et al., 2009; Lu et al., 2009; Nekrasov et al., 

2009; Saijo et al., 2009; Sun et al., 2014; von Numers et al., 2010; Zhang et al., 2015). 

We observed that erdj3b-1 and sdf2-2, but not crt3-1 or rsw3-1, partially suppressed 

BAK1/SERK4 silencing-mediated cell death (Fig. 6d). RT-PCR analysis indicated a 

similar silencing efficiency of BAK1/SERK4 by VIGS in WT and different mutants (Fig. 

7a). As reported with genetic mutants (Sun et al., 2014), crt3-1, erdj3b-1 and sdf2-2 

suppressed BIR1 silencing-mediated cell death (Fig. 6d). We further generated genetic 
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mutants of bak1-4/serk4-1/crt3-1, bak1-4/serk4-1/erdj3b-1 and bak1-4/serk4-1/sdf2-2. 

Similar to VIGS assays, bak1-4/serk4-1/erdj3b-1 and bak1-4/serk4-1/sdf2-2, but not 

bak1-4/serk4-1/crt3-1, alleviated bak1-4/serk4-1 seedling lethality and H2O2 production 

(Fig. 7b). The data further support that distinct mechanisms yet with certain overlapping 

features control BAK1/SERK4- and BIR1-regulated cell death. 

Proteins with native conformation after ERQC will be exported to the Golgi 

apparatus for further modifications, such as formation of complex and hybrid N-glycans 

catalyzed by stepwise enzymatic reactions, including 1,2-N-

acetylglucosaminyltransferase I (CGL1/GNTI), -mannosidase II (HGL1/MANII), 

GNTII, 1,2-xylosyltransferase (XYLT), 1,3-fucosyltransferase (FUCTa and FUCTb), 

1,3-galactosyltransferase (GALT) and 1,4-fucosyltransferase (FUCTc) (Fig. 6a) 

(Kang et al., 2008). To investigate if N-glycan maturation in the Golgi apparatus also 

plays a role in bak1/serk4 cell death, we silenced BAK1/SERK4 in the cgl1-3 and hgl1-1 

single mutants and fucTa/fucTb/xylT triple mutant (Fig. 6e). All these mutants showed 

similar levels of cell death and growth retardation as WT plants after silencing of 

BAK1/SERK4 by VIGS (Fig. 6e). Apparently, these mutants also did not affect the BIR1 

silencing-mediated cell death (Fig. 6e). These data suggest that protein glycosylation 

modification for proper folding in ER, but not N-glycan modification in Golgi, is 

essential for the initiation of bak1/serk4 and bir1 cell death. N-glycan modification in the 

Golgi apparatus is also not required for EFR maturation in plant immunity (Haweker et 

al., 2010). 
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Preventing protein N-glycosylation often leads to protein misfolding, a major 

contributor to ER stress, thereby resulting in unfolded protein response (UPR) (Howell, 

2013). Defects in protein glycosylation and ERQC in the sst3a, erdj3b and sdf2 mutants 

likely induce ER stress and UPR. Arabidopsis UPR signaling pathway is composed of 

two arms: one involving the bifunctional protein kinase/RNA ribonuclease IRE1 and its 

target RNA bZIP60, and another involving ER membrane-associated transcription 

factors, such as bZIP28 (Howell, 2013). To test if UPR may contribute to bak1/serk4 cell 

death, we silenced BAK1/SERK4 in the ire1a/ire1b and bzip28/bzip60 double mutants, 

both of which are deficient in UPR induction (Deng et al., 2013). Neither ire1a/ire1b nor 

bzip28/bzip60 affected cell death by VIGS of BAK1/SERK4 (Fig. 7c), suggesting that 

UPR may not directly link to BAK1/SERK4-regulated cell death. 
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Figure 6. Control of BAK1/SERK4-regulated cell death by protein N-glycosylation 
and specific components of ERQC. 

(a) A schematic overview of protein N-glycan assembly in ER and modification in 

Golgi apparatus and ERQC system. The OST complex transfers the dolichol-linked N-

glycan precursor preassembled by different ALG glucosyltransferases to the acceptor 

proteins in the ER. The N-glycan precursor is then modified by ER glucosidase, and 

recognized by CNX and CRT3 for proper protein folding. The mis-folded 

proteins undergo additional CNX/CRT cycles by UGGT and glucosidase for another 

round of folding. The BiP/ERdj3/SDF2 complex also controls proper protein folding. 

The correctly folded proteins will be exported to the Golgi apparatus to form complex N-

glycans catalyzed by different enzymes. (b) The ost3/6, but not stt3b mutants, 

suppresses cell death by VIGS of BAK1/SERK4. Phenotypes of different plants are 

shown two weeks after VIGS. Bar = 1 cm. (c) The alg10, but not alg3 or alg12 

mutant, suppresses cell death by VIGS of BAK1/SERK4. Bar = 1 cm. (d) 

Differential ERQC components are required for BAK1/SERK4- and BIR1-

regulated cell death. The erdj3b-1 and sdf2-2 mutants partially suppressed BAK1/

SERK4- and BIR1-regulated cell death by VIGS. However, the crt3-1 mutant, only 

suppressed BIR1-, but not BAK1/SERK4-regulated cell death by VIGS. Bar = 1 cm. 

(e) The N-glycan modification in the Golgi apparatus may not be required for BAK1/

SERK4-regulated cell death. Various mutants impaired in N-glycan modification in 

the Golgi apparatus did not suppress cell death by VIGS of BAK1/SERK4 or 

BIR1. Bar = 1 cm.  The above experiments were repeated three times with similar 

results. 
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Figure 7. ERQC, but not UPR signaling components, are involved in bak1/serk4 
cell death. 

(a) The ost3/6, alg10, erdj3b-1 and sdf2-2 mutants did not affect the BAK1/SERK4 

VIGS efficiency. Expression of BAK1 and SERK4 in WT and different mutant 

plants two weeks after VIGS of a vector control or BAK1/SERK4 was analyzed by RT-

PCR. UBQ1 was used as an internal control. (b) Specific ERQC components contribute 

to bak1/serk4 cell death. Col-0 WT, bak-4/serk4-1, bak1-4/serk4-1/erdj3b-1, bak1-4/

serk4-1/sdf2-2, bak1-4/serk4-1/crt3-1 and bak1-4/serk4-1/stt3a-2 plants were grown 

on soil and photographed at 12 days after germination (top panel, Bar = 0.5 cm). 

Cotyledons were stained with trypan blue for cell death (middle panel) and DAB for 

H2O2 accumulation (bottom panel). Bar = 1 mm in middle and bottom panels. (c) The 

UPR mutants did not affect BAK1/SERK4-regulated cell death by VIGS. Plants 

silenced with CLA1 showed albino phenotype as a visual marker of VIGS efficiency. 

Bar = 1 cm.  
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Figure 8. Uncoupled BAK1 functions in cell death control, immunity and BR 
signaling.

(a) The stt3a-2 mutation did not interfere with the compromised flg22-induced MAPK 

activation in the bak1-4 mutant. Ten-day-old seedlings were treated without or with 100 

nM flg22 for 15 and 30 min. The MAPK activation was analyzed by immunoblot with α-

pERK antibody (top panel), and the protein loading is shown by Ponceau S staining for 

RuBisCo (RBC) (bottom panel). (b) The stt3a-2 mutation did not interfere with the 

compromised flg22-induced MAPK activation in the bak1-4/serk4-1 mutant. (c) The 

stt3a-2 mutation did not affect the compromised flg22-induced BIK1 phosphorylation in 

the bak1-4 mutant. Protoplasts from different plants were transfected with HA-tagged 

BIK1 and treated with 100 nM flg22 for 10 min. BIK1-HA proteins were detected by 

immunoblot using α-HA antibody (top panel), and the protein loading is shown by 

Ponceau S staining for RBC (bottom panel). (d) The stt3a-2 mutation did not affect the 

compromised flg22-induced marker gene expression in the bak1-4/serk4-1 mutant. Ten-

day-old seedlings were treated without or with 100 nM flg22 for 30 or 60 min for qRT-

PCR analysis. The data are shown as mean ± SE from three independent repeats. 

Asterisks indicate statistically significant differences from WT within the same time 

point according to two-way ANOVA followed by Tukey test (p<0.05). (e, f) The bak1- 4/

serk4-1 sensitivity to BRZ still occurs in the bak1-4/serk4-1/stt3a-2 mutant. The 

seedlings of indicated genotypes were grown in the dark for five days on ½MS plates 

with or without 2 μM BRZ (e), and hypocotyl lengths were quantified (f). The data are 

shown as mean ± SE from 20 seedlings. Bar = 0.5 cm. The different letters denote 

statistically significant difference according to two-way ANOVA followed by Tukey test 

(p<0.05).  

The experiments in a, b, c & d were repeated three times and e & f were repeated twice 

with similar results. 
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In contrast to the negative regulation in cell death, BAK1 and SERK4 positively 

regulate plant immunity and BR signaling (Chinchilla et al., 2007; Gou et al., 2012; 

Heese et al., 2007; Li et al., 2002; Nam and Li, 2002; Postel et al., 2010; Roux et al., 

2011). We tested whether the mutation in stt3a also suppressed bak1 or bak1/serk4 

deficiency in flagellin and BR signaling. Flg22 triggers rapid phosphorylation of 

MAPKs and receptor-like cytoplasmic kinase BIK1(Wu et al., 2014). The bak1-4 and 

bak1-4/serk4-1 mutants displayed a compromised flg22-induced MAPK activation (Fig. 

8a & 8b), and BIK1 phosphorylation (Fig. 8c). The stt3a mutant did not affect flg22 

signaling as previously reported (Fig. 8a) (Haweker et al., 2010). The compromised 

flg22-induced MAPK activation and BIK1 phosphorylation remained same in bak1-

4/stt3a-2 and bak1-4/serk4-1/stt3a-2 as those in bak1-4 or bak1-4/serk4-1 (Fig. 8a, 8b & 

8c). Similar with bak1-4/serk4-1, bak1-4/serk4-1/stt3a-2 showed a compromised 

expression of flg22-induced genes, WRKY30, MYB15 and LOX4, compared to WT or 

stt3a-2 (Fig. 8d). Taken together, these results suggest that stt3a-2 did not suppress 

bak1-4 or bak1-4/serk4-1 deficiency in flagellin-mediated immune signaling. When 

grown in the dark, the hypocotyls of bak1-4/serk4-1 mutant elongated slightly, but 

significantly shorter than those of WT plants (Fig. 8e & 8f). In the presence of 

brassinazole (BRZ), an inhibitor of BR biosynthesis, bak1-4/serk4-1 displayed shorter 

hypocotyl elongation than WT. The stt3a-2 mutant exhibited similar hypocotyl 

elongation as WT plants. The hypocotyl elongation of bak1-4/serk4-1/stt3a-2 was 

similar to that of bak1-4/serk4-1 in the absence or presence of BRZ (Fig. 8e & 8f), 
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suggesting that stt3a-2 did not interfere with the responsiveness of bak1-4/serk4-1 to 

BRZ. 

As PR genes are highly upregulated in the bak1/serk4 cell death process, we 

determined the genome-wide transcriptional changes in bak1-4/serk4-1 by RNA-

sequencing (RNA-seq) analysis. Among 24,572 detectable transcripts (Fig. 9a), we 

identified 3637 differentially expressed genes (fold change ≥ 2 and false discovery rate 

[FDR] < 0.1) in bak1-4/serk4-1 compared to WT plants (Fig. 9b). Interestingly, Gene 

Ontology (GO) enrichment analysis indicated that genes encoding proteins associated 

with membrane, especially plasma membrane, were highly enriched among the up-

regulated genes in bak1-4/serk4-1 (Fig. 9c). Remarkably, among 44 CRK genes, the 

expression of 22 CRKs was up-regulated in bak1-4/serk4-1 (Fig. 9d). The induction of 

CRK4, CRK5, CRK7, CRK8, CRK19 and CRK20 in bak1-4/serk4-1 was confirmed by 

quantitative RT-PCR (qRT-PCR) (Fig. 9e). 
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Figure 9. Members of CRK genes are up-regulated in the bak1/serk4 mutant. 

