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ABSTRACT

This dissertation is constituted of three essays addressing operational issues be-

longing to two research domains including (i) Logistics and Supply Chain Manage-

ment for Currency Supply Network and (ii) Facility Location and Capacity Optimiza-

tion for Food Supply Chains. Minimum cost flow network model and mixed integer

programming model (linear and nonlinear) are developed to analyze and optimize

supply chains of banknotes, coins, and foods. Approaches developed are general and

can easily be applied to other categories of supply chains under different settings

around the world with appropriate modifications.

The first domain comprises two essays with different scopes and objectives, in

which two unique monetary supply chains with distinctive operations and govern-

mental regulations are analyzed from both supply-side and demand-side perspectives.

In the first essay, in order to improve the efficiency of the central bank’s currency

network in a large country, currency vaults are upgraded by expanding their capac-

ities, and the sourcing of the updated currency network is optimized. This is the

first study that analyzes a country’s overall currency network’s operations from the

supply-side perspective.

In the same domain, the second essay presents general models for analyzing the

operational issues in the U.S. Coin Supply Chain. As the first study to view the U.S.

Coin Supply Chain as a closed-loop/reverse supply chain, it investigates the supply

chain from both supply-side and demand-side perspectives to increase efficiency and

effectiveness in ordering, producing, packaging, distributing and managing inventory

of coins. This essay provides efficient methods and guidelines for effectively managing

the supply chain that can be implemented in practice.
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Belonging to the second domain, the third essay optimizes a food supply chain

to assure food safety and provides suggestions to government agencies and private

companies concerning where to locate new irradiation facilities with appropriate ca-

pacities strategically, how to source the demand of U.S. hubs from the supply of

Mexican growing regions through irradiation facilities tactically, and how to effi-

ciently transport fresh fruits imported from Mexico to the U.S. operationally.
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1. INTRODUCTION

Supply chain management attracts unabated interests because of its high com-

plexity and crucial impact on society. Obtaining the highest efficiency from supply

chains requires thorough analysis and delicate design using operations management

techniques. This dissertation is constituted of three essays addressing operational

issues belonging to two research domains including (i) Logistics and Supply Chain

Management for Currency Supply Network and (ii) Facility Location and Capacity

Optimization for Food Supply Chains. Minimum cost flow network model and mixed

integer programming model (linear and nonlinear) are developed to analyze and op-

timize supply chains of banknotes, coins, and foods for addressing operational issues

of ordering, production, sourcing, distribution, transportation, forecasting, facility

location, capacity planning, and inventory management.

Currency plays an essential role in commerce and trade. The operational prob-

lems in the currency supply chain can be classified into three different sectors (Geis-

mar et al. 2016): (i) the supply-side, i.e., the parties who are in charge of supplying

currency in the supply chain (the central bank system), (ii) the demand-side, i.e.,

the parties who request the currency (depository institutions and commercial/ indi-

vidual customers), and (iii) the third-party logistics providers. Research in the oper-

ations management focuses on the management of banknotes from the demand-side

perspective, whereas very few studies consider the supply-side operational problem.

The first domain comprises two essays analyzing a large country’s currency supply

network from the supply-side perspective and the U.S. Coin Supply Chain from both

supply-side and demand-side perspectives.

In the first essay, the effort was devoted to analyzing the supply-side problem of
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how to efficiently and effectively provide currency services to all financial institutions

within a large country’s central bank’s currency supply network. Through its network

of big vaults, regional vaults, and retail vaults, the central bank in this country

provides currency to all branches which serve consumers and commerce. The two

available managerial levers involve network and service design: choosing a subset of

vaults to have their capacities increased (i.e., to be upgraded, a strategic problem)

and changing each vault’s or branch’s source vault(s) from which it receives currency

(a tactical problem). An optimization model and a heuristic algorithm are developed

to efficiently select a few retail vaults to upgrade. To optimize the sourcing within the

new currency network, a minimum cost flow network model is proposed to efficiently

reduce the transportation cost further. This essay contributes to the literature by

optimizing a currency supply chain from the supply-side perspective, which is new

and has not been studied before in practice.

There are two types of physical currency circulated in the economy: banknotes

and coins. Compared to banknotes, coins seem to be undervalued by the public

because of their low-value denominations. However, the sustained growth of annual

new coins production and circulating coins in the public’s hands shows that the coin

consumption in the U.S. remains strong. In today’s high-technology world, it may

be surprising that the new coin production at the U.S. Mint for circulation has been

increasing steadily since FY 2007 (GAO 2013). In the meantime, the amount of

coins in circulation has also risen rapidly in recent decades. In the U.S. Coin Supply

Chain, the Federal Reserve System plays a crucial role as the central planner and

provides banking services to depository institutions and the public. Although most

consumer products are distributed in one direction, coins are recirculated/reused

through the economy bi-directionally. The second essay models the coin supply chain

as a closed-loop supply chain from both supply-side and demand-side perspectives to
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develop an optimal operating policy for increasing efficiency in ordering, producing,

packaging, distributing and managing inventory of coins. The supply-side consists

of parties (the U.S. Mint and the Federal Reserve System) in charge of supplying

coins to the economy, whereas the demand-side parties (depository institutions and

commercial/individual customers) request coins. From the supply-side perspective,

the operations of Federal Reserve System are analyzed and improved by developing

optimization models to minimize the total cost for the supply chain and to devise

an efficient rolling horizon procedure and a robust planning approach for effective

handling of the demand uncertainty. From the demand-side perspective, the cur-

rency supply planning problem of depository institutions is also investigated in the

theoretical settings for improving their operational efficiency. The complexity of the

demand-side problem under special context is also investigated. Both the supply-

side problem and the demand-side problem are formulated as optimization problems

using minimum cost flow network models with multi-products (coins of different

denominations) and operational constraints. An extensive computational study is

performed to answer managerially relevant questions in the context of improving the

efficiency of the supply chain by strengthening the effectiveness of the coin supply

operations and reducing the coin related cost of depository institutions.

The amount of fresh produce crossing the U.S. / Mexico border has increased ex-

ponentially since the implementation of the North American Free Trade Agreement

in 1994: over $7.7 billion in fruits and vegetables are imported from Mexico to the

U.S. each year (USDA 2015b). Imported fresh produce must be treated for pesti-

lence and microbial pathogen contamination. This requirement protects the health

of those who consume the produce and the viability of domestic crops that could be

infested by pests or infected by those pathogens. Among various technologies, irra-

diation is favored by the U.S. Department of Agriculture. Electron beam irradiation
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is relatively new and has many advantages outweighing other irradiation technolo-

gies. The third essay, belonging to the second domain aims to increase food safety

by providing guidelines for private industry in the U.S. and Mexico for selecting the

most cost-efficient locations for the electron beam facilities specifically designed for

phytosanitary treatment of fresh fruits and vegetables crossing the Texas/Mexico

border. Specifically, a generalizable decision support system is developed for deter-

mining the optimum number of Electron beam facilities, their capacities, and their

locations. This system also selects the optimal assignment for each truckload of fresh

fruit from Mexican growing regions to the Electron beam facilities, and then to the

U.S. hubs for distribution. In addition to the standard components of a cost function

(transportation, operations, capacity, and building), the cost minimization objective

in the nonlinear mathematical model takes into account the time spent waiting at the

border crossing (exogenous) and the time lost because of congestion at the Electron

beam facilities (endogenous) by using queuing approximations.

This dissertation relates to research areas such as facility location-allocation,

scheduling, inventory management, and logistics and transportation optimization.

It aims at shedding light on the operational issues to improve the efficiency and

effectiveness of currency and food supply chains. This dissertation makes several

contributions to the operations and supply chain management literature. The first

essay is the first study to analyze the operations of a currency supply chain from the

supply-side perspective, i.e., the distribution problem for providing currency services

throughout a country. The second essay is the first study addressing operational

issues within the Coin Supply Chain from both supply-side and demand-side per-

spectives. The third essay provides an effective importing and distribution planning

tool that integrates multiple decisions for selecting sites for phytosanitary facilities

along the Texas/Mexico border by considering new food safety technology and key
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economic factors that signal local growth and development. Overall, this dissertation

contributes to the literature and provides valuable managerial insights to government

agencies and private companies by analyzing untouched research problems and de-

veloping efficient and effective planning tools from multiple operational perspectives.

Methodologies used in this dissertation are general enough to be applied to other cat-

egories of supply chains under different settings around the world with appropriate

modifications.

The remainder of this dissertation is structured as follows. Chapter 2 presents

methods to optimize a large country’s currency supply network for its central bank.

Chapter 3 presents a framework for analyzing both supply-side and demand-side

problems in the Coin Supply Chain. Chapter 4 explores where to locate Electron

beam facilities and how to optimally decide their capacities for food safety. Chapter

5 briefly concludes this dissertation.
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2. OPTIMIZING LOGISTICS OPERATIONS IN A COUNTRY’S CURRENCY

SUPPLY NETWORK

2.1 Introduction

We analyze the problem of providing currency services to all financial institutions

within a large (top ten by GDP) country. The country’s central bank (CB) manages

currency delivery and retrieval services to all financial institutions’ branches through

a hierarchical network of vaults. Our objective is to minimize the cost for providing

these services. The two available managerial levers involve network and service de-

sign: choosing a small subset of vaults to have their capacities increased (i.e., to be

upgraded, a strategic problem) and changing each vault’s or branch’s source vault(s)

from which it receives currency (a tactical problem). Optimizing the currency supply

chain from the supplier’s perspective is new to academic research and has not been

analyzed in practice. Our approach has the potential to be applied to many other

currency supply chains around the world, with appropriate modifications.

A major factor in the astounding growth in the financial services industry over the

past sixty-five years (its share of corporate income in the U.S. doubled from 10% in

1947 to 20% in 2012 (Soltas 2013)) has been information technology, including wire

transfers, electronic payment mechanisms (e.g., credit cards, debit cards, and online

transactions), and electronic data interchange. Despite this, the financial service

that is most important to the smooth functioning of day-to-day life for the majority

of people is the distribution of currency. Currency is still the most widely used

consumer payment mechanism worldwide. In many developing countries, especially

in the rural areas, people only accept currency as the payment method.

The value of currency in circulation has been increasing in most countries. In
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the U.S., the total face value of currency in circulation increased 87% from $601.2

billion in 1999 to $1127.1 billion in 2012 (Federal Reserve System 2013). Meanwhile,

in Europe, despite a short period of decline in 2001, the value of euros in circulation

increased from e 341 billion in 1999 to e 864 billion in 2012, a 153% jump (European

Central Bank 2013). The amounts in developing countries are increasing at higher

rates than in developed ones, partially due to higher inflation rates. For example, in

China, the total value of currency in circulation has more than quadrupled from 1345

billion CNY in 1999 to 5465 billion CNY in 2012 (The People’s Bank of China 2013).

In Russia, the increase was an almost unbelievable 2316% during the past 13 years

(Bank of Russia 2013). We next discuss the key players and the nature of demand

in the currency network, the logistics network required to satisfy the demand, how

changing the network will reduce the transportation cost, and the goals of this study.

2.1.1 Players in the Currency Network

The CB provides currency services to retail customers (both commercial and

individual) through a supply chain with a standard arborescent structure, though

the flows are less traditional. At one end of the chain are a small number of large

vaults, and at the other are a large number of small bank branches. See Figure 2.1.

The CB’s ten big vaults distribute currency over the entire country through 129

regional vaults and over 1000 retail vaults to serve the country’s commercial banks’

over 22,000 branches. The big vaults also collect and destroy the unfit currency.

The key services that the CB provides are to ship currency to wherever it is needed,

to store it securely, and to sort currency by its fitness for recirculation (fit-sorting).

The CB has a significant interest in reducing its transportation cost, but it does not

compromise service levels when increasing efficiency.

The CB has specified capacity thresholds that separate the classes of vaults, and
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Figure 2.1: Currency Supply Chain Structure for This Country.
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each class has its particular security protocols. Each location in the network is

currently assigned a single supplier. The branches can be supplied by any type of

vault; retail vaults can be supplied by big and regional vaults; regional vaults can

be supplied by big vaults or other regional vaults; big vaults can only be supplied

by other big vaults or by the central bank’s main office. Retail customers’ demands

are satisfied only by branches. Thus, this supply chain is hierarchical, but the flows

are not necessarily so. This distinguishes this environment by greatly increasing the

number of potential delivery routes and, hence, the problem’s complexity. Figure 2.2

illustrates the transaction types between entities in this country’s currency supply

network.

Figure 2.2: Currency Network Flows for This Country.
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Since big and regional vaults act as aggregation points within the network, it

is cost-effective for them to have high-speed (and high-cost) currency processing

equipment to provide counting and fit-sorting services to the retail vaults and the

branches. The resulting large quantities of cash imply that big and regional vaults

have high levels of both security and insurance. In contrast, less-secure retail vaults
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have much less insurance and relatively small currency storage capacity. Each branch

uses the same trip to deposit all currency received from customers to its supplier

(who either fit-sorts it or forwards it to a vault that will do so) and to withdraw an

appropriate amount to meet its retail customers’ demands from the same supplier.

Since retail vaults and branches have no capability for fit-sorting, for storage, or

for subsequent recirculation, they are fully dependent on big or regional vaults for

currency services.

The variety of flow directions has led to the classification and analysis of currency

supply chains as closed-loop supply chains (Rajamani et al. 2006). However, the

remanufacturing (fit-sorting) that is needed to recirculate currency happens at many

regional vaults across the CB’s network, rather than at one centralized location, as is

done in most closed-loop supply chains. This exemplifies a responsive reverse supply

chain that returns products to customers quickly (Guide et al. 2006). Previous

studies of responsive reverse supply chains (e.g., Guide et al. 2005, Guide et al. 2008,

Tagaras and C. Zikopoulos 2008) consider those that evaluate the quality of returns

at collection facilities before sending them to a central location to be remanufactured,

if appropriate. Ours goes beyond that by allowing for distributed remanufacturing

(regional vaults remanufacture / fit-sort banknotes within the distribution process) so

that banknotes are returned to the economy sooner. The reduction in transportation

cost (no round-trip to the central location) compensates for the equipment purchase

and the loss in economies of scale, though this loss is minor because fit-sorting has a

near-constant return to scale (Bohn et al. 2001). This rapid return also allows there

to be fewer banknotes in circulation without degrading service.

Additionally, Blackburn et al. (2004) and Guide et al. (2006) recommend such

a structure when the marginal value of time (industry clock-speed or interest rates)

is high or the proportion of high-quality returns is large. All previous studies of
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responsive reverse supply chains consider those that have a high marginal value of

time (e.g., Guide et al. 2005, Guide et al. 2008, Tagaras and C. Zikopoulos 2008).

This condition does not apply to currency (except in cases of high inflation), but

the proportion of fit used banknotes is approximately 75%. Hence, the motivating

features of this responsive reverse supply chain are new to academic research.

2.1.2 The Logistics Network

Currency travels within the CB’s currency network using three transportation

modes:

• Intermodal (IM) transportation is done by airplane, allowing larger order sizes

(maximum of $2.75 million per airplane) over longer distances. The total ship-

ment cost has three components: a fixed cost for use of the airplane, a cost per

mile flown, and an insurance cost that is a percentage of the value shipped.

This transportation mode is mainly used to supply vaults, either big, regional,

or retail. In addition, IM transportation is also used to supply a few branches

in remote areas that are not accessible by road.

• Interurban (IU) transportation is done by truck over distances larger than 50

miles and allows order sizes that are approximately 60% of IM’s (maximum of

$1.75 million per truck). Compare to the fixed cost of IM transportation, the

cost of sending a truck is trivial, which is not considered in IU transportation.

The total shipment cost has two components: a cost per mile driven and an

insurance cost that is a percentage of the value shipped. This transportation

mode is used to supply regional and retail vaults, in addition to branches.

• Urban (U) transportation is done by truck over distances shorter than 50 miles

and allows order sizes that are approximately 25% of IM’s. The total shipment

cost has two components: a fixed cost per stop and a percentage of the value
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shipped. The CB wants to create more regional vaults because this could in-

crease the number of branches that are served by U transportation. This mode

is more economical because the fixed cost per stop is low. This transportation

mode is used only for supplying branches.

(U.S. Dollar amounts are used throughout to aid readers’ intuition. The currency of

the country being studied is kept confidential at the CB’s request.)

Each trip with IM or IU transportation visits only one destination for supplying

either a branch or a vault. Additionally, order sizes are assumed to depend not

only on the transportation mode used, but also on the type of location being served.

These modeling assumptions match the CB’s current processes.

Figure 2.3: Current Situation and Proposed Situation with New Regional Vault.
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Upgrading a retail vault can reduce the transportation cost by changing the trans-

portation mode used to supply nearby branches. For instance, Figure 2.3 compares

the current process for supplying branches in a particular area to the process with a

new (upgraded) regional vault in that area. In these figures, the squares labeled S1,

S2, S3, and S4 are existing big or regional vaults, whereas the square labeled RV is

an existing retail vault serving two nearby branches and is a candidate for upgrade.

Circles are branches that must be served by the vaults in the region. Figure 2.3(a)
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shows how these branches are currently supplied. Due to vault RV ’s insufficient

capacity, it cannot supply branches 1, 2, 3, and 4, so they are served by vaults S4,

S4, S2, and S3, respectively. Branch 3 is served by S2 via IM transportation, while

branches 1, 2, and 4 are supplied through IU transportation.

If the capacity of RV is increased by upgrading it to regional vault status, then

it will be able to serve branches 1, 2, 3, and 4. Branch 1 will still use interurban

transportation, but branches 2, 3, and 4 will be served by urban transportation. See

Figure 2.3(b). This scenario saves on the transportation cost but suffers an upgrade

cost. This combination often results in net savings.

2.1.3 This Study’s Goals

Since the CB seeks to increase the efficiency of its currency supply services, its

mission is to reduce distribution costs by making the sourcing for all parties in the

supply chain more efficient. This process will change the required capacities of most,

if not all, vaults. Thus, some current retail vaults may have their capacities increased

so that they are reclassified as regional vaults for security purposes. To analyze this

complex facility location and transportation problem, in which each facility’s capac-

ity is a decision variable and there are a variety of available flows (both forward and

backward), we decompose it into two subproblems: (i) Sourcing of bank branches

for each state (or region) with possible upgrading of some retail vaults to regional

vaults (downstream Problem 1) and (ii) Sourcing for the regional vaults in the entire

resulting currency network (upstream Problem 2). We provide an analytical method

for reducing the total cost by solving these two subproblems separately and quanti-

fying the expected savings. More specifically, this paper’s purpose is to answer the

following questions:

1. Is there a robust selection of vaults to be upgraded in each region of the country,
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i.e., a selection that would be effective over all typical, practical values of the

demand for currency services that vaults may face, and over all reasonable cost

structures for the CB?

2. What is the transportation cost saving of these upgrades for the CB?

3. What is the cost saving realized by allowing regional vaults to be supplied from

multiple sources?

The outline of this paper follows. In Section 2.2, closely related studies are re-

viewed. Section 2.3 states the assumptions and proves that the problem is NP-hard.

Therefore, we develop a mixed integer programming (MIP) model and a heuristic to

solve Problem 1. Section 2.4 solves Problem 2 by developing a model to determine

the optimal sourcing for all the regional vaults based on their net currency posi-

tions. Section 2.5 presents computational results for both Problem 1 and Problem 2.

Discussion and conclusions are in Section 2.6.

2.2 Literature Review

First, we review studies for facility location problems. Next, related literature

regarding transportation (intermodal transportation and multimodal transportation)

is reviewed. Then, studies of currency supply chains from the demand side are

discussed. Lastly, we briefly review inventory-location studies.

Discrete facility location problems have been extensively studied in the literature

because of their theoretical interest and their importance in industry. There are four

general formulations for deciding the location of facilities and allocating demand to

them (Mirchandani and Francis 1990): the p-median problem, the uncapacitated fa-

cility location problem (UFLP), the p-center problem, and the quadratic assignment

problem (QAP). All are NP-hard. Hakimi (1964) introduces the p-median problem,

which became the minimum location-allocation problem (Kariv and Hakimi 1979b).
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The p-median problem is used to locate p facilities relative to n customers such that

the sum of the shortest demand-weighted distances between customers and facilities

is minimized. Although the UFLP has a similar goal of locating facilities in order

to minimize the demand-weighted distance, the UFLP contains costs for opening

facilities and has no upper bound on the number of facilities that should be opened.

The p-center problem is very similar to the p-median problem, except its objective is

to minimize the maximum distance between any vertex and its nearest facility. The

QAP minimizes the demand-weighted flow multiplied by the distance; it uses more

information concerning flow and cost than the p-median problem does. Although the

QAP is more realistic, it is theoretically harder to solve than the p-median problem,

so it is not commonly studied in the literature.

The p-median problem is most similar to ours. Three primary types of heuristics—

Greedy, Alternating, and Vertex Substitution—are the most widely used techniques

for solving the p-median problem. Branch-and-bound, dual ascent, subgradient op-

timization, and surrogate relaxation techniques have been studied for solving the

problem’s IP formulation. Metaheuristics for approximate search algorithms cur-

rently dominate the research on the p-median problem; these include Genetic Algo-

rithms, Hybrid Heuristic, Heuristic Concentration, Variable Neighborhood Search,

Tabu Search, and Simulated Annealing Networks (Reese 2005).

The structure of our problem is different from the p-median problem in that we

also include a fixed operating cost incurred for upgrading a vault and an incremen-

tal cost for each unit of capacity added to a vault. Moreover, there are different

transportation modes, and each has its own maximum batch size. These new fea-

tures imply that we cannot use the traditional approaches applied to the p-median

problem to formulate and solve this specific facility location problem.

The integration of transportation and logistics systems continues to increase the
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complexity of efficient transportation. Studies of intermodal transportation (South-

worth and Peterson 2000, Macharis and Bontekoning 2004, Janic 2007) and multi-

modal transportation (Rondinelli and Berry 2000, Van Nes 2002) address this prob-

lem. Intermodal and multimodal transportation integrate two or more modes (air,

land, or sea). Similarly, currency traverses several segments as it moves from big

vaults to branches, and each segment requires its own mode selection. However, our

paper has some unique features that distinguish it from others. First, we consider

two types of road transportation (IU or U), which, to our knowledge, has not been

discussed in the literature. We also have the constraint that each location has its

own load size limits for each mode, which affects the selection of retail vaults to be

upgraded and the resulting sourcing.

There are only a few papers that address optimizing currency supply chains.

Rajamani et al. (2006) analyze the United States’ currency supply chain within

the framework of closed-loop supply chains and describe the Federal Reserve’s new

currency circulation policies. Hatzakis et al. (2010) provide an excellent review of

research on operations in financial services. Geismar et al. (2007), Mehrotra et al.

(2010), and Zhu et al. (2011) develop models to manage depository institutions’

inventory and logistics under the U.S. Federal Reserve’s new guidelines. These are

considered demand-side studies because they address problems from the perspective

of depository institutions. In contrast, this study address issues from the supply-side

perspective considering the CB’s supply operations. Our literature review suggests

that this supply-side problem is new to academic research and that it has not been

analyzed in practice. This paper demonstrates a modeling approach that not only

analyzes a specific country’s currency supply chain, but also has the potential to

be applied to a variety of similar currency supply chains around the world, with

appropriate modifications to suit the individual needs of each country.
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Inventory-location models are another important stream of research related to

location selection. Significant papers on this topic include Nozick and Turnquist

(1998, 2001a, 2001b), Daskin et al. (2002), Shen et al. (2003), Yao et al. (2010) and

Tancrez et al. (2012). We do not analyze these deeply because inventory cost is not

a concern in the supply of currency. Because it all belongs to the CB (a non-profit

public entity) as it flows through the network and because the CB considers only

storage cost (no opportunity cost), the holding cost is constant and, thus, not a

factor.

2.3 Problem 1

The currency supply from vaults to bank branches in each region (Problem 1)

can be viewed as a Hub-and-Spoke transportation system (See Figure 2.3).

Figure 2.4: Currency Network for Problem 1.
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Problem 1 determines the most efficient sourcing for each bank branch in a re-

gion. In doing so, it also selects retail vault locations to be upgraded so that the

sum of the incremental operating cost of the new regional vaults, the total trans-

portation cost, and the incremental capacity cost at all vaults is minimized. Here,

the incremental operating cost is the extra operational expenditure (e.g., additional

labor and security costs) required by regional vaults. The incremental capacity cost

is for extra insurance and additional facility space, including its construction, which

is amortized. The data obtained from the CB include the geographical currency

16



network, branches’ demands for currency services, the list of retail vaults that are

candidates for upgrading, and the cost structures. Since upgrading retail vaults is

the focus of this problem, we only consider currency flows between branches and

vaults. See Figure 2.4. The upstream problem of supplying the vaults is addressed

by Problem 2 (Section 2.4).

2.3.1 Model Assumptions

The service design decision to upgrade a retail vault into a regional vault has

long-term implications since it often involves acquiring real estate and constructing

larger facilities. Thus, seasonal variations in the demand are ignored. We, therefore,

propose a single-period model, where a period is one month.

Demand Assumptions: The aggregated monthly demand for currency services

from branches fluctuates significantly. Our baseline is the maximum monthly with-

drawals and the maximum monthly deposits over a 12-month interval. Other values

are used for sensitivity analysis in Subsection 2.5.2.

Capacity Assumptions: A vault’s required capacity is highly correlated with its

total monthly withdrawals. We, therefore, define the capacity of a vault as h times its

total withdrawals per month, where h is a constant. The CB’s risk of not satisfying

demand weighs much more than the cost of holding too much currency inventory,

so it adjusts the value of h to avoid stockouts. If a retail vault’s computed required

capacity exceeds a threshold limit cℓ (this value is specified by the CB), then it will

be upgraded to a new regional vault.

We assume that big vaults have unlimited capacities.

Transportation Distance and Cost Assumptions: The actual land distances

between all supply and demand nodes are not available and are expensive to obtain.

Because we consider 7,000 facilities, about 25 million different pairs exist. In order
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to have a more manageable distance database, we base the distance calculation not

on pairs of facilities, but on pairs of cities (recall that urban transportation does

not charge per distance traveled). Furthermore, we only consider pairs of cities that

belong to the same state or to neighboring states. The only exceptions are the cities

containing the big vaults because the CB will occasionally ship currency from one

big vault to another. Thus, a database containing no more than 4.5 million pairs of

cities was enough to satisfy the CB’s needs.

A mathematical formula based on latitude and longitude is used to compute the

linear air distance between any two locations. We compute the average ratio of

land/air for a sample by using known land distances obtained with Google Maps.

Most land distances in our database are estimates, based on air distances and this

multiplication factor. In general, road distances are best estimated as 1.30 times the

air distances. For locations suggested by the model for upgrading, we recommend

that all relevant distances be verified and any discrepancies be updated manually,

then the model is rerun.

2.3.2 The MIP Model

Rather than using the distances explicitly in the mixed integer programming

(MIP) formulation for Problem 1, we first compute the potential transportation

cost for the entire period gij for each vault-branch pair (i, j). Clearly, this requires

determining the best mode to use for each such pair. If the truck distance be-

tween i and j is no more than 50 miles, then U transportation is used, and the

per unit of currency transportation cost for this pair is gij = Dj

(
fu
lUj

+ cu

)
. (A

summary of the notation for the MIP can be found in Table 2.1 and Table 2.2.)

Otherwise, either IU or U transportation is used, depending on which mode is more

cost-effective. In this case, the monthly transportation cost for the pair per unit
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of currency is gij = Dj min
{

fa
lIMj

+ 2 ba
lIMj

daij + ca, 2 bt
lIUj

dtij + ct

}
. (A formulation that

determines transportation mode within the MIP is presented in Appendix A.1.) For

implementation purposes, we let R be the subset of retail vaults that are candidates

for upgrade. (The list for set R for each region is given by the CB.)

Table 2.1: Parameters Used to Formulate Problem 1.

M br The number of branches in the region.
MB The number of big vaults in the region.
Mrv The number of regional vaults in the region.
N The number of retail vaults in the region.
Nv Total number of vaults: Nv = MB +Mrv +N .
R The subset of retail vaults that are candidates for upgrade.

D+
j Withdrawal per period at branch j, j = 1, . . . ,M br.

Dj Maximum amount of currency per period transported between branch j and its sup-
pliers. Dj = max{D+

j , D
−
j } (D−

j is deposit per period at branch j).

dtij The distance between vault i and branch j by land, i = 1, . . . , Nv, j = 1, . . . ,M br.
daij The distance between vault i and branch j by air, i = 1, . . . , Nv, j = 1, . . . ,M br.

lIMj The load size limit for branch j via intermodal (IM) mode, j = 1, . . . ,M br.
lIUj The load size limit for branch j via interurban (IU) mode, j = 1, . . . ,M br.
lUj The average per stop load size for sending cash to branch j via urban (U) mode,

j = 1, . . . ,M br.
Fi The per period amortized operating cost of a new regional vault at location i, i =

1, . . . , Nv. Set Fi = 0, i = 1, . . . ,MB +Mrv.
co The per unit cost of acquiring additional capacity for a vault.
fa The fixed costs of transporting one airplane load in intermodal (IM) mode.
fu The per stop fixed costs of transporting currency in urban (U) mode.
ba The per mile transportation costs of one airplane load via intermodal (IM) mode.
bt The per mile transportation costs of one truck load via interurban (IU) mode.
ca The insurance costs (per $) of transporting by airplane via intermodal (IM) mode.
ct The insurance costs (per $) of transporting by truck via interurban (IU) mode.
cu The insurance costs (per $) of transporting by truck via urban (U) mode.
gij The total transportation cost between vault i, i = 1, . . . , Nv and branch j, j =

1, . . . ,M br.
Ce

i The existing capacity (per period) of vault i, i = 1, . . . , Nv.
h The ratio of a vault’s capacity to its monthly withdrawals.
cℓ The capacity limit for a retail vault. If the capacity of a retail vault exceeds cℓ, then

it becomes a regional vault.
J The capacity limit for regional vaults. The value of J is given by the CB.

Problem 1:

Minimize Φ1 =
∑
i∈R

Fiyi +
Nv∑
i=1

Mbr∑
j=1

gijxij + co
Nv∑
i=1

Ca
i

Subject to
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Table 2.2: Variables Used to Formulate Problem 1.

yi If yi = 1, i ∈ R, then retail vault i is upgraded to a new regional vault. If yi = 0,
then retail vault i is still open as a retail vault. We set yi = 0 for i ̸∈ R, including
big and existing regional vaults.

xij If xij = 1, then the demand of branch j, j = 1, . . . ,M br, is assigned to vault i,
i = 1, . . . , Nv. Otherwise, xij = 0.

Cp
i The new capacity of vault i, i = 1, . . . , Nv.

Ca
i The capacity added to vault i.

Nv∑
i=1

xij = 1, j = 1, 2, . . . ,M br (2.1)

Cp
i ≥ h

Mbr∑
j=1

xijD
+
j , i = 1, 2, . . . , Nv (2.2)

Cp
i ≤ Jyi + cℓ (1− yi), i ∈ R (2.3)

Cp
i ≤ J, i = MB + 1, . . . ,MB +M rv (2.4)

Ca
i ≥ Cp

i − Ce
i , i = 1, . . . , Nv (2.5)

Cp
i , C

a
i ≥ 0, i = 1, 2, . . . , Nv, j = 1, 2, . . . ,M br (2.6)

yi, xij ∈ {0, 1}, i = 1, 2, . . . , Nv, j = 1, 2, . . . ,M br (2.7)

The objective function minimizes the total per period cost, which consists of

the operating cost for new regional vaults, the per period transportation cost for

supplying branches, and the incremental capacity cost for all vaults. Constraints (2.1)

ensure that every branch has exactly one supplier vault. Constraints (2.2) compute

the new capacity for all the vaults (big, regional, and retail) based on the new

allocation of branches. Constraints (2.3) require that a retail vault becomes a new

regional vault if its new capacity exceeds cℓ. Constraints (2.4) ensure that regional

vaults’ capacities do not exceed J . Constraints (2.5) calculate the added capacity

for each vault. Constraints (2.6)-(2.7) are nonnegativity and binary constraints.

Theorem 1 The decision problem corresponding to Problem 1 is strongly NP-complete.
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Proof: We use the 3-Satisfiability (3SAT) problem (Garey and Johnson 1979) for

our reduction. The details are given in Appendix A.2.

Remark The single period model presented for Problem 1 may specify fractional

plane loads or partial truckloads, which are not economical and, hence, are not used.

Instead, much like the process used when the standard EOQ model specifies a non-

integer number of orders per year, here full planes or full trucks are dispatched as

they are needed. Our MIP calculates one period’s contribution to the total cost of

this process.

Remark Because all currency flowing through the network belongs to the CB until

it is delivered to a branch, and because the CB considers only storage cost and not

opportunity cost, the inventory carrying cost is constant. Thus, we need not consider

it in the cost minimization.

We now consider whether some special cases for Problem 1 can be solved poly-

nomially. We call these special cases with r specified retail vaults to be upgraded

Problem P1 and prove that Problem P1 is NP-complete in the ordinary sense for any

r ≥ 0.

Theorem 2 The decision problem corresponding to Problem P1 with two specified

retail vaults to be upgraded is NP-complete in the ordinary sense.

Proof: We use the Partition problem for our reduction with details provided in

Appendix A.3.

Theorem 3 The decision problem corresponding to Problem P1 in which no vaults

may be upgraded is NP-complete in the ordinary sense.

Proof: The construction of the decision probelm in the proof of Theorem 2 can

easily be modified to prove this result.

The following corollary follows naturally from these two theorems.

21



Corollary 1 The decision problem corresponding to Problem P1 with r specified re-

tail vaults to be upgraded is NP-complete in the ordinary sense for any r ≥ 0.

2.3.3 Approach to Solve Problem 1

Sequential Upgrades Heuristic (SUH)

Set Λi = ∅, for all i ∈ R

For each branch j /* get current configuration */

Let Sj be the original supplier of branch j

Set Rj = Sj

Add j to ΛRj

Next j

For each retail vault i ∈ R

For each branch j /* assign j to i if doing so reduces cost */

If gij < gRjj Then

Remove j from ΛRj

Add j to Λi

Set Rj = i

Next j

Next i

For each retail vault i ∈ R

If h
∑

j∈Λi
D+

j ≤ cℓ Then /* added demand does not cause upgrade of i */

Assign all elements of Λi to i: xij = 1,∀j ∈ Λi

Else

If the total transportation savings from assigning the branches in Λi to i would

exceed Fi + co[h
∑

j∈Λi
D+

j − Ce
i ] Then

Upgrade vault i to regional status

Assign the branches in Λi to i: xij = 1, ∀j ∈ Λi

Else /* Do not upgrade, but reassign some branches */

Renumber the elements of Λi as 1, . . . , |Λi|

Define η as the element of {1, . . . , |Λi|} for which

h
∑η

j=1
D+

j ≤ cℓ < h
∑η+1

j=1
D+

j

Assign the first η of the branches in Λi to i: xij = 1, for j = 1, . . . η

Assign branches j = η + 1, . . . |Λi| in Λi to their original supplier: xSjj = 1

Exit If

Exit If

Next i
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SUH is a polynomial time heuristic with complexity O(M br|R|). The SUH solu-

tion is compared to the MIP solution to evaluate its performance in Section 2.5.2.2.

Experimental tests confirm that SUH can generate acceptable transportation savings

and upgrade the correct retail vaults.

2.4 Problem 2

Having solved our strategic network design problem, we now consider the tactical

problem of sourcing the regional vaults. In the CB’s somewhat counterintuitive

terminology, a regional vault that receives more in deposits than in withdrawals

during a certain period is said to be net negative; otherwise, it is said to be net

positive. We assume that big vaults always have enough cash to supply regional

vaults and that net positive regional vaults can be supplied by either big vaults or

net negative regional vaults. After the demand from net positive regional vaults

is satisfied for the period, net negative regional vaults send their excess cash (if

any) back to big vaults. The pertinent flows in this currency network are shown in

Figure 2.5.

