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ABSTRACT 

Coastal lines, harbors/ports, and inland waterways constitute the marine transportation 

system, a major component of the United States freight system, carrying a vast majority 

of foreign imports and exports and a significant amount of domestic freight. This system 

needs regular maintenance. US Army Corps of Engineers (USACE) is in charge of the 

waterway system maintenance. However, the limited maintenance budget needs to 

accommodate a large number of maintenance requests for dredging and dam repair, etc. 

The requests often exceed the budget available by much. A decision facing the USACE 

management is what projects to fund and how to select them. This research aims at 

providing the necessary models and tools to facilitate maintenance decisions at the 

USACE. The objective is to maximize the overall system improvement under annual 

limited budget. The underlying problem can be modeled as a knapsack problem with an 

additional constraint that increases the problem complexity. The additional constraints 

describe the benefit interdependency of different maintenance projects due to the 

waterways network effect. 

This research tackles the maintenance problem at different levels. First, an 

integer selection model is developed to find the optimal set of dredging projects 

(waterway sediment removal operation) and some heuristics are developed to provide 

near-optimal solutions in computationally guaranteed polynomial time. Next, a model is 

developed to allow partial dredging. Partial dredging means partially conducting the 

requested dredging operation. The model is able to determine the percentage of the 

dredging depth to fund instead of a zero-one dredging decision for each project.  



 

iii 

 

Further, a stochastic problem is considered regarding to the probabilistic shoaling 

process. To solve the probabilistic problem, two methods are designed: an analytical 

model that takes account of probability in terms of expected values, and a stochastic 

optimization approach was developed based on Monte-Carlo simulation. 

Finally, the problem is modeled in a multi-modal context where the maintenance 

decisions are made simultaneously on dredging and lock/dam improvement. In this 

multimodal model, the effect of landside modes’ capacity is considered 

comprehensively. All the developed methods are tested with real examples from US 

marine network and their performance is approved by comparison to real situation. 
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CHAPTER I  

INTRODUCTION 

 

Coastal ports, waterways, and channels constitute a major component of the United 

States freight transportation system, carrying the majority of foreign imports and exports 

plus a significant amount of domestic freight. According to the U.S. Department of 

Transportation’s Maritime Administration, the combined foreign trade value took 22 

percent of U.S. GDP in 2006; and keeping same growth rate it is expected to meet 35 

percent and 60 percent of GDP respectively by 2020 and 2030, respectively.  According 

to this forecast, marine transportation will handle 95percent of U.S. foreign trade, 

thereby maintaining its role as a vital contributor to U.S. GDP and national wellbeing[1]. 

The waterway transportation system has gained attention in recent years because of its 

energy efficiency compared with other modes as well as its role in promoting 

international commerce. Moreover, as landside modes of transport such as rail and 

highway become ever more congested, and as fuel prices continue to climb, there is 

increasing interest in expanding waterborne trade routes for domestic freight shipments. 

One big problem that inland channels are dealing with is shoaling (loosing depth) 

due to settlement of sediments carried by tidal and longshore currents. This natural 

process decreases the effective depth of channels and the capacity available for moving 

large vessels. To address this issue, dredging operations are conducted to provide 

adequate depth for vessel navigation and to keep the channel up to its capacity. 

However, due to a limited budget, every fiscal year the US Army Corps of Engineers 
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(ACE), who is in charge of dredging operations, needs to select the optimal (near 

optimum) dredging decisions (maintenance decisions include defining both dredging 

locations and dredging extents) among all potential ones to fund in order to maintain an 

adequate capacity of the waterway system. The waterway system includes the waterway 

segments, ports, and docks/dams. This research focuses on modeling the dredging 

decision problem and waterway maintenance in general with an objective of maximizing 

the waterway or system efficiency. Solving this problem helps to improve the system 

economy through both optimizing fund allocation, and enhancing the transportation 

network. This study is the first of its kind to employ an analytical method to model 

interdependent waterway networks maintenance problem.  

The main source of complexity in solving this optimization problem originates 

from the fact that the benefit from dredging a channel is interdependent with other 

channels subject to dredging. This property is intuitive indeed, bringing one port to a 

certain depth does not mean large vessels can operate to another port because the other 

port may fall short of a certain depth for the large vehicle to operate. In other words, the 

benefit of carrying through traffic depends on all the dredging projects along the 

shipping path being funded. In addition, the waterway system belongs to a broader 

transportation system that encompasses other waterborne facilities as well as landside 

modes such as highways and railways. Regarding waterborne facilities, ports and 

locks/dams are critical elements in the waterborne transportation system, which demands 

periodic maintenance, a billion dollar business every year. All these relationships reveal 
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the dependency of waterways with all other components of an intermodal transportation 

system. 

The other issue that adds to the complexity of maintenance programming of 

waterways is the randomness of the shoaling effect. Usually channels experience 

shoaling some period after that they are dredged, where deeper channels have the higher 

probability of losing depth. Thus, planning for optimal maintenance scenarios is an 

inherently probabilistic problem that influences the system reliability. This study at the 

last step would evaluate the effect of this probabilistic process on the optimal solution 

and the system reliability.  

 

1.1 Problem Statement 

This research aims to develop analytical models for optimizing US waterway 

maintenance on an intermodal network. This network includes the US marine network 

comprised of waterway segments, dams/locks, and ports along with the landside 

transportation network connected to endpoint ports comprising highways and railways. 

In this problem intermodal network is represented by a set of nodes and a set of links. 

Each link may be construed as an entity with a through capacity for cargo movements. 

Commodities go between origins/destinations, typically referred to in literature as OD 

flows. Each origin or destination is just a point on the network. Each OD flow goes 

through the network along a specific path that consists of a set of connected links. Each 

element has a capacity that can be improved, and the magnitude of that improvement is 

determined by the extent of the maintenance action taken. Likewise, the maintenance 
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cost for each element is also a function of the extent of the maintenance action. The 

network maintenance is limited to the maintenance budget each year for all the 

maintenance requests proposed for the same year. Each maintenance package has a 

requested budget and an expected improvement to the element in terms of dredging 

depth (to rivers or ports) or increased operational hours (to locks/dams). Therefore, the 

objective of solving this problem is to select maintenance projects that maximize the 

total network flow efficiency or minimize the total traveling cost. This problem is 

broken into several smaller problems that are subject to solve in different chapters. The 

following paragraphs portray these sub-problems and proposed models to solve them. 

At first attempt as in chapter 3, this research addresses the problem of 

determining the optimal dredging scenarios, or optimal fund allocation, for the water 

system components that maximize overall performance of the system, excluding 

components connected to the waterway system. The crucial constraint that is taken to the 

model and changes this model to a complex one is considering the inter-dependencies 

between different segments of the waterway network. To solve this problem, first a 

mixed integer programming method (MIP) is proposed which is an all-or-nothing 

decision model to find the optimal dredging locations. Then heuristic methods are 

proposed to solve the problem that are able to find the near optimal solutions.  

In chapter 4 the problem is expanded to allow for partial funding. Partial funding 

means a dredging project may be partially funded when multiple levels of maintenance 

are possible. For example, if a maintenance dredging request calls for a 3- foot increase 

in navigable depth for a shoaled channel, the continuous model allows consideration of 
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dredging options that increase the channel depth anywhere between 0 and 3 feet, 

assuming for simplicity that the cost of dredging can be expressed as a continuous 

function of the increase in channel depth. The developed model allows the search 

algorithm to explore the continuum of costs and benefits at individual projects and the 

impact on system-level efficiencies.  

Chapter 5 extends the problem in previous chapters under uncertainties due to 

natural probabilistic shoaling process. Here probabilistic shoaling means that shoaling 

happens after dredging operation according to a certain probability distribution. Example 

is that a deeper draft has a faster shoaling process. Deeper draft costs more to maintain. 

This chapter provides two methods for solving the extended stochastic problem. In fact, 

the benefits from dredging a particular waterway segment in the models proposed in 

pervious chapters only depend on the depth to which the segment is dredged. Insofar as 

the dredging benefits, one needs to consider the possibility of loss of depth due to 

subsequent shoaling in upcoming time period after dredging. The shoaling depends upon 

many different factors like geological and hydrologic conditions. However, in general, 

the deepened channels could trap sediments more easily and are more prone to future 

shoaling. They lose depth at a faster rate than shallower portions of channel[2].  

Subsequently, one needs to account for random effects of shoaling according to 

reality. In this chapter, two methods are developed for solving the stochastic problem, 

the first is a proxy deterministic method that uses the expected value of shoaled depth to 

make decision, and the second is a stochastic method based on Monte Carlo simulation 

referred as Sample Average Approximation (SAA).  
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Chapter 6 extends the problem scale into a multi-modal network by considering 

the locks/dams and landside transportation as new elements of the system and develops 

the maintenance problem in a multimodal context. A multimodal network positions the 

waterway system realistically onto a national or regional freight system that better serve 

stakeholders.  However, this annex imposes new restrictions from both locks/dams and 

landside transportation. These restrictions include availability of locks/dams (working in 

operation order) along waterways and the restrictions that are imposed by capacity of 

landside transportation connected to ports. Thus, the model prohibits generating 

solutions from a limited point of view where the improved waterway capacity gets 

bigger than the available landside capacity or exceeds the capacity of connecting 

locks/dams. In addition to the multi-modal consideration of the problem, a new 

perspective is adopted to define the maintenance problem. In former chapters, the 

problem is modeled as a maximization problem that aims to maximize the total 

throughput by providing more draft. However, in reality waterway system maintenance 

does not add up the demand and the total throughput. Instead it diminishes the 

transportation cost and increase the fluidity of the system. To bring this consideration 

into the model, a new model is developed that finds the optimal budget allocation by 

minimizing the cost of transportation through maintaining waterway system including 

dredging waterway channels or lock/dam improvement. 
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1.2 Research Objectives 

The goal of this study is to provide a mathematical modeling platform for optimally 

maintaining the waterways (maximizing the efficiency or minimizing the cost). To this 

end this study attempts to fulfill the following objectives:  

• To find a group of projects (dredging) from the set of all potential ones, for 

presumed depths of dredging that optimize the system performance. The problem 

statement addressing this objective is an extended version of Nap Sack problem, 

in which selection of each project affects the other ones’ benefit. 

• To extend the model of part A by identifying the optimal scenarios that allow for 

partial funding. Meaning to determine both optimal depths and locations of 

dredging simultaneously. The model approaching this objective shall enable the 

framework to put out continuous results representing each segment optimal 

decided depth for dredging.  

• To consider the effects of randomness on the optimal results and develop an 

approach to find optimal or near optimal solutions for this condition. 

• To extend the model to foresee all the multimodal network components that 

restrict the performance of waterway segments. This objective wants to bring the 

dependency of waterways to other elements of multimodal network into account 

in addition to the interconnection between different waterway segments.  
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1.3 Research Organization 

This research develops a set of mathematical models to decide about the optimal set of 

maintenance actions as well as some heuristic methods to provide time efficient near 

optimal solutions. The order of this research is organized as follows: 

 

1.3.1 Chapter II: Background 

This chapter represents a review on the literature of several subjects, including waterway 

maintenance, selecting problem, multimodal freight network design, probabilistic 

models in maintenance studies, and reliability. 

 

1.3.2 Chapter III: All or Nothing Dredging Model 

This chapter introduces the first version of dredging problem where the goal is to find a 

set of dredging scenarios that maximizes the network efficiency. In this chapter we take 

the historical additional tonnage that passed through the route due to higher draft as the 

index for efficiency. An integer 0-1 selection model is developed to solve this problem 

optimally. In addition some heuristics are introduced that provide near optimal solutions 

in shorter time. The results of the model on a real network are presented at the end of 

chapter.  

 

1.3.3 Chapter IV: Continuous Dredging Model 

This chapter extends the problem in chapter 3 by allowing to take account of partial 

dredging. The model proposed to solve this problem is called continuous model since it 
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is able to select the optimal depth of dredging instead of only all-non decision. Like the 

previous chapter some heuristics are developed for faster running time. At the end the 

continuous model and heuristics are applied on a real network and results are presented 

at the end of chapter.  

   

1.3.4 Chapter V: Probabilistic Dredging Model 

Chapter VI represents the stochastic version of the problem. In this chapter the existence 

of uncertainty due to probabilistic nature of shoaling is involved in the problem and 

corresponding models. First, an analytical model that takes account of probability in 

terms of expected values is proposed over the continuous model. Next a stochastic 

optimization approach is developed based on Monte-Carlo simulation that approximates 

the solution by averaging over enumerated random samples. The results of both methods 

application are illustrated and compared. 

 

1.3.5 Chapter VI: Minimization Cost Model on a Probabilistic Multimodal Network 

The dredging problem range in this chapter expands to consider the problem in a multi-

modal network. A marine transportation system in addition to its waterway network 

consists of locks/dams as other important elements of the waterway system that have 

significant effect on the marine system performance. In addition, from a multi-modal 

perspective, the waterside network is connected to landside modes (highway and railroad 

network). In fact, the major portion of the commodity that is transported through the 

waterway network must take landside modes to reach to its OD. Accordingly, the 
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problem now could be extended and modeled in the most general context: in the form of 

a multi-modal network programming. Hence, this chapter provides a model that 

considers the problem in a multi-modal network and embraces all elements of such 

network including: waterways, locks/dams in waterside as well as highways and 

railroads on land-side. 

This chapter also introduces a new approach for modeling the maintenance 

projects’ budget allocation. The models that have been developed so far aim to 

determine the optimal maintenance plan through maximizing the throughput of the 

whole waterway system. Although this approach could define the prioritization of 

projects to receive their requested budget, it does not completely comply with the actual 

state of the marine network. In reality, the throughput is almost fixed and very resistant 

to change. The major factor that is influenced by the decay of the waterway network is 

the cost of transportation and the fluidity of network. The model developed in this 

chapter solves the problem of optimal maintenance by minimizing the inducted cost due 

to system decay. The results of the model on a real network are demonstrated at the end. 

 

1.3.6 Chapter VII: Conclusion    

This chapter sums up all the drawn conclusions from different chapters and proposes the 

outline for future researches and studies. 
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CHAPTER II 

BACKGROUND 

 

This chapter presents study of literature over all the similar studies and researches 

regarding to waterborne facility maintenance operation. In addition, there would be 

reviews on other studies regarding to particular methods used in methodology chapters, 

or maintenance models for different backgrounds and other modes of transportation such 

as highway segments. 

Before starting the review over the literature of methodologies in this study, it is 

required to provide a brief background about the waterway system. The principal 

infrastructural components of the marine system are: waterways including navigable 

waterways and their associated infrastructures like locks/dams, and bridges, ports, 

intermodal connections, and vessels and vehicles[3]. This research focuses on the 

programming the maintenance of the waterways, particularly waterways channels and 

locks/dams. The main improvement and maintenance over the channels is dredging that 

is the operation of deepening the waterways by removing sediments from their bed. 

Deeper channels allow larger vessels and more cost-efficient marine transportation. The 

USACE undertakes the dredging process annually and it is the most costly operation in 

their civil work budget[4]. Only in 2014, USACE removed 185.9 million cubic yards of 

materials nationwide for the cost of $1,527.0 million[5]. The main reason for 

continuously annual dredging is the phenomena of shoaling that is settling the tidal 

sediments at rivers bed. The shoaling happens through six mechanisms including: 
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channel migration, morphodynamic pathways, loss of hydraulic gradient, abandonment, 

bed form regimes, regional siltation, and geotechnical reasons. Each of these mechanism 

causes a specific pattern of effective depth reduction[6]. In general, the shoaling due to 

any of mentioned results is a random process that can negatively affect the effective 

navigable depth of waterway channels continuously and causes the need for dredging. 