(a) DESeq's plotMA displays differential expression (log2 fold changes between bak1- 4/
serk4-1 and WT in y-axis) versus expression strength (the mean of normalized counts in 
x-axis). Genes with significantly differential expression with FDR < 0.10 and fold 
change ≥ 2 are color-coded in red. (b) The Heatmaps of up-regulated and down-regulated 
genes in the bak1/serk4 mutant compared to WT. The original means of read counts were 
subjected to data adjustment by log2 transformation using MeV4.0 for the heatmaps. The 
genes are plotted in the order of fold changes. (c) Gene Ontology (GO) enrichment 
analysis based on the cellular component. The x-axis indicates the enrichment scores [-
log10 (p-value)] (p-value: the possibility of the significant enrichment) for each cellular 
component GO item in the y-axis. (d) Members of CRKs are induced in bak1/serk4. The 
upper panel indicates log2 fold change of different CRK genes (bak1-4/serk4-1 vs. WT) 
and the bottom panel shows normalized expression level from two independent repeats 
( #1 and #2). (e) Expression of some CRKs by qRT-PCR analysis. Ten-day-old seedlings 
grown on ½MS plates were subjected for qRT-PCR analysis. The data are shown as 
means ± SE from three biological replicates. * indicates a significant difference with 
p<0.05 when compared to WT with a Student’s t-test.  
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It has been reported that overexpression of certain CRKs, such as CRK4, CRK5, 

CRK13, CRK19 and CRK20, was able to induce cell death in Arabidopsis transgenic 

plants (Acharya et al., 2007; Chen et al., 2003; Chen et al., 2004). When transiently 

expressed in Nicotiana benthamiana, CRK4 and CRK5 elicited water-soaking and 

subsequent cell death (Fig. 10a & 11a). We tested whether CRK proteins were 

glycosylated and whether STT3a-mediated protein glycosylation was required for CRK-

mediated cell death. Glycosylated proteins often display a slower migration than 

nonglycosylated proteins in an immunoblot. When treated with tunicamycin, an inhibitor 

of protein N-glycosylation, both CRK4 and CRK5 proteins exhibited faster migration 

than proteins without treatment, suggesting that CRK4 and CRK5 proteins are likely N-

glycosylated in Arabidopsis cells (Fig. 10b). Consistently, Endoglycosidase H treatment 

released CRK4 proteins with reduced molecular weight (Fig. 11b). CRK4 proteins when 

expressed in stt3a-2 migrated faster than that in WT (Fig. 10c), indicating that STT3a is 

required for CRK4 glycosylation. Notably, we have consistently observed that the 

accumulation of CRK4 proteins after tunicamycin treatment or in stt3a appeared to be 

reduced when compared to proteins without treatment or in WT (Fig. 10b & 11c), 

suggesting that N-glycosylation may regulate CRK4 protein stability. 

We further introduced CRK4 under the control of an estrogen-inducible promoter 

into WT and stt3a-2. The cell death caused by ectopic expression of CRK4 in WT plants 

was largely alleviated in stt3a-2 upon estradiol application (Fig. 10d). Similar with the 

above transient assays, the CRK4 protein level was lower in stt3a-2 than that in WT in 

multiple transgenic lines (Fig. 10e). We aligned the extracellular domain of CRK4 with 
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its closest homolog CRK5. Out of five potential N-glycosylation sites (Asn in Asn-X-

Ser/Thr, where X is any amino acid except Pro), we identified two sites that are 

conserved among CRK4 and CRK5 (Fig. 11c). We mutated them in CRK4 to Gln 

(CRK4N181Q and CRK4N286Q) and found that CRK4N181Q showed a faster migration than 

WT CRK4 when expressed in Arabidopsis protoplasts (Fig. 10f) or N. benthamiana (Fig. 

11d), resembling the CRK4 expression in stt3a (Fig. 10c). The protein level of 

CRK4N181Q was comparable with that of WT CRK4, suggesting that mutation of one 

glycosylation site may not affect CRK4 protein stability. Significantly, CRK4N181Q 

mutant reduced cell death intensity and H2O2 accumulation compared to WT CRK4 

when transiently expressed in N. benthamiana (Fig. 10g). Since CRK4N181 is a conserved 

site between CRK4 and CRK5, it is likely that the corresponding site in CRK5 is 

required for its cell death-inducing ability. The results suggest that N-glycosylation is 

essential for CRK4-mediated cell death and CRK4 is one of the substrates of STT3a in 

bak1/serk4 cell death. To test whether loss of CRK4 suppresses bak1/serk4 cell death, 

we silenced BAK1/SERK4 in crk4 mutant. However, the crk4 mutant did not affect the 

cell death by VIGS of BAK1/SERK4 (Fig. 11e & 11f), indicating that mutation of CRK4 

is not sufficient to suppress bak1/serk4 cell death. 
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Figure 10. CRK4-induced cell death requires STT3a-mediated N-glycosylation. 

(a) Expression of CRK4 or CRK5 in N. benthamiana induces cell death. The cell death 

was visualized on the front (top panel) and back (middle panel) sides of a leaf or under 

UV light with the ChemiDoc Imaging System (bottom panel) four days after infiltration. 

The infiltrated areas were labeled with red dashed circle. Bar = 1 cm. (b) Tunicamycin 

treatment modifies protein migration of CRK4 and CRK5. Protoplasts from Col-0 WT 

were transfected with CRK4-HA or CRK5-HA and treated without or with tunicamycin 

(1 μM). The proteins were detected by immunoblot with -HA antibody (upper panel). 

Coomassie Brilliant Blue (CBB) staining is a loading control (lower panel).  (c) CRK4 

exhibits elevated protein migration rate in stt3a-2. Protoplasts from Col-0 WT or the 

stt3a-2 mutant were transfected with CRK4-HA. (d) STT3a is required for CRK4-

induced cell death in Arabidopsis. Leaves of four-week-old transgenic plants of 

estradiol-inducible CRK4-HA in WT and stt3a background were infiltrated with estradiol 

(10 μM) or Mock. Cell death staining was performed four days after infiltration. Two 

independent lines for each background are shown. Bar = 2mm. (e) CRK4 protein 

expression in transgenic plants. Detached leaves from four-week-old transgenic plants 

were soaked in estradiol solution (10 μM) for 24 hr. The HA-tagged CRK4 protein was 

detected by immunoblot with -HA antibody. (f) Expression of CRK4 and its putative 

N-glycosylation mutants in Arabidopsis protoplasts. (g) CRK4-induced cell death is 

partially blocked by N181Q mutation in N. benthamiana. The cell death was 

documented four days after inoculation of Agrobacterium carrying different constructs 

in N. benthamiana. The upper panel: the cell death was visualized as autofluorescence 

under UV light with the ChemiDoc Imaging System, Bar = 1 cm; the bottom panel: 

H2O2 accumulation by DAB staining, Bar = 100 μm.  
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Figure 11. Protein glycosylation of CRKs. 

(a) CRK4 and CRK5 protein expression in N. benthamiana transient assay. Agrobacteria 

containing a pCB302 vector carrying different CRK genes driven by CaMV 35S 

promoter were infiltrated into N. benthamiana leaves. Leaf samples were collected 36 hr 

after infiltration for protein isolation and immunoblot with -HA antibody. (b) Endo H 

treatment of CRK4 proteins. Protoplasts were transfected with CRK4-HA and incubated 

for 12 hr. Total protein was extracted, boiled with glycoprotein denaturing buffer, and 

then digested with Endo H at 37 °C for 3 hr. Red line indicates CRK4 proteins released 

by Endo H treatment. (c) Sequence alignment of CRK4 and CRK5 amino acid 

sequences. The sequences of extracellular domains were aligned by Clustal X 2.1 

program and the putative N-glycosylation residues were predicted in PROSITE database 

(http://prosite.expasy.org/scanprosite/). The conserved putative N-glycosylation residues 

in CRK4 and CRK5 were indicated by a red triangle and the consensus motif N-X-S/T, 

where X is any amino acid except P, was boxed in red. * on the top of the amino acid 

indicates every 10 amino acids. (d) CRK4N181Q shows a slightly faster migration than 

CRK4 when expressed in N. benthamiana. Proteins were extracted 36 hr after 

inoculation of Agrobacterium carrying 35S::CRK4-HA or 35S:CRK4N181Q-HA. (e) The 

crk4 mutant does not affect the cell death by VIGS of BAK1/SERK4. Phenotypes of WT 

and crk4 mutant plants are shown two weeks after VIGS of BAK1/SERK4. Bar = 1 cm. 

(f) RT-PCR analysis of CRK4 expression in WT and crk4 mutant. UBQ1 was used as an 

internal control.  
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2.5 Discussion 

The mechanisms of cell death control are poorly understood in plants. To 

uncover the pathways and mechanisms regulating bak1/serk4 cell death, we have 

developed an unbiased and highly efficient genetic screen which combines the features 

of both forward and reverse genetics. We have identified stt3a as a suppressor of 

bak1/serk4 cell death. Systematic investigation of components in protein N-

glycosylation pathways and ERQC indicates that N-glycan production in ER and specific 

ERQC components involved in protein folding are essential in the activation of 

bak1/serk4 cell death. By combining RNA-seq, genetic and biochemical analyses, we 

provide evidence that CRK4 serves as one of client proteins for STT3a-mediated protein 

N-glycosylation and ERQC in bak1/serk4 cell death. 

Although BAK1 and BIR1 are in a complex, the mechanisms regulating their 

functions in cell death control are distinct. The bir1-mediated cell death depends on 

SOBIR1 and the R protein-mediated signaling (Gao et al., 2009). However, sobir1 and 

the R protein signaling mutants did not affect bak1/serk4 cell death (Fig. 1f, 1g & 1h). 

Both bak1/serk4 and bir1 cell death requires STT3a (Fig. 3) although SOBIR1 protein 

level was not affected in stt3a (Zhang et al., 2015). It has been shown that SOBIR1 

protein accumulation was reduced in erdj3b, suggesting that ERQC is important for 

biogenesis of SOBIR1 (Sun et al., 2014). It is likely that activation of SOBIR1 also 

requires N-glycosylation modification in ER. Thus, protein glycosylation and ERQC are 

common features in BAK1/SERK4- and BIR1-regulated cell death, but different client 

proteins are likely deployed for N-glycosylation modification. 
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BAK1 family RLKs serve as a shared signaling node that modulates the 

interconnected architecture of the complex cellular signaling networks yet disseminate 

different biological outcomes (aan den Toorn et al., 2015; Liebrand et al., 2014). 

Mounting evidence suggests that BAK1 family RLKs function independently in 

different signaling pathways. For instance, the involvement of BAK1 and SERK4 in cell 

death control can be separated from their involvement in BR signaling (He et al., 2007; 

Kemmerling et al., 2007). Similarly, their function in stomatal patterning is uncoupled 

from function in BR signaling (Meng et al., 2015). The bak1-5 mutant had severe defects 

in plant immunity, but did not affect BR signaling and cell death control (Schwessinger 

et al., 2011). These results are consistent with our observation that stt3a did not suppress 

bak1 or bak1/serk4 deficiency in flg22 and BR signaling, reinforcing that the signaling 

pathway of BAK1/SERK4-regualted cell death is uncoupled from their functions in 

flg22-triggered immunity and BR-mediated development. 

Many CRK genes are induced by defense hormone SA treatment and bacterial 

pathogen infections (Chen et al., 2003; Chen et al., 2004). Constitutive expression of 

CRK4 or CRK5 at the modest level enhanced plant resistance to virulent bacteria 

Pseudomonas syringae (Chen et al., 2003; Yeh et al., 2015). In addition, chemical-

induced expression of CRK4 or CRK5 triggered cell death in Arabidopsis (Chen et al., 

2003; Chen et al., 2004). These observations point to the potential role of CRKs in plant 

defense responses. We observed an enrichment of CRK genes among upregulated genes 

in bak1/serk4 (Fig. 5d & 5e). In addition, CRK4-induced cell death depends on STT3a-

mediated protein N-glycosylation (Fig. 6d). The CRK4 N-glycosylation mutant reduced 
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the ability to trigger cell death (Fig. 6g). It is likely that the non-glycosylated or under-

glycosylated CRK4 protein is misfolded in ER and finally removed by ER-associated 

degradation, thereby resulting in the reduced protein level in stt3a (Fig. 6e). However, 

crk4 did not suppress bak1/serk4 cell death (Fig. 11e & 11f). This may be due to the 

redundant function of several CRKs, which are able to induce cell death. We also could 

not exclude the possible contribution of other genes. Notably, SOBIR1 is also 

moderately induced in bak1/serk4. Thus, CRK4 is one of client proteins of N-

glycosylation and ERQC involved in BAK1/SERK4-regualted cell death. 
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3 BAK1/SERK4 NEGATIVELY CONTROL CELL DEATH BY REGULATING 

CYCLIC NUCLEOTIDE GATED CHANNEL 20 

3.1 Summary 

Plant LRR-RLKs play essential roles in perception of external and intrinsic 

signal, and initiation of signaling transduction. BAK1, a shared and essential LRR-RLK 

in different signaling, and SERK4 redundantly and negatively regulate cell death with 

largely unknown mechanism. By deploying a high-efficient genetic screen for 

suppressors of cell death triggered by virus-induced gene silencing of BAK1/SERK4 on 

Arabidopsis knockout mutant collections, we revealed that cyclic nucleotide-gated 

channel 20 (CNGC20) plays an important role in bak1/serk4 cell death. Systemic 

investigation of CNGC family members in Arabidopsis showed that only CNGC20 is 

required for bak1/serk4 cell death.  Interestingly, in vivo and in vitro assays indicated 

that BAK1 directly interacts with and phosphorylates membrane-resident CNGC20. 

Mass spectrometry and mutagenesis analysis revealed that specific phosphorylation sites 

of CNGC by BAK1 are indispensable for its function in cell death control. 