Since the road condition is poor between some pairs of vaults, a few net positive

regional vaults cannot get cash directly from the closest big vault or net negative

regional vault. This situation is modeled by assigning a very large number for the

distance between any two vaults whose connecting road is in poor condition. If in

addition other nearby net negative regional vaults have the insufficient surplus, then

big or other regional vaults may send cash through the nearby net negative regional

vaults to supply those net positive regional vaults. Thus, a net negative regional

vault may satisfy a net positive vault’s demand with currency it received from a big

vault or another net negative regional vault.

A single-period model is also proposed for Problem 2. As before, a period is
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Figure 2.5: Currency Network for Problem 2.
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one month. The objective for Problem 2 is to optimize the sourcing in the currency

network so that the total transportation cost for supplying all regional vaults is

minimized. The following algorithm achieves this objective effectively and accurately.

Step 1 allows the problem to be solved without first solving Problem 1. This is

required because solutions to Problem 1 have not been implemented for all states

of the country. Step 1 is omitted for states in which the solution of Problem 1 has

been implemented. Step 3 is performed by a MIP (described in Appendix A.4) and

a minimum cost flow formulation (described in Section 2.4.1).

Algorithm: Top-Down

• Step 1: Use a geographical software package to divide the whole country into

small areas so that there is only one big or regional vault in each area and that

each boundary is equidistant from the two big or regional vaults it separates.

The big vault or regional vault is automatically selected as the supplier of all

retail vaults and branches in its area (see Figure 2.6).

• Step 2: Aggregate the maximum monthly demands for services from branches

in each area to define the net position for each regional vault.

• Step 3: Based on the net position of in each regional vault, complete the

optimal sourcing by minimizing the total transportation cost.

The CB’s current contracts with three transportation companies state that each

vault can be supplied by only one vault. The MIP models this situation for the whole
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Figure 2.6: Example: Area Partition.
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country’s currency network. Our improved model uses a minimum cost flow (MCF)

model that allows multiple suppliers for each vault and thereby reduces the CB’s

cost. Comparing these two models quantifies the value of changing the transportation

contracts so that the CB can be fully informed when entering negotiations with its

carriers. Additionally, MCF can be solved in polynomial time. In both models,

the transportation modes for sourcing regional vaults can be intermodal (IM) or

interurban (IU). Urban transportation is not considered in this problem because of

the large quantities of cash and the long distance between any two vaults (big or

regional). Distances are captured in the same way as in Problem 1.

Remark Just like Problem 1, Problem 2 is a single period model whose solution may

include partial loads (truck or plane). As before, full planes or full trucks are dis-

patched as soon as they are needed. Our solution calculates one period’s contribution

to the total cost.

Remark We have calculated each regional vault’s net position based on each branch’s

maximum monthly demand. This planning problem could be solved for each month

individually, based on forecasted demand, to update the sourcing more frequently.
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2.4.1 MCF Model

We now formulate a minimum cost flow (MCF) problem on a network to optimize

sourcing for all regional vaults. Additional notation used to formulate the MCF

model is in Table 2.3. See Appendix A.5 for the detailed IP formulation of the MCF

model. The unit cost on arc (m,n) connecting any two nodes representing vaults

m and n is cmn = min{2 bt
Qt
dtmn + ct,

1
Qa

(fa + 2bad
a
mn) + ca}, which chooses the less

expensive transportation mode between IU and IM.

Table 2.3: Additional Notation Used to Formulate Problem 2 in the MCF Model:
Parameters.

S−
j The amount of maximum monthly surplus (deposits minus withdrawals) in

million dollars per period of net negative regional vault j.
S+
k The amount of maximum monthly deficit (withdrawals minus deposits) in

million dollars per period of net positive regional vault k.
Qa Capacity of one airplane, by value of currency.
Qt Capacity of one truck, by value of currency.

We first describe the construction of the network model and then illustrate it

with an example. We start with one node for each big or regional vault, then add a

source node O and a sink node S, plus duplicate nodes for the big vaults to represent

their receipt of excess cash from net negative regional vaults. Because big vaults are

assumed to have infinite capacities, they could supply all regional vaults, if needed. A

net negative regional vault can supply a net positive regional vault either by using its

cash inventory or by being the transition node between either a big vault or another

net negative regional vault and the net positive regional vault. We now describe each

arc with its lower bound, upper bound, and unit cost for the flow on that arc. An

example is shown in Figure 2.7.

• An arc from source node O to node Bi, where Bi represents a big vault. The

lower bound, upper bound and unit cost of this arc are 0,
∑

k S
+
k , and 0.
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• An arc from source node O to node Nj, where Nj represents a net negative

regional vault. This arc represents the surplus at the net negative regional

vault Nj. The lower bound, upper bound and unit cost of this arc are S−
j , S

−
j ,

and 0.

• An arc from node Bi to node Pk, where Pk represents a net positive regional

vault. The lower bound, upper bound and unit cost of this arc are 0, S+
k ,

and cik = min{2 bt
Qt
dtik + ct,

1
Qa

(fa + 2bad
a
ik) + ca}, which is the unit cost for

transporting cash from big vault i to net positive regional vault k.

• An arc from node Nj to node Pk. The lower bound, upper bound and unit cost

of this arc are 0, S+
k , and cjk = min{2 bt

Qt
dtjk + ct,

1
Qa

(fa + 2bad
a
jk) + ca}, which

is the unit cost for transporting cash from net negative regional vault j to net

positive regional vault k.

• An arc from node Bi to node Nj. The lower bound, upper bound and unit cost

of this arc are 0, min{J,∑k S
+
k }, and cij = min{2 bt

Qt
dtij+ct,

1
Qa

(fa+2bad
a
ij)+ca},

which is the unit cost for transporting cash from big vault i to net negative

regional vault j. Recall that J is the capacity limit for regional vaults.

• An arc from node Nj to node Nl. The lower bound, upper bound and unit cost

of this arc are 0, min{J,∑k S
+
k }, and cjl = min{2 bt

Qt
dtjl+ct,

1
Qa

(fa+2bad
a
jl)+ca},

which is the unit cost for transporting cash from net negative vault j to net

negative regional vault l.

• An arc from node Nj to node B′
i. The lower bound, upper bound and unit cost

of this arc are 0, S−
j , and cji = min{2 bt

Qt
dtji + ct,

1
Qa

(fa + 2bad
a
ji) + ca}, which

is the unit cost for transporting excess cash from net negative vault j to big

vault i.
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• An arc from node Pk to sink node S. The lower bound, upper bound and unit

cost of this arc are S+
k , S

+
k , and 0. These bounds enforce Pk’s deficit.

• An arc from node B′
i to sink node S. The lower bound, upper bound and unit

cost of this arc are 0,
∑

k S
−
k , and 0.

Figure 2.7: Example for the MCF Model [lmn: Lower Bound; umn: Upper Bound;
cmn: Unit Cost].
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Example: There are 2 big vaults, 2 net negative regional vaults, and 2 net positive

regional vaults. In this example, we let S+
1 , S

+
2 , S

−
1 , and S−

2 be 15, 20, 5 and 10,

respectively (Figure 2.7).

For clarity, we assume that the cost structure makes it more economical for net

negative regional vault 2 to be supplied by big vault 1 and for net negative regional

vault 1 to be supplied by big vault 2. Additionally, net negative regional vaults 1

and 2 can supply each other. Consider the following five different types of feasible

flows:

• Type 1: Big vault 1 or 2 is the only source for supplying net positive regional

vaults. The net negative vaults return all of their cash to a big vault:

– 15 units of flow move with sequence: O → B1 → P1 → S.
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– 20 units of flow move with sequence: O → B1 → P2 → S.

– 5 units of flow move with sequence: O → N1 → B′
2 → S.

– 10 units of flow move with sequence: O → N2 → B′
1 → S.

• Type 2: All units of flow S−
j from the net negative regional vaults go to

the same net positive regional vault. The other net positive regional vault is

supplied by a big vault:

– 5 units of flow move with sequence: O → N1 → P1 → S.

– 10 units of flow move with sequence: O → N2 → P1 → S.

– 20 units of flow move with sequence: O → B1 → P2 → S.

• Type 3: One net positive regional vault is supplied by a big vault and a net

negative regional vault while another net negative vault sends its surplus back

to a big vault. The other net positive regional vault is supplied by a big vault:

– 5 units of flow move with sequence: O → B1 → P1 → S.

– 10 units of flow move with sequence: O → N2 → P1 → S.

– 20 units of flow move with sequence: O → B2 → P2 → S.

– 5 units of flow move with sequence: O → N1 → B′
2 → S.

• Type 4: Net negative regional vaults are supplied by big vaults, which then

supply net positive regional vaults. This flow may happen when there is no

road between big vaults and net positive regional vaults and the distance and

demand do not justify IM transportation. This flow also indicates that the

surplus at net negative regional vaults is not enough to satisfy the demand

from net positive regional vaults:

– 5 units of flow move with sequence: O → B1 → N2 → P1 → S.
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– 10 units of flow move with sequence: O → N2 → P1 → S.

– 15 units of flow move with sequence: O → B2 → N1 → P2 → S.

– 5 units of flow move with sequence: O → N1 → P2 → S.

• Type 5: One net negative regional vault supplies the other, which then supplies

a net positive regional vault. This flow path happens because there is no road

between N1 and P1, N2 has only 10 units of surplus, and no big vault supplies

P1.

– 5 units of flow move with sequence: O → N1 → N2 → P1 → S.

– 10 units of flow move with sequence: O → N2 → P1 → S.

– 20 units of flow move with sequence: O → B2 → P2 → S.

Clearly, solving the minimum cost flow problem constructed above is equivalent

to optimizing the sourcing for Problem 2. Since all deposits and withdrawals in

MCF are scaled as integers and all flows in the network have integer capacity, each

feasible integer flow corresponds to a feasible sourcing for the currency network and

vice versa.

2.5 Model Results and Validation

Our computational results provide insights for managers regarding increasing the

number of regional vaults and changing the sourcing policy. We first briefly describe

the primary objectives of our computational experiments.

2.5.1 Objectives of the Study

For Problem 1:

1. To test the effectiveness of the model solution for practical-sized problems.

2. To perform sensitivity analysis on the model solution.
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For Problem 2:

1. To calculate the savings that the CB can realize by negotiating appropriate

contracts with its transportation companies according to the solution given for

Problem 2.

2. To measure the robustness of the MCF model solution under demand varia-

tions.

The MIP and MCF models were solved with CPLEX (version 12.4) on a Dell

desktop with 2.66GHz CPU, 4.00GB of RAM, and 64-bit operating system. We use

both data obtained directly from the CB and data randomly generated based on

parameters from the CB’s data.

2.5.2 Validation and Computational Study for Problem 1

To validate our MIP model for Problem 1, we first use the results for one unique

state that has less-developed roads. This state represents the worst case with the

most inefficient sourcing for branches and the highest attention from the CB. We

collected the complete branch-level data for this state to quantify the potential sav-

ings from employing our model (Section 2.5.2.1). Section 2.5.2.2 uses ten randomly

generated data sets to test the performance of the heuristic (SUH) and the MIP

model.

2.5.2.1 Validation of One State

This state has 3 big vaults (BV: #1-3), 29 regional vaults (RGV: #4-32), 5 retail

vaults (RTV: #33-37), and 130 branches. All five retail vaults are candidates to be

upgraded to regional status. If a retail vault’s capacity exceeds the threshold pro-

vided by the CB (cℓ = $40 million), it becomes a new regional vault. Big vaults and

regional vaults’ existing capacities are given by FiServ, a consulting firm (engaged
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by the CB) that aided our research. FiServ also recommended the assumption that

the five candidate retail vaults have zero capacity before upgrading. After studying

the correlation between existing storage capacity and the maximum monthly with-

drawals, we chose h = 2 to calculate each vault’s required capacity. For computing

the transportation cost, we use 1.3 ∗ air distance as the land distance. The baseline

costs used to calculate the savings for Problem 1 were generated by FiServ, who esti-

mated these costs by considering only the actual transportation cost incurred before

the upgrades.

Our model selects retail vaults #33, #35, and #37 to be upgraded to new regional

vaults, while the other two retail vaults (#34 and #36) remain open and function

normally by serving branches (CPLEX solved the MIP in 4.51 seconds). These

remaining retail vaults’ capacities increase, but since they do not become regional

vaults, the costs of their upgrades are small. Additionally, the capacities of two

previously existing regional vaults are expanded to accommodate increases in the

number of branches allocated to them. The resulting minimum capacity for each

vault in this state is listed in Table 2.4.

The total cost calculated by the MIP model for this state is $1.563 million, in-

cluding the operating costs for new regional vaults, the transportation costs for

satisfying the maximum demand from branches, and the incremental capacity costs

for the vaults. The transportation costs are 94% of the total cost, with IU trans-

portation cost being 86% of the total transportation cost. FiServ confirms that after

upgrading three retail vaults, the MIP model would generate actual savings of about

$2 million, or 57.65%, compared to the original total cost observed by FiServ.

Observe how these savings occur by considering the ten branches that would

be served by new regional vault #35. Originally, other regional vaults supplied

five of these by intermodal (IM) transportation and the other five by interurban (IU)
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Table 2.4: The Minimum Required Capacity of Vaults (in Million Dollars) [BV: Big
Vaults. RGV: Regional Vaults. RTV: Retail Vaults]. Numbers in Parentheses are
the Regional/Retail Vaults’ Original Capacities Given By FiServ.

Vault No. Capacity Capacity Capacity Capacity
of BV of RGV of New RGV of RTV

1 480
2 400
3 415
4 130
5 397.5(130)
6 97.5
7 20
8 15
9 45
10 20
11 20
12 42.5
13 20
14 20
15 55
16 22.5(45)
17 25
18 65
19 27.5
20 62.5
21 55
22 81.3(40)
23 47.5
24 35
25 12.5
26 22.5
27 27.5
28 27.5
29 15
30 20
31 32.5
32 32.5
33 50(0)
34 33(0)
35 60.4(0)
36 36.1(0)
37 111.7(0)

transportation. However, after the upgrade, vault #35 supplies eight of the branches

with interurban (IU) transportation and two with urban (U) transportation.

To perform sensitivity analysis, we first vary the demand without changing the

upper bound on the retail vaults’ capacities. The different values for demand are

the average monthly demand, the maximum monthly demand, and the midpoint of

these two values. Then, we vary both the demand and the capacity upper bound
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cℓ. We also test the sensitivity of the selection of new regional vaults to the fixed

upgrading cost.

Table 2.5 illustrates that the number of retail vaults upgraded in an optimal

solution is indeed sensitive to demand. However, the objective values should not

be misinterpreted to suggest that annual costs would be less with fewer upgraded

vaults. We saw previously that transportation costs are over 90% of the total, so

upgrading the number of retail vaults recommended under maximum demand is the

best policy because it provides the flexibility to serve all possible demand profiles.

Should the cost force upgrades to be spread over several periods, this analysis shows

the preferred order for the upgrades.

Table 2.5: Sensitivity Analysis for Demand with h = 2, cℓ = $40 Million and
Fi=$0.022 Million.

Demand Type New RGV Obj. Value ($M)
Ave. D. + Ave. W. 37 1.015
Mid. D. + Mid. W. 33, 37 1.300
Max. D. + Max. W. 33, 35, 37 1.563

Table 2.6: Sensitivity Analysis for Both Demand and cℓ ($M) with h = 2 and
Fi = $0.022 Million.

Demand Type cℓ ($M) Total Cost ($M) New RGV
30 1.035 33,37
35 1.022 37
40 1.015 37

Ave. D. + Ave. W. 45 1.015 37
50 1.015 37
30 1.301 33,35,37
35 1.301 33,35,37
40 1.298 33,37

Mid. D. + Mid. W. 45 1.283 37
50 1.278 37
30 1.585 33,34,35,36,37
35 1.575 33,35,36,37
40 1.564 33,35,37

Max. D. + Max. W. 45 1.564 33,35,37
50 1.549 37
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The upper bound on retail vaults’ capacity cℓ is another factor that significantly

affects the model’s results. The sensitivity analysis in Table 2.6 illustrates that

$40 million is a reasonable value for cℓ because it puts the number of new regional

vaults within the limit (no more than three new regional vaults in each region) that

the CB requires. In addition, the total cost and the number of new regional vaults

decrease as cℓ increases, which indicates that the annual fixed operating cost Fi plays

an important role in selecting the number of retail vaults to upgrade (Fi = $0.022

million are provided by the CB). This is confirmed in Table 2.7 and Table 2.8, which

show that the number of retail vaults upgraded is sensitive to Fi (its actual value

is $0.022 million). Table 2.7 and Table 2.8 also demonstrate that with maximum

demand (deposits and withdrawals), h = 2, and cℓ = $40 million, even if there

is no upgrading cost, retail vault #36 should never be upgraded and retail vaults

#37, #33, #35 are first three to be upgraded. In addition, Table 2.8 indicates that,

as expected, the number of upgraded (new) regional vaults increases as the cost of

upgrading Fi decreases and as cℓ decreases, even if both are changed concurrently.

Table 2.7: Sensitivity Analysis for Fi ($M) with Maximum Demand, h = 2 and
cℓ = $40 Million.

Annual Oper. Cost (Fi) Total Cost ($M) New RGV
0.05 1.593 37
0.035 1.583 33, 37
0.022 1.563 33, 35, 37
0.015 1.554 33, 35, 37
0.005 1.538 33, 35, 37
0.001 1.532 33, 34, 35, 37
0 1.531 33, 34, 35, 37

Examining the total cost when only one retail vault is upgraded (Table 2.9) also

demonstrates that retail vault #36 should never be upgraded when using maximum

demand, h = 2 and cℓ = $40 million: the total cost in this case is higher than the

baseline cost. In general, if the total cost after upgrading a particular retail vault is
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Table 2.8: Sensitivity Analysis for both Fi ($M) and cℓ ($M) with Maximum Demand
and h = 2.

Annual Oper. Cost New RGV New RGV New RGV
(Fi) with cℓ = 30 with cℓ = 40 with cℓ = 50
0.05 33, 37 37 37
0.035 33, 35, 37 33, 37 37
0.022 33, 34, 35, 36, 37 33, 35, 37 37
0.015 33, 34, 35, 36, 37 33, 35, 37 33, 37
0.005 33, 34, 35, 36, 37 33, 35, 37 33, 35, 37
0.001 33, 34, 35, 36, 37 33, 34, 35, 37 33, 35, 37
0 33, 34, 35, 36, 37 33, 34, 35, 37 33, 34, 35, 37

higher than the baseline total cost with no upgrade, then this retail vault will never

be upgraded in an optimal solution. Additionally, Table 2.9 verifies that if the CB

is limited to upgrading only one retail vault at a time, then the order of upgrading

these vaults is #37, #33, #35, #34.

Table 2.9: Upgrading Candidates Analysis with Maximum Demand, h = 2 and
cℓ = $40 Million.

Condition Cost ($M)
Total Oper. Trans. IU Trans. U Trans. Add’l Capacity

No 1.795 0 1.737 1.539 0.198 0.058
Upgrading
Upgrade 1.579 0.011 1.508 1.303 0.205 0.060
37 Only
Upgrade 1.682 0.011 1.611 1.411 0.200 0.060
33 Only
Upgrade 1.757 0.011 1.688 1.488 0.200 0.058
35 Only
Upgrade 1.775 0.011 1.705 1.505 0.200 0.059
34 Only
Upgrade 1.804 0.011 1.735 1.538 0.199 0.058
36 Only

2.5.2.2 Performance Test of Sequential Upgrades Heuristic (SUH) and the MIP

Model

We test the robustness of the heuristic solution of SUH and the optimal solution

of the MIP model with ten sets of simulated data. The distance and demand values
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are randomly generated from uniform distributions based on the real data. These

data sets are two to four times the size of the real data set to test computational

efficiency. We use the same values as before for all the parameters.

The total costs and the percentage differences between the MIP and SUH are

reported in Table 2.10. Because no baseline cost for the simulated data can be

furnished by observation, we calculated it by running the MIP with no upgrading of

retail vaults for each randomly generated data set. Thus, we are comparing optimal

sourcing with no upgrades to optimal sourcing with upgrades. The resulting saving

from the MIP model averages 7.39%. This percentage is significantly less than that

achieved for the real data because in practice the sourcing without upgrades (the

baseline) was not optimized. The average percentage increase in cost from using

SUH rather than the MIP is 2.64%, which is reasonably small and acceptable.

Table 2.10: Total Cost (in Million Dollars) and Percentage of Saving Differences be-
tween the MIP model and SUH for Upgrading Retail Vaults for Randomly Generated
Data.

ID Baseline Cost w/ Upgrade Cost w/ % Increase
Cost Upgrades Savings Upgrades in Cost
(Base) (MIP) (Base vs. MIP) (SUH) (MIP vs. SUH)

1 6.28 5.92 5.73% 6.03 1.86%
2 6.65 6.28 5.56% 6.32 0.64%
3 9.68 8.70 10.12% 9.13 4.94%
4 7.14 6.59 7.70% 6.81 3.34%
5 5.61 5.07 9.63% 5.24 3.35%
6 7.90 7.32 7.34% 7.45 1.78%
7 7.44 7.02 5.65% 7.23 2.99%
8 10.26 9.46 7.80% 9.69 2.43%
9 8.18 7.80 4.65% 7.98 2.31%
10 11.04 9.97 9.69% 10.25 2.81%

AVE 8.018 7.413 7.39% 7.613 2.64%

In addition, both the MIP model and the SUH upgrade the same retail vaults to

new regional vaults for all ten randomly generated data sets. Therefore, the numerical

experiments demonstrate that SUH can solve Problem 1 to a near-optimal solution

in polynomial time. Since Problem 1 is NP-hard, SUH becomes more attractive as

the size of the data set becomes larger.
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2.5.3 Computational Study for Problem 2: MIP and MCF Models

We consider the country’s complete currency network for this problem: 10 big

vaults (#1-10), 45 net negative regional vaults (#11-55) and 84 net positive regional

vaults (#56-139). In addition to modeling the current situation by a MIP model,

we test an alternative transportation contract structure with an MCF model. As

in Problem 1, we first use the maximum monthly demand to test the MIP and

MCF models. Then we vary demand to perform sensitivity analysis to measure the

robustness of our MCF model.

CPLEX (version 12.4) is unable to solve the MIP model developed for the whole

country in Appendix A.4 to optimality before exhausting memory. We obtained a

near optimal solution by relaxing some binary variables to be continuous between 0

and 1. This result provides a lower bound that we use to evaluate the MCF model.

This lower bound on the total transportation cost when each regional vault has a

unique supplier is $30.025 million, including the cost for sending excess cash back

from net negative regional vaults to big vaults ($8.325 million), the cost for satisfying

the demand for net positive regional vaults ($20.16 million), and the cost for sending

cash to net negative regional vaults ($1.54 million) to eventually satisfy the demand

from net positive regional vaults. More than 90% of the transportation cost comes

from the IU mode.

The MCF model results are qualitatively different from those of the MIP model.

No net negative regional vault is supplied by big vaults, and none has excess currency

to send back to a big vault. Net negative regional vaults do supply each other, and

net positive regional vaults are supplied by both big vaults and net negative regional

vaults. In the optimal sourcing, we have Type 1 flows (e.g., net positive regional vault

#118 is only supplied by big vault #1), Type 2 flows (e.g., net positive regional vault
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#139 is supplied by big vault #6 and net negative regional vault #35), and Type

5 flows (e.g., net negative regional vault #49 is supplied by net negative regional

vault #34 and uses that to satisfy the demand from net positive regional vault

#96). However, Type 3 and Type 4 flows are not in the optimal solution in this

currency network because there is no flow between net negative regional vaults and

big vaults. The optimal sourcing obtained from the MCF model is given in Table A.8

in Appendix A.6.

The total transportation cost for the MCF model is $20.566 million, almost all of

which is the cost for satisfying the demand for net positive regional vaults ($19.348

million). Hence, the majority of the savings over the sole sourcing model comes from

removing transportation between big vaults and net negative regional vaults. The

transportation mode selection is similar to that of the MIP model: more than 90%

of the transportation cost comes from the IU mode. The cost comparison for the

MIP model and the MCF model is shown in Table 2.11: the MCF model saves 31.5%

from the MIP model.

Table 2.11: Cost Comparison (in Million Dollars) for Optimizing Sourcing in Problem
2 [BV: Big Vaults. RGV-P: Net Positive Regional Vaults. RGV-N: Net Negative
Regional Vaults].

Cost Type MIP Model Cost MCF Model Cost
Total Transportation Cost 30.025 20.566
Transportation Cost to BV 8.325 0

Transportation Cost to RGV-P 20.160 19.348
Transportation Cost to RGV-N 1.540 1.218

To test the robustness of our MCF model, we first find optimal sourcing schemes

for several demand profiles. Then we use the sourcing that is optimal for one demand

profile to supply a different demand profile. The cost when using a mismatched

sourcing scheme is compared to the optimum for this demand. This difference shows

the cost of a poor forecast or of not updating the sourcing scheme month-to-month.
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Table A.9 and Table A.10 in Appendix A.6 illustrate the optimal sourcing ob-

tained from the MCF model for the midpoint demand and the average demand,

respectively. For the midpoint demand, four net negative regional vaults and twelve

net positive regional vaults (total of 12.4% of regional vaults) change their sourcing in

the optimal solution. If we reduce the demand further to the average values, five net

negative regional vaults and sixteen net positive regional vaults (total of 16.28% of

regional vaults) are sourced differently from the optimal maximum-demand solution.

Table 2.12: Costs (in Million Dollars) of Optimal and Non-Optimal Sourcing in the
MCF Model.

Demand Cost with Type of Cost with Percentage
Type Optimal Non-Optimal Non-Optimal Increase

Sourcing Sourcing Sourcing
Maximum 20.566 n/a n/a n/a
Midpoint 15.094 Maximum 15.179 0.56%
Average 9.702 Maximum 9.944 2.5%
Average 9.702 Midpoint 9.731 0.3%

Table 2.12 shows the optimum costs for all three types of demand and illustrates

the potential cost increase if we use sourcing that does not match the actual demand,

e.g., we use the optimal sourcing for the maximum demand when the midpoint

demand is realized. (We can only test when sourcing is greater than demand, as the

opposite leads to infeasibility.) The average cost increase from a mismatch is 1.12%,

which is evidence of a robust solution procedure.

2.5.4 Numerical Experiments for Problem 1 and Problem 2 Combined

To generalize the overall value and robustness of our methodology we now solve

both Problem 1 and Problem 2 for ten randomly generated data sets. These are

smaller (one-sixth to one-third of the size of the actual data set) for computational

efficiency. We use the same values as before for all the parameters. The distance

and demand values are randomly generated from uniform distributions based on the

40



real data.

Table 2.13: Total Cost (in Million Dollars) and Savings from Upgrading Retail
Vaults, Multi-sourcing, and Both, for Generated Data.

ID Baseline Cost w/ Upgrade Multiple Overall Multiple
Cost Upgrades Savings Sourcing Savings Sourcing

Cost Savings
(Base) (MIPs) (Base vs. MIPs) (MCF) (Base vs. MCF) (MIPs vs. MCF)

1 28.54 27.00 5.40% 17.99 36.97% 33.37%
2 27.26 26.89 1.36% 18.18 33.31% 32.39%
3 31.00 29.74 4.06% 20.28 34.58% 31.81%
4 19.30 18.79 2.64% 9.62 50.16% 48.80%
5 20.80 19.63 5.63% 10.25 50.72% 47.78%
6 21.10 19.89 5.73% 10.50 50.24% 47.21%
7 17.51 17.13 2.17% 10.44 40.38% 39.05%
8 32.36 28.41 12.21% 18.35 43.29% 35.41%
9 17.43 16.13 7.46% 9.92 43.09% 38.50%
10 27.34 23.59 13.72% 16.98 37.89% 28.02%

AVE 24.26 22.72 6.04% 14.25 42.06% 38.24%

The total costs and percentages saved are reported in Table 2.13. Since these

data sets are smaller, CPLEX can solve the MIP model for Problem 2 to optimality

for each of them. The baseline cost is computed using the MIP models for both Prob-

lem 1 and Problem 2 with no upgrading of retail vaults and with single-sourcing of

regional vaults. Compared to the baseline cost, the saving from allowing upgrades of

retail vaults averages 6.04% (calculated with MIPs for both Problem 1 and Problem

2). Similarly, compared to the baseline cost, the average saving from solving Problem

1 with the MIP model and allowing multiple sourcing with the MCF model in Prob-

lem 2 is 42.06%. It follows that using multiple sourcing in Problem 2 provides an

average additional benefit of 38.24% over sole sourcing for the randomly-generated

data.

The numerical experiments demonstrate that the MIP model for Problem 1 and

the MCF model for Problem 2, if supply contracts allow, provide significant savings

within the currency network. The CB can use updated demand information annually

and rerun the MIP model for Problem 1 to adjust the assignment of branches and

the MCF model for Problem 2 to source the vaults.
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2.6 Conclusion

This is the first study to address the supply side of a currency supply chain,

i.e., the distribution problem for providing currency services throughout a country.

We developed a decision support system that includes (i) a mixed integer program-

ming model (and a heuristic algorithm for large problem instances) for determining

the sourcing for bank branches and the optimum network and service configuration

(downstream Problem 1) and (ii) a minimum cost flow formulation to specify sourcing

for regional vaults (upstream Problem 2); these together optimize currency supply

operations. The model captures the flow of currency and develops an effective inte-

grated transportation plan over the planning horizon for vaults and branches, along

with proposed vault upgrades. Furthermore, this is the first analysis of a responsive

reverse supply chain that has distributed remanufacturing and a high proportion of

high-quality returns. This combination allows for the variety of flows within the

supply chain that connect vaults and branches in various combinations in both di-

rections.

Problem 1 reduces the transportation costs by improving the sourcing of bank

branches and by optimally selecting the retail vaults to upgrade into regional vaults.

Implementing our recommendations for upgrading three retail vaults in one state

and efficiently supplying the branches would result in a potential annual transporta-

tion cost savings of 57.65% (about $2 million). Whereas this most likely represents

an upper bound on the improvement that could be realized in any other state, the

results with simulated data suggest that 7.39% is a loose lower bound. Our solution

to Problem 2 demonstrates that the potential savings from multi-sourcing regional

vaults is greater than 31% (about $9.5 million nationwide) using the actual collected

data and is about 38% using randomly-generated data. This demonstrates the po-
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tential utility, in particular, of altering the current logistics contracts and, in general,

of having flexibility in a supply network. Interestingly, a test of multi-sourcing the

branches in Problem 1 yielded almost no reduction in cost, which can be attributed

to the branches having demands that are an order of magnitude less than those of

regional vaults and to most branches being near only one supplying vault.

Lastly, this decision support system is a Hub-and-Spoke transportation system,

so it is applicable to a wide variety of supply networks (see Aykin 1995, Alderighi

et al. 2007, Almumur and Kara 2008, Bryan and O’Kelley 1999, Geismar et al.

2011, Van Buer et al. 1999, Pirkul and Schilling 1998, Racunica and Wynter 2005,

Tarantilis and Kiranoudis 2007, Vidyarthi et al. 2013 for examples and analyses of

Hub-and-Spoke networks). Our MIP formulation and heuristic SUH for Problem 1

are general enough to be used for many other currency supply chains world-wide.

In addition, sourcing regional vaults across an entire country is a problem faced by

many currency supply chains. Thus, our MCF formulation in Problem 2 can easily

be adapted to model other currency supply chains. The resulting savings in these

networks is expected to be significant, as demonstrated by our experiments with

various randomly generated data sets.

The need to continually reduce transportation costs is a common thread across

all supply chains. The basic problem that existed in our client’s country is typical

for currency supply chains in most countries. Furthermore, this problem has not

been well-studied in the academic literature, nor has it been carefully addressed

in practice. Consequently, there are no tools available in the market that address

this issue for currency distribution. This paper demonstrates the use of a modeling

approach that not only meets this need for this specific country, but also has the

potential to be applied in a variety of similar currency supply chains around the

world.
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3. A FRAMEWORK FOR ANALYZING THE U.S. COIN SUPPLY CHAIN

3.1 Introduction

Currency plays an essential role in commerce and trade. Two types of phys-

ical currency are circulated in the economy: banknotes and coins. Compared to

banknotes, coins seem to be undervalued by the public because of their low-value

denominations. However, the sustained growth of annual new coins production and

circulating coins in public’s hands shows that the coin consumption in the U.S. re-

mains strong. In today’s high-technology world, it may be surprising that new coin

production at the U.S. Mint (hereafter, simply Mint) for circulation has been in-

creasing steadily since FY 2007 (GAO 2013), especially a dramatic increase began in

2011 (Mint 2015). In FY 2015, the Mint produced and delivered 16.2 billion coins to

the Federal Reserve System (FRS)—the central banking system in the U.S.—for cir-

culation, an increase of 23.9% compared to FY 2014 (Mint 2015). In the meanwhile,

the amount of coins in circulation has also risen rapidly in recent decades. Coinstar

reports over 77 trillion transactions per year in the U.S., a number that has gradually

grown over years (Coinstar 2013). Based on the FRS’s latest estimation, as of April

6, 2016, there was approximately $1.45 trillion of currency (coins and banknotes) in

circulation in the U.S., of which $50 billion was in Federal Reserve coins (FRS 2016),

an increase of about 25% compared to FY 2010.

Geismar et al. (2016) provide an excellent review of the recent work on op-

erational issues concerning the currency supply chain. In this review paper, the

operational problems in the currency supply chain are classified into three different

domains: (i) the supply side, i.e., the parties who are in charge of supplying cur-

rency in the supply chain; (ii) the demand side, i.e., the parties who request the
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Figure 3.1: U.S. Coin Supply Chain.
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currency and act as intermediaries by providing it to customers (both individual

and commercial); and (iii) the third-party logistics providers (3PLPs). According

to our knowledge, there is no previous study addressing operational issues within

a Coin Supply Chain. Although there are several studies in the literature having

been focused on the management of banknotes from the demand side of operations,

very a few studies consider the supply side operational problem (e.g., Zhu et al.

2015). Figure 3.1 shows the flow of coins in the U.S. Coin Supply Chain (hereafter,

simply CSC), supply parties—the Mint and the FRS—who are in charge of supply-

ing coins, demand parties—depository institutions (DIs), and commercial/individual

customers—who request coins. 3PLPs act as intermediate distributors who contract

with the FRS for transshipping coins and with DIs for processing and transporting

coins to serve individual and commercial customers. This research is the first study

analyzing the CSC and improving its efficiency and effectiveness for operations from

both supply-side and demand-side perspectives.

Although most consumer products are distributed in one direction, coins are re-

circulated/reused through the economy. As in Rajamani et al. (2006), we view the
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CSC as a closed-loop supply chain that is highly integrated with two channels con-

sisting of forward and backward flows. We study the CSC in the context of improving

the efficiency of its operations from both supply and demand sides. The FRS acts as

the central planner that operates the two channels simultaneously. Figure 3.1 illus-

trates all the flow types between entities in the CSC. The forward coin flow in the

CSC starts at the Mint that produces the new coins for circulation and ships them

to the FRS. Next, the FRS combines the new coins with circulating coin inventory to

satisfy the demand from DIs (such as saving banks, commercial banks, savings/loan

associations, or credit unions). Then, DIs interact with commercial and individual

customers directly to meet their needs. The backward coin flow is generated because

of the deposits from retailers and public customers into DIs. The retail customers or

businesses deposit/withdraw coins to/from a branch of a DI. The various branches

of DIs send coins (deposited by the customers) to a designated branch, which in turn

limits its own inventory level by depositing excess coins back to the FRS. Next, we

describe the detailed structure of the CSC focusing on four functional components

that impact the overall performance of the CSC.

3.1.1 U.S. Coin Supply Chain Structure

The CSC, similar to supply chains of banknotes, consists of 4-P (Player, Product,

Process, and Policy) components. Major entities of the CSC are: (i) the Mint, (ii)

the FRS, (iii) the DIs, (iv) the commercial and individual customers.

