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ABSTRACT 

 

This dissertation investigates how cognitive control influences subliminal 

semantic processing. Unlike the traditional view that unconscious processing is 

stereotypical and independent of cognitive control, recent evidence shows that 

unconscious processing can be elaborate and flexible. Subliminal processing can occur 

at a semantic level and be modulated by top-down attention. On this basis, the temporal 

attention window theory and global workspace theory are proposed to explain the 

interaction between cognitive control and subliminal processing, arguing that the top-

down attention is necessary for elaborate subliminal processing. However, the reported 

absence of priming in near absence of attention could be attributed to the insufficient 

sensitivity of the response time measure. To clarify the role of top-down attention in 

subliminal semantic processing, five experiments were conducted to assess semantic 

priming with a cursor motion method and investigate the role of top-down attention in 

elaborate subliminal processing. 

These experiments demonstrated that semantic priming could be reliably 

assessed by cursor motion measures such as the area under the curve (AUC). By directly 

comparing the AUC measure with the conventional response time measure (RT), larger 

priming effects were found for the AUC data than the RT data, suggesting that the AUC 

was more sensitive than the RT to semantic priming. Also, by applying the cursor 

motion method to numeric comparison tasks, the necessity of attention in subliminal 

semantic processing was examined.  Results showed that top-down attention helped 
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subliminal semantic processing, but semantic priming was still significant in near 

absence of attention. In addition, the influence of cue colors on semantic priming was 

examined; results indicated that priming effects elicited by cue colors were limited. 

Furthermore, the stimulus-onset asynchrony (SOA) was manipulated to investigate the 

time course of top-down attention and subliminal semantic processing. It was found that 

top-down attention extended the lifespan and amplified the magnitude of subliminal 

semantic processing, suggesting that the temporal attention window lasts for more than 

1000ms. Taken together, it can be concluded that assistance from top-down attention 

prolongs and magnifies semantic priming yet may not be necessary for elaborate 

subliminal processing. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

The relationship between conscious and unconscious processing has been long 

discussed. A classic view is that consciousness and unconsciousness respectively have 

distinct features: conscious processing is effortful, elaborate, and flexible while 

unconscious processing is stereotypical, superficial, and independent of cognitive control 

(Koch & Crick, 2001; Schneider & Shiffrin, 1977; Shiffrin & Schneider, 1977). This 

view, however, is challenged by emerging evidence that unconscious processing is 

elaborate enough to handle relatively complex tasks such as lexical decision, conceptual 

categorization, numeric judgment, and picture comprehension (Opstal et al., 2010, 2011). 

Also, unconscious processing is flexible and modulated by cognitive control (Naccache 

et al., 2002; Dehaene et al., 2005). 

This dissertation investigates how elaborate subliminal processing and cognitive 

control interact. The introduction first reviews studies corroborating the idea of 

elaborate subliminal processing: subliminal processing can occur at a semantic level. 

The following section discusses further evidence that subliminal semantic processing is 

influenced by cognitive control such as top-down attention, which reveals the flexible 

nature of subliminal processing. The third section discusses potential problems of 

previous studies and proposes feasible solutions. 
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1.1 Evidence for Elaborate Subliminal Processing 

Early studies (Dixon, 1971; Marcel, 1983; Fowler, Wolford, Slade, & Tassinary, 

1981; Tassinary, Orr, Wolford, Napps, & Lanzetta, 1984) suggest that semantic 

processing can be activated without awareness. For example, Fowler and colleagues 

showed that the lexical relatedness between a masked priming word and a target word 

influences participants’ detection of the target word in absence of awareness (Fowler et 

al., 1981); similarly Dixon (1971) demonstrated that the affective valence of masked 

primes modulates participants’ perceptual judgment of targets. Other studies also 

indicate that the awareness of masked stimuli has little influence on semantic or affective 

priming effects (Marcel, 1983; Tassinary et al., 1984). 

In a typical word-detection task, participants pressed a key as soon as they 

detected any word, preceded by another briefly presented masked word (i.e., prime). It 

was found that when the priming word and target word were semantically incongruent, 

participants’ responses were delayed; subsequent awareness tests showed that when 

participants were asked to respond to the masked priming word, the accuracy was at a 

chance level, suggesting that the observed semantic priming was subliminal (Fowler et 

al., 1981). 

Based on these findings, it has been suggested that semantic processing of 

subliminal stimuli is automatically activated, and such activation diffuses through neural 

circuits, leading to semantic priming. According to the spreading activation theory 

(Anderson, 1983; Collins & Loftus, 1975; Schneider & Shiffrin, 1977; Shiffrin & 

Schneider, 1977), conscious and unconscious processing has distinct features; conscious 
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processing is controlled by attention and can only focus on limited information, while 

unconscious processing is parallel and can handle multiple features of stimuli at one time. 

The involvement of awareness may even impede subliminal processing because the 

selective mechanism of attention works against the diffuse nature of subliminal 

processing. Thus, consciousness is more likely to restrict rather than assist subliminal 

processing (Dixon, 1971). 

Nevertheless, a few problems undermine the claims of “subliminal semantic 

processing.” First, some lexical decision tasks do not necessarily activate semantic 

processing. For example, in an orthographical judgment task, participants judged 

whether a letter string was a word or non-word and responded as quickly and accurately 

as possible by pressing a key. The target letter string was preceded by another masked 

letter string (i.e., prime), which was either a word or non-word. It was found that 

participants responded faster when the prime and target words matched (i.e., both were 

words or non-words) (Dixon, 1971). However, because participants received identical 

word / non-word trials so many times, they could easily distinguish a word (e.g., final, 

modal) from a non-word (e.g., midet, kinep) without retrieving the meaning of words. 

For example, participants could quickly recognize “final” as a word without recalling the 

meaning of “end,” “last,” etc.; similarly, they could categorize “kinep” as a non-word 

simply because they were unable to recognize it, without thinking of the meaning. Thus 

in this task, the observed priming could have occurred at a relatively superficial level 

rather a semantic level (Damian, 2001). Second, some masked priming studies did not 

assess participants’ awareness of masked stimuli in a rigorous way. For example, 
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Wickens (1972) instructed participants to report masked priming words in the awareness 

test and found that participants could not correctly report the primes. Such self-report 

test underestimates participants’ awareness because the inability to report a masked word 

does not guarantee that the word is invisible. Third, the sample sizes in many studies are 

small (e.g., 10-20 participants). 

To remedy these problems, Dehaene et al. (1998) asked participants to perform 

semantic judgment directly on targets and applied a more rigorous method to assess 

participants’ awareness of masked primes. Their results showed that people could 

unconsciously judge whether a target number (e.g., “6”) was smaller or larger than five. 

The target number was preceded by a briefly presented (43ms) masked prime word (e.g., 

“ONE”). It was found that when the target and prime were both smaller (or larger) than 

five (i.e., “congruent” trials), the response time was shorter than that of incongruent 

trials. Similar studies have reported that participants can also judge whether two 

subliminal letters are semantically identical or not. (Van Opstal et al., 2008; Van Opstal, 

Calderon, Gevers, & Verguts, 2011). Such subliminal priming phenomena, known as the 

“congruency effect,” corroborate unconscious semantic processing (See also Van Opstal, 

Moors, Fias, & Verguts, 2008; Van Opstal, Reynvoet, Verguts, 2005). 

Evidence for unconscious semantic processing is based on the “masked priming” 

paradigm: a sequence of stimuli is rapidly presented, and participants respond to targets 

preceded by masked primes. Trials where the prime and target point to the same 

response are “congruent,” otherwise “incongruent.” Shorter response latency in 

congruent trials than that in incongruent trials is called the “congruency effect.” After 
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the experimental task, an awareness test is given to assess the visibility of masked 

primes. Trials in the awareness test are identical to those in the experimental task; 

however, participants are explicitly informed of the masked primes and instructed to 

respond to the primes rather than the targets (Greenwald, Draine, & Abrams, 1996). 

Based on the masked priming paradigm, subliminal semantic processing is 

observed in conceptual categorization. For example, participants can judge whether a 

masked target word is pleasant or unpleasant (Abrams, Klinger, & Greenwald, 2002) and 

conceptually categorize a word without awareness (Klauer, Eder, Greenwald, & Abrams, 

2007; Spruyt, Houwer, Everaert, & Hermans, 2012). Not only numbers and words, 

visually complex stimuli such as pictures can also be subliminally processed at a 

semantic level: participants can judge whether a masked picture is an artificial or natural 

object (Dell’Acqua & Grainger, 1999; Van den Bussche, Notebaert, & Reynvoet, 2009) 

or whether a masked face is famous or not subliminally (De Gardelle, Charles, & 

Kouider, 2011). Such congruency effects for subliminal pictures was also replicated 

when participants were prompted to judge the gender of face pictures, where participants 

responded faster when both the prime face and target face belonged to the same gender. 

The same pattern was observed when the task was to judge the race of faces. (Amihai, 

Deouell, & Bentin, 2011).  

In addition to semantic information, the subliminal pictures can also be processed 

at an affective level. For example, Gobbini, Gors, Halchenko, Hughes, & Cipolli (2013) 

found that angles of masked faces influenced participants’ detection of faces. When the 

face was staring at participants rather than with a biased angle, people detected the face 
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faster, suggesting that participants can unconsciously detect threatening cues such as a 

face staring at you. Furthermore, Kiesel and Kunde (2009) found that experts could even 

“play chess unconsciously”: experts could unconsciously judge whether a piece of chess 

was a configuration of “Check” or “Non-Check.”  

To summarize, subliminal stimuli can be processed in an “elaborate” manner, 

which challenges the traditional view that subliminal processing is superficial (Dehaene 

et al., 1998; 2005). Evidence further suggests that subliminal processing is flexible rather 

than stereotypical: cognitive control such as top-down attention influences subliminal 

processing, which will be discussed in the next section. 

1.2 Cognitive Control Influences Elaborate Subliminal Processing 

A typical form of cognitive control is top-down attention, which is the cognitive 

process of allocating limited processing resources and selectively concentrating on a 

discrete aspect of information while ignoring other perceivable information. Though 

attention is often confounded with consciousness, they are not identical. For example, 

attention to invisible stimuli influences subliminal processing (Dehaene et al., 2006). A 

traditional view is that subliminal semantic processing is autonomous and independent 

of cognitive control (Schneider & Shiffrin, 1977). However, recent studies suggest that 

two types of top-down attention modulate subliminal processing: feature-specific 

attention and temporal attention (Koch, & Tsuchiya, 2007; Cohen, Cavanagh, Chun, & 

Nakayama, 2012). 

Feature-specific attention, which is elicited by manipulating task demand, is the 

phenomenon that only attended semantic features of masked stimuli can be subliminally 
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processed while unattended features are ignored. For example, participants perform 

either one of two judgment tasks: 1) judging whether a target word belongs to the 

“human” or “non-human” category and 2) judging whether a target word is affectively 

positive or negative. In both cases, each target is preceded by a masked priming word. 

Interestingly, the same “friend (prime) – snob (target)” trial is often perceived as 

congruent in a “human / non-human” judgment whereas incongruent in a “positive / 

negative” judgment. This suggests that when participants attend to affective features of 

stimuli (i.e., positive / negative), categorical features of masked stimuli (i.e., human / 

non-human) are not processed, vice versa (Spruyt et al., 2012). Similar results were 

found when participants made a phonological judgment (i.e., bisyllabic or not) of target 

words; subliminal congruency effects were observed for phonological congruency but 

not for categorical congruency (i.e., “living” or “non-living”), vice versa (Weibel, 

Giersch, Dehaene, & Huron, 2013). Clearly, subliminal processing is modulated by 

cognitive control manipulated by task demand (see also Kiefer & Martens, 2010; 

Kouider & Deheane, 2007; Spruyt, De Houwer, & Hermans, 2009). 

Temporal attention is a top-down attention window that lasts for a few hundred 

milliseconds; it can be manipulated by randomly varying the time frame of stimuli. In 

the Naccache et al. study (Naccache, Blandin & Dehaene, 2002), participants judged 

whether a target number (e.g., “9”) was larger or smaller than five, preceded by a 

masked prime number (e.g., “6”); participants’ top-down attention was manipulated by 

occasionally presenting a visual cue. The pre-prime duration changed randomly from 

trial to trial to disrupt participants’ top-down attention because it was impossible to 
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predict exactly when a target number would appear. In a cued condition, however, a 

green square cue was presented for 200ms to signal an upcoming target number, 

facilitating participants’ top-down attention (the interval between the cue and target was 

fixed at 584ms). Uncued and cued trials were mixed and presented in a random order. 

Results showed that subliminal congruency effects were present only in the cued 

condition but not in the uncued condition. On this basis, Naccache et al. (2002) argue 

that top-down attention is necessary for subliminal semantic processing: when 

participants saw the cue and knew the target was coming, they opened a temporal 

attention window lasting for hundreds of milliseconds, which amplified subliminal 

semantic processing. In contrast, subliminal primes not covered by the temporal 

attention window in the uncued condition elicited no semantic processing. 

In brief, subliminal semantic processing is absent in near absence of attention; 

masked primes not covered by the temporal attention window cannot elicit semantic 

priming. In other words, assistance from top-down attention is the prerequisite for 

elaborate subliminal processing. This notion is supported by other studies such as 

participants correctly reporting locations of subliminal visual stimuli only when top-

down attention is present (Hsieh, Coals, & Kanwisher, 2011), and subliminal 

comprehension of natural scenes requires the assistance of top-down attention (Cohen, 

Alvarez, & Nakayama, 2011). 

Dehaene and colleagues further argue that for elaborate subliminal processing to 

occur, it must be amplified by top-down attention (Dehaene, Changeux, Naccache, 

Sackur, & Sergent, 2006). The global workspace theory (Dehaene et al., 1998; Dehaene 
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& Naccache, 2001; Dehaene & Changeux, 2011) explains the underlying mechanisms 

for the interaction between subliminal processing and top-down attention. This theory, 

which is developed from the Norman and Shallice (1980) model and the Baars (1989) 

model, differentiates two major computational spaces in the brain. One is a peripheral 

processing space, which is composed of a set of modular, autonomous, and parallel 

processors. These processors are functionally specialized; they work for perceptual and 

semantic processing. Each modular processor is implemented by a specialized, hard-

wired network of interconnected cortical neurons.  

The other is the global workspace consisting of cortical neurons distributed in the 

prefrontal and parietal cortices; these cortical neurons receive information from 

peripheral modular processors and send the information back to the peripheral 

processors through long-range excitatory and inhibitory axons. The major function of the 

global workspace is to coordinate the peripheral modular processors by strengthening or 

suppressing their activities. This gating mechanism, which is implemented by 

descending modulatory projections from global workspace neurons to peripheral 

modular processors, is essential for cognitive control — those projections selectively 

amplify or suppress the ascending inputs from peripheral processors. 