3.2 Introduction 

In addition to the preformed and dynamic barrier presented by the plant cell wall, 

sessile plants appear to have evolved largely expanded numbers of plasma membrane-

resident receptor-like kinases (RLKs) and receptor-like proteins (RLPs) to cope with 

invading microbes (Liebrand et al., 2014). Intriguingly, plant growth and development 

are intimately intertwined with plant innate immunity and symbiosis process via actions 

of members of RLKs (Belkhadir et al., 2014; Shiu and Bleecker, 2003). BRI1 
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(BRASSINOSTEROID INSENSITIVE 1) and FLS2 (FLAGELLIN-SENSITIVE 2), two 

well-studied leucine-rich repeat-RLKs (LRR-RLKs), are involved in brassinosteroid 

(BR) hormone-mediated plant growth and development, and bacterial flagellin or flg22 

(a 22-amino-acid peptide corresponding to the amino (N)-terminus of flagellin)-triggered 

plant defense response, respectively (Gómez-Gómez and Boller, 2000; Li and Chory, 

1997). Both BRI1 and FLS2 heterodimerize with a subgroup of LRR-RLKs, named 

somatic embryogenesis receptor kinases (SERKs), which comprise of five members in 

Arabidopsis. SERK5, probably a nonfunctional kinase in Arabidopsis  Columbia-0 (Col-

0) ecotype, plays important roles regulating BR signaling and cell death control in 

Landsberg erecta (Ler) ecotype (Wu et al., 2015). SERK1, SERK2, SERK3 and SERK4 

participate in a wide range of physiological response (aan den Toorn et al., 2015). 

SERK1 and SERK2 play a crucial and redundant role in male gametophyte development 

(Albrecht et al., 2005; Colcombet et al., 2005). SERK3, also known as BAK1 (BRI1 

associated receptor kinase 1), and SERK4 function in plant immunity by association 

with FLS2 and other immune receptors (Chinchilla et al., 2007; Heese et al., 2007; 

Postel et al., 2010; Roux et al., 2011). Receptor like protein 23 (RLP23) forms complex 

with another LRR-RLK SOBIR1 (suppressor of BIR1-1), and recruits BAK1 upon 

ligand nlp20 binding (Albert et al., 2015). SERK1, BAK1 and SERK4 function in BR 

signaling by association with BRI1 (Gou et al., 2012; Li et al., 2002; Nam and Li, 2002). 

SERK1, SERK2, BAK1 and SERK4 regulate stomatal patterning via EPF 

(EPIDERMAL PATTERNING FACTORS) peptide ligand-induced association with 

ERECTA (ER) family LRR-RLKs (Meng et al., 2015). SERK1, SERK2, BAK1 and 



58 

SERK4 also mediate floral organ abscission signaling through IDA (INFLORESCENCE 

DEFICIENT IN ABSCISSION) ligand-stimulated heterodimerization with two closely 

related LRR-RLKs HAESA (HAE) and HAESA-LIKE2 (HSL2) (Meng et al., 2015; 

Meng et al., 2016). In addition, SERK1, SERK2 and BAK1 regulate PSK 

(Phytosulfokine) peptide hormone-mediated root growth via association with its receptor 

LRR-RLK PSKR (Ladwig et al., 2015; Wang et al., 2015a). 

BAK1 and SERK4 redundantly and negatively regulate BR-independent cell 

death pathway with enigmatic mechanism (He et al., 2007; Kemmerling et al., 2007). 

The bak1-4/serk4-1 null mutant is postembryonic seedling lethal associated with 

spontaneous cell death and constitutive H2O2 production (He et al., 2007). Recent studies 

start to uncover the veil underlying BAK1/SERK4-mediated cell death. Components 

involved in nucleocytoplasmic trafficking, especially molecules directly or indirectly 

involved in endogenous salicylic acid accumulation, is critical in BAK1/SERK4-

mediated cell death control (Du et al., 2016). Furthermore, BAK1/SERK4-mediated cell 

death is partially salicylic acid (SA) dependent. In addition, N-glycosylation of  cysteine-

rich receptor-like kinase 4 (CRK4) mediated by STT3a and specific endoplasmic 

reticulum (ER) quality control (ERQC) components are essential to activate bak1/serk4 

cell death (de Oliveira et al., 2016). BIR1, a BAK1-interacting RLK, also exhibited 

autonomous cell death which could be suppressed by another RLK SOBIR1 (suppressor 

of BIR1-1). Moreover, overexpression of SOBIR1 leads to activate defense response and 

cell death. Systemic investigation of N-glycosylation and specific ERQC components 

revealed distinct and overlapping mechanism underlying BAK1/SERK- and BIR1-
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mediated cell death. Despite of these advances, the pathway underlying BAK1 and 

SERK4-mediated cell death control remains largely fragmented. 

Intracellular signaling molecules, including cyclic nucleotide monophosphates 

(cNMPs) and Ca2+ often released by the cell, have long been known to trigger series of 

physiological changes and relay signal transduction from external cues. Cyclic 

nucleotide-gated channel (CNGC) proteins, which could bind cNMP and uptake Ca2+, 

function as non-selective ligand-gated channels in both animals and plants. CNGCs 

comprise of 6 transmembrane segments (S1-S6) with a pore region (P loop) between S5 

and S6, one cyclic nucleotide-binding domain (CNBD) and one calmodulin-binding 

domain (CaMBD) (Bouche et al., 2005). It has been proposed that CNGC forms hetero-

tetramer composed of different subunits to be functional in animals. The Arabidopsis 

genome encodes 20 CNGCs which have been implicated in diverse physiological 

responses, including development and defense. CNGC2 and CNGC4 are involved in 

plant defense response. Furthermore, moss CNGCb and Arabidopsis CNGC2 act as 

thermosensors and regulate Ca2+ influx triggered by heat shock response (HSR) (Clough 

et al., 2000; Finka et al., 2012; Jurkowski et al., 2004). The cpr22 mutant, which fuses 5’ 

portion of CNGC11 and 3’ portion of  CNGC12 and produces a novel but functional 

chimeric CNGC11/12, exhibits increased resistance to pathogen (Yoshioka et al., 2006). 

Recent study indicates that CNGC14 is required for root gravitropism. In addition, 

CNGC17 participates in PSK-mediated signaling via association with PSKR, BAK1 and 

H+-ATPase (Ladwig et al., 2015; Shih et al., 2015). CNGC18 functions as an essential 

Ca2+ channel required for pollen tube guidance to ovules in Arabidopsis (Gao et al., 
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2016). Although the essential roles of CNGCs in diverse cellular responses are 

emerging, the regulatory mechanisms of CNGCs in plants remain obscure. 

In the present study, we identified a suppressor of bak1/serk4 cell death via 

virus-induced gene silencing, an unbiased and efficient genetic screening on Arabidopsis 

T-DNA mutant collections. One suppressor carries a mutation in CNGC20 responsible 

for the suppression of bak1/serk4 cell death. Interestingly, in vivo and in vitro assays 

indicated that BAK1 directly interacts with and phosphorylates membrane-resident 

CNGC20. Mass spectrometry and mutagenesis analysis revealed that specific 

phosphorylation sites of CNGC20 by BAK1 are indispensable for its function in cell 

death control. In conclusion, our findings unravel novel components and provide 

mechanistic insights in plant cell death regulation. 

3.3 Materials and methods 

3.3.1 Plant and pathogen materials and growth conditions 

Arabidopsis accessions Col-0 (WT), various mutants and transgenic plants used 

in this study were grown in soil (Metro Mix 366) in a growth room at 23°C, 45% relative 

humidity, 70 μE m-2s-1 light with a 12-hr light/12-hr dark photoperiod for two-weeks 

before VIGS assays or 30 days for protoplast isolation and pathogen assays. The bak1-4 

and bak1-4/serk4-1 mutants were reported previously (de Oliveira et al., 2016). All the 

Arabidopsis T-DNA insertion lines (SALK_013823C, SALK_087793C, 

SALK_042821C, SALK_037558C, SAIL_302_A04, SALK_007105) were obtained 

from the Arabidopsis Biological Resource Center (ABRC) and confirmed by PCR and 

RT-PCR using primers listed in Supplementary Table S4. Seedlings were grown on agar 
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plates containing ½ Murashige and Skoog medium (½MS) with 0.5% sucrose, 0.8% agar 

and 2.5 mM MES at pH 5.7, in a growth room at 23°C or 30°C, 45% humidity, 70 μE m-

2s-1 light with a 12-hr light/12-hr dark photoperiod.  

P. syringae pv. maculicola ES4326 (Psm), Pseudomonas syringae pv. tomato 

(Pst) DC3000 (avrRpt2), Pst DC3000 (avrRpm1) and Pst DC3000 (avrRps4) were 

cultured for overnight at 28ºC in the King’s B medium with the appropriate antibiotics 

(50 ug/ml streptomycin, rifampicin or kanamycin). Bacteria were harvested by 

centrifugation at 3500 rpm, washed with ddH20, and adjusted to the desired density with 

10 mM MgCl2. Leaves of 4-week-old plants were hand-infiltrated with bacterial 

suspension using a 1-ml needleless syringe and collected at the indicated time for HR or 

bacterial growth assays. To measure bacterial growth, two leaf discs were ground in 

100μl H2O and serial dilutions were plated on TSA medium (1% Bacto tryptone, 1% 

sucrose, 0.1% glutamic acid, 1.5% agar) with appropriate antibiotics. Bacterial colony 

forming units (cfu) were counted 2 days and 4 days after incubation at 28°C. Each data 

point is shown as triplicates. 

3.3.2 Plasmid construction and generation of transgenic plants 

The VIGS of BAK1/SERK4, MEKK1 and BIR1 constructs and the pHBT-BIK1-

HA construct were reported previously (de Oliveira et al., 2016). The CNGC20 gene was 

amplified from Col-0 genomic DNA with primers containing NcoI at N terminus and 

StuI at C terminus (Table S4), and ligated into a plant protoplast expression vector pHBT 

with a CaMV 35S promoter at N-terminus and an HA epitope-tag at C-terminus. The 

point mutations of CNGC20N430Q and CNGC20 N452/455/Q were generated by site-directed 
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mutagenesis with primers listed in Table S4. To construct the pCABIA1300 binary vector 

containing the native promoter driven CNGC20 for Agrobacterium-mediated 

transformation, the CNGC20 promoter was amplified with primers containing XhoI at N 

terminus and NcoI at C terminus (Table S4), and ligated into pHBT containing the 

CNGC20 genomic DNA fragment. The native promoter driven CNGC20 genomic 

fragment together with the HA epitope and the NOS terminator were released from the 

pHBT vector via digestion with XhoI and EcoRI, and ligated into the pCABIA1300 

binary vector pre-cut with EcoRI and SalI. The sequence of all the genes or promoters 

were verified by the targeted Sanger-sequencing. Arabidopsis transgenic plants were 

generated using Agrobacterium-mediated transformation by the floral-dip method.  

3.4 Results 

To identify components involved in BAK1/SERK4-regulated cell death, we 

carried out a VIGS-based genetic screen of a sequence-indexed library of Arabidopsis T-

DNA insertion lines. After screening ~6000 homozygous lines, a series of mutants were 

isolated based on the suppression of cell death upon VIGS of BAK1/SERK4. One mutant 

btl1 (bak to life) is SALK_013823C. The btl1 mutant largely suppressed the dwarfism 

and leaf chlorosis triggered by VIGS of BAK1/SERK4 compared to wild-type (WT) 

plants (Fig. 12A). Trypan blue staining indicated that cell death triggered by silencing of 

BAK1/SERK4 was significantly reduced in the btl1 mutant. The 3,3'-diaminobenzidine 

(DAB) staining indicated that the elevated H2O2 accumulation caused by VIGS of 

BAK1/SERK4 was almost completely abolished in btl1 (Fig. 12B & 12C). In addition, 

compared to WT, btl1 showed much reduced accumulation of PR1 and PR2 genes upon 
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VIGS of BAK1/SERK4 (Fig. 12D). MEKK1, a MAP kinase (MAPK) kinase kinase 

downstream of BAK1/SERK4 in flagellin-mediated signaling, and BIR1, a BAK1-

interacting receptor-like kinase, are also involved in cell death regulation. Silencing of 

MEKK1 and BIR1 by VIGS in WT plants resulted in severe dwarfism and cell death 

(Fig. 12E). However, the btl1 mutant did not suppress MEKK1- and BIR1-regulated cell 

death (Fig. 12E), suggesting different mechanisms underlying BAK1/SERK4-, MEKK1- 

and BIR1-regulated cell death. The data also suggest that btl1 did not affect the gene 

silencing machinery. 

The btl1 mutant (SALK_013823C) was annotated to bear a T-DNA fragment 

inserted at the 8th intron of a gene (AT1G60995) encoding an uncharacterized protein 

containing the membralin domain. To verify whether the annotated T-DNA in 

AT1G60995 is the cause for suppression of BAK1/SERK4-mediated cell death in the 

btl1 mutant, we isolated and characterized two additional alleles of T-DNA mutants of 

AT1G60995 (Fig. 13A). Geno-typing and RT-PCR analysis showed that these mutants 

showed reduced AT1G60995 transcripts (Fig. 13B). However, unlike btl1, neither of 

mutants could suppress VIGS of BAK1/SERK4-mediated cell death (Fig. 13C). 