The Mint is not only the issuing authority for new coins, but it also plays a role

in ensuring that the economy has a sufficient supply of coins. The Mint’s highest

priority is to cost effectively produce and supply required quantities of coins of all

denominations required for the economy. The coins are produced at two Mint’s

facilities located in Denver and Philadelphia. After production, the Mint ships new
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coins to the FRS in quantities ordered by it. In exchange, the Mint receives the face

value payment from the FRS.

Figure 3.2: Federal Reserve Districts and Reserve Bank Offices [Source: GAO
(2013)].

The FRS consists of a Board of Governors and 12 Federal Reserve Banks, each

of which is located in a Federal Reserve district (Figure 3.2). The Board is respon-

sible for maintaining the stability of the U.S. financial markets and supervising the

operations of the FRS’s coin vaults (CVs). The CVs are located at 28 Reserve Bank

offices (RBOs) and 170 coin terminals (CTs). Each CV is required to hold a mini-

mum 2 weeks of payable days and a maximum 3 weeks of payable days in inventory.

A payable day is defined as the amount of coin inventory needed to meet one day of

expected payments to DIs (GAO 2013).

Each RBO is responsible for fulfilling the coin demand of DIs for an area within

one of the FRS’s 12 districts, either by ordering new coins from the Mint or by

utilizing its coin inventory and/or coins in other CVs. After receiving new coins from
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the Mint, RBOs store coins either in their own on-site vaults or in CTs. According

to GAO, RBOs held about 5% ($ 2.1 billion) of the circulating coin inventory, and

the rest of 95% ($42 billion) was in general circulation in FY 2012 (GAO 2013). The

CTs held about 50% in volume of RBOs’ total coin inventory and the rest is held

by RBOs’ own on-site vaults. Approximately 15 armed carrier companies operate

CTs, store RBOs’ coin inventories for free, and earn revenue from the coin services

(e.g., packaging coins) they provide to DIs. The FRS’s national Cash Product Office

(CPO) is the FRS’ primary liaison with the Mint and is responsible for submitting a

monthly consolidated coin order for RBOs and managing inventory levels for RBOs’

own on-site vaults and CTs. From the coin supply perspective, the CPO’s ordering

process uses orders of new coins from the Mint, RBOs’ coin inventories, and transfers

of coins between the FRS’s CVs to meet estimated DIs’ demand. The transportation

of coins between the Mint and the FRS’s CVs is performed by 3PLPs.

DIs satisfy the demand of commercial and individual customers by either or-

dering/withdrawing coins from the nearest CV or withdrawing from their own coin

inventory. DIs may also deposit excess coin received from their customers to a CV.

Commercial and individual customers cannot interact with the Mint or FRS’s CVs

directly for their demands of circulating coins. Instead, they can only deposit or

withdraw coins from DIs to meet their day-to-day coin requirements.

Next, we provide few facts about coins circulating in CSC. When new coins pro-

duced by the Mint reach public’s hands, they are called circulating coins. Circulating

coins contain the following two types: fit coins (suitable for transactions) and unfit

coins (unsuitable for reuse and destroyed/reprocessed by the FRS). Unlike unfit ban-

knotes that are deformed, torn, or defaced, unfit coins are scarce, and therefore are

not considered in our study. However, we do consider reusing/recycling the coin de-

posits collected from the public to fulfill their demand in terms of coin withdrawals.
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Hence, aggregated demand (deposits and withdrawals) is considered in this study to

investigate the CSC.

Figure 3.3: (a) Shipments of Coins from the Mint to the FRS (Millions of Coins) and
(b) Revenue by Denomination (Dollars in Millions) in FY 2015 [Source: U.S. Mint
(2014a) and Mint (2015)].

(a)                                                                          (b)

Since FY 2013, circulating coins in the CSC for trade and commerce include four

denominations: penny, nickel, dime, and quarter (circulating $1 coin production was

suspended in early 2012). According to the Mint’s 2014 and 2015 annual report, the

Mint delivered 16.2 billion units of new coins to the FRS for circulation in FY 2015, a

23.9% increase from 13 billion FY 2014. Shipments increased for all denominations,

especially for quarter and dime shipments, which is a continuing trend since FY 2011.

The revenue from coin production was increased 42.3% amount to $1,114 million in

FY 2015, driven by quarter revenue (59.3% of the total revenue) and dime revenue

(25.8% of the total revenue). Figure 3.3 illustrates shipments of coins and revenues

earned by the Mint. Although the production cost of both pennies and nickels

exceeded their face value for the tenth consecutive fiscal year, all denominations’ unit

costs dropped in FY 2015 compared to FY 2014. Because of increased shipments,

lower metal costs, and lower general and administrative costs, the Mint generated

$540.9 million seigniorages by producing new coins for circulation in FY 2015, which

is 87.1% higher than that in FY 2014 (U.S. Mint 2014a, 2015). Seigniorage is the

difference between the face value of the coin and the cost to produce it.
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3.1.2 Research Questions

This paper investigates the CSC from following operational perspectives: pro-

duction and supply planning of coins for the FRS, coin inventory management at

CVs, and coin transhipment between CVs, and inventory management for DIs. We

devise some research questions concerning the overall performance of both supply

and demand side parties. For the supply side, we address problems encountered

in the central planner’s (the FRS’s) viewpoint of managing the CSC efficiently to

supply coins to the economy. For the demand side, since DIs have great incentives

in cost-effectively managing their coin inventory, we address issues facing DIs in the

context of optimizing their operational cost to supply coins to the public.

For the supply side, the FRS has implemented a centralized method in FY 2009

for managing coin supply across 12 FRS’s districts and has established national inven-

tory targets to track and measure the national coin inventory level (GAO 2008, 2013).

Under the centralized approach, the CPO assumes the responsibility of reviewing and

managing the inventory level at each CV (at RBO or CT) before placing a consol-

idated order to the Mint for new coin demand of each CV for the targeted month.

The inventory management decisions at CVs are made by the CPO including setting

individual lower and upper bounds on the coin inventory, and ordering/replenishing

inventory. As a consequence of the centralized method, from FY 2009 to FY 2012,

the combined inventory for all four denominations decreased 43%, the total annual

coin management costs for RBOs increased by 69% (GAO 2013). Specifically, costs

at individual RBO increased at rates ranging from 36% to 116%. These costs in-

cluded RBOs’ administration, coin handling, coin transshipment and coin inventory

costs. This indicates that since the CPO does not monitor coin management costs by

each RBO (instead focusing on managing coin costs from the national perspective),
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there are missing potential opportunities to improve the cost-effectiveness of coin-

related operations across RBOs. The FRS’s has an incentive to coordinate with the

Mint and RBOs for efficiently monitoring coin costs for each CV to improve the cost-

effectiveness of the CSC. Since new coin production cost is still a large portion of the

total cost for the CSC, we develop optimization models to include the operational

cost at both the FRS and the Mint in providing better supply planning methods

in order to obtain additional efficiencies. In addition, we also examine whether the

current inventory bounds for CVs set by the FRS are reasonable.

Moreover, since interrelated factors make it difficult to forecast long-term coin

demand and a significant and unexpected fluctuation in coin demand could lead to

increased coin inventory, an effective forecast and a planning system is crucial for

the FRS to operate considering demand uncertainty. In other words, the FRS has

the incentive to combine forecasts with continual tracking of demand and inventory

levels, to adjust coin orders placed to the Mint on behalf of each RBO periodically,

and to develop a robust planning system in the long run.

In addition, the FRS’s current operating policy introduced as follows is not effi-

cient enough to minimize the coin related cost, which brings the interest of analysis.

When commercial and individual customers want more coins, DIs order more from

the FRS (Croushore 2003), which then ship coins to DIs either from its RBOs’ on-site

vaults’ inventory (arrow A in Figure 3.4) or directly from CTs (arrow B). However,

if the public deposit more unpackaged coins into DIs, to reduce their own inventory

cost and to get enough packaged coins to satisfy the public’s demand, DIs may de-

posit the excess coins to the FRS, either directly to RBOs (arrow C) or through

CTs (arrow D). For a given month, net pay that denotes the difference between the

number of coins the FRS supplies to DIs and the number of coins the FRS receives

from DIs for a year (net pay = (A + B) − (C + D)), can be positive or negative.
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In each year since 1993, the net pay for circulating coins is generally positive for all

denominations (GAO 2008, GAO 2013). Since the new coin production cost results

in inefficiency in the CSC, one important performance measure currently used by the

FRS for the CSC is the ratio of the annual total production of new coins to net pay

(denoted as β). Ideally β
def
= Annual Total Production of Coins

Net Pay
should be equal or close to

1 (produce the exact amount needed to satisfy the public demand) indicating the

system is efficient in managing and recirculating coins in the CSC. However, whether

β is the right performance measure for the CSC needs to be investigated.

Figure 3.4: Net Pay.
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Based on the above discussion, CVs can either order new coins from the Mint, or

request transfers of circulating coins from other CVs, or use their own coin inventories

to satisfy the demand. Therefore, regarding the supply side problem from the FRS’s

perspective, to satisfy the public’s coin demand, there is an essential tradeoff between

(i) minimizing the production and transportation cost for new coins paid by the

Mint (or limiting β value close to one) and (ii) reducing the coin transportation

and inventory management costs paid by the FRS using effective means. Hence, a

comprehensive approach that can minimize the total cost for the FRS and the Mint

is proposed for improving the efficiency of the CSC. In addition, in order to deal

with uncertain demand, we propose two methods: (i) modifying and adjusting the
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coin orders and transhipment quantities periodically using a planning tool, and (ii)

sticking to a robust solution that can handle uncertain demand with the total cost

deviation within a reasonable range even in the worst case scenario. As regards to

improving the performance for the supply parties (the Mint and the FRS), we plan

to answer the following research questions.

• Are current inventory bounds for CVs set by the FRS reasonable? If not, what

would be the best method to set those bounds for inventories held at CVs?

• How should the FRS plan the production, distribution and management of

inventories of all denominations of coins to minimize the total cost for the

CSC?

• Is β a good performance measure for managing the CSC efficiently?

• To conquer the variation in coin demand, how can we develop a procedure

to determine/adjust coin orders and transhipment quantities periodically and

efficiently for the FRS? How can we develop a robust planning system for the

FRS to manage coin circulation in the present of demand uncertainty?

In the demand side problem, commercial and individual customers deposit un-

packed coins and withdraw packaged coins (rolls of one denomination of coins) at DIs.

DIs send unpacked coins either to the FRS or to local 3PLPs for rolling/processing

into packaged coins for their customers (Figure 3.5). To improve the performance of

inventory management at DIs, we deal with the following research questions.

• How does a DI cost-effectively manage coin inventory and plan to process

unpacked coins at the FRS or 3PLPs to obtain packaged coins?
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• How does a DI cost-effectively manage coin inventory and plan to process

unpacked coins under the 3PLPs’ volume discount scheme for packaging?

Figure 3.5: DIs’ Unpackaged and Packaged Coin Inventory Management Process.
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In the supply side (respectively, demand side) problem, we assume that the de-

mand of each denomination of coins at CVs (respectively, DIs) is independent and

uncorrelated with each other. The reason behind this assumption can be described

as follows. In the demand side problem, the demand for each denomination at a DI

(say quarter) for a period occurs from its customers (commercial/individual) demand

for quarters due to the cash transactions at their commercial stores. For example, in

a cash transaction at a commercial store, a consumer gives $10 for items purchased

for a total $8.43, the cashier must return the remaining change of $1.57 (a random

variable). The way the cashier is trained to return this change with a combination

having the minimum number of coins: one dollar note, two quarters, one five-cent,

and two pennies. In other words, the cashier rarely replaces a change for a quarter

with two dimes and one five-cent. A large number of such cash transactions occur in

a day. The daily aggregate demand for quarters occurs in this way at a commercial
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customer who in turn, requests quarters from a DI. Thus, we can reasonably assume

that the daily aggregate demand at a DI for quarters is fairly independent due to the

convenient way the changes are returned to the consumer. The DI, in turn, requests

quarters at a CV to satisfy its customers. Similarly, in the supply side problem,

when a DI withdraws coins (e.g., quarters) from a CV, it cannot replace the demand

for each quarter with other denominations (e.g., two dimes and one five-cent).

The outline of this paper is as follows. Section 3.2 reviews closely related liter-

ature. The supply side operational problems are analyzed in Section 3.3. In this

section, mathematical models are developed to minimize the total cost for the CSC

and to investigate the effectiveness of using net pay by the FRS as the performance

measure. A rolling horizon procedure based on the FRS’s current operational policy

and a robust planning system are developed to deal with demand uncertainty more

effectively. In Section 3.4, the computational study of the supply side problem is pre-

sented. The demand side Problem is studied in the theoretical settings for improving

DIs operational efficiency in Section 3.5. Discussion and conclusions are presented

in Section 3.6.

3.2 Literature Review

Coins remain an important component of the transactions even in economies that

have experienced a significant growth in checks, credit, debit and smart cards, and

electronic transactions. However, the nature of the logistics and physical distribu-

tion of the CSC is still largely untouched in the published literature. To the best of

our knowledge, this is the first paper analyzing the operations related to coin pro-

duction, distribution, recycling, and inventory management, not only nationally, but

also regionally, from both supply side and demand side for a CSC. We first review

studies related to the CSC and position our research with respect to them. Then, we
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discuss the similarities between banknote supply chains and the CSC. Contributions

of related research regarding the closed-loop banknote supply chains and banknote

inventory management are highlighted as well.

3.2.1 Coin Supply Chain

As valuable as bank notes, even in our increasingly digital economy, coins play an

essential role in commerce and trade. The production of coins is expensive and the

shortage of coins to satisfy the public’s demand are even more costly to banks and

businesses (GAO 2013; Gadsby 1996). The rate at which coins fail to recycle through

the economy is called as “lost coins.” Mints produce vastly more coins than needed

and the loss rate is much higher for coins of smaller value (Gadsby 1996; Goldin 1985).

When it comes to the CSC, only a few papers discuss the coin denominational system

(Cramer 1983; Sumner 1993; Telser 1995; Van Hove and Heyndels 1996). Many

studies have made attempts to derive a superior coin denominational policy so that

fewer coins per transaction are required (Bounie 2007; Kelber 2003; Tschoegl 1997).

Others study the numbers of coins in circulation of various types (Cainiello 1982).

All of these papers discuss the efficiency of alternative coin denominational systems,

in which efficiency is defined as the average number of coins required for purchasing

all the goods in the economy.

Besides the coin denominational system, research is scarce for operational prob-

lems in CSCs (Geismar et al. 2016). There are several potential opportunities for

exploration of research in this domain. The supply side problem in this study fo-

cuses on the FRS’s national perspective in analyzing the production, distribution,

recirculation and inventory management of coins in the CSC. In addition, from the

regional perspective, the demand side problem addresses issues related to the coin

packaging operations and inventory management for DIs.
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3.2.2 Banknote Supply Chain

Although most consumer products are distributed in only one direction, ban-

knotes and coins are recirculated/reused through our economy. Rajamani et al.

(2006) propose a useful framework of the closed-loop banknote supply chain where

both forward distribution and reverse logistics are considered. They analyze the

closed-loop structure of U.S. banknote supply chains and describe the FRS’s new

currency circulation policies. Conceptually, this structure is similar to the supply

chain of false-failure returns (Ferguson et al. 2006). As considered in Rajamani et

al. (2006) that analyzing the U.S. banknote supply chain, we also view the coin

supply as a closed-loop supply chain. By applying inventory control principles to

the banknote supply chains context, Geismar et al. (2007) extends Rajamani et

al. (2006) and sheds light on how banks in the U.S. should cope with recent recir-

culation policy changes by the FRS. Although the research focused on closed-loop

supply chains typically includes some kind of remanufacturing (Savaskan et al. 2004;

Guide et al. 2006a, 2006b; Ketzenberg et al. 2006), there are studies focusing on the

closed-loop service network (Kusumastuti et al. 2008). These supply chains have

features resembling the coin and banknote supply chains, which can be considered as

a special case of a closed-loop supply chain where products (i.e. coins and banknotes)

are recycled and processed for redistribution.

The specific banknote supply chain for different countries (Europe, Austria, and

China) are also discussed in the literature (Schautzer 2007; the European Central

Bank 2010; Carlin 2004; Smith et al. 2008). Each of these countries has a system

of logistics that fits its individual circumstances. In Europe, the European Central

Bank (ECB) and the national central banks (NCBs) of all 28 European Union (EU)

Member States work together to determine banknote demand, production, and dis-
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tribution across the Eurozone. Carlin (2004) shows similar operations (processing

and distribution) of banknote supply chain in Australia. China’s nationwide logistics

network for Renminbi is discussed and analyzed by Smith et al.(2008), in which Chi-

nese banknote supply chain’s key problems such as production costs, inventory levels,

transportation, and storage security are investigated. Zhu et al. (2015) study the

supply side problem on behalf of a central bank in an international country focusing

on managing the currency supply under security concerns.

The studies reviewed above deal with the structure, issue, and policy of the ban-

knote supply chain. Some other papers develop models to manage currency supply,

demand, and distribution under the Federal Reserve’s new currency circulation poli-

cies recently implemented in the U.S. considering incentives for different parties in a

banknote supply chain. Dawande et al. (2010) address a strategic approach to the

problem of banknote recirculation from the perspective of DIs. This problem has

been addressed by the FRS in its attempt to minimize the social cost of providing

banknote to the public. They also develop a new coordinating mechanism to show

that the introduction of banknote recirculation incentives for private banks reduces

returns (i.e., deposits) to the FRS. They show that in general, the recirculation fee

may not induce DIs to behave in a socially optimal manner. Hatzakis et al. (2010)

provide an excellent review of the operational aspect of financial services. Mehrotra

et al. (2010) derive effective operating policies for managing the day-to-day inven-

tory of fit and used banknote for a DI. Later, Mehrotra et al. (2012) address the

problem of pricing the transportation and other services offered to banks by a 3PLP.

The banknote inventory management problem also has been studied by Zhu et al.

(2011), which discuss the reuse of banknote to manage the inventory for medium-

size DIs under the new Federal Reserve Policy. Two models are developed by Zhu

et al. (2011) for various situations to improve the operations of a medium-sized DI
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by managing the banknote inventory.

3.3 Supply Side Problem

Here we provide a framework and formulation of a supply planning problem

(namely, Problem I) for the FRS. The FRS must manage the supply of coins of

different denominations at CVs in order to minimize the total cost of production,

transportation, and inventory holding. The FRS spends a significant fraction of its

annual budget on managing its coin supply to DIs for the CSC. The reasons for the

significant spending are due to (i) inefficient the coin inventory management and

(ii) the cost of coin production at the Mint. In order to fulfill the coin demand of

DIs, the CPO places monthly orders for new coins to the Mint on behalf of CVs.

For simplicity, we also view the Mint’s two facilities (in Denver and Philadelphia) as

CVs. Thus, there are 200 CVs in total distributing coins across 12 FRS’s districts.

Each CV has a detailed record of withdrawals or deposits of each denomination of

coins ordered from or deposited by DIs. Note that the transportation of coins among

the Mint, the FRS, and DIs is done in bags.

Figure 3.6: Framework of Supply Side Problem.
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We assume that we can use the historical data to obtain a relatively accurate

forecast of the demand over the next 12 months. Recall that we also assume that the

demand of each denomination of coins at CVs is independent and uncorrelated with
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each other. A coin supply and distribution model for managing coin production and

circulation for a single denomination (i.e., quarter) is developed in this section. The

models for other denominations are similar. Figure 3.6 illustrates the framework of

Problem I. Notations used in Problem I are in Table 3.1.

Table 3.1: Parameters and Variables Used in Problem I.

Parameters

T Number of periods (months) in the planning horizon, T = 12.
N The number of CVs, where N = 200. The Mint is also viewed as a CV with

j = 0 and there is no demand at j = 0.
Dt

j The mean aggregated deposits of coin (in bags) during period t at CV j,
t = 1, 2, . . . , T at CV j, j = 1, 2, . . . , N .

W t
j The mean aggregated withdrawals of coin (in bags) during period t at CV j,

t = 1, 2, . . . , T at CV j, j = 1, 2, . . . , N .
Bt

j Bt
j = Dt

j −W t
j for period t at CV j, t = 1, 2, . . . , T , j = 1, 2, . . . , N .

hj The per bag per period coin holding cost incurred at the CV j.
a The per bag production and ordering cost at the Mint.
bij The per bag transportation cost between CV i and CV j. i, j = 0, 1, 2, . . . , N .
Uj The upper bound of the inventory level at CV j. Set it as three weeks of

payable days.
Oj The lower bound of the inventory level at CV j. We set Oj = 0 ∀j.

Variables

xt0j The amount of coins (in bags) shipped from the mint facility 0 (either M1

or M2) that is closer to CV j at the beginning of period t, j = 1, 2, . . . , N ,
t = 1, 2, . . . , T . xtoj = min{xtM1j

, xtM2j
}.

xtij The amount of coins (in bags) shipped from CV i to CV j at the beginning of
period t, i, j = 1, 2, . . . , N , t = 1, 2, . . . , T .

Itj The coin inventory level(in bags) at the end of period t at CV j, t = 0, 1, . . . , T ,
j = 1, 2, . . . , N . For each CV j, Itj is the inventory level right after receiving∑

i̸=j x
t
ij bags and shipping out

∑
i ̸=j and i ̸=0 x

t
ji bags of coins.

3.3.1 Coin Inventory Management in Practice

Before developing a mathematical model to solve Problem I, we briefly discuss

the current coin ordering and inventory management in practice, which crucially

impacts our model. We have obtained this information from GAO’s 2013 report and

our interaction with the Fed officials.
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The CPO has implemented a centralized approach to inventory management in

2009. In order to track and measure the coin inventory, it has established the national

upper and lower inventory targets for all four denominations and the upper and lower

inventory levels at each CV. In order to maintain sufficient supply of coins, the CPO

reviews the daily inventories at CVs (denoted CV j, j = 1, 2, . . . , N). Since the coin

supply at each CV differs depending on that CV’s typical volume of coin payments

and receipts, each CV is required to hold a minimum 2 weeks of “payable days”

and a maximum 3 weeks of “payable days” in inventory, where payable day is the

amount of coin inventory needed to meet one day of expected payments to depository

institutions (GAO 2013).

The CPO transfers excess coins from one CV to another CV where coin deficits

occur. Before performing such transfers, it considers future expected demand, sea-

sonal shifts etc. in the demand of the CVs having excess. These transfers are known

as interbank transfers which incur the transportation cost to the FRS. If there is an

insufficient supply of coins to meet demand via interbank transfers, the CPO orders

new coins from the Mint.

Currently, although the CPO reviews and places a monthly order to the U.S.

Mint, the supply planning is done in 2-month rolling horizon fashion. In other

words, the CPO revises and uses a 2-month forecast of expected demand of coins

of each denomination and then places a monthly order to the Mint about 2 months

prior to the expected delivery. For every 2 months passing by, demand is realized and

the CPO may revise the monthly order quantity based on updated 2-month realized

demand information. In order to facilitate the planning of coin production at the

Mint, the CPO provides estimates of projected demand and new coin orders for up

to the next 12 months.

Each CV j at time t (denoted as CV t
j ), t = 1, 2, . . . , T , j = 1, 2, . . . , N , has
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two random events defined by two random variables, D̃j (deposit of coins) and W̃j

(withdrawal of coins) with mean aggregated values Dj and Wj, respectively. Here

each time period t is a month since the inventory planning is done monthly basis. We

assume that two random variables, D̃j and W̃j have certain probability distributions

that can be determined by the historical data. Let wj be payable day at CV j

which is the mean daily withdrawal of coins by DIs. Thus, the mean withdrawal,

Wj = 4 × 5 × wj assuming that month is equivalent to 4 weeks and each week

consists of 5 working days. Currently, the inventory planning is done based on only

the withdrawal of coins (W̃j) during time t, even though the deposit of coins (D̃j)

also occur simultaneously at time t. The CPO does not want to take a risk of relying

on deposits to satisfy the withdrawals in the same period. This is achieved by holding

a minimum of 2 weeks of “payable days” of inventory as safety stock.

The periodic review inventory model is used in many practical environments. For

example, Hewlett-Packard team has successfully implemented the inventory model

in its distribution centers (Lee et al. 1993). The periodic review model is also

suitable for managing coin inventories at each location since the upper and lower

inventory levels at each location need to be established optimally (see Appendix B.1).

Currently, a form of periodic review inventory model is now used at each CV j. For

CV, the CPO has established that the upper bound and lower bound for that CV’s

inventory are 3 weeks of “payable days” and 2 weeks of “payable days”, respectively.

Since our analysis first assume deterministic demand in Problem I, in which we plan

the inventory levels for all CVs above their safety stock levels (2 weeks of “payable

days” in inventory in each location). Thus, for each CV j in our deterministic model

in section below, we set the lower bound, Oj = 0 and vary the upper bound, Uj

as 1, 2, or 3 weeks of “payable days”) for Problem I to test whether the current

bounds set by the CPO are appropriate. The detailed computational testing is done
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in Section 3.4.1. The review period R is one month (R = 4 weeks). A request for an

order can be fulfilled in one week, i.e., the lead time, L = 1.

3.3.2 Network Flow Model for Problem I: One Denomination

We first assume that there is no uncertainty either in the deposits (D̃j) or with-

drawals (W̃j) in order to gain insights into the problem. Later in Section 3.3.4 and

Section 3.3.5, we will deal with uncertainty by proposing a procedure and developing

a robust solution system, respectively. Since the demand of each denomination of

coins at CVs is assumed to be independent and uncorrelated with each other, we

elaborate our approach considering only one denomination (i.e., quarters). In this

section, we propose a multi-period network approach using a minimum cost flow

(MCF) model to optimize the coin ordering, transshipping, and inventory holding

process between the Mint and the FRS. Specifically, for specified denomination in

each period, we solve the flow in the network using an MCF model. Recall that

notation needed to model Problem I is in Table 3.1.

We first describe the construction of the network model and then illustrate it with

an example. In the construction, we start with a supplying node CV0 (the Mint).

Although circulating coins are produced at the Mint’s two facilities: Philadelphia and

Denver, since for each CV j, one of the two Mints is closer, without loss of generality,

we use CV0 stands for both facilities. Then, we add nodes CV t
j for CV j in period t.

Each node CV t
j has Bt

j, surplus (or deficit) of coin (in bags) during period t at CV

j, t = 1, 2, . . . , T , j = 1, 2, . . . , N . Dt
j and W t

j are the mean aggregated deposits and

mean aggregated withdrawals, respectively, in period t at CV j. Note that each CV

has multiple nodes for different periods. Then we add a sink node CVN+1 standing

for the total coin inventory left after the last period T coming from all CVs, except

for CV0 (the Mint). We now describe each arc with its lower bound, upper bound,
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and unit cost for the flow on that arc. An example for Problem I of one denomination

is shown in Figure 3.7 considering a 2-period (month) rolling horizon.

Figure 3.7: An Example of Problem I.
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• An arc from node CV0 to CV t
j , j = 1, 2, . . . , N , representing the new coins

produced and shipped from the Mint (both mint facilities: M1 and M2) to

CVs, where CV t
j represents CV j in period t. The amount of coin flow on

this arc, xt
oj, is defined as ∀t, j, xt

oj = min{xt
M1j

, xt
M2j

}, where the index 0

represents the Mint’s facility that is closer to CV j. The lower bound, upper

bound and unit cost of this arc are 0, ∞, and a + b0j. We also set the initial

coin inventory level at each CV as its lower bound: I0j = Oj.

• An arc from node CV t−1
j to node CV t

j , j = 1, 2, . . . , N , representing the coin

inventory carried from period t−1 to period t. The lower bound, upper bound

and unit cost of this arc are Oj, Uj, and hj.
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• An arc between each pair of node CV t
i and node CV t

j , i, j = 1, 2, . . . , N rep-

resenting the coin transshipments among different CVs in period t. The lower

bound, upper bound and unit cost of this arc are 0, ∞, and bij.

• An arc from node CV T
j , j = 1, 2, . . . , N , to the sink node CVN+1 representing

the ending coin inventory after the last period T at CV j. The lower bound,

upper bound and unit cost of this arc are Oj, Uj, and hj.

The mixed integer programming (MIP) formulation for Problem I is presented below.

Problem I:

The objective function minimizes the total cost for the Mint and the FRS, which

includes the new coin production and ordering cost, circulating coin transportation

cost between the Mint and the FRS, and the circulating coin inventory cost for the

FRS. We compute below the average coin inventory for each period. The beginning

coin inventory level at period t is I t−1
j and the coin inventory level at the end of period

t is I tj = I t−1
j +Bt

j+
∑N

i=0, i ̸=j x
t
ij−

∑N
i=1,i ̸=j x

t
ji. The average coin inventory level during

period t is 1
2
(I t−1

j + I tj). Thus, the total inventory cost during the planning horizon

is
∑N

j=1 hj · (
∑T−1

t=1 I tj +
1
2
I0j +

1
2
ITj ).

Min Π(xt
ij, I

t
j) =

T∑
t=1

N∑
j=1

a · xt
0j +

T∑
t=1

N∑
i=0, i ̸=j

N∑
j=1

bij · xt
ij

+
N∑
j=1

hj · (
T−1∑
t=1

I tj +
1

2
I0j +

1

2
ITj )

Subject to:

Constraints (3.1) are the coin flow balance equations that compute the coin inventory

level at the end of each period t for each CV j, j = 1, 2, . . . , N .

I tj = I t−1
j +Bt

j +
N∑

i=0, i ̸=j

xt
ij −

N∑
i=1, i ̸=j

xt
ji, ∀t, j (3.1)
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Constraints (3.2) limit the coin inventory level at each CV between its upper and

lower bound.

Oj ≤ I tj ≤ Uj, 1 ≤ t ≤ T, ∀j (3.2)

Constraints (3.3) are non-negativity constrains.

I tj , x
t
ij ≥ 0, ∀i, j, t (3.3)

Property 1 Since ∀Bt
j and ∀Uj are integer valued in the MIP formulation of Prob-

lem I, all the variables in every basic feasible solution (including an optimal one)

also have integer values.

Note that all deposits and withdrawals in MCF are counted in bags and all flows

in the network have integer capacity. Since each feasible integer flow corresponds to

a feasible shipment of coins in Problem I and vice versa, we have the following result.

Lemma 1 Solving the minimum cost flow problem constructed above is equivalent

to optimizing the FRS’s coin ordering and inventory management process.

Proof: Since each node represents a specific location (either mint facility location or

CV) with each arc standing for the corresponding movement of coin flows (new coin

transportation, circulating coin transshipment, or circulating coin inventory carried

across periods), each feasible integer flow corresponds to a feasible sourcing for the

FRS’s coin ordering and inventory management process and vice versa. Thus, the

optimal solution to the minimum cost flow problem constructed above is equivalent

to the optimal process for the FRS for Problem I. This result holds in general.

3.3.3 Net Pay Analysis

Recall that currently, the FRS uses β (the ratio of the annual total production

of new coins to net pay) to measure the performance of the CSC. Ideally, the FRS

66



wants β to be equal or close to 1. To check if β is a good performance measure, we

develop a MIP model with the objective of minimizing the difference between β and

1. This problem is referred as Problem IN . We use the same notation in Table 3.1.

The MIP formulation for Problem IN is presented as below.

MIP Formulation for Problem IN :

The objective function minimizes the difference between the annual total production

of new coins and net pay. Note that net pay is equal to
∑T

t=1

∑N
j=1(W

t
j − Dt

j) =

−∑T
t=1

∑N
j=1B

t
j. Since net pay is known, we only need to minimize the annual new

coin production quantity. With the minimum objective value, β would be close to 1.

Problem IN :

Min
T∑
t=1

N∑
j=1

xt
0j

Subject to:

Constraints (3.4) compute the new coin production quantity for period t.

xt
0j = I tj − I t−1

j −Bt
j −

N∑
i=1, i ̸=j

(xt
ij − xt

ji), ∀t, j (3.4)

Constraints (3.5) enforce that β ≥ 1.

T∑
t=1

N∑
j=1

xt
0j ≥ −

T∑
t=1

N∑
j=1

Bt
j (3.5)

Constraints (3.6) restrict the coin inventory level at each CV between its upper and

lower bound.

Oj ≤ I tj ≤ Uj, 1 ≤ t ≤ T, ∀j (3.6)

Constraints (3.7) are non-negativity constrains.

xt
0j, I

t
j , x

t
ij ≥ 0, ∀i, j, t (3.7)
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Suppose β is a good performance measure for the CSC, then the optimal solution

to Problem IN should also give a very low total cost Π∗
N . In other words, the difference

between Π∗
N for Problem IN and the minimum total cost Π∗(xt

ij, I
t
j) for Problem I

should be equal or close to 0. We test this through a comprehensive computational

study in Section 3.4.1. We show below that the minimum total cost obtained from

Problem IN should be at least as large as the minimum total cost for Problem I.

Lemma 2 Π∗(xt
ij, I

t
j) ≤ Π∗

N .

Proof: Let (x̂t
ij, Î

t
j) be an optimal solution toProblem IN . Since (x̂t

ij, Î
t
j) is also a

feasible solution to Problem I, we have Π∗(xt
ij, I

t
j) ≤ Π∗(x̂t

ij, Î
t
j) = Π∗

N .

3.3.4 Demand Uncertainty: Procedure Rolling Horizon

In order to handle the variation in actual demand (withdrawal and deposit),

the FRS uses a two-month rolling operating policy (GAO 2013). Based on the

FRS’s current operating policy and our MIP and MCF models for Problem I, we

now develop a procedure with the rolling-horizon of a two-month period to solve

Problem I (called the Procedure Rolling Horizon). The FRS can use this procedure

in practice to handle the variation in actual demand effectively by incorporating the

updated demand when it becomes available. Computational studies for Procedure

Rolling Horizon are presented in Section 3.4.2 assuming that the coin demand is

normally distributed.

3.3.5 Demand Uncertainty: µ-Robust Solution

In order to understand the impact of variation in demand on the total cost, Π, we

introduce uncertainty into both deposits and withdrawals in the following manner.

We define D̃t
j and W̃ t

j as two random demand variables with mean aggregated values
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Dt
j and W t

j . We also define B̃t
j = D̃t

j−W̃ t
j as the random variable for the net demand

in period t at CV j. Clearly, B̃t
j has the mean aggregated value: Bt

j = Dt
j −W t

j .

Procedure Rolling Horizon(PRH):

min cost PRH = 0

Solve Problem I for periods 1 to 12 with initial inventories I0j = 0 and mean net demand B̄t
j .

Label the transhipment quantity solutions for period 1 and 2 as x1∗
ij and x2∗

ij .

Collect realized net demand for period 1 and 2: Br1
j = Dr1

j −W r1
j and Br2

j = Dr2
j −W r2

j .

Compute updated inventories for period 1 (Iu1j ) and 2 (Iu2j ) using I0j , B
r1
j , Br1

j , x1∗
ij and x2∗

ij .

If Iu1j < 0 (or Iu2j < 0), set Iu1j = 0 (or Iu2j = 0).

Record the total amount (defined as Mt1t2 ) required to bring Iu1j and Iu2j to zero.

Else

Use Br1
j , Br2

j , x1∗
ij and x2∗

ij to compute Iu1j and Iu2j .

Exit If

Compute the total cost for period 1 and 2 using I0j , I
u1
j , Iu2j , x1∗

ij and x2∗
ij as min cost (t1t2).

Update min cost PRH = min cost (t1t2).

Update the mean demand for period 3 as ¯Bu3
j = B̄3

j +Mt1t2 .

Solve Problem I for periods 3 to 14 with ¯Bu3
j , B̄

4
j , ..., and B̄14

j .

Label the transhipment quantity solutions for period 3 and 4 as x3∗
ij and x4∗

ij .

Collect realized net demand for period 3 and 4: Br3
j = Dr3

j −W r3
j and Br4

j = Dr4
j −W r4

j .

Update realized net demand for period 3 as Bur3
j = Br3

j +Mt1t2 .