The other important components of the waterway system are locks/dams. There 

are 207 locks/dams chambers on 27 on 27 inland rivers and intracoastal waterways 

system segments. These locks/dams are the main connections between river segments 

with different levels. In the waterway system, usually each route consists from a number 

of waterway segments and locks/dams. Thus, a vessel should travel along the whole 

system to move the freight from its origin to its destination. The locks/dams’ unexpected 

failure sources significant delay in vessels travel time that causes substantial cost. By 

aging the system the likelihood and expected delay is increasing over the system. Right 

now, about 54% of the Inland Marine Transportation System’s (IMTS) infrastructures 

are more than 50 years old and 36% are more than 70 years old [7]. Thus, locks/dams 

also need funding for being maintained to improve their performance and minimize the 

risk of failure. In [8], the authors have analyzed and prioritized the locks/dams that need 

rehabilitation funding on the Upper Mississippi River, the Illinois Waterway, and the 

Ohio River. The cost of locks/dams’ maintenance and rehabilitation ranges from couple 

of million to hundreds of million dollars depending on age, size, and the condition of 

locks/dams. 
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In continuous, partial reviews are presented to address literatures corresponding 

to different models that are developed in this study including modeling dredging 

maintenance, selecting problem, multimodal freight network design, and probabilistic 

models in maintenance studies. These reviews include the most pertinent antecedent 

studies conducted to model waterway system maintenance programming (particularly 

the dredging operation). However, due to lack of enough literature in waterborne area, 

some literatures are provided from other modes facility maintenance studies. 

 

2.1 Modeling Dredging Maintenance  

This section provides a review on researches regarding to waterway dredging 

maintenance. 

The first applications of operation research techniques regarding to dredging 

modeling goes back to studies like managing dredge disposals materials done by Ford  

[9], [10] that he used linear and integer programming to identify efficient dredge-

material disposal strategies in Delaware River. Hochstein [11] as well used specific 

methodology to determine the navigable channel depths by maximizing the net benefit. 

They first defined all the environmental constraints and then estimated the cost due to 

dimension of a single reach of an open river and the size of tows that use that channel. 

Their model at the last indicates the best channel dimension and the best types of tows to 

maximize the net benefit. 

Lund [12] developed a methodology to schedule optimal dredging equipment and 

operations in space and time when allowing for advanced dredging. Advanced dredging 
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is to dredge more than authorized depth in order to reduce the frequency of dredging 

operation due to sediments. The goal of the study is to minimize the net present value of 

all present and future dredging costs over the long term and lower the risk of sediment 

encroachment for a single reach channel. He considered uncertainty in sediment 

encroachment where sedimentation rate is independently distributed, thus he used the 

expected cost in scheduling the dredging operation. The developed methods are only 

applicable for channels with known spatial pattern along the reach. The models are 

originated from optimal replacement and capacity expansion theories (Jorgenson et al. 

[13]; Freidenfelds[14]). The results offered advanced dredging and showed that 

advanced dredging in a certain range is an economical choice for scheduling. However, 

this research only considers programming for a single reach and does not see the 

interdependency existing on a network. 

Ratick et al. [15] developed a reliability dynamic model to program the dredging 

operation. They innovated a simulation-optimization approach with combining a 

dynamic location model, that decides optimal schedule and dredging location, with a 

hydrological simulation model to consider the uncertainty of channel condition. The 

developed approach is designed to determine types and sizes of dredges for different 

reliability levels. The model also can determine the assignment of demobilization and 

mobilization costs when facilities are moved from one location to another. In addition, it 

allows advance dredging to address future needs when it eventuates to lower overall 

cost. The model developed in this study, though, allows for planning of a single channel 
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consisting of several reaches and does not offer a global decision making among all 

channels in a network. 

Lansey and Menon [16] likewise, considering a single channel developed a least 

cost model that aims to minimize the total channel expected operations cost on a long 

run while guarantees the adequate flow depths through scheduling channel inspection 

and dredging. Subsequently their proposed model is developed to be able of considering 

the uncertainty of flows as well as the reliability of the channel due to uncertain amount 

of shoaling. The authors considered two costs, first the cost of equipment and facilities 

and all other regarding costs, and the second cost regarding to the expected failure cost 

due to the inadequacy of channel depth for class of bigger vessels which is an expected 

cost since flow is uncertain.  

Ratick and Morehouse Garriga  [17] studied programing and scheduling the 

optimal dredging allocations on a single channel incorporating different environmental 

and economic uncertainties. The authors proposed a risk-based spatial decision support 

system to plan the advanced dredging maintenance actions on a water navigation 

channel. To describe the system, they used a mixed-integer model that takes account of 

making balance between cost and channel reliability for a given annual budget. Besides 

the probabilistic sedimentation process, they considered other uncertainties like dredge 

plant productivity and volatile economic using sensitivity analysis. The model 

determines the sequences of dredging allocations and actions that provides the highest 

level of reliability with limited resources-time, funds, and equipment. As a result, they 
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developed a computer program that assists operations managers about when to call 

dredges to various reach locations along a channel. 

Blazquez et al [18] studied dredging operations, but from the perspective of 

optimally utilizing dredging equipment in consideration of environmental impact. 

Mayer and Waters [19] proposed an optimal maintenance model for a single 

section. They considered two different dredging decisions: advance dredging (more than 

authorized channel dimension) and differed dredging (reduced in depth). The authors 

proposed a model that uses differential equations to seek for a solution that balances 

between operational efficiencies and safety. Thus, they developed a methodology to plan 

and schedule an optimal dredging operation. They used sediment inventory model (SIM) 

extended from classic inventory model for operations. Three cases are evaluated 

regarding to three different conditions of dredging operation, for each case an optimal 

depth and dredging cycle times are derived according to presumed conditions. The basic 

examples from this study suggested that for linear cost structures the optimal solution 

both economically and navigation-wise achieves from dredging to maximum acceptable 

depth. In spite of the good parametric perspective that the proposed model provided, the 

proposed model is only usable for standalone models and not usable in real problems. 

First, because the methodology is developed for a single decision and not is not network 

wise driven accordingly, it also cannot see the interdependencies between correlated 

projects, and second; it does not see the fund limitation concern and competition 

between projects to receive the funding. 
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2.2 Interdependent Projects Scheduling 

Ting and Schonfeld [20] used a new approach named simultaneous perturbation 

stochastic approximation (SPSA) to minimize the total tow delay. This approach 

determines how much improvement to provide at particular lock sites and when to 

implement the improvement. The developed approach allows for optimal selection, 

sizing, and sequencing of expansion projects on locks. 

Jong and Schonfeld [21] studied the problem of selection, sequencing, and 

scheduling of maintenance projects on interdependent waterway networks while the 

budget is limited. They aimed to minimize the present value of total cost over the 

planning horizon through minimizing the total delay on locks. Due to the complexity of 

the problem and difficulties for developing analytical models, they proposed a 

simulation-based genetic algorithm approach to solve the problem. Wang and Schonfeld 

[22] considered the same problem of locks maintenance and rehabilitation. However, 

they developed the previous approach combining simulation and genetic algorithms to 

count for scheduling locks on a multiyear planning horizon. The complexity of the 

problem comes from the interdependency of project delays and construction cost of each 

project. The authors mention that the computer simulation coupled with genetic 

algorithms is applicable to real big size network; however, it requires significant time.  

Tao and Schonfeld [23, 24] developed some kind of genetic algorithm to 

schedule roadway improvement projects on an interdependent networks. The 

improvement projects have intricate correlation because of the network effects on 

travelers’ cost. However, evaluating the overall system cost is an effortful job due to the 



 

18 

 

uncertainty of travel times and improvement project costs. Thus, the authors developed 

island models as variants of traditional genetic algorithms to solve the stochastic 

problem of selecting and scheduling interdependent roadway segments considering the 

limited resources. 

Wang and Schonfeld [25] continued to previous studies [21, 22] developed 

another simulation based optimization model to select and schedule interdependent 

waterway projects. They used a genetic algorithm to solve the model. In addition, 

several other papers recognized the interrelationship constraint in infrastructure 

maintenance in different contexts such as Folga et al. (2009).  

The above-mentioned study carried out by Schonfeld and his collaborators is 

generally based on genetic algorithm and computer simulation.  However, this research 

provides an analytical model that can produce the optimal solution for both dredging and 

lock maintenance. Besides this study offers some intuitive and easy-to-use heuristic 

methods are developed to attain some near optimal solutions.  

The dredging project selection problem under the budget constraint is a kind of 

combinatorial optimization problem. From the first studies that considered the 

interdependency of general projects is Nemhauser and Ullman [26], who proposed a 

dynamic programming approach to take the interdependency into account.  The only 

interdependency they considered though, is pair-wise relation. On the other hand, the 

project inter-dependency in this research is more complicated, and is largely attributed to 

a network effect similar to Tao and Schonfeld [24]. As an instance, restored capacity 

between an origin destination (OD) pair is dependent on all projects along this route to 
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be completed, which makes it impossible to use in Nemhauser and Ullman’s [26] 

method. In other important study, Weingartner [27] provided a complete survey of 

methodologies to the capital allocation problem including integer programming, linear 

programming and dynamic programming methods.  

In a more general perspective in transportation concerning project selection and 

capital allocation, Melachrinoudis and Kozanidis [28] developed a mixed integer 

knapsack model and used a branch and bound algorithm to solve the problem of 

highway improvement fund allocation that does not realize the interdependency between 

maintenance projects as it is considered in this research.  

The interdependency between different components of infrastructure, or in other 

words, the network effect of components, differs from one circumstance to another. For 

each specific case we may need a vastly different models and solution algorithms. For 

instance, the project interdependency in this problem as explained above is different 

from those discussed in literature. Today, the computational power and availability of 

computational resources has dramatically improved. Many problems that were not able 

to be solved to optimum can be solved now with widely available optimization software. 

In this paper, we develop models and solution algorithms specifically for this waterway 

dredging project selection problem, which by itself is critically important to maintaining 

this low cost, vast waterway system. 
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2.3 Multimodal Freight Network Design 

Multi modal freight transportation has been extensively studied in transportation 

literature. This section provides an inquiry on several of the most pertinent studies 

dealing with waterways as a part of multimodal network. Figure 1 illustrates an abstract 

of the end to end connection of water, rail and road modes, which will be the topic of 

this section. 

 

 
Figure 1 A portrayal of intermodal connection [29] 

 

 

Harker and Friesz [30] are among the first who considered this multi modal 

freight transport. They developed an analytical predictive model of freight 

transportation. They used combination of two spatial price equilibrium and freight 

network equilibrium models to handle generation, distribution, modal split and 

assignment of freight movements simultaneously. Harker and Friesz [31] changed the 

representation of the mathematical model and developed a nonlinear complementarity 
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formulation in addition to a variation inequality formulation; they then investigated the 

existence and uniqueness of the solution. 

Guelat et al. [32] developed a normative multiproduct multi modal assignment in 

a strategic level. This model solves a system-optimal assignment problem with the 

objective of minimizing the total delay and transfers costs. They used a Gauss-Seidel-

Linear Approximation Algorithm to solve the proposed model. 

Southworth et al. [29] explored an approach to simulate multi modal freight flow, 

known as regional routing model (RRM). They tried to use the most recent data of 

commodity production, consumption, flow, and transportation cost to attune the 2002 

RRM model. The RRM can serve as an element to base a framework for modeling 

waterway investment. It is capable of developing sort of origin, destination, commodity 

and mode traffic flows, besides is capacitated to perform a congestion-sensitive and 

commodity-specific freight assignment on different sections of multimodal network. 

They implemented their assignment model on a set of linked national highway, 

waterway, and railway networks with many of major link connections through truck–rail 

and truck–waterway terminals. They adopted two options for implementing the 

assignment: simultaneous and sequential assignment to modes and routes. The result 

represented kind of Wardrop equilibrium happens and shippers choose the mode/route 

with the minimized cost. In this model, the restriction on waterway is seen as a delay 

function, which effects on selection of waterway segments as well as rail and road 

congestion. 
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In another study, Mahmassani et al. [33] evaluated the multi-product intermodal 

freight transportation network by developing a dynamic network simulation based 

assignment platform. Their framework included three elements: a multimodal freight 

network simulation part, a multimodal freight assignment part, and a multiple product 

intermodal shortest path procedure. For the first component, to mimic the transfer delay 

met by each shipment, they used a bulk queuing. The second component finds the 

network flow patterns among a mod-path set using multiple product intermodal shortest 

path component, based upon the link travel cost and transfer delay of each node achieved 

from the first component. The advantage of this model to others is its capability to 

determine individual shipment mode–path choice behavior, conveyance link moving, 

and individual shipment terminal transfer. 

Caris et al. [34] surveyed the planning problem in intermodal freight 

transportation literature. They considered problems like improvement projects over 

drayage, network, and terminal operators. 

Yamada et al. [35] considered a multimodal freight transport network to model 

an investment plan particularly for development and interregional freight networks and 

terminals. Their objective is to find a set of optimum actions to develop the existing 

network. To approach this aim, their model selects a set of optimum actions, such as 

expanding the in current use road and rail segments, sea links, terminals or founding new 

infrastructures, from a collection of potential scenarios. The kind of integrated 

framework that they established allows to make the investment decision in a coordinated 

way and minimize the cost of system development and facility locating. They propose a 
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bi-level model where the upper level takes account of searching for the optimal set of 

actions to maximize the benefit to cost ratio. Meanwhile, the lower level feeds the upper 

level with the traffic flow on different links of network by employing a multimodal 

multiclass-user traffic assignment technique. They used a heuristic genetic based method 

to solve the upper level, which is a combinatorial optimization. Using a multiclass-user 

model, the model can select either an improvement or adding a new link or any other 

action[2].  

 

2.4 Probabilistic Models for Maintenance Projects 

Usually maintenance and rehabilitation (M&R) of transportation infrastructures is based 

upon the inspection of facilities and collecting information of the current condition. The 

inspected information sometimes is treated as error-free data, whereas there usually are 

significant errors in data investigation process originating from different sources. Error 

in surveying the exact profile of settled sediments and consequently the volume of 

dredging operation is an example of existing errors in optimal maintenance operation. 

Regardless of the error origin, this bias in facility condition state causes an extent of 

uncertainty among input data. In waterway networks though, the randomness and 

uncertainties exist due to the shoaling process happening in the river beds. Shoaling is 

the process of returning the sediments and deposits to river bed and decreasing the 

effective depth of river. According to many different geographic and hydrologic factors, 

the deepened channels usually experience losing the depth due to shoaling shortly after 

dredging, however the occurrence and the scale of shoaling is a random factor. The 
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higher dredging depth has higher chance to experience shoaling. In past two decades, 

many researchers have tried to address the effect of underlined uncertainty in M&R 

modeling. The existence of such uncertainty can impose additional life-cycle cost to 

system or result in a solution far from optimum. This section would have a review on 

similar literature.      

Involving the uncertainty in maintenance and rehabilitation (M&R) of 

infrastructures, first time was introduced by Golabi et al. [36]. The authors developed 

pavement management system to find the best polices for maintaining the Arizona State 

highway pavement. The proposed model is an optimization model termed as Network 

Optimization System (NOS). This model is capable of capturing the dynamic and 

probabilistic characteristics of pavement maintenance. It eliminates uncertainty resulting 

from different M&R actions using a Markov Decision Process (MDP). The main 

elements of MDP are road conditions or states and the maintenance actions where could 

be undertaken. This methodology enables us to examine current and expected conditions 

of pavement, assuming a selected action among a set of actions. The real world results of 

model application disclosed a huge saving of money on life-cycle costs. Some other 

researchers like Camahan et al. [37], Davis and Carnahan [38], and Carnahan [39] later 

adopted same MDP methodology for infrastructures, particularly pavement, 

maintenance. In all these inquiries, both facility conditions and time horizon are modeled 

by discrete time transitional probabilities.    

Madnat [40] and Madanat and Ben-Akiva [41] were the first who considered the 

error effect in measurement of facility condition on management process. A Latent 
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Markov Decision Process (LMDP) is employed in these studies to observe the effect of 

measurement uncertainties. The proposed method is also capable of determining the 

value of more accurate data. 

Mbwana and Turnquist [42] proposed a new formulation using Markov transition 

probabilities to model the pavement management system at the network level which 

allows for link-specific policy making through optimization. This characteristic 

facilitates change from network-level to project-level solution. 

