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ABSTRACT

This research demonstrates that robots can achieve socially acceptable interac-

tions, using loosely synchronized head gaze-speech, without understanding the se-

mantics of the dialog. Prior approaches used tightly synchronized head gaze-speech,

which requires significant human effort and time to manually annotate synchroniza-

tion events in advance, restricting interactive dialog, and requiring the operator to

act as a puppeteer. This approach has two novel aspects. First, it uses affordances

in the sentence structure, time delays, and typing to achieve autonomous synchro-

nization of head gaze-speech. Second, it is implemented within a behavioral robotics

framework derived from 32 previous implementations. The efficacy of the loosely

synchronized approach was validated through a 93-participant 1 x 3 (loosely syn-

chronized head gaze-speech, tightly synchronized head gaze-speech, no-head gaze-

speech) between-subjects experiment using the “Survivor Buddy” rescue robot in

a victim management scenario. The results indicated that the social acceptance of

loosely synchronized head gaze-speech is similar to tightly synchronized head gaze-

speech (manual annotation), and preferred to the no head gaze-speech case. These

findings contribute to the study of social robotics in three ways. First, the research

overall contributes to a fundamental understanding of the role of social head gaze

in social acceptance, and the production of social head gaze. Second, it shows that

autonomously generated head gaze-speech coordination is both possible and accept-

able. Third, the behavioral robotics framework simplifies creation, analysis, and

comparison of implementations.
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1. INTRODUCTION ∗

A key component of social interaction between a robot and human(s) is social

head gaze, which serves five important functions - look interested in human(s) [1–18],

engage in a verbal conversation with human(s) [1, 2, 6, 9–11, 13, 16, 18–23], convey

general liveliness and awareness [4, 8, 23], show various mental states [4, 21, 24–26],

and referential gaze to objects in the environment [1,2,4,8,16,27–32]. Two of these

functions, engage in a verbal conversation with human(s) and referential gaze to

objects in the environment, require tight synchronization, or precise timing between

the speech utterance and the activation of the corresponding head gaze act. While

engaging in a verbal conversation with a human, the robot generates fixate and

avert head gaze acts that are tightly synchronized with speech, to facilitate turn-

taking. If the topic of the discussion is an object in the environment, the robot uses

referential gaze to fixate toward the object 800 msec to 1 sec, before it utters the

object’s name. The tight synchronization between head gaze and speech (TSHG-S)

has been well modeled in human-human literature [33–36], and ensures high quality

communication between humans. However, social robots using models for turn-

taking in conversations [33, 34] and referential gaze for looking at objects in the

environment [35, 36] suffer from three limitations. First, TSHG-S requires manual

annotation and semantic content understanding. This requires significant human

effort and time. Second, if the robot uses a preset library to select appropriate

head gaze behaviors, the head gaze cannot be generated in open-ended, interactive

scenarios. This is problematic when the social robot’s verbal responses cannot be

∗Reprinted with permission from “Evaluation of Head Gaze Loosely Synchronized with Synthetic
Speech for Social Robots” by Srinivasan, V., Bethel, C.L., Murphy, R.R, 2014. IEEE Transactions
on Human-Machine Systems, Accepted for Publication, Copyright [2014] by Vasant Srinivasan.
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anticipated a priori. Third, tight synchronization of head gaze and speech that

mimics human gaze may not be feasible due to limitations of the robot. These might

include the absence of a high degree of motor control, flexibility of joint movements,

and/or velocity limits.

This work proposes a more practical implementation alternative to TSHG-S,

that of a loosely synchronized head gaze, with real-time synthetic speech (LSHG-

S). In LSHG-S, the timing between the speech utterance and the activation of the

corresponding head gaze act is flexible, that is, the activation of the head gaze

act can lead, lag, or occur at the onset of the speech utterance. A large-scale 93-

participant human-user study was conducted to evaluate the social acceptance of

LSHG-S in human-robot interaction. This section begins with the primary and

secondary research questions, which are discussed in Section 1.1. Section 1.2 defines

social head gaze and discusses the importance of using social head gaze in a social

interaction. Section 1.3 details LSHG-S, a more practical implementation alternative

to TSHG-S. Contributions of this research are presented in Section 1.4. Finally, an

outline of the organization of this dissertation work is presented in Section 1.5.

1.1 Research Questions

The primary research question that this work addresses is: What is a computa-

tional theory of social head gaze for social agents?

The goal of this research is to capture a computational theory of social head gaze

as a programmable framework, so that head gaze-speech acts can be autonomously

generated. Existing approaches in human-robot interaction requires significant hu-

man effort and time to manually annotate synchronization events in advance, restricts

interactive dialog, or requires that the operator acts as a puppeteer. The lack of au-

tonomous or consistent implementation of social head gaze is a barrier to conducting

2



Figure 1.1: Survivor Buddy Engages in a Verbal Conversation with a Human Using
Fixate and Avert Head Gaze Acts.

reproducible research in the area of affective computing. The fundamental research

question poses four related questions:

1. What is the appropriate set of social head gaze behaviors required for a natu-

ralistic human-robot interaction?

Identifying an appropriate set of percepts, corresponding affordances from the

sentence structure, time delays, and typing, head gaze acts, behaviors, and

coordination function simplifies implementation, and ensures that the robot

will not generate unintended social consequences due to head gaze. As one

step towards creating a programmable framework, this research surveys 32

distinct human-robot interaction studies of social head gaze in Section 2, and

identifies a set of head gaze acts and percepts that have been successful in

making a robot comforting, more socially consistent, and predictable to the

user(s). Sections 3 and 4 detail the substitution of affordances for linguistic

and internal percepts of head gaze, so that the state of an interaction can be

inferred autonomously. Affordances are conditions or objects that are directly

3



perceivable without any memory, inference, or interpretation [37].

2. How can social head gaze be expressed as behaviors or schemas, which are

common representations in both psychology and robotics?

Expressing social head gaze in behavioral robotics terms translates the quali-

tative understanding of head gaze into a well-known, tangible implementation

framework. Drawing on the literature and observations discussed in Section 2,

social head gaze is mapped unto a behavioral robotics framework in Section 3.

The behavioral robotics framework expresses the social head gaze phenom-

ena as behaviors using well-established conventions in artificial intelligence by

Arkin [38] and Murphy [37], and enables a robotic implementation in Section 4.

The behavioral robotics framework captures the commonalities, essence, and

experience of a collection of systems through mining and generalization of their

implementations [39].

3. Is it possible to evaluate through sound experimental methods the effectiveness

and appropriateness of the head gaze acts generated using the behavioral robotics

framework?

This question is addressed in Sections 5 and 6 through a large-scale 93-participant

experiment that was conducted with a semi-anthropomorphic robot, “Survivor

Buddy” (Fig. 1.1) for a victim management application. Five hypotheses are

evaluated to assess the social acceptance of LSHG-S and TSHG-S, and to deter-

mine if LSHG-S is adequate for human-robot interaction. The five hypotheses

are:

(a) Hypothesis 1 (H1): Participants who interact with a robot exhibiting the

LSHG-S condition will evaluate their experiences more positively than

4



participants who interact with a robot exhibiting the NHG-S condition.

(b) Hypothesis 2 (H2): Participants who interact with a robot exhibiting the

LSHG-S condition will evaluate the robot more positively than partici-

pants who interact with a robot exhibiting the NHG-S condition.

(c) Hypothesis 3 (H3): Participants who interact with a robot exhibiting the

TSHG-S condition will evaluate their experiences more positively than

participants who interact with a robot exhibiting the NHG-S condition.

(d) Hypothesis 4 (H4): Participants who interact with a robot exhibiting the

TSHG-S condition will evaluate the robot more positively than partici-

pants who interact with a robot exhibiting the NHG-S condition.

(e) Hypothesis 5 (H5): The LSHG-S condition improvements over the NHG-S

condition will be comparable to those of the TSHG-S condition.

4. Does the level of synchronization between gaze acts and speech impact the nat-

uralistic perception of the social interaction?

Section 7 presents an analysis of the results which suggests that LSHG-S elicits

high levels of social acceptance when compared to NHG-S, and is adequate for

human-robot interaction. The section discusses four factors that may impact

user perception of head gaze-speech synchronization – (1) Gesture comprehen-

sion is temporally more flexible than gesture production, (2) Expectation of gaze

in a semi-humanoid robot, (3) Importance of synchronization at the start and

end of turns is greater than at the middle of turns, and (4) Absence of lips.

1.2 Social Head Gaze

Social head gaze is defined as the pattern of head and body orientation that

expresses engagement in the current context. It is important for many human-robot

5



interaction applications where a naturalistic interaction is desired such as: healthcare

[24, 26], victim management [14, 40], robot guides [8, 10, 11, 13, 41], entertainment

[1,2,4,5,9,16], telepresence [42,43], and fundamental research [3,6,7,15,17,20,27–29].

The six known benefits of social head gaze for human-robot interaction are:

1. Increased task performance [2, 4–9,13,15,25,28,41].

2. Increased engagement [5–8,11,15,25,41].

3. Improved perception of a robot’s physical, social and intellectual characteristics

[1–3,6, 8, 9, 13,15,20,25,41,44].

4. Increased attributions of mind and intentionality to the robot [1, 4, 6, 8, 25].

5. Increased positive affective state [6, 8, 12,45].

6. Improved attentiveness to the robot and task [8, 13, 27,28].

1.3 Loosely Synchronized Head Gaze-Speech: A Practical Alternative to Tightly

Synchronized Head Gaze-Speech

This research examines the use of affordances to generate LSHG-S for human-

robot interaction. The occurrence of turn events and semantics in dialog that activate

head gaze acts can be substituted with affordances from the sentence structure of di-

alog, time delays, and typing. These affordances are computationally trivial, support

autonomous generation, are independent of semantics, and are useful for interactive,

open-ended conversations. If a robot is an autonomous agent and can generate dialog,

the sentence structure and time delays will be transparently available to the robot,

and the proposed method can be used. In the case of a tele-operated robot [43, 46]

or Wizard-of-Oz experiment [47], the proposed method can be utilized if the robot
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operator can provide the dialog, from which the sentence structure, time delays, and

typing can be determined.

However, there are two potential problems with using LSHG-S:

1. The loosely synchronized gaze acts may not precisely match the dialog pre-

sented because there is no semantic understanding in the proposed approach.

The lag between the robot’s speech and gaze acts may annoy or confuse the

human.

2. A social robot that interacts with a human in a realistic scenario will possibly

use all five functions of head gaze. The change in synchronization for two

functions such as engage in a verbal conversation with human(s) and referential

gaze may impact the human’s perception of the robot’s overall head gaze during

the interaction.

Therefore, a human-robot interaction experiment was conducted to evaluate the

social acceptance of the proposed LSHG-S method, and determine if it was adequate

for human-robot interaction.

1.4 Contributions

This research provides seven contributions to the social robotics community.

These contributions are categorized in the areas of fundamental science, social bene-

fits, and economic benefits, arranged in the order of abstraction (abstract to implementation-

specific).

1. Fundamental Science: This work makes four contributions to science:

(a) The findings contribute to a fundamental understanding of the role of

social head gaze in social acceptance, particularly with regard to how
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social head gaze can be produced, the question of when less competence

is tolerable, and the importance of the speech and gaze synchronization

for the listener.

(b) It shows that autonomously generated head gaze-speech coordination is

both possible and acceptable. Researchers and practitioners do not have to

manually annotate every situation using the Wizard-of-Oz approach [47].

(c) It provides social robotics researchers and practitioners with a formal

vocabulary for social head gaze, enabling future implementations that

are autonomous, consistent, repeatable, and natural.

(d) This work contributes five new measures for victim management - Person

at Ease, Robot Empathy, Robot Integrity, Robot Loyalty, and Robot

Caring.

2. Social Benefits: The robot can generate socially acceptable head gaze behaviors

in real-time for very open-ended, interactive scenarios. These advantages are

very important in situations where robot responses cannot be anticipated a

priori (e.g. personal robots for eldercare).

3. Economic Benefits: The economic impact relates primarily to the amount of

labor involved and costs required for the modification of existing robots. This

research contributes a novel mechanism for inferring percepts from sentence

structure, time delays, and typing that is independent of the semantics of

dialog. The method reduces the workload of researchers, since they are no

longer required to tediously hand code every scenario, Wizard-of-Oz style [47].

The behavioral robotics framework is applicable to a wide variety of robots

(anthropomorphic, non-anthropomorphic).
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4. Implementation Benefits: The behavioral robotics framework simplifies cre-

ation, analysis, and comparison of social head gaze implementations.

1.5 Organization of Thesis

The dissertation is organized as follows: Section 2 provides a brief summary of

32 studies that use some aspect of social head gaze in human-robot interaction and

analyzes each study in terms of: Head Gaze-Speech Synchronization, Percepts, Head

Gaze Acts, Robots Used, Group Configuration, Implementation Styles, Tasks, and

Measures. Section 3 introduces affordances, describes the behavioral robotics frame-

work, and sets the foundation for the computational theory. Section 4 presents the

implementation of LSHG-S on a rescue robot for victim management. Section 5

describes the details of an experiment conducted with 93 participants, designed to

evaluate the social acceptance of LSHG-S and TSHG-S. Section 6 presents the data

analysis and results that demonstrate the social acceptance of LSHG-S and TSHG-S.

Section 7 interprets the results of the experiment, discusses the factors that might

influence the naturalness of head gaze-speech synchronization, and the limitations

of the experiment. Section 8 reaffirms that both the LSHG-S and TSHG-S imple-

mentations elicited high levels of social acceptance, and that LSHG-S is adequate

for human-robot interaction. It also provides a summary of the contributions of the

research, design implications, and directions for future work.
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2. RELATED WORK

Robots 
Used

Head 
Gaze Acts

Percepts TasksImplementation 
Styles

Social Head Gaze

Group 
Configuration

Measures

• External  
• Internal 

• Linguistic

• Partially Autonomous
• Wizard of Oz

• Simulation/Video

• Type of Measures
• Methods

• LSHG-S
• TSHG-S

• Dyadic  
• Triadic 

• Multi-Party

• Presentation
• Learning

• Conversation
• Game

• Gaze-Specific

• Android
• Humanoid

• Animal-Like
• Non-Anthropomorphic

• Primitive
• Compund

Synchronization

Figure 2.1: Taxonomy of Social Head Gaze.

Social head gaze involves a coordination of head and body orientation that is

sensitive to the social context [48]. A review of the literature on human-robot inter-

action reveals that 32 distinct studies [1–11, 13–20, 23–32, 40–43, 49] have addressed

some aspect of the social head gaze generation of robotics.

The human-robot literature on generation of head gaze for conversation [1, 2, 7–

11, 13, 16, 18–20, 25, 28, 29, 31] is concerned with TSHG-S. Without exception, each

of the 16 major studies identified [1, 2, 7–11, 13, 16, 18–20, 25, 28, 29, 31] implement

models of human-human interaction for conversational turn-taking [33, 34, 50] and

referential head gaze [35, 36], or rely on a human-human interaction experiment,

conducted specifically for determining the synchronization events [13, 20, 25]. Since

the synchronization events for TSHG-S require interpretation or inference, manual

annotation is the most popular method adopted for the generation of TSHG-S.
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The purpose of this review is to: (1) examine the current state-of-the-art for

head gaze-speech synchronization in social robotics, (2) identify an appropriate set

of percepts and head gaze acts that have been successful in making a robot comfort-

ing, more socially consistent, and predictable to the user(s), and (3) examine prior

implementations and evaluations to guide experimental design and validation of this

work. This section provides a summary of social head gaze in human-robot interac-

tion. Each of the 32 studies are then analyzed in terms of: synchronization, percepts,

head gaze acts, robots used, group configuration, implementation styles, tasks, and

measures (Fig. 2.1). This section concludes with a summary of the gaps and op-

portunities. The scope of this work is currently limited to addressing head gaze in

robotic systems, and not eye gaze. This exclusion is due to the higher complexity

introduced by eye gaze. Head gaze, alone, has significant value without the need for

eye gaze, and is additionally widely applicable (very few robots have movable eyes).