The peripheral modular processors are classified into five categories: long-term 

memory circuits, perceptual circuits, evaluation circuits, motor programming circuits, 

and attention circuits, among which the attention circuits allow the global workspace to 

selectively amplify or attenuate signals from peripheral modular processors. The 

autonomous activities executed by peripheral processors explain spontaneous elaborate 
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processing without consciousness or attention: some modular processors are specialized 

in elaborate processing such as semantic categorization, numerical representation, face 

recognition, scene comprehension, among others. These processors automatically 

process inputs and send outputs to the global workspace. Some outputs are not salient 

enough to gain relevant cognitive resource in the global workspace and are ignored by 

top-down attention. Although various peripheral processors project to the global 

workspace, only a subset of inputs can access it. 

If the autonomous activities of a peripheral processor are not amplified by top-

down attention, the processing will fade away quickly in the global workspace. 

Otherwise, attended autonomous activities gain more cognitive resource in the global 

workspace, which results in amplified subliminal priming. Cognitive control is a 

fundamental function of the global workspace, which selectively lifts some autonomous 

processors while suppressing others. For example, a task asking for affective evaluation 

rather than semantic categorization induces the global workspace to allocate cognitive 

resource to process affective rather than semantic features of subliminal stimuli. This 

reciprocal relationship amplifies affective priming while suppressing semantic priming. 

The global workspace theory articulates the interplay of cognitive control and 

elaborate subliminal processing. However, this theory emphasizes the necessity of top-

down attention to enable elaborate subliminal processing: semantic processing of 

subliminal stimuli requires at least a minimum amplification by top-down attention, 

without which subliminal stimuli are not processed at a semantic level. This view, 

however, is challenged by the counterevidence demonstrating that subliminal semantic 
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priming occurs in near absence of top-down attention, which will be discussed in the 

next section. 

1.3 Is Top-down Attention Necessary for Elaborate Subliminal Processing? 

Although top-down cognitive control, such as feature-specific attention and 

temporal attention, modulates elaborate subliminal processing, an unanswered question 

is whether elaborate subliminal processing can occur without assistance from top-down 

attention. 

Other than the evidence for the necessity of attention in subliminal semantic 

priming (Naccache et al., 2002; Dehaene et al., 2005, 2006; Spruyt et al., 2009, 2012), 

there is counterevidence suggesting that elaborate subliminal processing occurs in near 

absence of attention. For example, pictures can be comprehended in near absence of 

attention: participants accurately report the gist of masked photographs and the gender of 

masked faces, which are briefly presented on unattended peripheral locations (Li, 

VanRullen, Koch, & Perona, 2002; Reddy, Wilken, & Koch, 2004). Also, in a numerical 

comparison task, subliminal primes influence participants’ numerical judgment in near 

absence of attention (Rahnev, Huang, & Lau, 2012; Heinemann, Kunde, and Kiesel, 

2009). These studies indicate that elaborate subliminal processing does occur with little 

help of top-down attention. 

Nevertheless, evidence for elaborate subliminal processing is limited, and effect 

sizes of masked priming are often small and difficult to be replicated (Van den Bussche, 

Van den Noortgate, & Reynvoet, 2009). One reason for the paucity of reliability in 

masked priming is the way that priming effects have been measured: response time and 
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performance accuracy have been staples for behavioral measures of masked semantic 

priming. However, these measures provide only two data points in each trial. Response 

times are not very informative in this regard because they reduce dynamic cognitive 

processes unfolding within a brief duration of priming into a single data point (Spivey & 

Dale, 2006); performance accuracy, which is represented by a binary value of 0 or 1, is 

hard to interpret for individual trials. 

Recent studies show that the method that tracks trajectories of the computer 

cursor during decision-making provides viable information about subliminal semantic 

priming (Dale, Kehoe, & Spivey, 2007; Yamauchi, Kohn, & Yu, 2007). In each trial, 

participants use the computer mouse to make a response (reaching a target button and 

click the button to indicate a response). When participants are conducting this choice 

reaching task, the cursor position on the screen is recorded every 10-20ms to capture the 

trajectory of cursor motion (Xiao & Yamauchi, 2014, 2015; Yamauchi, 2013; Yamauchi 

& Bowman, 2014; Yamauchi, Kohn, & Yu, 2007; Yamauchi et al., 2015). Conventional 

response time records the duration from the onset of a target stimulus to the end of a key 

press. In-between no concrete information can be gleaned in this measure. However, the 

cursor motion method records real-time temporal-spatial information underlying 

participants’ dynamic decision-making processes (Freeman & Ambady, 2010; Freeman 

& Ambady, 2011). By examining real-time features of decision-making, temporal-

spatial data provide insights into elaborate subliminal processing (McKinstry, Dale, & 

Spivey, 2008; Song & Nakayama, 2009; Spivey & Dale, 2006). 
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Earlier studies demonstrated that hand motion in choice-reaching tasks reflects 

participants’ unconscious judgment and decision-making processes (Aglioti, DeSouza, 

& Goodale, 1995; Milner & Goodale, 1995). Recently, a number of studies have applied 

cursor motion measures to study subliminal semantic judgment. For example, perceptual 

and semantic priming can be distinguished by different cursor trajectory patterns 

(Finkbeiner & Friedman, 2011; Friedman & Finkbeiner, 2010). Congruency effects can 

be reliably measured by attractions toward unintended choices of cursor trajectories 

(Xiao & Yamauchi, 2014). 

Moreover, a growing number of studies have demonstrated the advantage of the 

cursor motion measure over the traditional reaction time measure (Boulenger, Roy, 

Paulignan, Deprez, & Jeannerod, 2006; Chapman et al., 2010; Faulkenberry, 2014; 

Faulkenberry & Rey, 2014; Santens, Goossens, & Verguts, 2011; Spivey, Grosjean, & 

Knoblich, 2005). This advantage is pronounced particularly in subliminal processing 

(Freeman, Johnson, Ambady, & Rule, 2010; Freeman, Pauker, Apfelbaum, & Ambady, 

2010). A recent study comparing the cursor motion measure and response time measure 

also indicates that the effect size for priming obtained from the cursor motion measure is 

significantly larger than that by response times (Xiao, Yamauchi, & Bowman, 2015).  

In summary, the absence of semantic priming without assistance from cognitive 

control reported previously can be attributed to the lack of sensitivity with response time 

measures. Combining dynamic measures of cursor motion with masked priming 

procedures serves as a powerful tool to uncover mechanisms of semantic priming. On 
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this basis, I employ the cursor motion method to clarify the relationship between 

elaborate subliminal processing and cognitive control through five experiments. 
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CHAPTER II 

MEASURE MASKED SEMANTIC PRIMING WITH CURSOR MOTION*1 

 

2.1 Overview of Experiments 1 & 2 

The goal of Experiments 1 and 2 was to develop a viable cursor motion method 

for masked semantic priming. Although many studies support the idea of elaborate 

subliminal processing, masked priming effects are often small and difficult to replicate 

(Bussche, Noortgate, & Reynvoet, 2009). Some masked priming studies are based on 

small sample size (e.g., 10-20 participants), or do not have a rigorous awareness test 

(Desender & Van den Bussche, 2012). Furthermore, the prime-target relation in these 

studies is often straightforward, undermining the argument for semantic priming because 

the perceptual similarity between primes and targets could be the source of priming. For 

example, in the Opstal et al. study (Opstal, Gevers, Osman, & Verguts, 2010), 

participants judged whether two numbers were the same or different (e.g., “3 and 5” or 

“3 and 3”), preceded by two masked priming letters (e.g., “A and a” or “A and g”). In 

this study, the identical judgment requirement (same / different) applied to both the 

target number pairs and the priming letter pairs; thus, a learned stimulus-response 

mapping could facilitate the processing of masked primes. As a result, their congruency 

effects might have been exaggerated by the direct prime-target link. Research shows that 

                                                

*Part of this chapter is reprinted with permission from “Semantic priming revealed by mouse 
movement trajectories.” by Xiao, K., & Yamauchi, T., 2014. Consciousness and Cognition, 27, 
42-52, Copyright [2014] by Elsevier Inc. 
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congruency effects are particularly robust when the prime-target relatedness is high 

(Ortells, Marí-Beffa, & Plaza-Ayllón, 2012).  

To partially mitigate this mapping problem, a cursor motion measure rather than 

the response time measure was employed. The merit of the cursor motion method is that 

it records dynamic temporal-spatial information about participants’ responses (Freeman 

& Ambady, 2010). Evidence suggests that hand movement reveals unconscious 

cognition: participants automatically adjusted their fingers when pointing to a target 

without awareness (Aglioti, DeSouza, & Goodale, 1995; Song & Nakayama, 2009). By 

analyzing temporal-spatial features of cursor motion trajectories, insights can be gained 

to understand subliminal processing. Recent studies found that perceptual priming and 

semantic priming could be distinguished by different cursor trajectory patterns 

(Friedman & Finkbeiner, 2010); cursor motion trajectories were constantly attracted to 

unselected options before clicking the intended option in incongruent trials due to 

semantic conflicts (Freeman, Ambady, Rule, & Johnson, 2008). The magnitude of 

attraction is measured by the area under the curve (AUC), which is calculated as the 

geometric area circumscribed by the straight line from the onset position to the ending 

position and the actual trajectory that veers toward the unselected option. In the current 

experiment, participants judge whether two numbers are the same or different by 

clicking one of the two buttons (i.e., “Same” or “Different”) on the top of the computer 

screen (Figure 1). 
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Figure 1. Illustration of the area under the curve (AUC). The curve represents a 
hypothetical trajectory of a cursor from the onset position (“START” button) to the 
ending position (clicking the “Different” button). The straight line represents the “ideal 
path” between the onset and ending position. The AUC is the area circumscribed by the 
ideal path and the actual trajectory curve that exceeds the ideal path toward the 
unselected option (shaded area) and is measured by the amount of pixels. 

 
 
 
To make the relation between primes and targets indirect, I replace letter primes 

(e.g., “A a”) with symbolic pictures with either positive (e.g., “go”) or negative (e.g., “no 

go”) connotations but still use the number pairs as targets (Figure 2). Participants make 

same / different judgments for number pairs (e.g., “3 \ 5”), whereas the priming pictures 

are not directly linked to semantic meanings as “same” or “different.” It is expected that 

when responding to incongruent trials (e.g., positive primes followed by 3 \ 5 or 5 \ 3, or 

negative primes followed by 3 \ 3 or 5 \ 5), the cursor trajectories should move towards 

the unselected option, as compared to congruent trials, resulting in larger AUC in 

incongruent trials than in congruent trials. 
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Figure 2. Illustrations of congruent and incongruent trials in Experiment 1. Participants 
judged whether the target numbers were the same or not, preceded by a briefly presented 
picture with either positive (e.g., a green light) or negative (e.g., a red light) connotations. 
For example, trials where the prime was a green light and the target was ‘‘3 \ 3’’ (or the 
prime was a red light and the target was ‘‘3 \ 5’’) were considered as congruent trials. 
These prime-target relationships were swapped in incongruent trials. 
 
 
 

In psychophysics studies involving perceptual learning (Schoups, Vogels, & 

Orban, 1995), the same / different judgments of stimuli are known to correspond to “yes” 

or “no” responses, respectively. It is also known that positive (“yes”) responses take 

shorter reaction time than negative (“no”) responses (Sternberg, 1966). A similar trend is 

present in the “same / different” judgment task: “same” responses result in shorter RT 

than “different” responses (Ratcliff, 1985; 1987). According to the Unified Theory 

(Proctor, 1981), such reaction time differences indicate that “same” and positive (“yes”) 

judgments employ an analogous processing mechanism, as distinct from the process 

underlying “different” or negative (“no”) judgments. Following this reasoning, I assume 

that priming pictures with positive connotations (e.g., a green traffic light) are congruent 
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with “same” responses (e.g., “3 \ 3”) while primes with negative connotations (e.g., a red 

traffic light) correspond to “different” responses (e.g., “3 \ 5”). Accordingly, I predict 

that positive primes (e.g., a green traffic light) facilitate “same” responses, and negative 

primes facilitate “different” responses; in contrast, negative primes impede “same” 

responses, and positive primes impede “different” responses (Figure 2). 

Translating this prime-target relationship into cursor motion trajectories, larger 

AUCs should be observed for incongruent trials than congruent trials. If such an indirect 

semantic link between primes and targets still yields significant priming effects, it adds 

further evidence to the notion of elaborate subliminal processing. 

2.2 Experiment 1 

Experiment 1 consisted of two phases: a numeric judgment phase and an 

awareness test phase, which was given in sequence. In the numeric judgment task, 

participants judged whether two numbers were same or different, preceded by a briefly 

presented picture (Figure 3a). The trials in the awareness test phase were identical to 

those in the number judgment task, but participants were explicitly instructed to identify 

the prime and choose the correct prime from two options (Figure 3b). 
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Figure 3. Illustrations of the number judgment task and the awareness test. In (a) the 
number judgment task, participants judged if two numbers were the same or different 
preceded by a briefly presented prime (e.g., a check). In (b) the awareness test, 
participants were asked to identify the preceding prime and click the correct picture in 
the two options. 

 
 
 

2.2.1 Participants 

A total of 382 undergraduate students from Texas A&M University participated 

in this experiment for course credits. They were randomly assigned to four conditions of 

prime duration. Eight participants did not complete the experiment. Additional seven 

participants were excluded from data analysis because their response accuracy was 
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below 90%. Thus, the data from 367 participants were analyzed (n = 88 in the 20ms 

duration condition; n = 96 in the 50ms duration condition; n = 91 in the 100ms duration 

condition; and n = 92 in the 150ms duration condition). 

2.2.2 Materials 

Prime stimuli were three pairs of symbolic pictures (Figure 4). Each pair 

consisted of one with positive connotations and the other with negative connotations. 

Four number pairs were used as target stimuli; two of them required “same” responses 

(i.e., “3 \ 3” or “5 \ 5”), and the other two required “different” responses (i.e., “3 \ 5” or 

“5 \ 3”). 

 
 
 

Pair 

No. 

Prime type 
Mask 

Positive Negative 

Pair 1 

  

 

Pair 2 

  

Pair 3 

  

Figure 4. Pictures used as primes and masks in this experiment. Each picture is 
associated with either positive or negative connotations. 
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2.2.3 Apparatus and procedure 

An 180 Hz monitor was used to present the stimuli. In each trial, a fixation cross 

was presented at the center of the screen for 300ms. Then, a pre-mask was presented for 

100ms, followed by a priming picture, then a post-mask for 100ms. Finally, the target 

was presented until participants responded. The primes (Figure 4) were presented for 

20ms, 50ms, 100ms, or 150ms, depending on the prime duration condition to which 

participants were assigned (between-subjects conditions). The experiment was controlled 

by the Mouse Tracker software developed by Freeman and Ambady (2010). 

The participants were instructed to judge whether the two numbers were the 

same or different, using a mouse to click the “Same” or “Different” button on the top of 

the screen quickly and accurately while ignoring any pictures flashed prior to the 

numbers. 

In the cursor motion analysis, the response time measure was defined as the 

duration of time from the onset of a target until participants clicked the “Same” or 

“Different” button. The AUC of a cursor motion trajectory in each trial was the 

geometric area between a straight line from the onset position to the ending position and 

the actual trajectory exceeding the straight line toward the unselected option (Figure 5). 