Later Smilowitz and Madnat [43] extended the LMDP methodology to include 

network constraints. The authors approached this development using linear 

programming with network constraints in conjunction with randomized policies, which 

determines the optimum probabilities for different maintenance actions instead of 

specifying a single optimal action. They proposed different versions of formulation for 

two cases of transient finite-horizon, and a steady state infinite-horizon. 

In both above studies, transition probabilities are used to explain decay process 

and discrete condition rating sets represent the facility condition. At the same time, Kuhn 

and Madanat [44] proposed a robust optimization to consider Epistemic and parametric 

uncertainties. In this method of optimization, the data are uncertain and belongs to a set 

of uncertainty. The objective function will realize the optimal expected cost given an 

uncertainty range, though, when there is not enough information, regarding to 

uncertainty set available, the worst case is optimized. This study is an extension of Kuhn 

and Madanat [45] where the authors for the first time applied the robust optimization for 

facility management to deal with epistemic uncertainty. Using a parametric 
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methodology, they verified the capability of this optimization method in reducing the 

maintenance cost when there is uncertainty in modeling of infrastructures. They also 

proposed an algorithm to solve the problem. 

Seyedshohadaie et al. [46] in a similar study investigated the transportation 

infrastructure networks M&R and developed a method to determine risk-averse 

maintenance policies under deterioration uncertainty. They proposed methodology uses 

a MDP and is capable to guarantee a level of performance under predetermined level of 

uncertainty. The difference between this study and other similar studies is in use of a 

quantitative measure of risk to manage the uncertainty in the deterioration process. This 

measure is fundamental in finding the optimal funding policies for both long-term and 

short-term programming. 
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CHAPTER III 

ALL OR NOTHING DREDGING MODEL∗ 

 

This chapter regards the problem of fund allocation to dredging projects that are carried 

out with U.S. Army Corps of Engineers (USACE) annually. The problem is to decide a 

set of dredging actions among a big collection of potential projects that compete to 

receive required funding from a limited budget source.    

The challenge for solving this problem originates form the complicate 

interdependent relationship between different projects. Waterway system like other 

networks is affected by network wise constraints that connect different segments 

together and correspond decisions on each segment dependent on others. Likewise, the 

benefit from dredging project is completely dependent on the other projects and their 

condition of other elements of network. For example if a project only deepens one 

channel on a route but leaves the others  the whole route cannot benefit from increased 

depth all along the route and the applied dredging operation is fruitless.  

This chapter develops two linear-integer programming models in addition to 

some heuristic algorithms that allow selecting the optimal and near optimal dredging 

projects to fund under budget constraint and considering the interdependency. The 

models then are applied to a set of data that is derived from historic waterborne cargo 

flow data provided by USACE. This chapter is organized as follows: first, it provides an 

                                                
∗	Reprinted with permission from "Selection of Dredging Projects for Maximizing Waterway System 
Performance", K. Mitchell, B. Wang, M. Khodakarami, 2013, Transportation Research Record: Journal of the 
Transportation Research Board, Vol. 2330, pp. 39-46, Copyright [2013] by Transportation Research Record.			
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introduction to the waterway system and general problem, second elucidates the linear 

integer models, third introduces designed heuristics and an computer application based 

on them, and finally displays the obtained results from both exact models and heuristic 

methods.    

 

3.1 Introduction 

Marine transportation including waterways and channels, coastal ports, and locks and 

dams is a key part of US domestic and international freight transportation.  Most of  

commercial cargo that is moved through coastal ports is foreign imports and exports 

[47], nonetheless these ports also handle significant amounts of domestic freight 

transported via short-sea shipping routes.  Recently, the waterway transportation system 

has evoked more attention according to its high efficiency in energy consumption 

compared with other alternative modes as well as its unique role in promoting 

international commerce.  Due to rising problems on land-side modes like  growing 

congestion, and environmental concerns as well as the growth of fuel prices continue as 

result of exhausting fossil sources of energy, the tendency and to use waterborne trade 

routes for domestic freight shipments is improving significantly [48]. However, 

promoting marine transportation is tightly concerned of the waterways conditions and 

the draft of waterways. Keeping the adequate draft is possible through the expensive 

special operation of removing the settled sediments from the channels bed, named as 

dredging. According to the big size of US marine transportation network and the 
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insufficient budget for covering all necessary dredging operations cost, there is a 

competition between different projects and different region to receive the funding.     

One of the vital missions of US Army Corps of Engineers is keeping the 

waterways up to capacity and maintenance of navigable waterways. Thus each year 

Army Corps removes hundreds of millions of cubic yards (CY) of sediment from 

navigation channels nationwide in order to maintain projects at authorized dimensions 

and to provide the safe and cost-effective marine transport.  Man-made water channels 

experience shoaling through natural process of sedimentation that happens when sand 

and silt carried from downstream by tidal and longshore currents or wave actions 

gradually fills bottom of channels and harbors.  The federal funds for annual Operations 

and Maintenance (O&M) dredging of coastal projects come from the Harbor 

Maintenance Trust Fund (HMTF), and amounts of this fund have averaged over $700 

million per year since 2002 [49].  Meanwhile, O&M dredging needs identified by project 

managers throughout the Corps for HMTF-eligible projects have been in excess of $1.5B 

annually, indicating a strictly constrained funding situation from the national level 

perspective. Therefore, the critical challenge Corps decision makers are facing to is how 

to optimize the limited HMTF dredging outlays allocation and inland waterway O&M 

expenditures across the vast waterway network in order to maximize overall benefits or 

minimize the costs nationwide.  

Every year the Corps evaluates navigation projects  based on multiple 

performance metrics indicated in the annual published budget guidance[50].  For 

Navigation O&M, these metrics include annual total project tons of cargo (5-yr average), 
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project ton-miles (a measure of tonnage multiplied by the distance traveled within the 

project), and $-value of exported cargo (obtained via figures from US Customs), among 

many others.  The Corps' Waterborne Commerce figures show 59 navigation projects in 

this "high-use" category [51], though the exact number of projects exceeding the 

arbitrary10-million-ton threshold may vary somewhat from year to year.  This and other 

port-centric approaches [52] to O&M dredge budgeting treat navigation projects as a 

portfolio of discrete, independent entities that can be prioritized in a straightforward 

manner according to one or more performance metrics.  After all, in many cases a major 

percentage of the total transiting freight is also dependent upon the availability of other 

navigation projects elsewhere within the broader marine transportation system. The 

project-based approach to budgeting, which gives no added consideration to the cargo 

that transits multiple navigation projects, can therefore cause resources being assigned to 

a different list of projects suggested by a systems-based approach[1].   

The important fact about programming the maintenance projects on a network is 

the existence of interdependencies between different projects. That is the maintenance 

dredging conducted at one project may not bring benefits to the whole transportation 

system since the projects sending cargo to and/or receiving cargo from that project or 

other intermediate projects are not also maintained to comparable depths.  Subsequently 

the overall benefits to the waterway transportation system from dredging are a function 

of a network-wise combination of navigation projects funded for dredging maintenance 

projects under a given O&M budget plan.   
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The principal contribution of the material presented in this section is its ability to 

offer a system-based approach to collectively assess the overall benefits (based on 

historical tonnage flows) for any combination of proposed O&M dredging work 

packages. The origin-destination (OD) tonnage data and associated routes for 

commodity flows between ports are extracted from the Corps' detailed Waterborne 

Commerce database via the Channel Portfolio Tool [47]. The goal of the model 

presented in this section is to maximize overall waterway network throughput gains. The 

mixed integer program (MIP) models used in this work have a large number of binary 

variables; the formulation is applied to a medium sized problem with about 70 ports, 

using data from the Great Lakes port system.  Then a larger example is also formulated 

using cargo flow data from roughly 160 navigation projects from both the coastal and 

inland navigation systems.  In addition, six heuristic methods are introduced by using 

different measures of project performance in order to approximate the optimal 

combination of funded dredging jobs with less computational effort than the full MIP 

optimization. 

 

3.2 Problem Description and Solution 

This chapter is going to solve i the dredging selection problem could be defined as 

follows: there are N navigation projects, each requesting dredging funds in the upcoming 

budget cycle. Each project i has a budget request. There is an expected benefit due to 

both projects i and j receiving funding for dredging. This expected benefit may be 

measured in terms of reduced shipping costs between the two ports, due to vessels being 
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able to carry more cargo per voyage and take advantage of deeper channel depths. The 

total budget for all the projects is subject to a ceiling B. The selection problem is to 

choose the combination of projects to fund that maximize the total waterway system 

benefits while complying with the overall budget ceiling, B. 

The commercial ports located along the Great Lakes provide a straightforward 

example for formulation of dredging selection problem. The ports located along a single 

lake are connected thoroughly; that is, the benefit bij from increased drafts are fully 

realized if both ports i and j are dredged.  However, for ports located on two different 

lakes, one or more connecting rivers (e.g. St. Marys River, St. Clair River, and Detroit 

River) along the connecting route must also be dredged to comparable depths to allow 

that bij is realized. The numerical examples presented in this chapter are according to 

detailed Waterborne Commerce cargo flow data among the Great Lakes ports and inland 

waterways, respectively. Figure 2 represents the Great Lakes navigation system, which 

is used for the first numerical example. 
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Figure 2 The Great Lakes ports naturally form a network to support regional commodity flows 
(USACE Detroit District: http://www.lre.usace.army.mil/)[1] 

 

 

The following notation is used in each example formulation: 

xij = Objective function variable, which is 1  when both port i and j and all the other 

intermediate ports along the route connecting i to j are dredged for the improved 

benefits; 0, otherwise, where i≠j, 

di = Binary decision variable, which is 1 when port i is selected to dredge; 0, otherwise , 
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bij = The increase in the throughput between i and j gained from dredging both ports i 

and j, based on historical cargo flow at depths to be dredged between ports i and j,  

cj = The cost for dredging port j, 

B = The total amount of budget available for dredging projects in present budget cycle, 

S(i,j)= Set of all projects that are necessary to realize the benefit, bij. { i, j } S( i, j )∈ . For 

example, if a flow from i to j goes through projects i,k,m,j, { }S i,k ,m, j= . 

Now having identifying the needed variables and parameters to solve dredging 

selection problem, in the following subsections two approaches are presented for solving 

this problem. The first approach look for an exact solution through mixed linear-integer 

models and the second one is a collection of heuristics that look for near optimal 

solutions in a more efficient computational time. 

 

3.2.1 A Mixed Integer Programming (MIP) Formulation 

A MIP model, referred to as ORD, is presented as follows: 

 .
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 id binary i∀        (1.5) 

The constraint (1.1) indicates the connectivity condition. It indicates the 

incidence relationship between xij and dk where selection of project k is necessary to 

realize the benefit bij. Constraint (1.1) ensures dk is set to 1.0 when xij is set to 1.0, which 

enforces the notion that harnessing the benefits of deeper-drafting shipments between 

ports i and j requires adequate maintenance dredging of all projects along the route from 

i to j.   Constraint (1.2) enforces xij to 1.0 when each of the dk on this route is set to 1.0. 

Constraint (1.3) is the overall budget constraint, and finally (1.4) and (1.5) are the 

positivity and binary constraints, respectively.   

This binary formulation is appropriate for dredging project selection problem 

considering this assumption that maintenance dredging work packages submitted by the 

Corps Districts are either rejected or funded in full. The problem allowing for partial 

work package funding is investigated in chapter IV .  Also note that constraint (1.2) is 

redundant when the benefit bij is positive for all i and j because the objective function 

would ‘force’ the x variable to be 1.0 for maximization even when (1.2) is absent. 

However, if bij can be negative, a realistic formulation since deferred dredging 

maintenance often results in additional shoaling and further losses of navigable depth, 

then constraint (1.2) is required. In the numerical tests presented at the end of this 

chapter, constraint 1.2 is not included in running the model since the proposed dredging 

is carried out to increase the depth and bij are considered positive, thus constraint 1.2 is 

not included (cases of negative bij due to deferred maintenance dredging will be 

considered in next chapters).  Note that the formulation ORD is  a general case of the 
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traditional formulation that is a quadratic objective function MIP model that proposed by 

Nemhauser and Ullman [26]. That model eliminates constraints (1.1) and (1.2) and 

replaces the objective function with if pairwise interaction of projects that results in 

eliminating variable xij and uses di as the only decision variable. The problem that they 

addressed is a very special  case of the waterway network dredging problem presented 

here.  

To consider all the interactions in addition to pairwise interaction, the traditional 

formulation would have to use big order of nonlinearity terms in the objective function 

such as di dj …dm to account for the benefits from dredging projects i, j, …, m. This 

nonlinearity between multiple projects i, j, …, m cannot be addressed by the approaches 

in the literature such as.  Formulation ORD thus allows consideration of benefits from 

multiple projects in a linear objective function, which is convenient for taking advantage 

of commercially available optimization software. In developing program ORD, the 

following properties have been observed: 

Property 1: 

ORD is a symmetric problem where the symmetry of problem holds following through 

following condition: 

   and        ij ji ij jix x b b , i, j= = ∀          

In this case, one may only define xij where i < j, in order to reduce the size of the 

formulation by not considering xij for i > j that results in reduction of the number of x 

variables roughly in half. In the case ij jib b≠  (perhaps due to flow directionalities), by 
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making new parameters ijb′  as follows and replacing all b ’s with b' ’s in ORD 

formulation, one may get an ORD formulation that gives an identical optimal solution: 

2ij ji ij jib b (b b ) /′ ′= = +  

 In this case, one needs only define new variables xij, where i < j, with 

corresponding benefits. The symmetry property allows significant reduction of the size 

of the ORD formulation and therefore helps expedite the numerical solution. One may 

also observe the benefit transitiveness of the problem. If xij=1, and xjk=1, then xik=1, as is 

dictated by the formulation.   

An advantage of having this formulation is that one can simply rely to widely 

available commercial optimization software such as Cplex, SAS, and Matlab 

optimization suites for the solution. Note that the formulation is flexible in dealing with 

some special real-world situations. For example, from port A to port B, assume that there 

are two separate benefits tabulated based on historical cargo flow trends: one is based on 

historical cargo volumes traveling directly from port A to B and the other is based on an 

alternate route via a third waterway project C. That is, there are two routes from A to B: 

AàB and AàCàB.  According to the two separate routes, two benefit variables are 

defined, bab1 and bab2 with corresponding decision variables xab1 and xab2, where bab1 

depends on selection (for funding) of projects A and B while bab2 depends on selection 

of all the three projects at A, B, and C. Therefore, the resulting terms in the objective 

function would be: 

 bab1. xab1+ bab2. xab2 

Likewise, the constraints (1.1) associated with xab2 may be given as follows: 
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 xab2 ≤ da 

xab2 ≤ db 

xab2 ≤ dc  

The constraints (1.1) for xab1 remain the same as for the normal situation with a 

single route between ports. 

The ORD formulation is a deterministic one that can also be used to approximate 

instances with uncertainty like the existence of error in the benefit estimate, bij. The error 

in benefit is almost a natural existing error due to many inaccuracies in the derivation 

and estimation of the benefit as well as many noises that involve. Thus, the actual value 

of benefit is a random variable β that values in a range like ( )( )1ij ijb α⋅ ± . Usually the 

revealed benefit bij could be taken as the expected of this random variable: 

[ ]ij ijb E β=  and ( )ijα α=   

where, α is usually a small positive number like (0.05, 0.03,…). The actual formulation 

of the project selection problem shall use the random parameter in the objective 

function, denoted as ORD ˆ( B ) whose expected objective value is denoted as 

ORDE[ ( )]β .That is, the objective function is
ij ij

i j j

E xβ
<

⎡ ⎤
⎢ ⎥
⎣ ⎦
∑∑ , that implies that project 

selection maximizes an expected outcome for all possible possibilities of benefit. This 

formulation then accounts for benefit estimation errors.  In addition, we specially denote 

the formulation that uses bij in the objective function by ORD(b) = ORD(E(β)) in 

contrast with ORDE( ( ))β .  
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It is worth investigating how program ORD performs in accounting for possible 

estimation errors in benefits. Next property expresses some fact about the solution of 

ORD model while the situation is stochastic. 