2.1 Summary of Social Head Gaze in Human-Robot Interaction

A brief summary of each of the 32 distinct studies is presented with reference to

study design, purpose of the study, robot used, and implementation style, and arranged

chronologically.

Imai, Ono, and Ishiguro (2001) [27] used a 12 participant between-subjects exper-

iment (gaze and hand pointing, only hand pointing) to evaluate human perception

of the robot’s joint attention with an object. Five subsystems: Sensor System,

Perceptual System, Dialogue Mechanism, Joint Attention Mechanism, and Action

Executive were used to incorporate head gaze on a humanoid robot “Robovie.” The

Joint Attention Mechanism subsystem used simple rules to autonomously direct the

gaze of the human towards the poster on the wall, when providing an explanation

about it. This study had a simple but effective experimental design and validation.
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Imai, Kanda, Ono, Ishiguro, and Mase (2002) [3] used a 36 participant within-

subjects experiment to investigate the orientation of the robot’s head needed for a

person to perceive the robot’s head gaze. The humanoid robot, “Robovie,” generated

autonomous head gaze using a rule-based method. Although IR cameras were used

to capture head movements, this data was not analyzed. Moreover, the authors infer

from measures that are marginally significant (p < .1) or insignificant (p > .1).

Matsusaka, Fujie, and Kobayashi (2001) [19] used a humanoid robot “Robita,”

to implement conversational strategies for a multi-party scenario. Five subsystems:

Sensor System, Perceptual System, Reasoning System, Cognitive System, Action

Executive were used to generate autonomous rule-based head gaze. While the authors

did not conduct a human-user study to validate the system, nor present statistically

significant results, this effort is one the earliest investigations on modeling head gaze

for robots that takes into consideration triadic scenarios and real world occurrences

such as interruptions.

Breazeal, Kidd, Thomaz, Hoffman and Berlin (2003) [4] used a 21 participant

between-subjects experiment (implicit and explicit behaviors, explicit behaviors) to

explore the impact of non-verbal cues and behavior on task performance (teaching

the robot to push buttons in a given order) by a human-robot team. The robot

“Leonardo” was an animal-like robot designed for social interaction. The robot

implemented autonomous head gaze using associative learning. The authors do not

back-up several claims using inferential statistics (for example, inferential statistics

for data collected from the video).

Fincannon, Barnes, Murphy, and Riddle (2004) [40] examined video data of seven

Urban Search and Rescue personnel utilizing a tele-operated non-anthropomorphic

robot “Inuktun,” during a confined space training exercise. Since the video was

collected in an opportunistic manner and purely observational, there were no experi-
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mental manipulations. The authors found that humans interacted with a robot that

appeared to be attending to them, and used the same social rules for maintaining

eye contact as they would with another human.

Minato, Shimada, Ishiguro, Itakura (2004) [5] used a 18 participant within-

subjects experiment (human girl, android with gaze behavior, still android with

no gaze behavior) to investigate the acceptance of appearance and head movements

of an android robot “Replee R1,” during a simple quiz game. The head gaze was

generated manually using the Wizard-of-Oz technique [47]. The limitation of the

experiment was that the head motions of the android were randomly generated for

the android with the good gaze behavior condition.

Sakamoto, Kanda, Ono, Kamashima, Imai, and Ishiguro (2004) [6] used a 50 par-

ticipant within-subjects experiment (human, cooperative movements, no movement)

to examine the importance of cooperative behaviors such as nodding and face-to-face

communication in a route understanding situation, where a human gave directions

to a humanoid robot “Robovie.” Three subsystems: Sensor System, Communicative

Units, and Action Executive, and the Wizard-of-Oz approach [47] were used to gen-

erate appropriate cooperative behaviors. The study analysis was thorough and had

a good mix of subjective measures, video analysis, and body movement analysis.

Sidner, Kidd, Lee, and Lesh (2005) [8] presented a system architecture to initiate

and maintain engagement in an interaction using head gaze. The architecture com-

prised of four subsystems: Sensor System, Perceptual System, Conversation Model,

and Action Executive. The study used a 37 participant between-subjects experiment

(mover condition with gaze and gesture enabled, talker condition with no gaze or ges-

tures) to evaluate the architecture. The implementation used an animal-like robot

“Mel,” and a product demonstration task, to capture the turn-taking phenomena

from human-human communication. The head gaze was generated using partially
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autonomous conversation planning strategies.

Macdorman, Minato, Shimada, Itakura, Cowley, and Ishiguro (2005) used two

studies to investigate the relationship between the appearance of an android robot

“Repliee,” and its head gaze behaviors. In both the studies, the participants in-

teracted with the robot in a between-subjects (think questions, know questions)

simple question-answer experiment. In the first experiment, eight participants were

informed that the robot operated in the autonomous mode, while in the second ex-

periment, seven participants were told that the robot operated in the teleoperation

mode. However, in both the experiments, the head gaze was generated manually

using the Wizard-of-Oz approach [47].

Kozima et al. [24] used a longitudinal study to evaluate joint attention and

emotions for autism therapy and other disorders such as Down’s syndrome. The

animal-like robot “Keepon,” used four subsystems: Perceptual System, Attention

Map, Habituation Mechanism, and Emotion Expression to generate emotions such

as “happy” or “sad,” and initiate and maintain joint attention with the human. The

head gaze was generated manually using the Wizard-of-Oz approach [47].

Bennewitz, Faber, Joho, Schreiber, and Behnke (2005) [41] used a proof-of-

concept experiment to evaluate the performance of a humanoid museum guide robot

for multi-model interactions (including head gaze behaviors) with multiple people.

The Behavior System subsystem generated autonomous direct head gaze for a multi-

party scenario and emotions such as “joy,” “surprise,” “fear,” and “anger” using

simple rules. While this is one of the few studies that addresses a multi-party situa-

tion, the results from these experiments, including the human-like perception of the

robot, and accurate recognition of different emotional states by the robot were not

tested for statistical significance.

Mutlu, Hodgins, and Forlizzi (2006) [9] used a 20 participant between-subjects
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experiment (look at the participant 80% of time, look at the participant 20% of time)

to design head gaze behaviors for conversation in “Asimo,” a humanoid robot. The

head gaze implementation captured the turn-taking phenomena observed in human-

human systems [22] for a story-telling task and used the Wizard-of-Oz method [47].

This was the first human-robot interaction study to use middle of turn synchroniza-

tion events for conversation.

Kuno, Sadazuka, Kawashima, Yamazaki, Yamazaki, and Kuzuoka(2007) [10] used

a 12 participant within-subjects experiment (random gaze, proposed gaze) to assess

the perception of head gestures during explanation of exhibits in a museum. The

robot used was the humanoid robot, “Robovie.” The implementation used a model

of turn-taking [34], popular in human-human communication to generate head gaze

using the Wizard-of-Oz method [47]. The was one of the few studies that used a

random gaze condition and determined that head turning at turn relevant places is

important.

Yamazaki, Yamazaki, Kuno, Burdelski, Kawashima, and Kuzuoka (2008) [11]

used a 46 participant between-subjects experiment (unsystematic mode, systematic

mode) to investigate the timing of speech and gaze in human-robot interaction, using

a museum tour guide humanoid robot, “Robovie.” The social science model for the

implementation was developed following observation of human-human communica-

tion in an experiment, and then implemented on the robot. The head gaze was im-

plemented using the Wizard-of-Oz method [47], with the locations of the head turns

predetermined. This was a follow-up to a previous study [10], and established that

participants are likely to display non-verbal actions, and do so with precision timing,

when the robot turns its head at turn relevant places (significant points in interac-

tion) than any other place in the interaction. This work addressed head gaze-speech

synchronization, and established that synchronization is particularly important at
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turn relevant places.

Staudte and Crocker (2009a,b) [28, 29] conducted two studies [28, 29] using a

humanoid robot “Peoplebot” to study whether people exploited head gaze when

listening to a robot that made statements about the shared visual environment.

The implementation utilized models of referential gaze from human-human interac-

tions [35, 36]. The first study used 48 participants in a within-subjects experiment

(ambiguous utterance and gaze, unambiguous utterance and gaze). The second study

was a 36 participant mixed factorial experiment (statement validity [true, false] vs

gaze congruency [congruent, incongruent, no robot gaze]). Both the experiments

used videos and head gaze was hard-coded.

Mutlu, Shiwa, Takayuki, Ishiguro, and Hagita (2009a) [13] used a 72 partici-

pant between-subjects experiment (two addressees, an addressee and a bystander,

or an addressee and an overhearer) to investigate gaze cues for regulation of multi-

party conversational interactions in robots. The humanoid robot used in the study

“Robovie,” played the role of a travel guide, and provided information to the human.

For this implementation, the authors developed rules for conversational footing, using

both existing models [33, 51, 52] and observations of human-human communication.

Head gaze was implemented using the Wizard-of-Oz method [47].

Mutlu, Yamaoka, Kanda, Ishiguro, and Hagita (2009b) [25] used a 26 participant

mixed factorial experiment (robots [Robovie, Geminoid] vs gaze cues [gaze, no gaze])

to investigate whether humans can accurately perceive a robot’s projected mental

state (intentions) from gaze, and whether the physical design of the robot affects these

inferences. The authors used two semi-humanoid robots, Robovie and Geminoid,

which had two different pitched voices (higher and lower). Head gaze was generated

using the Wizard-of-Oz approach [47].

Ishi, Liu, Ishiguro, and Hagita (2010) [20] used a 10 participant within-subjects
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experiment (model 1 vs model 2, shifted vs model 1, original vs model 2) to evalu-

ate a model for the generation of head nods in humanoid (“Robovie”) and android

(“Repliee”) robots. The model was based on an analysis of the relationship between

head motion and speech dialogue acts in human-human conversation. The experi-

ment used videos instead of actual robots and the subjective measures were all single

items. Moreover, no statistical analysis of the results was presented.

Bethel and Murphy (2010) [14] used a 128 participant mixed factorial experi-

ment (robot mode [emotive mode, standard mode] vs robot type [Inuktun, Pack-

bot]) to assess the impact of robot orientation (amongst other social behaviors), for

victim management in a simulated disaster scenario. Since the robots were non-

anthropomorphic and did not have eyes or a head, they oriented towards the human

to indicate attention.

Heerink, Krose, Evers, and Wielinga (2010) [26] used a 40 participant between-

subjects experiment (more social, less social) to examine the effect of direct head

gaze, head nods, and other prosocial behaviors in the user acceptance of “iCat,” a

small animal-like robot, when caring for the elderly. The head gaze was generated

using the Wizard-of-Oz approach [47].

Shimada, Yoshikawa, Asada, Saiwaki and Ishiguro (2010) [15] used a 30 partici-

pant between-subjects experiment (with direct head gaze, without direct head gaze)

to investigate whether non-verbal interactions by a human during interviews (for ex-

ample, direct head gaze) made an android robot (“Repliee”) appear more acceptable

to the human. The head gaze was generated using the Wizard-of-Oz method [47].

Holroyd, Rich, Sidner, and Ponsler (2011) [1] developed the “Human Robot Col-

laboration” architecture to support human-robot collaboration and engagement in

humanoid robots. Five subsystems: Collaboration Manager, Turn Policy, Reference

Policy, Response Policy, and Maintenance Policy were used to incorporate turn-
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taking [33, 34] and referential gaze [36] models from human-human communication.

The experiment used a 29 participant between-subjects experiment (operational con-

dition, degraded condition) and a humanoid robot “Melvin” to evaluate the imple-

mentation of the architecture. The head gaze was partially autonomous and gener-

ated using a rule based method. The control condition, “degraded condition” was

contrived, with the robot looking away and exhibiting no gaze behaviors. This is

unnatural for an interaction with the robot, as it is expected to face the person.

Sirkin and Ju [42] used a 200 participant between-subjects online experiment (fa-

cial expressions alone, physical motion of the robot, combined expression and motion)

to explore how embodied telepresence robots can support better communication in

distributed teams. The participants rated videos of pre-scripted head movements,

such as head nods, no, thinking carefully, short glances, and surprise on a two degree

of freedom embodied robot.

Liu, Ishi, Ishiguro, and Hagita (2012) [43] proposed a model for the generation

of head tilting and nodding in tele-operated robots from speech signals. The model

was implemented and evaluated on three humanoid robots, “Geminoid,” “Robovie,”

and “Telenoid,” using a 38 participant between-subjects experiment (nod only vs

nod and tilt, nod and tilt vs original, nod only vs original). The experiment used

videos and head gaze, and was hard-coded using the proposed model.

Huang and Mutlu (2012) [2,16] proposed the “Robot Behavior Toolkit” architec-

ture for the generation of social behaviors in human-like robots. Four subsystems:

Cognitive System, Behavior Selection System, Activity Model, and Social Behavior

Knowledge Base utilized turn-taking [33,34] and referential gaze [35,36] models from

human-human communication. The study used a 32 participant between-subjects

experiment (human like, delayed, incongruent, no gaze), and the humanoid robot

“Wakamaru” to evaluate the implementation of the architecture. The head gaze was
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partially autonomous and generated using a rule-based method.

Admoni, Hayes, Seifer, Ullman, and Scassellati (2013) [17] used a 53 participant

mixed factorial experiment (group size [four, six, or eight] vs gaze duration [zero, one,

three, or six seconds]) to investigate the use of short frequent glances and long, less

frequent stares, and to determine which behavior was better at conveying a robot’s

visual attention. The experiment used “Keepon,” an animal-like robot; the head

gaze behaviors were pre-scripted by hand.

Pitsch et al. [49] used a 59 participant between-subjects experiment (action-

related gaze, random gaze, static gaze) to investigate the use of head gaze for tutoring

children with a humanoid robot. The experiment used “Asimo,” a humanoid robot

and included head gaze behaviors such as direct head gaze at the human and an-

ticipatory head gaze toward objects. The head gaze was partially autonomous and

generated using a rule-based method.

Andrist, Tan, Gleicher, and Mutlu (2014) [23] used a 30 participant between-

subjects experiment (static gaze, bad timing, good timing) to evaluate a model of

conversational gaze aversion for humanoid robots. The details for length, timing, and

frequency of aversions were extracted from a human-human experiment. Unlike pre-

vious work [33,34], the proposed model does not synchronize conversational aversions

with speech. The model was implemented on the “NAO” robot, with the participant

stepping through the conversational turns by pressing a button on the robot. The

experiment conducted does not compare the head gaze generated by the model with

a standard condition that uses human-human models to realize conversational gaze

aversion. This comparison is important to understand the social acceptance of the

head gaze generated by the model. Additionally, the length, timing, and frequency

data for conversational aversions was obtained from a human-human communication

scenario that lasted for five minutes. It is unclear if the same timing distribution can
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be used for situations that are longer than five minutes, as expected in a real-world

scenario.