Furthermore, transformation of either the 35S promoter or the native promoter driven 

AT1G60995 into the btl1 mutant did not restore growth defects triggered by VIGS of 

BAK1/SERK4 (Fig. 13D). Next we tested the possibility whether the N-terminal part of 

AT1G60995 in btl1 is functional and functions dominantly to suppress VIGS of 

BAK1/SERK4-mediated cell death. We transformed N-AT1G60995 into WT plants. 

Silencing BAK1/SERK4 in these transgenic plants still resulted in severe dwarfism and 
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cell death as that in WT plants (Fig. 13E). All the above data indicate that the T-DNA 

insertion in AT1G60995 may not be the cause for the suppression of BAK1/SERK4-

mediated cell death. 



65 

Figure 12. The btl1 mutant specifically suppresses BAK1/SERK4-mediated cell 
death. 

(A) The btl1 mutant suppresses growth defects triggered by VIGS of BAK1/SERK4. 

Plant phenotypes are shown two weeks after VIGS of BAK1/SERK4 or a vector control 

(Ctrl.). Bar = 5 mm.  (B) The btl1 mutant suppresses cell death by VIGS of 

BAK1/SERK4. True leaves of WT (Col-0) and btl1 after VIGS of BAK1/SERK4 or a 

vector control were stained with trypan blue for cell death. Bar = 2 mm. (C) The btl1 

mutant suppresses H2O2 production by VIGS of BAK1/SERK4. True leaves of WT and 

btl1 after VIGS of BAK1/SERK4 or a vector control were stained with DAB for H2O2 
accumulation. Bar = 2mm. (D) The btl1 mutant suppresses PR1 and PR2 expression by 

VIGS of BAK1/SERK4. The expression of PR1 and PR2 was normalized to the 

expression of UBQ10. The data are shown as mean ± SE from three independent repeats. 

The different letters denote statistically significant difference according to one-way 

ANOVA followed by Tukey test (p<0.05). (E) The btl1 mutant suppresses 

BAK1/SERK4-mediated cell death but not MEKK1- and BIR1-mediated cell death. 

The above experiments were repeated at least three times with similar results. 
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Figure 13. The T-DNA insertions in At1g60995 and At1g11020 are not causative for 

the suppression of bak1/serk4 cell death. 

A. Scheme of the At1g60995 gene and T-DNA insertional sites in btl1/SALK013823C, 

SALK087793C and SALK042821C. Solid bars indicate exons and lines indicate introns. 

Arrows indicate the primers used for genotyping and RT-PCR analysis. Bar=200bp  

B. PCR and RT-PCR confirmation of three T-DNA insertional lines of At1g60995. The 

DNA from WT, btl1 and SALK087793C and SALK042821C was PCR-amplified with 

the primers indicated in Fig. S1A to confirm all the three lines are homozygous. The 

primer pair of LP and RP amplified the genomic DNA fragment of At1g60995 and the 

primer pair of LB and RP amplified the T-DNA insertion from the At1g60995 mutant. 

The cDNA from WT, btl1 and SALK087793C and SALK042821C was PCR-amplified 

with indicated primers. UBQ1 was used as an internal control.  C. Unlike btl1, two 

independent alleles of T-DNA insertional mutants of At1g60995 do not suppress growth 

defects by VIGS of BAK1/SERK4. Plant phenotypes are shown from WT, btl1, 

SALK087793C and SALK042821C two weeks after VIGS of BAK1/SERK4. Bar=5 mm. 

D. Complementation of the btl1 mutant with At1g60995 driven by the 35S promoter (top 

panel) or the native promoter (bottom panel) does not restore growth defects by VIGS of 

BAK1/SERK4. Bar = 5 mm. E. Transformation of the WT with btl1 mutant form does 

not restores growth defects by VIGS of BAK1/SERK4. Bar = 5 mm. F. Unlike btl1, two 

independent T-DNA insertional alleles of At1g11020 do not suppress growth defects by 

VIGS of BAK1/SERK4. Plant phenotypes are shown from WT, btl1, SALK037558C and 

SAIL302_A04 two weeks after VIGS of BAK1/SERK4. Bar = 5 mm. 



68 

To examine the possibility that additional mutations in btl1 contribute the 

suppression of BAK1/SERK4-mediated cell death, we performed the whole genome-

sequencing analysis of btl1 and revealed that the btl1 mutant may carry additional two 

T-DNA fragments inserted at AT1G11020 and CNGC20 (Table 1). Likely due to the 

high sequence similarity between CNGC20 and CNGC19, CNGC19 is predicted to carry 

a T-DNA insertion. We performed the targeted Sanger-sequencing and confirmed the 

presence of T-DNA fragments in AT1G11020 and CNGC20 but not CNGC19 in the btl1 

mutant (Fig 14A & Table 2). In addition, geno-typing and RT-PCR analyses indicate 

that btl1 carries a T-DNA insert in CNGC20 but not CNGC19, and shows reduced 

transcripts of CNGC20 but not CNGC19 (Fig 14B & 14D). We further isolated and 

characterized additional alleles of T-DNA insertion mutants for each gene (Fig. 14A, 

14C & 14D). Neither T-DNA insertion homozygous alleles of AT1G11020 suppressed 

BAK1/SERK4-mediated cell death (Fig. 14F), indicating that AT1G11020 may not be the 

causal gene responsible for the cell death suppression phenotype triggered by VIGS- 

BAK1/SERK4 in btl1. 
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Table 1. T-DNA insertions identified from the whole genome-sequence analysis of 

the btl1 (SALK _013823C) mutant. 

Gene 

Locus 

Gene Identity 

T-DNA 

Insertion 

Position 

in ncd2 

Confirmation of 

T-DNA 

insertion in 

ncd2 

Additional 

independent T-

DNA lines 

analyzed 

At1g60995 

Unknown protein, 

containing 

membralin domain 

8th intron 

confirmed by 

targeted 

sequencing 

SALK_087793C 

 (T-DNA in 7th 

exon) 

SALK_042821C 

(T-DNA in 9th 

intron) 

At1g11020 

RING/FYVE/PHD 

zinc finger 

superfamily 

protein 

1st intron 

confirmed by 

targeted 

sequencing 

SALK_037558C 

 (T-DNA in 1st 

intron) 

SAIL_302_A04 

 (T-DNA in 1st 

intron) 

At3g17690 

Cyclic nucleotide 

gated channel 19 

10th exon 

Not confirmed 

by genotyping 

SALK_007105 

 (T-DNA) in 2nd 

intron 
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Table 1. Continued

At3g17700 Cyclic nucleotide 

gated channel 20 

11th exon confirmed by 

targeted 

sequencing 

SALK_129133

C (T-DNA in 4th 

exon) 

SALK_074919

C  (T-DNA in 

10th exon)

 Table 2. Sequence of CNGC20 with the T-DNA insertion site underlined in the btl1 

(cngc20-3) mutant. 

ATGGCTTCCCACAACGAAAACGATGATATTCCCATGCTTCCGATTTCAGACC

CATCATCTCGTACTAGAGCCAGAGCTTTCACTTCCAGGAGTCGTAGCGTTTCT

CTCTCAAACCCTACTTCCTCCATTGAAGGATTTGACACTTCCACTGTGGTTTT

AGGCTACACGGGTCCTCTTCGAACTCAGAGACGTCCTCCTTTAGTTCAAATG

AGTGGTCCTCTTACCTCTACTCGCAAGCATGAACCTCTCTTTCTTCCTCATCC

TTCTTCTGATTCCGTTGGTGTCTCTTCTCAGCCTGAGAGGTATCCTTCTTTTGC

TGCTCTTGAACATAAAAACTCCTCAGAGGATGAGTTCGTTTTGAAACACGCA

AATCTCTTGAGGTCTGGACAATTGGGAATGTGTAATGATCCTTACTGTACTA 

CTTGCCCTTCTTACTACAACCGTAAGGCTGCTCAAATCCCTACTTCTAGAGTT

TCTGCCCTTTTTGATTCCACGgtaaagttttgatttttgttactttacattcacaaatatagcttcaggatcaagta

aatgtcgttgaaacagagtcttttgttttcttgctagTTCCATAACGCTCTGTATGATGATGCTAAAG

GTTGGGCAAGGAGATTTGCTTCCTCTGTTAATAGATACTTACCTGGAATCAT 

Gene 

Locus 

Gene Identity 
T-DNA 

Insertion 

Position 

in ncd2 

Confirmation of 

T-DNA 

insertion in 

ncd2 

Additional 

independent T-

DNA lines 

analyzed 
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Table 2. Continued

GAATCCTCATGCCAAAGAGGTTCAAACCTGGACTAAATTCTTCGCCCTTTCA

TGCTTGTTAGCTATTTTTATAGATCCCCTCTTCTTCTTCCTCATAAAAGTCCAA

GAGgtatgtttttccttcagagatatcttttgcttttccaagtgtttttatcttgcctttacaccacctttttgaccatctttattttctcact

gtagCAAAACAAATGTATTATGATTGATTGGCCGATGACTAAAGCATTTGTAG

CTGTAAGAAGTGTAACAGATGTTATATTCACTATGAACATTCTACTTCAGgtgc

ttttcttttgcttacatttttccatctctttataaacaaaatatgttggctttagtgctcacgtttgccatattggttgcagTTCCGAT

TGGCCTATGTAGCTCGTGAGTCTACGGTAGTTGGAGCTGGCCAGTTAGTTAG

TCATCCCAAAAAAATTGCCCTTCATTACCTCAAAGGAAAGTTTTTCCTTGACT 

TGTTCATAGTGATGCCACTTCCACAGgtattgttacgttagagctcctactggttttaagtaatggtaatca 

gaagatgttcatttatgttttcttttgtttacagATATTGATACTATGGATAATACCAGCACATTTGG

GTGCATCCGGGGCAAACTATGCGAAAAACCTTCTACGAGCTGCAGTTCTTTT

CCAATACATTCCAAAGTTATATAGACTTCTACCGTTTCTTGCTGGACAAACA

CCTACCGGATTCATATTTGAGTCAGCTTGGGCTAATTTTGTTATTAATCTTCT

CACTTTCATGCTTGCTGGACATGTTGTTGGTTCTTGCTGGTATCTATTTGGTCT

GCAGgtatgacaaactctcaaaatgtctttcatttttatcttgtcctgatcagcagaagatgcataaagtgatttatattgtttcccg

ttttctgttggttctttcagAGAGTTAATCAGTGCCTTCGAAATGCTTGCGGTAATTTTGGG

CGTGAATGTCAAGATCTTATAGATTGTGGTAATGGAAATAGCAGTGTATTAG 

TACGAGCTACCTGGAAAGATAATGCGAGTGCCAATGCTTGTTTCCAAGAAGA

TGGTTTTCCTTATGGAATCTATTTAAAAGCAGTCAATCTTACCAATCATTCTA

ATCTCTTCACAAGATACAGTTACTCTCTCTTCTGGGGCTTCCAGgtaactgttttttttttt

ctctctttcagttttttagtaggaaactaagaacaactactcaactactttgcattgattggcatacttggaactcttcattaagatcatt 
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Table 2. Continued

aattttataattctcatagCAAATCAGCACTCTTGCTGGCAACCAAGTCCCAAGCTACTTT

CTAGGGGAGGTCTTCTTTACTATGGGTATCATTGGACTAGGGCTTTTACTTTT

TGCGCTTCTTATTGGTAATATGCAAAATTTCCTTCAAGCTCTTGGTAAAAGgta

aacaattccatcattgtactaaaatagatatttcaagacataatggttggttctataaacactaactactcaggtgattgtgttttgtcc

atattagGAATTTGGAAATGACGCTGAGACGGCGTGATGTGGAGCAATGGATGA

GCCATAGACGGTTGCCAGATGGTATAAGAAGgtatgtggactttgcctataaaactttgttttatcctt

tgaatattctttttcttaaagagttacattggtctcagtttcagtagtttcactattaaactaactgaataatggttcgacattatcagG 

AGGGTGCGAGAGGCTGAGCGGTTTAACTGGGCTGCTACTAGAGGCGTTAAC 

GAAGAATTGCTTTTTGAGAATATGCCTGATGATCTTCAAAGAGATATAAGAC 

GACACCTCTTCAAATTTCTCAAGAAGgtaaacatatgtgaaacttctgtatgcatagatcccaattccata

tagtgttgcaaagagctagttctagaagctgtaactgcaagtaatagttagagaccacagattaaaccattgctgagaaatagtatt

gaaatttgaatgggtttgcagGTGAGAATATTTTCGTTGATGGATGAACCAATCTTAGATG

CAATCCGTGAGAGGCTGAAACAGAGGACATACATAGGGAGTAGCACAGTGT

TGCACCGTGGAGGACTAGTTGAGAAAATGGTATTCATAGTGAGAGGTGAGA

TGGAGAGCATTGGAGAAGATGGTTCTGTTCTTCCATTATATGAAGGCGATGT

TTGTGGTGAAGAACTCCTCACTTGGTGCCTCGAACGCTCTTCTGTAAACCCC

Ggtaccatcccttttgactctatctctatgtgttcataaatcccaaaaagtttggttccttagatgacacttcgttaagaaaaagcttg

gaactgagtatgttctgaaaccttcagATGGGACGAGGATAAGGATGCCATCAAAGGGATTG

CTTAGTAGCAGAAATGTAAGGTGTGTGACAAATGTGGAGGCGTTTTCGCTGA

GTGTAGCCGATCTGGAAGACGTAACGAGCTTGTTTTCGAGATTCTTGAGGAG

TCATAGAGTCCAAGGAGCCATAAGGTACGACTCTCCATATTGGAGGCTACG 
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AGCGGCTAGGCAGATTCAAGTGGCGTGGAGATACCGTAGGAGACGGCTTCA

TAGATTATGCACTCCTCAGTCTAGTTATAGCCTTTAG 

Note: The start codon (ATG) and stop codon (TAG) are in bold. The capital letters 

denote exons while the small letters indicate introns. GAGT, which are in bold and 

underlined, bears an T-DNA insert based on the whole genome-sequence analysis of 

btl1, which was further confirmed by targeted sequence analysis of this region. 