Compute updated inventories for period 3 (Iu3j ) and 4 (Iu4j ) using Iu2j , Bur3
j , Br4

j , x3∗
ij and x4∗

ij .

If Iu3j < 0 (or Iu4j < 0), set Iu3j = 0 (or Iu4j = 0).

Record the total amount (defined as Mt3t4 ) required to bring Iu3j and Iu4j to zero.

Else

Use Bur3
j , Br4

j , x3∗
ij and x4∗

ij to compute Iu3j and Iu4j .

Exit If

Compute the total cost for period 3 and 4 using Iu2j , Iu3j , Iu4j , x3∗
ij and x4∗

ij as min cost (t3t4).

Update min cost PRH = min cost (t1t2) +min cost (t3t4).

Repeat steps for computing min cost (t3t4) for the following periods until min cost (t11t12) is obtained.

Update min cost PRH = min cost (t1t2) + ...+min cost (t11t12).

For each CV j during the planning horizon T , we assume that the demand dis-

tribution is normal (later in Section 3.4.2, we perform computational experiments

using normal distributions with varying levels of uncertainties) and randomly gener-
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ate K sample paths representing possible realizations of Btk
j , where Btk

j = Dtk
j −W tk

j .

Considering all paths for all N CVs, we will have K scenarios. Let V ts
j be the value

of Btk
j at each CV j in each period t (t = 1, 2, . . . , T ) for a given scenario s, where

s = 1, 2, . . . , K. Let Πs∗ be the optimal objective value for the optimal solution, xts∗
ij .

Our problem (MinCost − R1) of obtaining an optimal solution, xts∗
ij , for a given

scenario s can be stated as follows.

Problem MinCost−R1 :

Min Πs(xts
ij , I

ts
j ) =

T∑
t=1

N∑
j=1

a · xts
0j +

T∑
t=1

N∑
i=0, i ̸=j

N∑
j=1

bij · xts
ij

+
N∑
j=1

hj · (
T−1∑
t=1

I tsj +
1

2
I0sj +

1

2
ITs
j )

Subject to

I tsj = I ts−1
j + V ts

j +
N∑

i=0, i ̸=j

xts
ij −

N∑
i=1, i ̸=j

xts
ji, ∀t, j, s (3.8)

0 ≤ I tsj ≤ Uj, 1 ≤ t ≤ T, ∀t, j, s (3.9)

I tsj , xts
ij ≥ 0 and integer, ∀i, t, j, s (3.10)

Let ρs be the occurrence probability of scenario s. In order to minimize the

expected cost, we find below an optimal feasible solution (xt∗
ij ) whose corresponding

objective value should not deviate from a µ fraction of the optimal objective value

Πs∗ for any scenarios s. We archive this in the following model:

Problem MinCost−R2 :

Min Ψ =
K∑
s=1

ρsΠs(xt
ij, I

ts
j )

Subject to

Πs(xt
ij, I

ts
j ) =

T∑
t=1

N∑
j=1

a · xt
0j +

T∑
t=1

N∑
i=0, i ̸=j

N∑
j=1

bij · xt
ij

70



+
N∑
j=1

hj · (
T−1∑
t=1

I tsj +
1

2
I0sj +

1

2
ITs
j ) (3.11)

I tsj = I ts−1
j + V ts

j +
N∑

i=0, i ̸=j

xt
ij −

N∑
i=1, i ̸=j

xt
ji, ∀t, j, s (3.12)

0 ≤ I tsj ≤ Uj, 1 ≤ t ≤ T, ∀t, j, s (3.13)

Πs(xt
ij, I

ts
j ) ≤ (1 + µ)Πs∗, ∀s (3.14)

xt
ij, I

ts
j ≥ 0 and integer, ∀i, t, j, s (3.15)

Relative Regret Limit: µ

We may find a robust solution that minimizes the expected cost,
∑

s ρsΠs(xt
ij, I

ts
j ),

which depends on the relative regret limit µ. If we include all possible sample paths

K, we can solve problem Problem MinCost−R2 very precisely. In practice, K could

be a very large number. We can also find the upper bound (µu) and the lower bound

(µl) of relative regret limit µ. By setting the value of µ in the range (µu ≤ µ ≤ µl) we

may find a series of robust solutions. If µ is large (respectively, small), the feasible

region of ProblemMinCost−R2 is large (respectively, small). In addition, if µ is very

large, Problem MinCost − R2 becomes a stochastic programming problem. Note

that when µ increases, the feasible solution region increases. Hence, the expected

cost value decreases.

Lemma 3 If all possible sample paths K for representing uncertainty are included,

the lower bound for relative regret limit µl can be obtained by solving µ for Problem

MinCost−R3.

Proof: The solution Πs∗ is obtained by solving Problem MinCost − R1 for each

sample path s. The constraints (3.19) of Problem MinCost − R3 assure that the

solution obtained does not deviate more than µ fraction any of Πs∗ values of sample

paths. Since the objective is to minimize µ, we obtain a lower bound µl for µ.

Problem MinCost−R3 :
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Min µ

Subject to

Πs(xt
ij, I

ts
j ) =

T∑
t=1

N∑
j=1

a · xt
0j +

T∑
t=1

N∑
i=0, i ̸=j

N∑
j=1

bij · xt
ij

+
N∑
j=1

hj · (
T−1∑
t=1

I tsj +
1

2
I0sj +

1

2
ITs
j ) (3.16)

I tsj = I ts−1
j + V ts

j +
N∑

i=0, i ̸=j

xt
ij −

N∑
i=1, i ̸=j

xt
ji, ∀t, j, s (3.17)

0 ≤ I tsj ≤ Uj, 1 ≤ t ≤ T, ∀t, j, s (3.18)

Πs(xt
ij, I

ts
j ) ≤ (1 + µ)Πs∗, ∀s (3.19)

xt
ij, I

ts
j ≥ 0 and integer, ∀i, t, j, s (3.20)

By relaxing constraints (3.14) in Problem MinCost − R2 (i.e., assuming a very

large µ), we obtain the minimum expected cost Ψmin by running the following model.

Note that this model is a stochastic programming version of Problem MinCost−R2.

Problem MinCost−R4 :

Min Ψ =
K∑
s=1

ρsΠs(xt
ij, I

ts
j )

Subject to

Πs(xt
ij, I

ts
j ) =

T∑
t=1

N∑
j=1

a · xt
0j +

T∑
t=1

N∑
i=0, i ̸=j

N∑
j=1

bij · xt
ij

+
N∑
j=1

hj · (
T−1∑
t=1

I tsj +
1

2
I0sj +

1

2
ITs
j ) (3.21)

I tsj = I ts−1
j + V ts

j +
N∑

i=0, i ̸=j

xt
ij −

N∑
i=1, i ̸=j

xt
ji, ∀t, j, s (3.22)

0 ≤ I tsj ≤ Uj, 1 ≤ t ≤ T, ∀t, j, s (3.23)

xt
ij, I

ts
j ≥ 0 and integer, ∀i, t, j, s (3.24)

In the above model, since we relax constraints (3.14) of Problem MinCost−R2,
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there also exists a value for µu. However, we would like to the smallest value of µu.

The following model finding the smallest upper bound, µu has the same objective

function value, Ψmin.

Lemma 4 If all possible sample paths K for representing uncertainty are included,

the upper bound for relative regret limit µu can be obtained by solving µ for Problem

MinCost−R5.

Proof: In Problem MinCost − R4, since we relax constraints (3.14) of Problem

MinCost − R2, there also exists an upper bound µu for µ. However, we would

like to the smallest value of µu. The following Problem MinCost − R5 finding the

smallest upper bound, µu has the same objective function value, Ψmin.

Problem MinCost−R5 :

Min µ

Subject to

Ψmin ≥
K∑
s=1

ρsΠs(xt
ij, I

ts
j ) (3.25)

Πs(xt
ij, I

ts
j ) =

T∑
t=1

N∑
j=1

a · xt
0j +

T∑
t=1

N∑
i=0, i ̸=j

N∑
j=1

bij · xt
ij

+
N∑
j=1

hj · (
T−1∑
t=1

I tsj +
1

2
I0sj +

1

2
ITs
j ) (3.26)

I tsj = I ts−1
j + V ts

j +
N∑

i=0, i ̸=j

xt
ij −

N∑
i=1, i ̸=j

xt
ji, ∀t, j, s (3.27)

0 ≤ I tsj ≤ Uj, 1 ≤ t ≤ T, t, j, s (3.28)

Πs(xt
ij, I

ts
j ) ≤ (1 + µ)Πs∗, ∀s (3.29)

xt
ij, I

ts
j ≥ 0 and integer, ∀i, t, j, s (3.30)

The above solution µu has the same minimum expected cost, within which, Ψmin

assures that the relative regret value in the worst case scenarios to be as the smallest

as possible.
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Remark 1 Note that if µ is large (respectively, small) the feasible region of Problem

MinCost−R2 is large (respectively, small). Thus, the expected cost Ψ decreases as

the value of µ increases in problem MinCost − R2. When µ is small, the solution

is good (respectively, poor) for the worst case scenario (respectively, the overall sce-

narios) and vice versa. Thus, the smaller (respectively, larger) value for µ leads to

a better worst case (respectively, expected) performance and vice versa.

Remark 2 Bottleneck scenarios: Given the solution for Problem MinCost − R2

for a µ value, we may calculate the αs values for each scenario s as follows. αs =

Πs (xt
ij ,I

ts
j )−Πs∗

Πs∗ . The αs values for some scenarios may be close or equal to the µ value.

Such scenarios are called “bottleneck scenarios” as they are the worst case scenarios

for the corresponding µ value. We need to study such scenarios here as they hinder

the expected performance (i.e., the improvement of the objective value of Problem

MinCost−R2).

Next, we consider Problem MinCost − R2 with µ-Robust Solution. Note that

with given regret limit µ and the occurrence probability of scenario s: ρs , the objec-

tive function Ψ has a lower bound of
∑

s ρsΠs∗ and a upper bound of
∑

s ρs(1+µ)Πs∗.

Therefore, we have the following results.

Property 2 For Problem MinCost−R2, with given regret limit µ and the occurrence

probability of scenario s: ρs, the objective function Ψ has a lower bound of
∑

s ρsΠs∗

and a upper bound of
∑

s ρs(1 + µ)Πs∗, respectively.

Property 3 If ∀V ts
j , ∀Lj, and ∀Uj are integer valued, any feasible µ-robust solutions

including an optimal one, to the MIP formulation of Problem MinCost−R2 should

also have integer valued variables.
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3.4 Computational Study for the Supply Side Problem

The key objectives of our computational studies are as follows: (i) evaluating the

effectiveness of the current operating policy of FRS (i.e., using β as the performance

measure for the CSC), and (ii) testing the effectiveness of Procedure Rolling Horizon

and µ-Robust Solution for conquering demand uncertainty. For the first objective, we

run both Problem I and Problem IN using the FRS’s real data available in the public

domain, and compare their β values and total costs. For the second objective, based

on the real data from FRS, we run randomly generated instances and sample paths

for Procedure Rolling Horizon and µ-Robust Solution, respectively, and compare

their performances.

We consider one denomination (quarter), 13 CVs (12 Reserve Banks located in

the center of each Fed district and the Mint), and a planning horizon of 12 months.

We collect the distance data among 13 CVs (including the Mint) using Google Maps.

We use both (i) the three-year demand data (2010-2012 national monthly deposits

and withdrawals) obtained directly from GAO’s 2013 report, and (ii) the randomly

generated demand data assuming a normal distribution of coin demand based on

the real demand data of FRS in 2010, 2011 and 2012. The monthly deposits and

withdrawals for quarter for each Fed district are estimated using the real population

data in each Fed district and the proportion of quarter in circulation (about 47.85%

of all denominations).

The values of other parameters are estimated based on the real cost and weight (50

lbs. per bag of quarters). The unit transportation cost between any two locations

is estimated using FedEx 2-Day rate, which is the most commonly used mode of

transportation in this setting. Since it costs the Mint $0.0895 of produce one quarter

and there are 4000 quarters in a bag ($1000 face value of one bag), the per bag
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production cost can be easily calculated (Mint 2014b). Regarding the holding cost,

it is set as between 15% and 100% of the face value of one bag of quarters to perform

sensitivity analysis in Section 3.4.1, and as 20% of the face value of one bag of

quarters to test performances of Procedure Rolling Horizon and µ-Robust Solution.

We assume that all Fed districts have the same unit holding cost (h). The MIP and

the MCF models are solved using CPLEX (version 12.6.1) and Visual Studio (version

Express 2012) on a Lenovo desktop with 3.60 GHz CPU, 16 GB RAM, and 64-bit

operating system.

3.4.1 Performance Testing for Problem I and Problem IN

Before proceeding to the testing for Problem I and Problem IN , we estimate

the lower and upper bounds of inventories for each CV in each period using the

three-year withdrawals (2010-2012) of FRS. The initial inventory level I0j for each

CV and the inventory lower bound Oj for all months of each CV are set as zero.

Before the computational run, we know that the inventory upper bound Uj and the

unit holding cost may be the two crucial cost drivers that have great impacts on the

total cost. Although Problem I theoretically optimizes the operations of FRS such

that the total cost for the CSC is minimized, we still want to check whether current

inventory upper bound for each CV set by the FRS is reasonable. Hence, we first run

both Problem I and Problem IN with varying inventory upper bound Uj and varying

unit holding cost h to check how different cost components might change. Since

Problem I is focusing on cost minimization, the major results presented below for

this problem are related to only the cost. Detailed cost components for both Problem

I and Problem IN (for 2010, 2011 and 2012) are provided in the Appendix B.3.

The cost components for increasing unit holding cost and varying inventory upper

bound (one, two or three weeks of payable days) for Problem I with three-year
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Figure 3.8: Cost Components for Problem I When Oj = 0 and Uj = 1, 2, 3 Weeks of
Payable Days for 2010, 2011 and 2012.
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demand data are shown in Figure 3.8. Interestingly, for varying inventory upper

bounds, for each year’s demand and the same unit holding cost, the solution and

each type of cost for Problem I remain the same. This is because when Uj equal to

3 weeks of payable days, the optimal inventory solutions are within the 1 week of

payable days range. This result answers our first research question and confirms that

the current inventory upper bound Uj (1 week of payable days above the safety stock

level for each CV) set by the CPO is reasonable, which allows the FRS to continue

using the current inventory upper bound to manage the inventory for any individual

CV. This result is summarized in the following observation.

Observation 1 The inventory upper bound Uj does not have any effect on the opti-
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mal solution for Problem I, and therefore, the current inventory upper bound set by

the CPO is reasonable.

A lower bound which is a safety stock Sj can be determined by the periodic

review model as described in Appendix B.1.

We also observe that when unit inventory holding cost increases, the total inven-

tory holding cost for Problem I increases until a point, and then starts decreasing.

One reason is that, with certain unit holding cost (when h < $500), the inventory

level remains the same to minimize the total cost. Thus, within low unit holding cost

range, the total inventory holding cost for Problem I increases with increasing unit

holding cost. However, when h becomes too large, to minimize the total cost, inven-

tory levels decreases dramatically, especially when h = 1000, because no inventory

is being held in this case. This result is summarized in an observation below.

Observation 2 The holding cost is concave with increasing unit holding cost h.

In addition, when the unit inventory holding cost increases, for Problem I, both

new coin production cost and transportation cost increase. This indicates that, when

h becomes larger, to satisfy the demand with minimum total cost, more new coins are

produced and more circulating coin transshipments are made. This result suggests

that the FRS should select the appropriate level of the unit holding cost for CVs.

Based on the total cost curve, it is reasonable for the manager of each RBO to keep

the unit holding cost between $150 and $250 for a low total cost. This result is

summarized in the following observation.

Observation 3 For Problem I, both new coin production cost and transportation

cost increase with increasing unit holding cost h, and therefore the holding cost needs

to be managed properly.
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Next, for each year’s demand data set, we run Problem I and Problem IN to

compare the β values and the total costs obtained from these problems. Results of β

values and total cost ratio are shown in Tables 3.2, 3.3, and 3.4, respectively, for 2010,

2011, and 2012. Results show that Problem I not only minimizes the total cost, but

also gives low β value, especially for h ≤ 250. Some of the other interesting results

are summarized in the following remark (the details are provided in the Appendix).

Table 3.2: Computational Results for Varying Inventory Upper Bound for Problem
I and Problem IN When Oj = 0 With 2010 Demand Data.

Inventory Unit Critical Critical Total Total Total
Upper Holding Ratio Ratio Cost ($M) Cost ($M) Cost
Bound Cost ($) Problem I Problem IN Problem I Problem IN Ratio

Uj h βI βIN
Π∗(xt

ij , I
t
j) Π∗

N (xt
ij , I

t
j)

Π∗
N

(xt
ij

,It
j
)

Π∗(xt
ij

,It
j
)

150 1.1626 1.1626 145.79 305.9 2.0982
175 1.1626 1.1626 148.09 308.63 2.0841

1 Weeks 200 1.1626 1.1626 150.32 311.35 2.0712
of 225 1.1645 1.1626 152.46 314.08 2.0601

Payable 250 1.1645 1.1626 154.48 316.8 2.0508
Days 500 1.2213 1.1626 169.83 344.04 2.0258

750 1.3821 1.1626 175.88 371.29 2.111
1000 1.4227 1.1626 177.78 398.53 2.2417
150 1.1626 1.1626 145.79 322.37 2.2112
175 1.1626 1.1626 148.09 324.75 2.1929

2 Weeks 200 1.1626 1.1626 150.32 327.13 2.1762
of 225 1.1645 1.1626 152.46 329.51 2.1613

Payable 250 1.1645 1.1626 154.48 331.89 2.1484
Days 500 1.2213 1.1626 169.83 355.7 2.0258

750 1.3821 1.1626 175.88 379.5 2.111
1000 1.4227 1.1626 177.78 403.3 2.2417
150 1.1626 1.1626 145.79 328.14 2.2508
175 1.1626 1.1626 148.09 330.52 2.2319

3 Weeks 200 1.1626 1.1626 150.32 332.9 2.2146
of 225 1.1645 1.1626 152.46 335.28 2.1991

Payable 250 1.1645 1.1626 154.48 337.66 2.1858
Days 500 1.2213 1.1626 169.83 361.47 2.1284

750 1.3821 1.1626 175.88 385.27 2.1905
1000 1.4227 1.1626 177.78 409.07 2.301

Remark 3 For Problem IN , when unit inventory holding cost increases, both new

coin production cost and transportation cost remain the same and the inventory hold-

ing cost increases. When inventory upper bound increases from 1 week of payable days

to 2 weeks of payable days, the transportation cost increases and the holding cost de-

creases. However, when inventory upper bound increases from 2 weeks of payable

days to 3 weeks of payable days, although the transportation cost keeps increasing,

the holding cost does not change. In addition, there is no direct relation between in-

ventory upper bound and transportation cost (may increase or decrease), and between
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Table 3.3: Computational Results for Varying Inventory Upper Bound for Problem
I and Problem IN When Oj = 0 With 2011 Demand Data.

Inventory Unit Critical Critical Total Total Total
Upper Holding Ratio Ratio Cost ($M) Cost ($M) Cost
Bound Cost ($) Problem I Problem IN Problem I Problem IN Ratio

Uj h βI βIN
Π∗(xt

ij , I
t
j) Π∗

N (xt
ij , I

t
j)

Π∗
N

(xt
ij

,It
j
)

Π∗(xt
ij

,It
j
)

150 1.0643 1.0643 140.34 287.8 2.0507
175 1.0643 1.0643 141.47 288.9 2.0421

1 Weeks 200 1.0643 1.0643 142.56 290 2.0342
of 225 1.0643 1.0643 143.62 291.1 2.0269

Payable 250 1.0643 1.0643 144.63 292.21 2.0204
Days 500 1.0696 1.0643 154.36 303.21 1.9643

750 1.1783 1.0643 158.68 314.22 1.9802
1000 1.2058 1.0643 160.1 325.22 2.0314
150 1.0643 1.0643 140.34 290.39 2.0692
175 1.0643 1.0643 141.47 291.31 2.0592

2 Weeks 200 1.0643 1.0643 142.56 292.23 2.0499
of 225 1.0643 1.0643 143.62 293.15 2.0412

Payable 250 1.0643 1.0643 144.63 294.07 2.0333
Days 500 1.0696 1.0643 154.36 303.28 1.9648

750 1.1783 1.0643 158.68 312.49 1.9693
1000 1.2058 1.0643 160.1 321.7 2.0094
150 1.0643 1.0643 140.34 293.34 2.0902
175 1.0643 1.0643 141.47 294.26 2.08

3 Weeks 200 1.0643 1.0643 142.56 295.18 2.0706
of 225 1.0643 1.0643 143.62 296.1 2.0617

Payable 250 1.0643 1.0643 144.63 297.02 2.0537
Days 500 1.0696 1.0643 154.36 306.23 1.9839

750 1.1783 1.0643 158.68 315.44 1.9879
1000 1.2058 1.0643 160.1 324.65 2.0278

inventory upper bound and holding cost (may decrease or stay the same).

Since the average total cost ratio for all cases for three years of data is 2.0423, the

total cost for Problem IN is approximately twice as that for Problem I. Therefore,

β is clearly not a good performance measure even though the FRS can use it to

minimize the new coin production quantity. Instead, it is better for the FRS to use

the total cost as the performance measure for the CSC in order to minimize the total

cost for the CSC and limit the new coin production quantity simultaneously.

In addition, we also observe that Problem I performs better when h is small from

the perspective of giving low new coin production quantity. This is consistent with

Observation 3, which indicates that when h is small, the FRS may request CVs to

hold more coins to satisfy the demand, so fewer new coins are needed to be produced.

However, when h is large, holding too many coins is too costly and it is better for the

FRS to order more new coins from the Mint to satisfy the demand with minimum

total cost, which makes β large. This result and some other results are summarized
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Table 3.4: Computational Results for Varying Inventory Upper Bound for Problem
I and Problem IN When Oj = 0 With 2012 Demand Data.

Inventory Unit Critical Critical Total Total Total
Upper Holding Ratio Ratio Cost ($M) Cost ($M) Cost
Bound Cost ($) Problem I Problem IN Problem I Problem IN Ratio

Uj h βI βIN
Π∗(xt

ij , I
t
j) Π∗

N (xt
ij , I

t
j)

Π∗
N

(xt
ij

,It
j
)

Π∗(xt
ij

,It
j
)

150 1 1 120.9 219.6 1.8164
175 1 1 123.17 221.87 1.8013

1 Weeks 200 1 1 125.44 224.14 1.7868
of 225 1.0057 1 127.71 226.42 1.7729

Payable 250 1.0057 1 129.92 228.69 1.7602
Days 500 1.1546 1 140.81 251.42 1.7855

750 1.2372 1 143.43 274.15 1.9114
1000 1.2581 1 144.35 296.88 2.0567
150 1 1 120.9 240.22 1.9869
175 1 1 123.17 242.49 1.9687

2 Weeks 200 1 1 125.44 244.76 1.9512
of 225 1.0057 1 127.71 247.04 1.9344

Payable 250 1.0057 1 129.92 249.31 1.919
Days 500 1.1546 1 140.81 272.04 1.932

750 1.2372 1 143.43 294.77 2.0551
1000 1.2581 1 144.35 317.5 2.1995
150 1 1 120.9 239.51 1.9811
175 1 1 123.17 241.78 1.963

3 Weeks 200 1 1 125.44 244.05 1.9456
of 225 1.0057 1 127.71 246.33 1.9288

Payable 250 1.0057 1 129.92 248.6 1.9135
Days 500 1.1546 1 140.81 271.33 1.9269

750 1.2372 1 143.43 294.06 2.0502
1000 1.2581 1 144.35 316.79 2.1946

in an observation and in a remark below.

Observation 4 Problem I achieves the same β values for low unit inventory holding

cost, but when the unit inventory holding cost is high, Problem I has larger β values

than Problem IN .

Remark 4 For any inventory upper bound, with increasing unit holding cost, the

total cost ratio decreases first and then start increasing. For the same unit holding

cost, the total cost ratio for high inventory upper bound is higher than that for the

low inventory upper bound.

3.4.2 Performance Testing of Procedure Rolling Horizon and µ-Robust Solution

In this subsection, we examine performances of Procedure Rolling Horizon and

µ-Robust Solution assuming normally distributed demand. The mean demand is

estimated as the average of the FRS’s three-year demand data (2010-2012) for each

CV in each period. We assume that the standard deviation σt
j of demand for each
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CV j in each period t is within a certain percentage range of the mean demand.

Specifically, we assume 6σt
j can be equal to 4%, 6% or 8% of the mean demand. Then,

we use the mean and the standard deviation of demand for each CV in each period

to randomly generate normally distributed demand data for testing. To evaluate the

performance of Procedure Rolling Horizon, 15 instances in total (5 instances for each

case of σt
j with varying percentages of the mean demand) are tested. To evaluate µ-

Robust Solution, for each case of 6σt
j with the varying percentages of mean demand,

we first test 50 sample paths and then extend it to 100 sample paths.

Results for Procedure Rolling Horizon and µ-Robust Solution are presented in

Tables 3.5 and 3.6, respectively. In Table 3.5, we define CRH as the total cost for 12-

month rolling horizon obtained from Procedure Rolling Horizon. Further, we define

C∗ as the total cost assuming that the realized demand for 12-month rolling horizon

for all CVs are known, which serves as a benchmark. Here, GAP
def
= 100·|CRH−C∗|

C∗ %. In

the µ-Robust Solution, µ represents how the cost generated from the robust solution

deviates from the minimum cost if we optimize for each sample path. Therefore, we

can compare GAP in the Procedure Rolling Horizon to µ in the µ-Robust Solution

to analyze their performances.

Table 3.5: Performance Testing for Problem I Using Procedure Rolling Hori-
zon(PRH) With Normally Distributed Demand Data.

Range of 6σt
j Min GAP Max GAP Average GAP

4% of the mean demand 8.78% 9.16% 8.97%
6% of the mean demand 9.16% 9.76% 9.35%
8% of the mean demand 9.59% 10.04% 9.84%

As shown in Tables 3.5 and 3.6, with more demand variation (i.e., increase in

standard deviation for demand), the solution of Procedure Rolling Horizon is less

sensitive compared to that of µ-Robust. Hence, Procedure Rolling Horizon is an

effective approach for the FRS to deal with uncertain demand since the total cost

difference is less than 10% of the actually realized demand scenarios even in the
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Table 3.6: Performance Testing for Problem I Using µ-Robust Solution With Nor-
mally Distributed Demand Data.

Range of 6σt
j Number of Sample Paths µ

4% of the mean demand 50 4.36%
100 4.83%

6% of the mean demand 50 6.38%
100 7.15%

8% of the mean demand 50 7.54%
100 8.96%

present of high uncertainty in demand (i.e., 8% deviation from the mean). However,

our results also illustrate that the average GAP for Procedure Rolling Horizon for

each value of σt
j is higher than that for µ-Robust Solution. The difference is more

significant when the standard deviation is not large (i.e., 4% deviation from the

mean). Overall, the µ-Robust Solution can effectively deal with uncertain demand:

it generates a cost that is less than 9% different from the optimal even in the worst

case scenarios with high uncertainty in demand (i.e., 8% deviation from the mean).

In summary, our computational study suggests that even with a large number of

randomly generated sample paths, µ is still much smaller compared to the GAP for

Procedure Rolling Horizon. Hence, although Procedure Rolling Horizon is effective

for the FRS to deal with demand uncertainty, µ-Robust Solution performs better.

In addition, µ-Robust Solution system is perhaps easier to implement, because it

does not require updating and resolving the problem in multiple periods. Clearly, a

trade-off in implementing the µ-Robust Solution is that it require more computation

upfront. However, given its benefits, we recommend FRS to prefer µ-Robust Solution

over the Procedure Rolling Horizon.

3.5 Problem II : Demand Side Problem

DIs have the following options for the circulating coins received from the cus-

tomers: (i) deposit those coins at the FRS and withdraw packaged coins, (ii) send

those coins to a 3PLP for packaging into rolls of coins. Customers at a DI withdraw
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coins in the form of packaged coins (i.e., rolls of coins). DIs have to pay an addi-

tional packaging fee at the FRS to receive each roll of packaged coins in addition to

its face value. This packaging fee is higher for a DI than the cost of locally packaging

coins with the aid of a 3PLP. From a DI’s point of view, we study the question: in

one the FRS’s region, based on the forecast of this DI’s aggregate demand (for each

denomination of coins) at all of its branches, how would a DI manage its unpackaged

and packaged coins facing the above two options? Note that the DI deals with only

one CV (RBO or CT) in the region. Figure 3.9 illustrates the general framework of

Problem II.

Figure 3.9: Framework of Problem II.
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The specific structure of Problem II is showed in Figure 3.10. After receiving

coins from commercial and individual customers, each DI’s branch combines various

denominations of coins in bags and deposits bags of circulating coins (each bag con-

tains multi-denomination coins) back to the DI. The DI’s branches send the received

coins to the DI’s head office’s unpackaged coin inventory, which can be sent to the

FRS (either an RBO or a CT) or its own packaging process to roll coins. The DI

packaging process is operated by a local third party logistic provider (3PLP). Since

84



the packaging fee charged by 3PLPs is lower than that charged by the FRS, each DI

has the incentive to hire the 3PLP to package its unpackaged coins into packaged

coins. After the packaging process either in the FRS or in the DI, coins are repack-

aged and each bag of packaged coins contains only one denomination. Next, packaged

coins from the DI’s packaged coin inventory and from the FRS are combined in the

DI’s packaged coin inventory to satisfy the demand of this DI’s branches. Since DIs’

ordering cycle is much shorter than RBOs’, we assume that on average, each DI’s

ordering and supply cycle is one week. Thus, we consider a weekly packaging horizon

for each DI.

Figure 3.10: Structure of DIs’ Ordering and Packaging Process in Problem II.
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3.5.1 Network Flow Model for Problem II of One Denomination

We first describe the construction of the minimum cost flow (MCF) network

model and then illustrate it with an example. In the construction, we start with one

DI containing one node U for the unpackaged coin inventory and one node P for the

packaged coin inventory plus duplicate nodes for the unpackaged and packaged coin
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inventory in different ordering and receiving periods. A source node O is included

for providing the deposits from the DI’s branches and packaged coins supplied by the

FRS. In the end, a sink node S is also added for receiving withdrawals of the DI’s

branches and unpackaged coins send from the DI to the FRS for packaging. Now, we

complete the whole network for a DI’s coin ordering, packaging, holding, and supply.

Notation needed for Problem II is in Table 3.7. An example for one DI is shown in

Figure 3.11 considering a 3-period rolling horizon.

Figure 3.11: An Example of Problem II for One DI.
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We now describe each arc with its lower bound, upper bound, and unit cost for

the flow on that arc. We assume that there is no beginning and ending period coin

inventory, neither unpackaged nor packaged, left in the DI. In other words, I0u = I0p

= ITu = ITp = 0. We also assume that at the beginning of period 1 (end of period

0) and at the end of period T, neither the FRS nor the 3PLP receives unpackaged

coins from the DI or sent packaged coins to the DI. Thus, X0
u = XT

u = X0
p = XT

p =

Y 0
u = Y T

u = 0. Note that in the readily, each DI needs to keep a certain amount of
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Table 3.7: Parameters and Variables for Formulating the MCF Model of Problem II.

Parameters

T Number of periods in the planning horizon.
Dt The deposits of coin (in bags) during period t at the DI, t = 1, 2, . . . , T .
W t The withdrawals of coin (in bags) during period t at the DI, t =

1, 2, . . . , T , k = 1, 2, . . . , K.
hu The per bag per period holding cost for the unpackaged coin inventory.
hp The per bag per period holding cost for the packaged coin inventory.
c The per bag transportation and handling cost incurred for the DI for

making deposits (or withdrawals) of coins at the FRS.
f The per bag fee paid by the DI (in addition to the face value) to the FRS

for purchasing packaged coins.
g The per bag packaging fee paid by the DI to the 3PLP.

Variables

X t
u The amount of unpackaged coins (in bags) shipped from the DI to the

FRS at the end of period t, t = 0, 1, 2, . . . , T .
X t

p The amount of packaged coins (in bags) shipped from the FRS to the DI
at the end of period t, t = 0, 1, 2, . . . , T .

Y t
u The amount of unpackaged coins (in bags) shipped from the DI to the

3PLP for packaging at the end of period t, t = 0, 1, 2, . . . , T .
I tu The unpackaged coin inventory (in bags) at the end of period t at the DI,

t = 0, 1, . . . , T . For each period t, I tu is the unpackaged coin inventory
level right after the DI ships out X t

u to the FRS and Y t
u to the 3PLP.

I tp The packaged coin inventory (in bags) at the end of period t at the DI,
t = 0, 1, . . . , T . For each period t, I tp is the packaged coin inventory level
right after the DI receives X t

p and Y t
u bags of packaged coins from the

FRS and from the 3PLP.

packaged coins as safety stock. Here, we assume that this safety stock is zero, which

will not affect the analysis.

• An arc from source node O to node U t, where U t represents the unpackaged

coin inventory at the end of period t. The lower bound, upper bound and unit

cost of this arc of deposits from the DI’s branches are Dt, Dt, and 0.

• An arc from source node O to node P t, where P t represents the packaged coin

inventory at the end of period t. For t = 0 and t = T , there is no flow on this
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arc. For 0 < t < T , the lower bound, upper bound and unit cost of this arc

are 0, ∞, and c+ f .

• An arc from node U t−1 to node P t represents a flow from the DI’s unpackaged

coin inventory to its own packaging process. For t = 0 and t = T , there is no

flow on this arc. For 0 < t < T , the lower bound, upper bound and unit cost

of this arc are 0, ∞, and g. Note that in the reality, g < (c+ f).

• An arc from node U t−1 to node U t represents a flow of unpackaged coin inven-

tory carried from on period to the next. The lower bound, upper bound and

unit cost of this arc are 0, ∞, and hu. Note that since I0u = ITu = 0, they are

not included in the network.

• An arc from node U t to the sink node S represents a flow of unpackaged coin

inventory sent to the FRS for packaging at the end of period t. For t = 0 and

t = T , there is no flow on this arc. For 0 < t < T , the lower bound, upper

bound and unit cost of this arc are 0, ∞, and c.

• An arc from node P t−1 to node P t represents a flow of packaged coin inventory

carried from on period to the next. The lower bound, upper bound and unit

cost of this arc are 0, ∞, and hp. Note that since I0p = ITp = 0, they are not

included in the network.

• An arc from node P t to the sink node S represents a flow of packaged coin

withdrawal from the DI’s branches. The lower bound, upper bound and unit

cost of this arc are W t, W t, and 0.

The objective of the MCF model is to send
∑

t W
t from source node O to sink

node S at a minimum cost. The MIP formulation for Problem II is presented below.
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MIP formulation for Problem II

The objective function minimizes the total cost for one specified DI, which includes

coin packaging cost (either paid to the FRS or paid to the 3PLP), circulating coin

transportation and handling cost between the DI and the FRS, and the packaged and

unpackaged coin inventory holding cost. The last two terms compute the packaged

and unpackaged coin inventory holding cost. Note that when considering the average

packaged coin inventory during the period j, the beginning packaged coin inventory

level is I t−1
p and the instantaneous packaged coin inventory level right before the end

of period j is I t−1
p − W t. Thus, the average packaged coin inventory level during

the period j is equal to the half of the sum of the beginning inventory and the

instantaneous ending inventory. Similarly, for the average unpackaged coin inventory

during the period j, the beginning unpackaged coin inventory level is I t−1
u and the

instantaneous unpackaged coin inventory level right before the end of period j is

I t−1
u + Dt. Thus, the average unpackaged coin inventory level during period j is

equal to the half of the sum of these two.

Problem II:

Min
T−1∑
t=1

f ·X t
p +

T−1∑
t=1

g · Y t
u + c · (

T−1∑
t=1

X t
p +

T−1∑
t=1

X t
u)

+ hu ·
T∑
t=1

(I t−1
u +

Dt

2
) + hp ·

T∑
t=1

(I t−1
p − W t

2
)

Subject to:

Constraints (3.31)-(3.32) are the coin flow balance equations.