Admoni, Dragan, Srinivasa, and Scassellati (2014) [30] used a 32 participant

mixed factorial experiment (timing [delay, no delay] vs head gaze [social, non-social])

to evaluate the effect of deliberate delays and head gaze on perception of handover

behaviors. The head gaze was hard-coded and implemented on a humanoid robot,

“HERB” using the Wizard-of-Oz approach [47].

Huang and Mutlu (2014) [18] used a 29 participant between-subjects experi-

ment (learning based, no gaze, random, conventional) to evaluate a learning based

model for the generation of multimodal behaviors (including head gaze) for human-

like robots. The model was implemented on a humanoid robot “Wakamaru,” for a

conversation task. The implementation was partially autonomous because the speech

features used as an input to this model were manually annotated and tagged with

pre-scripted gestures.

Moon, Troniak, Gleeson, Pan, Zheng, Blumer, Maclean, and Croft (2014) [32]

used a 102 participant between-subjects experiment (no gaze, shared attention, turn-

taking) to investigate the effect of gaze cues on timing and perceived quality of

handover events. The head gaze behaviors were hard-coded on “PR2,” a humanoid

robot, and implemented using the Wizard-of-Oz approach [47].

Sauppe and Mutlu (2014) [31] used a 24 participant within-subjects experiment to

explore how different deictic gestures affect communication under different environ-

mental conditions. Each participant observed the robot for 46 rounds of references

made by the robot (deictic gesture [pointing, presenting, touching, exhibiting, group-

ing, sweeping, minimally articulated, and fully articulated] x environment [neutral,

distance from referrer, clustered objects, noise, no visibility, and ambiguity]). The

head gaze behavior was hard-coded and implemented on the “NAO” humanoid robot
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using the Wizard-of-Oz method [47].

2.2 Head Gaze-Speech Synchronization

Sixteen major studies have been conducted to date that synchronize head gaze

with speech [1, 2, 7–11, 13, 16, 18–20,25, 28, 29, 31] (Table 2.1). These studies address

social head gaze for engaging in a verbal conversation with human(s) or referential

gaze at objects in the environment, where communication occurs across two differ-

ent but highly interdependent channels: head gaze and speech. For example, in

everyday face-to-face conversation, humans routinely use head gaze acts like fixate

and avert in coordination with their speech. The remaining three functions: look

interested in human(s), convey general liveliness and awareness, and show various

mental states do not use the speech channel, and hence studies focused on these

functions do not address head-gaze speech synchronization. However, a social robot

that interacts with a human in a realistic scenario will possibly use all five functions

of head gaze. The change in synchronization for two functions such as engage in

a verbal conversation with human(s) and referential gaze at objects in the environ-

ment may impact the human’s perception of the robot’s overall head gaze during the

interaction. Therefore, in order synthesize an appropriate set of percepts and head

gaze acts that can be used to represent social head gaze, and gain an understanding

of successful experimental design and validation, studies that focus on head gaze

functions: look interested in human(s), convey general liveliness and awareness, and

show various mental states have been considered for analysis in Sections 2.3 - 2.9.

Each of the 16 major studies [1, 2, 7–11, 13, 16, 18–20, 25, 28, 29, 31] use TSHG-

S. This method is precise, and implements models of human-human interaction for

conversational turn-taking [33, 34, 50] and referential head gaze [35, 36], or relies on

a human-human interaction experiment, conducted specifically for determining the
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Studies Year Of
Study

Synchronization
Method

Type of
Speech

Generation
Mechanism

Model

Matsusaka
et al. [19]

2001 Autonomous
Identification of

End of Turn Event

Synthetic,
Real-Time

Production
Rules

Turn-Taking [34,50]

Sidner
et al. [8]

2005 Manual Annotation
of Turn Events

Synthetic,
Real-time

Production
Rules

Turn-Taking [33]

Macdorman
et al. [7]

2005 Manual Annotation Human,
Pre-Recorded

Pre-Scripted
Motion

Human-Human
Experiment

Mutlu
et al. [9]

2006 Manual Annotation
of Linguistic Events

Human,
Pre-Recorded

Production
Rules

Turn-Taking [22]

Kuno
et al. [10]

2007 Manual Annotation
of Turn Events

Synthetic,
Human,

Pre-Recorded

Production
Rules

Turn-Taking [34]

Yamazaki
et al. [11]

2008 Manual Annotation
of Turn Events

Synthetic,
Pre-Recorded

Production
Rules

Turn-Taking [34]

Staudte &
Crocker [28]

2009 Manual Annotation
of Linguistic Events

Synthetic,
Pre-Recorded

Pre-Scripted
Motion

Referential Gaze
[35,36]

Staudte &
Crocker [29]

2009 Manual Annotation
of Linguistic Events

Synthetic,
Pre-Recorded

Pre-Scripted
Motion

Referential Gaze
[35,36]

Mutlu
et al. [13]

2009 Manual Annotation
of Turn Events and

Footing Cues

Unspecified,
Pre-recorded

Production
Rules

Human-Human
Experiment,

Turn-Taking [51,52]

Mutlu
et al. [25]

2009 Manual Annotation
of Linguistic Events

Human,
Pre-Recorded

Pre-Scripted
Motion

Human-Human
Experiment

Ishi et al. [20] 2010 Manual Annotation
of Linguistic Events

Human,
Pre-Recorded

Production
Rules

Human-Human
Experiment

Holroyd
et al. [1]

2011 Manual Annotation
of Turn Events

Synthetic,
Real-Time

Production
Rules

Turn-Taking [33,34]

Huang &
Mutlu [2]

2012 Manual Annotation
of Turn & Linguistic

Events

Human,
Pre-Recorded

Production
Rules

Turn-Taking [33,34],
Referential Gaze

[35,36]

Huang &
Mutlu [16]

2013 Manual Annotation
of Turn & Linguistic

Events

Human,
Pre-Recorded

Production
Rules

Turn-Taking [33,34],
Referential Gaze

[35,36]

Huang &
Mutlu [18]

2014 Manual Annotation
of Turn & Linguistic

Events

Human,
Pre-Recorded

Learning Human-Human
Experiment

Sauppe &
Mutlu [31]

2014 Manual Annotation
of Linguistic Events

Pre-Recorded Pre-Scripted
Motion

Referential Gaze
[35,36]

Table 2.1: Tight Synchronization of Head Gaze with Speech in Literature
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synchronization events [13, 20, 25]. TSHG-S has been shown to have many benefits

for humans, such as increased task performance [8, 9, 13, 25], increased engagement

[1, 7, 8, 25], improved understandability [1, 8], improved likeability [9, 13, 25], and

increased positive feelings [8,45]. However, to date, the use of LSHG-S has not been

investigated.

Manual annotation is the most popular method for TSHG-S. There are six dif-

ferent synchronization events discussed in the literature related to manual annota-

tion. The first three are turn events: Start of Turn [1, 2, 9–11, 19, 22], Middle of

Turn [9, 22], and End of Turn [1, 2, 9–11, 22]. The last three are linguistic events:

First Word in Rheme [9, 22], First Word in Theme [9, 22], and Utterance of Ob-

ject [2, 16, 18, 28, 29, 31]. The theme specifies the topic of a sentence, i.e., what the

sentence is all about, while the rheme specifies what is new or interesting about the

topic [53]. A person identifies and marks the synchronization events in pre-recorded

audio files containing dialog [1, 2, 7, 9–11, 13, 16, 20, 25, 28, 29] or text used to gener-

ate synthetic speech [1, 8]. Manual annotation requires significant human time and

effort. It requires that the robot’s head gaze behaviors be pre-scripted [25, 28, 29]

or selected from a preset library using production rules [1, 2, 7–11, 13, 16, 18, 20, 31].

The use of pre-recorded audio limits the interactivity of the dialog to the extent of

the preset library; therefore the robot is not able to adapt its dialog to the needs of

the current interaction. Synthetic speech is advantageous for interactive conversa-

tions because speech can be generated in real-time based on a textual input, and the

robot can adapt to situations through the generation of dynamic dialog. However,

without any methods that support autonomous annotation, the original limitations

on interactivity still persist.

The only research that uses autonomous head gaze-speech synchronization for

conversation is by Matsusaka et al. [19], which models conversational strategy for
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robot participation in a group conversation. However, of the three possible turn

events in conversations (Start of Turn, Middle of Turn, and End of Turn), this work

only identifies the start of a turn. The implementation does not use any linguistic

events, and has not been validated in an experiment.

Findings from Kirchhof & Ruiter [54] suggest that gesture comprehension is tem-

porally and semantically more flexible than gesture production in humans, and a

higher tolerance exists for modeling gestures in robots. The implementations of so-

cial head gaze are still at the manual Wizard-of-Oz stage, and no work has considered

formal methods that transfer findings to support autonomous implementations. This

work examines the effect of LSHG-S, using close approximations of turn and linguis-

tic events from human-human interaction models, to determine if it is adequate for

human-robot interaction.

2.3 Percepts

Social contexts are situations that arise as a result of humans interacting with

each other. A social context consists of one or more percepts that robots can use to

have a social interaction with a human. Three types of percepts were identified after

generalization and mining of the literature: external, linguistic, and internal.

1. External percepts are visible states of the external world. They typically re-

quire inference and/or interpretation of sensor data. For example, such per-

cepts include:

• Human Shows Initial Interest [1–16,24,26,40].

• Presence of Human [1–16,24,26,40].

• Listening to Human [1, 8, 20, 26,42].

• Presence of Object [1, 2, 4, 8, 16,27–32].
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2. Linguistic percepts occur in the robot’s dialog (text or audio). They include

“rheme” and “theme” semantic units, turn events, and object references. These

percepts are:

• First Word in Theme [9, 13].

• First Word in Rheme [9, 13].

• Start of Turn [1, 2, 6, 9–11,13,16,18,20–23].

• Middle of Turn [9, 13].

• End of Turn [1, 2, 6, 9–11,13,16,18,20–23].

• Onset of Speech Utterance [1, 2, 4, 8, 16, 27–32].

3. Internal percepts are self-perception of an internal state of the robot. This

is based on the robot’s beliefs about the people and objects in the world.

This includes expression of emotions (e.g., confusion) or intent. Three internal

percepts were used by the behavioral robotics framework.

• Internal Statemental state such as Internal Stateconfused [4], Internal Statehappy

[24], Internal Statesad [24], Internal Statesurprise [41], Internal State fear [41],

and Internal Stateanger [41].

• Internal Statealiveness [4].

• Internal Stateacknowledge [1, 8, 20, 26].

2.4 Head Gaze Acts

Head gaze acts are “head” movements used to generate social head gaze. Of

the six head gaze acts described below, three (fixate, avert, and concurrence) are

considered computational primitives, and the others (short glance, confusion, and

scan), are considered as compound head gaze acts.
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1. Fixate, is a head gaze persisting on a target: person, object, or location in

space [1–16, 24, 26, 40]. If the person or object is moving, the fixation tracks

and maintains gaze with the target [9, 21, 28,29].

2. Avert, is a head gaze away from a person or a look away from the person toward

the environment [1, 2, 6, 9–11,13,16,20–22].

3. Concurrence, is a repetitive vertical movement greater than 10◦ or a horizontal

movement greater than 25◦ of the head, which interrupts fixation [21]. Head

nodding has been used only in conjunction with fixation [1, 8, 20, 26,42].

4. Short glance, is a fixation persisting 0.77 sec to 1 sec [13]. Short glances are

often used in a multi-party situation, when the robot needs to acknowledge the

presence of bystanders [13,41].

5. Confusion, is a series of rapid shifts back and forth, accompanied with a roll

of the head as amplification [4]. It should be noted that confusion is only one

example of an emotional state indicated by head gaze. Other emotional states

like joy, surprise, or sadness may require additional head gaze acts [24,26,41].

6. Scan, is a short glance to a series of random points in space [8].

2.5 Robots Used

Eighteen robots were used across the 32 studies. The robots used to investigate

the social head gaze phenomena can be categorized as android, humanoid, animal-

like, or non-anthropomorphic. Fig. 2.2 summarizes the robots used in the study.

Two different androids Geminoid and Repliee, were used in six studies [5, 7, 15,

20, 25, 43]. These robots have very high fidelity human-like features such as head,

eyes, lips, mouth, and skin.
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Robot Used

Android

· Geminoid - [25, 43]
· Repliee - [5, 7, 15,20]

Humanoid

· Robovie -
[3, 6, 10, 11, 13,

20, 25, 27, 43]
· Robita - [19]
· Asimo - [9]

· Peoplebot - [28, 29]
· Alpha - [41]
· Melvin - [1]

· Wakamaru - [2, 16, 18]
· NAO - [23,31]
· HERB - [30]
· PR2 - [32]

Animal-Like

· Leonardo - [4]
· Mel - [8]

· Keepon - [17, 24]
· iCat - [26]

Non-Anthropomorphic

· Inuktun - [14,40]
· Packbot - [14]

Figure 2.2: Robots Used to Evaluate Social Head Gaze

Humanoid robots are the most common robots used in head gaze research, with

10 robots (Robovie, Robita, Asimo, Peoplebot, Alpha, Melvin, Wakamaru, NAO,

HERB, and PR2) being used in 22 studies [1–3,6,9–11,13,16,18–20,23,25,27–32,41,

43]. Humanoid robots have a human-like appearance such as static eyes and mouth,

but these features have very low fidelity when compared to the android robots.

Another type of robot used in gaze research is an animal-like robot. Four animal-

like robots: Mel, Leonardo, Keepon, and iCat were used in five studies [4, 8, 17, 24].

Animal-like robots have a creature-like appearance, for example Mel looked like a

penguin, and Leonardo was designed by professional artists to look like a fanciful

creature.

Non-anthropomorphic robots are designed for function and do not have human-

like or animal-like features, such as eyes or a head. Two non-anthropomorphic robots,

“Inuktun” and “Packbot” have been used in two studies [14,40].
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2.6 Group Configuration

Group Configuration

Dyadic

[1,2,4–8,10,11,14,16–
18,20,23–32,40,42,43]

Triadic

[9, 13,15,19]

Multi-Party

[3, 41]

Figure 2.3: Group Configuration

A group can consist of a human and robot (dyad) or two humans and robot

(triad) or one robot interacting with a large number of people (multi-party). The

different group configurations used in the literature are summarized in Fig. 2.3.

The dyadic two party interactions were used in 27 studies [1, 2, 4–8, 10, 11, 14,

16–18, 20, 23–32, 40, 42, 43] making it the most popular group configuration used for

studying social head gaze. Dyadic interactions are typically easier to model and

follow simple rules of turn-taking.

Four studies [9, 13, 15, 19] modeled head gaze in a triadic group configuration.

Triadic group configurations are more difficult to model because of more complex

turn exchange policies and interruptions.

Only two studies [3,41] used a multi-party interaction. Out of those two studies,

one study [3] modeled only one way speech communication, that is, the participants

communicated with the robot, however the robot responded only by change in head

gaze direction.
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Implementation Style

Fully
Autonomous

[3, 4, 19,27,41]

Partially
Autonomous

[1, 8, 18, 23]

Tele-Operated

[40,42]

Wizard-of-Oz

[2, 5–7, 9–11, 13–17,
24–26,30–32,43]

Video

[20,28,29]

Figure 2.4: Implementation Style

2.7 Implementation Style

Five implementation styles were used to study social head gaze in the litera-

ture: fully autonomous, partially autonomous, tele-operated,Wizard-of-Oz, and video.

Fig. 2.4 summarizes the implementation styles used in the study.

Five fully autonomous implementations used object recognition, gesture recog-

nition, speech synthesis, and face recognition algorithms to socially interact with

humans [3, 4, 19, 27, 41]. In addition, if the speech channel was present, these imple-

mentations autonomously synchronized head-gaze with speech [19].