Smaller AUCs indicate that the trials are easier to respond to, while larger AUCs more 

difficult (Freeman & Ambady, 2010). To draw the trajectory, the position of the cursor 

on the screen (i.e., measured by x-y coordinates) is recorded as one data point every 13-

16ms; then all the data points are normalized into 100 steps for each trial using a linear 

interpolation method. 
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(a)     (b) 

 

Figure 5. Two real examples of cursor trajectories. There Figure 5a shows a trajectory 
with a large attraction towards the unselected option (large AUC), and Figure 5b shows a 
trajectory with a small AUC. The X coordinate is scaled by normalizing the total amount 
of pixels in a row as 2 units, while the Y coordinate is scaled by normalizing the total 
amount of pixels in a line as 1.5 units. Therefore, the total amount of pixels on the screen 
is normalized as 3 units. 

 
 
 
After the number judgment phase, participants carried out an awareness test. The 

trials in the awareness test were identical to those in the number judgment task. However, 

participants were informed of the prime and asked to identify it by clicking one of the 

two options. There were 96 trials in the awareness test. The d’ measure obtained from 

the awareness test was applied to examine the extent to which the visibility of the primes 

influenced the magnitude of the priming effects. Specifically, selecting the option that 

was presented as a prime was regarded as “hit” and incorrectly selecting the same option 
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that was not actually presented was regarded as ‘false alarm’. (Macmillan & Creelman, 

1996). 

2.2.4 Design 

The experiment was conducted with a 4 (prime duration: 20ms, 50ms, 100ms, 

150ms; between-subjects) × 2 (prime type: positive, negative; within-subjects) × 2 

(target type: same, different; within-subjects) design. For actual data analysis, I applied 

two sets of ANOVA. In one set, I collapsed prime type and target type as one factor of 

congruency (congruent, incongruent) and employed 4 (prime duration: 20ms, 50ms, 

100ms, 150ms; between-subjects) × 2 (congruency: congruent, incongruent; within-

subjects) ANOVA. In the other set, I applied two 4 (prime duration: 20ms, 50ms, 100ms, 

150ms; between-subjects) × 2 (congruency: congruent, incongruent; within-subjects) 

ANOVAs separately for the trials that required “same” responses and “different” 

responses. 

Number pairs consisting of same numbers were called positive targets (e.g., “3 \ 

3”), and pairs of different numbers were called negative targets (e.g., “3 \ 5”). Before the 

target, a masked picture with either positive or negative connotations was briefly 

presented as the prime, which was respectively called the positive or negative prime. 

Trials that contained a positive prime and a positive target were called PP trials; Trials 

that contained a negative prime and a negative target were called NN trials; Trials that 

contained a positive prime and a negative target were called PN trials; Trials that 

contained a negative prime and a positive target were called NP trials. PP and NN trials 

were classified as congruent trials while PN and NP trials as incongruent trials. There 
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were 240 trials for each participant (120 congruent trials and 120 incongruent trials). 

These trials were further divided into two categories requiring either “same” or 

“different” responses (Table 1). The order of presenting trials was randomly determined, 

and whether the “Same” button was on the left or right side of the screen was fixed for 

each participant whereas randomly determined between participants. 

 
 
 

Table 1 Number of trials in each condition 

Congruency Combination Prime Target Number of Trials 

congruent 

trials (120) 

PP (60) 
positive primes 3 \ 3 30 

positive primes 5 \ 5 30 

NN (60) 
negative primes 3 \ 5 30 

negative primes 5 \ 3 30 

incongruent 

trials (120) 

NP (60) 
negative primes 3 \ 3 30 

negative primes 5 \ 5 30 

PN (60) 
positive primes 3 \ 5 30 

positive primes 5 \ 3 30 

 
 
 

2.2.5 AUC results 

Based on the findings that positive judgment is faster than negative judgment and 

positive (i.e., “same”) / negative (i.e., “different”) number judgments are carried out by 

distinct cognitive processes (Proctor, 1981), I analyzed congruency effects with both 

overall data (i.e., collapsing “same” and “different” judgment trials) and data separating 

“same” judgment trials and “different” judgment trials. 
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I focused on the cursor motion measure AUC, which is measured by the amount 

of pixels. In actual data analysis, the total amount of pixels in each row was scaled by 

the X-coordinate ranging from -1 to 1 (i.e., 2 units of pixels in total on the X-coordinate), 

and the total amount of pixels in each line was scaled by the Y-coordinate ranging from 

0 to 1.5 (i.e., 1.5 units of pixels in total on the Y-coordinate). Therefore, the total amount 

of pixels on the screen is normalized as 3 units (i.e., 1.5 × 2). 

A summary of overall congruency effects is described first, and congruency 

effects analyzed separately for positive response trials (i.e., trials required “same” 

responses) and negative response trials (i.e., trials required “different” responses) are 

introduced next. Following this analysis, I report the extent to which the visibility of 

primes influenced the congruency effects using regression analyses. The response time 

analysis is reported as the complementary data at the end. 

The cursor motion data shows significant congruency effects. Overall, the AUCs 

in incongruent trials was larger (M = 0.73, SD = 0.39) than those in congruent trials (M = 

0.67, SD = 0.35); F(1, 366) = 54.76, MSE = 0.61, p < 0.001, partial ɳ2 = 0.13. Such 

congruency effects were substantial in all durations (Table 2); t’s > 3.30, p’s < 0.002. 

There was no interaction between prime duration and congruency; F < 1.00, suggesting 

that the duration of prime did not affect the congruency effects. Note that this absence of 

interaction was not due to a lack of statistical power, given that the data was from a large 

sample. A power analysis showed that the probability of falsely accepting a null 

hypothesis (type II error) was only 0.04. 
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Table 2 Comparisons of AUCs between congruent and incongruent trials 

duration N Incongruent Congruent t p Cohen’s d 

20ms 88 0.75 0.70 3.47 0.001 0.74 

50ms 96 0.69 0.63 4.92 <0.001 1.01 

100ms 91 0.77 0.71 3.34 0.001 0.70 

150ms 92 0.70 0.64 3.39 0.001 0.71 

overall 367 0.73 0.67 7.45 <0.001 0.78 

Note. The total amount of pixels on the screen is normalized as 3 units, and the AUC 
measured by the amount of pixels is normalized proportionally. 

 
 
 
The congruency effects were significant for both positive and negative response 

trials, and the effect size appeared larger in positive response trials (Table 3), though the 

interaction between response type (i.e., positive response trials and negative response 

trials) and congruency was not significant; F(1, 366) = 1.08, MSE = 0.02, p > 0.30, 

partial ɳ2 < 0.01. For positive response trials, robust congruency effects were found in all 

four durations (Table 3); while for negative response trials, congruency effects were 

weaker (Table 4). In addition, there was no interaction between duration and congruency, 

neither in positive nor negative response trials; F < 1.00. 

 
 
 

Table 3 Comparisons of AUCs for positive response trials 

duration N Incongruent Congruent t p Cohen’s d 

20ms 88 0.75 0.68 3.81 <0.001 0.82 
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50ms 96 0.67 0.60 3.74 <0.001 0.77 

       

 duration N Incongruent Congruent t p Cohen’s d 

100ms 91 0.74 0.66 3.78 <0.001 0.80 

150ms 92 0.71 0.64 3.64 <0.001 0.76 

overall 367 0.71 0.64 6.37 <0.001 0.67 

Note. The total amount of pixels on the screen is normalized as 3 units, and the AUC 
measured by pixels is normalized proportionally. 
 
 
 
Table 4 Comparisons of AUCs for negative response trials. 

duration N Incongruent Congruent t p Cohen’s d 

20ms 88 0.74 0.71 1.58 0.119 0.34 

50ms 96 0.70 0.64 2.99 0.004 0.61 

100ms 91 0.79 0.76 1.34 0.182 0.28 

150ms 92 0.67 0.63 1.82 0.074 0.38 

overall 367 0.74 0.69 4.61 <0.001 0.48 

Note. The total amount of pixels on the screen is normalized as 3 units, and the AUC 
measured by pixels is normalized proportionally. 
 

 

 

To investigate the influence of prime visibility on congruency effects, d’ was 

calculated to assess the extent to which participants could identify primes (Greenwald, 

Draine, & Abrams, 1996). Specifically, correctly choosing a positive prime was regarded 

as “hit,” while incorrectly choosing the positive prime was regarded as “false alarm.” 

For participants with perfect detection performance (i.e., 100% accuracy in the 

 Table 3 Continued 
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awareness test), d’ was calculated by 99% “hit” rate and 1% “false alarm” rate 

(Stanislaw & Todorov, 1999). T-tests showed that d’s were significantly above zero in 

all four prime durations, indicating that many participants could identify primes. As 

expected, the longer the prime duration was, the higher the d’ was (Table 5). 

 
 
 

Table 5 Descriptive statistics of d’s and t-tests in the awareness test 

duration N M Mdn SD t p 

20ms 88 0.55  0.54  0.47  7.76 <0.001 

50ms 96 1.56  1.68  1.00  10.81 <0.001 

100ms 91 2.25  2.88  1.09  13.92 <0.001 

150ms 92 2.52  3.00  0.86  19.87 <0.001 

Note. The t-tests were performed by comparing d’s with zero. 

 
 
 

Regression analyses were performed on d’ as the predictor with the priming 

magnitude as the predicted variable. The priming magnitude was calculated by 

subtracting AUCs in congruent trials from those in incongruent trials. A significant 

intercept of the regression line at null d’ indicates a significant priming effect when 

participants can hardly identify masked primes (Greenwald, Draine, & Abrams, 1996). 

In addition, if the slope of the regression line is not different from zero, it suggests that 

the priming effect is relatively independent of the awareness of the primes (Desender & 

Van den Bussche, 2012). Overall, the regression on d’ revealed a significant intercept (b0 

= 0.05, t = 3.77, p < 0.001), and the slope of the regression line was not different from 
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zero (b0 = 0.003, t = 0.46, p > 0.64), implying that the visibility of primes had little 

influence on the congruency effects. 

  Finally, to examine whether the priming effects were influenced by response 

type (i.e.,  “Same” or “Different”) or by location of the “Same” and “Different” buttons 

(e.g., “Same” button on the left or right side of the screen), a four-way ANOVA, prime 

duration (20, 50, 100, 150ms) × congruency (congruent, incongruent) × response type 

(same, different) × button location (left, right), was performed. This analysis showed that 

the congruency factor did not interact with any other factors, F < 1.00. 

  Regression analyses were also performed in each prime duration condition, 

respectively for positive and negative response trials. For positive response trials, 

intercepts were significantly above zero in 20ms, 50ms, and 100ms duration conditions; 

for negative response trials, the intercept was significant only in the 50ms duration 

condition (Table 6; Figure 6). This suggests that the size of priming effects depended on 

positive / negative responses, and was larger for positive response trials. 

 
 
 

Table 6 Regressions with AUCs on d’s in each duration 

Duration Response Predictor B t p 

20ms 

Positive Constant 0.067 2.332 0.022 
d’ 0.005 0.130 0.897 

Negative Constant -0.004 -0.108 0.914 
d’ 0.069 1.485 0.141 

50ms Positive Constant  0.080 2.500 0.014 
d’ 0.045 0.983 0.934 
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Duration Positive Response Negative Response 

20ms 

  

     

 

  

 

 

 

 

 

 

 

Negative Constant 0.003 2.139 0.035 
d’ 0.013 0.661 0.510 

100ms 
Positive 

Constant 0.114 2.282 0.025 
    

d’ -0.014 -0.704 0.483 

Negative Constant -0.038 -0.681 0.498 
d’ 0.002 0.110 0.913 

150ms 
Positive Constant 0.080 1.117 0.267 

d’ -0.015 -0.568 0.571 

Negative Constant 0.050 0.791 0.431 
d’ 0.009 0.366 0.716 

 Table 6 Continued 
Duration Response Predictor B    t p 

 

 
Figure 6. Regressions with priming magnitudes on d’s in each duration. The x-axis 
represents d’ and the y-axis represents the magnitude of priming (MoP). An accuracy 
of 100% is regarded as 99% hit and 1% false alarm (Stanislaw & Todorov, 1999). 
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50ms 

  

100ms 

  

150ms 

  

 
Figure 6 Continued. 
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To summarize, the AUC revealed consistent congruency effects in all four 

durations (Table 2). Congruency effects seemed larger for positive response trials, as 

compared to negative response trials (Tables 3 & 4). The d’s in the awareness test were 

quite high (Table 5), and further regression analyses showed that the intercepts were 

significantly higher than zero in the 20ms, 50ms, and 100ms prime duration for positive 

response trials (Table 6). 

2.2.6 Response time analysis 

Compared with the cursor motion data, the overall congruency effects measured 

by response times were weaker; the mean RT in incongruent trials was significantly 

longer (M =1107.68, SD = 109.85) than that in congruent trials (M = 1103.91, SD = 

110.19); F(1, 363) = 4.94, MSE = 2502.87, p = 0.03, partial ɳ2 = 0.01. There was no 

interaction effect between prime duration and congruency; F<1.0. This suggests that the 

visibility of primes did not influence the magnitude of priming. 

  T-tests applied to each duration showed that the mean response times were 

significantly shorter in congruent trials than in incongruent trials in the 50ms duration 

condition: t(95) = 2.06, pooled SD = 29.55, p = 0.04, d = 0.42, 95% CId [0.13, 0.71]. A 

similar trend was present for the remaining three conditions except for the 20ms group, 

where the average RTs in congruent and incongruent trials were nearly identical (Table 

7). 
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Table 7 Response times for congruent and incongruent trials 

duration N Incongruent Congruent t p Cohen’s d 

20ms 88 1077.11 1077.40 0.10 0.92 0.02 

50ms 96 1118.65 1112.49 2.04 0.04 0.42 

100ms 91 1103.95 1100.54 0.93 0.36 0.20 

150ms 92 1129.15 1123.67 1.51 0.14 0.32 

Together 367 1107.68 1103.91 2.27 0.02 0.24 

 
 
 
Congruency effects were found for positive response trials (Table 8), but not for 

negative response trials (Table 9). The interaction between response type and 

congruency was significant; F(1, 366) = 6.40, MSE = 937.82, p = 0.01, partial ɳ2 = 0.02. 

There was no interaction between prime duration and congruency, neither for positive 

nor negative response trials; F < 1.00. 

 
 
 

Table 8 Comparisons of response times for positive response trials 

duration N Incongruent Congruent t p Cohen’s d 

20ms 88 1075.97 1072.60 0.80 0.43 0.17 

50ms 96 1108.20 1101.63 1.56 0.12 0.32 

100ms 91 1098.04 1086.62 2.44 0.02 0.51 

150ms 92 1122.73 1112.95 2.14 0.04 0.45 

overall 367 1101.60 1093.79 3.53 <0.001 0.37 
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Table 9 Comparisons of response times for negative response trials 

duration N Incongruent Congruent t p Cohen’s d 

20ms 88 1078.26 1082.20 -0.92 0.36 0.20 

50ms 96 1129.10 1123.34 1.28 0.20 0.26 

100ms 91 1109.86 1114.45 -0.90 0.37 0.19 

150ms 92 1135.57 1134.39 0.23 0.82 0.05 

overall 367 1113.76 1114.04 -0.12 0.91 0.01 

 
 
 

  A regression analysis showed that the intercept was not different from zero; b0 = 

1.02, t = 0.34, p > 0.73. The slope was not different from zero; b0 = 1.59, t = 1.12, p > 

0.26. In addition, prime duration did not interact with congruency effects, F < 1.00. 

Further regression analyses performed separately for positive and negative response 

trials in each duration showed intercepts above zero in the 100ms condition (Table 10).  