I tp = I t−1
p −W t +X t

p + Y t
u , ∀t (3.31)

I tu = I t−1
u +Dt −X t

u − Y t
u , ∀t (3.32)

Constraints (3.33) enforce the initial inventory level and the inventory level in the

end of the planning horizon to be zero.
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I0p = I0u = ITp = ITu = 0 (3.33)

Constraints (3.34) are non-negativity constrains.

All variables are nonnegative & ingeter, ∀t (3.34)

Lemma 5 Solving the minimum cost flow problem constructed above is equivalent

to optimizing DIs’ coin ordering, packaging, holding and supply process.

Proof: Since each feasible integer flow corresponds to a feasible sourcing for DIs’

coin receiving, transportation, and inventory management process and vice versa, the

optimal solution to the minimum cost flow problem constructed above is equivalent

to the optimal process for DIs’ for Problem II. This result holds in general.

Property 4 Since the flows in MCF are integers with integer lower and upper ca-

pacity limits, each feasible integer flow corresponds to a feasible shipment of coins

for Problem II and vice versa.

3.5.2 Problem II with “Volume Discount” for Packaging

Here the 3PLP offers the DI a “volume discount” contract for packaging. That is,

the packaging fee charged by the 3PLP decreases when the volume of unpacked coins,

v bags per period, sent to the 3PLP reaches a threshold τ . Specifically, if v < τ ,

the DI pays 3PLPs of g per bag. Otherwise if v ≥ τ , each bag will be charged at a

lower packaging fee, ḡ, where ḡ < g. This is also known as all-units discount scheme.

Problem II can be stated as follows: given mean deposits and mean withdrawals, Dt

and W t, t = 1, 2, . . . , T , at a DI, find the decision σ = (X t
p, X

t
u, Y

t
u |t = 1, 2, . . . , T )

that minimizes the total cost, Φσ under the “volume discount” contract. We show

below that Problem II with “ volume discount” is NP-hard. We also investigate the

impact of “volume discount” on the DI’s the total cost.
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Theorem 1 The decision problem corresponding to Problem II with “ volume dis-

count” is NP-complete.

Proof: The proof is placed in Appendix B.3.

3.6 Conclusion

This is the first study to address operational issues within a CSC from both the

supply side and the demand side. We view the CSC as a closed-loop supply chain with

integrated bidirected flows and to investigate the CSC from optimization perspectives

to increase efficiency and effectiveness in ordering, producing, packaging, distributing

and managing inventory of coins. For all network mathematical models developed

in this study, the bidirected flows of coins are captured and an effective integrated

plan for the management of coin supply over the planning horizon is developed.

For the supply side Problem I, the FRS’s current operation and its performance

measure (net pay) are analyzed. A decision support model (based on minimum cost

flow formulation) is developed from the FRS’s perspective to minimize the total cost

for the CSC with reasonably low new coin production quantity. This is possibly

because optimal solutions effectively use inter-bank transshipment of coins and de-

posits of circulating coins collected from the public to meet the demand partially.

We show that focusing solely on the current performance measure “net pay” for coin

supply planning could be costly. In addition, we develop a 2-month Rolling Horizon

procedure based on the FRS’s current operating policy. Our computational results

indicate that the performance of the procedure is remarkable in the sense that the

total cost difference is less than 10% of the actually realized demand scenarios even

in the present of high uncertainty in demand (8% deviation from the mean). To

effectively conquer the demand uncertainty, a µ-Robust Solution planning system is

developed to solve the stochastic version of Problem I with uncertain demand. Our
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computational study suggests that even with a large number of randomly generated

sample paths, the performance of the µ-Robust solution is acceptable and reason-

able. The robust solution generates the cost that is less than 9% different from the

worst case scenarios even with high uncertainty in demand (8% deviation from the

mean). Therefore, it will perform much better in the actual application. The future

research may focus on adopting the µ-Robust solution in Rolling Horizon procedure

and evaluating its performance.

Problem II investigates the demand side problem from DIs’ perspective. A mini-

mum cost flow model is developed to assist each DI to efficiently manage the circula-

tion of its packaged and unpacked coin inventory. We also investigate the complexity

of Problem II in the presence of “volume discount” offered by the local 3PLP to the

DI for packaging and prove that it is NP-hard.

The need and desire to continually reduce operating costs are common threads

across the coin supply chains around the world. Other coin supply chains may also

face similar operational issues encountered at the FRS and DIs. There does not

exist academic literature dealing with operations management issues covered in this

study. Despite the increase in the use of electronic payment mechanism, the growth

of usage of physical banknotes and coins are increasing around the world. This

paper demonstrates the use of a modeling approach that not only meets the need

for effective and efficient management of coin supply in the U.S., but also has the

potential to be applied to a variety of similar coin supply chains around the world.
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4. LOCATION AND CAPACITY OPTIMIZATION FOR ELECTRON BEAM

FACILITY FOR PHYTOSANITARY TREATMENT OF MEXICAN IMPORT

COMMODITIES

4.1 Introduction

We analyze the problem of providing electron beam (eBeam) irradiation services

for fresh produce imported from Mexico to the U.S. through the Texas/Mexico bor-

der. With increasingly restrictive regulations or complete prohibition on the use

of many chemical fumigants (such as methyl bromide) for pest control, irradiation

is becoming a necessary phytosanitary treatment technology to meet strict import

standards. Technologies commonly used for irradiation include gamma rays (often

generated by radioactive cobalt-60), X-rays, and eBeam. Irradiation has practical

benefits when integrated within an established system for the safe handling and dis-

tribution of food. Thus, interest in using it for pathogen control and maturation

inhibition has increased globally. This interest is demonstrated by the International

Plant Protection Convention (IPPC), which established International Standard for

Phytosanitary Measures No. 18 (ISPM 18) to provide guidelines for the use of irra-

diation in phytosanitary treatments to control pests in fresh produce.

The volume of irradiated imported produce entering the U.S. has grown by almost

4000% (from 262,000 kg to 10,119,500 kg) between 2007 and 2014 (Jeffers 2015).

The gamma ray irradiation facilities in Mexico still account for the majority of this

produce. However, the amount of Mexican commodities treated at the eBeam facility

in College Station, Texas, has increased by about 175% between 2014 and 2015 (Wall

2015).

Many technologies have been used in the U.S. to prevent the accidental intro-
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duction of pests and pathogens into cultivated and wild plants, including drying,

smoking, salting, heat treatments (hot air, hot water dip, and steam), cold treat-

ments (refrigeration), and chemical fumigation (phosphine gas, methyl bromide).

Food irradiation is the latest technology to be used for this purpose. A relatively low

dose of radiation can be effective in pest and pathogen control, thereby helping in

food-borne disease prevention. A summary of the advantages and the disadvantages

of different phytosanitary treatments can be found in Table 4.1 (Hallman 2007, 2011;

Neven 2010).

Table 4.1: Comparison of Phytosanitary Treatments

Methods Technologies Advantages Disadvantages

1) Most widely used
disinfestation treatment

Cold Freezing 2) Easy to manage in logistics 1) Not effective for all
Treatment 3) Wide tolerance range types of pests

4) Low cost 2) Long treatment duration
5) Organic certified

1) Effective in disinfection
for fresh fruits and vegetables 1) Not tolerated well

Hot air 2) Short treatment duration by temperate fruits
Heat Hot water dip 3) Can be performed on a large 2) Moderate difficulty

Treatment Vapor heat scale and in flow-through in logistics
systems 3) Difficult to maintain

4) Low cost pulp temperatures
5) Organic certified

1) Effective in pest 1) Detectable chemical residues
Chemical Phosphine gas and pathogen control 2) Import regulation limitation
Fumigation Methyl bromide 2) Easy to manage in logistics 3) Can be used only for some

3) Short treatment duration fresh fruits and vegetables
4) Low cost 4) Not organic certified

1) Effective in pest
and pathogen control

Gamma rays 2) The most widely tolerated 1) Moderate cost
Irradiation (cobalt-60) phytosanitary treatment 2) Moderate difficulty

X-rays for fruits in logistics
EBeam 3) Can be applied after 3) Not organic certified

packing and palletizing
4) Short treatment duration

The Food and Drug Administration (FDA), the U.S. Department of Agriculture
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(USDA), the U.S. Centers for Disease Control and Prevention (CDC), and the World

Health Organization (WHO) have all accepted the safety of irradiated foods. The

USDA Animal and Plant Health Inspection Service (USDA-APHIS) recommends

that irradiation of fresh fruits and vegetables be considered for import permits from

other countries. Increasingly in recent years, more kinds of food consumed in the

U.S. are undergoing irradiation treatment to eliminate risks associated with micro-

bial contamination. More than 250 million pounds of irradiated food is consumed

annually in the U.S. (Eustice 2014). Specifically, approximately 18 million pounds of

frozen and fresh ground beef, 8 million pounds of produce, and 175 million pounds

of spices are irradiated annually to control food-borne pathogens and to remove

infestations (Pillai and Shayanfar 2015).

4.1.1 Food Irradiation Process

Food irradiation is the process of exposing specific foods to a carefully controlled

amount of energy delivered as gamma rays (cobalt-60), X-rays, or electrons. The

advantages and the disadvantages of these technologies are summarized in Table 4.2.

There is a long and successful history of using gamma rays (cobalt-60) for food

irradiation for phytosanitary treatment. However, gamma ray technology suffers

from key drawbacks in processing as well as other challenges associated with trans-

portation, storage, disposal, and safeguarding a radioactive substance. Given the

global security climate, the chances of large gamma ray irradiation facilities being

approved are low (National Research Council 2008). Currently, the largest gamma

ray irradiation facility in North America for food treatment is in Matehuala, Mexico.

Similar to gamma rays, a major advantage of using X-rays is that entire pallets

can be irradiated because this technology has high penetrating depth (60 - 400 cm),

depending upon the energy used (Curry et al. 2000). X-ray technology overcomes
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Table 4.2: Comparison of Irradiation Technology

Technologies Advantages Disadvantages

1) Well-established system 1) Replenishment of cobalt-60
2) Widely used phytosanitary 2) Low throughput

Gamma rays treatment 3) High acquisition cost of cobalt-60
(cobalt-60) 3) Low operating cost 4) Slow dose rate

4) High penetrating power 5) Moderate difficulty in logistics
6) Difficulty in getting the approval

1) Low throughput
1) High penetrating power 2) Slow dose rate

X-rays 2) Uses commercial electricity 3) High capital investment cost
4) Low energy utilization efficiency
5) Moderate difficulty in logistics

1) High throughput
2) High dose rate
3) Low capital investment 1) Low penetrating power

EBeam and operating costs 2) Only suitable for certain
4) Uses commercial electricity dimensions of packaging
5) High energy utilization

efficiency
6) Easy to manage in logistics

some of the challenges associated with gamma rays by using commercial electricity

to generate the sanitizing beam. However, there are still great disadvantages to the

use of X-ray technology for phytosanitary treatment (Table 4.2). The only X-ray

facility that is dedicated to phytosanitation is located in Kona, Hawaii.

EBeam technology, also known as beam pasteurization or electronic pasteuriza-

tion, is a non-thermal treatment of food products and ingredients using electron

beam linear accelerators to convert commercial electricity to highly energetic elec-

trons. Compared to gamma rays and X-rays, the greatest advantages for eBeam are

the high throughput (ten times more efficient than the generation of X-rays), the

high dose rate (at least ten times higher than that of gamma rays or X-rays), the

low capital investment and operating costs (much lower capital equipment cost than

gamma rays or X-rays; and at least ten times lower operating cost than X-rays, but

slightly more than gamma rays). The major disadvantage of eBeam technology is its
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short penetration depth. The single 10 MeV eBeam, which is typical for phytosani-

tary treatment, can barely reach a depth of approximately 5 cm in water or of 10 cm

at a density of 0.5 g/cm3 (Diehl 1999). Thus, eBeam is not suitable for bulky food

packaging such as large crates used for shipping fruit. Single retail-ready packages

of low density fruits and vegetables (i.e., mango, guava, sweet lime, tangerine, and

manzano pepper) are currently treated in two large eBeam facilities in the U.S. in

Sioux City, Iowa, and College Station, Texas. EBeam technology has the following

characteristics:

• Green, chemical free technology: no chemicals are used for preservation of fresh

foods.

• No environmental issues: eBeam has none of the environmental issues asso-

ciated with radioactive waste, nor does it have challenges related to costs,

transportation, storage, containment, and disposal.

• Use of commercial electricity: no replenishment of the irradiation source is

needed.

• No loss of nutrients or compromise of food quality: eBeam does not change the

temperature and does not alter the appearance, taste, or chemical makeup of

the food product or its packaging.

• Effective: eBeam reduces or eliminates pathogens and pests, depending on the

dose that is delivered.

• High throughput process: eBeam processing is at least ten times faster than

conventional radioactive isotopes because it is based on electricity and not

natural isotope decay.
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• Easy to use and control: eBeam irradiation can be applied after packaging, and

the whole process is automatically controlled.

• Cost-effective: depending on the commercial processing contract type, eBeam

costs 5 to 8 cents to irradiate one pound of food, which is lower than using

X-rays or gamma rays (approximately 10 cents per pound).

Table 4.3: Foods Currently Permitted to be EBeam Irradiated Under FDA’s Reg-
ulations. [Source: FDA 2015. Regulatory Report: Irradiation of Food Packaging
Materials].

Food Purpose Max. Allowable Dose
Fresh, non-heated Control of trichinella spiralis 1 kGy
processed pork
Fresh fruits Pathogen control, 1 kGy

and vegetables maturation inhibition
All foods Arthropod disinfection 1 kGy

Dry or dehydrated Microbial disinfection 10 kGy
enzyme preparations
Dry or dehydrated Microbial disinfection 30 kGy
spices/seasonings

Fresh or frozen, uncooked Pathogen control 3 kGy
poultry products

Refrigerated, uncooked Pathogen control 4.5 kGy
meat products

Frozen uncooked Pathogen control 7 kGy
meat products
Fresh shell eggs Control of salmonella 3.0 kGy

Seeds for sprouting Control of microbial pathogens 8.0 kGy
Fresh or frozen Control of vibrio species 5.5 kGy

molluscan shellfish and other foodborne pathogens
Fresh iceberg lettuce Control of food-borne pathogens, 4.0 kGy
and fresh spinach and extension of shelf-life

Table 4.3 shows the foods that may be eBeam irradiated in the U.S. Recent studies

find that doses of up to 1 kilogray (kGy) do not affect the quality or sensory attributes

of the fruits (Shayanfar et al. 2015, Smith et al. 2015a, Smith et al. 2015b). Doses

greater than 1 kGy significantly decrease ascorbic acid (vitamin C) concentrations

during fruit storage, but do not affect overall antioxidant concentrations.

4.1.2 Fruit Imports across the Texas/Mexico Border

Food and agricultural trade between the U.S. and Mexico grew quickly after the

North American Free Trade Agreement (NAFTA). According to the Office of the
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United States Trade Representative (USTR) and USDA, U.S. agricultural imports

from Mexico have experienced growth from $2.8 billion in 1994 to $17.7 billion in

2013, among which fruit and vegetables are the two leading categories. As the

U.S.’s largest fruit and vegetables supplier, Mexico’s annual exports of fresh fruits

and vegetables to the U.S. also continues to increase (more than tripled) during the

NAFTA period, approaching $7.7 billion ($9.4 billion including juice) in 2013 (USDA

2015b). This represents 20% of Mexico’s fresh fruits and vegetables production and

36% of the U.S.’s imported fresh fruits and vegetables. Texas is the leading trade

state overall, accounting for about 40% of the total U.S. trade with Mexico. Hence,

at a conservative estimate, $3 billion in fresh fruits and vegetables were imported

from Mexico to the U.S. through Texas in 2013, and this number has been increasing

steadily.

Mexico supplies over 60% of the mangoes imported into the U.S., which is the

world’s largest importer of mangoes: 307,855 tons in 2013. The peak importing

season for mangoes and guavas is from October to February (20 weeks). Total fresh

citrus imports by the U.S. from Mexico, November through October in 2013/2014,

were 42,558 tons, much greater than the imports for the same period in 2012/2013

(USDA 2014). In the last 5 years, with Mexico gaining year-round access to the

U.S. avocado market, the U.S. has become a net importer of avocados, with imports

averaging over 70% of avocado supplies available for domestic consumption (USDA

2012b).

Over 95% of the Mexican agricultural products that cross into the U.S. use nine

principal inland ports of entry. Figure 4.1 shows these. The top crossing for agri-

cultural products is Nuevo Laredo/Laredo, which currently accounts for over a third

of all imports. Colombia/Laredo is the second, followed by Ciudad Juarez/El Paso

and Reynosa/McAllen. Latest estimates on the number of truckloads of fruits and
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vegetables imported from Mexico via border crossing points along the Mexico/Texas

border are around 15,000 (each truckload carries approximately 40,000 lbs.) per

month (USDA-AMS, 2015).

Figure 4.1: Border Crossing Points. [Source: USDA, GAIN Report (2015)]

To protect domestic agriculture from invasive pests and diseases, government

regulations require that four commodities (mango, guavas, citrus, and avocado)—if

untreated—can enter the U.S. only via specific parts of the Texas / Mexico border

(USDA 2012a) and cannot cross or enter particular regions (called prohibited move-

ment areas). After the treatment, either in Mexico or the U.S., treated commodities

can travel anywhere in the U.S. Since this paper seeks to develop a decision support

system for treating fresh fruits imported from Mexican growing regions and shipped

to Texas hubs (San Antonio, Dallas, and Houston), we only consider border crossing

points on the Texas/Mexico border east of El Paso.

This study focuses on these four commodities because they have the largest im-

port quantities and strict prohibited movement areas. We consider the prohibited

movement area for untreated mangoes and guavas (Figure 4.2) in our model because

it is only slightly larger than those for citrus and avocadoes. Thus, in this study

untreated fruits may enter the U.S. from Mexico only through Laredo or Eagle Pass.
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Fruits treated in Mexico may cross the border anywhere from Brownsville to Eagle

Pass.

Figure 4.2: Transit Corridor for Untreated Guavas and Mangoes from Mexico
[Source: USDA. 2012a. Manual for Agricultural Clearance].

4.1.3 Problem Statement

Given potential locations in Mexico and the U.S., our problem is to determine

the optimum number of facilities, to find the locations for the eBeam facilities, to

determine the number of eBeam service lines (i.e., the capacity) for each facility, and

to assign truckloads of fresh fruits leaving Mexican growing regions to eBeam facilities

and to hubs. The objective is to minimize the total weekly cost, which includes (i)

amortized fixed setup cost for opening each eBeam facility, (ii) capacity and operating

costs for running eBeam machines (and corresponding service lines), (iii) processing

cost for treating fruits and vegetables, (iv) transportation cost for moving fruits from
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growing regions in Mexico to hubs in Texas via the eBeam facilities, (v) queuing delay

cost at the eBeam facilities, and (vi) border delay cost.

The paper is organized as follows. The next section reviews the closely related

food supply chain and facility location literature. Section 4.3 states the problem and

the assumptions. A network model and a heuristic used to solve the general problem

are developed in Section 4.4. Section 4.5 describes the computational study, performs

sensitivity analysis, and validates the queuing approximation used in the heuristic.

Section 4.6 describes the factor analysis that corroborates the quantitative results

and the impact of these factors on the cost parameter values. Section 4.7 concludes

the paper and provides future research directions.

4.2 Literature Review

This study interacts with several streams of literature that include food safety,

food supply chains, agricultural trade, facility location, network flow, queueing the-

ory, and transportation. Thus, the study contributes to the literature by connecting

multiple areas of research. For the sake of brevity, this section reviews the two most

closely related streams of literature that impact our methodology, and it positions

our research with respect to them: (i) food supply chains for fresh produce (including

the U.S./Mexico agricultural trade) and (ii) facility location problems.

4.2.1 Food Supply Chains for Fresh Produce

Although supply chain management has been intensively studied in the litera-

ture, food supply chains for fresh produce (i.e., fruits, flowers, and vegetables) have

been studied only in the last decade. Fresh fruit supply chains are competitive and

dynamic with many uncertainties related to fruit safety treatment, foodbone disease,

production, and demand, which add complexity in trade, logistics, and transporta-

tion. Soto-Silva et al. (2015) review the literature on operations research models that
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apply to fruit supply chains (FSC). They conclude that only a few papers are focused

on supply chain structures and that there is a lack of holistic approaches for the de-

sign and management of FSC. We review a few recent studies that investigate and

analyze food supply chains for fresh produce based on the decision type (planting,

harvesting, production, distribution, or inventory), the decision level (operational,

tactical, or strategic), and the modeling approach.

A few studies address issues for the upstream stages of the FSC. From the oper-

ational level, Ampatzidis et al. (2014) apply queueing theory (an M/M/s queueing

system in one fruit harvesting location) to a machine repair model and use a simula-

tion to analyze the performance of the fruit harvesting process. Their paper aims at

finding the optimal resource allocation, e.g., machines and labor, in a harvest of fresh

fruits. Our study has the similarity of considering an M/D/s queueing system with

FCFS at each eBeam facility, but multiple decisions (i.e., facility location-allocation,

capacity optimization, transportation, and distribution with import and regulation

constraints) are made through an integrated nonlinear mathematical model and a

heuristic under a very different setting. Cittadini et al. (2008) analyze the conse-

quences of different strategic and tactical options (planting, harvesting, and produc-

tion) of an FSC in Argentina. They develop a dynamic multi-objective LP model to

allocate production activities to different land units, while optimizing two objective

functions: (1) maximization of the present value of cumulative financial results (main

objective of growers), and (2) maximization of cumulative farm labor (objective of

policy makers that want to generate employment opportunities).

Studies that address downstream decisions are more closely related to this work.

Blanco et al. (2005) only considers the production decision in a tactical planning and

profit-oriented model of a packaging plant in an FSC in Argentina. In their mixed

integer linear programming (MILP) model, the costs (including the raw material
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purchase, storage, and labor costs) and the revenue are captured in the objective

to maximize the profit for a typical facility given maximum processing and storage

capacities. From both operational and tactical levels, Masini et al. (2007) extend the

previous literature by integrating multiple downstream decisions (production, distri-

bution, and inventory). They propose a linear programming (LP) model to maximize

the total net profit of an Argentinean fruit company and to make multiple decisions,

such as the quantity to produce for each type of fruit, the cold storage capacity

required for each third-party provider, and the quantity of fruit to be distributed

to each party in the system. Tsao (2013) analyzes a multi-echelon supply network

for fresh food from tactical and strategic perspectives. The paper applies non-linear

optimization to fresh food supply chain design with the objective of maximizing the

total network profit. The key decisions include the locations of food distributors, the

assignments of retailers to food distributors, and the freshness-keeping effort of each

food distributor. However, distribution factors embedded in our unique FSC, such

as queueing delay at the eBeam facilities, border crossing delay, and transportation

constraints due to the prohibited movement area, are not touched in Blanco et al.

(2005), Masini et al. (2007), or Tsao (2013).

Some studies address exports, competition, communication, and information

sharing. Ortmann et al. (2006) analyze the South African fresh fruit export supply

chain and develop two graph theoretic and linear programming (LP) models to solve

for two extreme seasonal export scenarios in foreign markets. Their models seek to

maximize the throughput of fresh fruit via the existing export infrastructure and

to minimize the overall transportation cost from storage sites to ports. The paper

focuses on distribution from tactical and strategic perspectives; however, it does not

consider location and capacity optimization of the processing facilities as our study

does. A group of firms supplying fresh produce to the same market and competing
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in an oligopolistic manner is investigated by Yu and Nagurney (2013) using a game

theoretic model. Each food supplier seeks to maximize its own profit by determining

its optimal product flows throughout its supply chain. Ketzenberg et al. (2015) use a

simulation to evaluate the value of information in a sustainable food supply chain in

which each retailer seeks to find the optimal replenishment policy so that its long-run

average per period expected cost is minimized. Compared to these studies, our paper

contributes to the literature of food supply chains from a very different perspective

by considering an integrated model that incorporates many issues regarding food

treatment and distribution.

Other works related to Mexico/U.S. trade for agricultural produce focus on im-

pacts of the North American Free Trade Agreement (NAFTA). Espinosa and Noyola

(1997) discuss emerging patterns in U.S./Mexico trade by comparing circumstances

before and after NAFTA. Málaga et al. (2001) examine the relative contribution

of NAFTA and other factors that have important effects on U.S./Mexico agricul-

tural trade in general and on the fresh vegetable trade in particular. They use an

econometric simulation model for markets in the U.S. and Mexico to simultaneously

determine the supplies, demands, prices, and trade of five fresh vegetables accounting

for 80% of the U.S. fresh vegetable imports. Ackerman et al. (2003) conclude that

U.S. corn exports to Mexico increased because of trade liberalization, so Mexico lost

a significant share of its domestic corn market to the U.S. For other types of fresh

produce, Mexico has improved production, investments, and marketing to substan-

tially increase fresh fruit and vegetable exports to the U.S. The strong export growth

of Mexican fresh produce also results from the successful phytosanitary negotiations

between the U.S. and Mexico arising from NAFTA, especially for avocado (Huang

and Huang 2007).

Although our study considers the U.S./Mexico trade for fresh produce, our focus
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is not the impacts of NAFTA. Our study develops a generalizable decision support

system to allocate the eBeam facilities for irradiating fresh produce, to decide the

required capacity for each eBeam facility, and to optimize the assignment for each

truckload of fruit imported from Mexico to the U.S. To our knowledge, there is no

recent study using operations research methodologies to solve the FSC problem cov-

ering all three decision levels (operational, tactical, and strategic) as is done in this

paper. To introduce eBeam as the new phytosanitary treatment technology, this

study determines not only tactical and operational decisions (transportation and as-

signment of truckloads of fruits), but also strategic decisions (locating the eBeam

facilities and optimizing their capacities for irradiating fruits). Thus, it considers

the overall structure of the FSC covering Mexico and Texas, including new food

safety technology, multiple commodities, transportation restrictions due to prohib-

ited movement areas in Texas, regulation requirements, and delays at border crossing

points and at the eBeam facilities. In addition, this study’s comprehensive objective

includes the amortized fixed setup cost for opening each eBeam facility, the capacity

and operating costs for running the eBeam facilities, the eBeam processing cost for

irradiating untreated fruits, the transportation and border delay costs for moving

fruits from Mexican growing regions to Texas hubs, and the queuing delay cost at

the eBeam facilities for processing.

4.2.2 Facility Location Problem

There are four general problems that decide the location of facilities and also allo-

cate demand to them (Mirchandani and Francis 1990). These are the p-median prob-

lem (Hakimi 1964), the uncapacitated facility location problem (UFLP), the p-center

problem, and the quadratic assignment problem (QAP). The p-median problem, the

UFLP, and the p-center problem are NP-hard and thus do not admit polynomial-time
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algorithms to find an optimal solution (Kariv and Hakimi 1979a, 1979b). Although

the QAP is more realistic and uses more information, since it is theoretically harder

to solve than the p-median problem, it is not commonly studied in the literature.

This study has similarities with the typical facility location-allocation problem, but it

makes wider decisions that incorporate more realistic practical issues and constraints

by considering the economic, social, and governmental factors related to food safety.

Some studies investigate the application of the traditional facility location prob-

lem under other settings. ReVelle and Laporte (1996) describe two alternative for-

mulations for a plant location problem, where one objective is to minimize cost and

the second objective is to maximize the demand that can be served by a plant within

a certain time limit. Snyder and Daskin (2005) develop a facility location model

with the objective of choosing locations that are both inexpensive and reliable. The

expected transportation cost after failures of facilities are included in their cost min-

imization objective function to account for reliability. Caro et al. (2012) investigate

process allocation related to facility location in the food processing industry. They

add penalty costs to the objective function to capture production yield uncertainty

and make decisions such as where to open processes, which products should be as-

signed to which processes, and which markets to supply from which processes. Our

study differs by considering many food safety, import, regulation, infrastructure,

queueing, transportation, and routing issues that influence the choice of locations.

Factors such as transportation, maximum allowed utilization rate, and costs of re-

sources, which could affect the eBeam facilities’ capacity limitation or associated

social cost for the U.S. and Mexico, are also analyzed using a factor rating system.

Other studies that analyze facility location problems by identifying and evaluating

major factors in selecting an industrial location include Blair and Premus (1987),

Yang and Lee (1997), MacCarthy and Atthirawong (2003), and Chou et al. (2008).
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When multiple commodities are produced and distributed through the supply

chain network, the facility location and capacity determination issues become com-

plex. A few studies analyze the multi-commodity capacitated facility location prob-

lem and present mathematical modeling frameworks for strategic supply chain plan-

ning (Pirkul and Jayaraman 1998, Canel et al. 2001, Melo et al. 2006). We de-

velop a heuristic using a minimum cost flow (MCF) network model to solve a multi-

commodity problem efficiently by solving it for each commodity independently and

then aggregating the solutions. We demonstrate that this simplification does not

reduce the accuracy of the calculation. This type of methodology has not been used

previously in the context of food treatment and distribution.

4.3 The General Problem Description

Given the minimum and maximum allowed utilization rates at an eBeam facility,

the deterministic service rate per service line, each commodity’s demand at each hub,

and the capacity of each growing region for each commodity, the general problem

(hereafter called GP) focuses on selecting the most cost-effective locations for the

eBeam facilities and on how many service lines each new eBeam facility requires

(i.e., the capacity), while considering the border crossing delays and the queuing

delays at the eBeam facilities. The optimal assignment for each truckload of fruit

from Mexican growing regions to the eBeam facilities and then to U.S. hubs for

distribution is also determined.

Mexico supplies the U.S. fruit market throughout the year but ships heavily

during the winter months (December to April). Thus, we focus on the peak importing

season during which four commodities, mangoes, guavas, citrus, and avocado, are

imported and irradiated each week.

There are eight potential locations for the eBeam facilities (Figure 4.3): four
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Figure 4.3: Eight Potential Locations (Highlighted) for Establishing the EBeam
facilities.
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Mexico cities (Nuevo Laredo, Reynosa, Matamoros, and Matehuala), and four Texas

cities, including the major hubs (San Antonio, Dallas, and Houston) and Laredo,

which is on the Texas/Mexico border. We also consider five Texas/Mexico border

crossing points (Eagle Pass/Piedras Negras, Laredo/Nuevo Laredo, Laredo/Colombia,

McAllen/Reynosa, and Brownsville/Matamoros in Figure 4.1) and seven major grow-

ing regions in Mexico (Sinaloa, Nayarit, Jalisco, Michoacan, Guerrero, Oaxaca, and

Chiapas). Border crossing points together with the prohibited movement areas for

untreated mangoes and guavas (Figure 4.2) are used to decide the routes to transport

fruits. Details of how we estimate the aggregated operating cost, which includes the

labor cost, land cost, holding cost, insurance cost, tax cost, and export & import

regulation costs, are in Section 4.6.

The following assumptions are made to develop a one-week mathematical model

to formulate GP. Parameters and variables are defined in Table 4.4 and Table 4.5.
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• A1: Demand from Texas hubs during the peak importing season are the same

for each week.

• A2: Each commodity is transported independently in full truckloads.

• A3: Each truckload of a particular commodity has the same weight. These

weights differ between commodities.

• A4: There is a known exogenous border crossing delay at each border crossing

point.

• A5: There is a multi-commodity M/D/s queuing system at each eBeam fa-

cility. All the truckloads (for all the commodities) form a single queue in each

eBeam facility and are processed following the first-in-first-out (FIFO) rule.

• A6: There is a minimum allowed utilization rate ρ and a maximum allowed

utilization rate ρ̄ at all the eBeam facilities.

• A7: Demand is always satisfied:
∑

i P
k
i ≥ ∑

hM
k
h .

The objective function of the mathematical model minimizes the total weekly

cost, including the setup cost of opening new eBeam facilities, the operating cost at

the eBeam facilities, the eBeam processing cost, the transportation cost, the border

delay cost, and the queuing delay cost at the eBeam facilities.

Minimize Φ =
I∑

i=1

fi · Fi +
I∑

i=1

oi · si +
I∑

i=1

pi · λi +
K∑
k=1

H∑
h=1

βk
h

+
K∑
k=1

E∑
e=1

γk
e +

I∑
i=1

bLi

Subject to:

Constraints (4.1-4.2) ensure that service lines and commodity flows are assigned only

to the facilities that have been opened. If e = 0, there is no border entry on this
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Table 4.4: Parameters Used to Formulate the General Problem.

Parameters

i 1, 2, . . . , I as potential locations to build an eBeam facility.
j 1, 2, . . . , J as growing regions in Mexico.
k 1, 2, . . . , K as commodity types.
e 0, 1, 2, . . . , E as border crossing points.
h 1, 2, . . . , H as hubs in Texas for importing fruits.

Mk
h Demand in truckloads per week for commodity k at hub h.

P k
j The capacity in truckloads per week of commodity k at growing region j in

Mexico.

d̂jei The truckload distance (miles) between growing region j and potential location
i through border crossing point e.
If e = 0, there is no border entry on this route.

ďieh The truckload distance (miles) between potential location i and hub h through
border crossing point e.
If e = 0, there is no border entry on this route.

te The average waiting time per truckload at border crossing point e.
t0 = 0.

ρ The minimum allowed utilization rate at each eBeam facility.
ρ̄ The maximum allowed utilization rate at each eBeam facility.
ℓk The weight in pounds of one truckload of commodity k.

ℓ0 = mink{ℓk}.
µ The service rate per service line (truckloads per week) of commodity k in terms

of standardized truckloads with ℓ0 pounds.

fi The amortized single-week setup cost, proportional to the total fixed cost of
opening an eBeam facility at location i, including the land cost, the cost to
build an eBeam facility, and the export & import regulation cost.

oi The single-week per service line operating cost at location i.
This cost includes the labor cost, the holding cost, the insurance cost, and the
tax cost.

pi The eBeam processing cost for radiating one standardized truckload of ℓ0

pounds of commodities at location i.
u The fixed cost of dispatching a truckload.
a The per-mile per-truckload transportation cost.
b The unit time delay cost for one truckload at the eBeam facilities and border

crossing points.

V The assumed upper bound on the total number of service lines required to
satisfy the total demand.

A A very small positive number used in computation. Set A = 10−6.

route.

si ≤ V · Fi, ∀i. (4.1)
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Table 4.5: Variables Used to Formulate the General Problem.

Variables

Fi If Fi = 1, then potential location i is selected to build an eBeam facility.
Otherwise, Fi = 0.

xkjei The actual number of truckloads of commodity k sent from Mexican growing
region j to the eBeam facility i through border crossing point e. Thus, the
number of standardized truckloads of commodity k with minimum weight ℓ0

is ℓk

ℓ0
· xkjei

ykieh The actual number of truckloads of commodity k sent from the eBeam facility
i to Texas hub h through border crossing point e.

si the number of service lines required in eBeam facility i.

Pb The steady-state probability that all service lines are busy.
λi The mean arrival rate at eBeam facility i.
Lq
i The average length of the queue in the number of truckloads with ℓ0 pounds

for all the commodities at location i.
Li The average number of truckloads with ℓ0 pounds for all the commodities at

location i.

βk
h The transportation cost to satisfy the demand of commodity k at Texas hub h.

γke The border delay cost at border crossing point e for commodity k.

K∑
k=1

J∑
j=1

E∑
e=0

xk
jei ≤

K∑
k=1

H∑
h=1

Mk
h · Fi, ∀i. (4.2)

Constraints (4.3-4.4) are flow balancing equations. Constraints (4.3) indicate that the

inbound flow must equal the outbound flow for each eBeam facility. Constraints (4.4)

ensure that the total of the outflows from each growing region in Mexico does not

exceed its capacity.