Table 2. Continued
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Figure 14. Characterization of the T-DNA insertions in cngc20 mutants. 

A. Scheme of the CNGC20 gene and T-DNA insertion sites in cngc20-1 

(SALK129133C), cngc20-2 (SALK074919C) and ncd2 (cngc20-3). Solid bars indicate 

exons and lines indicate introns. Arrows indicate the T-DNA insertion sites. 

B. Geno-typing PCR analysis to confirm that the btl1 mutant carries a T-DNA insertion 

in CNGC20 but not CNGC19. The DNA from WT and btl1 was PCR amplified with the 

indicated primers to confirm T-DNA insertion happens in CNGC20 but not CNGC19.  

C. Geno-typing PCR analysis of the T-DNA insertions in cngc20-1, cngc20-2. The DNA 

from WT, cngc20-1, and cngc20-2 was PCR-amplified with the indicated primers to 

confirm all the three lines used are homozygous. The primer pair of LP and RP is to 

amplify the genomic DNA fragment of CNGC20, and the primer pair of LB and RP is to 

amplify the T-DNA insertions.  

D. RT-PCR analysis of CNGC20 and CNGC19 expression in btl1, cngc20-1, cngc20-2 

and cngc19-2. The cDNA of CNGC20 or CNGC19 from WT, btl1, cngc20-1, cngc20-2 

and cngc19-2 was PCR-amplified. UBQ1 was used as an internal control.  

E. Geno-typing PCR analysis of the bak1/serk4/cngc20-3 triple mutant. The DNA from 

WT, bak1, serk4, btl1 and bak1/serk4/cngc20-3 was PCR-amplified with the indicated 

primers to confirm that bak1/serk4/cngc20 is a triple homozygous mutant.  



75 

Importantly, two alleles of cngc20 mutants, cngc20-1 and cngc20-2, suppressed 

VIGS-BAK1/SERK4-mediated cell death similar as btl1 (Fig. 15A). The cell death and 

elevated H2O2 accumulation caused by VIGS of BAK1/SERK4 were almost completely 

abolished in cngc20 mutants (Fig. 15B). Compared to WT, cngc20 mutants showed 

much reduced accumulation of PR1 and PR2 genes upon VIGS of BAK1/SERK4 (Fig. 

15C). Furthermore, transformation of a genomic fragment containing the CNGC20 gene 

into btl1 restored VIGS-BAK1/SERK4-mediated cell death (Fig. 15D). To investigate if 

the cngc20 mutation could genetically suppress bak1-4/serk4-1 seedling lethality, we 

generated the bak1-4/serk4-1/btl1 triple mutant. The bak1-4/serk4-1/btl1 triple mutant 

overcame seedling lethality of bak1-4/serk4-1 and resembled WT plants at two-week-old 

stage when grown on ½MS medium plates (Fig. 15E). When grown in soil, the bak1-

4/serk4-1/btl1 triple mutant developed true leaves. However, three weeks later, the bak1-

4/serk4-1/btl1 triple mutant showed a delayed growth rate compared to WT, became 

severely dwarfed and occasionally settle seeds at 30ºC. In addition, cell death, H2O2 

accumulation, and PR1 and PR2 expression were significantly ameliorated in bak1-

4/serk4-1/btl1 compared to those in bak1-4/serk4-1 (Fig. 15F & 15G). Taken together, 

these results suggest that cngc20 mutation leads to the suppression of BAK1/SERK4-

mediated cell death. 
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Figure 15. The cngc20 mutant suppresses BAK1/SERK4-mediated cell death. 

(A) Different alleles of cngc20 mutants suppress growth defects by VIGS of 

BAK1/SERK4. Plant phenotypes are shown from WT, btl1, cngc20-1 and cngc20-2 two 

weeks after VIGS of BAK1/SERK4. Bar = 5 mm. (B) The cngc20 mutants suppress cell 

death and H2O2 production by VIGS of BAK1/SERK4. True leaves of WT, btl1, cngc20- 
1 and cngc20-2 after VIGS of BAK1/SERK4 were stained with trypan blue for cell death 

(upper panel) and DAB for H2O2 accumulation (lower panel). Bar = 2 mm. (C) The 

cngc20 mutants suppress PR1 and PR2 expression by VIGS of BAK1/SERK4. The 

expression of PR1 and PR2 was normalized to the expression of UBQ10. The data are 

shown as mean ± SE from three independent repeats. The different letters denote 

statistically significant difference according to one-way ANOVA followed by Tukey test 

(p<0.05). (D) Complementation of the btl1 mutant with the CNGC20 genomic fragment 

with an HA epitope tag at its C-terminus under the control of its native promoter restores 

growth defects by VIGS of BAK1/SERK4. CL#4 and CL#18 are two representative lines. 

Bar=5 mm. The CNGC20 proteins in transgenic plants were shown with a western 

blotting using an HA-HRP antibody (right panel). The protein loading is shown by 

Ponceau S staining for RuBisCo (RBC). (E) The cngc20-3 mutant rescues the seedling 

lethality of the bak1-4/serk4-1 mutant (top panel). Seedlings were grown on ½MS plate 

and photographed at 14 days after germination. Bar = 2 mm. The bak1-4/serk4- 
1/cngc20-3 does not fully restore the growth of the bak1-4/serk4-1 mutant to the wild 

type level. The plants were germinated in soil and photographed at 21 days after 

germination. Bar = 5 mm. (F) The alleviated cell death and H2O2 accumulation in bak1- 
4/serk4-1/cngc20-3 compared to the bak1-4/serk4-1 mutant. Bar = 1 mm. (G) The 

reduced PR1 and PR2 expression in bak1-4/serk4-1/cngc20-3 compared to the bak1- 
4/serk4-1 mutant. The different letters denote statistically significant difference 

according to one-way ANOVA followed by Tukey test (p<0.05).  

The above experiments were repeated three times with similar results. 



77 



78 

Figure 16. VIGS of BAK1/SERK4 in various cngc mutants. 

A. Unlike cngc20-1, mutants of other CNGC members do not appear to suppress growth 

defects by VIGS of BAK1/SERK4. Plant phenotypes are shown two weeks after VIGS of 

BAK1/SERK4. B. Geno-typing PCR analysis of cngc mutants. The DNA from WT and 

cngc mutants was PCR-amplified with the indicated primers to confirm that the lines 

used are homozygous except cngc7, which is WT. The primer pair of LP and RP is to 

amplify the genomic DNA fragment of CNGCs and the primer pair of LB and RP is to 

amplify the T-DNA insertions from the cngc mutants. C. RT-PCR analysis of CNGC 

expression in cngc mutants. The cDNA of CNGCs from WT and cngc mutants was 

PCR-amplified. UBQ1 was used as an internal control. 

The Arabidopsis genome encodes 20 CNGCs which mediates various abiotic and 

biotic stresses and developmental processes. To examine whether other CNGCs play a 

role in BAK1/SERK4-meidated cell death, we obtained all the other cngc mutants and 

performed comprehensive VIGS of BAK1/SERK4. The cngc18 mutant is male sterile 

and could not set homozygous seeds. The cngc2 and cngc4 mutants, also known as dnd1 

(defense, no death 1) and dnd2 respectively, showed compromised cell death triggered 

by different avirulent pathogens. Geno-typing and RT-PCR analysis confirmed that all 



79 

the mutants, except cngc7 which is WT, are homozygous for the T-DNA insertion and 

showed reduced CNGC transcripts (Fig. 16B & 16C). Interestingly, all the other cngc 

mutants could not suppress VIGS of BAK1/SERK4-mediated cell death (Fig. 16A). 

Table 3. T-DNA insertional mutants of CNGC family members. 

CNGCs 

Gene 

Locus 

Salk Line Number 

T-DNA 

Insertion 

Position 

Confirmation 

of T-DNA 

Insertion 

CNGC1 At5g53130 SAIL_443_B11 4th exon Ture knock 

out 

CNGC2 At5g15410 dnd1-1 Trp290→stop 

codon 

Truncated 

protein 

CNGC3 At2g46430 SALK_056832C 3rd exon Ture knock 

out 

CNGC4 At5g54250 dnd2-1 Trp89→stop 

codon 

Truncated 

protein 

CNGC5 At5g57940 SALK_149893C 5th exon Ture knock 

out 

CNGC6 At2g23980 SALK_042207 2nd  intron Ture knock 

out 

CNGC7 At1g15990 SALK_060871C 1st exon Wild type 

CNGC8 At1g19780 GABI_101C03 4th intron Ture knock 
out 

out 
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CNGC9 At4g30560 SALK_026086 5th intron Homozygous 

CNGC10 At1g01340 SALK_015952C 7th exon Ture knock 

out 

CNGC11 At2g46440 SALK_026568C 7th intron Ture knock 

out 

CNGC12 At2g46450 SALK_092657 5th exon Ture knock 

out 

CNGC13 At4g01010 SALK_060826 3rd exon Ture knock 

out 

CNGC14 At2g24610 WiscDsLox437E09 2nd exon Ture knock 

out 

CNGC15 At2g28260 CS93507 point 

mutation 

Homozygous 

CNGC16 At3g48010 SAIL_726_B04 3rd exon Homozygous 

CNGC17 At4g30360 SALK_041923 5th exon Homozygous 

CNGC19 At3g17690 SALK_007105 2nd intron Ture knock 

out 

CNGC20 At3g17700 SALK_074919C 10th exon Ture knock 

out 

CNGCs Gene 

Locus 

Salk Line Number 
T-DNA 

Insertion 

Position 

Confirmation 

of T-DNA 

Insertion 

Table 3. Continued
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In addition to the negative role in regulating cell death, BAK1 and SERK4 

positively regulate plant immunity and BR signaling. We tested whether the mutation in 

cngc20 exerts any effects on the bak1 deficiency in flagellin signaling and BR signaling. 

Flg22 triggers rapid phosphorylation of MAPKs and receptor-like cytoplasmic kinase 

BIK1. The bak1-4 mutant displayed a compromised flg22-induced MAPK activation 

(Fig. 17A), and BIK1 phosphorylation (Fig. 17B). The compromised flg22-induced 

MAPK activation and BIK1 phosphorylation remained similar in bak1-4/cngc20-1 as 

those in bak1-4 (Fig. 17A & 17B). We also detected ROS production, another early 

event triggered by flg22. Similar with bak1-4, bak1-4/cngc20-1 exhibited much less 

ROS production compared to WT or cngc20-1 (Fig. 17C). Similar with bak1-4, bak1-

4/cngc20-1 showed compromised expression of flg22-induced genes, WRKY30 and 

MYB15, compared to WT or cngc20-1 (Fig. 17D). In addition, the cngc20 mutation did 

not affect plant resistance to Pseudomonas syringae pv maculicola (Psm) ES4326. 

Bacterial growth was comparable in cngc20 mutants with that in WT and the disease 

symptom of cngc20 mutants is similar with WT (Fig. 17E). Furthermore, we examined 

whether effector-triggered immunity (ETI) response is affected in cngc20 mutants. The 

cngc20 mutants showed similar resistance with WT, as shown in bacterial growth and 

symptom development to Pst DC3000 carrying avrRpt2 or avrRps4 (Fig. 17F & 17G). 

ETI is often associated with localized cell death, referred as the hypersensitive response 

(HR). The progression of Pst avrRpt2 and avrRpm1-triggered HR was similar in the 

cngc20 mutants as that in WT plants (Fig. 17H). Taken together, the data suggest that 
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CNGC20 may not play a vital role in flagellin-mediated immune signaling and ETI 

response.  
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Figure 17. Unaltered flg22-mediated signaling and ETI responses in the cngc20 
mutant. 

(A) The cngc20-1 mutant did not affect the compromised flg22-induced 

BIK1 phosphorylation in the bak1-4 mutant. Protoplasts from different plants were 

transfected with HA-tagged BIK1 and treated with 100 nM flg22 for 10 min. BIK1-

HA proteins were detected by immunoblot using α-HA antibody (top panel), and the 

protein loading is shown by Ponceau S staining for RuBisCo (RBC) (bottom panel). 