Admittedly, the cursor motion method does not record the response time in a 

conventional way, because the conventional response time is the duration from the onset 

of a target stimulus till participants pressing a response button. For the same task, the 

response time recorded by cursor motion may be longer than the conventional response 

time. Nevertheless, these findings are consistent with the idea that the magnitude of 

priming was subject to response types, and larger priming effects were found for positive 

response trials. 
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Table 10 Regressions with priming magnitudes on d’s 

Prime Duration Response Predictor B t p 

20ms 

Positive 
Constant 4.952 0.752 0.454 

d’ -2.864 -0.315 0.754 

Negative 
Constant -6.089 -0.912 0.364 

d’ 3.895 0.422 0.674 

50ms 

Positive 
Constant 4.789 0.610 0.543 

d’ 1.140 0.269 0.789 

Negative 
Constant 5.620 0.672 0.503 

d’ 0.089 0.020 0.984 

100ms 

Positive 
Constant 21.537 2.003 0.048 

d’ -4.507 -1.046 0.299 

Negative 
Constant 24.671 2.148 0.034 

d’ 8.945 1.943 0.055 

150ms 

Positive 
Constant 24.857 1.748 0.084 

d’ -5.973 -1.119 0.266 

Negative 
Constant -13.345 -0.828 0.410 

d’ 5.758 0.952 0.343 

 
 
 

2.2.7 Discussion 

In Experiment 1, I adopted the “same / different” judgment task from the Van 

Opstal et al., (2010) study, and replaced their letter-pair primes (e.g., “A, a”) with 

“positive / negative” pictures to make the prime-target relation indirect. The AUCs for 

congruent trials were smaller than those for congruent trials, indicating that the positive 

or negative connotations of primes influenced the “same / different” judgment on 
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numbers. Furthermore, the coefficients in the regression analysis were nearly zero, 

suggesting that the awareness of primes had little influence on priming. Overall, the 

congruency effects were larger for positive response trials than negative response trials, 

and larger for the AUC data than the response time data. 

Was the semantic processing of primes subliminal? The awareness test indicates 

that primes were visible to many participants. On the other hand, there was no 

correlation between priming magnitudes and d’s, and there were significant intercepts at 

null d’. Thus, it was possible that for participants who could hardly identify the primes, 

semantic priming still occurred. However, given the high visibility of primes, regression 

analysis showing significant priming at null d’ does not guarantee that the semantic 

priming was subliminal. 

One reason for participants’ high awareness of primes was that I did not employ 

a standard awareness test, where participants were asked to perform the same semantic 

judgment on primes as they responded to targets (Greenwald et al., 1996). Unfortunately, 

this was impossible in my experiment, because the “same / judgment” task could not be 

applied to single pictures. As a result, a perceptual detection task was applied in the 

awareness test, and many participants could select the correct priming pictures simply 

based on perceptual features such as colors and contours. 

To reduce the stimulus-response mapping, I made the link between primes and 

targets indirect; the “same / different” judgment on numbers could hardly be applied to a 

single picture such as a red light. Primes and targets were only weakly associated via 
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their positive or negative connotations. Such weak prime-target associations still elicited 

salient priming. 

The results of RTs were roughly consistent with those of AUCs, and larger 

congruency effects were found for AUCs than RTs. Although my cursor motion method 

did not record standard RTs in a traditional way (i.e., pressing a response keyboard 

rather than clicking a mouse), it can be inferred that the AUC may be more sensitive to 

masked semantic priming. 

In summary, masked pictures influenced numeric judgment even though the 

prime-target relation was indirect, adding further evidence to the notion of elaborate 

masked priming. The priming was not influenced by the visibility or duration of primes. 

Overall, the analysis of this large sample of data demonstrates that AUC can reliably 

measure masked semantic priming. Experiment 2 compared directly the effect size of the 

AUC measure and the standard response time measure. 

2.3 Experiment 2 

To directly compare the AUC and RT measures, two independent experiments 

applying the cursor motion measure and response time measure were conducted. A 

different group of participants was recruited for each experiment, and participants 

performed the same number judgment tasks as described in Experiment 1 (Xiao & 

Yamauchi, 2014). Both experiments consisted of two phases: a number judgment task 

followed by an awareness test. In the number judgment task, participants judged whether 

two numbers were the same or different, preceded by a briefly presented picture (i.e., 

prime). The trials in the awareness test were identical to those in the number judgment 
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task except that participants were explicitly instructed to identify the primes and choose 

the correct prime from two options. 

2.3.1 Participants 

In total, 64 undergraduate students from Texas A&M University participated in 

this study for course credits. Among them, 28 participants were assigned to the cursor 

motion condition, while 36 to the response time condition. 

2.3.2 Procedures 

Stimuli and procedures were the same as in Experiment 1, except for minor 

modifications. In the cursor motion condition, participants were instructed to use a 

computer mouse to click the “Same” or “Different” button on the top of the screen 

quickly and accurately. In the response time condition, participants were instructed to 

press the “F” button on a keyboard to choose “Same” and the “J” button to choose 

“Different.” The prime duration was fixed at 20ms in both conditions. The left / right 

locations of the “Same” and “Different” buttons in the cursor motion condition were 

counterbalanced between participants. 

2.3.3 Results 

Trials with a response time longer than 3000ms were dropped (less than 2% of 

the entire trials). Paired t-tests were performed to assess congruency effects. For the 

cursor motion experiment, the AUC was smaller in congruent trials (M = 3628.43, SD = 

3875.79) than in incongruent trials (M = 4746.17, SD = 4135.95), t(27) = 5.13, p < 0.001, 

d = 1.97, 95% CId [1.31, 2.64] (Rosnow & Rosenthal, 1991; Fritz, Morris, & Richler, 

2012). Similarly, for the response time experiment, the response time (RT) was also 
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shorter in congruent trials (M = 733.32, SD = 156.28) than in incongruent trials (M = 

759.50, SD = 168.60). However, this difference was only marginally significant; t(35) = 

1.92, p = 0.06, d = 0.65, 95% CId [0.16, 1.14]. 

To compare the magnitude of the congruency effects obtained in the cursor 

motion condition and in the response time condition, I contrasted the p values and effect 

sizes between the two conditions with a meta-analytic method. For this analysis, Z is 

determined by the formula Z = (Z1 — Z2)/√(2), where Z1 represents Z-value obtained 

from the p-value in one condition (e.g., the cursor motion condition) and Z2 represents Z-

value obtained from the p-value in the other condition (e.g., the response time condition)  

(Rosenthal, 1991). This analysis showed that the p-value obtained in the cursor motion 

condition was significantly smaller than that in the response time condition; Z = 2.56, p 

= 0.005 (one-tailed). To compare effect sizes, Z is determined by the formula Z = (Zr1 — 

Zr2)/√(1/(N1-3)+1/(N2-3)); Zr1 represents Z-value obtained from the effect size in the 

cursor motion condition, and Zr2 represents Z-value obtained from the effect size in the 

response time condition; N1 and N2 represents number of participants respectively in 

these two conditions (Alexander, Scozzaro, & Borodkin, 1989; Snedecor & Cochran, 

1989). This analysis showed that the effect size obtained in the cursor motion condition 

was significantly larger than that in the response time condition; Z = 2.08, p = 0.018 

(one-tailed).  

To examine whether priming occurred at a subliminal level, I calculated the d’s 

in the awareness test to measure the extent to which participants could identify the 

masked primes (Greenwald, Draine, & Abrams, 1996). The d’s were significantly above 
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zero in the AUC group (M = 0.29, SD = 0.33, t(27) = 9.71, p < 0.001) and the RT group 

(M = 0.40, SD = 0.47, t(35) = 9.05, p < 0.001). To assess whether the priming effects 

depended on the visibility of primes, I performed a linear regression analysis with 

priming magnitudes (i.e., AUC incongruent — AUC congruent) on d’s (Greenwald et al., 1996; 

Van Opstal, Gevers, Osman, & Verguts, 2010). 

For the AUC data, there was no correlation between priming magnitudes and d’s, 

b* = 0.29, t(26) = 1.55, p = 0.14, suggesting that the congruency effect was not 

influenced by prime visibility. There was a significant intercept at null d’; b0 = 758.16, 

t(26) = 2.40, p = 0.02, indicating that the congruency effect was still significant for 

participants who could hardly see the primes. 

The same regression analysis was performed for RT data. A linear regression on 

d’ with the priming magnitude as the predicted variable revealed no correlation between 

the priming magnitudes and d’s, b* = -0.057, t(34) = -0.33, p = 0.74; the congruency 

effect was not influenced by prime visibility, and the intercept was not significant at null 

d’; b0 = 30.60, t(34) = 1.59, p = 0.12. 

2.3.4 Discussion 

Both AUC and RT data showed congruency effects. Moreover, the effect size of 

congruency effects measured by AUCs was significantly larger than that by RTs. 

Similarly, the p-value of the congruency effect measured by AUCs was significantly 

smaller than that by RTs. At least two factors are likely to contribute to this disparity. 

First, response times record only the duration from the onset of a target until a 

response is made, but no information is recorded in-between. Such information is 
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essential to understand masked semantic priming, as semantic decision-making is likely 

to unfold dynamically and a prime influences a target continuously rather than discretely 

(Son & Nakayama, 2007). In contrast, the AUC integrates temporal-spatial information 

in real-time cognition; thus, the AUC is likely to capture dynamic decision-making 

processes. 

Second, response time data is often influenced by the Gratton Effect — 

participants more or less estimate their response times and try to control it, which results 

in reduced congruency effects due to participants’ effort to resist the impact of priming 

(Gratton, Coles, & Donchin, 1992). The cursor motion data is beneficial because it 

combines spatial and temporal information. Temporal data alone is vulnerable to the 

Gratton Effect, but by combining temporal data and spatial data, the temporal “resistance” 

can be mitigated.  

In summary, both the RT and AUC show congruency effects. However, because 

the effect size measured by AUCs is far larger than that of RTs, the cursor motion 

measure seems more sensitive to masked semantic priming. In the next Chapter, 

Experiments 3-5 apply the cursor motion method developed in Experiment 1 and 2 to 

investigate the role of top-down attention in subliminal semantic processing. 
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CHAPTER III 

HOW ATTENTION INFLUENCES SUBLIMINAL SEMANTIC PROCESSING*2 

 

Applying the cursor motion method, I investigated the influence of top-down 

attention on subliminal semantic processing in three experiments. In Experiment 3, I 

employed the number judgment task developed by Naccache et al. (2002) and assessed 

congruency effects with a cursor motion method. In particular, I examined whether 

subliminal semantic processing would occur in near absence of attention. Experiment 4 

investigated the role of the visual cue (i.e., a green square) and top-down attention using 

the task developed by the Naccache et al. (2002). Experiment 5 addressed how top-down 

attention influenced subliminal semantic priming: did top-down attention change the 

time course of priming or amplify the magnitude of subliminal semantic processing? 

This question was addressed by manipulating the stimulus-onset asynchrony (SOA) in 

Experiment 5. 

3.1 Experiment 3 

In examining the role of top-down attention in subliminal priming, Naccache et 

al. (2002) instructed participants to judge whether a target digit (e.g., “9”) was larger or 

smaller than five, preceded by a masked priming digit (e.g., “6”); participants’ top-down 

attention was manipulated by occasionally presenting a visual cue. The pre-target 

duration changed randomly from trial to trial, which disrupted participants’ top-down 

                                                

*Part of this chapter is reprinted with permission from “Subliminal semantic priming in near 
absence of attention: A cursor motion study.” by Xiao, K., & Yamauchi, T., 2015. Consciousness 
and Cognition, 38, 88-98, Copyright [2015] by Elsevier Inc. 
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attention because participants could not predict when a target would suddenly appear 

(i.e., uncued condition). In the cued condition, however, a green square cue was 

explicitly presented to signal an upcoming target digit to facilitate participants’ top-down 

attention; the interval between the cue and target was fixed. Results show that subliminal 

congruency effects were present only in the cued condition but not in the uncued 

condition. On this basis, Naccache et al. (2002) argue that top-down attention is 

necessary for subliminal semantic processing: when participants see the cue and know 

the target is coming, a temporal attention window is open, amplifying subliminal 

semantic processing; while in the uncued condition, subliminal primes not covered by 

the temporal attention window cannot be processed at a semantic level. 

However, the absence of priming without attention reported by Naccache et al. 

(2002) can be attributed to the insufficient sensitivity of response time measures, 

because the response time is not very informative about dynamic decision-making 

processes unfolding in real-time. To reveal dynamic semantic decision, I applied the 

cursor motion method to the experimental task developed by Naccache et al. (2002) and 

re-examined the congruency effects. 

Experiment 3 consisted of two phases, a number judgment task phase, followed 

by an awareness test phase. In the number judgment task, participants judged whether a 

target digit (e.g., 7) was larger or smaller than five. Before the presentation of the target 

digit, a prime digit (e.g., 6) was flashed subliminally for 29ms followed by a mask. As in 

the Naccache et al. (2002) study, there were two between-subjects conditions — an 

uncued condition and a cued condition. In the uncued condition, the pre-target duration 
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changed randomly from trail to trial, making it difficult for participants to anticipate 

when the target would appear. While in the cued condition, a green cue was presented 

for 200ms to signal the upcoming target, which facilitated participants’ top-down 

attention to stimuli. 

In the awareness test, participants received the same set of trials. However, 

participants were instructed to judge the prime instead of the target (i.e., whether a prime 

digit was larger or smaller than five).  

There are 288 trials in the number judgment task (i.e., 96 cued trials and 192 

uncued trials), before which 96 trials were given for practice. In the awareness test, 192 

trials were presented. 

3.1.1 Participants 

A total of 42 undergraduate students from Texas A&M University participated in 

this experiment for course credits. 

3.1.2 Materials and apparatus 

Primes and targets were one-digit numbers (i.e., 1, 4, 6, or 9). A 70 Hz monitor 

was used to present the stimuli. The experimental procedures were controlled by a 

customized computer program developed with Microsoft Visual Studio. 

3.1.3 Procedure 

For each trial, a mask (71ms duration) was presented one after another 

seamlessly in random frequencies ranging from 15 to 25, followed by either a green 

square cue lasting for 200ms (cued trials) or the same mask for 71ms (uncued trials). 