J∑
j=1

E∑
e=0

xk
jei =

E∑
e=0

H∑
h

ykieh, ∀i,∀k (4.3)

I∑
i=1

E∑
e=0

xk
jei ≤ P k

j , ∀j, ∀k (4.4)

Constraints (4.5) calculate the aggregated arrival rate in standardized truckloads

(truckloads with weight ℓ0) for eBeam facility i based on the arrival rate for each

commodity k. Since the service rate of an eBeam machine is given in the number of

truckloads with a standard weight ℓ0, we normalize the aggregate arrival rate into
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standardized truckloads.

λi =
K∑
k=1

J∑
j=1

E∑
e=0

ℓk

ℓ0
· xk

jei, ∀i (4.5)

Constraints (4.6-4.8) calculate the utilization rate for eBeam facility i and restrict

the utilization rate to be between the minimum and the maximum allowed utilization

rates. Note that Constraints (4.6) introduce a very small positive number A = 10−6

to both denominator and numerator to allow for locations for which Fi = si = 0 in

the optimal solution.

ρi =

(
λi + A

si · µ+ A

)
· Fi, ∀i (4.6)

ρi ≤ ρ̄, ∀i (4.7)

ρi ≥ ρ · Fi, ∀i (4.8)

Constraints (4.9) compute the approximate average length of the queue at eBeam

facility i by using the formulas for an M/M/s queue. Based on Kingman’s law of

congestion, when the utilization rate is moderate, the approximate average length of

the queue for M/D/s queue is close to the average queue length for M/M/s queue.

This is true especially when there are large number of service lines in one location,

which results in moderate utilization rate. Thus, we may use the length of M/M/s

queues to approximate the length of M/D/s queues in this study, especially when

the utilization rate is moderate. Define f(ρi) =
Pb·ρi
(1−ρi)

, where Pb is the steady-state

probability that all service lines are busy. Pb depends on ρi and si. The value of Pb can

be found in tables of queueing values in Operations Research textbooks, for example,

Winston and Goldberg (2004). Constraints (4.10) calculate the approximate average

number of truckloads in eBeam facility i.

Lq
i = Fi · f(ρi), ∀i (4.9)

113



Li = Lq
i +

λi

µ
, ∀i (4.10)

Constraints (4.11-4.12) compute the transportation cost and the border delay cost for

all commodities. Specifically, in Constraints (4.11), the transportation cost includes

the fixed cost of dispatching a truckload and the single trip distance cost. The

distance calculations respect the prohibited regions and the routes to the border

crossing points.

βk
h = u ·Mk

h

+ a ·

 I∑
i=1

J∑
j

E∑
e=0

xk
jei · d̂kjei +

I∑
i=1

E∑
e=0

ykieh · ďkieh

 ,∀h, ∀k (4.11)

γk
e = b · te ·

 J∑
j=1

I∑
i=1

xk
jei +

I∑
i=1

H∑
h=1

ykieh

 , ∀e, ∀k (4.12)

Constraints (4.13-4.15) are non-negativity, binary, and integrality constraints.

All variables ≥ 0,∀i, ∀j,∀k, ∀e, ∀h (4.13)

Fi ∈ {0, 1}, ∀i (4.14)

si integer, ∀i (4.15)

This model is nonlinear because of the multi-commodity M/D/s queuing sys-

tem at each eBeam facility, which is represented in Constraints (4.6) and Con-

straints (4.9). Therefore, we propose an approach to simplify the model and develop

efficient solution procedures to solve GP in Section 4.4. Before proceeding to that

approach, we show that the single-commodity version of GP is strongly NP-hard.

Theorem 2 Assuming that the queuing delay cost at eBeam facilities is zero, the

single-commodity version of GP selecting at most Q eBeam facility locations is strongly

NP-hard.

Proof: We use the 3-Satisfiability (3SAT) problem (Garey and Johnson 1979) for
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our reduction.

3-Satisfiability (3SAT)

Instance: A set Ŵ = {w1, w2, . . . , wn} of boolean variables and a collection C =

{C1 ∩ C2 ∩ . . . ∩ Cm} of clauses over Ŵ , each of which is a disjunction of literals,

w1, w̄1, w2, w̄2, . . . , wn, w̄n such that |Cj| = 3 for 1 ≤ j ≤ m and w̄i = 1 − wi for

1 ≤ i ≤ n.

Solution: Find an assignment of either a true (1) or a false (0) value to each

variable in {w1, w2, . . . , wn}, such that the expression C evaluates to true (1).

Figure 4.4: A Graphical Representation of the Decision Problem for the Example
with n = 3 and m = 4.
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Given an arbitrary instance of 3SAT, we provide the construction of the instance

of our decision problem corresponding to GP using the following example. Refer to

Figure 4.4.

Example: n = 3 and m = 4. Ŵ = {w1, w2, w3}; C = {C1 ∩ C2 ∩ C3 ∩ C4}, where

C1 = w1 ∪ w2 ∪ w̄3, C2 = w̄1 ∪ w̄2 ∪ w̄3, C3 = w̄1 ∪ w2 ∪ w3, and C4 = w̄1 ∪ w̄2 ∪ w3.

115



• j = 1, j = 2, denote growing regions G1, G2, respectively, and so on. The

number of growing regions in Mexico is J = n.

• Each variable in the set W = {w1, w̄1, w2, w̄2, . . . , wn, w̄n} corresponds to a dis-

tinct potential location to build a processing facility, denoted as i = 1, 2, . . . , 2n−

1, 2n, in that order, respectively. Note that i = 1, i = 2, i = 3, i = 4, denote

locations w1, w̄1, w2, w̄2, respectively, and so on. The number of potential

locations to build processing facilities is I = 2n.

• Each clause in the set C = {C1 ∩C2 ∩ . . .∩Cm} corresponds to a distinct hub

in Texas for importing fruits, denoted as h = 1, 2, . . . ,m, in that order. The

number of hubs in Texas for importing fruits is H = m.

• Q = n, a = u = 1, b = 0, te = 0, K = 1 (single commodity). A truckload is ℓ0

pounds. pi = 1, oi = fi = 0, i = 1, 2, . . . , 2n.

• Pj is the capacity in truckloads per week of a commodity at growing region j

in Mexico. Pj = 3X, j = 1, 2, . . . , n− 1, n, where X is large number.

• Mh is the demand in truckloads per week for a commodity at hub h. Mh = X,

h = 1, 2, . . . ,m.

• Note that d̂jei is the distance between growing region j and potential location

i through border crossing point e. For a pair (j, 2i) and (j, 2i − 1), djei = U ,

i = 1, 2, . . . , n, if j = i; otherwise djei = 2U , where U is large number (See

Figure 4.4).

• Note that ďieh is the truckload distance between potential location i and hub h

through border crossing point e. For a pair (i, h), ďieh = U , if i ∈ W belongs to

clause Ch, otherwise ďieh = 2U , 1 ≤ i ≤ 2n, and 1 ≤ h ≤ m (See Figure 4.4).
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• ρ = 0, the minimum allowed utilization rate at each processing facility.

• ρ̄ = 0.75, the maximum allowed utilization rate at each processing facility.

• µ = 4X, the service rate per service line (truckloads per week) of commodity

k in terms of standardized truckloads with ℓ0 pounds.

For the instance of GP constructed above, we consider the following question:

Decision Problem: Does there exist a solution for the single-commodity version

of GP with total cost Φ ≤ 2mX(U + 1)?

The decision problem is clearly in NP. Also, it can be easily verified that the con-

struction of our decision problem from the 3SAT instance can be done in polynomial

time. We now show that the decision problem has an affirmative answer if and only

if the 3SAT instance is satisfiable.

If part: Suppose the instance of 3SAT is satisfiable. Then, there is an assignment of

either wi or w̄i that is true (1), such that the expression C evaluates to true (1).

We illustrate the solution corresponding to the following truth assignment for the

example: w̄1 = w2 = w3 = 1: 2X truckloads, X truckloads, and X truckloads of fruit

are assigned from Mexican growing region G1 to potential location w̄1, from Mexican

growing region G2 to potential location w2, and from Mexican growing region G3 to

potential location w3, respectively. The number of service lines for each location (w̄1,

w2, and w3) is set equal to one. Note that the utilization requirement (ρ ≤ ρ ≤ ρ̄) is

satisfied since µ = 4X and at most 3X truckloads will be received at any processing

facility. Hub C1 = w1∪w2∪w̄3 receives X truckloads from w2, hub C2 = w̄1∪w̄2∪w̄3

receives X truckloads from w̄1, and C3 = w̄1 ∪ w2 ∪ w3 receives X truckloads from

w̄1, and C4 = w̄1 ∪ w̄2 ∪ w3 receives X truckloads from w3.
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Thus, for the solution above, the decision problem has zero setup cost, zero

operating cost, mX processing cost, mX + 2mXU transportation cost, zero border

delay cost, and zero queueing delay cost. Hence, the proposed solution gives the

total cost Φ = 2mX(U + 1). For the example, Φ = 8X(U + 1) as m = 4.

Only if part: Suppose there exists a solution s to the decision problem with Φs ≤

2mX(U + 1). Let Φs = Φf
s + Φo

s + Φp
s + Φt

s + Φb
s + Φq

s, where Φf
s , Φo

s, Φp
s, Φt

s,

Φb
s, and Φq

s are the fixed setup cost, the operating cost, the processing cost, the

transportation cost, the border delay cost, and the queueing delay cost components

of Φs, respectively. We now show that there exits a satisfiable truth assignment for

the 3SAT instance by the following claims.

Claim 1: In solution s, Φf
s = Φo

s = Φb
s = Φq

s = 0 and Φp
s = mX.

Proof of Claim 1: Since each potential processing location has zero setup and

operating costs, fi = oi = 0, the average waiting time per truckload at border

crossing points is zero (te = 0), and the unit time delay cost per truckload at eBeam

facilities and border crossing points is zero (b = 0), it follows that we have Φf
s =

Φo
s = Φb

s = Φq
s = 0. As the total demand at hubs is equal to mX and the processing

cost is pi = 1 for all potential eBeam facility locations, Φp
s = mX.

Claim 2: In solution s, Φt
s ≤ mX(2U + 1).

Proof of Claim 2: Note that Φf
s = Φo

s = Φb
s = Φq

s = 0 and Φp
s = mX (Claim 1).

Since Φs ≤ 2mX(U + 1), we must have Φt
s ≤ mX(2U + 1).

Claim 3: There must exist a satisfiable truth assignment for the 3SAT instance.

Proof of Claim 3: Since the total demand at hubs equals mX trucks and u = 1,

the fixed cost of dispatching trucks is mX. Since the minimum distance between

Mexican growing regions and potential eBeam facility locations is U (respectively,

the minimum distance between hubs and potential eBeam facility locations is U), we

118



must have Φt
s = mX(2U + 1). This implies that there exists a minimum distance U

between a hub and the eBeam facility supplying this hub (respectively, a minimum

distance U between a Mexican growing region and the eBeam facility processing its

supply). Thus, at most one location from a pair (wi, w̄i), i = 1, 2, . . . , n, must be

selected for a processing facility since Q = n. This in turn implies that there is

a truth assignment of variables in W belonging to clause Ch. Thus, there exits a

satisfiable truth assignment for the 3SAT instance. In solution s, the number of

service lines for any selected location is set equal to one. Note that the utilization

requirement (ρ ≤ ρ ≤ ρ̄) is satisfied since µ = 4X and at most 3X truckloads will be

received at any selected location of the processing facility. This completes the proof.

4.4 Approach to Solve the General Problem

To solve GP efficiently, we develop a heuristic (namely HGP ) using a minimum

cost flow (MCF) network model. Specifically, we let Q denote the number of facil-

ities to be opened from Q̄ candidate locations for Q = 1, 2, ..., Q̄. Thus, there are

∑Q̄
Q=1

 Q̄

Q

 ways of choosing facility locations. Our heuristic procedure considers

all possible combinations of potential locations. This section develops a minimum

cost flow (MCF) model that is used for each combination and then discusses the

queueing system.

4.4.1 The MCF Model

For each Q value and each set of Q potential locations, an MCF model is devel-

oped for solving a special case of GP with no capacity limitation and no queueing

delay at the Q locations. We then use this MCF model to devise a heuristic proce-

dure HGP (in Section 4.4.2) to solve GP. The MCF model simply represents a single
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commodity’s flow in the highway transportation system with processing requirements

at the eBeam facilities. Therefore, since we ignore capacities of the eBeam facilities,

the MCF model can be run for each commodity independently to decide the best

routes and to compute the transportation and processing cost for each commodity.

Summing these individual costs yields the total transportation and processing cost

for all commodities in this simplified system.

Table 4.6: Additional Parameters and Variables Used in the MCF Model.

Parameters

Q Number of locations to select.
Q̄ Total number of potential locations.

ĉji The per truckload cost of transporting from growing region j to eBeam facility
i. This cost includes the transportation cost calculated from the transportation
time for the best route between j and i, and the border delay cost if facility i
is in Texas.

čih The per truckload cost of transporting from eBeam facility i to Texas hub h.
This cost includes the transportation cost calculated from the transportation
time for the best route between i and h, and the border delay cost if facility i
is in Mexico.

Variables

xji The flow of truckloads on arc (j, i) sent from Mexican growing region j to
eBeam facility i.

yih The flow of truckloads on arc (i, h) sent from eBeam facility i to hub h.
λik The arrival rate for commodity k at eBeam facility i.
λ′
ik The arrival rate for commodity k in terms of multiples of truckloads with

weight ℓ0 = mink{ℓk} at eBeam facility i. λ′
ik = λik

ℓk

ℓ0
.

si The minimum number of service lines required in eBeam facility i to satisfy
demand and to maintain a utilization rate below the maximum allowed uti-
lization rate.

We illustrate the MCF model through an example with Q = 2, three growing

regions, and two hubs (Figure 4.5). Additional notations are in Table 4.6. Because

we run the MCF model for each commodity independently, we drop superscript k

for the demand and capacity parameters (Mk
h and P k

j ).

The upper bound on an arc from the source node O to the growing region j models
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Figure 4.5: Minimum Cost Flow Problem Example [O: Source; j: Mexican growing
regions; i: eBeam facilities; l: Dummy eBeam facilities; h: Texas Hubs; S: Sink].
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the capacity at growing region j. The unit flow costs on the arcs linking the growing

region j and the eBeam facility i include the transportation cost for one truckload

and the border delay cost (if appropriate) for one truckload. We create dummy

eBeam facility nodes l to assess an eBeam processing cost pi for the truckloads of

the commodity flowing though the eBeam facilities. The lower bound ρ · µ on arc

(i, l) enforces the minimum utilization rate at the eBeam facility. Similar to the flow

on arc (j, i), the arc (l, h) linking dummy eBeam facility l and Texas hub h has a

unit flow cost including the unit transportation cost and the border delay cost (if

appropriate) for one truckload. The lower bound on the flow from Texas hub h to

the sink node S represents the demand at Texas hub h.

Theorem 3 Assuming that the queuing delay cost at the eBeam facilities is zero

and the processing capacity is unlimited, the single-commodity version of GP with Q

given eBeam facility locations can be solved polynomially.

Proof: Since each node in the MCF model presented above represents a specific

location (growing region in Mexico, eBeam facility, or hub in Texas) with each arc
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standing for the corresponding movement of a single commodity, each feasible inte-

ger flow in the MCF model corresponds to a feasible solution for GP and vice versa.

Therefore, the optimal solution for the MCF model is equivalent to the optimal com-

modity distribution for GP. The complexity of solving the MCF model is O(n4 log n),

where n = J+H+2Q+2 is the number of nodes in the network (Ahuja et al. 1993).

The linear programming formulation for the MCF model corresponding to Theo-

rem 3 is presented below. The objective function minimizes the total cost, including

the transportation cost and the processing cost. The transportation costs are com-

puted in terms of each commodity’s actual number of truckloads, and the processing

cost on arcs (i, l) are computed according to the weight of a truckload by adjusting

pi.

Minimize
∑
i

∑
j

ĉjixji +
∑
i

pi
∑
j

xji +
∑
i

∑
h

čihyih

Subject to:

Constraints (4.16) enforce that for eBeam facility i, the inbound flow equals the

outbound flow.

∑
j

xji =
∑
h

yih, ∀i (4.16)

Constraints (4.17) enforce the supply capacity for each growing region j in Mexico.

∑
i

xji ≤ Pj,∀j (4.17)

Constraints (4.18) guarantee that each Texas hub’s demand is met.

∑
i

yih ≥ Mh,∀h (4.18)

Constraints (4.19) guarantee that each eBeam facility’s utilization rate is above the
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minimum allowed utilization rate.

∑
j

xji ≥ ρ · µ,∀i (4.19)

Constraints (4.20) are non-negativity constraints.

xji, yih ≥ 0,∀i, ∀j, ∀h (4.20)

Since there is no interaction among the commodities when the queuing delay cost

is zero and the processing capacity is unlimited at the eBeam facilities, for each Q

and each set of Q potential locations, each commodity’s cost can be calculated in an

individual MCF (Theorem 3). Then, the results are combined to calculate the multi-

commodity transportation and processing costs for each set of Q potential locations.

Therefore, for each Q, the set of eBeam facilities with the minimum cost and the

corresponding routes from growing regions to hubs can be determined. Thus, we

state the following result.

Corollary 1 Assuming that the queuing delay cost at the eBeam facilities is zero

and that the processing capacity is unlimited, the multi-commodity version of GP

with Q given eBeam facility locations can be solved polynomially by solving for each

commodity individually and then aggregating the solutions.

4.4.2 Queueing System

After a set of Q eBeam facilities is addressed by the MCF model constructed

above, at each facility i, Heuristic HGP uses an M/D/s queuing model to assign

the minimum number of service lines si required so that the maximum acceptable

utilization ρ̄ is not exceeded. The utilization at each eBeam facility is computed

based on the aggregated arrival rate obtained from all of the commodities’ MCF

results. Specifically, the number of truckloads, λik, for each commodity k is converted
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into the number of truckloads with weight ℓ0 = mink{ℓk} (λ′
ik = λik

ℓk

ℓ0
), and the

λ′
iks are summed together to compute the aggregated arrival rate, λi =

∑
k λ

′
ik, for

truckloads with weight ℓ0 for all commodities at each location. This aggregated

arrival rate determines the number of service lines needed to satisfy the utilization

rate requirement.

Next, HGP calculates the total cost for each facility, which includes the facility

setup cost, the service line operating cost, and the queuing delay cost. HGP starts

with si (minimum number of service lines at facility i), then successively adds one

service line to the facility until doing so no longer reduces the total cost. There

is a tradeoff between the queuing delay cost and the service line operating cost.

Increasing si from si to si + 1 will decrease the total cost if the resulting queuing

savings exceeds the operating cost of the extra service line. Continued increases in si

may also decrease the overall cost, but with diminishing returns. This process takes

advantage of the convex cost function and is demonstrated in Section 4.5.

The queueing delay cost at eBeam facility i is calculated for all commodities as

follows. Based on the aggregated arrival rate λi and the average number of truckloads

waiting in the queue Lq
i calculated by (4.9), the average number of truckloads in

eBeam facility i is Li = Lq
i +

λi

µ
. The expected sojourn time at eBeam facility i is

Wi =
Li

λi
. Thus, the total queuing delay cost for the λi truckloads served by eBeam

facility i is bλiWi = bLi. This queuing approximation is validated in Section 4.5.2.

Summing costs for all the facilities in this set of Q potential locations and adding

the result to the cost of the MCF model produces the total cost for this set of po-

tential locations. This process is repeated for all combinations of Q facilities to find

the set of locations with the minimum total cost for each Q. In the end, the best

value over all Q ∈ {1, ..., Q̄} is chosen to achieve the minimum cost. Since there

are only eight potential candidate locations (Q̄ = 8), we can explore all possible
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combinations of the eBeam facilities to obtain the best solution in reasonable time.

Therefore, Heuristic HGP allows the use of network models to solve GP efficiently.

Heuristic HGP :

min cost GP = ∞

For Q = 1 to Q̄

min cost Q = ∞

For each possible set of Q eBeam facility locations from Q̄ potential eBeam facility locations

Solve the MCF model independently for each commodity k

Label the sum of these solutions min cost MCF

For each facility i in this set of Q eBeam facility locations

min cost i = ∞

Based on the aggregated arrival rate and the maximum allowed utilization rate,

assign si service lines to eBeam facility i

For si = si to ∞

Compute the cost including the setup cost, the capacity and operating cost,

and the queuing delay cost for eBeam facility i. Label solution cost i

If min cost i > cost i Then

min cost i = cost i

Else

Exit For si

Next si

Next eBeam facility i

If min cost Q > min cost MCF +
∑

i
min cost i Then

min cost Q = min cost MCF +
∑

i
min cost i

Next set of Q eBeam facility locations

If min cost GP > min cost Q Then

min cost GP = min cost Q

Next Q

The complexity of solving an integer MCF problem with n = J+H+2Q+2 nodes

in the network is O(n4 log n). We run MCF models separately for K commodities

and there are
∑Q̄

Q=1

 Q̄

Q

 ways in total of choosing facility locations. Therefore,
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the complexity for HGP is given by Lemma 6.

Lemma 6 The overall complexity for HGP is

O

 Q̄∑
Q=1

 Q̄

Q

Kn4 log n

 ,

where n = J +H + 2Q+ 2 and K is the total number of commodities.

4.5 Computational Study

The distance, demand, and cost parameter values are based on actual data (Ta-

ble 4.7). Heuristic HGP selects the best locations for the eBeam facilities, assigns

trucks to eBeam facilities and to hubs while respecting prohibited areas for transport-

ing the four commodities, and determines the number of eBeam machines (service

lines) at each facility. Tests are run for Q = 1, 2, 3, 4.

Nuevo Laredo is the best overall choice for Q = 1 (Table 4.8). The minimum

number of service lines is si = 13, but adding another service line (si = 14) reduces

the total cost by 0.02% to $23.35M. An additional service line (si = 15) does not

improve the total cost. If a U.S. location must be chosen, then San Antonio is the

best choice (total cost $23.69M), also with 14 service lines. Building a facility in the

U.S. rather than Mexico results in a cost increase of $0.34M. Although the weekly

cost of choosing San Antonio is only 1.46% higher than choosing Nuevo Laredo, the

total annual cost difference would be $6.8M for 20 peak importing weeks, which is

significant.

Nuevo Laredo and Matehuala are the best locations to build two eBeam facilities,

with minimum total cost of $23.46M (Table 4.9). These two eBeam facilities use

15 service lines in total: 12 service lines in Nuevo Laredo and 3 service lines in
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Table 4.7: Parameter Values.

Parameters

ℓk The weight in pounds of one truckload of commodity k. Select mangoes for
ℓ0 = mink{ℓk} = 40,000 lb.

Mk
h Demand in truckloads per week for commodity k at hub h. For mangoes, the

total demand is 15,393 truckloads per year (770 truckloads per week for 20
peak importing weeks). Use M1 : M2 : M3 = 3 : 4 : 3 for mangoes.
For guavas, citrus, and avocado, the demands are 1 truckload per week, 1308
truckloads per week, and 1405 truckloads per week, respectively, for 20 peak
importing weeks annually. Use M1 = M3 = 0, M2 = 1 for guavas and M1 :
M2 : M3 = 2 : 3 : 2 for citrus and avocado.

P k
j The capacity in truckloads per week of commodity k at Mexico location j.

For mangoes, the total annual supply capacity in Mexico is 80,752 truckloads.
We assume that each region has a weekly supply of 577 truckloads.
For guavas, we assume that Michoacan has a weekly supply of 1 truckload.
For citrus, we assume that Jalisco and Michoacan have a weekly supply of
2000 and 8000 truckloads, respectively.
For avocado, we assume that Michoacan has a weekly supply of 3627 truck-
loads.

ρ The minimum allowed utilization rate: 40%.
ρ̄ The maximum allowed utilization rate: 80%.
µ The service rate per line: µ = 400 standard truckloads per line per week.

fi The amortized setup cost at location i: $69,500 per week.
oi The weekly capacity and operating cost per service line at location i: $11,750

per week in the U.S., $10,000 per week in Mexico.
pi The eBeam processing cost: $4000 per truckload.
b The unit time cost for queuing delay: $100,000 per week per truckload.

ĉji, čih The unit cost on arc (j, i) and arc (i, h). Let t be the total traveling time,
including the transportation time and the border delay time. Labor costs
determine the values for ĉji and čih. If the eBeam facility is in Mexico, ĉji =
2.3t, čih = 2.5t. If the eBeam facility is in Texas, ĉji = 2.5t, čih = 2.5t.

Matehuala. The optimal number of service lines is less for Q = 1 because the

pooling of demand into one set of service lines yields operational efficiency.

Choosing one facility in Mexico and one facility in the U.S. has a total cost of

$23.47M, resulting in a total cost increase of $0.01M (0.04%). It also requires 15

service lines in total: 12 built in Nuevo Laredo and 3 built in Houston.

If two locations have to be selected in the U.S., the best combination is San
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Table 4.8: Computational Study for One EBeam Facility (The best combination is
highlighted).

One
In Mexico

Best Number of Queueing Total
Location Service lines Cost Cost

($M) ($M)
Nuevo Laredo 13 0.8970 23.3555
Nuevo Laredo 14 0.8825 23.3510
Nuevo Laredo 15 0.8760 23.3545

One
In The U.S.

Best Number of Queueing Total
Location Service lines Cost Cost

($M) ($M)
San Antonio 13 0.8970 23.6977
San Antonio 14 0.8825 23.6949
San Antonio 15 0.8760 23.7002

Antonio and Houston, with the total cost of $23.72M. Compared to the best option

for building two facilities in Mexico, building in San Antonio and Houston brings

additional cost of $0.25M, a 1.07% increase. Because of how the total demand is

split into two locations based on the MCF model, San Antonio and Houston operate

efficiently with 16 lines, while Nuevo Laredo and Matehuala only need 15 lines.

Nuevo Laredo, Matehuala, and Houston are the best locations to build three

eBeam facilities, with 17 service lines in total: 11 in Nuevo Laredo, 3 in Matehuala

and 3 in Houston (Table 4.10). The minimum total cost is $23.58M. The detailed

computational results for other combinations when choosing three locations are in

Table C.1 in Appendix C.1.

For Q = 4, the best choice has three facilities in Mexico and one facility in the

U.S.; 18 service lines in total are needed: 9 in Nuevo Laredo, 3 in Reynosa, 3 in

Matehuala, and 3 in Houston. The total cost is $23.71M (Table 4.11). Detailed com-

putational results for other combinations when choosing four locations are presented

in Table C.2 in Appendix C.2.

Overall, Nuevo Laredo is the best location for Q = 1, 2, 3, 4. Matehuala takes
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Table 4.9: Computational Study for Two EBeam Facilities (The best combination is
highlighted).

Two
In Mexico

Best Number of Queueing Total
Locations Service lines Cost Cost

($M) ($M)
Nuevo Laredo 11
Matehuala 3 0.9182 23.4734

Nuevo Laredo 12
Matehuala 3 0.8963 23.4615
Nuevo Laredo 13
Matehuala 3 0.8870 23.4622

One In Mexico
One In The U.S.

Best Number of Queueing Total
Locations Service lines Cost Cost

($M) ($M)
Nuevo Laredo 11

Houston 3 0.9182 23.4802
Nuevo Laredo 12

Houston 3 0.8963 23.4683
Nuevo Laredo 13

Houston 3 0.8870 23.4690

Two
In The U.S.

Best Number of Queueing Total
Locations Service lines Cost Cost

($M) ($M)
San Antonio 10
Houston 5 0.9037 23.7203

San Antonio 11
Houston 5 0.8919 23.7202

San Antonio 12
Houston 5 0.8872 23.7273

second place and Houston is right behind Matehuala. When selecting only one

location in the U.S., San Antonio is the best option (Table 4.8), but when selecting

more than one location, Houston surpasses it. This is because if Nuevo Laredo is

selected, supplying the Houston demand either from Houston itself or directly from

Nuevo Laredo is more efficient than supplying it from San Antonio. That no optimal

solution for Q ≤ 3 employs the Reynosa/McAllen crossing is significant because it is

currently the third-most used crossing east of El Paso (Section 4.1.2), second if the

analysis combines Nuevo Laredo/Laredo and Colombia/Laredo.

Because the MCF model minimizes the transportation costs while ignoring the
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Table 4.10: The best Combination for Building Three EBeam Facilities (the instance
with the best number of service lines is highlighted).

Best Number of Queueing Total
Locations Service lines Cost Cost

($M) ($M)
Nuevo Laredo 10
Matehuala 3
Houston 3 0.9121 23.5809

Nuevo Laredo 11
Matehuala 3
Houston 3 0.8985 23.5773

Nuevo Laredo 12
Matehuala 3
Houston 3 0.8931 23.5819

Table 4.11: The best Combination for Building Four EBeam Facilities (the instance
with the best number of service lines is highlighted).

Best Number of Queueing Total
Locations Service lines Cost Cost

($M) ($M)
Nuevo Laredo 8

Reynosa 3
Matehuala 3
Houston 3 0.9314 23.7215

Nuevo Laredo 9
Reynosa 3

Matehuala 3
Houston 3 0.9108 23.7109

Nuevo Laredo 10
Reynosa 3

Matehuala 3
Houston 3 0.9033 23.7134

queueing delay cost, the MCF result is a loose lower bound on the total cost. The

total cost is on average 5.54% (maximum 6.15%) higher than the MCF result (Table

4.8 - Table 4.11) for all the problems tested. This shows that HGP is effective for

solving GP.

Table 4.12 illustrates that as Q increases, so does queueing delay cost (because

of less pooling), setup cost (cost to open a facility), capacity and operating cost

(less pooling implies more service lines), and transportation cost. Processing cost,

obviously, remains constant because it is determined by total demand.

In general, one would expect that having more eBeam facilities would not increase
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Table 4.12: Computational Result for the General Problem (The Best Option is
highlighted).

Q = 1
Best # of Util. Que. Setup Cap. Proc. Trans. & Total

Location Service Rates Delay Cost & Oper. Cost Bor. Del. Cost
Lines Cost Cost Cost

($M) ($M) ($M) ($M) ($M) ($M)
Nuevo Laredo 14 0.6220 0.8825 0.0695 0.1400 13.9320 8.3270 23.3510

Q = 2
Best # of Util. Que. Setup Cap. Proc. Trans. & Total

Locations Service Rates Delay Cost & Oper. Cost Bor. Del. Cost
Lines Cost Cost Cost

($M) ($M) ($M) ($M) ($M) ($M)
Nuevo Laredo 12 0.6256
Matehuala 3 0.4000 0.8963 0.1390 0.1500 13.9320 8.3442 23.4615

Q = 3
Best # of Util. Que. Setup Cap. Proc. Trans. & Total

Locations Service Rates Delay Cost & Oper. Cost Bor. Del. Cost
Lines Cost Cost Cost

($M) ($M) ($M) ($M) ($M) ($M)
Nuevo Laredo 11 0.5734
Matehuala 3 0.4000
Houston 3 0.4000 0.8985 0.2085 0.1753 13.9320 8.3630 23.5773

Q = 4
Best # of Util. Que. Setup Cap. Proc. Trans. & Total

Locations Service Rates Delay Cost & Oper. Cost Bor. Del. Cost
Lines Cost Cost Cost

($M) ($M) ($M) ($M) ($M) ($M)
Nuevo Laredo 9 0.5675

Reynosa 3 0.4000
Matehuala 3 0.4000
Houston 3 0.4000 0.9108 0.2780 0.1853 13.9320 8.4049 23.7109

transportation costs. Table 4.12 shows that this does not hold. There are two

reasons for this. First, all traffic goes through Nuevo Laredo/Laredo in an optimal

solution no matter how many facilities are open. This is largely a result of the

transportation infrastructure around the border and the locations of growing regions

(Mexican Pacific Coast) and of the Texas hubs (all are easily accessible from Laredo).

Combining this with the minimum utilization requirement in (4.8) and (4.19), which

ensures that trucks go to each open facility, leads to the transportation cost being

increased when a second facility is added at Matehuala. Second, even though opening

a third facility in Houston does not increase the number of trucks traveling there

(the amount needed to satisfy the minimum utilization requirement is less than the

Houston hubs demand), trucks destined for eBeam treatment in the U.S. must have

U.S. drivers for the entire trip from the growing region to the eBeam facility to the

hub. Trucks carrying fruit treated by Mexican facilities use Mexican drivers from
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the growing region to the eBeam facility, and U.S drivers from the eBeam facility to

the hub. Thus, opening facilities in the U.S. leads to higher transportation costs.

4.5.1 Sensitivity Analysis

To perform sensitivity analysis, we first vary the maximum utilization rate ρ̄

without changing other parameter values. Table 4.13 illustrates that the selection of

locations is insensitive to variations in the maximum utilization rate for Q = 1, 2, 3.

The sensitivity for Q = 4 is minimal. Table 4.14 shows similar results for unit

transportation costs.

Table 4.13: Sensitivity Analysis Result: Best Locations for ρ̄ with µ = 400 Truck-
loads.

Q = 1 Q = 2 Q = 3 Q = 4
ρ̄ = 0.6 Nuevo Laredo Nuevo Laredo Nuevo Laredo Nuevo Laredo

Matehuala Matehuala Reynosa
Houston Matehuala

Houston
ρ̄ = 0.7 Nuevo Laredo Nuevo Laredo Nuevo Laredo Nuevo Laredo

Matehuala Matehuala Reynosa
Houston Matehuala

Houston
ρ̄ = 0.8 Nuevo Laredo Nuevo Laredo Nuevo Laredo Nuevo Laredo

Matehuala Matehuala Reynosa
Houston Matehuala

Houston
ρ̄ = 0.9 Nuevo Laredo Nuevo Laredo Nuevo Laredo Nuevo Laredo

Matehuala Matehuala Matehuala
Houston San Antonio

Houston

4.5.2 Validation of Queueing Approximation

The proposed approximation for the average length of queue for any eBeam facil-

ity with multiple service lines is validated by a simulation model using Matlab 2015.

For the single-location (Q = 1) M/D/s queueing system, the number of service lines

in the simulation model is chosen between 11 and 20 to ensure that the utilization

rate is below the maximum allowed level, and the arrival rate is set equal to the total

of the expected weekly demands for each commodity. We executed 100 replications

of 20 weeks for each number of service lines. The cells highlighted in Table 4.15 show

132



Table 4.14: Sensitivity Analysis Result: Best Locations for The Unit Transportation
Cost ĉji and čih with ρ̄ = 0.8 and µ = 400 Truckloads.

Q = 1 Q = 2 Q = 3 Q = 4
Low cost Nuevo Laredo Nuevo Laredo Nuevo Laredo Nuevo Laredo

Matehuala Matehuala Reynosa
Houston Matehuala

Houston
Med cost Nuevo Laredo Nuevo Laredo Nuevo Laredo Nuevo Laredo

Matehuala Matehuala Reynosa
Houston Matehuala

Houston
High cost Nuevo Laredo Nuevo Laredo Nuevo Laredo Nuevo Laredo

Matehuala Matehuala Matehuala
Houston San Antonio

Houston
Very high cost Nuevo Laredo Nuevo Laredo Nuevo Laredo Nuevo Laredo

Matehuala Matehuala Matehuala
Houston San Antonio

Houston

that the average length of queue computed using the queueing approximation in Sec-

tion 4.4.2 falls within the 95% confidence interval built from the simulation results

for s = 14, ..., 20. Thus, our queuing approximation works well for the single-location

M/D/s queueing system when the utilization rate is below 0.65.

Table 4.15: Average Length of Queue in Truckloads in One eBeam Facility Using
Queueing Approximation and Simulation (Highlighted cells are within 95% confi-
dence interval).