 

Property 2: 

According to Jensen's inequality [53], we have the following relationship for convex 

functions: 

E( g( X )) g( E( X ))≥  

which indicates that the expectation of any random function of X, is greater than the 

value of expectation of X in that function. Thus for concave function, like ORD, the 

reverse condition holds as: 

E( g( X )) g( E( X ))≤  

Subsequently, ( )ORD(B) ORD [B] ORD( )E E b⎡ ⎤ ≤ =⎣ ⎦ , where (B)=b E , which 

means the objective value from a deterministic solution using the expected benefit bij 

provides an upper bound to the maximum possibly achievable benefit that results from 

optimally solving each instance of β .  Regarding the error term, for each specific 

instance of B , the expectation over the objective value of ORD(B)  using the solution   

( )* *,b x from ORD(b) is less than the objective value of ORD(B)  by no more than 

ij ij ij
i j j

b xα
<
∑∑ . 
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Therefore, Property 2 provides a convenient way to estimate the loss from using 

a deterministic formulation to solve a practical problem with random errors in the benefit 

estimates. The errors may be project specific, or may also be a constant adjustment value 

across the board based on some overall assessment of the data quality by the decision 

makers. 

 

3.2.2 A Proxy Model for ORD 

In this section, a proxy formulation (referred to as PorD) is proposed as an approximate 

alternative to Program ORD above. The purpose of providing this proxy model is to 

improve the solution speed via tightening feasible solution by a bit sacrificing from the 

model accuracy. The proxy model is developed as following: 

  ij ij
i j j

Max b x
<
∑∑          (2.0) 

s.t. 

, :1 ; , ( , )∀≤ + − < ∈ij k m i j ix j k m S id jd   (2.1) 

( , )
| ( , ) | :1 ,

∈

≤ + <− ∀∑ k ij
k S i j

d x S i i j ij j     (2.2) 

≤∑ i i
i
d c B      (2.3) 

, :ijx R i j i j∈ ∀ <     (2.4) 

 binary ∀id i      (2.5) 

This enhanced proxy formulation is proposed because of an observation that 

when each dk is fractional, constraints (1.1) and (1.2) are both loose in ‘forcing’ xij to be 
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binary. For example, if  di and dj are 0.5 and 0.6 respectively in the LP solution, ORD 

would allow xij to be as large as 0.5 while PorD would ‘force’ xij to be no larger than 0.1: 

the ‘actual’ benefit harnessed from having a fractional solution through LP relaxation of 

PorD  is smaller than with ORD. 

 

Property 3: 

Constraint (2.1) is a valid cut to Constraints (1.1) through (1.3). As one may see, when 

each dk is fractional, a solution to (2.1) satisfies both (1.1) and (1.2). Therefore, we can 

reasonably say Constraint (2.1) is significantly tighter than (1.1).  However, (2.1) also 

makes it possible for xij to be -1.0 when the corresponding variables dk and dm are both 0, 

which alters the problem formulation from program ORD in terms of the objective 

value. This proxy formulation equivalently “rewards” the benefits due to shipping 

between two ports, each having a project selected, neutralizes the benefits from shipping 

between two ports if only one project is selected, and effectively penalizes the benefits 

between two ports if no projects are selected. Computational tests in 150 randomly 

generated instances were conducted based on the actual Waterborne Commerce cargo 

flow data for the Great Lakes by uniformly varying the benefits and project costs by 

±50% for all the navigation projects. These numerical tests show that when the budget 

constraint is at least 30% of the total requested, PorD yields a solution identical to that 

from ORD. As the budget constraint is tightened (below 30%), ORD provides greater 

restored system benefits than does PorD, but the difference generally remains within a 
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range of 25%. Figure 3 shows the average difference between total restored system 

benefits from ORD and PorD.  

 

 

 

Figure 3 Average optimality gap of restored system capacity from using ORD and PorD [1] 
 

 

 

Despite the simplification presented by Property 3, PorD on average requires 

more computational time than ORD, presumably because PorD has more constraints. For 

the Great Lakes ports example with 70 navigation projects, both ORD and PorD have 

comparable computational performance. However, for larger problems such as the 

expanded example covering both coastal and inland river ports, ORD requires less 

computational time because PorD has significantly more constraints. Nonetheless, the 

formulation PorD is kept here because it offers a slightly different consideration in 
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practice and provides some complementary insights to ORD, along with comparable 

computational efficiency for many practical problems. 

 

3.3 Heuristic Approaches 

The MIP formulations can effectively lead to optimal solutions for small and medium-

sized problems through the use of commercial optimization software. In numerical tests 

performed over the course of this study, the MIP formulations have successfully solved 

practical problems such as the port dredging projects for the Great Lakes region. 

However, the lack of a polynomial time guarantee for the MIP formulation presents 

potential challenges with expanding the approach to cover, for example, the entire 

USACE dredging project portfolio.  A polynomial time heuristic, in contrast to the full 

MIP formulation, possesses great practical advantages, and can, among other benefits, 

expedite the process of conducting sensitivity analysis to impart new knowledge to 

decision makers concerning aspects of navigation system performance. In addition, 

heuristic methods often do not rely on commercial software such as CPLEX® or 

MATLAB® and can be standalone and easy to implement. An additional motivation for 

an efficient heuristic method is that a quality feasible solution may provide a tight bound 

to the MIP formulation to expedite the branch and bound (B&B) process for the optimal 

solution.  

The proposed heuristic process rank orders navigation projects according to a 

certain criterion, and then selects projects to fund based on their position above or below 

the budget-driven cutoff line. The process could be described formally as follows: 
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• Step 1: rank order the candidate projects according to a pre-determined criterion. 

• Step 2: Consider the first project that has not yet been considered going down from 

the top of the rank-ordered list. If the project fits within the remaining budget, select it 

for funding and update the remaining budget by deducting the new selected project 

cost.  If the project does not fit within the remaining budget, go to Step 3. 

• Step 3: Stop if no projects remain unconsidered on the rank-ordered list, or if no 

remaining budget is available; otherwise, repeat Step 2. 

Four alternative ranking criteria are proposed, each of which is a project-specific 

metric defined by considering the network effect in a particular way. Historical 

Waterborne Commerce data (annual tonnage exchanged between navigation projects at 

depths to be dredged, and associated routes) are used as benefit bij obtained from 

dredging projects i and j. Specifically, historical annual tonnage totals utilizing the 

deepest, shoal-vulnerable depths of navigation channels are used to provide relative 

estimates of the benefits of dredging a particular combination of projects. Heuristics 1, 2 

and 3 result accordingly. Heuristic 1 attributes half of the tabulated tonnage, including 

through and local traffic, to a relevant port in calculating the project performance metric. 

Heuristic 2 calculates the total benefit as the sum of all tonnage that depends on the port 

of interest over the total cost of projects which also share the traffic going through that 

particular port.  Heuristic 2 considers a benefit as resulting from investment at all ports 

along an OD route in calculating the ratio.   Heuristic 3 uses the total benefit allotted to a 

port proportionally to the total project cost, a ‘wild’ heuristic. 
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In addition, heuristics 4 and 5 are proposed to dynamically apply other criteria.  

Heuristic 4 dynamically applies the ranking criterion in Heuristic 2 while Heuristic 5 

dynamically applies a criterion as specified in Table 1. The dynamic process is to re-rank 

the remaining projects each time after a project is selected to fund. The dynamic process 

is embedded in the three step process described above. The funded projects are excluded 

from consideration in calculating the ranking criteria subsequently in step 2.   

Heuristic 6 selects the solution with the highest restored benefits from heuristics 

1 through 5. The six heuristics are presented in Table 1. Note that in calculating the 

ranking criterion, heuristics 1 through 5 all imply an assumption that remaining projects 

will be funded. There is room for further improvement by dynamically adjusting the 

weight for each remaining project based on its likelihood of being selected, which is 

beyond the discussion here. These heuristics work optimally in several special cases as 

follows: 

Case 1: Decomposable pair-wise correlated projects. This case has isolated shipping 

routes, each route going through two projects. These pairs of projects have no interaction 

with each other. In this case, heuristics 2, 4, and 5 all solve the problem to optimum.  

Case 2: star-structured network of projects.  This is a hub and spoke structured network. 

Each project has a benefit dependent partially on a ‘hub’ project.  In this case, heuristics 

1 and 3.  

Real-world waterway network problems are almost impossible to transform into 

either of the two distinct structures above. For example, for the Great Lakes example 

with 70 ports/projects, there is a tremendous degree of interconnectedness, with most 
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ports both sending cargo to and receiving cargo from several other ports in the system.  .  

However, depending on the relative magnitude of costs and benefits, each example 

might be approximated by one of the two structures or by a combination of the two 

structures above. The accuracy of such an approximation may be indicated by the 

optimality gap of the heuristic solution relative to the MIP solution.  

 
 

Table 1 Criteria for heuristic measures and other indices [1] 
Heuristic Performance Ratio or other criteria for project k 
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3.4 Numerical Results 

To evaluate the performance of models and algorithms described above, some numerical 

tests of are conducted in this study. Two real world networks are taken in numerical 

tests, the first is based on a set of 70 navigation projects at ports along the Great Lakes. 

The second network is carried out on a larger port system with 159 dredging projects 

from coastal ports as well as the inland waterways such as the Mississippi River, Ohio 

River, and Gulf Intracoastal Waterway. Again, origin-destination commodity flows 

cause project performances in terms of throughput to be correlated. This example is 

significantly larger than the Great Lakes network in terms of the number of decision 

variables and constraints in the ORD and PorD. 

The benefits are calculated based on the historic tonnage flows passing between 

respective ports at depths to be restored by the proposed maintenance dredging projects. 

In order to infer system-wide dredging priorities (i.e. most critical portions of the 

navigation system), the sensitivity analysis is conducted wherein the overall budget 

constraint is varied as a percentage of the sum of all requested funding amounts. The 

MIP programs and the heuristics are all applied to each resulting hypothetical budget 

scenario.  In addition, tonnage and dredging cost data for the Great Lakes port projects 

were varied from their real-world values in order to test the performance robustness of 

the algorithms across a greater spectrum. For each budget scenario indicated by the ratio 

between budget available and budget requested, 150 instances were generated for the 

Great Lakes example by randomly varying the benefit for each path between an 

origin/destination pair, and randomly varying the project cost. The percentage of 
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variation is uniformly randomly generated between -50% and 50% based on the actual 

data for each instance. 

The optimal solution and the heuristics are applied to each of these 150 instances 

in a given budget scenario. Figure 4 summarizes the average optimality gap between the 

heuristics and optimal model for each budget scenario. A curve labeled "Port Tonnage 

Heuristic" is also included to show the optimality gap when projects are rank ordered 

according to total tonnage without considering dredging costs.  All heuristic measures 

except for Heuristic 3 lead to solutions within 10% of the optimum once the budget 

constraint is more than about 55% of the total requested funding.  Heuristic 1 

outperforms the other heuristics on the average in terms of optimality.   
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Figure 4 The Average optimality gap of heuristics for 70 great lakes ports data [1] 
 

 

Figure 5 further illustrates the variance of the optimality gap over the 150 

artificial instances for Heuristic 1. Each vertical bar represents the full range of observed 

optimality gaps, the shaded blue rectangles represent the 25th to 75th percentiles of all 

observed optimality gaps, and the mean is indicated by the diamond markers.  
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Figure 5 Variance of optimality gaps with budget for heuristic 1 over 150 instances [1] 
 

 

In case of inland waterways example, the nature of project interdependencies is 

significantly different, in accordance to the network topology of this system and the 

prevalence of "thru" traffic in most sections of river.  With the 159 port/river projects, 

the ORD and PorD formulations approximately have 21,392 and 72,370 constraints, 

respectively and 3,471 decision variables. Nonetheless, both MIP formulations are able 

to solve all budget scenarios within about 10 seconds.  Figure 5 shows the optimality gap 

for each heuristic measure as well as for the Port Tonnage Heuristic for a single instance 

of costs and benefits (based on historical data) for the larger coastal and inland projects 

example.  It is interesting to note that in spite of the differing network topology, the 

relative performance of the various heuristic measures is similar to that for the Great 

Lakes example, with Heuristic 1 outperforming all others. 
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3.5 Computer Application 

A user interface application is designed according to the heuristic methods. Figure 

represents a snap shot of this application. This application facilitate running the heuristic 

methods on waterway network of big sizes. In addition to the simplicity and time 

efficiency of heuristic models, the possibility of using this application on any computer 

and removing the need for a specific software programming packages, makes it a 

powerful tool especially for real time general decision making. Figure 6 presents a 

snapshot of designed program for running the heuristic method. 

 

Figure 6 Snapshot from the developed application to find the optimal dredging location according to 
developed heuristic methods 
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CHAPTER IV∗ 

CONTINUOUS DREDGING MODEL 

 

This section introduces the fund allocation problem for dredging and other maintenance 

project that allows for partial funding and therefore partial benefit of each project. The 

model presented is an integer programming formulation that enables the funding level of 

each project in a continuous range from 0 to 1 with 0 being no funding at all and 1 being 

fully funded as requested. Partial benefit results accordingly from partial funding that 

allows for selecting an action among a range of possible actions (dredging depth). We 

refer to model in this chapter as continuous model to differentiate with the binary 

decision model developed in chapter III. Continuous model opens the window for further 

presented probabilistic model where it is needed to study the shoaling as a phenomenon 

that partially influence the benefit of waterway system. 

 

4.1 Problem Definition 

This study considers a network comprised of waterway segments represented by a set of 

nodes and a set of links. Each link may be construed as an entity with a through capacity 

for cargo movements. For example, a link on the abstract network may be for a lock/dam 

or a section of river. Nodes are for the beginnings and endings of links or connections 

between links. Commodities travel between origins/destinations, referred to as OD flows 

                                                
∗	Reprinted with permission from "	Modeling Maintenance Project Selection on a Multimodal Transportation 
Network", M. Khodakarami, K. Mitchell, X. Wang, 2014, Transportation Research Record: Journal of the 
Transportation Research Board, Vol. 2409, pp. 1-8, Copyright [2014] by Transportation Research Record.			
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as typical in literature. Each origin or destination is just a point on the network. Each OD 

flow goes through the network along a specific path that consists of a set of connected 

links. For convenience of presentation, dams/locks, ports and river segments are refereed 

as elements of the infrastructure system. One may find that each link on the study 

network corresponds to a physical element of the system. Each element has a capacity 

that can be improved, and the magnitude of that improvement is determined by extent of 

the maintenance action taken. Similarly, the maintenance cost for each element is also a 

function of the extent of the maintenance action. Each year, there is a set of maintenance 

requests, each having a fixed budget and an improvement to capacity of the according 

elements. The network has a limit to the maintenance budget (B) each year for all the 

maintenance requests proposed for the same year. Each maintenance request has a 

requested budget and an expected improvement to the elements in terms of dredging 

depth (to rivers or ports). To simplify the problem, we unify the improvement to 

elements by using a measure of improved throughput capacity. In this part of research, it 

is allowed to consider partial funding assignment to a project request in order to harness 

the full potential of this optimization problem. Partial funding results in partial benefits 

accordingly. The objective of this resulting model is to select maintenance projects in 

order to maximize the total network OD flow. 

 

4.2 A Project Selection Model 

This section presents the developed model to solve the above described problem. The 

model is a mixed linear integer one that allows partial funding of a project, which is 
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named as continuous dredging program (CDP). The used notation for this problem are as 

follows: 

• Variables: 

ijd : The depth of dredging for a river segment/link between node i and j (feet). This 

depth is a non-negative real number that has a value of zero if (i,j) is a rail/highway 

segment.  

ijf : The tonnage flow accommodated on the network out from origin i to destination j. 

ijx  : Total commodity tonnage flow after project implementation on link (i,j) (tons).   