The four partially autonomous implementations [1, 8, 18, 23] are very similar to

the fully autonomous implementations in terms of object or speech recognition capa-

bilities. However, they were categorized as partially autonomous because the head

gaze-speech synchronization was manual [1,8,18] or the implementation required the

presence of a human to step through conversational turns [23].

Two studies [40, 42] implement head gaze using tele-operation, where the robot

operator puppeteers the robot. Additionally, the person interacting with the robot

is aware that a robot operator is controlling the robot.

Wizard of Oz studies [47] use hard-coded head gaze acts synchronized with speech,
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and do not use object or speech recognition systems. The person interacting with

the robot is not aware that a “Wizard”/robot operator is controlling the robot,

and instead attributes agency to the robot. These studies have been popular for

studying the head gaze phenomena in robots, and have been used in 19 studies

[2, 5–7,9–11,13–17,24–26,30–32,43].

Video studies use a video of a robot that is physically embodied, or in simulation

to study head gaze. Only three studies [20,28,29] used this approach.

2.8 Tasks

Tasks

Presentation

[8–11, 13, 18,
23,27,41]

Learning

[4, 6]

Conversation

[6,15,19,20,
26,42,43]

Game

[1, 2, 5, 7,
16,25]

Fundamental
Research

[3, 14, 17, 24,
28–32,40]

Figure 2.5: Tasks Used to Evaluate Social Head Gaze

There are five types of tasks used by researchers to study social head gaze in

human-robot interaction. They are: presentation, learning, conversation, game, and

fundamental research. The different tasks used in the literature are summarized in

Fig. 2.5.

The tasks which involve presentation of content such as posters, product demon-

stration, or story-telling by the robot to the human are categorized as presentation

tasks. These tasks are useful for validating elements of social head gaze in a triadic
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or multi-party scenario. Eight studies used presentation tasks to evaluate social head

gaze [8–11,13,18,23,27].

In a learning task, the robot learns appropriate responses from the human in

real-time during the task. Learning tasks are uniquely suited to tailor the behavior

of the robot to a specific individual. Two studies use a learning task to achieve a

common shared goal [4, 6].

During conversational tasks, the robot uses head gaze behaviors to facilitate con-

versational turn-taking. The conversation could be purposeful and goal oriented, or

small talk. Seven studies used this type of task to gauge the benefit of social head

gaze in conversations [6, 15,19,20,26,42,43].

The robot and the human are engaged in a game task if they play a game together.

Six studies used game tasks to measure performance [1, 2, 5, 7, 16,25].

Fundamental research tasks are specifically designed to evaluate the performance

and direction of gaze or some other aspect of a social interaction that includes gaze.

10 studies used fundamental research tasks [3, 14,17,24,28–32,40].

2.9 Measures

Three types of measures (subjective, objective, and behavioral) were used to quan-

tify and determine the impact of using social head gaze in robots (Figs. 2.6, 2.7, 2.8).

Four different methods (questionnaires, video coding, interview, and eye-tracker) were

used to evaluate the three types of measures listed previously.

Subjective measures directly assess social gaze by asking the participants to rate

their own or observed interpretations of the interaction on an anchored scale (for

example, the Self Assessment Manikin (SAM) [55] questionnaire). They are straight-

forward and easy to administer and are hence widely adopted. Subjective measures

are used in 23 studies, as shown in Fig. 2.6, and can be categorized as measures
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Subjective Measures

Perception of Robot’s Phys-
ical, Social, and Intellectual
Characteristics

· Reliability - [8]
· Appropriateness of

Movement - [2, 8, 30,31]
· Friendliness - [14,25,30]

· Likeability - [2, 9, 13,15,18,25]
· Intelligence - [9, 13, 25,30]
· Notice Robot’s Gaze - [3]
· Fluent and Natural -
[1, 2, 18,20,23,30–32,43]
· Human-Like - [1, 41]
· Competence - [2, 18]

· Appropriate Looking at
Objects - [2, 30,31]

· Gaze-Speech
Synchronization - [1, 2]

Task Performance

· Difficulty of Task - [15]
· Effectiveness of Task - [4]
· Attentiveness of the Robot
to the Human - [14,17,41]

Attributions of Mind
and Intentionality

· Groupness - [13,30]
· Understandability -

[1, 4, 6, 8, 25]
· Participant’s Mental

Model - [4]
· Trust - [25]

· Initiative - [25]
· Intention to Use - [26]
· Social Presence - [18,26]

Participants’ Affective
State

· Emotional
Response - [8, 13]
· Easiness - [6]

· Sharedness - [4, 6]
· Empathy - [6, 13,25]
· SAM:Arousal - [14]
· SAM:Valence - [14]
· Thoughtfulness - [23]

Demographics

[3,4,6,8,9,13,
15,25,28,29]

Figure 2.6: Subjective Measures

of Perception of the Robot’s Physical, Social, and Intellectual characteristics, Task

Performance, Attribution of Mind and Intentionality to the Robot, Participants’

Affective State, and Demographics [1–4, 6, 8, 9, 13–18, 20, 23, 25, 26, 28–32, 41]. Per-

ception of the Robot’s Physical, Social, and Intellectual characteristics comprised of

11 measures – Reliability, Appropriateness of movement, Friendliness, Likeability,

Intelligence, Notice robot’s gaze, Fluent and Natural, Human-like, Competence, Ap-

propriate looking at objects, and Gaze-speech synchronization. Task Performance

included three measures - Difficulty of Task, Effectiveness of Task, Attentiveness

of the Robot to the Human. The measures for Attribution of Mind and Inten-

tionality were - Groupness, Understandability, Participants’ Mental Model, Trust,

Initiative, Intention to Use, and Social Presence. The Participants’ Affective State
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was measured by eight measures - Emotional Response, Easiness, Sharedness, Em-

pathy, SAM:Arousal, SAM:Valence, and Thoughtfulness. Finally, the Demographics

instrument was used for obtaining information on participants’ age, gender, ethnic-

ity, experience with robots, video gaming experience, and pet ownership. The typical

methods used in subjective measurement were questionnaires and interviews. While

each of the 23 studies used questionnaires, only seven studies [15,18,23,25,30,42,43]

used the interview method.

Objective Measures

Task Performance

· Recall - [2, 9, 13,18]
· Time to Complete Task - [4]

· Time to Detect/Mitigate Errors - [4]
· Time to Locate Objects - [2, 16, 28,29,41]

· Number of Correct Answers - [31]

Engagement

· Interaction time - [8, 41]
· Average Movement - [6]

· Time Looking at the Robot - [15,30]
· Frequency and Direc-
tion of Fixation - [5, 7, 30]
· Number of Interruptions - [23]

Figure 2.7: Objective Measures

Objective measures directly assess social gaze by comparing an individual’s per-

ception of the interaction to some ground truth. This is a rating based on a compari-

son of the data between the participant’s perceptions and what is currently happening

in the interaction. An objective measurement typically defies interpretation; it does

not require the operator or the observer to make judgments. Objective measures were

used in 19 of the 32 studies [2, 4–9, 11, 13, 15, 16, 18, 23, 25, 28–31, 41]. The objective

measures for social head gaze are categorized as either Task Performance or Engage-

ment (Fig. 2.7). The five measures used for Task Performance were - Recall, Time
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to Complete Task, Time to Detect/Mitigate Errors, Time to Locate Objects, and

Number of Correct Answered. Engagement comprised of five measures - Interaction

Time, Average Movement, Time Looking at the Robot, Frequency and Direction of

Fixation, and Number of Interruptions. The objective video coding [56, 57] method

was used in each of the 19 studies.

Behavioral Measures

Attentiveness

· Attentiveness of the Human to the Object - [24,28,29]
· Attentiveness of the Human to the Robot - [8, 24]
· Attentiveness of the Robot to the Human - [13,27]
· Attentiveness of the Robot to the Object - [8, 27]

Engagement

· Conversational Expressiveness - [6, 8, 11,13,26]
· Body Direction from Shoulder Movement - [6, 18]

· Overall Evaluation - [8, 13,18]

Figure 2.8: Behavioral Measures

Behavioral measures infer from the actions that participants choose, based on the

assumption that good actions/response will follow from good social head gaze and

vice-versa. Observers are often forced to rely more on the participants’ observable

actions and verbalizations in order to infer the effectiveness of social head gaze.

Since behavioral measures rely primarily on observer ratings, they are somewhat

subjective in nature. Behavioral measures were analyzed in 10 studies (Fig. 2.8),

and can be categorized as measures of Attentiveness and Engagement [6, 8, 11, 13,

18, 24, 26–29]. Attentiveness is measured by four measures - Attentiveness of the

Human to the Object, Attentiveness of the Human to the Robot, Attentiveness of

the Robot to the Human, and Attentiveness of the Robot to the Object. Engagement

of the participants’ in the interaction is inferred from three measures - Conversational

Expressiveness, Body Direction from Shoulder Movement, and Overall Evaluation.
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In each of the 10 studies, the recorded video was examined by independent observers,

and every overt action/reaction of the participant was coded (behavioral analysis)

to infer Attentiveness and Engagement. In two studies [28,29], Eye-tracker was used

to evaluate one Attentiveness measure - Attentiveness of the Human to the Object

(Fig. 2.9).

Methods of Measurement

Questionnaire

[1–4, 6, 8, 9, 13–
18, 20, 23, 25, 26,
28–32,41]

Video Coding

[4, 6, 8, 9, 11, 13,
15,18,23–29]

Interviews

[15,18,23,25,30,
42,43]

Eye-Tracker

[28,29]

Figure 2.9: Methods of Evaluation

2.10 Summary

This section describes 32 distinct studies relating to social head gaze, and an-

alyzes each study in terms of a novel taxonomy: synchronization, percepts, head

gaze acts, robots used, group configuration, implementation styles, tasks, and mea-

sures. The current state-of-the-art TSHG-S was discussed and three limitations were

presented. First, TSHG-S requires manual annotation and semantic content under-

standing. Second, if the robot uses a preset library to select appropriate head gaze

behaviors, the head gaze cannot be generated in open-ended, interactive scenarios.

Third, tight synchronization of gaze and speech that mimics human gaze may not

be feasible due to limitations of the robot. Three percepts (external, internal, and

35



linguistic) and six distinct head gaze acts (fixate, avert, concurrence, scan, confu-

sion, and short glance) were defined. The robots used were categorized as one of

four types: android, humanoid, animal-like, and non-anthropomorphic. Three group

configurations (dyad, triad, and multi-party) used in human-robot interaction were

identified. The implementation styles of head gaze were grouped as follows: fully

autonomous, partially autonomous, Wizard-of-Oz, and video. The tasks used to eval-

uate social head gaze were categorized as: presentation, learning, conversation, game,

and fundamental research. Three types of measures (objective, subjective, behavioral)

were detailed along with a discussion on four different methods for evaluating social

head gaze: questionnaires, video coding, interview, and eye-tracker.

The survey of the 32 distinct studies identifies at least four gaps:

1. The studies investigated the social head gaze phenomena using only TSHG-S,

which are replications of how a human generates head gaze. TSHG-S uses

semantic understanding, which requires significant human effort and time to

manually annotate synchronization events in advance, restricts interactive di-

alog, and requires the operator to act as a puppeteer.

2. Implementations of social head gaze generation are at the manual Wizard-of-

Oz stage, and little work has considered formal methods that transfer findings

into autonomous implementations.

3. No programmable framework of social head gaze generation appears to exist in

the social or computer sciences, resulting in robotic implementations using only

partial understandings of head gaze generation, or creating ad hoc frameworks.

4. The studies were mostly limited to anthropomorphic robots, neglecting inter-

actions with robots, which may be constrained by function to have a semi-
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anthropomorphic or non-anthropomorphic form (e.g., a rescue robot).

This work addresses gaps (1) and by (2) by conceiving LSHS-S, a practical alter-

native to TSHG-S. In order to address gaps (3) and (4), this research constructs a

behavioral robotics framework of social head gaze that provides a broad representa-

tion of robotics applications with wide applicability.

Social head gaze plays a central role in human-robot interaction. When head gaze

is absent, breakdowns occur in conversations and can engender negative outcomes

like ostracism [58]. Human-robot interaction studies provide strong evidence that

robot gaze leads to increased task performance [2, 4–9, 13, 15, 25, 28, 41], increased

engagement [5–8,11,15,25,41], improved perception of a robot’s physical, social and

intellectual characteristics [1–3, 6, 8, 9, 13, 15, 20, 25, 41, 44], increased attributions of

mind and intentionality to the robot [1, 4, 6, 8, 25], increased positive affective state

[6,8,12,45], improved attentiveness to the robot and task [8,13,27,28]. Therefore, it is

imperative to capture a computational theory of social head gaze and autonomously

generate head gaze-speech acts.
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3. THEORY AND APPROACH

The existing approaches to generate head gaze-speech acts in human-robot inter-

action requires significant human effort and time to manually annotate synchroniza-

tion events in advance. This is because the identification of these synchronization

events depends on the semantics of dialog, which requires inference. Additionally,

these approaches [2, 4, 7, 7, 8, 8, 16] typically used theory of mind systems to decide

on actions to be performed based on the robot’s beliefs about objects in the world.

Theory of mind systems model cognitive processes such as Visual Attention, Working

Memory, and Behavior Arbitration. They decide on actions to be performed based

on the robot’s beliefs about objects in the world. However, they do not describe what

the system does in terms of specific mechanisms or terminologies. There is a lack

of clarity on when to generate head gaze and how to generate it. The approach to

capture a computational theory of social head gaze and generate autonomous head

gaze-speech acts has two components: (1) the substitution of affordances for linguis-

tic and internal percepts of head gaze to infer the state of an interaction (e.g., end

of turn, beginning of turn, middle of turn theme, middle of turn rheme), and (2) the

use of a behavioral robotics framework to map affordances onto head gaze acts, and

enable a robotic implementation. The affordances for linguistic and internal percepts

of head gaze are computationally trivial, are independent of semantics, support au-

tonomous generation, and are useful for interactive, open-ended conversations. They

can serve as a reasonable substitute until deeper methods of determining the state of

an interaction can be developed. This section introduces affordances and translates

the review of literature into the behavioral robotics framework. Section 4 will discuss

the specific implementation choices made for the “Survivor Buddy” robot.
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3.1 Affordances

Affordances are conditions or objects that are directly perceivable without any

memory, inference, or interpretation, and have been widely used by behavioral roboti-

cists because they simplify computation [37]. In robot soccer competitions, a goal

area may be painted a specific color, and that color is only permitted to be used for

the goal; thus if a robot perceives that color, it is the goal, and the robot does not

have to remember where it is located.

The development of LSHG-S is made possible by the substitution of affordances

for linguistic and internal percepts (turn-taking, semantics, and internal states).

The affordances can be based on sentence structure, time delays, typing, prosody,

or inflection of speech. For example, during a human-human conversation, a person

always averts his or her gaze at the beginning of a turn, and at the start of the

“theme” [22]. A limitation of using “rheme” and “theme,” is that they are subjective,

and vary with sentences. A word that is at the beginning of the “rheme” in one

sentence, need not mark the beginning of the “rheme” in another sentence. The

locations of the “rheme” and “theme” need to manually inferred by a human before

the start of a interaction. However, in straightforward simple sentences, the theme is

at the beginning of the sentence and the rheme is at the end [53]. Thus punctuation

(! ?, and carriage return at the end of a paragraph) in text-to-speech or inflection in

voice recognition are approximations of the location of the “rheme” or “theme,” and

act as affordances. Another example of an affordance is elapsed time. The elapsed

time since the start of a turn affords back-channeling; the listener typically nods to

show that they are still listening [8, 21].