# of Util. Queue Length (Li) From Queue Length (Li)
Serv. Lines Rate Queueing Approximation From Simulation

11 0.7916 10.1108 12.438 ±0.78
12 0.7256 9.2986 11.0921±0.72
13 0.6698 8.9697 10.0656 ±0.68
14 0.6220 8.8250 9.2821 ±0.65
15 0.5805 8.7596 8.8995 ±0.59
16 0.5442 8.7301 8.7673 ±0.49
17 0.5122 8.7170 8.7264 ±0.43
18 0.4838 8.7114 8.7137 ±0.41
19 0.4583 8.7090 8.7096 ±0.38
20 0.4354 8.7081 8.7082 ±0.39

Next, to validate our queueing approximation for a multi-location M/D/s queue-

ing system with a small number of service lines (s < 10) in each location, we rerun

the simulation for Q = 4. We use the utilization rates and the best two combinations
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of service lines (Table C.2 in Appendix B) obtained from Heuristic HGP . We again

executed 100 replications of 20 weeks for each combination. The results from this

simulation (Table 4.16) are consistent with those for the first simulation (Table 4.15).

The cells highlighted in Table 4.16 show that all tested samples fall within the 95%

confidence interval built from the simulation results. Thus, our queuing approxi-

mation works well for moderate utilization rates in multi-location M/D/s queueing

systems.

Table 4.16: Average Length of Queue in Truckloads in Four eBeam Facilities Using
Queueing Approximation and Simulation (Highlighted cells are within 95% confi-
dence interval).

Combination # of Util. Queue Length (Li) From Queue Length (Li)
Number Serv. Lines Rate Queueing Approximation From Simulation

1 9 0.5675 5.2253 5.3317 ±0.25
3 0.4000 1.2941 1.3210 ±0.11
3 0.4000 1.2941 1.3135 ±0.09
3 0.4000 1.2941 1.3181 ±0.10

2 3 0.4000 1.2941 1.3304 ±0.15
6 0.5033 3.1231 3.2211 ±0.23
6 0.4917 3.0398 3.1298 ±0.21
3 0.5125 1.8008 1.8543 ±0.16

4.6 Factor Rating System and Cost Estimation

The selection of locations for the eBeam facilities is driven by transportation, re-

sources (labor, materials, and utilities), taxes, and regulations. This section discusses

these factors to develop a factor rating system (FRS) for the eBeam facility location

alternatives and to analyze each factor’s impact on the setup cost, the operating

cost, and the unit transportation costs.

Table 4.17: Factor Rating System for Eight Potential Locations.

Factor Trans. Constr. Labor Trade Electr. Tax Border Total
Conv. Cost Cost Activity Rate Rate Delay Points

Point Range 0 to 300 0 to 200 0 to 100 0 to 100 0 to 60 0 to 30 0 to 50 0 to 840
Nuevo Laredo 260 120 90 90 55 25 5 645

Houston 250 120 65 80 45 20 30 610
Matehuala 170 190 85 45 55 25 30 600

San Antonio 250 120 60 55 45 20 30 580
Reynosa 185 120 85 70 55 25 40 580
Laredo 245 120 60 85 45 20 5 580
Dallas 250 120 65 45 45 20 30 575

Matamoros 180 120 80 50 55 25 45 555
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We collect data from the U.S. Census Bureau, the U.S. Bureau of Labor Statis-

tics, the Bureau of Transportation Statistics, the U.S. Energy Information Admin-

istration, and the U.S. Customs and Border Protection (CBP). We focus on border

entry/crossing data, North American transborder freight data, labor force data for

both Mexico and the U.S., U.S. exports and imports trade activity, industrial elec-

tricity rates for Texas and Mexico, and border wait times data. The detailed results

of the FRS (Table 4.17) for the eight potential locations indicate that Nuevo Laredo

is the best location to build an eBeam facility. It has the highest score for almost

all factors. Houston’s high ratings in transportation convenience and trade activity

place it above other locations in the U.S. Matehuala, San Antonio, Reynosa, and

Laredo rank behind the two leaders. The results of this analysis are very similar to

the results of Section 4.5.

To estimate the fixed setup cost, we collect the estimated construction costs for

all potential locations from the National Center for Electron Beam Research. The

approximate construction costs indicate that it is slightly less expensive to build

an eBeam facility in Mexico than in the U.S. However, because this difference is so

small, we use the same fixed setup cost for each. The only exception is Matehuala,

which already has a gamma ray radiation facility that can be converted to an eBeam

facility at a lower cost.

The border crossing delay time at each border crossing point depends on the

number of truckloads crossing it and its number of Verification and Inspection Points

(VIPs). Nuevo Laredo is strategically positioned at the convergence of several high-

ways, railroads, and bridges. It is considered to be Mexico’s most important inland

port for exporting agricultural products to the U.S. (USDA 2015a). Between 2013

and 2015, Nuevo Laredo/Laredo, even though it has only five VIPs, accounts for over

two thirds of all imports (truckloads of commodities) from Mexico. Colombia/Laredo
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has four VIPs, Ciudad Juarez/El Paso has nine VIPs, and Reynosa/McAllen has

seven VIPs (USDA 2015a). Thus, the average border waiting time is longest at

Nuevo Laredo/Laredo. The border delay time estimates are collected from CBP

Border Wait Times Data (2016) and Avetisyan et al. (2015).

Our MCF model decides to which eBeam facility and to which Texas hub each

truck is assigned. The actual route for each truckload of fruit is determined by on-line

mapping software, such as Google Maps, while respecting the prohibited movement

areas for untreated commodities. The transportation cost between two locations in

the MCF model is estimated based on these routes.

The per-line capacity and operating cost at each location are estimated using the

Bureau of Labor Statistics Labor Force Data (2014), including the average revenue,

the employment rate, and the annual tax report for the eight potential locations. As

expected, the overall employment rate, the average labor cost, and the tax rate are

all lower in Mexico than in the U.S. In addition, the average industrial electricity

rate in Texas is $0.0557/kWh and in Mexico is $0.0502/kWh. We calculate the

capacity and operating cost by aggregating amortized setup cost, labor cost, tax,

and electricity consumption. The resulting capacity and operating cost in Mexico is

set lower than that in the U.S. (see Table 4.7).

4.7 Conclusion

The amount of fresh produce crossing the U.S. / Mexico border has increased ex-

ponentially since the implementation of the North American Free Trade Agreement in

1994. Imported fresh produce must be treated for pestilence and microbial pathogen

contamination. This requirement protects the health of those who consume the pro-

duce and the viability of domestic crops that could be infested by pests or infected

by those pathogens. Among the various technologies that have been used for this
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function—freezing, heat treatments, chemical fumigation, and irradiation—electron

beam (eBeam) irradiation is relatively new and has many advantages, including high

throughput, high dose rate, low capital investment, and low operating costs. Fur-

thermore, it requires only commercial electricity (rather than, for example, gamma

ray radiation from cobalt-60), which it uses efficiently.

This study provides guidelines for private industry in the U.S. and Mexico to

select the most cost-efficient locations for the eBeam facilities specifically designed

for phytosanitary treatment of fresh fruits and vegetables crossing the Texas/Mexico

border. It also determines how many service lines (one eBeam machine per line)

each facility should have. The produce is grown in seven Mexican states and is

shipped to three hubs in Texas. Thus, our algorithm assigns each truck leaving

a growing region to an eBeam facility and to a hub so that costs are minimized.

The study incorporates the unique characteristics of the problem, such as eBeam

irradiation technology, multiple commodities, prohibited movement areas in Texas,

regulation and infrastructure issues, delays at border crossing points, and queueing

delays at the eBeam facilities. To capture all factors that a manager must consider,

the cost objective includes the fixed set-up cost for building each eBeam facility;

each facility’s operating cost, which depends on the number of service lines selected;

the transportation, processing, and border delay costs; and the queuing delay cost,

which is determined by the number of service lines and the number of truckloads

assigned to each facility.

We developed a generalizable decision support system that uses a heuristic that is

based on a minimum cost flow model (MCF). This polynomial-time heuristic consid-

ers all possible combinations of locations for the eBeam facilities (from eight candi-

date locations). For each such combination, the MCF optimizes the transportation,

processing, and border delay costs. For each facility within this combination, the
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heuristic determines the number of service lines that minimizes the operating and

queueing delay costs.

Both the computational study and the factor rating analysis suggest that Nuevo

Laredo (Mexico) is the best location to build an eBeam facility overall. This is

because all traffic is routed to the Nuevo Laredo / Laredo border crossing, and oper-

ating a facility in Mexico is less expensive. In addition to Nuevo Laredo, Matehuala

(Mexico) is also highly rated. Houston and San Antonio are the two best locations

for building eBeam facilities in the U.S. Overall, if building no more than two eBeam

facilities, selecting locations in Mexico has lower total cost than selecting them in

the U.S.

In summary, our analysis provides an effective importing and distribution plan-

ning tool that integrates multiple decisions for selecting sites for phytosanitary fa-

cilities along the Texas/Mexico border by considering new food safety technology

and key economic factors that signal local growth and development. The methodol-

ogy developed in our problem is general enough to be applicable to a wide variety

of food distribution networks in other countries or to similar contexts with minor

modifications.
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5. CONCLUSIONS

This dissertation is motivated by critical and emerging issues within special sec-

tors of supply chains of products managed by the government agencies and private

industries. It develops methodologies to improve efficiency and effectiveness of the

operations for supply chains of banknotes, coins, and foods and provides meaningful

managerial insights for the decision maker. In this context, three methodologies are

used (i) linear and nonlinear mixed integer programming models for achieving opti-

mal solutions, (ii) minimum cost flow network optimization models for transforming

the intractable formulations into solvable sub-problems, and (iii) heuristic algorithms

for efficiently finding the near-optimal solutions using network models. Essays in this

dissertation develop conceptual frameworks of the currency supply chain, optimize

the performance of the currency supply chain from both supply-side and demand-side

perspectives, and analyze economic factors and managerial constraints that impact

the overall operational efficiency of the food supply chain.

This dissertation makes several contributions to the literature by answering un-

touched research questions and analyzing practically motivated research issues. In

Chapter 2, motivated by an urging need of the central bank in a large county,

a supply-side problem is analyzed to optimize currency supply operations. This

supply-side problem has not been well studied in the academic literature, nor care-

fully addressed in practice. In Chapter 3, the framework of U.S. Coin Supply Chain

is developed to analyze the operational performances from both supply-side and

demand-side perspectives and to deliver practically usable planning methodologies /

tools for the central planner and the depository institutions. This essay demonstrates

the use of a modeling approach that not only meets the need for effective and effi-
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cient management of coin supply in the U.S., but also has the potential to be applied

to a variety of similar coin supply chains around the world. Chapter 4 deals with

emerging food safety issues in the logistics of supplying fresh produce from Mexico

to the U.S. This research is inspired by emerging need of eBeam irradiation facilities

and a sophisticated import and distribution planning system along the U.S. / Mexico

border. This essays proposes potential locations for new eBeam facilities, suggests

the capacities of eBeam facilities, and optimizes the route for treating fresh fruits

and vegetables crossing the Texas/Mexico border. The methodology developed in

this chapter is general enough to be applicable to a wide variety of food distribution

networks in other countries or to similar contexts with minor modifications.

This dissertation opens up several opportunities for future research. Methodolo-

gies developed in this dissertation are general enough to be applied to other categories

of supply chains under different settings around the world with appropriate modifi-

cations. In addition, each individual essay can be extended from both analytical and

empirical perspectives to further explore interesting managerially relevant research

problems.

Firstly, the general intractable problem in Chapter 2 is split into two sub-problems

(a downstream problem and an upstream problem) to solve the problem sequentially

for reaching the near-optimal solutions for minimizing the total operational cost in

a country’s currency supply chain. This general optimization problem for improving

the efficiency of the overall currency supply network could be modeled as a single

non-linear mixed integer programming model considering all the managerial con-

straints. This problem may be solved by using the relaxation of integer constraints

and alteration of nonlinear constraints or by developing efficient heuristic algorithms.

Another extension of Chapter 2 is to collect a complete data set including all the

supply, demand, transaction, and sourcing data to conduct an empirical study of
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economic factors that impact the overall performance of the currency supply chain.

Secondly, an immediate extension of Chapter 3 could be the development of the

rolling horizon procedure incorporating the robust planning approach presented in

this essay. This procedure may be compared with the traditional rolling horizon pro-

cedure presented in Chapter 3. Moreover, a comprehensive mathematical model may

be developed covering all the parties (supply-side parties and demand-side parties)

in order to minimize the overall cost for the entire coin supply chain. Currently, the

objectives of the Federal Reserve System and the coin terminals are not aligned. A

mechanism design may be developed to coordinate the objectives of parties involved

in the supply side of the coin supply chain. This, in turn, may help the Federal

Reserve System to develop policies to increase the efficiency of coin recirculation in

the economy. In addition, demand-side parties may collaborate with a third party

logistic provider to reduce the operational cost of coin supply to the public from the

demand-side perspective. An interesting further study may be a mechanism design

using game theory for exploring this cooperation and competition among different

depositary institutions.

Finally, further work may be done to improve the heuristic algorithms in Chapter

4 in order to efficiently solve large size problems with substantive potential locations.

Thus, the methodologies specifically developed for this food supply chain may be

more generalizable to solve large size problems efficiently. To extensively extend

approaches/methodologies of this dissertation to other supply chains under different

settings, further studies may be performed by incorporating multiple objectives in

the model and considering different requirements from perspectives of various parties.

Another immediate extension of Chapter 4 may be the introduction of the demand

uncertainty into the model by extending to multiple periods. The methodology

similar to the robust planning approach presented in Chapter 3 may be applied to
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tackle this complex problem. Undoubtedly, all of these extensions would require

significant, non-trivial modifications to our models. However, these difficulties will

not stop me from performing further research, but only inspire and encourage me to

step forward and explore more.
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APPENDIX A

SUPPLEMENT TO CHAPTER 2

A.1 Structured MIP Formulation of Problem 1

Table A.1: Additional Parameters Used for the Structured MIP Formulation of Prob-
lem 1.

L1 Twice of the largest distance between any vault and any branch in the region of interest (this number
varies for different regions).

L2 The largest possible transportation cost to satisfy a branch’s demand in the region of interest.

Table A.2: Additional Variables Used for the Structured MIP Formulation of Prob-
lem 1.

IMj If IMj = 1, then intermodal (IM) transportation satisfies the demand at branch j.
IUj If IUj = 1, then interurban (IU) transportation satisfies the demand at branch j.
Uj If Uj = 1, then urban (U) transportation satisfies the demand at branch j.
ej The cost of transportation for branch j.
eIMj The cost of intermodal (IM) transportation for branch j.

eIUj The cost of interurban (IU) transportation for branch j.

eUj The cost of urban (U) transportation for branch j.

C+
i Total withdrawal per period from vault i.

Problem 1 MIP:

The objective function minimizes the total per period cost, which consists of the

operating cost for new regional vaults, the transportation cost for branches, and the

incremental capacity cost for vaults.

Minimize Φ =
∑
i∈A

Fiyi +
Mbr∑
j=1

ej + co
Nv∑
i=1

Ca
i

Subject to:

Constraints (A.1) enforce that every branch has exactly one supplier vault.

Nv∑
i=1

xij = 1, j = 1, . . . ,M br (A.1)
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Constraints (A.2)-(A.4) decide if U transportation is used for a branch. If the land

distance between vault i and branch j is less than 50 miles, then j uses U trans-

portation.

IMj + IUj + Uj = 1, j = 1, 2, . . . ,M br (A.2)
Nv∑
i=1

xijd
t
ij ≤ 50Uj + L1 (1− Uj), j = 1, . . . ,M br (A.3)

Nv∑
i=1

xijd
t
ij ≥ 50(1− Uj), j = 1, . . . ,M br (A.4)

Constraints (A.5)-(A.8) compute the transportation cost for branch j for different

transportation modes. If the land distance is greater than 50 miles, then the trans-

portation mode, either IU or IM, is decided by which costs less.

eIMj ≥ Dj

lIMj
fa +

Dj

lIMj
ba

Nv∑
i=1

2daijxij + caDj − L2(1− IMj), j = 1, . . . ,M br (A.5)

eIUj ≥ Dj

lIUj
bt

Nv∑
i=1

2dtijxij + ctDj − L2(1− IUj), j = 1, . . . ,M br (A.6)

eUj ≥ Dj

lUj
fu + cuDj − L2(1− Uj), j = 1, . . . ,M br (A.7)

ej ≥ eIMj + eIUj + eUj , j = 1, . . . ,M br (A.8)

Constraints (A.9) compute the total amount branches withdraw from vault i.

C+
i ≥

Mbr∑
j=1

xijD
+
j , i = 1, . . . , Nv (A.9)

Constraints (A.10)-(A.13) compute the new capacity and added capacity for each

vault based on the new allocation of branches.

Cp
i ≥ hC+

i , i = 1, 2, . . . , Nv (A.10)

Cp
i ≤ Jyi + cℓ (1− yi), i ∈ A (A.11)

Cp
i ≤ J, i = MB + 1, . . . ,MB +M rv (A.12)

161



Ca
i ≥ Cp

i − Ce
i , i = 1, . . . , Nv (A.13)

Constraints (A.14) and (A.15) are non-negativity and binary constraints, respec-

tively.

ej, e
IM
j , eIUj , eUj , C

p
i , C

a
i , C

+
i ≥ 0, i = 1, . . . , Nv, j = 1, . . . ,M br (A.14)

yi, xij, IMj, IUj, Uj ∈ {0, 1}, i = 1, . . . , Nv, j = 1, . . . ,M br (A.15)
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A.2 Analysis of Problem 1

Proof of Theorem 1: We use the 3-Satisfiability (3SAT) problem (Garey and

Johnson 1979) for our reduction.

3-Satisfiability (3SAT)

Instance: A set Z = {z1, z2, . . . , zp} of boolean variables and a collection W =

{W1 ∩ W2 ∩ . . . ∩ Wk} of clauses over Z, each of which is a disjunction of literals,

z1, z̄1, z2, z̄2, . . . , zp, z̄p such that |Wi| = 3 for 1 ≤ i ≤ k and z̄j = 1− zj for 1 ≤ j ≤ p.

Solution: Find an assignment of either a true (1) or a false (0) value to each

variable in {z1, z2, . . . , zp}, such that the expression W evaluates to true (1).

Given an arbitrary instance of 3SAT, we construct the following instance of Prob-

lem P.

• The parameter values related to estimating the transportation cost are as fol-

lows: cu = 0, ct = 0, ca = 1, fa = 4, fu = 0, ba = 1, bt = 1, lUj = p, lIUj = 2p,

and lIMj = 4p.

• The capacity limit for the retail vault is cℓ = pL− 1 and h = 1. The unit cost

of incremental capacity at the vaults is co = 0. The fixed cost of upgrading the

retail vaults zi, (or z̄i) to a regional vault, Fi = 1, i = 1, 2, . . . , 2p.

• If the distance is less than 1 then the transportation mode is urban (U), oth-

erwise it is inter-urban (IU) or inter-modal (IM).

• Each variable in the set {z1, z̄1, z2, z̄2, . . . , zp, z̄p} corresponds to a distinct retail

vault, i.e., N = 2p. There is one big vault BV and one regional vault RGV .

That is, MB = 1, M rv = 1, and Nv = N +M br +M rv = 2p+ 2.

• A branch is attached to each retail vault in {z1, z̄1, z2, z̄2, . . . , zp, z̄p}. See Ta-

ble A.3 for details.
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• Each clause in {W1,W2, . . .Wk} corresponds to a distinct branch. Currently

branch Wj, where j = 1, 2, . . . , k, is assigned to the regional vault RGV since

there is not enough capacity at any of the retail vaults in {z1, z̄1, z2, z̄2, . . . , zp, z̄p}.

The distance between Wj and RGV is 1. The transportation mode between

Wj and RGV is inter-urban and the transportation cost for a period is L. See

Table A.3 for details.

• There are p dummy branches, {U1, U2, . . . Up} and one big vault, BV . Currently

branch Uj, where j = 1, 2, . . . , p, is assigned to big vault BV since there is not

enough capacity at any of the retail vaults in {z1, z̄1, z2, z̄2, . . . , zp, z̄p}. The

distance between Uj and BV is 1. The transportation mode between Uj and

BV is inter-urban and the transportation cost for a period is L. See Table A.3

for details.

• There is one branch near BV that is served by BV . There is one branch near

RGV that is served by RGV . See Table A.3 for details. There is no other

financial intuition present in this problem instance.

• The number of branches is M br = k + 3p+ 2.

• The distance between the clause node, Wj, where j = 1, 2, . . . , k and a variable

node in Wj is 0, and other distances are 1. The transportation cost per period

(urban mode) from a clause node, Wj, j = 1, 2, . . . , k to a variable node in

Wj is therefore 0; from Wj to other nodes it is L (the cost corresponds to the

inter-urban mode).

• The distance between node Uj, where j = 1, 2, . . . , p and the node zj, (or z̄j) is

0, and other distances are 1. The transportation cost per period (urban mode)

from Uj, j = 1, 2, . . . , p to node zj (or z̄j) is therefore 0; from Uj to other nodes

it is L (the cost corresponds to the inter-urban mode).
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Table A.3: Current Transportation Cost. If the Distance is Less Than 1, Then the
Transportation Mode is U, and Otherwise is IU or IM.

Bank Current Distance from Load Withdrawals Transportation

Branch j Supply the Current Size per Period (D+
j ) Cost (IU)

j Point i Supply Point Load Size Deposits

per Period (D−
j )

Wj RV dtij = 1, lIUj = 2p D+
j = pL, 1

lIU
j

bt.Dj .(2dij)

daij = 1 D−
j = 0 = L

Uj BV dtij = 1, lIUj = 2p D+
j = pL 1

lIU
j

bt.Dj .(2dij)

daij = 1 D−
j = 0 = L

branches D+
j = pL− 1,

at zj , z̄j zj , z̄j dtij = 0 - D−
j = 0 0

Bank Branch D+
j = pL,

near BV BV dtij = 0 - D−
j = 0 0

Bank Branch D+
j = pL,

near RV RV dtij = 0 - D−
j = 0 0

• Before proceeding with the proof, we provide the construction of the instance

of Problem P using the following example.

• Example: p = 3 and k = 4. Z = {z1, z2, z3}; W = {W1 ∩ W2 ∩ W3 ∩ W4},
where W1 = (z1 ∪ z2 ∪ z̄3), W2 = (z̄1 ∪ z̄2 ∪ z̄3), W3 = (z̄1 ∪ z2 ∪ z3), and

W4 = (z̄1∪ z̄2∪z3). Each variable in the set {z1, z̄1, z2, z̄2, z3, z̄3} corresponds to

a retail vault. The current total transportation cost is (p+ k)L. The distance

is 1 for all edges that are not shown in the network. Refer to Figure A.1.

Let L = 2p. For the instance of Problem P constructed above, we consider the

following question:

Decision Problem: Does there exist a feasible solution with total cost Φ ≤ p?

The decision problem is clearly in NP. It can also be easily verified that the

construction of our decision problem from the 3SAT instance can be performed in

polynomial time. We now show that the decision problem has an affirmative answer

if and only if the 3SAT instance is satisfiable.

If part: Suppose the instance of 3SAT is satisfiable. Let zi (or z̄i) represent the
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Figure A.1: Problem Instance Corresponding to the Example Problem with p = 3,
k = 4, W1 = {z1, z2, z̄3}, W2 = {z̄1, z̄2, z̄3}, W3 = {z̄1, z2, z3}, W4 = {z̄1, z̄2, z3},
Solution z1 = 1, z̄2 = 1, and z3 = 1. The Distance is 1 for All Edges That Are Not
Shown in the Network.

BV

U1 U2 U3

LLL

Big Vault (1), Bank Branch (1)

Bank Branches (p)

Z1 Z1 Z2 Z2 Z3 Z3

L
0 0

0 0
0 0

Bank Branches (p)

Retail Vaults (2p), Bank Branches(2p)Z1 Z1 Z2 Z2 Z3 Z3

L
0

0
000

Retail Vaults (2p), Bank Branches(2p)

0

W1 W2 W3 W4

0
000

0
0 0

Bank Branches (k)

L L L L

0

0 0

RGV
Regional Vault (1), Bank Branch (1)

L L L L

true variables in a truth assignment. These vaults then correspond to the truth

assignment, zi (or z̄i), where i = 1, 2, . . . , p, will be upgraded. A total of p retail

vaults will therefore be upgraded with the total cost of p. branch Wj is assigned to a

variable node (a retail vault) corresponding the truth assignment in Wj. The trans-

portation cost for Wj accordingly corresponds with this truth assignment which is 0

(the urban mode). Similarly, branch Uj is assigned to a variable node (a retail vault)

corresponding to the truth assignment of variable zj (or z̄j). The transportation cost

for Uj therefore corresponds this truth assignment which is 0 (the urban mode), and

Φ = p.

Only if part: Suppose there exists a solution to the decision problem with Φ ≤ p.

The current total transportation cost, (p + k)L must be eliminated since L = 2p.

branches Uj, where j = 1, 2, . . . , p and Wj, j = 1, 2, . . . , k must therefore be assigned

to one of the upgraded vaults in {z1, z̄1, z2, z̄2, . . . , zp, z̄p}. Since the currency demand

for each branch Uj, where j = 1, 2, . . . , p must be done via the urban transportation,
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exactly one vault form {zj, z̄j} must be upgraded. The total upgrade cost of retail

vaults is therefore p and Φ = p. Since Φ = p, branch Wj must be assigned to

a variable node (a retail vault) with the transportation cost 0 (urban mode), and

otherwise Φ > L > p. A satisfiable assignment corresponding to Φ = p for the 3SAT

instance is now immediate. This completes the proof.
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A.3 Proof of Theorem 2 for Problem P1

Consider an arbitrary instance of Partition (Garey and Johnson 1979):

Partition:

Given an integer number 2K, a set of n positive integers Z = {z1, z2, . . . , zn−1, zn}

and
∑

zj∈Z zj = 2K, is there a partition of Z into two disjoint subsets Z1 and Z2 such

that Z = Z1 ∪ Z2 and
∑

zj∈Z1
zj =

∑
zj∈Z2

zj = K?

Figure A.2: Problem Instance Corresponding to the Example.
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j=5

5
zD j =+
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• Before proceeding with the proof, given an instance of Partition, we provide

the construction of the instance of Problem P1 using the following example.

Refer to Figure A.2.

• There are one regional vault, two specified retail vaults, and n + 4 branches

in the network. That is M rv = 1, r = 2, M br = n + 4, and MB = 0. In the

current assignment, branches j = 1, 2, . . . , n, n+1, and j = n+4 are supplied
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Table A.4: Transportation Cost gij between Vault i and Branch j.

i \ j j = 1 j = 2 . . . j = n j = n + 1 j = n + 2 j = n + 3 j = n + 4
i = 1 z1(2X + 1) z2(2X + 1) . . . zn(2X + 1) KX KX 2K5X 3K5X
i = 2 z12X z22X . . . zn2X K4X K4X 2KX 3K9X
i = 3 z16X z26X . . . zn6X K4X K4X 2K9X 3KX

by the regional vault i = 3; branch j = n+ 2 is supplied by retail vault i = 1;

branch j = n+ 3 is supplied by retail vault i = 2.

• Z = {z1, z2, . . . , zn−1, zn}. Each variable in the set Z = {z1, z2, . . . , zn−1, zn}

corresponds to a branch. The demand values of D−
j and D+

j , j = 1, 2, . . . , n+4,

are given as follows.

D−
j = 0, ∀ j.

D+
j = zj, j = 1, 2, . . . , n ; D+

j = K, j = n+1, n+2; D+
n+3 = 2K; D+

n+4 = 3K.

• For two specified retail vaults (i = 1, 2) and the existing regional vault (i = 3),

their existing capacities are Ce
1 = K, Ce

2 = 2K, and Ce
3 = 6K, respectively.

• Values of the transportation cost parameter gij are set in Table A.4 with X ≥ 1

by selecting daij and dtij accordingly for given value of cu, ct, ca, fa, fu, ba, bt,

lUj , l
IU
j , and lIMj , where X is an integer number.

• The capacity limit for the retail vault is cℓ = 3K and h = 1. The unit cost of

incremental capacity at the vaults is co = 1.

• For the current assignment, costs incurred to vault 1, 2, 3 are KX, 2KX, and

19KX, respectively. So, the total cost is 22KX currently.

For the instance of Problem P1 constructed above, we consider the following

question:
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Decision Problem: Does there exist a assignment σ with two specified retail vaults

being upgraded such that the total cost Φσ
1 ≤ 11KX + 4K?

The decision problem is clearly in class NP. Also, it is easy to verify that the

construction of the decision problem can be done in polynomial time. We now show

that there exists a assignment σ with two specified retail vaults being upgraded such

that Φσ
1 ≤ 11KX+4K if and only if there exists a solution to the Partition problem.

If part: Suppose there exists a partition of Z into two disjoint subsets Z1 and Z2

such that Z = Z1 ∪ Z2 and
∑

zj∈Z1
zj =

∑
zj∈Z2

zj = K. With |B| = 2, assignment σ

specifies the assignment to one regional vault and two upgraded regional vaults.

Note that both retail vault 1 and 2 are upgraded, consider the following assign-

ment σ: x1j = 1, j = zi ∈ Z1, n + 1, n + 2; x2j = 1, j = zi ∈ Z2, n + 3; x3j = 1,

j = n+ 4.

In σ, all three vaults have new capacities of 3K: Cp
1 = Cp

2 = Cp
3 = 3K. Therefore,

both retail vault 1 and 2 are upgraded to regional vaults with incremental capacity

costs 2K and K. There is no incremental capacity cost for the original regional vault

3. So, the total incremental capacity cost is 3K in σ. Since in σ, branches j = zj ∈

Z1, n+ 1, n+ 2 are assigned to new regional vault 1, branches j = zj ∈ Z2, n+ 3 are

assigned to new regional vault 2, and branches j = n + 4 is assigned to the original

regional vault 3, the total transportation cost is 11KX +K (4KX +K for vault 1,

4KX for vault 2, and 3KX for vault 3). Thus, the assignment σ gives the total cost

Φσ
1 = (11KX +K) + 3K = 11KX + 4K.

Only if part: Suppose there exists a assignment σ with two specified retail vaults

being upgraded such that the total cost Φσ
1 ≤ 11KX +4K. We first show that if the

total cost Φσ
1 ≤ 11KX + 4K both retail vaults must be upgraded.

Claim 1: The retail vault i = 1 is only upgraded, then Φσ
1 > 11KX + 4K.
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Proof: The following assignment σ is optimal: x1j = 1, j = zi ∈ Z, n + 1, n + 2;

x2j = 1, j = n+ 3; x3j = 1, j = n+ 4.

In σ, three vaults have new capacities: Cp
1 = 4K;Cp

2 = 2K;Cp
3 = 3K. Thus,

retail vault i = 1 is upgraded to new regional vault with incremental capacity costs

3K. There is no incremental capacity cost for vault i = 2 and i = 3. Since in

assignment σ2, branches j = zi ∈ Z, n + 1, n + 2 are assigned to new regional vault

i = 1, branches j = n + 3 is assigned to new regional vault i = 2, and branches

j = n + 4 is assigned to the original regional vault i = 3, the total transportation

cost is 11KX + 2K (6KX + 2K for vault i = 1, 2KX for vault i = 2, and 3KX for

vault 3). Thus, with X ≥ 1, the total cost is Φσ
1 = 11KX+2K+3K > 11KX+4K.

Claim 2: The retail vault i = 2 is only upgraded, then Φσ
1 > 11KX + 4K.

Proof: The following assignment σ is optimal: x1j = 1, j = n + 1; x2j = 1,

j = zi ∈ Z, n+ 3; x3j = 1, j = n+ 2, n+ 4.

In σ, three vaults have new capacities: Cp
1 = K;Cp

2 = 4K;Cp
3 = 4K. Thus,

retail vault i = 2 is upgraded to new regional vault with incremental capacity costs

2K. There is no incremental capacity cost for vaults i = 1 and i = 3. So, the total

incremental capacity cost is 2K in σ. Since in σ, branches j = n + 1 is assigned to

new regional vault i = 1, branches j = zi ∈ Z, n + 3 are assigned to new regional

vault i = 2, and branches j = n + 2, n + 4 are assigned to the original regional

vault i = 3, the total transportation cost is 14KX (KX for vault i = 1, 6KX

for vault i = 2, and 7KX for vault i = 3). Thus, with X ≥ 1, the total cost is

Φσ
1 = 14KX + 2K > 11KX + 4K.

Claim 3: Both retail vaults i = 1 and i = 2 must be upgraded.

Proof: Note that the total cost is 22KX without any upgrades of vaults. Since

Φσ
1 ≤ 11KX + 4K, the result follows from Claims 1 and 2.
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Claim 4: All branches j = zi ∈ Z cannot be assigned to vault i = 1.

Proof: Suppose all branches j = zi ∈ Z are assigned to vault i = 1. To find the

minimum cost solution all other branches must be assigned to the vaults having

minimum gij. Thus we the following assignment σ: x1j = 1, j = zi ∈ Z, n+ 1, n+ 2;

x2j = 1, j = n + 3; x3j = 1, j = n + 4; with Φσ
1 = 11KX + 5K > 11KX + 4K.

This contradicts with the fact that Φσ
1 ≤ 11KX + 4K.

Claim 5: All branches j = zi ∈ Z cannot be assigned to vault i = 2.

Proof: Suppose all branches j = zi ∈ Z are assigned to vault i = 2. To find the

minimum cost solution all other branches must be assigned to the vaults having

minimum gij. Thus we the following assignment σ: x1j = 1, j = n + 1; x2j = 1,

j = zi ∈ Z, n+3; x3j = 1, j = n+2, n+4; with Φσ
1 = 14KX +2K > 11KX +4K.

This contradicts with the fact that Φσ
1 ≤ 11KX + 4K.

As a consequence of Claims 4 and 5, we assume that Z1 (respectively, Z2) is a

subset of branches zj ∈ Z are assigned to vault i = 1 (respectively, i = 2). Since a

branch can only be assigned to one vault, sets Z1 and Z2 are disjoint sets. In the

minimum cost solution, a branch zj ∈ Z must be assigned to either vault i = 1 or

i = 2, we have Z = Z1 ∪ Z2.

Claim 6:
∑

zj∈Z1
zj =

∑
zj∈Z2

zj = K and there exists a solution to Partition

Problem.

Proof: In order to obtain minimum cost solution we have the following assignment

σ: x1j = 1, j = zj ∈ Z1, n + 1, n + 2; x2j = 1, j = zj ∈ Z2, j = n + 3;

x3j = 1, j = n+ 4. Since both vaults must be upgraded and cℓ = 3K, we must have∑
zj∈Z1

zj =
∑

zj∈Z2
zj = K. Thus, Φσ

1 = 11KX + 4K and there exists a solution to

Partition Problem.
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A.4 Formulation of MIP for Subproblem 2

Table A.5: Additional Notation Used to Formulate Subproblem 2 in the MIP Model:
Parameters.

MN The number of net negative regional vaults in the region.
MP The number of net positive regional vaults in the region.
MV Total number of big vaults and regional vaults.
Qa Capacity of one airplane, by value of currency.
Qt Capacity of one truck, by value of currency.
Lk
3 The largest possible transportation cost to satisfy regional vault k’s demand:

Lk
3 = S+

k
max

{
2 bt
Qt

maxi,j{dtik, d
t
jk}+ ct,

fa
Qa

+ 2 ba
Qa

maxi,j{daik, d
a
jk}+ ca

}

Subproblem 2 MIP:

The objective function minimizes the total per period transportation cost for vaults,

which includes sending excess cash back from net negative regional vault j to its

closest big vault, sending cash to net negative regional vaults j to eventually satisfy

net positive regional vaults’ demands, and satisfying the demand for net positive

regional vault k from either a big or a net negative regional vault.

Minimize
∑
j

(αIU
j + αIM

j + γIU
j + γIM

j ) +
∑
k

(βIU
k + βIM

k )

Subject to:

Constraints (A.16)-(A.17) are balance equations that equate the inflow and outflow

for net positive regional vaults and net negative regional vaults.

∑
i

xik +
∑
j

yjk = S+
k , ∀k (A.16)

S−
j +

∑
i

zij +
∑
l ̸=j

vlj =
∑
k

yjk +
∑
m̸=j

vjm +
∑
i

gji, ∀j (A.17)

Constraints (A.18)-(A.22) are flow upper bound constraints that set values for binary

variables used to enforce sole sourcing. Specifically, (A.18)-(A.19) are for inflow at

net positive regional vaults while (A.20)-(A.22) are for outflow and inflow at net
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Table A.6: Additional Notation Used to Formulate Subproblem 2 in the MIP Model:
Variables.