(B) The cngc20-1 mutant did not interfere with the compromised flg22-induced 

MAPK activation in the bak1-4 mutant. Ten-day-old seedlings were treated without or 

with 100 nM flg22 for 15 and 30 min. The MAPK activation was analyzed by 

immunoblot with α-pERK antibody (top panel), and the protein loading is shown by 

Ponceau S staining for RBC (bottom panel). (C) The cngc20-1 mutant did not 

impact the compromised flg22-induced ROS production in the bak1-4 mutant. Leave 

discs from 4-week-old plants were treated with 100 nM flg22 for 30 min. The data are 

shown as means ± se from 24 leaf discs. (D) The cngc20-1 mutant did not affect the 

compromised flg22-induced marker gene expression in the bak1-4 mutant. Ten-day-old 

seedlings were treated without or with 100 nM flg22 for 30 or 60 min for qRT-PCR 

analysis. The data are shown as mean ± SE from three independent repeats. The 

different lettersindicate statistically significant differences from WT within the same 

time point according to two-way ANOVA followed by Tukey test (p<0.05). (E, F and 

G) The cngc20 mutants exhibited similar resistance to Psm (E), Pst DC3000avrRpt2 

(F) and Pst DC3000avrRps4 (G) infection. WT and btl12, cngc20-1 and cngc20-2 were 

hand-inoculated with bacteria at OD600 =5×10-4, and the bacterial counting was 

performed 2 and 4 days post-inoculation (dpi). The data are shown as mean ± se 

from three independent repeats. The disease symptom is shown at 4 dpi (bottom 

panel).  (H and I) Comparable HR triggered by Pst DC3000avrRpt2 (H) and Pst 

DC3000avrRpm1 (I) in cngc20 mutant plants and WT. Four-week-old WT and 

mutant plants were hand-inoculated with bacteria at OD=0.1. HR was examined by 

counting the percentage of wilting leaves of total inoculated leaves (18) at different 

time points after inoculation. 

The experiments in B, C, D were repeated three times and A, E, F, G, H, I were 

repeated twice with similar results.  
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We next tested whether CNGC20 associates with BAK1 to regulate cell death. 

The coimmunoprecipitation (CoIP) assay using co-expressing FLAG-tagged CNGC20 

and HA-tagged BAK1 in Arabidopsis protoplasts indicated that BAK1 was able to 

coimmunoprecipitate CNGC20 (Fig. 18A). In addition, when transiently expressed in 

Nicotiana benthamiana, BAK1-FLAG could immunoprecipitate CNGC20-HA (Fig. 

18B). We further transformed pCNGC20::CNGC20-HA into pBAK1::BAK1-FLAG 

transgenic plants for CoIP assay. BAK1 could immunoprecipitate CNGC20 when 

expressed under the control of their native promoters, indicating BAK1 associates with 

CNGC20 in vivo (Fig. 18C). The association between BAK1 and CNGC20 was further 

confirmed by bimolecular fluorescence complementation (BiFC) assay (Fig. 18D). 

BAK1 was fused to the N-terminal fragment of YFP (BAK1-nYFP), whereas CNGC20 

was fused to the C-terminal fragment of YFP (CNGC20-cYFP). The YFP signals were 

observed on the cell plasma membrane when co-expressing BAK1-nYFP and CNGC20-

cYFP in Arabidopsis protoplasts (Fig. 18D). CNGC20 is a transmembrane protein 

consisting of N-terminal and C-terminal cytosolic domains (CNGC20N and CNGC20C) 

(Fig 18E).  To further examine which cytosolic domain associates with BAK1, the CoIP 

assay using co-expressing FLAG-tagged CNGC20N or CNGC20C and HA-tagged full 

length BAK1 in Arabidopsis protoplasts indicated full length BAK1 associates with 

CNGC20N but not CNGC20C (Fig. 19A). Interestingly, the juxtamembrane and 

cytosolic kinase domains of BAK1 (BAK1JK) could immunoprecipitate both CNGC20N 

and CNGC20C (Fig. 18F). Next we test whether CNGC20N or CNGC20C directly 

interacts with BAK1. The maltose-binding protein (MBP)-tagged BAK1JK (MBP-
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BAK1JK) could be pulled down by the glutathione S-transferase (GST)-tagged 

CNGC20N or CNGC20C but not by GST itself (Figure. 18G & 18H). Interestingly, 

BAK1 kinase mutant could not interact with CNGC20C, suggesting that kinase activity 

of BAK1 is required for the interaction with CNGC20C (Fig. 19B). Moreover, the 

interaction between BAK1 and CNGC20N was confirmed by yeast two-hybrid assay 

(Fig 18I). All the data above indicate that CNGC20 interacts with BAK1 via its N- and 

C-terminus. 
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Figure 18. The interaction between CNGC20 and BAK1. 

(A) CNGC20 associates with BAK1 in Arabidopsis protoplast. CNGC20-FLAG and 

BAK1-HA proteins were transiently co-expressed in Arabidopsis protoplasts. Protein 

extracts were immunoprecipitated with -FLAG agarose beads (IP: -FLAG) and 

immunoblotted with -HA antibody (IB: a-HA) (upper panel). The protein inputs are 

shown with immunoblotting before immunoprecipitation (lower two panels). (B) 

CNGC20 associates with BAK1 in N. benthamiana. CNGC20-HA and BAK1-FLAG 

proteins were transiently co-expressed in N. benthamiana. Protein extracts were 

immunoprecipitated with -FLAG agarose beads (IP: a-FLAG) and immunoblotted with 

-HA antibody (IB: a-HA) (upper panel). The protein inputs are shown with 

immunoblotting before immunoprecipitation (lower two panels). (C) CNGC20 

associates with BAK1 in transgenic plants. Protein extracts from transgenic plants 

containing pBAK1::BAK1-FLAG and pCNGC20::CNGC20-HA were 

immunoprecipitated with -FLAG agarose beads (IP: a-FLAG) and immunoblotted with 

a-HA (IB: a-HA) or a-FLAG (IB: a-FLAG) (upper two panels). The protein inputs are 

shown with immunoblotting before immunoprecipitation (lower two panels). (D) 

Interaction between CNGC20 and BAK1 by BiFC assay in Arabidopsis protoplast. 

BAK1-nYFP and CNGC20-cYFP proteins were transiently co-expressed in protoplast. 

YFP signals were observed using a confocal microscopy. EV indicates the empty vector 

used as control. Bar=10µm. (E) Protein structure of CNGC20 to indicate CNGC20 N-

terminus and C-terminus. (F) Both N-terminus and C-terminus of CNGC20 (hereafter, 

CNGC20N and CNGC20C) interact with the juxtamembrane and cytosolic kinase 

domains of BAK1 (hereafter, BAK1JK) in Arabidopsis protoplast. BAK1JK-FLAG and 

CNGC20N-HA or CNGC20C-HA proteins were transiently co-expressed in Arabidopsis 

protoplasts. Protein extracts were immunoprecipitated with -FLAG agarose beads (IP: 

a-FLAG) and immunoblotted with a-HA antibody (IB: a-HA) (upper panel). The protein 

inputs are shown with immunoblotting before immunoprecipitation (lower two panels). 

(G) CNGC20N interacts with BAK1JK in vitro pull-down (PD) assay. GST or GST-

CNGC20N immobilized on glutathione Sepharose beads was incubated with MBP or 

MBP-BAK1JK-HA proteins. The beads were washed and pelleted for immunoblotting 

analysis with a-HA antibody (PD: GST; IB: a-HA) (upper panel). CBB staining of input 

proteins is shown on the bottom. (H) CNGC20C interacts with BAK1JK in vitro pull-

down (PD) assay. GST or GST-CNGC20N immobilized on glutathione Sepharose beads 

was incubated with MBP or MBP-BAK1JK-HA proteins. The beads were washed and 

pelleted for immunoblotting analysis with a-HA antibody (PD: GST; IB: a-HA) (upper 

panel). CBB staining of input proteins is shown on the bottom. (I) BAK1 interacts with 

CNGC20N in yeast two hybrid assay. The interaction between pAD-BAK1K and pBK-

CNGC20N was tested on SD-H-L-T supplemented with 1 mM 3-amino-1,2,4-triazole 

(3AT). Serial dilutions of the yeast colonies were plated.    
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Figure 19. The interaction between CNGC20 and BAK1. 

 (A) Full length BAK1 interacts with CNGC20N but not CNGC20C. The CNGC20N-

FLAG or CNGC20C-FLAG and BAK1-HA proteins were transiently co-expressed in 

Arabidopsis protoplast. Protein extracts were immunoprecipitated with a-FLAG 

antibody (IP: a-FLAG) and immunoblotted with a-HA antibody (IB: a-HA) (top panel). 

The protein inputs are shown with immunoblotting before immunoprecipitation (bottom 

two panels). (B) BAK1 kinase activity is required for the interaction with CNGC20C. 

GST or GST-CNGC20C immobilized on glutathione Sepharose beads was incubated 

with MBP, MBP-BAK1JK-HA or MBP-BAK1JKKM-HA proteins. The beads were 

washed and pelleted for immunoblotting analysis with a-HA antibody (PD: GST; IB: a-

HA) (top panel). CBB staining of input proteins is shown on the bottom. 

As BAK1 possesses strong kinase activity, it is reasonable to test 

phosphorylation event between BAK1 and CNGC20. In vitro kinase assay indicated that 

BAK1 directly phosphorylates both CNGC20N and CNGC20C (Fig. 20A& 20B), BAK1 

kinase mutant lost the capacity to phosphorylate CNGC20C (Fig. 20B), which is 

consistent with previous pull down assay (Fig. 19B). The phosphorylated CNGC20N 

and CNGC20C were further subjected for liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) analysis. We identified Ser156 and Ser184 as the 

phosphorylation sites by BAK1 at CNGC20N, while Thr560 and Ser618 were major 

phosphorylation sites by BAK1 at CNGC20C (Fig. 20C). The T560A did not affect the 
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phosphorylation by BAK1. Surprisingly, the T155/S156/S184/S185/A quadruple mutant 

of CNGC20N did not change the phosphorylation status by BAK1, while the 

T560/S617/S618/T619A quadruple mutant of CNGC20C significantly compromised 

phosphorylation by BAK1 (Fig. 20D & 20E). We hypothesize that CNGC20 activity 

may be negatively regulated by BAK1 via phosphorylation. To test the hypothesis, we 

transformed the phosphor-mimetic form of CNGC20 (T560/S617/S618/T619D), which 

resembles loss-of-function of CNGC20, into cngc20 mutant. The phosphor- mimetic 

form of CNGC20 did not restore the cell death as wild type CNGC20 did (Fig. 20F), 

suggesting that specific phosphorylation sites of CNGC20 by BAK1 are indispensable 

for its function in cell death control. 
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Figure 20. Phosphorylation of CNGC20C by BAK1 is essential for CNGC20’s 
function in bak1/serk4 cell death. 

(A) BAK1 phosphorylates CNGC20N. The in vitro kinase assay was performed 

by incubating MBP or MBP-BAK1JK as kinase with GST or GST-CNGC20N as 

substrate. The phosphorylation of CNGC20N by BAK1JK with autoradiography 

(upper panel). And the protein loading control was shown by Coomassie blue staining 

(lower panel).  (B) BAK1 phosphorylates CNGC20C. The in vitro kinase assay 

was performed by incubating MBP, MBP-BAK1JK or MBP-BAK1JKkm as kinase 

with GST or GST-CNGC20N as substrate. The phosphorylation of CNGC20C 

by BAK1JK with autoradiography (upper panel).  And the protein loading 

control was shown by Coomassie blue staining (lower panel). (C) LC-MS/MS 

analysis reveals that Thr560 and Ser618 of CNGC20C are phosphorylated 

by BAK1JK. (D) The T155A/S156A/S183A/S184A quadruple mutant of 

CNGC20N couldn’t block the phosphorylation by BAK1. The in vitro kinase assay 

was performed by incubating MBP-BAK1JK as kinase with GST, GST-CNGC20N or 

GST-CNGC20NQA as substrate. The phosphorylation was analyzed by 

autoradiography (upper panel).  And the protein loading control was shown by 

Coomassie blue staining (lower panel). (E) The T560A/S617A/S618A/T619A 

quadruple mutant of CNGC20C significantly compromised phosphorylation 

by BAK1JK. The in vitro kinase assay was performed by incubating MBP-BAK1JK as 

kinase with GST, GST-CNGC20C or GST-CNGC20CQA as substrate. The 

phosphorylation was analyzed by autoradiography (upper panel). And the protein 

loading control was shown by Coomassie blue staining (lower panel). (F) 

Complementation of the btl1 mutant with the CNGC20QD genomic fragment with an 

HA epitope tag at its C-terminus under the control of its native promoter restores 

growth defects by VIGS of BAK1/SERK4. CL#3 and CL#5 are two representative 

lines. Bar=5 mm.  
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The working model for CNGC in animals has been well established. Classical 

CNGC channels in animals exist as heterotetramers that are composed of A and B 

subunits. Several residues in human CNGC HCN have been shown to be important for 

inter-subunit interaction (Fig. 21B). The identified phosphorylation sites locate in C-

linker and CNBD, respectively (Fig. 21A & 21B). This is consistent with that C-

terminus of CNGC is important for its regulation and function. To test whether CNGC20 

functions similarly in animals, first we performed CoIP assay to determine whether 

CNGC20 forms dimer, FLAG-tagged CNGC20 could associate with HA-tagged 

CNGC20 in Arabidopsis protoplasts (Fig. 21C), indicating that CNGC20 could form 

dimer. Next we sought to address which domain of CNGC20 mediates dimerization by 

coIP assay in Arabidopsis protoplast, CNGC20C could associate with itself (Fig. 21D), 

suggesting that CNGC20 forms dimerization via its C terminus. This is consistent with 

crystal structure of human CNGC HCN which showed that tetrameric assemble is 

mediated by its soluble C-terminal domains (Cukkemane et al., 2011). Furthermore, we 

tested if phosphorylation mutant of CNGC20 affect CNGC20 dimerization, the coIP 

assay showed that T560/S617/S618/T619D mutant interfered with CNGC20 

dimerization (Fig. 21E). Consistently, the BiFC assay revealed that 

T560/S617/S618/T619D mutant exhibited weaker YFP signal compared with wild type 

CNGC20 (Fig. 21F), Taken together, CNGC20 homodimerizes through C-terminus and 

the phosphorylation by BAK1 affect the CNGC20 dimerization. 
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Figure 21. Phosphorylation of CNGC20 by BAK1 affects CNGC20 dimerization. 