The proposed approach for the realization of head gaze through the use of affor-

dances supports autonomous coordination of head gaze-speech. They are unique, can
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be easily computed, and do not require manual annotation. It enables interactive,

open-ended conversations, and can be tailored to the limitations of specific robots

and applications. The specific affordances using the implementation of LSHG-S on

the “Survivor Buddy” rescue robot are described in Section 4.

3.2 Mapping of Social Head Gaze Unto Behavioral Robotics Framework

A behavioral robotics framework, also called “programming by behavior,” was

selected to represent social head gaze, since this has been shown to express etho-

logical, psychological, and robotic concepts, and it is consistent with good software

engineering principles, such as modularity and extensibility [37,38]. The constructed

behavioral robotics framework needs to capture the commonalities, essence, and

experience of previous successful head gaze generation implementations, so that it

provides a broad coverage and wide applicability. Hence, a two-step methodology

commonly used to derive reference architectures [59, 60] was followed:

1. Construction of Conceptual Architectures - Conceptual Architectures were de-

rived for each of the 32 previous implementations of social head gaze using

behavioral robotics theory [37, 38] as the common framework. Conceptual ar-

chitectures are abstract representations of subsystems and inter-subsystem re-

lations, not specific procedures or variables [60].

2. Commonality Analysis - A commonality analysis [61] was employed to synthe-

size shared elements between the resulting 32 conceptual architectures to form

a behavioral robotics framework.

3.2.1 Construction of Conceptual Architectures

The key construct in behavioral robotics is a behavior b, which maps a percept

s onto an act r [38]. An agent may have multiple behaviors active at the same time
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Common Terms in the
Ethology Community

Common Terms in the
Robotics Community

Example from
Social Head Gaze

b behavior behavior communicating social attention

s stimulus percept human shows initial interest

r response act fixate

G gain gain culture and gender

C coordination function coordination function arbitration by prioritization

ρ overall response overall response fixate

Table 3.1: Common Terminology in the Ethology/Psychology and Behavioral
Robotics Communities Illustrated with a Social Head Gaze Example.

therefore, the combined observable response is given as ρ = C(G× B(S)), where B

is a vector of behaviors, S is a vector of sensed percepts, G is a vector of the gain

functions, and C is the coordination function that determines the overall response

ρ. The strength of act r may be modified by a gain G, which may amplify or reduce

the contribution of an individual behavior to the overall behavior. Examples of

gains in social head gaze are covariate factors such as culture and gender, which are

identified to have a significant influence on head gaze [9, 13]. Table 3.1 illustrates a

social head gaze example using behavioral robotics terminologies; the terminology

from ethology/psychology is also included for readers familiar with those fields. For

example, while communicating social attention to a human, a robot should consider

gender when determining the amount of time it will fixate [9]. Here the behavior is

fixate = f(gender)× communicating social attention(human).

As the first step towards the construction of the behavioral robotics framework,

this work derives conceptual architectures for each of the 32 previous implementations

of head gaze using the behavioral robotics notations described above. The concep-

tual architectures are comprised of behaviors, percepts, acts, gains, and coordination

functions. Figure 3.1 provides a diagrammatic representation of the conceptual ar-

chitectures.
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Figure 3.1: Example of an Conceptual Architecture for Two Individual Behaviors
with Gains Passing Through a Coordination Function.

3.2.2 Commonality Analysis

A commonality analysis is an analytical technique used to determine the compo-

nents of an architecture [61]. It helps identify the domain concepts that represent the

common elements of the domain at its highest level of abstraction; it is also useful

for normalizing the existing notations produced by previous implementations.

The 32 conceptual architectures derived previously were iteratively analyzed to

identify and create useful abstractions common to all conceptual architecture com-

ponents. The nomenclature was then standardized. For example, Avert [15,17], Look

Away [1, 9, 13,22], and Avoid Gaze [11] all corresponded to the same head gaze act;

hence, that head gaze act was standardized to Avert. This step ensured that imple-

mentations with different overall functionality, environments, and robot types were

taken into consideration and supported. The commonality analysis identified three

types of percepts, six head gaze acts, five behaviors, and one coordination function

based on prioritization. Section 2 defines the three types of percepts – external per-

cepts, linguistic percepts, and internal percepts – and the six head gaze acts – fixate,

avert, concurrence, short glance, confusion, and scan.

Five social head gaze behaviors were identified:

1. Communicating Social Attention is a behavior where head gaze is used
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by robots to look interested in human(s) [1–16,24,26,40]. This behavior maps

an external percept Human Shows Initial Interest on to the fixate head gaze act.

This behavior is initiated for non-verbal communication, and typically occurs

at the beginning of an interaction or if the robot is not capable of speech.

2. Regulating an Interaction is a behavior where head gaze is used for

engaging in a verbal conversation with human(s) [1,2,6,9–11,13,16,20,22]. This

behavior maps combinations of linguistic and external percepts on to the fixate,

avert, or concurrence head gaze acts. The linguistic percepts facilitate turn-

taking and are as follows: Start of Turn, Middle of Turn, End of Turn, First

Word in Theme, and First Word in Rheme. The external percept Listening

to Human and internal percept Internal Stateacknowledge are used to activate

back-channeling.

3. Manifesting an Interaction is a behavior where head gaze is used to

direct attention towards objects in the environment [1, 2, 4, 8, 16, 27–29]. The

behavior maps external and linguistic percepts onto the fixate head gaze act.

A combination of the external percept Presence of Object and the linguistic

percept Onset of Object Utterance facilitates referential gaze.

4. Projecting Mental State is a behavior where head gaze is used for show-

ing various mental states, such as emotions. This behavior maps an internal

percept such as Internal Statemental state onto the head gaze act for mental state

such as confusion [4] or emotions such as happiness, sadness, surprise, etc [24].

The internal state of the robot can be set based on its beliefs about the people

and objects in the world.

5. Establishing Agency is a behavior where a head gaze is used to convey
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extract_turn
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countdown
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Figure 3.2: Notational View of the Possible Behaviors in the Behavioral Robotics
Framework for Social Head Gaze. The Range of Possible Perceptual Schemas, Per-
cepts, and Head Gaze Acts Have Been Enumerated.

general liveliness and awareness [4, 8, 26]. This behavior maps an internal

percept such as Internal Statealiveness onto the scan head gaze act.

A coordination function fuses the responses of multiple active behaviors [37, 38].

The existing social head gaze system architectures [1,2] use a competitive arbitration

method based on the prioritization of behaviors to select a single overall response.

None of the 32 studies reported implementations using gain parameters such as

gender or culture to actively influence the generation of a head gaze.
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3.2.3 Resulting Behavioral Robotics Framework

Figure 3.2 shows the behavioral robotics framework resulting from the common-

ality analysis. The components of the master framework are grouped into Perceptual

Schemas, Behaviors, Motor Schemas, and Coordination Function. This grouping of

the components of the master framework is as was suggested by Arkin [38].

Perceptual Schemas have at least one method that takes sensor input and trans-

forms it into a data structure called a percept [37]. Perceptual schemas are used to

generate the external, linguistic, and internal percepts or the affordances for these

percepts. Figure 3.2 enumerates a list of nine possible perceptual schemas to generate

the percepts. The perceptual schemas used to extract the affordances are discussed

in Section 4. The detect human perceptual schema is used to detect the Presence of

Human percept. The detect interest perceptual schema generates the Human Shows

Initial Interest percept. The detect speech perceptual schema computes the Listen-

ing to Human percept. The Presence of Object is indicated by the detect object

perceptual schema. The extract turn perceptual schema returns Start of Turn, Mid-

dle of Turn, and End of Turn percepts. The Start of Rheme and Start of Theme

semantic units are extracted by the extract semantic unit perceptual schema. The

detect object name perceptual schema computes the Onset of Speech Utterance per-

cept. This perceptual schema sets the Internal Statemental state percept. Finally, the

countdown perceptual schema provides two internal percepts Internal Statealiveness

and Internal Stateacknowledge. The perceptual schemas can share the same sensors.

For example, the detect human perceptual schema shares the sensor data from the

webcam with the detect object perceptual schema. Additionally, the computational

processes in the behaviors can share the percepts created by the perceptual schemas.

The Presence of Human percept is shared between Communicating Social At-
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tention and Regulating an Interaction social head gaze behaviors.

The behavioral robotics framework consists of five behaviors: Communicating

Social Attention, Regulating an Interaction, Manifesting an Inter-

action, Projecting Mental State, and Establishing Agency. These be-

haviors become active when their corresponding percept is perceived. The behaviors

are transformation units; they map the percept to an appropriate head gaze act. The

behaviors can employ different computational mechanisms (models based on prob-

ability or learning). The gains are shown as parameters that apply to each of the

individual behaviors. The gain parameters can be used to modify duration, speed,

and range of head gaze acts based on covariate factors that influence head gaze, such

as the culture and gender [9, 13] of the interaction partner. However, at the present

time there is no literature informing the implementation values for these factors.

The motor schema represents the template for physical activity and are connected

to actuators [37]. The motor schema of the behavioral robotics framework currently

supports six head gaze acts: Fixate, Avert, Concurrence, Short Glance, Confusion,

and Scan.

The coordination function is used to coordinate the responses of multiple active

behaviors [37,38]. The coordination function ensures that the robot is sensitive to the

current context and conveys the appropriate meaning. The prioritization rules used

by existing architectures [1,2] are ad hoc [1], lack implementation details [2], and are

limited to two or three behaviors. Hence, a coordination scheme based on timestamps

(highest priority for the most recent behavior) and the nature of the behavior (atomic

or non-atomic) is proposed in Section 4. While any other appropriate coordination

action selection methods, fuzzy logic, or voting can be used, this was the first scheme

to be implemented for the five behaviors.

The behavioral robotics framework has been constructed from six categories of
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robotics applications that implement head gaze: healthcare [24,26], victim manage-

ment [14, 40], robot guides [8, 10, 11, 13, 41], entertainment [1, 2, 4, 5, 9, 16], telepres-

ence [42, 43], and fundamental research [3, 6, 7, 15, 17, 20, 27–29], and captures their

commonalities, essence, and experience. Therefore, it is expected that the behav-

ioral robotics framework for head gaze can be instantiated for each of these original

applications, in addition to new ones.

The proposed behavioral robotics framework’s broad coverage and wide appli-

cability provides a foundation for further discussion. It identifies many of the key

aspects and components that will be present in any well-designed head gaze genera-

tion system. However, it is not a comprehensive representation of all understandings

of social head gaze. The behaviors, percepts, and head gaze acts were selected

from implementations of head gazes within the robotics domain, rather than directly

from human-human communication literature. Eye gaze is excluded from the master

framework, as it includes additional complexities that are the subject of future work.

Head gaze alone has significant value and can be used without eye gaze. Additionally,

it is widely applicable in the robotics domain (very few robots have movable eyes).

If additional competencies are discovered to be important for robotic head gaze, the

behavioral robotics framework can be extended to accommodate these changes.

3.3 Summary

This section discussed the theory and approach to a computational theory of

social head gaze for social agents, and captured it as a programmable framework,

so that head gaze-speech acts can be autonomously generated. The approach is

comprised of two components: 1) the substitution of affordances for linguistic and

internal percepts of head gaze (e.g., end of turn, beginning of turn, middle of turn

theme, middle of turn rheme), and (2) the use of a behavioral robotics framework to
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map affordances onto head gaze acts, and enable a robotic implementation.

Affordances were introduced as conditions or objects that are directly perceivable

without any memory, inference, or interpretation [37]. The generation of LSHG-S

using affordances from sentence structure, time delays, typing, prosody, or inflection

of speech instead of linguistic and internal percepts was examined. The three ad-

vantages of using affordances were detailed: (1) support for autonomous generation,

(2) unique and can be easily computed, (3) independent of semantics and manual

annotation, and (3) enables interactive open-ended conversations.

A two-step procedure by [59, 60] was followed to derive the behavioral robotics

framework from 32 existing implementations of head gaze. First, conceptual ar-

chitectures for each of 32 previous implementations were constructed. Second, a

commonality analysis was employed to synthesize shared elements between the re-

sulting conceptual architectures and construct the behavioral robotics framework.

The constructed behavioral robotics framework consisted of Perceptual Schemas,

Behaviors, Motor Schemas, and Coordination Function. Nine perceptual schemas

were used: detect human, detect interest, detect speech, detect object, extract turn,

extract semantic unit, detect object name, detect mental state, and countdown. The

perceptual schemas generated three types of percepts: external, linguistic, and in-

ternal. Five social head gaze behaviors were identified – Communicating Social

Attention, Regulating an Interaction, Manifesting an Interaction,

Projecting Mental State, and Establishing Agency – to map the percepts

on to the head gaze acts. The motor schema comprised of six head gaze acts: Fixate,

Avert, Concurrence, Short Glance, Confusion, and Scan. The behavioral robotics

framework provides broad coverage, wide applicability, and identifies many of the

key aspects and components that will be present in any well-designed head gaze

generation system.
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4. IMPLEMENTATION ∗

In order to answer the secondary research question How can social head gaze

be expressed as behaviors or schemas, which are common representations in both

psychology and robotics?, the important aspects of head gaze such as percepts, head

gaze acts, behaviors, and coordination function described by the behavior robotics

framework in Section 3 needs to be implemented. The implementation specific details

for mechanisms to perceive the percepts, execute head gaze acts, map the head gaze

act onto the percept, and coordinate multiple active behaviors are described in this

section.

The implementation of LSHG-S on the “Survivor Buddy” robot is summarized

in Fig. 4.1. Moving from left to right, the Fig. 4.1 shows perceptual schemas that

extract the affordances, the affordances from sentence structure, time delays, and

typing that approximate the linguistic and internal percepts for a social head gaze

behavior, the gaze acts along with the probability of its occurrence, the coordination

function, and the five social head gaze behaviors that serve as the mapping. The

experiment conducted to evaluate this implementation using the Survivor Buddy

robot in a victim management scenario is discussed in Section 5.

4.1 Robot Platform Description

The proposed head gaze generation method was implemented on Survivor Buddy,

an affective multimedia head mounted on an Inuktun Extreme-VGTV robot (Fig. 4.2

and 5.1). Survivor Buddy has four degrees of freedom, and is capable of very agile

movements. Survivor Buddy’s head is a 7” touch screen monitor with a webcam and

∗Reprinted with permission from “Evaluation of Head Gaze Loosely Synchronized with Synthetic
Speech for Social Robots” by Srinivasan, V., Bethel, C.L., Murphy, R.R, 2014. IEEE Transactions
on Human-Machine Systems, Accepted for Publication, Copyright [2014] by Vasant Srinivasan.
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Figure 4.1: Implementation of LSHG-S

microphone manufactured by MIMO Monitors. The neck of the robot contains the

speaker system. Note that the Survivor Buddy robot has low degree of anthropomor-

phism, with a mechanical appearance. The computation theory can be implemented

independent of the choice of robot. However, factors such as (perceived) appearance

of the robot or degrees of freedom may impact the user perception of head gaze.

There is no existing literature informing this.