Then four masks were presented, followed by a one-digit prime (i.e., 1, 4, 6, or 9) for 
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29ms. Following that, a 71ms post-mask was presented, then a target digit (i.e., 1, 4, 6, 

or 9) was shown for 200ms. Participants’ task was to judge whether the target digit was 

larger or smaller than five; they used the mouse to click one of two buttons labeled either 

“Large” or “Small” on the top right or left corner of the screen. Participants were 

instructed to response as quickly and accurately as they could. Altogether, there were 96 

cued and 192 uncued trials, half of which were congruent and half of which were 

incongruent (Table 11). For each participant, trials were presented in a random order. 

Before doing the number judgment task, participants took 96 trials for practice. 

 
 
 

Table 11 Numbers of trials in each type of prime-target combinations 

Cue Congruency Prime Target Number of Trials 

Cued 

(96 trials) 

congruent 
1 or 4 1 or 4 24 

6 or 9 6 or 9 24 

incongruent 
1 or 4 6 or 9 24 

6 or 9 1 or 4 24 

uncued 

(192 trials) 

congruent 
1 or 4 1 or 4 48 

6 or 9 6 or 9 48 

incongruent 
1 or 4 6 or 9 48 

6 or 9 1 or 4 48 

 
 
 

In the awareness test, the same set of trials used in the number judgment task was 

presented. Instead of judging the target digits, participants were instructed to judge 

whether the prime digits were larger or smaller than five by clicking the “Large” or 
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“Small” button. There were 192 trials in the awareness test. To assess the visibility of 

primes, I calculated the d’ in the awareness test (Macmillan & Creelman, 1996). 

Specifically, participants correctly judging a prime as larger than five was regarded as 

“hit”, and incorrectly selecting “Large” when the prime was actually smaller than five 

was regarded as “false alarm.” The influence of prime visibility on priming was 

investigated by regression analyses with priming magnitudes (i.e., AUC incongruent — 

AUC congruent) on d’s. 

 
 
 

 

Figure 7. Procedures in the number judgment task. Participants were instructed to judge 
whether the target digit shown in the last frame was larger or smaller than five. Before 
the presentation of the target digit, a prime digit was flashed for 29ms followed by a 
mask. The only difference between cued and uncued conditions was that the second 
mask in the uncued condition was replaced by a cue (i.e., a green square) in the cued 
condition. In the cued condition, a prime was presented 413ms later after the onset of a 
cue. In the uncued condition, a prime was presented from 1420ms to 2130ms after the 
onset of the first mask. 
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3.1.4 Design 

This experiment had a 2 (congruency: congruent vs. incongruent; within-subjects) 

× 2 (cue: cued vs. uncued; within-subjects) factorial design. For both cued and uncued 

conditions, analysis of variance (ANOVA) was applied to the AUCs obtained in the 

number judgment task to examine congruency effects (Figure 7). 

3.1.5 AUC results 

For the number judgment task, participant’s response accuracy was at least 90 

percent. In the cued condition, the average accuracy for congruent trials (M = 99.08 %) 

were marginally higher than that for incongruent trials (M = 98.59%); t(41) = 1.99, p = 

0.053, d = 0.62, 95% CId [0.18, 1.06]. In the uncued condition, no difference was found 

between congruent (99.06%) and incongruent (98.71%) trials: t(41) = 0.83, p = 0.41, d = 

0.26, 95% CId [-0.17, 0.69]. 

Figure 8 illustrates mean trajectories in the congruent and incongruent trials 

shown separately in the cued and uncued conditions. 
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Figure 8. Average trajectories for congruent and incongruent trials. The X and Yaxes 
are scaled by amounts of pixels on the screen. Figure 8a shows average trajectories in 
the cued condition, and Figure 8b shows average trajectories in the uncued condition. 
Cursor locations were recorded from the onset of a prime until clicking the “Large” or 
“Small” button. 
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A two-way ANOVA (congruency × cue) for AUCs showed a significant main 

effect of congruency; F(1, 41) = 23.92, MSE = 1608069.54, p < 0.001, partial ɳ2 = 0.37. 

In both cued and uncued conditions, the AUCs were smaller in congruent than  

incongruent trials (Figure 9), indicating that participants experienced less semantic 

conflicts when responding to congruent trials than incongruent ones: in the cued 

condition, t(41) = 4.63, p < 0.001, d = 1.44, 95% CId [0.96, 1.92]; in the uncued 

condition, t(41) = 2.96, p < 0.01, d = 0.92, 95% CId [0.47, 1.37]. 

 
 
 

 
 
Figure 9. AUCs for congruent and incongruent trials. The error bars are two standard 
errors in length. 
 
 
 

The two-way ANOVA also showed a significant interaction effect between 

congruency and cue, suggesting that the congruency effect was influenced by the 

presence / absence of the cue; F(1, 41) = 9.07, MSE = 952417.85, p < 0.01, partial ɳ2 = 
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0.18. To clarify the influence of cue, I compared AUCs between the cued and uncued 

conditions separately in congruent and incongruent trials. 

A paired t-test revealed that AUCs in congruent trials in the cued (M = 4266.79, 

SD = 684.74) and uncued (M = 4486.79, SD = 725.43) conditions were statistically 

indistinguishable; t(41) = 0.90, p = 0.37, d = 0.28, 95% CId [-0.15, 0.71]. In contrast, 

AUCs in incongruent trials were significantly larger in the cued (M = 5677.39, SD = 

711.25) than the uncued condition (M = 4990.15, SD = 714.41); t(41) = 2.91, p < 0.01, d 

= 0.91, 95% CId [0.46, 1.36]. These results suggest that presenting a cue helped 

accentuate the inconsistency but not the consistency between primes and targets. It 

seems that top-down attention probably made semantic conflicts between primes and 

targets more prominent. 

3.1.6 Awareness analysis 

To further explore whether the congruency effects occurred at a subliminal level, 

I calculated d’ in the awareness test to measure the extent to which participants could 

identify the masked primes (Macmillan & Creelman, 1996). Here, I defined “hit” as 

participants making a “large” response when the prime digit was indeed larger than five 

and “false alarm” as participants making a “large” response when the prime was, in fact, 

smaller than five. This analysis suggests that the masked primes were hardly visible; the 

mean d’ was not significantly different from zero in both the cued (M = 0.03, t(41) = 

1.28, p = 0.21) and uncued (M = 0.03, t(41) = 1.56, p = 0.13) conditions. 

To probe the impact of prime visibility on the number judgment task, I 

performed a linear regression analysis with priming magnitudes (i.e., AUC incongruent — 
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AUC congruent) on d’s (Greenwald, Draine, & Abrams, 1996). There was no correlation 

between the priming magnitudes and d’s in neither cued nor uncued condition, 

suggesting that the magnitude of priming was hardly influenced by the visibility of 

primes: in the cued condition, b* = -0.12, t(40) = 0.74, p = 0.46; in the uncued condition, 

b* = -0.18, t(40) = 1.16, p = 0.25. The regression analysis further revealed that intercepts 

were significantly above zero at null d’: in the cued condition, b0 = 1428.75, t(40) = 4.64, 

p < 0.001; in the uncued condition, b0 = 519.05, t(40) = 3.06, p < 0.01 (Figure 14). 

 
 
 

  
 
Figure 10. Regressions with priming magnitudes on d’s. The AUC is measured by 
amounts of pixels. 
 
 
 

Additional analysis of d’. In Figure 10, d’s appear distributed categorically. For 

example, the x-axis of the left panel of Figure 10 shows that there are approximately 9 

discrete values of d’. To investigate this potential “anomaly,” I calculated all possible d’ 

values observable in all awareness tests in Experiments 3-5. In the awareness test, there 
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were 192 trials; among them, 96 trials had a prime larger than five, and the remaining 96 

trials had a prime smaller than five. As discussed earlier, “hit” is defined as participants 

making a “large” response when the prime was indeed larger than five and “false alarm” 

is defined as participants making a “large” response when the prime was actually smaller 

than five. Ideally, a participant is expected to have 48 hits and 48 false alarms if the 

primes are invisible. In this case, d’ is equal to zero, and d’ reaches zero whenever the 

numbers of hits and false alarms are equal (e.g., (hit, false alarm) = (49, 49), (50, 50), 

(51, 51)).  

In Experiments 3-5, the minimum number of observed hits was 43, and the 

maximum was 56; thus, there were 14 different numbers of hit. Similarly, the minimum 

number of observed false alarm was 44, and the maximum was 54; thus, there were 11 

different numbers of false alarm. Since d’ is determined by the numbers of hits and false 

alarms, there are 154 possible d’ values at most in this range, corresponding to 154 (i.e., 

14 × 11) combinations of hits and false alarms. Within this range of hits and false 

alarms, I calculated all 154 possible d’s in Figure 11. 

Figure 11 shows the distribution of all 154 d’s arranged in ascending order from 

the smallest d’ (i.e., -0.288) to the largest d’ (i.e., 0.315). As the figure shows, the 

distribution of d’ appears “categorical.” Although this distribution looks categorical, the 

exact values of individual d’ in the same “category” are slightly different; however, the 

differences are very small and visually indistinguishable (Figure 11). For example, when 

the numbers of hits and false alarms are different only by one trial (e.g., (hit, false alarm) 

= (45, 44), (46, 45), (47, 46), (48, 47),…, (55, 54)), d’s are nearly identical (e.g., (hit, 
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false alarm; corresponding d’) = (46, 45;  d’ = 0.02622), (47, 46; d’ = 0.02617), (48, 47; 

d’ = 0.02613), (49, 48; d’ = 0.02613),…, (55, 54; d’ = 0.026494)). Similarly, when the 

numbers of hits and false alarms are different only by two trials, d’s are nearly identical 

(e.g., (hit, false alarm; corresponding d’) = (46, 44;  d’ = 0.0523883), (47, 45; d’ = 

0.0522987), (48, 46; d’ = 0.0522452), (49, 47; d’ = 0.0522274),…, (55, 53; d’ = 

0.0528771)). In other words, because the primes were barely visible in the awareness 

tests in Experiments 3-5, the number of hits and false alarms clustered in small ranges, 

yielding seemingly “categorical” distribution of d’s. 

 
 
 

 

 
Figure 11. The distribution of all possible d’s. These possible d’ values were obtained 
from all awareness tests in Experiments 3-5. The x-coordinate represents the order of d’s 
arranged in ascending order from the smallest d’ to the largest d’, and the y-coordinate 
indicates the value of each d’. In Experiments 3-5, the number of hits ranges from 43 to 
56, while the number of false alarms ranges from 44 to 54. In total, there are 154 
possible combinations of hit and false alarm. This simulation suggests that d’s in the 
awareness tests appear “categorical” because primes were indeed barely visible. 
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The order of possible d’ ranked from the smallest to the largest 
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In addition to d’s, I also calculated participants’ response biases in the awareness 

test to examine if participants tended to make more positive or negative responses; a 

response bias smaller than one indicates more “yes” responses (i.e., bias toward “Large” 

in the this experiment), whereas a response bias larger than one indicates more “no” 

responses (i.e., bias toward “Small” in this experiment) (Macmillan & Creelman, 1996). 

Two one-sample t-tests show that the mean of response bias was larger than one in both 

the cued (M = 1.04, SD = 0.05, t(41) = 3.63, p < 0.001) and uncued conditions (M = 1.03, 

SD = 0.04, t(41) = 3.21, p < 0.01), suggesting that participants made more “Large” 

responses than “Small” responses in the awareness test. 

3.1.7 Analysis of trajectory distance (TD) 

In addition to AUC, I also analyzed the distance of cursor trajectories. In each 

trial, the trajectory distance (TD) is estimated by a summation of the Euclidean distance 

in each cursor motion step, and is measured by amounts of pixels. The analysis showed 

similar results as revealed by the AUC. A two-way ANOVA (congruency × cue) for 

TDs showed a significant main effect of congruency; F(1, 41) = 13.69, MSE = 4131.30, 

p = 0.001, partial ɳ2 = 0.25. In both cued and uncued conditions, the TD was shorter for 

congruent than incongruent trials: in the cued condition, t(41) = 3.29, p = 0.002, d = 1.03, 

95% CId [0.57, 1.49]; in the uncued condition, t(41) = 3.07, p = 0.004, d = 0.96, 95% CId 

[0.51, 1.41]. No interaction between congruency and cue was found; F(1, 41) = 1.30, 

MSE = 1527.32, p = 0.26, partial ɳ2 = 0.03. To examine the influence of the cue, the cued 

and uncued conditions were compared separately for congruent and incongruent trials. A 
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paired t-test indicated that TDs for congruent trials in the cued (M = 1167.63, SD = 

288.68) and uncued (M = 1162.00, SD = 287.62) conditions were statistically 

indistinguishable; t(41) = 0.69, p = 0.50, d = 0.22, 95% CId [-0.21, 0.65]. However, the 

TDs for incongruent trials were significantly larger in the cued (M = 1211.19, SD = 

319.99) than uncued condition (M = 1191.84, SD = 316.28); t(41) = 2.23, p = 0.03, d = 

0.70, 95% CId [0.26, 1.14]. Again, the results suggest that top-down attention elicited by 

the cue most likely amplified semantic conflicts rather than consistency between primes 

and targets (Figure 12). There was no correlation between priming magnitudes and d’s in 

neither cued nor uncued condition, suggesting that the congruency effects were not 

influenced by prime visibility: the cued condition, b* = -0.06, t(40) = -0.38, p = 0.71; the 

uncued condition, b* = 0.03, t(40) = 0.21, p = 0.84. In addition, intercepts were 

significantly above zero at null d’: the cued condition, b0 = 43.12, t(40) = 3.22, p < 0.01; 

the uncued condition, b0 = 30.01, t(40) = 3.04, p < 0.01. 
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Figure 12. The trajectory distance (TD) for congruent and incongruent trials. The error 
bars are two standard errors in length. The trajectory distance (TD) is estimated by a 
summation of the Euclidean distance (measured by the amount of pixels) in each cursor 
motion step. 
 
 
 
3.1.8 Analysis of cursor movement time (MT) 

In addition to examining the spatial features of cursor motion data, I also 

analyzed a temporal feature assessed by cursor movement time (MT). The MT was 

defined as the time elapsed between the onset of the first cursor motion and a recorded 

click on either the “Large” or “Small” button. A two-way ANOVA (congruency × cue) 

for MTs showed a significant main effect of congruency; F(1, 41) = 14.22, MSE = 

1646.46, p = 0.001, partial ɳ2 = 0.26. In the cued condition, MTs were smaller for 

congruent (M = 907.48, SD = 196.68) than incongruent (M = 934.34, SD = 201.60) trials: 

t(41) = 2.85, p < 0.01, d = 0.89, 95% CId [0.44, 1.34]; similarly in the uncued condition, 

MTs were smaller for congruent (M = 939.17, SD = 201.80) than incongruent (M = 
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959.54, SD = 206.33) trials: t(41) = 2.75, p < 0.01, d = 0.86, 95% CId [0.41, 1.31]. No 

interaction between congruency and cue were found; F(1, 41) < 1 (Figure 13). In 

addition, paired t-tests indicated that MTs were smaller in the cued than uncued 

conditions for both congruent and incongruent trials: congruent trials, t(41) = 4.00, p < 

0.001, d = 1.25, 95% CId [0.78, 1.72]; incongruent trials, t(41) = 2.94, p < 0.01, d = 0.92, 

95% CId [0.47, 1.37]. There was no correlation between priming magnitudes and d’s in 

neither cued nor uncued condition, suggesting that the congruency effects were not 

influenced by prime visibility: the cued condition, b* = 0.15, t(40) = 0.93, p = 0.36; the 

uncued condition, b* = -0.03, t(40) = -0.19, p = 0.85. In addition, intercepts were 

significantly above zero at null d’: the cued condition, b0 = 27.63, t(40) = 2.91, p < 0.01; 

the uncued condition, b0 = 20.24, t(40) = 2.69, p = 0.01. 