(A) Linear protein scheme of CNGC20 to indicate the phosphorylation residues location. 

(CNGC20 N terminus: (1-205)aa; CNGC20 transmembrane domain:  (206-516)aa; C-

linker region: (517-592)aa; CNBD: (593-712)aa; CaMBD: (713-732)aa. The 

phosphorylation sites of CNG20 by BAK1 were shown as red arrows. (B) Amino acid 

alignment of partial C-linker region and CNBD domain among human CNGC protein 

HCN, Arabidopsis CNGC19 and CNGC20. The secondary structure for α-helix and β-

sheet are labled with letters. Red stars under the sequence indicate phosphorylation 

residues and the critical residues for interaction were indicated by a red rectangle.  

(C) Dimerization of CNGC20 in Arabidopsis protoplasts. CNGC20-FLAG and 

CNGC20-HA proteins were transiently co-expressed in protoplasts. Protein extracts 

were immunoprecipitated with α-FLAG agarose beads (IP: a-FLAG) 

and immunoblotted with a-HA antibody (IB: a-HA) (upper panel). The protein 

inputs are shown with immunoblotting before immunoprecipitation (lower two 

panels). (D) Dimerization of CNGC20 is mediated by CNGC20C. 

CNGC20C-FLAG and CNGC20C-HA proteins were transiently co-expressed in 

Arabidopsis protoplasts. Protein extracts were immunoprecipitated with α-FLAG 

agarose beads (IP: a-FLAG) and immunoblotted with a-HA antibody (IB: a-HA) (upper 

panel). The protein inputs are shown with immunoblotting before immunoprecipitation 

(lower two panels). (E) The T560D/S617D/S618D/T619D quadruple phosphor-

mimetic mutant displays weaker dimerization. CNGC20-FLAG, phosphor-mimetic 

from CNGC20QD-FLAG or phosphor-inactive form CNGC20QA-FLAG and CNGC20-

HA, CNGC20QD-HA or CNGC20QA-HA proteins were transiently co-expressed in 

Arabidopsis protoplasts, respectively. Protein extracts were immunoprecipitated with 

α-FLAG agarose beads (IP: a-FLAG) and immunoblotted with a-HA antibody (IB: 

a-HA) (upper panel). The protein inputs are shown with immunoblotting before 

immunoprecipitation (lower two panels). (F) Phosphor-inactive form of 

CNGC20 show weaker dimerization by BiFC assay. CNGC20-nYFP co-

expressed with CNGC20-cYFP, CNGC20QD-cYFP or EV-cYFP proteins in 

Arabidopsis protoplast. YFP signals were observed using a confocal microscopy. 

EV indicates the empty vector used as control. Bar=10µm. 
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We have identified stt3a as a suppressor of BAK1/SERK4-mediated cell death 

and CNGC20 is a membrane-resident protein. We hypothesize that CNGC20 may have 

N-glycosylation modification dependent on STT3a. First CNGC20 proteins when 

expressed in stt3a-2 migrated faster than that in WT (Fig. 22A), indicating that STT3a is 

required for CNGC20 glycosylation. Out of five potential N-glycosylation sites (Asn in 

Asn-X-Ser/Thr, where X is any amino acid except Pro), we mutate three sites to Gln 

(CNGC20 (N430/452/N455Q) and found that CNGC20 (N430/452/N455Q) showed a 

faster migration than WT CNGC20 when expressed in Arabidopsis protoplasts (Fig. 

22B), resembling the CNGC expression in stt3a (Fig. 22A).  Next we test the 

localization of CNGC20 and CNGC20 (N430/452/N455Q) in WT or CNGC20 in stt3a-2 

mutant. Interestingly, the CNGC20 (N430/452/455Q) protein exhibited similar 

accumulation in the endomembrane in WT compared with CNGC20 in stt3a-2 mutant, 

indicating that glycosylation modification of CNGC20 depends on STT3a is required for 

targeting to plasma membrane. To test whether CNGC20 glycosylation is required for 

cell death control, we transformed CNGC20 (N430/452/N455Q) under its native 

promoter into cngc20-1 mutant. Surprisingly, the CNGC20 (N430/452/N455Q) restores 

the cell death triggered by VIGS BAK1/SERK4, suggesting that the glycosylation 

modification of CNGC20 may not be required for its function in bak1/serk4 cell death 

control (Fig. 22C). 
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Figure 22. Glycosylation of CNGC20 by STT3a may not be required for CNGC20’s 

function in bak1/serk4 cell death. 

(A) The CNGC20 protein migrates faster in stt3a-2 mutant compared with in WT. 

Protoplasts from WT and stt3a-2 mutant were transfected with CNGC20-HA. The 

proteins were detected by immunoblot with -HA antibody. (B) The glycosylation 

mutant protein CNGC20 (N430/452/N455Q) migrates faster than WT CNGC20 protein. 

Protoplasts from WT were transfected with CNGC20-HA and CNGC20 

(N430/452/N455Q)-HA. The proteins were detected by immunoblot with -HA 

antibody. (C) The mutant CNGC20 (N430/452/455Q) protein exhibited similar 

accumulation in the endomembrane in WT compared with CNGC20 in stt3a-2 mutant. 

Protoplasts from WT or stt3a-2 were transfected with CNGC20-GFP or CNGC20 

(N430/452/455Q)-GFP. YFP signals were observed using a confocal microscopy. 

Bar=10uM (D) Complementation of the cngc20-1 mutant with glycosylation mutation 

form CNGC20 (N430/452/N455Q) with an HA epitope tag at its C-terminus under the 

control of its native promoter restores growth defects by VIGS of BAK1/SERK4. Bar=5 

mm. The CNGC20 proteins in transgenic plants were shown with a western blotting 

using an HA-HRP antibody (right panel).  
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Table 4. Primers used in this study. 

Cloning primers for VIGS analysis. 

Gene Forward Primer Reverse Primer 

BAK1 
5’-
CATGCCATGGGTATGGAGTCA
TGCTTCTTG-3’ 

5’-
GGGGTACCCTTGTCTGAACAT
TTCCTCC-3’ 

SERK4 
GGAATTCACAAAGATCACTCC
TTTGCT 

GGGGTACCATGCCATGGGTT
ATTGCTATAAAGCTCCA 

BIR1 
TTGGAATTCGCGGATCAGGCC
AACATAG 

TTGGGTACCGGGATAGGACC
AACGAGACG 

MEKK1 
CGGAATTCTCAGGGAAGTCA
GGCACAAG 

GGGGTACCGGCTTGAACGGG
TTCGAGAT 

Note: The restriction enzyme sites are underlined. 

Genotyping primers 

Mutant Left Primer (LP) Right Primer (RP) 

cngc1 

CAGCTCTGCAAGGATCAAA

C 

TAGAAATGAACACCGCGAAA

C 

cngc3 

AAATCAGAACCTTTAAGCG

GC 

TACCAAAGTTGAAAACCGTC

G 

cngc5 

GAGCTTTCTGGTTAAGCCG

TC 

CACGCTCCCTAAGATCTTGTG 

cngc6 

TCCAGGATATGTGCTGGTT

TC 

TCCGTTGATCCTCTCTTCTTG 

cngc7 

ACATGTACCAAAACGCTCC

AG 

AAATCCCAATACATAAGCGG

C 

cngc8 

AAGTTTGAGCCTGCTTTAG

GG 

ACTGGAGCGTTCTGGTACATG 
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Table 4. Continued 

cngc9 

ATTTGCAGCAAACTTTGAA

GC 

TGTTTATGGTGGGGACTTTAG 

cngc10 

CCTGTGCTCTACACCGAGA

AC 

AGCATTCTCCCTCAGGTTTTC 

cngc11 

TTTACAGTGGTTGAGGTGG

TG 

TTTACAGTGGTTGAGGTGGTG 

cngc12 

ATTGTTCCCTTCGTTTGTGT

G 

AAAGGGAGCTAGCTTACACG

C 

cngc13 

TGGATTTCAGAGGGAACAG

AG 

AGCCATCAAGTGTGTCACAT

G 

cngc14 

TAAGAATCCAAGTGGCCAC

AC 

TGTTTCACGTAAAGTCAAACC

C 

cngc15 

CAGTCAACAACAATGAGAC

TTG 

AAGTAGGTATATCAAGAATT

G 

cngc16 

TCAAATTCAAAACCGCTTT

TG 

CGTCTAACCTAGCAGTCGTCG 

cngc17 

CAGCAGCTTAGGTAATGGC

AG 

ATTGATTCAATCGCAGTGAG

G 

cngc19 

ATGCATAACTTCCACGAGC

AC 

CGCAAATCTCTTGAGATCTGG 

Mutant Left Primer (LP) Right Primer (RP) 
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Table 4. Continued 

cngc20-1 

AAAACAGTTACCTGGAAGC

CC 

TGCCTTTACACCACCTTTTTG 

cngc20-2 

GAATTTGGAAATGACGCTG

AG 

TATCTCCACGCCACTTGAATC 

SALK 

_013823C 

TTCAACATGCGAGTTTGTG

TC 

AAAATCACGGCATAACATTC

G 

SALK 

_087793C 

CAACATATCTATATACCAT

GG 

GACAAGCGATTCGATCACGT

G 

SALK 

_042821C 

GACAAGCGATTCGATCACG

TG 

AAAATCACGGCATAACATTC

G 

bak1-4 

CAGGGGCTATATGACCAAT

TG 

TCCTATCTCTCCTACACCGCC 

serk4-1 

TGGCTCAGAAGAAAACCAC

AG 

CTGCTCCACTTCTGTTTCCAC 

Note: The T-DNA left and right border primers were selected accordingly to each 

mutant. For SALK lines, LBb1.3 (ATTTTGCCGATTTCGGAAC); for SAIL lines, LB 

(GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC); for GABI line, LB 

(TAATAACGCTGCGGACATCTACA); and for WiscDsLox lines, LB 

(CGTCCGCAATGTGTTATTAAGTTG) was used respectively. 