The software implementation of the LSHG-S system was in C# and used Mi-

crosoft text-to-speech with the Microsoft Anna voice. While any other programming

language can be used to implement LSHG-S, C# was chosen because of the avail-

ability of pre-existing libraries for motor control and support for object-oriented

development. Microsoft Anna voice was chosen because of clarity of speech and clear
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Figure 4.2: Survivor Buddy Robot

pronunciation present in this text-to-speech voice.

The implementation currently requires typed text and punctuation. This is avail-

able transparently to a robot that is operated autonomously, or can be provided by

the operator if it is tele-operated. The TSHG-S implementation used pre-recorded

audio files for each turn of the robot dialog, so that head gaze can be tightly syn-

chronized with speech by manual inspection.

4.2 Affordances for Linguistic and Internal Percepts

The current LSHG-S implementation uses eight affordances from the sentence

structure used in dialog, time delays, and typing to infer linguistic percepts and

internal percepts respectively. The five linguistic percepts from the robot’s dialog:

End of Turn, Start of Turn, Middle of Turn “Theme”, and Middle of Turn “Rheme”

are substituted with affordances from the sentence structure: Initial Word, Word

following Punctuation : . ! ?, After 75% of Words between Punctuation : . ! ?,

Carriage Return, and The Object Name Tag. Two internal states of the robot: inter-
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Percepts from
Literature

Substituted Affordances in Sentence
Structure, Time Delays, and Typing

1 First Word in Theme
Start of Turn [9, 13,22]

Initial Word

2 First Word in Theme
Middle of Turn [9, 13,22]

Word following Punctuation : . ! ?

3 First Word in Rheme
Middle of Turn [9, 13,22]

After 75% of Words between Punctuation : .
! ?

4 First Word in Rheme
End of Turn [9, 13,22]

Carriage Return

5 800 msec to 1 sec before
Onset of Utterance of Object
[2, 16,28,29]

The Object Name Tag

6 Internal Stateacknowledge

[4, 8, 21]
Elapsed Listening Time > 6 sec

7 Internal Statealiveness [4, 8] Elapsed Idle Time > 15 sec

8 Internal Stateconfused [4] Number of Deletes/Retypes by an Operator
> 5 within a Time Interval t = 15 sec

Table 4.1: Affordances from Sentence Structure, Time Delays, and Typing.

nal stateacknowledge and internal statealiveness are approximated using affordances from

time delays: Elapsed Listening Time > 6 sec and Elapsed Idle Time > 15 sec. One

internal state of the robot – internal stateconfused is approximated with an affordance

from typing – Number of Deletes/Retypes by an Operator > 5 within a Time Inter-

val t = 15 sec. Table 4.1 lists the eight percepts in the literature for turn events,

linguistic events, and internal states, that require semantic or speech understand-

ing (column 1) and how this research substitutes an affordance of either sentence

structure, time delay, or typing (column 2) for a linguistic or internal percept, which

produces a social head gaze act.

4.2.1 Affordances for Linguistic Percepts

Linguistic percepts occur in the robot’s dialog (text or audio). For example,

such percepts include Start of Turn, Middle of Turn, End of Turn, First Word in
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Theme, First Word in Rheme, and Onset of Speech Utterance. These percepts re-

quire inference and interpretation. For example, the theme specifies the topic of a

sentence, (i.e., what the sentence is all about), while the rheme specifies what is new

or interesting about the topic [53]. However, the limitation of using semantic units

“theme” and “rheme” is that they are subjective, require sentence understanding,

and vary with sentences. A word that is at the beginning of the “rheme” in one sen-

tence need not mark the beginning of the “rheme” in another sentence. However, in

straightforward simple sentences, the theme is at the beginning of the sentence and

the rheme is at the end [53]. Thus punctuation (! ?, and carriage return at the end of

a paragraph) in text-to-speech or inflection in voice recognition are approximations

of the location of the “theme” or ”rheme” and act as affordances.

The first five affordances (rows 1 - 5) in Table 4.1 – Initial Word, Word following

Punctuation : . ! ?, After 75% of Words between Punctuation : . ! ?, Carriage

Return, and Object Name Tag – are extracted by the extract sentence structure per-

ceptual schema. The Initial Word, Word following Punctuation : . ! ?, After 75%

of Words between Punctuation : . ! ?, Carriage Return affordances are the sentence

structure approximations of linguistic percepts (Start of Turn, Middle of Turn, End

of Turn, First Word in Rheme and First Word in Theme) from models of human-

human interaction. Since the theme occurs at the the beginning of an independent

clause or simple sentence [53], the occurrence of First Word in Theme) and Start

of Turn can be substituted with Initial Word of a new turn in the robot’s dialog.

Similarly, the occurrence of First Word in Theme) and Middle of Turn can be sub-

stituted with the first word of a new sentence within the same turn of the robot’s

dialog or Word following Punctuation : . ! ?. The rheme occurs toward the end of

the independent clause or simple sentence [53]. Therefore, the occurrence of First

Word in Rheme) and Middle of Turn can be substituted by After 75% of Words
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between Punctuation : . ! ?. The occurrence of First Word in Rheme and End of

Turn can be substituted with the last character of the current turn of the robot’s

dialog or Carriage Return. The affordance listed in Row 5 is a Object Name Tag

inserted before an object name. This affordance approximates the gaze at an object

in the environment from an 800 msec to 1 sec before Utterance of Object [2,16,28,29]

to gaze at the object at the onset of Utterance of Object. The Object Name Tag can

be inserted either manually when there is an operator present and typing a sentence,

or can be autonomously inserted by a reasoning system. The advantages of using

these affordances over the “theme” or “rheme” are that they are unique, can be

easily computed, and support autonomous annotation.

4.2.2 Affordances for Internal Percepts

Internal percepts are self-perception of an internal state of the robot. This is

based on the robot’s beliefs about the people and objects in the world. Internal states

are typically determined by the Cognitive System of the robot. Three internal states

of the robot internal stateacknowledge, internal statealiveness, and internal stateconfused [4]

are substituted with three affordances (rows 6 - 8) from time delays and typing.

The countdown perceptual schema provides the two affordances based on time

delays: Elapsed Listening Time > 6 sec and Elapsed Idle Time > 15 sec. The

affordance listed on row 6 approximates the internal stateacknowledge by thresholding

the time interval between the robot’s responses to the human during dialog. If the

Elapsed Listening Time > 6 sec, the internal state of the robot is set to acknowledge.

The affordance for the internal statealiveness from row 7 is a timeout based on the

idleness of the robot. If the Elapsed Idle Time > 15 sec, the internal state of the

robot is set to aliveness. Since the existing literature does not provide guidance

on specific values for back-channels and acknowledgements [1, 8], or aliveness [4], a
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suitable timeout was estimated by the researchers to communicate the corresponding

function of head gaze effectively.

The affordance listed in Row 8 is based on typing and used only when an oper-

ator is using the robot. This affordance is returned by the detect typing perceptual

schema. It approximates the internal stateconfused [4] of the robot by thresholding the

number of deletes and retypes in a time interval t. If the Number of Deletes/Retypes

by an Operator > 5 within a Time Interval t = 15 sec, the internal state reflects

confusion.

4.3 Head Gaze Acts

The robot used five head gaze acts: fixate, avert, concurrence, confusion, and

scan. The gaze acts are robot-dependent, as each robot would have its own imple-

mentation of acts based on its degrees of freedom and motor characteristics. The

Survivor Buddy robot moved with an average velocity of 33◦/sec for all gaze acts.

Since the existing literature does not provide guidance on specific values for the

velocity, a suitable velocity was chosen by the researchers to communicate the corre-

sponding function of head gaze effectively. The implementation specifics of the gaze

acts matched the known parameters used by earlier implementations of head gaze in

the literature, and are described below.

1. Fixate moves the robot’s head to a position facing the human directly at a

velocity of 33◦/sec. Fixation occurs for an indefinite duration until another

gaze act activates [1–13,15,16].

2. Avert is a +/- 7◦ simultaneous horizontal and vertical movement of the head,

away from the fixation point [21] at a velocity of 33◦/sec. Aversion occurs for

an indefinite duration until another gaze act activates [1,2,6,9–11,13,16,19–22].
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3. Concurrence is a repetitive vertical head movement of +/- 10◦ [1, 8, 21] at a

velocity of 33◦/sec. Concurrence occurs once every 3 seconds.

4. Confusion is a head roll of +/- 20◦ at a velocity of 33◦/sec. The head returns

to the fixation point after 1 second [4] at a velocity of 33◦/sec.

5. Scan is a fixation persisting between 0.77 sec to 1 sec to a series of three random

points in space [4, 8, 13] at a velocity of 33◦/sec.

4.4 Production Rules

The five social head gaze behaviors were implemented using production rules.

The production rules are if-then statements; if an affordance (LSHG-S) or percept

(TSHG-S) is perceived, the head gaze act is called. A total of nine production rules

(Table 4.2) were implemented on the Survivor Buddy robot. The production rules

directly correspond to the five behaviors of head gaze, and a single head gaze behavior

may be comprised of one or more production rules.

Production rule 1 is used by the robot for Communicating Social Attention in

a human. The robot fixates toward the human to indicate attention [1–16, 40].

Production Rules 2-6 are designed for Regulating an Interaction with the human.

The robot uses rules of turn-taking to fixate and avert from the human [1,2,6,9–11,

13,16,20–22]. Establishing Agency is implemented on the robot using production rule

7. The robot uses the scan gaze act to randomly look at different points in space, and

to indicate it is alive and functioning properly [4, 8]. Projecting Mental State, such

as confusion, is accomplished by production rule 8 [4]. Production Rule 9 is used

to implement Manifesting an Interaction, where the robot fixates toward an object

in the environment when it utters the object name in speech [1, 2, 4, 8, 16, 27–29].

These production rules were identified from the literature (Table 4.2) of head gaze
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Behavior Production Rule (LSHG-S) Production Rule (TSHG-S)

1 Communicating Social
Attention [3–5]

[6–11]
[1, 2, 12, 13,15,16]

IF Approach of Human, THEN
Fixate toward the human for an indefinite
duration at a velocity of 33◦/sec.

IF Presence of Human and Human
Shows Initial Interest, THEN
Fixate toward the human for an indefinite
duration at a velocity of 33◦/sec.

2 IF Initial Word, THEN
Avert from the human with a +/ -7◦/sec
simultaneous horizontal and vertical move-
ment for an indefinite duration at a velocity
of 33◦/sec.

IF Presence of Human, First word in
Theme, and Start of Turn, THEN
Avert from the human with a +/ -7◦/sec
simultaneous horizontal and vertical move-
ment for an indefinite duration at a velocity
of 33◦/sec.

3 IF Word following Punctuations . ? !,
THEN
Avert (p = .73) from the human with
a +/- 7◦/sec simultaneous horizontal and
vertical movement for an indefinite dura-
tion at a velocity of 33◦/sec.

IF Presence of Human, First word in
Theme, and Middle of Turn, THEN
Avert (p = .73) from the human with
a +/- 7◦/sec simultaneous horizontal and
vertical movement for an indefinite dura-
tion at a velocity of 33◦/sec.

4 Regulating an
Interaction [19],
[6, 9–11,13],

[1, 2, 16, 20–22]

IFAfter 75% of Words between Punc-
tuation : . ! ?, THEN
Fixate (p = .7) toward the human for an
indefinite duration at a velocity of 33◦/sec.

IF Presence of Human, First word in
Rheme, and Middle of Turn, THEN
Fixate (p = .7) toward the human for an
indefinite duration at a velocity of 33◦/sec.

5 IF Carriage Return, THEN
Fixate toward the human for an indefinite
duration at a velocity of 33◦/sec.

IF Presence of Human, First word in
Rheme, and End of Turn, THEN
Fixate toward the human for an indefinite
duration at a velocity of 33◦/sec.

6 IF Elapsed Listening Time > 6 sec,
THEN
Concurrence toward the human with
repetitive vertical head movement of +/-
10◦ every 3 seconds at a velocity of 33◦/sec.

IF Listening to Human and Internal
Stateacknowledge THEN
Concurrence toward the human with
repetitive vertical head movement of +/-
10◦ every 3 seconds at a velocity of 33◦/sec.

7 Establishing Agency
[4, 8]

IF Elapsed Idle Time > 15 sec, THEN
Scan three random points in the environ-
ment at a velocity of 33◦/sec.

IF Internal Statealiveness, THEN
Scan three random points in the environ-
ment at a velocity of 33◦/sec.

8 Projecting Mental
States [4]

IF Number of Deletes/Retypes by an
Operator > 5 within a Time Interval
t = 15 sec, THEN
Confusion toward the human with a head
roll of +/- 20◦ and return to the fixation
point at a velocity of 33◦/sec.

IF Internal Stateconfused, THEN
Confusion toward the human with a head
roll of +/- 20◦ and return to the fixation
point at a velocity of 33◦/sec.

9 Manifesting an
Interaction [28]
[1, 2, 4, 8, 16]

IF The Object Name Tag, THEN
Fixate toward the object in the environ-
ment at a velocity of 33◦/sec.

IF Presence of Object and Onset of
Object Utterance, THEN
Fixate toward the object in the environ-
ment at a velocity of 33◦/sec.

Table 4.2: Comparison of the Nine Production Rules for LSHG-S and TSHG-S

in human-robot interaction, and can be expanded if new studies identify new uses of

head gaze.

The C# code snippet for the implementation of production rules 2-5 of Regu-
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lating an Interaction behavior for LSHG-S is illustrated below:

using namespace Behavior

{

StringBuilder Regulating_an_Interaction (string current_robot_turn)

{

static int location = 0;

StringBuilder buffer = new StringBuilder();

buffer.Append(current_robot_turn);

For (int i = 0; i < GetWords.TotalNumber(buffer); i++)

{

if (PSchema.extract_sentence_structure(‘‘Initial Word’’, location))

buffer.Insert( ‘‘<Avert>’’, location);

if (PSchema.extract_sentence_structure(‘‘Word Following

Punctuations’’, location))

buffer.Insert(‘‘<Avert,.73>’’, location);

if (PSchema.extract_sentence_structure(‘‘After 75% of Words

between Punctuations’’, location))

buffer.Insert(‘‘<Fixate,.7>’’, location);

if (PSchema.extract_sentence_structure(‘‘Carriage Return’’,

location))

buffer.Insert(‘‘<Fixate>’’, location);

}

return buffer;

}

}

Figure 4.3: C# Code for Regulating an Interaction Behavior for LSHG-S.

4.5 Coordination of Multiple Head Gaze Behaviors

Coordination ensures that the robot is sensitive to the current social function

and conveys the appropriate meaning. The implementation of the production rules

occur in parallel and use separate threads; therefore multiple production rules may

be active at any time t, and need to be coordinated. This work coordinates head

movements simultaneously for five behaviors. Prior work [1,2] focusses on coordina-
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tion of just two or three behaviors, not all five together. The coordination function

is implemented using a prioritization scheme based on timestamps (highest priority

for the most recent behavior) and the nature of the behavior (atomic or non-atomic).