Indices

i 1, 2, . . . , MB as big vaults.
j, l, m MB + 1, . . . , MB +MN as net negative regional vaults.
k MB +MN + 1, . . . , MV as net positive regional vaults.
p, q 1, . . . , MV as any vault.

Destination: Big Vaults

αIU
j The interurban (IU) transportation expense for shipping excess cash from net negative regional vault

j back to a big vault.
αIM
j The intermodal (IM) transportation expense for shipping excess cash from net negative regional

vault j back to a big vault.
gji The amount of currency sent back from net negative regional vault j to big vault i.
BN

ji If BN
ji = 1, then currency is sent back from net negative regional vault j to big vault i. Otherwise,

BN
ji = 0.

BIU
j If BIU

j = 1, then net negative regional vault j uses interurban (IU) mode to send excess cash back
to big vaults.

BIM
j If BIM

j = 1, then net negative regional vault j uses intermodal (IM) mode to send excess cash back
to big vaults.
Destination: Net Positive Regional Vaults

βIU
k The interurban (IU) transportation cost for supplying net positive regional vault k from either a big

or a net negative regional vault.
βIM
k The intermodal (IM) transportation cost for supplying net positive regional vault k from either a

big or a net negative regional vault.
xik The amount of currency sent from big vault i to net positive regional vault k.
yjk The amount of currency sent from net negative regional vault j to net positive regional vault k.
PB
ik If PB

ik = 1, then big vault i is the supplier for net positive regional vault k. Otherwise, PB
ik = 0.

PN
jk If PN

jk = 1, then net negative regional vault j is the supplier for net positive regional vault k.

Otherwise, PN
jk = 0.

P IU
k If P IU

k = 1, then net positive regional vault k receives cash by interurban (IU) mode.
P IM
k If P IM

k = 1, then net positive regional vault k receives cash by intermodal (IM) mode.
Destination: Net Negative Regional Vaults

γIU
j The interurban (IU) transportation cost for supplying net negative regional vault j from either a big

or a net negative regional vault.
γIM
j The intermodal (IM) transportation cost for supplying net negative regional vault j from either a

big or a net negative regional vault.
zij The amount of currency sent from big vault i to net negative regional vault j.
vlj The amount of currency sent from regional vault l to regional vault j, where both of indexes are net

negative regional vaults.
NB

ij If NB
ij = 1, then big vault i is the supplier for net negative regional vault j. Otherwise, NB

ij = 0.

NN
lj If NN

lj = 1, then net negative regional vault l is the supplier for net negative regional vault j.

Otherwise, NN
lj = 0.

NIU
j If NIU

j = 1, then net negative regional vault j obtains cash by interurban (IU) mode.

NIM
j If NIM

j = 1, then net negative regional vault j obtains cash by intermodal (IM) mode.

negative regional vaults.

xik ≤ S+
k P

B
ik , ∀i, ∀k (A.18)

yjk ≤ S+
k P

N
jk , ∀j, ∀k (A.19)

gji ≤ JBN
ji , ∀i∀j (A.20)

zij ≤ JNB
ij , ∀i∀j (A.21)
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vlj ≤ JNN
lj , ∀l∀j (A.22)

Constraints (A.23)-(A.24) enforce that each regional vault can have no more than

one supplier (one big vault or one net negative regional vault).

∑
i

PB
ik +

∑
j

PN
jk = 1, ∀k (A.23)

∑
i

NB
ij +

∑
l

NN
lj ≤ 1, ∀j (A.24)

Constraints (A.25)-(A.27) select the transportation mode (IM or IU) for sending

excess cash back from net negative regional vault j to big vault i. It is clear that

each net negative regional vault will send excess cash back to no more than one big

vault. The transportation expense for this flow is also captured.

BIU
j +BIM

j =
∑
i

BN
ji , ∀j (A.25)

αIU
j ≥ bt

Qt

∑
i

2dtji gji + ct
∑
i

gji − L3(1−BIU
j ), ∀j (A.26)

αIM
j ≥ fa

Qa

∑
i

gji +
ba
Qa

∑
i

2daji gji

+ ca
∑
i

gji − L3(1−BIM
j ), ∀j (A.27)

Constraints (A.28)-(A.30) select the transportation mode for sending cash to net

positive regional vault k from either big vault i or net negative regional vault j.

Round trip transportation cost is also calculated in this set of constraints.

P IU
k + P IM

k = 1, ∀k (A.28)

βIU
k ≥ bt

Qt

S+
k (
∑
i

2dtikP
B
ik +

∑
j

2dtjkP
N
jk )

+ ctS
+
k − Lk

3(1− P IU
k ),∀k (A.29)

βIM
k ≥ fa

Qa

S+
k +

ba
Qa

S+
k (
∑
i

2daikP
B
ik +

∑
j

2dajkP
N
jk )

+ caS
+
k − Lk

3(1− P IM
k ),∀k (A.30)

Constraints (A.31)-(A.33) compute the transportation cost of sending cash from
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either big vault i or net negative regional vault l to net negative regional vault j, in

order to eventually satisfy the demand from net positive regional vaults.

N IU
j +N IM

j =
∑
i

NB
ij +

∑
l

NN
lj , ∀j (A.31)

γIU
j ≥ bt

Qt

(
∑
i

2dtijzij +
∑
l

2dtljvlj)

+ct(
∑
i

zij +
∑
l

vlj)− L3(1−N IU
j ), ∀j (A.32)

γIM
j ≥ fa

Qa

(
∑
i

zij +
∑
l

vlj) +
ba
Qa

(
∑
i

2daijzij +
∑
l

2daljvlj)

+ca(
∑
i

zij +
∑
l

vlj)− L3(1−N IM
j ), ∀j (A.33)

Constraints (A.34)-(A.36) are non-negativity and binary constraints.

All variables nonnegative, ∀i,∀j, ∀k, ∀l, ∀m (A.34)

BN
ji , P

B
ik , P

N
jk , N

B
ij , N

N
lj ∈ {0, 1}, ∀i,∀j, ∀k, ∀l (A.35)

BIU
j , BIM

j , P IU
k , P IM

k , N IU
j , N IM

j ∈ {0, 1}, ∀i,∀j, ∀k, ∀l (A.36)
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A.5 Formulation of MCF for Subproblem 2

Minimize cB + cP + cN

S.t.∑
i

xik +
∑
j

yjk = S+
k , ∀k (A.37)

S−
j +

∑
i

zij +
∑
l ̸=j

vlj =
∑
k

yjk +
∑
m̸=j

vjm +
∑
i

gji, ∀j (A.38)

xik ≤ S+
k , ∀i, ∀k (A.39)

yjk ≤ S+
k , ∀j, ∀k (A.40)

zij ≤ Si, ∀i∀j (A.41)

gji ≤ J, ∀i∀j (A.42)

vlj ≤ J, ∀l∀j (A.43)

cB =
∑
j

∑
i

cjigji, ∀i∀j (A.44)

cP =
∑
i

∑
k

cikxik +
∑
j

∑
k

cjkyjk, ∀i∀j∀k (A.45)

cN =
∑
i

∑
j

cijzij +
∑
l

∑
l ̸=j

cljvlj, ∀i∀j∀l∀m (A.46)

All variables nonnegative, ∀i, ∀j, ∀k, ∀l, ∀m (A.47)

The objective function minimizes the total transportation cost for vaults which

includes the part for sending excess cash back from net negative regional vault j

to big vault i, the part for satisfying the demand for net positive regional vault k

and the part for sending cash to net negative regional vaults j to eventually satisfy

net positive regional vaults’ demand. Constraints (A.37)-(A.38) are flow balance

equations for each regional vault. Constraints (A.39)-(A.43) are flow upper bound

constraints. Constraints (A.44)-(A.46) compute the transportation cost for each part

in the objective function. Constraints (A.47) are non-negativity constraints for all

177



Table A.7: Notations Used to Formulate Subproblem 2 in the MCF Model.

Parameters

i 1, 2, . . . , MB as big vaults.
j, l, m MB + 1, . . . , MB +MN as net negative regional vaults.
k MB +MN + 1, . . . , MV as net positive regional vaults.
p, q 1, . . . , MV as any vault.
MB The number of big vaults in the region.
MN The number of net negative regional vaults.
MP The number of net positive regional vaults.
MV Total number of big vaults and regional vaults. MV = MB + MN + MP . Set

i = 1, 2, . . . ,MB as big vault; j, l = MB + 1, . . . ,MB +MN as net negative regional
vaults. k = MB +MN + 1, . . . ,MV as net positive regional vaults.

cpq The unit cost of flow sent from vault p to q.
J The capacity limit for regional vaults. The value of J is given by CB.

Variables

xik The amount of flow send from big vault i to net positive regional vault k.
yjk The amount of flow send from net negative regional vault j to net positive regional

vault k.
zij The amount of flow send from big vault i to net negative regional vault j.
gji The amount of flow send back from net negative regional vault j to big vault i.
vlj The amount of flow send from net negative regional vault l to net negative regional

vault j.
cB The transportation cost for shipping excess cash from net negative regional vault j

back to big vaults.
cP The transportation cost for satisfying the demand from net positive regional vault k.
cN The transportation cost for satisfying the demand from net negative regional vault j.

the variables.

The minimum cost flow problem can be solved in polynomial time using existing

polynomial time linear programming algorithms. The resulting algorithms will be

polynomial, but not strongly polynomial, i.e., their complexities will based on the

number of bits needed to represent the integral flow in the currency network and the

number of nodes in the currency network.
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A.6 Sourcing for Regional Vaults

Table A.8: Sourcing for Regional Vaults (#11-139) with the Maximum Demand in
the MCF Model [The First Five Rows Represent Net Negative Regional Vaults; Net
Positive Regional Vaults Are Represented in the Following Rows].

Supplier−Recipient Supplier−Recipient Supplier−Recipient Supplier−Recipient
37−11 13,52−12 14−15 47−16
19−20 12−24 28−26 23,48−29
18−31 11−32 21,49−34 27−36
16−45 44−47 24,29−48 34−49
42−51 15,40−55
52−56 17,55−57 19−58 45−59
21−60 11−61 10−62 26−63
11−64 13−65 23,50−66 7,25−67
6−68 37,39−69 2−70 39,45−71
1−72 8−73 5−74 2−75
6−76 48,53−77 2−78 6−79

11,17,20,26−80 26−81 6−82 10−83
6−84 13−85 11−86 25−87
10−88 6−89 6−90 10−91
9−92 16−93 2,41−94 24−95
49−96 11−97 6−98 13,30−99
2−100 11−101 31,34−102 2,27−103

14,38−104 14−105 3−106 29−107
11−108 2−109 8−110 3−111
3,33−112 36−113 34−114 9−115
2−116 7,54−117 1−118 2−119
7−120 20−121 42,51−122 2−123
3−124 36−125 6−126 11−127

10,22,32−128 7−129 1−130 3,43−131
1−132 10−133 2−134 7−135

17,46−136 10−137 36−138 6,35−139

Table A.9: Sourcing for Regional Vaults (#11-139) with the Midpoint Demand in
the MCF Model [The First Five Rows Represent Net Negative Regional Vaults; Net
Positive Regional Vaults Are Represented in the Following Rows].

Supplier−Recipient Supplier−Recipient Supplier−Recipient Supplier−Recipient
37−11 13,52−12 14−15 47−16
19−20 12,26,39−24 28−26 23,48−29

18,55−31 11−32 21,49−34 27−36
16,17−45 44−47 24−48 34−49
42−51 15,40−55
52−56 17−57 19−58 45−59
21−60 11−61 22−62 26−63
11−64 13−65 23,50−66 25−67
6−68 39−69 2−70 39,45−71
1−72 8−73 5−74 2,27−75
6−76 6,48,53−77 2−78 6−79
20−80 26−81 6−82 10−83
6−84 13−85 11−86 25−87

10,22−88 6−89 6−90 10−91
9−92 16−93 2,41−94 24−95
49−96 11−97 6−98 13,30−99
2−100 11−101 31,34−102 27−103

14,38−104 14−105 3−106 29−107
11,20−108 2−109 8−110 3−111
3,33−112 36−113 34−114 9−115
2−116 7,25,54−117 1−118 2−119
7−120 20−121 42,51−122 2−123
3−124 36−125 6−126 11−127

22,32−128 7−129 1−130 3,43−131
1−132 10−133 2−134 7−135

17,46−136 10−137 36−138 6,35−139
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Table A.10: Sourcing for Regional Vaults (#11-139) with the Average Demand in
the MCF Model [The First Two Rows Represent Net Negative Regional Vaults; Net
Positive Regional Vaults Are Represented in the Following Rows].

Supplier−Recipient Supplier−Recipient Supplier−Recipient Supplier−Recipient
37−11 13,52−12 14−15 47−16
19−20 20−21 12,26,39−24 28−26

23,48−29 18,55−31 11−32 21,49−34
27−36 16,17−45 44−47 24,29−48
42−51 15,40−55
52−56 17−57 19−58 45−59
21−60 11−61 22−62 26−63
11−64 13−65 23,50−66 25−67
6−68 39−69 27−70 39,45−71
1−72 8−73 5−74 27−75
6−76 29,48,53−77 2−78 6−79
20−80 26−81 6−82 10−83
6−84 13−85 11−86 25,31−87
22−88 6−89 6−90 10−91
9−92 16−93 2,41−94 24−95

32,49−96 11−97 6−98 30−99
2−100 11−101 31−102 2,27−103

14,38−104 14,30−105 3−106 29−107
20−108 2−109 8−110 3−111
3,33−112 36−113 34−114 9−115
2−116 7,25,54−117 1−118 2−119
7−120 20−121 42,51−122 2−123
3−124 36−125 6−126 11−127

22,32−128 7−129 1−130 3,43−131
1−132 10−133 2−134 7−135

17,46−136 10,22−137 36−138 6,35−139
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APPENDIX B

SUPPLEMENT TO CHAPTER 3

B.1 Periodic Review Model

Periodic Review Model Without Seasonality for CV j is (Ej, R).

Ej = Order-Up-To limit of coin inventory at j.

Ej = 5wj(L+R) + z
√
5σj

√
L+R.

z = service level factor.

5wj(R + T ) = Mean demand during (R + L).
√
5σj

√
L+R = Standard deviation of the demand during time (R+L) for random

variable W̃j.

wj = Mean daily withdrawals at CV j (payable day at CV j).

5wj = Mean weekly withdrawals at CV j assuming that a week consists of 5

working days.

σj = Daily standard deviation of the demand at CV j.
√
5σj = Weekly standard deviation.

Sj = z
√
5σj

√
L+R = Safety stock at j.

Determination of Zt
j

At time t, the realization of the random variables, D̃j, W̃j are D̂
t
j, Ŵ

t
j , respectively.

Let Î tj be the realized coin inventory level at the end of period t at CV j. Note that Î tj

can be higher than the Order-Up-To limit because of deposits from DIs. According

to Base Stock Model, we define Zt
j = Î tj − Ej. If Zt

j > 0, it means surplus of coins

(Î tj −Ej) can be transshipped. If Zt
j < 0, it means deficit of coins (Ej − Î tj) must be

ordered.
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B.2 Computational Results for Problem I and Problem IN

Table B.1: Cost Components for Problem I When Oj = 0 and Uj = 1, 2, 3 Weeks of
Payable Days With 2010 Demand Data.

Unit Holding Prod. Trans. Holding Total
Cost h ($) Cost ($M) Cost ($M) Cost ($M) Cost ($M)

150 97.99 33.96 13.85 145.79
175 97.99 34.53 15.57 148.09
200 97.99 34.53 17.8 150.32
225 98.15 36.13 18.18 152.46
250 98.15 36.13 20.21 154.48
500 102.93 41.32 25.58 169.83
750 116.49 52.21 7.18 175.88
1000 119.91 57.86 0 177.78

Table B.2: Cost Components for Problem IN When Oj = 0 and Uj = 1 Weeks of
Payable Days With 2010 Demand Data.

Unit Holding Prod. Trans. Holding Total
Cost h ($) Cost ($M) Cost ($M) Cost ($M) Cost ($M)

150 97.99 191.57 16.35 305.9
175 97.99 191.57 19.07 308.63
200 97.99 191.57 21.79 311.35
225 97.99 191.57 24.52 314.08
250 97.99 191.57 27.24 316.8
500 97.99 191.57 54.49 344.04
750 97.99 191.57 81.73 371.29
1000 97.99 191.57 108.97 398.53

Table B.3: Cost Components forProblem IN When Oj = 0 and Uj = 2 Weeks of
Payable Days With 2010 Demand Data.

Unit Holding Prod. Trans. Holding Total
Cost h ($) Cost ($M) Cost ($M) Cost ($M) Cost ($M)

150 97.99 210.1 14.28 322.37
175 97.99 210.1 16.66 324.75
200 97.99 210.1 19.04 327.13
225 97.99 210.1 21.42 329.51
250 97.99 210.1 23.8 331.89
500 97.99 210.1 47.61 355.7
750 97.99 210.1 71.41 379.5
1000 97.99 210.1 95.21 403.3
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Table B.4: Cost Components forProblem IN When Oj = 0 and Uj = 3 Weeks of
Payable Days With 2010 Demand Data.

Unit Holding Prod. Trans. Holding Total
Cost h ($) Cost ($M) Cost ($M) Cost ($M) Cost ($M)

150 97.99 215.87 14.28 328.14
175 97.99 215.87 16.66 330.52
200 97.99 215.87 19.04 332.9
225 97.99 215.87 21.42 335.28
250 97.99 215.87 23.8 337.66
500 97.99 215.87 47.61 361.47
750 97.99 215.87 71.41 385.27
1000 97.99 215.87 95.21 409.07

Table B.5: Cost Components for Problem I When Oj = 0 and Uj = 1, 2, 3 Weeks of
Payable Days With 2011 Demand Data.

Unit Holding Prod. Trans. Holding Total
Cost h ($) Cost ($M) Cost ($M) Cost ($M) Cost ($M)

150 99.19 34.37 6.78 140.34
175 99.19 34.62 7.65 141.46
200 99.19 34.62 8.75 142.56
225 99.19 35.3 9.13 143.62
250 99.19 35.3 10.14 144.63
500 99.68 36.13 18.54 154.35
750 109.81 43.5 5.37 158.68
1000 112.38 47.72 0 160.1

Table B.6: Cost Components forProblem IN When Oj = 0 and Uj = 1 Weeks of
Payable Days With 2011 Demand Data.

Unit Holding Prod. Trans. Holding Total
Cost h ($) Cost ($M) Cost ($M) Cost ($M) Cost ($M)

150 99.19 182.01 6.6 287.8
175 99.19 182.01 7.7 288.9
200 99.19 182.01 8.8 290
225 99.19 182.01 9.9 291.1
250 99.19 182.01 11.01 292.21
500 99.19 182.01 22.01 303.21
750 99.19 182.01 33.02 314.22
1000 99.19 182.01 44.02 325.22
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Table B.7: Cost Components forProblem IN When Oj = 0 and Uj = 2 Weeks of
Payable Days With 2011 Demand Data.

Unit Holding Prod. Trans. Holding Total
Cost h ($) Cost ($M) Cost ($M) Cost ($M) Cost ($M)

150 99.19 185.67 5.53 290.39
175 99.19 185.67 6.45 291.31
200 99.19 185.67 7.37 292.23
225 99.19 185.67 8.29 293.15
250 99.19 185.67 9.21 294.07
500 99.19 185.67 18.42 303.28
750 99.19 185.67 27.63 312.49
1000 99.19 185.67 36.84 321.7

Table B.8: Cost Components forProblem IN When Oj = 0 and Uj = 3 Weeks of
Payable Days With 2011 Demand Data.

Unit Holding Prod. Trans. Holding Total
Cost h ($) Cost ($M) Cost ($M) Cost ($M) Cost ($M)

150 99.19 188.62 5.53 293.34
175 99.19 188.62 6.45 294.26
200 99.19 188.62 7.37 295.18
225 99.19 188.62 8.29 296.1
250 99.19 188.62 9.21 297.02
500 99.19 188.62 18.42 306.23
750 99.19 188.62 27.63 315.44
1000 99.19 188.62 36.84 324.65

Table B.9: Cost Components for Problem I When Oj = 0 and Uj = 1, 2, 3 Weeks of
Payable Days With 2012 Demand Data.

Unit Holding Prod. Trans. Holding Total
Cost h ($) Cost ($M) Cost ($M) Cost ($M) Cost ($M)

150 79.66 27.6 13.64 120.9
175 79.66 27.6 15.91 123.17
200 79.66 27.6 18.18 125.44
225 80.11 27.71 19.89 127.71
250 80.11 27.71 22.1 129.92
500 91.97 37.33 11.51 140.81
750 98.55 41.39 3.49 143.43
1000 100.21 44.14 0 144.35
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Table B.10: Cost Components forProblem IN When Oj = 0 and Uj = 1 Weeks of
Payable Days With 2012 Demand Data.

Unit Holding Prod. Trans. Holding Total
Cost h ($) Cost ($M) Cost ($M) Cost ($M) Cost ($M)

150 79.66 126.3 13.64 219.6
175 79.66 126.3 15.91 221.87
200 79.66 126.3 18.18 224.14
225 79.66 126.3 20.46 226.42
250 79.66 126.3 22.73 228.69
500 79.66 126.3 45.46 251.42
750 79.66 126.3 68.19 274.15
1000 79.66 126.3 90.92 296.88

Table B.11: Cost Components forProblem IN When Oj = 0 and Uj = 2 Weeks of
Payable Days With 2012 Demand Data.

Unit Holding Prod. Trans. Holding Total
Cost h ($) Cost ($M) Cost ($M) Cost ($M) Cost ($M)

150 79.66 146.92 13.64 240.22
175 79.66 146.92 15.91 242.49
200 79.66 146.92 18.18 244.76
225 79.66 146.92 20.46 247.04
250 79.66 146.92 22.73 249.31
500 79.66 146.92 45.46 272.04
750 79.66 146.92 68.19 294.77
1000 79.66 146.92 90.92 317.5

Table B.12: Cost Components for Problem IN When Oj = 0 and Uj = 3 Weeks of
Payable Days With 2012 Demand Data.

Unit Holding Prod. Trans. Holding Total
Cost h ($) Cost ($M) Cost ($M) Cost ($M) Cost ($M)

150 79.66 146.21 13.64 239.51
175 79.66 146.21 15.91 241.78
200 79.66 146.21 18.18 244.05
225 79.66 146.21 20.46 246.33
250 79.66 146.21 22.73 248.6
500 79.66 146.21 45.46 271.33
750 79.66 146.21 68.19 294.06
1000 79.66 146.21 90.92 316.79
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B.3 Proof of Theorem 1

Consider an arbitrary instance of Equal Cardinality Partition:

Equal Cardinality Partition: Given an integer number 2K, a set of 2n positive

integers Z = {z1, z2, . . . , z2n−1, z2n} and
∑

zi∈Z zi = 2K, does there exist a partition of

Z into two disjoint subsets Z1 and Z2 such that Z = Z1∪Z2,
∑

zi∈Z1
zi =

∑
zj∈Z2

zj =

K, and |Z1| = |Z2| = n?

The optimization Problem II with “ volume discount” can be restated as the

following decision problem.

Decision Problem: Given deposits and withdrawals, Dt and W t, t = 1, 2, . . . , T ,

does there exist a decision σ = (X t
p, X

t
u, Y

t
u |t = 1, 2, . . . , T ) for the DI such that the

total cost Φσ ≤ 3(n+1)K
2

+ (n+ 1)K(g + ḡ + c+ f)?

Construction: We construct an instance of Problem II with “ volume discount” from

Equal Cardinality Partition with T = 2n + 2. We choose the values such that

(c+ f) > g > ḡ. Without loss of generality, we may assume that K is even number.

Table B.13: Withdrawal and Deposit at the DI.

Demand \ Period t = 1 t = 2 t = 3 . . .

Withdrawal W1 = 0 W2 = K + z1 W3 = K + z2 . . .

Deposit D1 = K + z1 D2 = K + z2 D3 = K + z3 . . .

Demand \ Period . . . t = 2n t = 2n + 1 t = 2n + 2

Withdrawal . . . W2n = K + z2n−1 W2n+1 = K + z2n W2n+2 = (n + 1)K

Deposit . . . D2n = K + z2n D2n+1 = 0 D2n+2 = 0

• Withdrawal and Deposit values (Dt, W t, t = 1, 2, . . . , 2n + 2), are given in

Table B.13.

• Discount related parameters are set as follows: τ = (n+1)K, g = 4, and ḡ = 1.

• Values of the other parameters are set as follows: hp = 1, hu = 0, c = 4, and

f = 1.
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Table B.14: The Decision σ in the If Part.

Flow \ Period t = 1 t = 2 t = 3 t = 4 . . . . . .

Xt
p 0 K + z2 0 K + z4 . . . . . .

Y t
u K + z1 0 K + z3 0 . . . . . .

Xt
u 0 0 0 0 . . . . . .

Flow \ Period t = 2n − 3 t = 2n − 2 t = 2n − 1 t = 2n t = 2n + 1 t = 2n + 2

Xt
p 0 0 K + z2n−1 K + z2n 0 0

Y t
u K + z2n−3 K + z2n−2 0 0 (n + 1)K 0

Xt
u 0 0 0 0 0 0

It is easy to verify that the construction of the decision problem can be done in

polynomial time. The decision problem is clearly in class NP. We now prove that

there exists a decision σ = (X t
p, X

t
u, Y

t
u |t = 1, 2, . . . , T ) for the DI such that the total

cost Φσ ≤ 3(n+1)K
2

+ (n+ 1)K(g + ḡ + c+ f) if and only if there exists a solution to

the Equal Cardinality Partition problem.

Figure B.1: Construction of the Instance for Problem II.
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If part: Suppose there exists a Equal Cardinality Partition of Z into two disjoint

subsets Z1 and Z2 such that Z = Z1 ∪ Z2,
∑

zj∈Z1
zj =

∑
zj∈Z2

zj = K, and |Z1| =

|Z2| = n, where Z1 = {z1, z3, . . . , z2n−2} and Z2 = {z2, z3, . . . , z2n−1, z2n}. The

decision σ is fully specified in Table B.14. Note that we assign values of variables,

Y t
u (respectively, X t

p) correspond to Z1 (respectively, Z2) as shown in Table B.14.
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The inventory status of coins corresponding to σ is shown in Figure B.1. The cost

components associated with σ can be estimated as follows: the inventory cost in

σ is 3(n+1)K
2

; the coin packaging cost paid to 3PLPs is (n + 1)K(g + ḡ); and the

transportation cost plus the fee paid for obtaining the packaged coins from the FRS

is (n + 1)K(c + f). Thus the total cost Φσ = 3(n+1)K
2

+ (n + 1)K(g + ḡ + c + f).

Thus, there exists σ such that the total cost Φσ ≤ 3(n+1)K
2

+(n+1)K(g+ ḡ+ c+ f).

Only if part: Suppose there exists a decision σ for the DI such that the total cost

Φσ ≤ 3(n+1)K
2

+(n+1)K(g+ḡ+c+f). We need to prove that there must exist a Equal

Cardinality Partition. Let us examine the decision σ0 with minimum cost. Note that

Φσ0 = Φσ0
1 + Φσ0

2 + Φσ0
3 consists of three components: the inventory holding cost at

the DI, Φσ0
1 ; the coin packaging cost paid to the 3PLP, Φσ0

2 ; and the transportation

cost plus the fee paid for obtaining the packaged coins from the FRS, Φσ0
3 .

• Claim II.1: Φσ0
1 ≥ 3(n+1)K

2
.

Proof: Since hu = 0, the inventory holding cost for σ0 is zero. The demand

for withdrawal of packaged coins (W 1 = 0, W 2 = K + z1, W 3 = K + z2,

. . ., W 2n = K + z2n−1, W 2n+1 = K + z2n, W 2n+2 = (n + 1)K) must be

satisfied. Thus we must maintained minimum inventory at each period such

that I0p ≥ 0, I1p ≥ K + z1, I
2
p ≥ K + z2, . . ., I

2n−1
p ≥ K + z2n−1, I

2n
p ≥ K + z2n,

I2n+1
p ≥ (n+ 1)K, and I2n+2

p ≥ 0. Thus, Φσ0
1 =

∑2n+2
t=0

Itp
2
≥ 3(n+1)K

2
.

• Claim II.2: Φσ0
2 + Φσ0

3 ≥ (n+ 1)K(g + ḡ + c+ f).

Proof: Note that
∑2n+2

t=1 Dt = 2(n+1)K and
∑2n+2

t=1 W t = 3(n+1)K. Since c =

4, f = 1, g = 4, and ḡ = 1, it economical that all deposits
∑2n+2

t=1 Dt = 2(n+1)K

must be packaged at the 3PLP to satisfied a part of the withdrawal amount to

2(n+1)K in which the withdrawal amount (n+1)K corresponds to period 2n+2

meets the threshold value, τ = (n+1)K. Thus we have Φσ0
2 ≥ (n+1)K(g+ ḡ).
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Consequently the remaining withdrawal amount (n + 1)K must be satisfied

by purchasing packaged coins from FRS and transporting to the DI. Hence we

have must have Φσ0
3 ≥ (n+ 1)K(c+ f).

• Claim II.3: Φσ0 = Φσ0
1 + Φσ0

2 + Φσ0
3 ≥ 3(n+1)K

2
+ (n+ 1)K(g + ḡ + c+ f).

Proof: Follows from Claims II.1 and II.2.

• Claim II.4: σ = σ0 and Φσ0 = 3(n+1)K
2

+ (n+ 1)K(g + ḡ + c+ f).

Proof: Since there exists a decision σ such that the total cost Φσ ≤ 3(n+1)K
2

+

(n+1)K(g+ḡ+c+f) and Φσ0 ≥ 3(n+1)K
2

+(n+1)K(g+ḡ+c+f). σ = σ0 and σ0

must be a minimum cost solution with Φσ0 = 3(n+1)K
2

+(n+1)K(g+ ḡ+ c+f).

Now we can characterize σ0 with Φσ0 = 3(n+1)K
2

+ (n + 1)K(g + ḡ + c + f). As

consequence of above claims, we observe the following facts regarding σ0: (i) No

inventory of packaged coins is carried from one period to the next (Claim II.1), (ii)

Exactly (n+1)K amount of deposits are packaged to satisfy the withdrawals during

the periods 2 to 2n + 1 (Claim II.2), (iii) Exactly (n + 1)K amount of deposits are

packaged at the discount rate ḡ = 1 to satisfy the withdrawal during period 2n + 2

(Claim II.2), (iv) Exactly (n + 1)K amount of withdrawals during the periods 2 to

2n+ 1 are satisfied by purchasing packaged coins from FRS and transporting to the

DI (Claim II.2).

Since no inventory of packaged coins is carried from one period to the next and

the demand for withdrawals during the periods 2 to 2n + 1 must be satisfied, we

must have either (Y t
u = K + zt, X

t
p = 0) or (Y t

u = 0, X t
p = K + zt), t = 1, 2, . . . , 2n.

We let the positive variables, Y t
u (respectively, positive variables X t

p) belong to Z̄1

(respectively, Z̄2). From Claim II.2, we have
∑

Y t
u∈Z̄1

Y t
u = (n + 1)K (respectively,∑

Xt
p∈Z̄2

X t
p = (n+1)K). This implies that |Z̄1| = |Z̄2| = n and there exists a solution

to Equal Cardinality Partition. This completes the proof.
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APPENDIX C

SUPPLEMENT TO CHAPTER 4

C.1 Computational Results for Building Three EBeam Facilities

For Q = 3, four cases are analzyed (Table C.1). The best option, as discussed

in Section 4.5 (Table 4.10), is to choose two facilities in Mexico and one facility in

the U.S. with 17 service lines in total: 11 in Nuevo Laredo, 3 in Matehuala, and 3

in Houston. The total cost is $23.5773 M.

To build three facilities in Mexico, the best three locations are Nuevo Laredo with

11 service lines, Reynosa with 3 service lines, and Matehuala with 3 service lines.

The total number of service lines required is 17, and the total cost is $23.5833 M.

To build one facility in Mexico and two facilities in the U.S., 17 service lines are

required: 11 in Nuevo Laredo, 3 in San Antonio, and 3 in Houston. For this case,

the total cost is $23.6033 M.

If management decides to build three facilities only in the U.S., San Antonio

needs 5 service lines, Dallas need 7 service lines, and Houston needs 5 service lines.

The total cost for this case is $23.7761 M.
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Table C.1: Computational Study for Three EBeam Facilities (The best combination
is highlighted).

Two In Mexico
One In The U.S.

Best Number of Queueing Total
Locations Service lines Cost Cost

($M) ($M)
Nuevo Laredo 10
Matehuala 3
Houston 3 0.9121 23.5809

Nuevo Laredo 11
Matehuala 3
Houston 3 0.8985 23.5773

Nuevo Laredo 12
Matehuala 3
Houston 3 0.8931 23.5819

Three
In Mexico

Best Number of Queueing Total
Locations Service lines Cost Cost

($M) ($M)
Nuevo Laredo 10

Reynosa 3
Matehuala 3 0.9121 23.5869

Nuevo Laredo 11
Reynosa 3

Matehuala 3 0.8985 23.5833
Nuevo Laredo 12

Reynosa 3
Matehuala 3 0.8931 23.5880

One In Mexico
Two In The U.S.

Best Number of Queueing Total
Locations Service lines Cost Cost

($M) ($M)
Nuevo Laredo 10
San Antonio 3

Houston 3 0.9121 23.6069
Nuevo Laredo 11
San Antonio 3

Houston 3 0.8985 23.6033
Nuevo Laredo 12
San Antonio 3

Houston 3 0.8931 23.6079

Three
In The U.S.

Best Number of Queueing Total
Locations Service lines Cost Cost

($M) ($M)
San Antonio 5

Dallas 6
Houston 5 0.9313 23.7875

San Antonio 5
Dallas 7

Houston 5 0.9081 23.7761
San Antonio 5

Dallas 8
Houston 5 0.9010 23.7807
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C.2 Computational Results for Building Four EBeam Facilities

For Q = 4, five cases are also analyzed (Table C.2). The best option is discussed

in Section 4.5 (Table 4.11). Choosing three facilities in Mexico and one facility in the

U.S. is the best, with 18 service lines in total: 9 in Nuevo Laredo, 3 in Reynosa, 3 in

Matehuala, and 3 in Houston. The queuing delay cost for the best option is $0.9108

M, and the total cost is $23.7109 M. The solutions for other cases are also shown in

Table C.2. Clearly, selecting all four locations in the U.S. is the worst case.

Table C.2: Computational Study for Four EBeam Facilities (The best combination
is highlighted).

Three In Mexico
One In The U.S.

Best Number of Queueing Total
Locations Service lines Cost Cost

($M) ($M)
Nuevo Laredo 9

Reynosa 3
Matehuala 3
Houston 3 0.9108 23.7109

Four In Mexico
Best Number of Queueing Total

Locations Service lines Cost Cost
($M) ($M)

Nuevo Laredo 9
Reynosa 3

Matamoros 3
Matehuala 3 0.9108 23.7117

Two In Mexico
Two In The U.S.

Best Number of Queueing Total
Locations Service lines Cost Cost

($M) ($M)
Nuevo Laredo 9

Matehuala 3
San Antonio 3

Houston 3 0.9108 23.7123

Three In The U.S.
One In Mexico

Best Number of Queueing Total
Locations Service lines Cost Cost

($M) ($M)
Nuevo Laredo 9
San Antonio 3

Dallas 3
Houston 3 0.9108 23.7235

Four In The U.S.
Best Number of Queueing Total

Locations Service lines Cost Cost
($M) ($M)

Laredo 3
San Antonio 6

Dallas 6
Houston 3 0.9258 23.8965
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