• Parameters: 

q: The amount of increase in waterway available capacity resulting from one unit 

increase (tons/ft)  in draft due to dredging. 

ijc : Cost of a unit depth of dredging for waterway segment/link between node i and j 

($/ft). 

ijg : The capacity of link (i,j) that represents loading/unloading capacity at a dock. 

sij: Current availability of segment from node i to j before maintenance projects (tons). 

ij
ϕ : The weight for OD flow from i to j, that may be the distance of that flow so that the 

total mileage value is maximized. 

B: Total budget available for maintenance projects ($). 

E: The set of links of the network including links for locks/dams and links for river 

segments and road sections. 
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L: Set of all loading and unloading segments. 

OD: Set of all origin or destination pairs. 

ijD : Demand of commodity to be shipped from origin i to destination j (tons). 

( , )I i j : Set of all itineraries of freight that traverse link (i,j). 

S(i,j)= Set of all segments that consist the route connecting origin i to destination j to 

realize the benefit, bij. For example, if a flow from node i to node j goes through nodes i, 

k, m, j, ( ) ( ) ( ){ }, , , , ,S i k k m m j= . 

The proposed formulation CDP is presented as follows: 

ij ij
i j

Max fϕ∑∑          (3.0) 

s.t. 

.                       ( , ) \ij ij ijx s d q i j E≤ + ∀ ∈ Ω   (3.1) 

( , ) \
ij ij

i j E
c d B

∈ Ω

≤∑           (3.2) 

( , )ij ijx g i j L≤ ∀ ∈    (3.3) 

( , )
( , )ij mn

mn I i j

x f                                                             i j E
∈

= ∀ ∈∑    (3.4) 

( )ij ijf D                                                                    i, j OD≤ ∀ ∈    (3.5) 

, 0ij ijx f i, j≥ ∀     (3.6) 

:ijd Integer i, j∀     (3.7) 
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The objective function aims to maximize the total value of all OD flows 

accommodated by the system capacity.  Coefficient ijϕ is a weight factor to OD flows. 

The weight factor would allow consideration of commodity values and distances. If it 

takes the form of the distance of an OD flow, the objective would maximize the total 

ton-mileage on the network. And if it takes the unit value of commodities according to 

groups, the objective would maximize the total commodity value shipped on the system. 

Constraint (3.1) dictates that the OD flows accommodated cannot exceed the link 

capacities. The link capacity consists of existing capacity and expected increase of 

capacity due to maintenance.  

Constraint (3.2) ensures the total budget constraint. Constraints (3.3) is designed 

for the loading/unloading docks. On the network, we have directional links for loading 

and unloading docks respectively. In this case, ijg represents the loading and unloading 

capacity. Constraint (3.4) represents that the flow on each link is sum of all paths’ flows 

routing trough that link. 

Constraint (3.5) rules that the accommodated OD volume be less than the OD 

demand. Constraints (3.6) and (3.7) are non-negativity and integrality constraints. 

It is worth mentioning that even though CDP is developed based on aggregated 

commodity flow data, it could be modified to explicitly consider commodity by groups 

such as bulk cargo and manufactured goods by defining new variables k
ijf and k

ijD  with the 

superscript k being the commodity group and minor additional changes to the 

formulation. It is noteworthy that the proposed model has the capacity of an intermodal 
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model corresponding to the constraint (3.3). This constraint indeed, is reflecting the 

dependency of waterway system expansion on the availability of landside modes. In 

other words, to have an effective maintenance, a reasonable model should also see the 

connection of waterways to landside modes and if there is enough room for added 

throughput invoked by waterway improvement. Constraint (3.3) represents this 

connection, however a more detailed model that takes account of a multi modal network 

would be presented in chapter IV.  

 

4.3 Simplified Dredging Model  

Since the problem of a multimodal network is being investigated in more detailed in 

chapter 6, the CDP model is adjusted in order to only account for partial funding on 

dredging maintenance problem. Thus, CDP is simplified a bit and a proxy to CDP is 

presented in this section that neglect the possible relations to landside. This simplified 

model only considers the river segments and ports as the elements of network and does 

not consider the relation of these element with the other components like locks/dams and 

landside transportation modes.  In addition, due to the waterborne freight data being 

organized into 1-ft vessel draft increments as well as inherent challenges in carrying out 

channel maintenance dredging to within 1-ft accuracy, the model is modified to account 

for costs and benefits and 1-ft increments of channel depth. 

To summarize, two assumptions are considered within the model CDP: 

It is assumed that demand is large enough to dominate the sum of flows between each 

origin destination pair. Therefore, constraint (3.4) can be ignored. This assumption 
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simply means that the model will maximize the overall shipping potential capacity on 

the system with an equal weight on all the possible OD pairs. 

Dredging depth can only be an integer number. A new binary variable k
ijy  is 

introduced. Variable k
ijy is one when the all the segments along origin i and destination j 

have a dredging depth of k ft; and is zero otherwise. With the introduction of k
ijy , the 

objective function (3.0) changes to k k
ij ij ij

i j k

Max y qϕ∑∑∑ , where k
ijq  means added tonnage 

capacity for dredging depth k along a path from i to j. Making k k
ij ij ijb qϕ=  a new 

objective function as k k
ij ij

i j i k

Max b y
<

∑∑∑  comes to play. 

The revised model is named as CORD, which follows as below. 

k k
ij ij

i j i k

Max b y
<

∑∑∑          (4.0) 

s.t. 

 and (, , ) ( ,, : , )k l
mn ij

l
y k m n mk d l i j m nn S≤ ∈∀ <∑      (4.1) 

:( , ) ,k k
ij ij

i j k
d c B i ij j jE≤ ∈ <∑∑∑     (4.2) 

1 , : ( , ) ,k
ij

k
i Ei j jjd i∈≤ ∀ <∑     (4.3) 

1 , :( , ) ,k
ij

k
i Di j jjy iO∈≤ ∀ <∑    (4.4) 

, ,,k k
ij ij  Integer i j ky d ∀      (4.5) 

where: 
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k
ijb : Realized benefit due to the increased draft k between origin i and destination j. Note 

that in numerical test, we adopt the added tonnage capacity as this benefit.  

k
ijc : Cost for dredging port lying on segment (i,j). 

k
ijd : Binary decision variable, which is1when segment (i,j) (a port or a river section) is 

selected to dredge for depth k; 0, otherwise. 

k
ijy : Binary variable, which is 1 when all the segments along the path connecting origin i 

to destination j are dredged for a depth maximum consistent depth k; 0, otherwise. A 

maximum consistent depth is the maximum increased depth along a math (some 

segments may have a draft increase than the maximum consistent depth though). 

Objective function (4.0) maximizes the total weighted benefit. Constraints (4.1) 

ensure that a path depth should be no more than that of each segment along that path. 

Constraint (4.2) is the budget constraint. Constraints (4.3) and (4.4) describes that each 

segment and path have only one dredging depth selected. Here, CORD removes all of 

the constraints on locks/dams and land side transportation of CDP that represent the 

multimodal network relation. The model only considers the dredging decisions as 

improvement actions. 

Equation (4.1) has a large number of constraints. They are replaced by the 

following: 

 and ( , ) ( , ), : ,k k
mn ij

k k
m n my k d k i j S nn m≤ ∈∀ <∑ ∑       (4.1-b) 
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Although this new constraint becomes looser, it decreases the total constraints by 

a large number. Numerical tests show a significant reduction in solution time by as large 

as 97 percent. Therefore, constraint (4.1) is substituted by (4.1-b) in CORD program. 
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CHAPTER V∗ 

PROBABILISTIC DREDGING MODEL 

 
 
This chapter considers the dredging problem under the stochastic shoaling condition. 

The models proposed so far are capable of determining the optimal maintenance 

scenarios when the problem is defined as a one stage decision making without 

consideration of afterwards situation. However, in the waterway system every segment is 

under the influence of shoaling even after the dredging. Dredging only changes the 

distribution of the draft on a segment and increases the expected draft of the segment 

during maintenance period. The shoaling is completely a random effect that influences 

waterway systems and the draft of channels. Accordingly, modeling the dredging 

problem without accounting for the probabilistic shoaling is not quite analogous to the 

real problem. In this chapter, the previous models are improved to be capable of 

capturing the shoaling effect in some sense. To this end, the remaining of this chapter is 

divided in two subsections. The first proposes a deterministic proxy approach to take 

into account the shoaling effect, and the second uses a promising method in stochastic 

programming called Sample Average Approximation (SAA) to consider the shoaling 

effects. 

 

 

                                                
∗	Reprinted with permission from "	Modeling Maintenance Project Selection on a Multimodal Transportation 
Network", M. Khodakarami, K. Mitchell, X. Wang, 2014, Transportation Research Record: Journal of the 
Transportation Research Board, Vol. 2409, pp. 1-8, Copyright [2014] by Transportation Research Record.			
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5.1 Deterministic Approximation 

The benefits of dredging a particular waterway segment in the CDP model depends on 

the depth to which the segment is dredged. In calculating the benefits, one has to 

consider the loss of draft due to subsequent shoaling. The shoaling depends upon many 

localized factors such as geological conditions, land-use patterns in the accompanying 

watershed, recent levels of precipitation in the watershed, and occurrence of coastal 

storms. All these localized factors are uncertain, therefore potentially resulting in a 

probabilistic shoaling process at each project location. However, in general, the deeper 

segments of waterway will be more prone to future shoaling and will lose depth at a 

faster rate than shallower portions of a channel.  Due to the highly complex 

environmental forces that influence shoaling and inherently random conditions, shoaling 

can be treated as a random process.   

Indeed, the optimal decision that only considers one-year maintenance would be 

different from programming over several periods. The optimization problem, 

considering the random shoaling, is in fact a probabilistic integer programming problem 

with rich literature. However, the challenge with the probabilistic approach is due to the 

large size of this optimization problem. Considering the large size with many thousands 

of variables and constraints, the decision was made to resort to deterministic approaches 

for approximate solutions. This is achieved through using an approximate benefit 

estimate that considers shoaling in the year after dredging. Clearly, the optimal dredging 

decision would be dependent on the resulting shoaling probability of the restored new 

depth.  
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This chapter presents a model that tries to capture the random shoaling effects 

called PORD. PORD has the following objective function: 

( , )k k
ij ij

i j i k i j
j

i
iMax b y E Q yξ ξ

< <

+∑∑∑ ∑∑   PORD (objective function) (5) 

where the first term accounts for benefits in the project period, which is the same as that 

in ORD; ( , )tE Q yξ ξ  is the expected system benefit over the maintenance horizon after 

the project period (year one), and ξ is the realization of a specific dredging depth during 

the planning horizon after the project year. 

This objective function maximizes the expected benefits over the planning period 

for the maintenance (e.g. the project year and one year after). The test later only 

considers the year of maintenance and one year after the maintenance, however the 

approach can easily be extended to include additional years in the planning horizon. The 

expectation considers the probabilistic shoaling and reduction in draft. Noteworthy, the 

do-nothing ‘project’ may also lead to a negative shoaling effect that can be modeled in 

the formulation as well. 

In a discrete case, the expected increase of draft in the next year after dredging, 

compared with the draft before the maintenance, may be described as follows: 

0

( , ) ( )k
ij ij

k

k
k

ij
d

E Q y z d P dξ ξ ϕ ξ
=

≈ =∑∑       (6) 

where, k
ijz is a new decision variable that is similar to k

ijy but is an indicator for the 

expected depth on the route from node i to node j in the second year. It is equal to 1 

when depth k is less than or equal to the expected depth of all the segments along the 
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path connecting i to j; and is 0 otherwise. ( )kP ξ is the probability distribution of a 

segment with depth of k remaining draft in the period after project year, the domain of 

which is a set of integer values from 0 to the current existing depth, k. Here ijϕ , as in the 

CDP model, is the benefit of one unit of dredging between i and j. Introducing the new 

variable k
ijz  requires additional constraints similar to (2-1b) and (2-4). One may set

0

( )
k

k
ij ij

k

d

b d P dϕ ξ
=

= =∑ . The model with the modified PORD objective function that we 

refer as MPORD may be presented as follows. 

k k k k
ij ij ij ij

i j i k i j i k

Max y b z b
< <

+∑∑∑ ∑∑∑   (MPORD)     (7.0) 

s.t. 

 and ( , ) ( , ), : ,k k
mn ij

k k
m n my k d k i j S nn m≤ ∈∀ <∑ ∑   (7.1) 

( )  and ( , ) ( , ), : ,k k
mn ij

k k
m nz k d E m nk i j S m nξ≤ ∈∀ <∑ ∑   (7.2) 

k k
ij ij

i j k
d c B≤∑∑∑          (7.3) 

1 , :k
ij

k
d i j i j= ∀ <∑       (7.4) 

1 , :k
ij

k
y i j i j= ∀ <∑       (7.5) 

1 , :l
ij

l
z i j i j= ∀ <∑      (7.6) 

, ,,k k k
ij ij ij  Integey d r i jz ∀                               (7.7) 
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Again, k
ijb is the benefit of depth k of dredging between i and j. The variable k

ijz   is 

the decision variable that decides the expected depth of each path in the period after the 

project planning year. Constraint (3.1) prescribes that draft increase along a path must be 

no more than the draft increase at each segment of that path waterway path.  Constraint 

(3.2) is similar to constraint (3.1) but for the second year. Constraints (3.4) and (3.5) 

have changed to equality compared to their counterparts (2.3) and (2.4). Therefore, 

MPORD can consider the negative benefit of losing depth due to shoaling in excess of 

the depth gained via dredging or zero benefit when shoaling returns the channel to the 

same depth from prior to dredging. Subsequently, negative and zero drafts could all be 

options of expected depth, therefore considering all the situations those constraints sums 

up to 1.   

 

5.1.1   Application of MPORD Model on Great Lakes 

After developing the PORD, it was tested on the Great Lakes example in 9 budget 

scenarios and its result are compared with the result from ORD where does not consider 

the probabilistic shoaling. First, to run the PORD, the probability distribution of shoaling 

for different drafts must be known. Using historical data, we extracted the shoaling 

probability distribution in a certain period after implementing the dredging as is 

displayed in Table 2. 
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Table 2  The shoaling probability based on historical records 

 
Depth Loss (ft) 

Dredging Depth (ft) 0 1 2 3 4 5 

0 0.09 0.2 0.35 0.25 0.1 0.01 

1 0.06 0.15 0.33 0.32 0.12 0.02 

2 0.04 0.12 0.35 0.34 0.13 0.02 

3 0.02 0.08 0.34 0.38 0.15 0.03 

4 0.01 0.04 0.3 0.4 0.2 0.05 

 

 

According to table 2, if a segment is dredged for 4 ft, this segment will 

experience shoaling of of 5, 4, 3, 2, 1, and 0 ft with probabilities of 5, 20, 40, 30, 4 and 1 

percent respectively. In other words, if we add the draft of a segment with 4 ft dredging, 

the expected remained draft of that segment at the end of maintenance period would be: 

   ( )Remaining Draft After ShoalingE =   

0.05 0 0.2 1 0.4 2 0.3 3 0.04 4 0.01( ) 1.111× + × + × + × + × + × =−  ft 

Using the shoaling probabilities in table 2, we obtained the result of MPORD model as 

presented in Table 3. In this example it is assumed that the shoaling happens one year 

after dredging operation, and even though the maintenance period is one-year long, we 

aim to minimize the effect of shoaling for next year to reduce its associated demanded 

budget. The benefits therein are calculated using the objective function of MPORD 

model for a two year period. The results displayed for MPORD, represent the optimal 

total benefit for two consecutive years, assuming the expected shoaling effect for the 

next year is known. Note that the ORD model does not consider shoaling, and it 

maximizes the benefit only for the project year then the value in Table 3 is the sum of 
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ORD objective for first year and the system’s benefit in second year given the expected 

remaining draft. 