The Projecting a Mental State and Manifesting an Interaction behav-

iors are atomic and run to completion without interruption. All other behaviors are

non-atomic and may be interrupted by the most recent behavior. The algorithm

below describes this function.

if (Max(type(B) = = ‘‘atomic’’)

overall_response = (G * Min(B(type=‘‘atomic’’,timestamp)));

else

overall_response = (G * Max(timestamp(B)));

Projecting a Mental State and Manifesting an Interaction are clas-

sified as atomic because any interruptions from other head gaze acts may detract

from the goals of the robot, perceived understanding of the robot actions, and social

competence of the robot. These behaviors are typically uninterrupted in human-

human communication. Projecting a Mental State, such as anger makes any

detected interruption, such as an aversion of head for turn-taking, of secondary im-

portance. Expressing the emotion fully is more important than a filler gaze act like

an aversion of the head that can be used to build rapport. Referential head gaze

in humans is used to draw the attention of the human to an object. The purpose

of the Manifesting an Interaction behavior will not be accomplished if it is

interrupted midway through the process. In terms of implementation, this translates

to production rules 8 and 9, shown in Figure 4.2, running to completion without

interruption. All other production rules (1-7) can be interrupted by the most recent

production rule that is activated.
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4.6 Activation of Production Rules

<Avert> You have been found in an area of the collapsed building that suffered <Fixate, .7> a lot of 
damage. <Avert, .73> Did you happen to see what caused  <Fixate, .7> the collapse? <Fixate> <CR>

 Buffer (LSHG-S)

Initial Word
After 75% of words 

between punctuations

Word following a 
punctuation .

After 75% of words between 
punctuations . and ?

Carriage Return

Figure 4.4: Buffer (LSHG-S)

The activation of production rules using the LSHG-S and TSHG-S implemen-

tations are described using an example. The input sentence from the script is as

follows: “You have been found in an area of the collapsed building that suffered a

lot of damage. Did you happen to see what caused the collapse?”

LSHG-S: This input fills the buffer variable (Fig. 4.3) that interleaves both speech

and head gaze. The affordance Initial word “You” activates production rule 2 and

inserts the <Avert> head gaze tag. Next, affordance After 75% of words between

punctuations activates production rule 4 and inserts <Fixate, .7> after the word

“suffered.” An <Avert, .73> gaze tag is inserted when the affordanceWord following

a punctuation . is perceived, before the word “Did” as described by production rule

3. Using production rule 4 another middle of turn <Fixate, .7> is inserted after the

word “caused” when the affordance After 75% of words between punctuations . and

? is perceived. Finally, the affordance Carriage Return activates production rule 5

to insert a <Fixate> to indicate the end of turn.

The contents of the buffer variable at the end of the robot’s current turn is shown

in Fig. 4.4. This passes through the Microsoft speech system, which converts the text-

60



to-speech and triggers the gaze act when it encounters a gaze tag. The run time for

this implementation is O(n) where n is the length of the text that needs to be parsed.

The affordances from sentence structure has low computational costs and makes it

attractive to be used in real-time applications. However some of cues necessary for

implementation of autonomous head gaze like object recognition or understanding

of natural language may not run in linear time and act as limiting factors.

You have been found in an area of the collapsed building that suffered a lot of damage.

Marked Pre-Recorded Audio File(TSHG-S)

First Word in Theme 
and Start of Turn

First Word in Rheme 
and Middle of Turn

<Avert>

Did you happen to see what caused the collapse?

<Fixate, .7>

<Avert, .73> 

First Word in Theme 
and Middle of Turn

<Fixate>

First Word in Rheme 
and End of Turn

Figure 4.5: Marked Pre-Recorded Audio File(TSHG-S)

TSHG-S: The linguistic percepts and turn events (for example, First Word in

Theme and Start of Turn) are identified by manual inspection, and marked on a pre-

recorded audio file (Fig. 4.5). The percept First Word in Theme and Start of Turn

“You” activates production rule 2 and the <Avert> head gaze act is called. Next,

percept First Word in Rheme and Middle of Turn “that” activates production rule

4 and the <Fixate, .7> head gaze act is triggered. This is followed by an <Avert,

.73> head gaze act, which is generated when the percept First Word in Theme

and Middle of Turn is perceived, at the onset of the word “Did”, as described by

production rule 3. Finally, the percept First Word in Rheme and End of Turn “see”

activates production rule 5 to call the <Fixate> head gaze act.
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4.7 Summary

This section outlines the implementation of LSHG-S on “Survivor Buddy,” an

affective four degree of freedom robot. The software implementation of LSHG-S

system was C# and used the Microsoft text-to-speech system with Microsoft Anna

voice. The mechanisms for executing five head gaze acts Fixate, Avert, Concurrence,

Confusion, and Scan are described in terms of range, velocity, and duration. The

eight affordances from structure of sentences used in dialog, time delays, and typing

used to substitute linguistic and internal percepts are provided: Initial Word, Word

following Punctuation : . ! ?, After 75% of Words between Punctuation : . ! ?,

Carriage Return, Elapsed Listening Time > 6 sec, Elapsed Idle Time > 15 sec, Num-

ber of Deletes/Retypes by an Operator > 5 within a Time Interval t = 15 sec, and

The Object Name Tag. These affordances are unique, can be easily computed, and

support autonomous annotation. The behaviors are implemented using production

rules. The production rules are if-then statements where if a percept is perceived,

the head gaze act is called. The production rules directly correspond to the five be-

haviors, and a single behavior may comprise one or more production rules. Detailed

descriptions of nine production rules (Table 4.2) used to map the affordances on to

head gaze act(s) are given. The coordination function is implemented using a priori-

tization scheme based on timestamps (highest priority for the most recent behavior)

and the nature of the behavior (atomic or non-atomic). This work coordinates head

movements simultaneously for five behaviors. Prior work [1, 2] focuses on coordina-

tion of just two or three behaviors, not all five together. The run time for LSHG-S

system is O(n) where n is the length of the text that needs to be parsed. Finally, the

activation of production rules, using both TSHG-S and LSHG-S implementations,

are described with an example.
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5. EXPERIMENTS

This section describes the experimental methodology and design of a large-scale

93-participant experiment for assessing the social acceptance of LSHG-S. An experi-

mental validation was necessary because there are two potential problems with using

LSHG-S: (1) The activation of the head gaze act for LSHG-S can lead, lag, or oc-

cur at the onset of the speech utterance. Unlike the well validated TSHG-S, it is

not precise and the head gaze acts may not precisely match the dialog presented.

This may annoy or confuse the human. (2) Social head gaze for realistic scenarios

comprises of five functions of head gaze: look interested in human(s), engage in a

verbal conversation with human(s), convey general liveliness and awareness, show-

ing various mental states, and referential gaze to objects in the environment. The

change in synchronization for two functions such as engaging in a verbal conversa-

tion with human(s) and referential gaze to objects in the environment may impact

the human’s perception of the robot’s overall head gaze during the interaction. Five

hypotheses concerning the impact of the LSHG-S and TSHG-S were formulated to

answer the primary research question described in Section 1. In this section, details

of the experiment are described relating to the participants, equipment, personnel,

and experimental methods. 23 measures were used to evaluate the overall social

acceptance of the robot.

5.1 Hypotheses

Five hypotheses were tested in this experiment to evaluate secondary research

question 3 – “Is it possible to evaluate through sound experimental methods the ef-

fectiveness and appropriateness of the head gaze acts generated using the behavioral

robotics framework?”
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• Hypothesis 1 (H1): Participants who interact with a robot exhibiting the

LSHG-S condition will evaluate their experiences more positively than par-

ticipants who interact with a robot exhibiting the NHG-S condition.

• Hypothesis 2 (H2): Participants who interact with a robot exhibiting the

LSHG-S condition will evaluate the robot more positively than participants

who interact with a robot exhibiting the NHG-S condition.

• Hypothesis 3 (H3): Participants who interact with a robot exhibiting the

TSHG-S condition will evaluate their experiences more positively than par-

ticipants who interact with a robot exhibiting the NHG-S condition.

• Hypothesis 4 (H4): Participants who interact with a robot exhibiting the

TSHG-S condition will evaluate the robot more positively than participants

who interact with a robot exhibiting the NHG-S condition.

• Hypothesis 5 (H5): The LSHG-S condition improvements over the NHG-S

condition will be comparable to those of the TSHG-S condition.

Hypotheses H1, H2, H3, and H4 tests the effectiveness of LSHG-S and TSHG-S

in eliciting high levels of social acceptance, similar to that observed in the current

head gaze literature. Hypotheses H1 and H2, specifically test whether the simplifying

inferences used to enable LSHG-S are sufficient for social head gaze. Hypothesis H5

tests whether participants notice the difference in the quality of head gaze generated

by the LSHG-S and TSHG-S conditions.

5.2 Experimental Design

A 1 x 3 between-subjects experiment was designed to evaluate three head gaze

conditions: (1) LSHG-S, (2) TSHG-S, and (3) no head gaze-speech (NHG-S). The
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scenario was a simulated disaster scenario of a parking garage collapse (Fig. 5.1),

wherein Survivor Buddy, the rescue robot shown in Fig. 5.1, has a dialog with a

trapped victim based on a 911 dispatch and triage protocols (Appendix F). This

setting was chosen because (1) it is an extension of [14], which illustrated that an

extreme setting heightens affective responses from participants, (2) participants tend

to naturally follow the dispatcher protocol and thus a pre-scripted dialog would not

confound the experiments, and (3) the dialog captured all five social head gaze be-

haviors at least once (none of the 32 previous studies reported a dialog that captured

all known social head gaze behaviors).

Survivor Buddy

Level Sign

License Plate

Video Screen

Inuktun Robot

Exit Sign

Fire Extinguisher

Figure 5.1: The Simulated Disaster Area from the Participant’s Point of View

The environment was comprised of the trapped victim, prop concrete floors,

columns with rebar, simulated glass pieces, and objects typically found in a parking

garage, such as a fire extinguisher, license plate, parking level sign, and exit sign.

The environment also had a full theatrical stage lighting system in order to provide

optimum visibility without sacrificing a lifelike effect. The participant interacted
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with Survivor Buddy for approximately 15 minutes. As per the 911 dispatch pro-

tocol, the dialog focused on assessing the participant’s physical health, and gaining

information about the location and nature of the event. The dialog ensured the

activation of each of the nine production rules at least once (none of the previous

studies reported a dialog that captured all nine production rules) with a total of 162

possible gaze acts.

Figure 5.2: Robot Control Area.

The experiment utilized a priori sensor data for object locations, participant

head locations, and internal stateconfused of the robot. A hidden operator (“wiz-

ard”) [47] controlled the robot present in the simulation area from the robot control

area (Fig. 5.2 and 5.5). The hidden operator received video feeds of three camera

viewpoints: (1) overhead view, (2) robot point of view, and (3) participant point

of view. The operator used this information to determine the state of the interac-

tion and stepped through conversation turns, using predefined sentences and phrases
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rather than real-time typing. The hidden operator’s interface is shown in Fig. 5.3.

This approach overcame limitations in existing state-of-the-art object and speech

recognition systems, and ensured repeatability and consistency across conditions.

This led to the robot (via the hidden operator) controlling the direction of the con-

versation.

Figure 5.3: Robot Operator’s Interface

In the LSHG-S condition, Survivor Buddy displayed head gaze behaviors, using

the proposed method for the generation of head gaze based on sentence structure and

time delays. The TSHG-S condition displayed gaze behaviors based on the semantic

content of the dialog, which was similar to gaze behaviors exhibited in human-human

conversation. The semantic units of “theme” and “rheme” were manually annotated

by inspection using definitions described by Halliday [53]. The theme refers to the

part of an utterance that sets the tone of the utterance and connects the previous

utterance to the next one. The rheme contains the new information that the utter-

ance intends to communicate. This same procedure was used by [9] and [22]. In the
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NHG-S condition, Survivor Buddy looked directly at the participant throughout the

interaction, without displaying any head gaze acts, and used only speech to interact.

5.3 Participants

An a priori power analysis projected a minimum of 42 participants based on hav-

ing three groups, 80% power, a medium effect size of 0.25, and an α = 0.05. Signifi-

cance level α is the probability of making a wrong decision when the null hypothesis

is true [62]. A total of 93 participants completed the experiment. The participants

included 53 males and 40 females within an age range of 18-67 (M = 32.38, SD =

14.84). People with diverse backgrounds including students, engineers, administra-

tors, firefighters, technicians, and doctors participated in the experiment. The ethnic

backgrounds of the participants consisted of 68.8% Caucasian, 7.5% Asian, 14% His-

panic, 3.2% African American, and 6.5% Middle Eastern. Of the 93 participants, 64

reported owning a pet, and 8 reported owning a robot. The participants’ familiarity

with robots was low (M = 2.09, SD = 1.67 on a scale of 1 to 7). Video gaming

experience was moderate (M = 3.23, SD = 5.7 on a scale of 1 to 7). Compensation

for the participants included a chance to win a door prize, and they were not required

to complete the study to be included in the drawing.

5.4 Equipment and Personnel

Seven pieces of equipment were used for this study. The Survivor Buddy [63]

platform discussed in Section 4 was used for the robot role. Eye trackers (Figure 5.4)

were used to capture where the participants were looking during their interaction with

the robot. The robot was controlled using a Desktop Macbook Pro computer using

a tether. Participants used a laptop to take pre- and post-assessments (Appendix G

and H) used in the study. Finally, three video and audio feeds from overhead view,

robot point of view, and participant point of view, were recorded by three cameras.
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Figure 5.4: iScan Eye Tracker.

Additional equipment (e.g., power, cables) was included as needed.

The investigator of this work was primarily responsible for setting up experimen-

tal protocols, running all of the trials, and for analysis of the results. Two graduate

students helped conduct this study. The first graduate student was responsible for

recording the eye tracking data and the calibration process. This student was also

responsible for leading the participants into the physical simulated confined space.

Another graduate student helped place the robot in the starting position for each

interaction, and ensured that the robots were powered on, and that the batteries

were charged. They were also responsible for all video operations and maintenance,

including: charging of batteries, syncing recordings, and labeling and backing up

interactions.

5.5 Experimental Method

The experiment was conducted in three phases: 1) pre-interaction phase - par-

ticipant check-in, consent (Appendix C), and pre-interaction questionnaires (Ap-
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Survivor Buddy 

1.22m

Figure 5.5: The Layout of the Study Site.

pendix G), 2) interaction phase - interaction with the robot, and 3) post-interaction

phase - post-interaction questionnaires (Appendix H) and debriefing (Appendix J).

The entire study took approximately 60 minutes per participant to conduct, with

data collection occurring over a period of 5 weeks. The experiment protocol is sum-

marized in Appendix E.

5.5.1 Pre-Interaction Phase

In pre-interaction phase, the participants were first shown a video explaining the

IRB consent process, after which each participant read and signed the consent forms

(Appendix C), as required by the Texas A&M University Institutional Review Board.

The participants were then read instructions regarding what they could expect while
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participating in the study (Appendix D).

Each participant was then assigned to one of three conditions (between-subjects

factor): LSHG-S, TSHG-S, and NHG-S. The participants were then outfitted with

the eye tracker, and after the eye tracking calibration process, the participants were

requested to step into the simulated confined space (wooden structure) (0.91 m x

0.91 m x 2.44 m) and play the role of a victim. The lights in the study site were

turned off, and the participants were asked to lie down on their right side in the

confined space.

5.5.2 Interaction Phase

During the interaction phase, the participant covered themselves with a sleeping

bag, and the lights illuminating the pathway to the wooden structure in the ex-

periment site were turned off. The participants saw a brief dramatic video, which

showed a first-person view of a parking garage collapse. The video ended with flashes

of light, followed by lighting sufficient to see the robot. At this point in the experi-

ment, the simulation of a collapsed parking structure disaster environment, and the

robot system were made visible to the participant (Fig. 5.1). The Survivor Buddy

robot system was at a distance of 1.22 meters, within the participant’s personal

zone [14], so as to increase the likelihood of social interaction. The screen displayed

only a Survivor Buddy logo so that the only social cues were voice and head gaze

acts. The interaction with the participant lasted approximately 15 minutes, and

the robot followed a predefined script consisting, of questions and simple directions

(Appendix F). The robot could also repeat portions of the script upon request. The

robot supervisor (hidden from view) would activate the text for the robot’s turns in

the dialog.