 
 
 

 
 

Figure 13. The movement time (MT) for congruent and incongruent trials. The error 
bars are two standard errors in length. 
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3.1.9 Analysis of initiation time (IT) 

Another important temporal feature is the initial time (IT), which is the time 

elapsed from the onset of the presentation of a prime digit to the onset of the first cursor 

motion in each trial. A two-way ANOVA (congruency × cue) for ITs showed no main 

effect of congruency; F(1, 41) < 1. No interaction between congruency and cue was 

found; F(1, 41) = 2.58, MSE = 446.44, p = 0.12, partial ɳ2 = 0.06. Paired t-tests showed 

that in the uncued condition, ITs were smaller for congruent (M = 99.50, SD = 77.43) 

than incongruent (M = 107.12, SD = 85.04) trials: t(41) = 2.05, p < 0.05, d = 0.64, 95% 

CId [0.20, 1.08]; however in the cued condition, mean ITs were not statistically different 

between congruent (M = 92.93, SD = 71.93) and incongruent (M = 90.07, SD = 71.95) 

trials: t(41) = 0.61, p = 0.54, d = 0.19, 95% CId [-0.24, 0.62] (Figure 14). Further t-tests 

indicated that ITs were smaller in the cued than uncued conditions only for incongruent 

but not for congruent trials: for incongruent trials, t(41) = 3.19, p < 0.01, d = 1.00, 95% 

CId [0.55, 1.45]; for congruent trials, t(41) = 1.81, p = 0.08, d = 0.57, 95% CId [0.13, 

1.01]. There was no correlation between priming magnitudes and d’s in neither cued nor 

uncued condition, suggesting that prime visibility did not influence the magnitude of 

congruency: in the cued condition, b* = 0.10, t(40) = 0.64, p = 0.52; in the uncued 

condition, b* = -0.13, t(40) = -0.85, p = 0.40. Intercepts were not significantly above zero 

at null d’: in the cued condition, b0 = -2.60, t(40) = -0.55, p = 0.59; in the uncued 

condition, b0 = 7.35, t(40) = 1.96, p = 0.06. 
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Figure 14. The initial time (IT) for congruent and incongruent trials. The error bars are 
two standard errors in length. 
 
 
 
3.1.10 Discussion 

By applying the cursor motion method directly to the number judgment task 

employed in the Naccache et al. (2002) study, I examined the extent to which top-down 

attention influenced subliminal semantic priming in two conditions — cued and uncued. 

In the uncued condition, the pre-target duration changed randomly trial-by-trial; in the 

cued condition, a cue was presented with a fixed duration before targets to signal the 

upcoming target. Therefore, participants’ top-down attention to targets and primes was 

disrupted in the uncued condition (because the random time window made it difficult for 

the participant to anticipate when a target would appear), while it was facilitated in the 

cued condition. 

Consistent with the Naccache et al. (2002) findings, a significant congruency 

effect was observed in the cued condition; however, inconsistent with their findings, a 

significant congruency effect was also present in the uncued condition. These results 
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suggest that subliminal semantic priming can still occur in near absence of attention, 

favoring the explanation that automatic semantic processing can produce priming effects 

without much assistance of top-down attention. 

Why is the cursor motion measure more sensitive to subliminal semantic 

processing than the response time measure? Temporal measures, such as response time, 

movement time, and initial time, only make use of two data points in each trial: the onset 

time and the end time. Thus, any intervening factors that occur in-between can be 

glossed over. For example, imagine flight information from New York City to Tokyo. 

The response time data yield the duration of the flight, such as 15 hours and 20 minutes. 

From this data, it is nearly impossible to infer the exact route of the flight or the 

condition of the flight. Did the airplane stop over Los Angeles, San Francisco, or 

Anchorage? Or was the flight delayed because of the bad weather in Alaska or Colorado? 

Given the discrete temporal data — the departure time and the arrival time — one can 

hardly infer what happened in-between.  In contrast, the cursor motion measure provides 

minutes by minutes information about the location of the airplane. From this data set, it 

is relatively easy to infer the factors that influenced the flight. 

The same rationale explains the advantage of AUC over trajectory distance (TD). 

Although both AUC and TD make use of temporal-spatial data points in each trial, the 

AUC includes all pixels in the area circumscribed by the cursor trajectory, whereas the 

TD only includes pixels on the edge of the circumscribed area. Thus, AUC is more 

informative than TD because AUC helps characterize how primes and targets interact 

continuously. 
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In summary, subliminal semantic processing can be modulated by cognitive 

control, and can still occur with little assistance from top-down attention. Top-down 

attention helps priming but may not be necessary for subliminal semantic processing. In 

Experiment 4 and 5, factors such as cue colors and SOAs were examined, and priming 

effects were exclusively measured by AUCs. 

3.2 Experiment 4 

Experiment 4 examined the source of the amplified congruency effect in the cued 

condition in the Naccache et al. (2002) study. Did the green cue enhance the congruency 

effect by means of top-down attention or as an indirect prime? Experiment 1 shows that 

a green-colored priming picture (e.g., a green light) facilitates positive judgment (i.e., 

“same” judgment) and impede negative judgment (i.e., “different” judgment), while a 

red-colored priming picture (e.g., a red light) facilitate negative judgment and impede 

positive judgment. This suggests that colors of primes could influence the number 

judgment task. 

Following this rationale, the green cue employed in Experiment 3 as well as in 

the Naccache et al. (2002) study might have worked as an indirect prime rather than a 

“cue” for attention trigger. Thus, the role of top-down attention for subliminal semantic 

priming is still uncertain. Experiment 4 addressed this question by contrasting two 

between-subjects conditions — a green cue condition and a red cue condition. The 

design of Experiment 4 was identical to Experiment 3 except that an additional between-

subjects condition (i.e., the red cue condition) was augmented to Experiment 3. As in 

Experiment 3, Experiment 4 had a 2 (congruency: congruent vs. incongruent; within-



 

 63 

subjects) × 2 (cue: cued vs. uncued; within-subjects) factorial design.  However, we 

conducted the same experiment twice with different cue colors (between-subjects factor), 

one with a green cue and the other with a red cue.  

If the cue color (green), rather than the cue itself, was solely responsible for the 

amplified congruency effect in Experiment 3, the advantage of the cue should be 

eliminated when the green cue is replaced with a red cue. In contrast, if top-down 

attention triggered by a cue is the source of the enhanced congruency effect in the cued 

condition in Experiment 3, enhanced congruency effects should emerge both in the red 

cue and green cue conditions. 

3.2.1 Participants 

A total of 82 undergraduate students from Texas A&M University participated in 

this experiment for course credits. These participants were randomly assigned to the 

green cue (n = 41) condition or the red cue condition (n = 41). Four participants in the 

green cue condition and one participant in the red cue condition did not complete the 

awareness test. Thus, the data from 77 participants (n = 37 in the green cue condition 

and n = 40 in the red cue condition) was analyzed. 

3.2.2 Materials and apparatus 

A 70 Hz monitor was used to present stimuli, and the experimental procedures 

were controlled by a customized computer program developed with Microsoft Visual 

Studio. 
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3.2.3 Procedure 

The procedure and stimuli were identical to those described in Experiment 3, 

except for the color of cues: the cue was red in the red cue condition while green in the 

green cue condition (Figure 15). 

 
 

 

    
 
Figure 15. Procedures in the green and red cue conditions. The only difference between 
the green and red cue conditions is the color of cues: either green or red. 
 
 
 
3.2.4 Design 

Experiment 4 was designed with three factors: cue color (green cue, red cue; 

between-subjects), cue (cued, uncued; within-subjects), and congruency (congruent, 

incongruent; within-subjects). Since the cue color was nested in the cued condition, it 
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was improper to perform a three-way ANOVA on these three factors. Thus, a two-way 

ANOVA (cue × congruency) was performed to reveal the effects of attention and 

congruency, and a two-way ANOVA (cue color × congruency) was performed to 

examine the effect of cue color. 

3.2.5 AUC results 

3.2.5.1 Impacts of attention on congruency 

Cue × Congruency. As predicted, AUC was significantly smaller in the 

congruent trials than in the incongruent trials. There was a main effect of congruency 

(F(1, 75) = 38.74, MSE = 976662.63, p < 0.001, partial ɳ2 = 0.34), indicating that 

semantic congruency influenced the number judgment. An interaction effect between 

cue and congruency further suggests that the congruency effect was amplified when a 

cue was presented: F(1, 75) = 9.09, MSE = 610495.37, p < 0.01, partial ɳ2 = 0.11. The 

magnitude of priming was significantly larger in the cued condition: M = 1174.86, SD = 

191.70) than in the uncued condition (M = 482.53, SD = 194.17); t(36) = 2.69, p < 0.01, 

d = 0.90, 95% CId [0.42, 1.38]. 

3.2.5.2 Impacts of cue color on congruency 

Cue color × Congruency. To examine the extent to which cue color influenced 

congruency effects, a two-way ANOVA (cue color × congruency) was applied only to 

the cued condition because two levels of cue color, green and red, were present in the 

cued condition but not in the uncued condition. As predicted, AUC was significantly 

smaller in the congruent trials than in the incongruent trials; the main effect of 

congruency (F(1, 75) = 37.6, MSE = 962178.54, p < 0.001, partial ɳ2 = 0.33). The main 
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effect of congruency was observed both in the green cue and red cue conditions; the 

green cue condition, F(1, 36) = 33.24, MSE = 764431.74, p < 0.001, partial ɳ2 = 0.48; the 

red cue condition, F(1, 39) = 11.25, MSE = 1172568.07, p < 0.01, partial ɳ2 = 0.22 

conditions. 

Overall, we found no interaction effect between cue color and congruency, (F(1, 

75) = 1.67, MSE = 962178.54, p = 0.20, partial ɳ2 = 0.02), suggesting that cue color did 

not influence the magnitude of congruency effects. In addition, the main effect of cue 

color was not significant; F(1, 75) = 2.59, MSE = 18324130.50, p = 0.11, partial ɳ2 = 

0.03. Taken together, the results suggest that the cue color itself did not influence the 

magnitude of congruency effect. 

3.2.5.3 The AUC difference between green and red cue conditions 

Although the cue color did not change the congruency effects, overall AUCs 

were larger in the red cue condition (M = 4497.70, SD = 2914.21) than in the green cue 

condition (M = 3181.47, SD = 2764.01); t(75) = 2.03, p < 0.05, d = 0.47, 95% CId [0.02, 

0.92] (Figure 16). This suggests that when the red cue was given, participants were more 

likely to deviate toward the unselected option before making the final choice irrespective 

of the congruency / incongruency of the prime. 

In comparing the impact of cues in the red and green cue conditions separately, 

we found that a cue amplified the congruency effect significantly when the green cue 

was given; the interaction between cue and congruency was present in the green cue 

condition (F(1, 36) = 7.23, MSE = 612879.43, p = 0.01, partial ɳ2 = 0.17). However, 

providing a red cue did not increase the congruency effect much; the interaction between 
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cue and congruency did not reach a significant level in the red cue condition (F(1, 39) = 

2.41, MSE = 608294.71, p = 0.13, partial ɳ2 = 0.06). Further paired t-tests suggested that 

the cue primarily amplified congruency effects in the green cue condition: the priming 

magnitude (i.e., AUC incongruent — AUC congruent) was larger in the cued condition (M = 

1174.86, SD = 191.70) than in the uncued condition (M = 482.53, SD = 194.17); t(36) = 

2.69, p < 0.01, d = 0.90, 95% CId [0.42, 1.38]. Such amplification effect of attention was 

not significant in the red cue condition (t(39) = 1.55, p = 0.13, d = 0.50, 95% CId [0.04, 

0.96]). 

The AUC difference between the red cue and green cue conditions suggests that 

the cue color influences participants’ cursor motion in decision making to some extent 

regardless of the congruency / incongruency of the prime-target relation. This influence 

is discussed in detail in the Discussion section. 
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Figure 16. AUCs in the green and red cue conditions. The error bars are two standard 
errors in length. 
 
 
 
3.2.6 Awareness results 

In the awareness test, the d’s were not significantly different from zero: in the 

green cue condition, M = 0.005, t(36) = 0.61, p = 0.54; in the red cue condition, M = 

0.004, t(39) = 0.49, p = 0.63 (Stanislaw & Todorov, 1999). Linear regressions showed 

no correlation between the priming magnitudes and d’s in neither cued nor uncued 

conditions (Table 12 & 13), suggesting that the priming effects were not influenced by 

participants’ awareness of the masked primes. Furthermore, intercepts were significantly 

higher than zero at null d’, suggesting that the congruency effect was still significant for 

participants who could not see the masked primes at all (Table 12 & 13; Figure 17 & 18). 
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Table 12 Regressions with priming magnitudes on d’s for the green cue 

  B t p 
Cued constant 1175.88 6.02 <0.001 

d' -0.01 -0.05 0.96 

Uncued constant 462.47 2.37 0.02 
d' 0.17 1.01 0.32 

 
 
 

  
 
Figure 17. Regressions with priming magnitudes on d’s for the green cue. The AUC is 
measured by amounts of pixels. 
 
 
 
Table 13 Regressions with priming magnitudes on d’s for the red cue 

  B t p 
Cued constant 753.00 3.01 <0.01 

d' 0.10 0.64 0.53 

Uncued constant 366.19 2.20 0.03 
d' 0.21 1.29 0.21 
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Figure 18. Regressions with priming magnitudes on d’s for the red cue. The AUC is 
measured by amounts of pixels. 
 
 
 

In addition, analyses of response bias indicated that participants’ were not biased 

towards “Large” or “Small” responses: in the green cue condition, M = 0.994, SD = 

0.065, t(36) = 0.60, p = 0.56, d = 0.20, 95% CId [-0.26, 0.66]; in the red cue condition, M 

= 0.993, SD = 0.069, t(39) = 0.65, p = 0.52, d =0.21, 95% CId [-0.23, 0.65]. There was 

no difference of response biases between the green and red cue conditions; t(75) = 0.04, 

p = 0.97. 

3.2.7 Discussion 

Experiment 4 examined whether cue colors influenced subliminal semantic 

processing. Results in the green cue condition are consistent with those in Experiment 3. 

AUCs were smaller in congruent trials than in incongruent trials, and the priming 

magnitude was larger in the cued condition than in the uncued condition, suggesting that 

presenting a cue indeed amplified subliminal semantic processing. As in Experiment 3, 
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congruency effects are still significant in the uncued condition, supporting the view that 

subliminal semantic processing can occur in near absence of attention. Taken together, 

these results suggest that the assistance from top-down attention helps but is not 

necessary for subliminal semantic processing to occur.  