 

Table 3 Total benefits of ORD and MPORD models on the great lakes network 
     Scenario 
Model 90% 80% 70% 60% 50% 40% 30% 20% 10% 

PORD 
(Kilotons) 96,083 95,363 92,326 86,910 79,275 60,909 40,895 1,930 -8,382 

ORD 
(Kilotons) 96,080 95,201 88,896 84,882 79,060 54,492 37,734 848 -10,410 

Gap (%) 0.00 0.17 3.72 2.33 0.27 10.54 7.73 56.08 24.20 

 

 

Table 3 shows that although the total benefit from MPORD is slightly better than 

ORD for first five scenarios with more budget available, it produces considerably better 

solutions for later scenarios where the available budget gets more limited. This closeness 

could be due to the specific structure of the OD benefits. Often path remains unchanged 

and does not vary with draft change. The mild shoaling does not bring significant change 

to the ORD solution. Besides, the negative number that could be seen for the last 

scenario is due to the negative benefit considered for 0 depth of dredging. This model is 

flexible to adopt any value for as the benefit of projects. 

 

5.2 The Sample Average Approximation (SAA) 

Even though the model provided in previous subsection shows improvement of solutions 

over the base model, still is a deterministic proxy of the dredging problem with 
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stochastic shoaling that is not able to fully understand the stochastic nature of the 

problem and result in conservative solutions. Thus, a methodology with an innate 

stochastic behavior could improve the solution and comply better with the stochastic 

setup of the problem. After a comprehensive search inside the literature of the stochastic 

optimization considering that our problem is specific form of knapsack, Sample Average 

Approximation (SAA) as proposed by [54, 55] was found to be the most appropriate 

method for solving our problem. In continuous of this section, first an introduction is 

provided about SAA and then the result of its application on Great Lakes is presented at 

the end. 

 

5.2.1 Introduction to SAA Concepts 

The stochastic dredging problem as displayed in Equation (5) is a type of a two-stage 

stochastic problems in which the initial decision is made to optimize the objective 

function in first period plus the expected objective function of second period due to 

initial decisions and random effects. The optimal solution of the problem then should be 

decided based on their direct outcome in first stage and their indirect effects in the 

second stage. The true objective function for the problem could be written as Equation 

(8). 

1 2( )( (x) , )f x E f xg ξ ξ+=  (8) 

where ξ  is a random vector, x is our decision variable, and 2 ( , )f x ξ  is a real valued 

function of two variables x and ξ . To calculate the expectation we need to have all the 
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realizations ofξ that leaves us with a significantly humongous, though finite set of 

feasible solutions that grows exponentially and makes the enumeration impossible. In 

addition, the Equation (8) could not be written in the closed form. To overcome these 

difficulties, a SAA method was used that is s form of Monte-Carlo simulation method. 

Sample average of 2 ( , )f x ξ replaces the expectation 2 ( , )E f xξ ξ . The sample average that 

is an approximation for the equation 8, is displayed in Equation 9: 

1 2
1

1ˆ ( )( ,x) ( )
N

N i
i

g f x f x
N

ξ
=

= + ∑  (9) 

where , 1,2,...,i i Nξ =  are the observed samples that could be generated with the 

knowledge of their distribution. First observation about equation 8 and 9 is described as 

fact 1 where the expectation of sample average is equal to true objective function of the 

problem:  

Fact 1:  

ˆ( ) ( )g xE g x=                (10) 

Kleywegt et al. [55] prove that the solution for SAA converges to solution of true 

problem with probability one. This proof is presented in form of the proposition 1 but let 

define some concepts before. First, we refer to the optimization problems corresponding 

to the true objective function (x)g , and sample average objective function ˆ ( )Ng x , as true 

and SAA problems respectively. Then let define *s  and *ŝ  to be the optimal values for 

true and SAA problems. In other words: * : ( )xmin gs x=  and *ˆ ˆ: ( )x Ns min g x= . Let also 

define the set of ε -optimal solutions as all the feasible solutions x S∈  where 
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*( )xg s ε≥ −  of a true maximization problem. Similarly, we denote the set of ε -

optimal solutions for true and SAA as ˆ, NS Sε ε  respectively. 

Proposition 1. (i) *ˆ   . .1Ns s w p→  as N →∞  (ii) ˆ0  the event { }NS Sε εε∀ ≥ ⊂ happens 

. .1w p  for N large enough. 

Proof.  (i) Law of big numbers exerts that for any ˆ, ( )NS gx x∈ converges to ( )g x  w.p.1. 

as N →∞ . In addition, since the set of feasible solutions S  is finite zero measure their 

union is finite also a zero measure that indicates the convergence of ˆ ( )Ng x toward ( )g x  

uniformly in x S∈ . In mathematic forms:

ˆ| ( ) ( ) | 0,  . .1   N s S Nmax g x g x w p as Nδ ∈= − → →∞that follows *ˆNs s→  as N →∞  since 

* |ˆ| N Ns s δ− ≤ [55]. +  

 (ii) Let define *
\

( )  ( )
x S S

min g x sερ ε ε
∈

= − − . Since for all \x S S ε∈ it holds that 

*(x) sg ε> + and the set S is finite then ( ) 0.ρ ε > Let choose a big enough N such that 

( ) / 2Nδ ρ ε< . Accordingly it holds *ˆ ( ) / 2Ns s ρ ε< +  and for all  \x S S ε∈  it holds that 

*ˆ ( ) ( ) / 2Ng x s ε ρ ε> + + . It follows that ˆ ˆ( )N Ng x s ε> +  for all \x S S ε∈ that means x 

does not belong to ˆNS
ε . Therefore, we can inference that ˆNS Sε ε⊂ [55].+  

The proposition 1 only describes the convergence of optimal value of the 

objective value and ε -optimal solution of SAA to the true problem by increasing the 
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number of random samples. After all, the main question that is sample size is still 

untouched. Next subsection discuss about the sample size and stopping criteria in SAA. 

5.2.2 Sample Size and Stopping Criteria 

23 | |( )
( )

maxN
S

log
σ
ε δ α

≥
−

(11) 

where, 

2
maxσ : is a form of variance of  (x), \g x S S ε∀ ∈ ,

  and ε δ : two positive numbers corresponding toε -optimal solution andδ -optimal

solution of true and SAA problems respectively, 

| S |: cardinality of feasible solution, 

1 α− : the probability of finding ε -optimal solution.

The upper bound in Equation (11) however, may be very too conservative and far 

from the real sample size. Moreover, calculating this bound is not an easy task since in 

many cases calculating 2
maxσ and | S |gets very complicated. On the other hand, growth of 

the sample size adds up to the complexity and solution cost of SAA. Subsequently, in the 

literature of a SAA [55, 56]an algorithm is proposed based on tradeoff between the 

From the previous section, we know that increasing the sample sized raises the SAA 

algorithm solution accuracy. However to apply the SAA algorithm there should be an 

exact sample size or a specific plan for increasing sample size until we reach to a 

stopping criteria. Kleywgt et al. [55] provided an upper bound for the sample size 

needed for SAA of a discrete optimization as follows: 
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optimal solution of SAA and the variation of optimality gap on one hand, and the sample 

size on the other hand. In continuous, a review is provided on the algorithm that is the 

adopted to solve the stochastic shoaling problem. 

 This algorithm is motivated based on calculating sample average function

ˆ ( )Ng x for a feasible solution, instead of solving SAA problem that needs a heavy 

computation. Now instead of choosing a large N we can select a large M to accurately 

estimate the objective function ( )ˆNg x by ˆ ˆ( )N Ng x′ where here ˆNx is the optimal solution 

of SAA. In other words, instead of solving SAA for a big number of N samples, we can 

replicate solving M numbers of SAA with sample size of N that might need much less 

computational effort, depending on the size of M and N. If the estimate of true objective 

function ( )ˆmNg x based on any {1,..., }m M∈ optimal solutions ( ˆmNx ) from SAA is close 

enough to true optimal value, *s , we have obtained the desired solution otherwise we 

need to increase the number of N or M or both and repeat the procedure.  

By introducing the replication process, now we have M i.i.d. random variables

( )ˆmNg x according to M replication of SAA on samples with size N. Assuming that the 

distribution of ( )ˆmNg x is continuous, the probability that the solution of replication M+1 

achieves a better solution than previous M solutions is 1
1 M+

. However, since our 

problem is an integer with discrete distribution, the probability of getting a better 

solution in replication M+1 is less than or equal 1
1 M+

. Subsequently, the larger M 

increases the probability of reaching to optimal solution. 
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However, to let the algorithm detect the ε -optimal solution, we need to know 

when we have obtained a good enough solution for one of the M number of SAA 

problems. In other words, we can stop when the achieved optimality gap for a given 

solution *( )ˆg x s− is a short enough. However, none of the two components in calculating 

the gap is easily obtainable and we need to estimate them. Equation 12 represents the 

estimators for ( )ˆg x : 

1 2
1ˆ ˆ ˆ( ) ( ) ( , )jNg x f x f x
N

ξ′ = +
′

        (12)  

Equation 12 provides an unbiased estimator for ( )ˆg x . HereN ′ is the size of new set 

of random samples jξ  independent from M samples of size N that were used to simulate 

SAA. x̂ is an optimal solution from SAA that needs to be evaluated and we my refer to 

it as evaluation sample. Indeed, we are using N sets of random samples to evaluate the 

solution from SAA. The estimator for *s  is displayed in Equation 13.  

1

1 ˆ
M

M m
N N

m
s s

M =

= ∑           (13) 

where, ˆmNs indicates the optimal objective value for solving SAA problem number m. 

Now we can use ˆ ˆ( ) M
N Ng x s′ − as the estimator of the optimal gap. Then assuming the 

independence between M samples of N size and N ′evaluation samples, the estimator for 

variance of the gap, that could be a measure of solution quality, could be calculated as 

follows: 

 
2 2

(gap) N MS S
N

ar
M

V ′ +
′

=           (14) 
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where, the 
2
NS
N

′

′
is the sample variance of Equation 12 and 

2
MS
M

 is the variance of M
Ns

that could be calculated as follows: 

2
2

1

1 ˆ( )
( 1)

M
m MM
N N

m

S s s
M M M =

= −
− ∑         (15) 

Obtaining the variance of the gap helps us to evaluate the acquired solution and 

provides a metric for stopping criteria.  

 

5.2.3 SAA Algorithm 

By defining all the necessary components for implementing the SAA algorithm the steps 

of this algorithm are portrayed as follows[55]: 

• Step 1- Select the initial sample sizesN ,M ,N ′and an increasing rule for each. One 

should choose M to obtain a sufficiently small 1
1 M+

 since it is the probability of 

obtaining better solution in replication M+1. 

• Step 2- Generate a random sample of size N and solve the SAA problem for all

, ,1m M= … . We refer the optimal value by ˆmns and the optimal solution by ˆmNx . For 

replications , ,1m M= … apply the following steps i to ii: 

i) Calculate the optimality gap estimator *( )ˆmNg x s−  and its variance. 

ii) If the optimality gap estimator and its variance are small enough then select 

the best solution and Stop. 
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• Step 3- If the optimality gap or variance are note in the appropriate bound then 

increase the either size of N,N ′or both and return to Step 2. 

 

 

5.2.4 Results of SAA Application on Stochastic Shoaling Problem 

After the introduction to the concept and procedure of SAA, in this section presents the 

result of SAA application on the stochastic shoaling problem PORD. To investigate the 

effect of different sample sizes, several tests with different setups of sample size have 

been implemented. In general, two scenarios were examined as follows:  

• Scenario 1- PORD model was solved by approximating true objective function 

with sample average of different sizes. Indeed, we solved the SAA with the sample 

sizes that are displayed in Table 4. This scenario does not consider any evaluation 

set was since we wanted to investigate the convergence of the true objective 

function with increasing sample size. 

 

 

Table 4 The sample sizes for running the first scenario of SAA 
Sample Type Sample Size 

N 10,20,…,90,100 

M 1 

N ′  0 
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• Scenario 2- This scenario follows the algorithm provided in section 5.2.3 and 

considers an evaluation random set for examining the stopping criteria. The 

parameter setup for this scenario is presented in Table 5. 

 

 

 

 

  Table 5 The sample sizes for running the second scenario of SAA 
Sample Type Sample Size 

N 2 

M 25 

N ′  100 

 

 

For both scenarios nine budget conditions have been considered including tenth 

multipliers of the requested budget (10%, … ,90%). The results of scenario 1 are 

presented in Figure 7. In this scenario we examined ten different approximations of 

objective functions (ten different sample sizes of 10, 20, …,100 )using sample average 

to solve PORD problem. These approximate sample averages are exhibited in Equation 

(16): 

1 2
1

1( ) ( ) ( ),          10,20, ,100
N

i
i

g x f x f x N
N

ξ
=

= + + = …∑     (16) 
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Figure 7  Trend of optimal solution using sample average approximation for different sample sizes 
(M=1, N=10,…,100) 
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Figure 7 Continued 
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As it is clear from this figure except the first budget condition (10%), the other 

results represent a convergence by increasing the sample size as it is expected. The result 

of first budget scenario even though that does not display a vivid convergence, does not 

have very large variation. The standard error of this result is 89.2 that is almost one 

percent of the best solution. Hence, we can expect by increasing the sample size beyond 

100, we observe gradual convergence and smaller variation. 

In scenario 2, we applied a SAA method where twenty-five replications of PORD 

problem with sample average approximation of size two were solved. It means that each 

optimization problem considers N=2 number of random samples to approximate its 

objective function as it is illustrated in Equation (17): 

2

1 2
1

1( ) ( ) ( )
2 i
i

g x f x f x ξ
=

= + +∑         (17) 

This objective function is a smaller version of the functions that were used in 

scenario 1. After obtaining the optimal value for twenty-five replications, the average of 

all optimal solutions was taken as the estimator of problem optimal solution *ŝ and their 

variance as the estimator of optimal solution variance 2ˆ
MS as Equations (13) and (15). 

Using twenty-five optimal solutions, we estimated ˆ ( ),m
N Ng x′ and their variance 2

NS ′  

 1, , 25m = …  as Equation (12) using 100N ′ = random samples. Thereafter, the optimality 

gap and its variance were estimated for each solution  1, , 25m = … . The estimated gaps, 

their standard deviation, their relative error compared to the estimated optimal solution 

*ŝ , and the number of replication with the best gap is presented in Table 6.  
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Table 6 The results of SAA algorithm including the best optimality gaps and their standard errors 

 
Available Budget Condition 

10% 20% 30% 40% 50% 60% 70% 80% 90% 

Min Gap 319.5 559.0 47.2 216.9 14.8 391.9 6.6 8.7 29.3 

Relative Err. 4.0% 94.6% 0.2% 0.6% 0.0% 0.7% 0.0% 0.0% 0.0% 

Standard Error 223.2 234 247.6 285.4 293.6 280.2 268.4 267.9 272 

Best Replication 
Id 25 19 5 19 13 22 4 6 10 

 

 

Clearly from the results in Table 6, the obtained gaps and their standard errors 

demonstrate acceptable ranges considering their relative errors with estimated optimal 

solution *ŝ . The only exception here is the solution for budget scenario 2 (20% budget 

available). Thus we could stop the algorithm here and there is no need for running 

another test with bigger sample sizes. 

In parallel, we evaluated the results from scenario 2 with the results of scenario 1 

for one-hundred sample approximation. This comparison provides more information 

about the quality of solutions in scenario 2. In addition to the comparison of the obtained 

objective values, we also compared the running times to investigate the computational 

efficiency of SAA in scenario 2. The results regarding this comparison are provided in 

Table 7. This table also shows the error of the solutions from other sample size 

approximation with one-hundred sample size and their corresponding computational 

time. 
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Table 7 The comparison of errors and running times against scenario 1 with 100 sample average 
size approximation 

Applied 
Test 

Available Budget Condition  Run 
Time 
(s) 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Sc
en

ar
io

 1
- S

am
pl

e 
Si

ze
 10 -1.75 -13.41 1.59 1.56 1.26 0.95 0.59 0.52 0.65 6.6 

20 0.12 -11.77 0.97 0.89 0.61 0.48 0.34 0.32 0.37 37.1 

30 -2.14 -9.51 0.69 0.32 0.30 0.03 0.06 0.07 0.07 42.4 

40 -1.59 -5.50 0.72 0.40 0.34 -0.03 -0.04 -0.04 -0.05 76.8 

50 -1.17 0.40 0.83 0.36 0.24 -0.05 0.06 0.04 -0.01 203 

60 -0.07 3.77 0.51 0.22 0.14 -0.03 -0.08 -0.09 -0.12 2919. 