Mutant Left Primer (LP) Right Primer (RP) 
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Table 4. Continued 

qRT-PCR primers 

Gene Forward Primer Reverse Primer 

PR1 

GGTTAGCGAGAAGGCTAACT

AC 

CATCCGAGTCTCACTGACTTT

C 

PR2 

GCATTCGCTGGATGTTTTG CTTCAACCACACCAGCTTGGA

C 

WRKY30 GCAGCTTGAGAGCAAGAATG AGCCAAATTTCCAAGAGGAT 

MYB15 CTTGGCAATAGATGGTCAGC TGAGTGTGCCATACGTTCTTG 

LOX4 GTACAACAAGCGTTAGAGAC TCGGGTCAAGAACAATATGG 

UBQ10 

AGATCCAGGACAAGGAAGGT

ATTC 

CGCAGGACCAAGTGAAGAGT

AG 

RT-PCR primers 

Gene Forward Primer Reverse Primer 

UBQ1 ACCGGCAAGACCATCACTC

T 

AGGCCTCAACTGGTTGCTGT 

CNGC19 

CATGCCATGGCTCACACTA

GGACTTTCACTTCC 

CCCAAGCTGACTCAAATATG 

CNGC20 

CATGCCATGGCTTCCCACA

ACGAAAAC 

GAAGGCCTAAGGCTATAACT

AGA CTGAGG 
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Table 4. Continued 

At1g60995 

P1 primer 

GCTCTAGACCATGGATCCG

GAGCAGACG 

At1g60995 

P2 primer 

CAACATATCTATATACCAT

GG 

At1g60995 

P3 primer 

GAAGGCCTGTTGCCAAAGCA

GGGATGCCG 

At1g60995 

P4 primer 

GAAGGCCTACCTTGACCAGC

AGAGTTCTG 

At1g60995 

P5 primer 

GAAGGCCTTCCGAAATGCGC

AGAACC 

At1g60995 

P6 primer 

GACAAGCGATTCGATCACGT

G 

CNGC1 

CAGCTCTGCAAGGATCAAA

C 

TAGAAATGAACACCGCGAAA

C 

Gene Forward Primer Reverse Primer 
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Table 4. Continued 

CNGC3 

AAATCAGAACCTTTAAGCG

GC 

TACCAAAGTTGAAAACCGTC

G 

CNGC5 

GATCGGACGTTCACTTGGT

T 

CACGCTCCCTAAGATCTTGTG 

CNGC6 

TCCAGGATATGTGCTGGTT

TC 

TCCGTTGATCCTCTCTTCTTG 

CNGC8 

CGGGATCCATGTCATCTAA

TGCTACGGGAATG  

GAAGGCCTGTTCAAGTCATCT

GTATCAAG 

CNGC9 

ATTTGCAGCAAACTTTGAA

GC 

TGTTTATGGTGGGGACTTTAG 

CNGC10 

CCTGTGCTCTACACCGAGA

AC 

CTAAGGGTCAGTTGTATGATT

G 

CNGC11 

CGGGATCCATGAATCTTCA

GAGGAGAAAATTTG 

GAAGGCCTCGCATAAATCGC

AGCACCTAAG 

CNGC12 

GCTCCTCGTTCTCAAGCAT

C 

TCCTACCTCAACCAGAACCG 

CNGC13 

TGGATTTCAGAGGGAACA

GAG 

CCCCAACGAATTTGCTTGTA 

CNGC14 

ATGGAGTTCAAGAGAGAC

AATAC 

GCTTCTGATTGATGGCAAGA 

Gene Forward Primer Reverse Primer 
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Table 4. Continued 

CNGC15 

CAGTCAACAACAATGAGA

CTTG 

AAGTAGGTATATCAAGAATT

G 

CNGC17 

TATGGGATCTTTGGGAATG

C 

ATTGATTCAATCGCAGTGAGG 

Cloning and point-mutation primers 

Gene Forward Primer Reverse Primer 

CNGC19 

CATGCCATGGCTCACACTA

GGACTTTCACTTCC 

GAAGGCCTACGGTTGGAATT

GGAGTGAGCAGT 

CNGC20 

CATGCCATGGCTTCCCACA

ACGAAAAC 

GAAGGCCTAAGGCTATAACT

AGA CTGAGG 

Promoter 

CNGC20 

CCGCTCGAGGTAAGTTCAT

TTCAGGTTTGGTTG 

CATGCCATGGTTCTTGACCAA

AATCACGGTTTC 

CNGC20N430

Q

CCTGGAAAGATCAAGCGA

GTGCCAATGCTTGTTTC 

GAAACAAGCATTGGCACTCG

CTTGATCTTTCCAGG 

CNGC20

N452/455/Q

CTATTTAAAAGCAGTCCAA

CTTACCCAACATTCTAATC

TCTTCAC 

GTGAAGAGATTAGAATGTTG

GGTAAGTTGGACTGCTTTTAA

ATAG 

CNGC20-

Nter 

CGGGATCCATGGCTTCCCA

CAACG 

GAAGGCCTAACCTCTTTGGCA

TGAGG 

Gene Forward Primer Reverse Primer 
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Table 4. Continued 

CNGC20-

Cter 

CGGGATCCATGGCTCTTGG

TAAAAGG 

GAAGGCCTAAGGCTATAACT

AGA CTGAGG 

At1g60995 

GCTCTAGACCATGGATCCG

GAGCAGACG 

GAAGGCCTATCAACTGAAAG

AGGATCATG 

Promoter 

At1g60995 

CGGAGCTCAGGACAAGGA

AGGTCTGATTC 

GCTCTAGAATTTCGGATCTCC

GATGC 

At1g60995-

Nter 

GCTCTAGACCATGGATCCG

GAGCAGACG 

GAAGGCCTACCTTGACCAGC

AGAGTTCTG 

Note: The restriction enzyme sites are underlined and the point mutation sites are 

underlined and in bold 

3.5 Discussion 

In the present study, we identified a suppressor of bak1/serk4 cell death via 

virus-induced gene silencing, an unbiased and efficient genetic screening on Arabidopsis 

T-DNA mutant collections. The suppressor carries a mutation in CNGC20 responsible 

for the suppression of bak1/serk4 cell death. Systematic examination of VIGS of 

BAK1/SERK4 in all the mutants of CNGC members indicates that only CNGC20 plays 

an important role in the regulation of bak1/serk4 cell death. Interestingly, BAK1 directly 

interacts with and phosphorylates membrane-resident CNGC20. Mass spectrometry and 

mutagenesis analysis revealed that specific phosphorylation sites of CNGC20 by BAK1 

are indispensable for its function in cell death control. 

CNGCs have emerged to play roles in a wide range of physiological processes, 

especially in programmed cell death processes. The mutant of CNGC2 or CNGC4 did 

Gene Forward Primer Reverse Primer 
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not display HR in response to different avirulent pathogens (Balague et al., 2003; Clough 

et al., 2000). The chimeric protein CNGC11/12 induces spontaneous cell death 

(Yoshioka et al., 2006). Our screen integrates CNGC20 to be a novel component of 

bak1/serk4 cell death signaling.  All these findings implies that activation of CNGCs 

may be indispensable for the cell death signal transduction. 

CoIP, BIFC and yeast two-hybrid assay all suggest BAK1 interacts with 

CNGC20. In addition, BAK1 phosphorylates CNGC20 in vitro. These data suggest that 

CNGC20 is a direct substrate of BAK1 and BAK1 suppresses cell death through 

inactivating CNGC20 activity by phosphorylation. The phosphorylation occurred at C 

terminus of CNGC20 was substantiated by Mass spectrometry and mutagenesis analysis. 

Consistent with our data, the free C terminus of CNGCs consists of C-linker, CNBD and 

CaMBD domains which are essential for the channel regulation and function. A genetic 

screen for cpr22 identified many important residues residing in the C terminus of 

CNGC11/12 which is identical with C-terminus of CNGC12 (Abdel-Hamid et al., 2013). 

In addition, CNGC20 possesses the longest N-terminus among all the CNGC members 

in Arabidopsis. The N-terminus of CNGC20 can also interact with BAK1 and can be 

phosphorylated by BAK1 in vitro, indicating it may have regulatory function.  

It has been well established that CNGCs forms heterotetromer to be fully 

functional in animal system. It is tempting to speculate that plant CNGCs apply similar 

mechanism to fulfill its biological function. In line with this hypothesis, we showed that 

CNGC20 associated with itself. Additionally, CNG17 also forms oligomers involving in 

PSKR-mediated signaling (Ladwig et al., 2015). More interestingly, the 
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T560/S617/S618/T619D quadruple phosphor-mimetic mutant displays weaker 

oligomerization, suggesting that BAK1 inhibits CNGC20 activity probably by affecting 

its oligomerization via phosphorylation (data not shown here).  

It is striking that CNGC20 is essential in the bak1/serk4 cell death control 

whereas the other CNGCs have negligible role, including CNGC19, the closest homolog 

of CNGC20. This suggests that CNGC20 may form homotetramer to be functional in 

cell death control, which is different with animal CNGC. However, we cannot rule out 

the possibility that CNGC20 function in other signaling pathways in CNGC20-CNGC19 

heterotetramer manner. It has been reported that both CNGC19 and CNGC20 are 

induced by salt stress (Kugler et al., 2009). In addition, in silicon analysis of CNGC20 

showed that CNGC20 exhibited highest expression at senescence stage which indicates 

that CNGC20 is indeed involved in cell death control 

(http://bbc.botany.utoronto.ca/efp/cgi-bin/efpWeb.cgi).  

Mounting studies showed that BAK1/SERK family are involved in multiple 

signaling networks, such as cell death control, plant innate immunity, BR-, PSKR- and 

EPF-triggered plant growth and development. How do the cell determine specificity of 

BAK1/SERK4? The discovery of bak1-5 mutant, which carries a mutation in the 

subdomain preceding the catalytic loop and has weak kinase activity, specially 

compromised plant innate immunity without affecting plant growth and cell death 

(Schwessinger et al., 2011). This suggests that phosphorylation events among receptor 

complex is one of mechanisms determining signaling specificity. In addition, the 

extensive genetic analysis of higher-order mutants of serks suggest that different SERK 

http://bbc.botany.utoronto.ca/efp/cgi-bin/efpWeb.cgi
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member has unequal genetic contributions to different biological processes (Meng et al., 

2015; Meng et al., 2016). It is possible that different combinatorial codes of individual 

SERK members determine functional specificity in different signaling pathways. 

Another hypothesis we would like to propose is that CNGCs may contribute to 

determine the signaling specificity. It is tempting to speculate that CNGCs may 

participate in diverse signaling by association with BAK1. The diversity of CNGCs in 

plants and the functional characterization of CNGCs provide another level of regulation 

of signaling specificity. For example, CNGC17 functions together with BAK1 regulating 

PSKR signaling (Ladwig et al., 2015). Pep1 induced Ca2+ elevation via CNGC2 and 

PEPR1 recruited BAK1 to initiate the DAMP-triggered immunity signaling (Qi et al., 

2010). Consistent with this hypothesis, our data showed that BAK1 function together 

with CNGC20 to regulate bak1/serk4 cell death. More importantly, cngc20 did not 

suppress bak1 deficiency in flg22 and BR signaling, reinforcing that the signaling 

pathway of BAK1/SERK4-regualted cell death is uncoupled from their functions in 

flg22-triggered immunity and BR-mediated development. Future studies will be focused 

on to determine channel specificity for CNGC20 and which type of ions contributes to 

bak1/serk4 cell death. More importantly, structure of CNGC20-BAK1 will provide 

insights for the mechanism how BAK1 regulates CNGC20 activity. 

The activation of CNGC channel is initiated by binding cyclic nucleotide, 

including cAMP or cGMP. Further research will be needed to address whether cAMP or 

cGMP is elevated in the bak1/serk4 mutant and further activates CNGC20 channel to 

induce cell death.  
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4 CONCLUSION  

We identified two suppressors of bak1/serk4 cell death on the basis of virus-

induced gene silencing (VIGS) screen of Arabidopsis T-DNA insertion mutant 

collections. The successful application of VIGS of BAK1/SERK4 phenocopies 

bak1/serk4 cell death, providing an alternative way to study the bak1/serk4 cell death. 

This method is helpful for the genetic lethal mutant examination. Compared with 

conventional genetic screening, such as EMS screening, T-DNA activation-tagging 

screening, VIGS is more efficient. We can get suppressors in one generation. 

Furthermore, the T-DNA library is sequence-indexed, we can easily know the gene 

identity once we get the suppressor, although the phenotype may not be linked with the 

annotated gene sometimes, like in the CNGC20 case. Continuing screening will uncover 

more novel components involved in bak1/serk4 cell death pathway.  

STT3a-mediated N-glycosylation and specific endoplasmic reticulum (ER) 

quality control (ERQC) components are essential to activate bak1serk4 cell death. 

Genome-wide transcriptional analysis revealed the activation of members of cysteine-

rich receptor-like kinase (CRK) genes in the bak1serk4 mutant. Furthermore, the CRK4-

induced cell death depends on STT3a-mediated protein N-glycosylation, suggesting that 

CRK4 as one of STT3a client proteins activates cell death in the bak1serk4 mutant. 

However, the crk4 mutant did not suppress bak1/serk4 cell death. This may be due to 

functional redundancy among CRKs. Silencing of BAK1/SERK4 in higher-order of crk 

mutants may provide insights for CRKs involvement in bak1/serk4 cell death.  
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In addition, our genetic screen revealed that CNGC20 plays an important role in 

bak1/serk4 cell death. Interestingly, in vivo and in vitro assays indicated that BAK1 

directly interacts with and phosphorylates membrane-resident CNGCs. Mass 

spectrometry and mutagenesis analysis revealed that specific phosphorylation sites of 

CNGC by BAK1 are indispensable for its function in cell death control. 

As an important regulator involved in various processes in plant growth and 

development, the shoot apical meristem (SAM) growth of bak1serk4 almost completely 

ceased one-week after germination (He et al., 2007). It is tempting to speculate that the 

seedling lethality in bak1/serk4 might be caused by growth and development defects at 

the early stage of growth. Future detailed examination of the potential role of BAK1 and 

SREK4 in the SAM development may provide novel insights on the mechanism of plant 

cell death control. It is also possible that bak1serk4 may activate cell death signaling 

governed by a novel RLK which may directly sense death signature. Identification of 

death signature and corresponding RLK will broaden our understanding of plant cell 

death signaling.  

In conclusion, our findings unravel novel components and provide mechanistic 

insights in plant cell death regulation. 
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