In the red cue condition, congruency effects are significant in both the cued and 

uncued conditions, indicating that subliminal semantic processing occurs without 

assistance of top-down attention, which is consistent with results in the green cue 

condition. However, the priming magnitude in the cued condition was not significantly 

larger than that in the uncued condition, suggesting that the amplification effect of top-

down attention was weaker when the cue was red. 

Although there is no two-way interaction between cue color and congruency, a 

large AUC difference between the green and red cue conditions suggests that cue color 

influenced the overall decision process. This suggests that the red cue possibly worked 

as an indirect prime. My tentative explanation is that participants probably associated the 

red cue with “alarm,” “alert,” and “stop;” as a result, the red cue made participants more 

cautious and hesitant, resulting in larger AUCs. Admittedly, there are other potential 

interpretations for the role of cue color. Since effects of congruency, attention, and cue 

color are mixed, how cue color alone influences priming cannot be explained in a 

straightforward way. Clearly, more research is needed to scrutinize the role of cue color 

for sematic priming. 

To summarize, the cue color influences priming to some extent. On the other 

hand, the influence of cue color is relatively limited, compared to the strong effect of 



 

 72 

semantic congruency. Although the congruency effect was greater in the green cue 

condition than in the red cue condition, a significant congruency effect was still present 

in the red cue condition. This suggests that the amplified congruency effects in the cued 

condition cannot be attributed solely to the color of the cue. Although the cue color 

influences overall response patterns, the fact that the congruency effect is present both in 

the green and red cue conditions suggest that the presence of a cue, not just its color, 

facilitated semantic congruency, favoring the view that top-down attention triggered by 

the cue influenced the congruency effect independently of cue color. In Experiment 5, I 

focused on a green cue and investigated temporal characteristics of top-down attention in 

subliminal semantic processing. 

3.3 Experiment 5 

One important question regarding the role of top-down attention for subliminal 

semantic processing is its time course. Top-down attention is said to amplify semantic 

priming (Naccache et al., 2002; Dehaene et al., 2005; 2006); yet how exactly it 

influences subliminal processing remains unclear. Naccache et al. (2002) applied a fixed 

100ms stimulus-onset asynchrony (SOA) in their study; because of this constraint, their 

study only provides partial time course of semantic priming. In Experiment 5, I 

manipulated the duration from the onset of primes to the onset of targets (i.e., stimulus-

onset asynchrony — SOA) and investigated the impact of top-down attention on 

subliminal semantic processing. 

Experiment 5 was identical to Experiment 3 (see also Naccache et al. 2002) 

except for one minor modification.  As in Experiment 3, participants in Experiment 5 
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judged whether a target digit (e.g., “9”) was larger or smaller than five, preceded by a 

masked priming digit (e.g., “6”) in the cued or uncued conditions (within-subjects).  

Participants carried out the number judgment task under four SOA conditions: 50ms, 

200ms, 500ms, and 1000ms (between-subjects), where the duration from the onset of the 

prime to the onset of the target (i.e., SOA) was changed accordingly. 

I expect that top-down attention influences subliminal priming at least in three 

different manners: (1) top-down attention amplifies and extends semantic priming; (2) 

top-down attention amplifies priming without extending the lifespan of priming; and (3) 

top-down attention prompts semantic priming earlier without amplifying or extending 

semantic priming. 

If (1) top-down attention amplifies and extends semantic priming, cued trials 

would elicit substantial congruency effects for all four SOAs, and the magnitude of 

priming would be larger in the cued condition than in the uncued condition for all four 

SOAs (Figure 19).  
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Figure 19. Prediction (1). Top-down attention amplifies and extends subliminal 
semantic processing. 
 
 
 

If (2) top-down attention amplifies priming without extending the lifespan of 

priming, presenting a cue would amplify priming only for medium SOAs (e.g., 200ms 

and 500ms) but not for very short (e.g., 20ms) or very long (e.g., 1000ms) SOA (Figure 

20). 
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Figure 20. Prediction (2). Top-down attention amplifies priming without extending the 
lifespan of priming. 
 
 
 

If (3) top-down attention makes priming occur earlier without amplifying or 

extending subliminal semantic processing, the largest congruency effect would be 

observed earlier in the cued condition (e.g., 200ms SOA) than in the uncued condition 

(e.g., 500ms SOA). Accordingly, congruency effects would recede earlier in the cued 

condition (e.g., 500ms SOA) than in the uncued condition (e.g., 1000ms SOA). That is, 

presenting a cue makes semantic priming occur earlier and fade away earlier; yet it 

neither amplifies nor extends semantic priming (Figure 21). 
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Figure 21. Prediction (3). Top-down attention shift priming forward without amplifying 
or extending priming. 
 
 
 

Experiment 5 examined both the global workspace theory and the temporal 

attention window theory. According to the global workspace theory (Dehaene et al., 

1998; 2005; 2006), top-down attention is necessary for subliminal semantic processing; 

this view, however, would be challenged if significant congruency effects were found in 

the uncued condition. The global work theory (Dehaene et al., 2005; 2006) also suggests 

that the temporal attention triggered by signaling stimuli has a very limited lifespan of 

only a few hundred milliseconds. Specifically, according to the temporal attention 

window (TAW) hypothesis (Naccache et al., 2002, Dehaene et al., 2005), the top-down 

attention window lasts for approximately 500ms (i.e., the duration from the onset of the 

cue to the onset of the prime), which amplifies subliminal semantic processing. Yet, it is 
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unclear whether the temporal attention window (TAW) covers the prime only or covers 

both the prime and the target, because interval between the prime and target was very 

brief (i.e., 100ms SOA) in the Naccache et al. (2002) study. While in Experiment 5, the 

duration from the onset of the cue to the onset of the target is more than 1000ms for 

500ms SOA. If the TAW hypothesis is correct, priming should be weakened for 500ms 

SOA. In contrast, if the temporal attention window lasts for more than 1000ms, semantic 

priming should be observed for 500ms SOA (or even for 1000ms SOA if the temporal 

attention window lasts for more than 1500ms). If this is true, temporal attention both 

prolongs and enhances subliminal semantic processing, and the lifespan of temporal 

attention is far longer than what is suggested by the temporal attention window theory. 

3.3.1 Participants 

A total of 183 undergraduate students from Texas A&M University participated 

in this experiment for course credits. One participant in the 50ms condition, one 

participant in the 200ms condition, two participants in the 500ms condition, and one 

participant in the 1000ms condition were excluded from data analysis because their 

response accuracy was lower than 80%. In total, the data from 178 participants was 

analyzed (n = 45 in the 50ms SOA condition; n = 45 in the 200ms SOA condition; n = 

45 in the 500ms SOA condition; and n = 43 in the 1000ms SOA condition). 

3.3.2 Materials and apparatus 

A 70 Hz monitor was used to present stimuli, and the experimental procedures 

were controlled by a customized computer program developed with Microsoft Visual 

Studio. 
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3.3.3 Procedure 

Participants were randomly assigned to one of four SOA conditions: 50ms, 

200ms, 500ms, 1000ms. The procedures were identical to those described in Experiment 

3 except for different SOAs (Figure 22). 

 
 
 

 

Figure 22. The post-prime mask durations vary among four SOA conditions. 
 
 
 

3.3.4 Design 

Experiment 5 had a 4 (SOA: 50ms, 200ms, 500ms, 1000ms; between-subjects) 

× 2 (cue: cued, uncued; within-subjects) × 2 (congruency: congruent, incongruent; 

within-subjects) factorial design. 
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3.3.5 Results 

3.3.5.1 Overall congruency effects 

A three-way ANOVA (congruency × cue × SOA) showed a significant main 

effect of congruency (congruent trials, M = 5713.03, SD = 4317.69; incongruent trials, M 

= 6046.36, SD = 4417.42); F(1, 174) = 23.00, MSE = 24457561.60, p < 0.001, partial ɳ2 

= 0.12. There was also a significant two-way interaction (congruency × SOA) effect; 

F(3, 174) = 4.73, MSE = 5025525.58, p < 0.01, partial ɳ2 = 0.08. Paired t-tests examining 

congruency effects for each SOA (collapsing cued and uncued conditions) demonstrated 

significant congruency effects for 50ms and 200ms SOA, and a marginally significant 

congruency effect for 500ms SOA (Table 14). The two-way interaction between 

congruency and cue was marginally significant (Figure 23); F(1, 174) = 3.13, MSE = 

930928.26, p = 0.08, partial ɳ2 = 0.02. 

 
 
 

Table 14 Congruency effects with cued and uncued conditions collapsed 

SOA N Congruent Incongruent t p Cohen’s d 
50 45 4604.24 5051.14 2.23 0.03 0.67 
200 45 5789.97 6433.69 4.31 <0.001 1.30 

500 45 5417.11 5776.14 1.90 0.06 0.57 

1000 43 7102.55 6965.29 -0.82 0.42 0.25 
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Figure 23. Congruency effects with all SOAs collapsed. The AUC is measured by 
amounts of pixels. The error bars are two standard errors in length. 

 
 
 
Although there was no three-way (congruency × cue × SOA) interaction effect 

(F(3, 174) = 1.25, MSE = 930572.59, p = 0.30, partial ɳ2 = 0.02), additional t-tests were 

performed to show congruency effects in each SOA separately for the cued and uncued 

conditions. The purpose of these t-tests is to provide complementary information of 

congruency effects.  As shown in Table 15 &16, significant congruency effects were 

observed in the 50ms, 200ms, and 500ms SOAs in the cued condition and in the 200ms 

SOA in the uncued condition. 
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Table 15 Congruency effects (AUC by pixels) in the cued condition 

SOA N Congruent Incongruent t p Cohen’s d 

50 45 4731.15 5045.9 2.02 <0.05 0.61 

200 45 5460.02 6475.95 7.18 <0.001 2.16 

500 45 5215.27 5802.04 3.78 <0.001 1.14 

1000 43 6859.38 6936.74 0.35 0.73 0.11 

 
Note. The AUC is measured by amounts of pixels. 

 
 
 
Table 16 Congruency effects (AUC by pixels) in the uncued condition 

SOA N Congruent Incongruent t p Cohen’s d 

50 45 4540.79 5053.77 1.73 0.09 0.52 

200 45 5954.95 6412.57 2.09 0.04 0.63 

500 45 5518.03 5763.18 0.96 0.34 0.29 

1000 43 7224.14 6979.57 -1.21 0.23 0.37 

 
Note. The AUC is measured by amounts of pixels. 
 
 
 
3.3.5.2 The time course of congruency effects 

To investigate the time course of congruency effects further, we calculated the 

priming magnitude (i.e., AUC incongruent — AUC congruent) for each SOA and examined the 

impact of SOA on priming magnitude. 
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A two-way ANOVA (SOA × Cue) showed a significant main effect of SOA on 

priming magnitude (F (3, 174) = 4.73, MSE = 4253400.93, p < 0.01, partial ɳ2 = 0.08). 

Planned t-tests showed that the priming magnitude for 200ms SOA (M = 643.72, SD = 

143.21) was significantly larger than that for 1000ms SOA (M = -137.26; SD = 154.32); 

t(43) = 2.24, p = 0.03. 

There was no two-way interaction effect (SOA × Cue) on the priming 

magnitude (F < 1). Nevertheless, the impact of SOA was still reported separately for the 

cued and uncued conditions. 

In the cued condition, a one-way ANOVA showed a significant difference of 

priming magnitudes among the four SOA conditions; F (3, 174) =5.59, MSE = 

1284743.82, p = 0.00. Planned t-tests showed that the priming magnitude in the 200ms 

SOA condition was significantly larger than that in the 50ms and that in the 1000ms 

SOA condition. (Figure 24). 

In the uncued condition, a one-way ANOVA showed no significant difference of 

priming magnitudes among four SOAs; F (3, 174) =1.92, MSE = 2703813.17, p = 0.13. 

It seems that the impact of SOA on priming magnitudes was mostly present in the cued 

condition, where subliminal semantic processing was assisted by top-down attention 

(Figure 24). 
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Figure 24. Priming magnitudes in four SOAs in cued and uncued conditions. The X-axis 
denotes the four SOA conditions, while the Y-axis is the amount of pixels. The error 
bars are two standard errors in length. 
 
 
 
3.3.5.3 Impacts of top-down attention (cue) on congruency effects 

The two-way ANOVA (cue × SOA) on the priming magnitude (i.e., AUC 

incongruent — AUC congruent) showed a marginally significant main effect of cue (Mcued = 

498.70, Muncued = 242.80, F(3, 174) = 4.73, MSE = 4253400.93, p < 0.01, partial ɳ2 = 

0.08). Comparing priming magnitudes (i.e., AUC incongruent — AUC congruent) between the 

cue and uncued conditions for each SOA (Table 17), paired t-tests showed that in the 

200ms SOA condition, the priming magnitude was significantly larger in the cued (M = 

1015.93) than in the uncued conditions (M = 457.62); t(44) = 2.06, p < 0.05, Cohen’s d = 
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0.62 (Table 17; Figure 25-28). No other comparisons between cued and uncued 

conditions reached the significant level. 

 
 
 

Table 17 Comparing priming magnitudes between cued and uncued conditions 

SOA N Cued Uncued t p Cohen’s d 

50 45 314.75 512.98 -0.57 0.57 0.17 

200 45 1015.93 457.62 2.06 <0.05 0.62 

500 45 586.77 245.16 1.29 0.20 0.39 

1000 43 77.36 -244.57 1.21 0.23 0.37 

 
Note. The priming magnitude is the AUC difference between congruent and incongruent 
trials (i.e., AUC incongruent — AUC congruent) and is measured by amounts of pixels. 
 
 
 

 
 

Figure 25. AUCs in the 50ms SOA condition. The AUC is measured by amounts of 
pixels. The error bars are two standard errors in length. 
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Figure 26. AUCs in the 200ms SOA condition. The AUC is measured by amounts of 
pixels. The error bars are two standard errors in length. Title, units, labels 

 
 
 

 
 

Figure 27. AUCs in the 500ms SOA condition. The AUC is measured by amounts of 
pixels. The error bars are two standard errors in length. Title, units, labels 
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Figure 28. AUCs in the 1000ms SOA condition. The AUC is measured by amounts of 
pixels. The error bars are two standard errors in length. Title, units, labels.  
 
 
 
3.3.5.4 Awareness analysis 

In the awareness test, the d’s were not significantly different from zero: in the 

50ms condition, M = 0.001, t(44) = 0.15, p = 0.88; in the 200ms condition, M = -0.001, 

t(44) = 0.07, p = 0.94; in the 500ms condition, M < 0.001, t(44) = 0.44, p > 0.95; in the 

1000ms condition, M = -0.004, t(42) = -0.46, p > 0.90. Thus, participants could hardly 

see the masked primes. A one-way ANOVA showed no difference of d’s among the four 

SOAs (F < 1.00), suggesting that SOA did not influence participants’ awareness of the 

masked primes. 