70 -0.58 -2.49 0.57 0.31 0.20 -0.02 -0.02 -0.02 -0.06 222.1 

80 1.04 6.25 -0.10 -0.07 -0.06 -0.08 -0.14 -0.13 -0.18 538.4 

90 0.75 7.01 -0.10 -0.15 -0.09 -0.11 -0.13 -0.12 -0.16 487.0 
Scenario 2 2.33 -0.18 -0.36 0.10 0.11 0.38 0.68 0.62 0.59 31.7 

 

 

The result in table 7 illustrates a decreasing trend in error by enlarging the 

sample size. However, similar to the plots in figure…. this is not entirely true for the 

problem with twenty percent available budget. Other observation from this table is 

general increasing trend of the running time that could be expected. It should be noticed 

that in average half of the running time is the regarding to the twenty percent budget 

scenario. After all, it is observable that scenario 2 provides a descent error comparing to 

the results of scenario 1 and except the tests with 10, 20, 30 and 40 sample sizes offers 

significantly shorter run time with similar error rates. Therefore, the attained results 

illustrate the efficiency of applied SAA method with shorter sample sizes in approximate 

objective function (N) and big number of replications instead of choosing big sample 

sizes for solving the approximate objective function. 
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5.3 Evaluation of Deterministic Solution with SAA 

This section investigates the quality of solution achieved with the proxy deterministic 

method compared to the solution from SAA. To this end, after obtaining the optimal 

solution of the proxy deterministic problem (MPORD) that is represented by *ˆdx , using 

Equation (9) we obtained the estimation of objective function *ˆ ˆ( )N dg x′ and its variance for

100N ′ = random samples. Then we evaluated the solution quality by calculating two 

optimality relative errors, the first between the objective function estimation *ˆ ˆ( )N dg x′ and 

the optimal value of deterministic *ˆ
dS . The second the relative gap is between *ˆ ˆ( )N dg x′

and the optimal solution from the SAA scenario1 with one-hundred sample sizes *
(100)

ˆ
SAAS . 

Table 8 illustrates these relative gaps and the standard error of *ˆ ˆ( )N dg x′ . 

Table 8 Comparing the result of MPORD with SAA 

Metric 
Budget Condition 

10% 20% 30% 40% 50% 60% 70% 80% 90% 
* *

*

ˆˆ ˆ( )
ˆ

N d d

d

g x S
S

′ − -12% -20% 3% -2% -3% -5% -5% -5% -5% 

* *
(100)

*
(100)

ˆˆ ˆ( )
ˆ

N d SAA

SAA

g x S

S
′ −

2.4% 54.0% -0.6% 0.0% 0.1% -0.4% 0.6% 0.5% 0.6% 

*ˆ ˆ[ ( )]N dStd g x′  143.0 140.3 168.9 194.9 198.6 179.9 184.9 187.2 187.5 
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The result in table 8 reveals that the deterministic proxy of the stochastic 

shoaling (MPORD) provides a very descent solution competing with SAA results. This 

solution even gets more credit noticing its short running time of 0.8 minute. The quality 

of MPORD could be interpreted based on the very short support of random variables that 

includes only five situations (losing 0 to 4 foot of depth) and the specific structure of 

waterway networks.  

At the end, it should be mentioned and acknowledged that the obtained results in 

this chapter are only based on one realization of shoaling probability. This realization 

might not be the true representation of the shoaling probability for all locks/dams, it is 

obtained from a simple analysis over some shoaling data sample. Besides, to make a 

solid conclusion, the analysis provided in this chapter should be tested for sensitivity 

against several probability distribution realizations. In other words, the obtained results 

of this chapter could not be generalized to make final decision and should accompanied 

with multiple other tests on different shoaling probability distributions. 

In this chapter, we considered two different methods for taking account of 

stochasticity in dredging problem we referenced as stochastic shoaling. The first method 

is a proxy deterministic version of the problem that represented significant amount of 

saving for some budget scenarios. The second is a stochastic method based on Monte 

Carlo simulation and uses averages of sample random known as SAA. In fact, SAA 

approximates a two-stage problem where the decisions are made at first stage the 

consequents of those decisions reflect in second stage. The results of SAA showed that a 

stopping measure for our problem is achievable even with moderate sample sizes to 
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obtain qualitative enough results. Finally, the solution of deterministic proxy method 

was compared with SAA as a real stochastic solution. The finding discovered that due to 

the structure and limited probability support of our problem, the deterministic version 

could provide quite acceptable results with much shorter running time. 
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CHAPTER VI 

MINIMIZATION COST MODEL ON A PROBABILISTIC MULTIMODAL 

NETWORK 

In previous chapters the dredging problem was investigated comprehensively and 

several models were developed to assist finding the optimal allocation of dredging fund.  

However, in former models we only considered the water channels as the core elements 

for maintenance modeling and did not address other crucial elements of the waterway 

system that are locks/dams, or other connected land-side modes including highways and 

railways. While dredging maintenance budget allocation is the main purpose of this 

research, failing to address the mentioned elements does not lead to a system wise 

optimal solution and the achieved results from former models may land far from the 

expected optimal decisions in reality. Accordingly in this chapter we model the 

waterway maintenance and dredging budget allocation in context of a multi-modal 

network, taking account of locks/dams as the other major marine element as well as 

highways and railways as the landside mode connected to waterways. 

In addition to the multi-modal consideration, this chapter provides a whole new 

perspective toward modeling dredging and locks/dams maintenance and budget 

allocation. So far, all the developed models were based on maximizing the marginal 

benefit of dredging, however in reality dredging or improving locks and dams does not 

add throughput to the waterway system and no marginal benefit is observed. Instead, 

waterway maintenance decreases the cost of marine transportation and improves the 

transportation fluidity. In consideration of this new horizon to the problem, the models 
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developed in this chapter aim to minimize the transportation cost on waterway system by 

optimal maintenance-budget allocation among elements of system through a multi-

modal network. 

Lastly, the maintenance problem is still modeled as stochastic problem and we 

need to adopt a method that could model the stochastic effects. The results of chapter 5 

though revealed that the solution of proxy deterministic method provides a good enough 

solution for waterway system due to the specific structure of the network and very small 

support for the possible shoaling. Subsequently, the selected method for solving the 

problem of this chapter is still the proxy deterministic one due to its fast performance. In 

this chapter, we first provide an introduction to the costs of the waterway system. Then 

we provide the multi-modal model for solving the cost minimization problem and at the 

final part display the results of new model Ohio River with more than six-hundred mile 

length that is a very important marine corridor in the nation. 

 

6.1 Waterway Costs and Dynamics 

Waterways have their own costs to operate marine transportation, to keep these costs as 

low as possible they require a continuous maintenance and rehabilitation. In fact, the 

cost of freight movement on a waterway depends on the total vessel-hour needed for 

freight movement. It means the fewer number of vessels traveling in the shorter time 

between a pair of origin-destination provides cheaper transportation and promotes higher 

rate of waterways use. However, two major problems exist in keeping the marine cost 

low; first is shoaling or losing the waterways depth, and the second is the unscheduled 
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delay that happens at locks/dams. The first problem decreases the effective depth of a 

channel (drafts) that does not allow use of heavier barges, thus for transporting a given 

amount of freight more barges and vessels are needed which causes additional cost. The 

second problem, i.e. unscheduled delay raises the vessel operation time and hence 

elevates the cost. Consequently, this chapter opens a new window toward the 

maintenance problem. The former models optimize the system through maximizing the 

system benefit (transported freight tonnage) by dredging that results in waterways 

capacity increase. However, there are many difficulties in defining the waterways’ 

capacity and relating it to waterways’ depth. In fact, in reality that kind of capacity does 

not exist and shoaling does not affect the amount of tonnage transported but the cost of 

transportation. Losing depth and happening delays on locks/dams only increases the 

mentioned costs or movement friction. In other words, these problems interrupt the 

fluidity of freight movement. 

 

6.2 Methodology 

This chapter introduces a model that, unlike the former models, minimizes the cost of 

transportation across a multi-modal network by determining a set of optimal dredging 

and lock/dam maintenance operations. The dredging in this model has two main effects 

on the system: first it causes a local rise in the throughput by allowing heavier barge 

movement and thus higher tonnage be transported that results in heavier 

loading/unloading. Second it reduces the number of needed vessels to carry the same 

amount of freight allowing heavier barges. The first effect could impose heavier flow 
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to/from landside, and landside limited capacity should be considered. Whereas the 

second effect directly decreases the vessel cost.  

In the case of locks/dams, delay reduction is considered as a random variable for 

a given scale of improvement. Hence, by improving locks/dams one could expect that 

delay expected value would reduce. Due to the exponential distribution of lock/dam 

delay, their expected value shapes up to a diminishing nonlinear function. To adopt this 

nonlinearity into the model, a piecewise linearization approach is used.  

In addition, the model counts for connectivity to landside transportation by 

restraining the waterside improvement that causes temporal tonnage leap more than the 

available landside capacity. Hence, improving the water sided should consider the 

limited capacity on the landside, and if there is not enough capacity for the temporal leap 

due to the higher drafts, spending resources on dredging more is fruitless. 

The other issue that the model should take care of is the stochastic shoaling of the 

waterways. To consider this probabilistic behavior the deterministic proxy method, as 

was explained in chapter 5, is adopted. Similar to chapter 5, this problem is modeled as a 

two-stage decision-making problem where the dredging depth should be selected such 

that the expected value of total cost at the end of second stage is minimized. Thus, the 

depth in the stage after dredging stage is known and optimal decisions are made 

regarding this knowledge. 

 

6.2.1 Problem Statement 

Having a multimodal network including waterways, and locks/dams on waterside and 
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highways and railways on landside, we have a multi-modal problem. The problem is to 

determine the maintenance decisions or allocated funding for dredging and locks/dams 

maintenance that minimize the total cost of waterside transportation called as the optimal 

maintenance decisions. Every waterway network suffers from two main deteriorating 

processes: first losing depth of waterways due to shoaling, and second locks/dams 

operation failure. These decays cause a general system interruption that cause longer 

travel time and higher number of needed vessels to carry the freight. Accordingly, to 

keep up the efficiency and accessibility level of a waterway system there is a need for 

continuous maintenance and rehabilitation of waterway elements, however, due to the 

limitation of available budget it is desired to find the optimal maintenance decision with 

available budget. This said, one should be aware of the connection between the 

waterways and landside transportation facilities. Any decision about improving 

waterside transportation should be taken in a multimodal context, since some portion of 

carried freight through the waterside originates from or sinks to some landside origin or 

destination and should take landside modes. Thereupon there should be enough capacity 

on these modes to allow instant increase in waterside throughput. This consideration 

could be taken care of with adding a new constraint to the problem. Thus, the problem is 

identifying the optimal maintenance decision with considering the multimodal 

connections. 

 

6.2.2 Intermodal Model 

The model developed in this section is a mixed integer linear program that minimizes the 
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total cost of a waterway system by selecting the optimal maintenance decisions. This 

model is defined on a multi-modal network of waterside links and locks/dams that are 

connected to some landside ODs. Since this problem is a two-stage stochastic problem, a 

proxy deterministic method similar to chapter 5 is developed to model the stochastic 

shoaling.  

The developed model minimizes an objective function that is the summation of 

all costs along each single route. The cost on each route is built based on the cost of 

vessel-hour on that route. The draft of route, which is lowest navigable depth of all 

segments along that route, and the amount of delay on locks/dams determines the overall 

cost of route. Therefore, the model tries to minimize the total cost through increasing 

depth of waterways and reducing the delay happening in locks/dams. The waterways’ 

depth increase is a direct linear impact of a dredging operation, meaning that i foot of 

additional depth is achieved by i foot dredging. In reality locks/dams’ reduced delay is a 

random variable, meaning that after any improvement there is still some chance for 

breaking out and delay has a probability distribution. Thus for each given amount of 

improvement there exists a probability distribution for the failure occurrence. Usually by 

increasing the improvement scale, the mean and variance of failure decrease. However 

determining the exact distribution, given a specific unit of improvement, needs some 

analysis on historical data. For this model, we use the reduced delay instead of delay 

itself to remove the need for additional information of the initial delay of locks/dams. To 

take account of delay stochastic behavior, the developed model uses the mean value of 

reduced delay for each given improvement. Subsequently if an improvement i is selected 
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for a given lock/dam, the effect of that improvement would be iE(Dely ) , which reads 

as the expected value of delay reduction if improvement i is applied on the lock/dam. 

Now the model needs a pattern to describe the relationship between the improvement 

and its corresponding mean of reduced delay. For the rest of this research, a power 

function is assumed for this relationship that has a diminishing behavior; means the 

slope of mean reduced delay gradually decreases by increasing the improvement unit. 

Each landside OD is connected to at least one waterway segment through one or 

more routes/modes (highway, railway). All the landside modes have some available 

capacities to operate at the desirable level of service (D) that do not allow any additional 

traffic, caused by the instant additional tonnage due to waterside improvement, beyond 

their capacities. The developed model is presented as follows. First, the variables and 

parameters that are needed for the model are introduced, and the model is illustrated 

afterwards 

● Variables: 

k
id : the binary decision variable on segment i, that is 1 if  if segment i is dredged for k 

foot of dredging and 0 otherwise, 

1
k
i ,x : the binary decision variable on route i at stage one, it is 1 if all the segments along 

the route i are dredged for k ft or higher depth and 0 otherwise, 

2
k
i ,x : the binary decision variable on route i at stage two, it is 1 if all the segments along 

the route i are dredged for k ft or higher depth and 0 otherwise, 
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il : the improvement unit on lock i that results in the reduction of mean reduced delay of 

the lock, 

iy : the mean reduced delay on lock i due to some improvement operation on the lock, 

1
i
max,C : the maximum cost on route i at stage one that is a combination of cost related to 

total number of trips and total delay cost, 

2
i
max,C : the maximum cost on route i at stage two that is a combination of cost related to 

total number of trips and total delay cost. 

 

● Parameters: 

pa : the capacity on landside route p that is connecting a dockage to a landside OD, 

k
ib : the incremental increase in tonnage that is added to draft k of segment i due to 1 foot 

dredging, 

B: the available budget, 

iCd : cost of one foot dredging on segment i of waterway, 

iCl : the cost of a unit of maintenance on lock i, 

iCt : the average cost of trip per mile due on rout i, 

L(m): the set of all landside routes that are connected to land origin or destination i, 

M : a big number that is used as the penalty value, 
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k
iN : the number of trips that should be done on route i with draft k to meet all the 

demand, 

m
iP : the proportion of land origin or destination m that travels on route i,  

R: the set of all waterway routes, 

R(i): the set of all water routes that are connected to land origin or destination i, 

S: the set of all segments, 

S(i): the set of all segments that are lying on route i, 

UD : an upper bound on delays of all locks, 

V: the value or cost of one hour delay, 

1 2
i i
max, max,

i

Min C C+∑           (18-0) 

k k
i i i i

i i
d Cd l Cl B+ ≤∑ ∑          (18-1) 

1k
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k
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1
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i ix ,d :                                                 ibin Rar , Dy  k∀ ∈ ∈            (18-10) 

1 2 0i i
i max, max,l ,C ,C ,                                                          i R≥ ∀ ∈             (18-11) 

The objective function of this model minimizes the total cost in both stage one 

and two due to waterway interruption. This cost is a combination of the average cost of 

all voyages along each path plus the average cost of delay on all locks along that path. 

The constraint 1 indicates that the total cost for dredging and locks/dams improvement 

should be less than or equal to available budget. Constraint 2 indicates that each segment 

can have only one depth of dredging. Constraint 3 explains that if a route in stage one 

benefits from reduction in number of vessels by increasing the draft of route i, all of its 

segments should be at least as deep as i ft draft. Constraint 4 expresses that the depth of 

each route at second stage should be less than or equal to the smallest expected depth of 

its segments at stage two. Constraint 5 and 6 indicate that each route can have only one 

depth at first and second stages. Constraint 7 indicates the total flow that comes from or 

goes to a land point that travels through waterways should be less than total capacity of 

all possible land side routes to that point. It means the total tonnage that needs to travel 

in the land modes should be less than all land routes capacity. Constraint 8 and 9 identify 
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the depth of each route at stages one and two in order to minimize the total cost. There is 

a penalty term in this model that guarantees the maximum route cost is equal to cost of 

the route with selected depth. The route cost is the overall cost due to total number of 

vessels using route with selected depth and delay on all the locks/dams along that route. 