Linear regressions with priming magnitudes (i.e., AUC incongruent — AUC congruent) 

showed no correlation between the priming magnitudes and d’s in neither cued nor 

uncued conditions, suggesting that the observed congruency effects were not influenced 

by participants’ awareness of masked primes (Table 18 & 19). Meanwhile, the 
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regressions revealed significant intercepts at null d’ in the 200ms and 500ms SOA 

conditions in the cued condition, and in the 200ms SOA condition in the uncued 

condition, suggesting that in these conditions, the subliminal semantic priming was still 

significant for participants who could hardly see the masked primes, (Table 18 & 19; 

Figure 29). 

 
 
 

Table 18 Regressions with priming magnitudes on d’s in the cued condition 

SOA 
 

B t p 

50ms 
constant 311.61 2.00 0.052 

d' 0.14 0.91 0.37 

200ms 
constant 1014.87 7.12 <0.001 

d' -0.10 -0.67 0.50 

500ms 
constant 586.79 3.74 0.001 

d' -0.04 -0.24 0.81 

1000ms 
constant 62.32 0.28 0.78 

d' -0.15 -0.95 0.35 

 
Note. The priming magnitude is calculated by AUC incongruent — AUC congruent. 
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Table 19 Regressions with priming magnitudes on d’s in the uncued condition 

SOA 

 

B t p 

50ms 
constant 510.08 1.71 0.10 

d' 0.07 0.44 0.66 

200ms 
constant 460.35 2.11 0.04 

d' 0.17 1.14 0.26 

500ms 
constant 245.03 0.96 0.34 

d' 0.13 0.85 0.40 

1000ms 
constant -247.38 -1.21 0.23 

d' -0.03 -0.19 0.85 

 
Note. The priming magnitude is calculated by AUC incongruent — AUC congruent. 
 
 
 

Cued Condition Uncued Condition 

  

 Figure 29. Linear regressions with priming magnitudes on d’s by SOAs. 
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Figure 29 Continued. 
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 T-test comparing the mean response bias to one suggested that participants were 

slightly biased towards the “Large” response in the awareness test: in the 50ms condition, 

M = 0.983, t(44) = 1.82, p = 0.08; in the 200ms condition, M = 0.976, t(44) = 2.37, p = 

0.02; in the 500ms condition, M = 0.981, t(44) = 2.20, p = 0.03; in the 1000ms condition, 

M = 0.991, t(42) = 1.01, p = 0.32. 

3.3.6 Discussion 

Experiment 5 is to clarify how exactly top-down attention influences subliminal 

semantic processing by examining the time course of priming. The impact of SOAs is 

prominent in the cued condition, where subliminal semantic processing was strengthened 

by top-down attention; priming effects were significant when the SOA was in a 

moderate range (e.g., 200ms, 500ms). In the 50ms and 500ms SOA conditions, the 

priming was significant in the cued condition while absent in the uncued condition, 

suggesting that the lifespan of subliminal semantic processing could be extended by top-

down attention. In addition, in the 200ms SOA condition, the amplification effect of top-

down attention was significant.  

Taking Experiments 3-5 together, subliminal semantic processing seems to arrive 

at its peak at around 200ms after the onset of primes, which corresponds to the N200 

components reported in previous EEG research (Sergent, Baillet, & Dehaene, 2005). 

Although it appears that top-down attention extended the lifespan of subliminal semantic 

processing from 200ms SOA to 50ms SOA and 500ms SOA, such an extension effect is 

possibly a byproduct resulting from the amplification of top-down attention. Based on 
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the current results, it is difficult to decide whether the extension effect is caused by the 

amplification effect, or these two effects are parallel and independent of each other. 

The pattern of results found in Experiments 3 & 4 that presenting a green cue 

selectively impeded responses to incongruent trials was not replicated in Experiment 5. 

This inconsistence can be explained by different SOAs: the SOA was 100ms in 

Experiments 3 & 4 while 50ms, 200ms, 500ms, or 1000ms in Experiment 5. It is also 

possible that this pattern per se is not reliable, given that different cue colors elicited 

different patterns of results in Experiment 4. Whether the green color selectively 

polarizes semantic conflicts between primes and targets needs future clarification. 

It is interesting that the lifespan of temporal attention window is longer than 

1000ms, rather than a few hundreds of milliseconds suggested by Naccache et al. (2002). 

This is because semantic priming was significant in the cued condition while absent in 

the uncued condition for the 500ms SOA; without assistance of top-down attention, 

subliminal semantic processing disappeared when the SOA was as long as 500ms. In 

other words, to sustain subliminal semantic processing, the temporal attention window 

should remain open for at least 500ms after the onset of primes. Given that the onset of 

the cue was 484ms prior to the onset of the prime (i.e., 200ms for the cue and 284ms for 

the pre-mask), the temporal attention window remained open for at least 1000ms to elicit 

priming (i.e., 200ms cue + 284ms pre-mask + 500ms SOA + some response latency). 

Although 200ms SOA elicited largest priming effects in Experiment 5, 200ms is 

not necessarily the best SOA for semantic priming. Other studies show that the time 

course of masked priming depends on tasks. For example, in Experiment 6 in the Fowler 
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et al. (1981) study, participants judged whether a target word was previously presented, 

and masked semantic priming was absent for 200ms SOA but significant for 2000ms 

SOA. It is noteworthy that the duration of each trial was fixed in this experiment; thus, it 

can be inferred that in this case, the temporal attention window was not open until after 

200ms whereas lasted for more than 2000ms. The inconsistent time courses of semantic 

priming in different tasks can be attributed to the difficulty of tasks. Because the word 

detection task is easier than the numeric judgment task, the semantic impact of masked 

primes can stay longer in the word detection task without being disrupted by effortful 

numeric judgment. 

Other evidence shows different time courses of masked priming. For example, in 

a “same / different” judgment task, semantic priming was absent when the SOA was as 

short as 316ms (Opstal et al., 2010); in a spatial detection task (Chou & Yeh, 2011), 

100ms SOA and 1000ms SOA elicited opposite priming effects. Obviously, the time 

course of priming depends on specific tasks and stimuli, because the underlying 

cognitive processes are different. 

In summary, top-down attention is likely to extend the lifespan and amplify the 

magnitude of subliminal semantic processing. The temporal attention window (TAW) 

could last for more than 1000ms. 
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CHAPTER IV 

SUMMARY AND CONCLUSIONS 

 

4.1 Summary of the Five Experiments 

Unlike the traditional view that unconscious cognition is stereotypical and 

independent of cognitive control, recent evidence shows that subliminal processing can 

be elaborate and flexible. In an attempt to clarify the interaction between cognitive 

control and subliminal processing, I apply cursor motion measure to investigate the role 

of top-down attention in elaborate subliminal priming. 

Experiment 1 examined the efficacy of the cursor motion measure for elaborate 

semantic processing. To minimize the potential contamination from perceptual priming, 

the prime-target relation was made indirect; larger congruency effects were found for the 

AUC measure than the response time measure. In Experiment 2, effect sizes of masked 

semantic priming were directly compared between the AUC and RT measures; 

consistent with Experiment 1, the AUC measure revealed larger effect size than the RT 

measure, suggesting that the cursor motion analysis is more sensitive than the RT 

analysis for masked semantic priming. 

Armed with this methodological advantage, I investigated the role of top-down 

attention in subliminal semantic processing in Experiments 3-5. In Experiment 3, cursor 

motion method was applied to the numeric comparison task used by Naccache et al. 

(2002) study. By contrasting cued and uncued conditions, I examined whether the 

assistance from top-down attention was necessary for subliminal semantic priming. 
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Consistent with the Naccache et al. (2002) study, top-down attention amplified 

subliminal semantic processing; however, masked semantic priming was still significant 

with little assistance from top-down attention. These results imply that top-down 

attention may not be necessary for elaborate subliminal processing. Experiment 4 further 

examined whether the color of cues influences semantic priming, and found that the 

effect of colors was overridden by the effect of semantic congruency and top-down 

attention. Experiment 5 investigated how top-down attention influences subliminal 

semantic processing by looking at the time course of priming, and found that top-down 

attention extends the lifespan and amplifies the magnitude of subliminal semantic 

processing, suggesting that the temporal attention window remains open for more than 

1000ms. 

Taken together, the five experiments suggest that subliminal semantic processing 

can be reliably measured by the cursor motion measure. Top-down attention extends the 

lifespan and amplifies the magnitude of subliminal semantic processing; attention, 

however, is not as essential as suggested by the theory of temporal attention window and 

global workspace because elaborate subliminal processing occurs spontaneously with 

little assistance from top-down attention. 

4.2 Theoretical Implications 

The theory of temporal attention window and global workspace explains how 

cognitive control and subliminal processing interacted (Baars, 1988; Dehaene et al., 

1998; 2006). On the other hand, evidence for elaborate subliminal processing is limited, 
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and effects of masked priming measured by response times are often small and difficult 

to be replicated (Van den Bussche, Van den Noortgate, & Reynvoet, 2009). 

Applying the cursor motion method to masked semantic priming studies, this 

dissertation sheds light on how top-down attention influences subliminal semantic 

processing. Naccache et al. (2002) find no congruency effects in near absence of 

attention, and argue for the necessity of attention in elaborate subliminal processing. 

However, Experiments 3-5 demonstrate the presence of subliminal semantic priming 

with little assistance from top-down attention. Thus, the absence of priming in the 

uncued condition in the Naccache et al. (2002) study can be attributed to the lack of 

sensitivity of response times. 

The classic view is that conscious and unconscious processing is distinct. First, 

consciousness and attention are considered to be the same: being conscious of something 

means attending to it, and vice versa. Conscious processing is controlled by attention, 

which selectively suppresses irrelevant processing to optimize the processing of limited 

information. In contrast, subliminal processing is diffuse, parallel, and free from 

cognitive control. This view is supported by evidence of top-down selection and bottom–

up capture (Posner & Dehaene, 1994; Posner & Fan, 2008). Second, the involvement of 

awareness can impede subliminal processing because attention selectively suppresses 

autonomous processing; therefore, consciousness tends to restrict rather than assist 

subliminal processing (Anderson, 1983; Collins & Loftus, 1975; Dixon, 1971; Schneider 

& Shiffrin, 1977; Shiffrin & Schneider, 1977). 
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Nevertheless, recent evidence highlights the distinction between consciousness 

and attention: consciousness is subjective experience while attention is the mechanism 

allocating limited cognitive resource (Koch & Tsuchiya, 2007). The relationships 

between attention and consciousness can be classified into four categories: 

consciousness with attention, no consciousness without attention, attention without 

consciousness, consciousness without attention (Koch, & Tsuchiya, 2007; Cohen, 

Cavanagh, Chun, & Nakayama, 2012). Previous evidence demonstrates that attention to 

invisible stimuli influences subliminal processing. This dissertation adds further 

evidence to the robustness of elaborate subliminal processing with little help of attention. 

On the other hand, there is little evidence for consciousness without attention (Cohen et 

al., 2012). In brief, attention influences both conscious and unconscious processing, and 

is necessary for consciousness while unnecessary for unconscious processing. 

 More importantly, the elaborate and flexible nature of subliminal processing 

revealed by recent research makes the boundary between conscious and unconscious 

processing vague (Dehaene et al., 2006; Spruyt et al., 2009; 2012). Consistent with these 

findings, Experiments 3-5 show that top-down attention amplifies the magnitude and 

extends the lifespan of subliminal semantic processing. The theory of global workspace 

articulates the mechanism underlying the interplay of cognitive control and subliminal 

processing; the attention system in the global workspace selectively polarizes some 

while suppresses other processing by allocation limited cognitive resource (Dehaene et 

al., 1998; 2005). However, their argument for the necessity of attention is challenged by 

counterevidence for elaborate subliminal processing in near absence of attention. As 
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suggested by Experiment 3-5, unattended semantic processing spontaneously lasts for a 

considerable lifespan rather than immediately fades away. 

Given the link between cognitive control and subliminal processing, the 

dichotomous view that consciousness and unconsciousness are distinct seems outdated. 

Unconscious processing can be elaborate and flexible. States of consciousness are more 

likely on a continuum, with full consciousness at one end and unconsciousness (e.g., 

sleep, coma) at the other end (Dixion, 1971; Kihlstrom, 1993; Fish & Haase, 2011).  

4.3 Limitations 

Note that uncued and cued conditions do not perfectly correspond to actual states 

of attention: in the uncued condition, disrupted attention does not guarantee no attention 

at all; while presenting a visual cue to facilitate the attention does not mean that attention 

is fully deployed. Thus, we can only infer the role of attention. Because semantic 

priming was observed in both cued and uncued conditions consistently, assistance from 

top-down attention is more likely not mandate; masked primes is processed at a semantic 

level in near absence of attention, although attention does help priming. 

Another issue is the assessment of awareness. Since subjective reports of 

awareness are inaccurate and unreliable, most masked priming studies apply an objective 

assessment of awareness developed by Draine and Greenwald (1998), which employs d’ 

instead of raw accuracy to assess awareness. The d’ can balance the response bias of 

individuals and is also more rigorous than the raw accuracy in awareness assessment. 

For example, a very low group accuracy of 0.52, which was close to the chance level, 

results in a group d’ significantly higher than zero (Van Opstal et al., 2010). Generally 
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speaking, the awareness test is conservative and tends to overestimate the prime 

visibility, because participants focus on masked primes in the awareness test while 

ignoring primes in the major judgment task. Admittedly, a null group d’ does not 

guarantee that masked primes are invisible to all participants; some individuals are better 

than others at detecting briefly displayed stimuli, and merely perceptual registration can 

contribute to priming effects. 

4.4 Future Directions 

There are two types of top-down attention that can modulate subliminal 

processing: temporal attention and feature-specific attention (Dehaene et al., 2006; Koch 

et al., 2007). In this dissertation, only the temporal attention is investigated. It will be 

interesting to examine whether feature-specific attention influences subliminal semantic 

processing in a different manner. Although previous studied showed that subliminal 

semantic processing did not occur without assistance from feature-specific attention 

(Spruyt, et al., 2009; 2012), it is possible to challenge the necessity of feature-specific 

attention by replacing their response time measure with the cursor motion measures such 

as AUCs. 

Although previous evidence and the present results suggest that elaborate 

subliminal processing occurs in near absence of attention, it is difficult to conclude that 

attention is not necessary at all because the experimental procedures do not eliminate 

attention completely. More rigorous experimental paradigms, such as attentional blink 

and inattentional blindness, are needed in the future to add further evidence to the 

attention-consciousness relationship (Cohen et al., 2012). 
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4.5 Conclusions 

This dissertation employs a cursor motion method to investigate the role of top-

down attention in elaborate subliminal processing. The cursor motion method serves as a 

reliable tool to assess masked semantic priming, and dynamic temporal-spatial measures 

such as the AUC are more sensitive than temporal data. Top-down attention helps 

subliminal semantic processing, but is not as essential as suggested by the theory of 

temporal attention window and global workspace. The cue color may influence priming 

to some extent, but the effect of cue colors on congruency effect is limited, compared to 

the effects of semantic congruency and top-down attention. The temporal attention 

window (TAW) extends the lifespan and amplifies the magnitude of subliminal semantic 

processing, and lasts for at least 1000ms. 
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