The developed model is a MILP that could be a combination of linear and integer 

functions and variables. However the assumed the function of mean reduced delay ( iy ) 

is a nonlinear function that could not be directly used in the developed model. In 

addition, the maintenance cost generally has a nonlinear function and in the numerical 

section, we have tested the effect of nonlinear cost function on fund allocation result. 

Consequently, to use these nonlinear functions a linearization method should be 

employed. To this end a piecewise linearization method is applied to provide a linear 

approximation of the power function. Figure 8 displays the power function and the 

approximated linear pieces. The original function is represented by dotted blue line and 

the piece linear sections are indicated with red lines. 
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Figure 8 Process of mean reduced delay linearization 
 

 

In the linearization method, the function domain is divided into several sections, 

in this problem to 5 sections. Then the value of function is determined at the borders as 

we call them if (x ), afterwards the following constraints should be considered in the 

original MILP model: 

                                             i ij i
j

y w f ( a ), i locks∀= ∈∑                                (18-12) 

                                                     i ij j
j

w x i lockl , s∀ ∈=∑               (18-13) 
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1                                                          ij
j

w , i locks= ∀ ∈∑               (18-14) 

where, 

iy : is the linear approximation of mean reduced delay on lock i, 

il : the amount of improvement identified by the original model, 

ijw : is the weight coefficient for linearizing the mean reduced delay of lock i,  

ja : is discretized domain values at start of each linearized piece ( 0 10 20 50j , , , ,…= ) 

where 50 is the theoretical maximum improvement scale,  

Now adding constraints (12)-(14) the model is a complete MILP and could be 

solved with the classical optimization methods using the available software packages for 

optimization. 

 

6.3 Numerical Results 

The developed multi-modal model in this chapter is applied on the Ohio River, which is 

one of the most crucial portions of US national waterway system. In the remainder of 

this section, first a brief introduction is presented on the Ohio River characteristics and 

the problem input. Next, the result of numerical tests of the model is provided. 

 

6.3.1 Ohio River at a Glance 

The Ohio River connects the six states of Illinois, Indiana, Kentucky, Ohio, 

Pennsylvania, and West Virginia as is displayed in Figure 9. 
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Figure 9 A sketch of Ohio River position 
 

 

The Ohio River Basin (ORB) system includes about 2,800 miles of navigable 

waterway. The 65% of the 275 million tons transported as of 1999, are shipped inside 

the basin itself, through the 60 lock/dam facilities maintained by the USACE. Coal is the 

major commodity shipped through and within the Ohio River Basin, according to the 

large amount of reserves in the region. The other significant cargos include aggregates, 

petroleum, grains and chemicals shipped on the Ohio River Basin System [57]. 

The developed model in this chapter is only applied on the main stem of the Ohio 

River that consists of 21 lock/dams and approximately 700 miles length. A sketch of the 

main stem of Ohio River is presented in Figure 10. 
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Figure 10 Ohio River main stem and its locks/dams [58] 
 

 

The main stem of Ohio River is then divided into 51 segments that are 

connecting 21 lock/dams. All of 21 locks except three locks of Emsworth, Dashields, 

and Montgomery have 1200 foot lock chambers. The other three have 600 foot lock 

chambers. 

To apply the model on this network we needed to prepare the model’s input data. 

The input includes a large amount of information such as the number of vessels shipping 

on each route, the effect of draft on their number, the cost of dredging and lock/dam 
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improvement, the effect of one unit of lock/dam improvement on the reducing delay, the 

portion of demand that takes the landside modes and their capacity, etc. Accordingly, an 

exhaustive data preparation was needed before we started solving the model.  

The information about the number of the shipping vessels on each specific draft 

of a route was extracted from the historical data. Using the average ratio of tonnage per 

barge for each draft and the tonnage demand for each specific draft, we then concluded 

the change of vessels number by change of draft. To assess the delay of the lock/dams, 

however, we did more calculation. Using a large database for each of the lock/dams, we 

needed to first detect when the delay has happened and afterwards, calculate the 

corresponding delay due to unexpected interruption. Writing a python code and 

developing a method to distinguish between the delay due to traffic queue and unwanted 

interruption, we extracted the distribution and average of delay. Then we assumed a 

power function between the amount of improvement and the reduced delay as displayed 

in Figure 8.  

The other important information was the amount of cargo that took landside 

modes besides the landside routes that connect the marine network to landside origin-

destinations. To prepare this data, we first identified all the major landside origin-

destinations and the major highways or railways that connect them to Ohio River. Then 

we considered portions of tonnage from each waterway ODs that travels to land ODs. In 

estimating the available capacity, we explored whether the available capacity of landside 

modes is usually enough for moving cargo from the waterway. However, to test the 

effect of lack of capacity of landside modes, we tested some hypothetical scenarios. 
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Finally, we needed to have some estimation on the cost of dredging and lock/dam 

improvement. In case of dredging, we used the information from the example in Chapter 

5. While for the cost of lock/dam improvement we tested two cases. In the first case, a 

linear function with fixed rate as 12000lC l=  was investigated. In the second case, though, 

a non-linear function with an initial fixed cost was considered as:

2 0.622 + 12.6  +1216l lC l=  

As it is clear, the second function causes higher cost for the lock/dam 

maintenance and it is expected that a higher portion of total budget is allocated to this 

maintenance compared to the first cost function.  

 

6.3.2 Model Results 

The schematic network of the Ohio River as it is inputted to the model is presented in 

Figure 11. This Figure presents the river corridor and the connected railway and 

highway segments that connect the waterways to the landside ODs depicted with yellow 

circles. 
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Figure 11 The Ohio River sketch in a multi-modal network 
 

 

After defining the components of the Ohio River for the model, including 51 

waterway segments and 21 lock/dams, we tested the model for multiple input sets up. 

First, it was investigated that how the change of two crucial costs corresponding to 

vessel/mile and cost/hour delay could change the optimal results for the linear 

maintenance function. To this end, the model was tested for nine cross combinations of

{10,25,50}, {350,500}VCt == , and {50,100,150} { 0}, 70VCt == . The results showed there 

is no important change due to different setups and hence it is not sensitive to these 

parameters with the range of variation that was tested. Thus the achieve results for all the 

of the different combinations is as presented in in Table 9 and Figures 12 and 13. 
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Table 9 The optimal result of model for nine different combinations of vessel/mile and value/hour 
cost for linear locks’ maintenance function  

Budget 
Scenario 

OBJ 
Function ($) 

Improvement 
( %) 

Available 
Budget ($) 

Lock Cost 
($) 

Lock’s 
Fund 

Allocated 
(%) 

Optimal 
Gap 
(%) 

Run 
Time 

(s) 

0.2 94,706,653 27.5% 473,813 7,862 1.7 0.5 3691 
0.4 78,905,067 6.2% 947,626 453,154 47.8 0.5 5406 
0.6 74,927,125 0.8% 1,421,439 897,552 63.1 0.5 46 
0.8 74,625,598 0.4% 1,895,252 1,260,000 66.5 0.4 6 
1 74,307,763 0.0% 2,369,065 1,260,000 53.2 0 90 
 

 

The result of the Table 9 illustrates that by increasing the available budget, the 

portion of budget allocated to lock/dam maintenance increases until it reaches its entire 

requested funding. The improvement column represents the percentage of difference of 

total cost for each budget scenario compared to the budget scenario of full budget. 

Figure 12 and represents these percentage of difference. 
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Figure 12 The percentage of difference between cost for different budget scenarios versus full fund 
scenario 

 

 

Figure 12 describes that even if only 20 percentage of the total requested budget 

is available, the optimal total cost is 27.5% higher than the cost when the full fund is 

available, and this difference is exponentially decreasing by increasing the available 

budget. Figure 13 illustrates the portion of allocated budget to lock/dam maintenance.  
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Figure 13 The percentage of budget allocated to lock/dam maintenance 

Figure 13 shows a non-linear trend of budget allocation to lock/dam 

maintenance. The plot starts with a steep increasing slope and gradually loses its 

gradient by increasing budget until it receives its one-hundred percent requested budget. 

This trend illustrates that when the budget is low and there is not much flow on the river 

the priority is to fund dredging, but small increase in the funding changes the allocation 

balance in favor of lock/dam maintenance. One other test was conducted for the case 

that we have a non-linear increasing cost for lock/dam maintenance. The result of this 

test is presented in Table 10, and Figure 14. 
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Table 10 The result of application of model whit a non-linear locks’ maintenance function 

Budget 
Scenario 

OBJ Function 
($) 

Improvement 
( %) 

Available 
Budget ($) 

Lock Cost 
($) 

Lock’s 
Fund 

Allocated 
(%) 

Optimal 
Gap 
(%) 

Run 
Time 

(s) 

0.2 135,603,533 24.4% 473,813 0 0% 1 5404 
0.4 126,828,910 16.3% 947,626 392,838 42% 1.2 5409 
0.6 119,684,094 9.8% 1,421,439 894,076 63% 0.6 5401 
0.8 113,768,892 4.4% 1,895,252 1,366,405 72% 0.5 370 
1 109,015,375 0.0% 2,369,065 1,845,179 78% 0.5 125 

 

 

 

Figure 14 Minimized cost for linear and non-linear locks’ maintenance cost function 
 

 

The result of Table 10, and Figure 14 indicates that by increasing of lock/dam 

maintenance cost the cost of the system increases significantly and dredging operation 

could not merely compensate the system costs.   
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In summary, the model was tested on the real network of the Ohio River and 

showed capability of finding optimal solutions. While for the models provided in chapter 

3 and 4 some easy guess and simplifying heuristics were available, it is much more 

difficult to find a near optimal solution for the multi-modal problem with the definition 

introduced in this chapter 5. In addition, we also tested the effect of changing the 

landside modes’ capacity on the cost and the optimal solutions. The landside modes’ 

capacity was reduced to forty percent of the full capacity needed to accommodate the 

additional tonnage when 100 percentage budget is available. The results display a clear 

rise of the total system cost, about 42%, due to lack of capacity on landside modes. 

 

 

 

Figure 15 The comparison of optimal solution between full landside capacity and 40% available 
capacity 
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Accordingly, using the multi-modal model proposed in this chapter significantly 

assists to obtain exact optimal solution for the problem considering all of the system 

components.  
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CHAPTER VII 

CONCLUSION 

The U.S. waterway system carries billion dollars value commodity across the nation 

each year. It supports the more than 75 percent of the import and export cargos and this 

percentage is expected to increase. A routine problem, however, with the waterway 

system is that it is prone to losing depth and effective shipping draft due to the 

settlement of sediments from tidal flows. Similarly, locks/dams could experience 

deterioration and cause long delays for the traveling vessels through unexpected failures 

that happen, as they age and decay over the time. Consequently, this system demands 

maintenance and rehabilitation on both waterway segments and locks/dams. The 

waterway segments are maintained by removing the settled sediments from the channel 

bed; this operation is called dredging. Likewise, locks/dams need some routine 

maintenance to reduce the probability of unscheduled interruption. Both of these two 

maintenance operations are too costly while the available budget is not usually enough to 

meet the entire requested maintenance budget. Moreover, even if the budget is enough, it 

is not an easy task to determine how to optimally allocate the available budget to 

different maintenance operations. Facing a decreasing operations and maintenance fund, 

the U.S. ACE has to make a balance between the requested maintenance projects and the 

limited available funding. This research has a goal of developing scientific tools and 

models to facilitate the maintenance decision dealing with budget constraints, system 

randomness and network system effect so that fund spent would have a maximum 

system effect in terms of system capacity. 
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 This study specifically focuses on optimizing the selection of maintenance 

projects so that budget may be used to fund projects with the maximum system benefits. 

Selection from a given set of requested projects to fund naturally lends itself to the class 

of the famous knapsack problem, clearly an NP-Hard problem. However, our study 

problem comes with an additional complexity: our problem has a network effect. The 

network effect implies that decision for a project often is dependent on other projects. A 

simple explanation to it is that an enlarged shipping capacity between two ports requires 

both ports to have a deeper draft.  As a result, the conventional methods developed to 

solve the knapsack problem are not applicable to this problem. To this end, for the first 

time we developed some analytical exact and heuristic methods to solve the waterway 

maintaining problem considering different conditions. First, a model was proposed to 

identify the optimal selection of water segments to be dredged based on a zero-one 

integer-programming model that was referred to as ORD. This model assumes the 

incremental tonnage surge, due to increasing the draft of a path, is marginal benefit of 

dredging over a path and correspondingly determines the optimal dredging actions that 

maximize the total benefit of the system. The model then was tested on some real 

examples of US maritime network and its results were confirmed by comparing to the 

historical maintenance decisions in reality. In the next step, the ORD model was 

extended to be able of considering partial funding, meaning that the optimal solution 

now determines extent of maintenance for each water segment dredging. Hence, zero 

means that the segment is not selected for dredging and any integer number other than 
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zero indicates the depth of dredging on the corresponding segment. This model was 

called continuous dredging and was tested on two big networks. 

The models developed so far all consider a deterministic condition for the 

waterway system. However, in reality the shoaling phenomenon is a random process that 

is also a function of dredging depth each time. Deeper draft has faster shoaling. In other 

words, spending more funding and dredging for deeper drafts does not necessarily lead 

to an expected higher draft at the end of programming period. In light of this fact, in the 

fifth chapter the dredging problem was modeled as a two-stage model where the 

decisions made at first stage are followed by stochastic consequences in the second 

stage. Therefore, to make an optimal decision on the system, we needed to solve a 

stochastic two-stage problem. To solve this stochastic problem, two different methods 

were developed: a proxy deterministic method, and a Monte-Carlo based simulation 

method that uses averaging over random samples referred to as Sample Average 

Approximation (SAA). The results of first method revealed that considering the 

stochastic shoaling effect could improve the objective functions up to twenty-four 

percent depending on the available budget. The second method was also successfully 

tested on the Great Lake example and the result showed that due to the specific structure 

of the network even moderate sample size could meet the stopping criteria and achieve 

acceptable results. The second model is a the correct method for solving a stochastic 

two-stage problem and the comparison of two methods displayed that the proxy 

deterministic provides quality solutions comparing to SAA while offering shorter 
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running time. The reason for this observation could be addressed to the special structure 

of the waterway network and the small support for the probability of shoaling. 

In the last chapter, we position the waterway system maintenance in context of a 

multi-modal model by including all the elements of the waterway system and the 

connected landside transportation. The developed model determines the optimal 

maintenance action for both dredging and locks/dams maintenance while considering the 

availability of capacity on the land-side. The problem is defined as a stochastic problem 

considering the random shoaling and the proxy deterministic method is adopted to solve 

the model. Due to non-linearity in lock/dam’s maintenance performance function with 

costs, a piecewise linearization is used to keep the model as MILP. The Ohio River, one 

of the largest integral sections of US waterway network, is used for numerical test. The 

result showed that the optimal solution is not dependent on the value of time and the cost 

of vessels travel on the network. However the limit of landside modes’ capacity and  

also the change of the cost function of lock/dam maintenance would change the optimal 

solutions. 

Due to time and funding of this study, many factors have not been considered 

such as the effect of cost fluctuation of the marine transportation on the amount of OD 

demand using this system. In this study, it was assumed that the demand is fixed and 

deterioration of the waterway system only increases the transportation cost. As another 

suggestion, one could alter the assumption of independency of random shoaling between 

different waterway segments. In chapter 5, to model the stochastic shoaling problem, it 

was assumed independent random shoaling between water segments, another strong 
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assumption that may defy reality to varying extent. We therefore recommend that future 

studies take care of all these effects and factors.    
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