The robot activated the Communicating Social Attention behavior to gain
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the participant’s attention and convey that it was interested and ready for an in-

teraction. The robot then used the Regulating an Interaction behavior for

effective human-like turn-taking and back-channeling, during a purposeful dialogue

with the victim based on 911 dispatch and triage protocols. The dialogue focused on

assessing the participant’s physical health and gaining information about the loca-

tion and nature of the event. The robot posed questions like: “Are you experiencing

any pain right now?” and “Did you happen to see what cause the collapse?” Then

the dialog shifted to questions that assessed mental function, for example, “Paper is

used commonly for writing. Can you name as many alternative uses as you can?”

The robot also monitored the area surrounding the participant and used the Mani-

festing an Interaction behavior to point toward objects of interest such as fire

extinguishers or hazardous objects. The robot activated the Projecting Mental

State behavior to indicate confusion and provide feedback to the participant about

its internal state. The robot used the Establishing Agency behavior to convey

aliveness and let the participant know that it was functioning properly.

The five behaviors Communicating Social Attention, Regulating an

Interaction, Manifesting an Interaction, Projecting Mental State,

and Establishing Agency were manifested at least once during the study. The

interaction concluded with the participant being informed that rescuers had arrived,

and Survivor Buddy’s head closing to signify no further engagement. After the

completion of the interaction, the participants were removed from the confined space

(wooden box) and the eye tracker system was removed.

5.5.3 Post-Interaction Phase

In post-interaction phase, the participants were asked to complete a post-interaction

assessment (Appendix H), after [9, 14, 64], in order to access participants’ affective
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state and perceptions of the robot. Following the completion of the post-interaction

questionnaire, the participants were debriefed about the study (Appendix J), after

which they were free to leave.

5.6 Experimental Measures

The experiment used pre-interaction and post-interaction questionnaires, eye

tracking measures, and video observations to evaluate the social acceptance of the

robot.

1. Pre-Interaction Questionnaire - The pre-interaction questionnaire consisted of

nine standard attributes regarding the participant’s age, occupation, gender,

education level, prior robot experience, ethnicity, prior video gaming experi-

ence, robot ownership, and pet ownership [14, 64]. Appendix G reports the

pre-interaction questionnaire items used in the study.

2. Post-Interaction Questionnaires - The post-interaction questionnaires consisted

of 21 measures. These measures comprised of 16 standardized attributes used to

determine participants’ affective state and participants perception of the robot.

They are: SAM: Valence [55], SAM: Arousal [55], Chance of Rescue [64], Robot

Engagement [1,8,65], Robot Likeability [64], Human-Like Behavior [9], Robot

Intelligence [9], Robot Detachment [64], Robot Confidence [64], Robot Compe-

tence [64], Robot Unpleasantness [64], Robot Extraversion [64], Understanding

Robot Behavior [65], Gaze-Speech Synchronization [65], Looking at Objects at

Appropriate Times [65], and Natural Movement [9, 65].

Five new measures were developed for victim management: Person at Ease,

Robot Empathy, Robot Loyalty, Robot Integrity, and Robot Caring. These

measures were developed to understand if the participants’ perceive the robot
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as a “friendly companion” [66] during a victim management scenario. These

measures have not been reported before for head gaze.

Two questions from the Self Assessment Manikin (SAM) [55] used a nine point

Semantic Differential scale. The remainder of the questions used a seven point

Likert scale, with one indicating strong disagreement or strongly negative, and

seven indicating strong agreement or strongly positive. Measures with multiple

items were checked for internal consistency, using a Cronbach’s Alpha statistic

[67] (Cronbach’s α > .70 is considered to be reliable). Several questions were

reverse coded to prevent participants from uniformly selecting a single rating.

Appendix I reports the list of items, and their reliability with regard to the 23

measures used to evaluate the performance of LSHG-S.

3. Eye Tracking Measures - For this experiment ISCAN eye trackers were utilized.

Eye trackers can be useful in determining where exactly the participant looks

during the course of the interaction with robot. Other measures like the time

taken to look at an object or total time the participant spent looking at the

robot can also be calculated.

4. Video Observations - Infrared night vision cameras were utilized because the

robot interactions occurred in low light conditions. Images were obtained from

three camera perspectives: face view, participant view, and overhead view.

This data was analyzed to evaluate two objective measures, Memory [68] and

Creativity [69], captured during the interaction. Creativity and Memory were

measured as part of this study because research has demonstrated that these

measures inversely correlate with stress [70,71]. Stress indicates arousal, which

is a dimension of affect [72]. These measures have not been reported before for

head gaze.
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5.7 Summary

This section began with two motivations for conducting an experimental valida-

tion - (1) For LSHG-S, the head gaze acts may not precisely match the dialog. This

may annoy or confuse the human. (2) The change in synchronization for two func-

tions engaging in a verbal conversation with human(s) and referential gaze to objects

in the environment may impact the human’s perception of the robot’s overall head

gaze during the interaction. This was followed by a description of five hypotheses

used to evaluate research question R3. The experimental design and three justifi-

cations on the choice of setting and dialog was presented. The simulated parking

garage collapse scenario was presented with detailed descriptions on the objects in

environment, lighting effects, and the 911 dispatcher protocol dialog. The experi-

ment employed a hidden operator (“wizard”) [47] to control the robot. The role of

the hidden operator and the rationale for using this approach was explained. A total

of 93 diverse participants between ages 18-67 participated in the study. The de-

tails on power analysis used for participant recruitment, demographics, and sources

of recruitment were presented. In addition, a description of the equipment used in

the study and responsibilities of personnel involved in the study were provided. The

study was conducted in three phases with a duration of approximately 60 minutes per

participant occurring over a period of 5 weeks. Details on all three phases (1) partic-

ipant check-in, consent, and pre-interaction questionnaires, (2) interaction with the

robot, and 3) post-interaction questionnaires and debriefing were provided. Lastly,

the experimental measures used to evaluate the effectiveness of LSHG-S were pre-

sented. Three types of measurement tools – (1) pre-interaction and post-interaction

questionnaires, (2) eye tracking measures, and (3) video observations – comprising

a total of 23 measures were used to evaluate the social acceptance of the LSHG-S.
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Out of the 23 measures, 16 measures use standardized questionnaires. Five new

measures were developed for victim management: Person at Ease, Robot Empa-

thy, Robot Loyalty, Robot Integrity, and Robot Caring. Additionally, two objective

measures Creativity and Memory were measured. These seven measures have not

been reported before for head gaze. The details in this section provide adequate

information for reproducibility of the study by other investigators.
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6. DATA ANALYSIS AND RESULTS ∗

This section presents the details of the data analysis conducted on data collected

from three measurement tools – (1) pre-interaction and post-interaction question-

naires, (2) eye tracking measures, and (3) video observations – during the large-scale

93 participant human-robot interaction study. Each of the five hypotheses presented

in Section 5 were evaluated:

1. Hypothesis 1 (H1): Participants who interact with a robot exhibiting the

LSHG-S condition will evaluate their experiences more positively than par-

ticipants who interact with a robot exhibiting the NHG-S condition.

2. Hypothesis 2 (H2): Participants who interact with a robot exhibiting the

LSHG-S condition will evaluate the robot more positively than participants

who interact with a robot exhibiting the NHG-S condition.

3. Hypothesis 3 (H3): Participants who interact with a robot exhibiting the

TSHG-S condition will evaluate their experiences more positively than par-

ticipants who interact with a robot exhibiting the NHG-S condition.

4. Hypothesis 4 (H4): Participants who interact with a robot exhibiting the

TSHG-S condition will evaluate the robot more positively than participants

who interact with a robot exhibiting the NHG-S condition.

5. Hypothesis 5 (H5): The LSHG-S condition improvements over the NHG-S

condition will be comparable to those of the TSHG-S condition.

∗Reprinted with permission from “Evaluation of Head Gaze Loosely Synchronized with Synthetic
Speech for Social Robots” by Srinivasan, V., Bethel, C.L., Murphy, R.R, 2014. IEEE Transactions
on Human-Machine Systems, Accepted for Publication, Copyright [2014] by Vasant Srinivasan.
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A Principal Component Analysis (PCA) was performed to group the 21 reliable

measures into three independent categories: Participants’ Positive Affective State,

Participants’ Perception of the Robot, and the Consistency and Appropriateness of

the Robot’s Head Movements. The three categories helped to better understand and

interpret the results from such a large set of measures (Fig. 6.1). This section presents

an results from an analysis of seven covariates – gender, age, video gaming experience,

robot ownership, pet ownership, past experience with robots, and ethnicity – on the

measured attributes. The interaction log files from the experiment were examined

to determine the average number of head gaze acts activated in the LSHG-S and

TSHG-S conditions.

6.1 Data Analysis

The data collected from three measurement tools – (1) pre-interaction and post-

interaction questionnaires, (2) eye tracking measures, and (3) video observations –

was analyzed. The data analysis for pre-interaction and post-interaction question-

naires, and video observations was straightforward. It consisted of an univariate

ANOVA for each measure and a post-hoc analysis using Tukey’s HSD. An ANCOVA

was performed to further account for other potential sources of variance such as gen-

der, age, video gaming experience, robot ownership, pet ownership, past experience

with robots, and ethnicity.

The eye tracker data was analyzed, but was found to be unreliable. This was

because of three reasons: 1) The eye tracker shifted from its original position as

people laid down on the ground resulting in a change to the initial calibration; 2)

The environment was very dark causing the eye tracker positions to be inaccurate;

and 3) The eye lashes of people interfered with the ability of the tracking algorithm

to perform accurately.
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Both the Bonferroni correction [73] and FDR (Benjamini-Hochberg [74]) cor-

rection for multiple testing was applied. The Bonferroni correction method is the

simplest and most conservative method used to correct for multiple testing. To per-

form the Bonferroni correction, the critical p-value (α) is divided by the number of

comparisons being made. Since 21 dependent variables were analyzed and 21 sta-

tistical tests were performed, the corrected significance level after the Bonferroni

correction [73] is p < 0.0024 (0.05/21).

The False Discovery Rate (FDR) Benjamini-Hochberg procedure is a standard

iterative stepwise algorithm that controls the false discovery rate at level α [74] to

correct for multiple testing.

FDR is defined as -

FDR = E

[
V

R

]
where V is the total number of false discoveries (type I errors) and R is the

total number of rejected null hypotheses (known as discoveries). Additionally, V
R

is

defined to be 0 if R is 0. The advantage of FDR over the Bonferroni correction is that

FDR has greater power at the cost of higher type I errors than the Bonferroni [74].

This is because the Bonferroni correction is designed to reduce the probability of

even one false discovery (incorrectly rejected null hypotheses) from occurring, but

FDR is designed to reduce the proportion of false discoveries, and is considered

less conservative. Algorithm 1 (Appendix K) describes the procedure for 21 tests

and α = .05. The corrected significance level after the FDR (Benjamini-Hochberg)

correction [74] is p < 0.033. An implementation of the procedure in R was also

used [75] to cross-check the calculations.
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Figure 6.1: Summary of the Results
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6.2 Evaluation of the Proposed Hypotheses

Fig. 6.1 lists the main effects (column 2) from the ANOVA, Tukeys’ post-hoc

results between the conditions (columns 3-5) for the 21 measures (column 1), and

the mean and standard deviation for each of the measures (columns 6-11). The

eta-squared (η2) and Cohen’s d effect sizes can be interpreted using the scale [76]

shown in Table 6.1. The results for original ANOVA (Fig. 6.1), Bonferroni Correction

(Fig.( 6.2), and FDR (Benjamini-Hochberg) correction (Fig. 6.3) are described for

each hypothesis.

Effect Size Eta-Squared (η2) Cohen’s (d)
Small 0.01 - 0.06 0.20 - 0.49

Medium 0.06 - 0.14 0.50 - 0.79
Large 0.14+ 0.80+

Table 6.1: Interpretation of Effect Size

6.2.1 Results for Hypothesis 1 (H1)

Hypothesis 1 (H1) states that “Participants who interact with a robot exhibiting

the LSHG-S condition will evaluate their experiences more positively than partici-

pants who interact with a robot exhibiting the NHG-S condition.” Consistent with

H1, LSHG-S was preferred to NHG-S.

1. Original Results (p < .5): Support for four measures: SAM: Valence, Creativ-

ity, Person at Ease, and SAM: Arousal.

2. Bonferroni Correction (p < .0024) - Support for one measure: SAM:Arousal.

3. FDR (Benjamini-Hochberg) Correction (p < .033) - Support for four measures:

SAM: Valence, Creativity, Person at Ease, and SAM: Arousal.
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6.2.2 Results for Hypothesis 2 (H2)

Hypothesis 2 (H2) states that “Participants who interact with a robot exhibiting

the LSHG-S condition will evaluate the robot more positively than participants who

interact with a robot exhibiting the NHG-S condition.” As predicted by H2, LSHG-S

was preferred to NHG-S.

1. Original Results (p < .5): Support for 11 measures: Robot Empathy, Robot

Loyalty, Robot Integrity, Robot Caring, Robot Engagement, Robot Likeability,

Human-Like Behavior, Understanding Robot Behavior, Gaze-Speech Synchro-

nization, Looking at Objects at Appropriate Times, and Natural Movement.

2. Bonferroni Correction (p < .0024) - Support for six measures: Robot Like-

ability, Human-Like Behavior, Understanding Robot Behavior, Gaze-Speech

Synchronization, Looking at Objects at Appropriate Times, and Natural Move-

ment.

3. FDR (Benjamini-Hochberg) Correction (p < .033) - Support for 10 measures:

Robot Empathy, Robot Loyalty, Robot Integrity, Robot Caring, Robot Like-

ability, Human-Like Behavior, Understanding Robot Behavior, Gaze-Speech

Synchronization, Looking at Objects at Appropriate Times, and Natural Move-

ment.

6.2.3 Results for Hypothesis 3 (H3)

Hypothesis 3 (H3) states that “Participants who interact with a robot exhibiting

the TSHG-S condition will evaluate their experiences more positively than partici-

pants who interact with a robot exhibiting the NHG-S condition.” As revealed by

H3, TSHG-S was preferred to NHG-S.
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Figure 6.2: Summary of the Results Using Bonferroni Correction. The Highlighted
Cells Indicate Statistically Significant Results At p < .0024
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1. Original Results (p < .5): Support for two measures: Creativity and SAM:

Arousal.

2. Bonferroni Correction (p < .0024) - Support for one measure: SAM:Arousal.

3. FDR (Benjamini-Hochberg) Correction (p < .033) - Support for two measures:

Creativity and SAM: Arousal.

6.2.4 Results for Hypothesis 4 (H4)

Hypothesis 4 (H4) states that “Participants who interact with a robot exhibiting

the TSHG-S condition will evaluate the robot more positively than participants who

interact with a robot exhibiting the NHG-S condition.” Consistent with H4, TSHG-S

was preferred to NHG-S.

1. Original Results (p < .5): Support for eight measures: Robot Empathy, Robot

Caring, Robot Likeability, Human-Like Behavior, Understanding Robot Behav-

ior, Gaze-Speech Synchronization, Looking at Objects at Appropriate Times,

and Natural Movement.

2. Bonferroni Correction (p < .0024) - Support for six measures: Robot Likeabil-

ity, Human-Like Behavior, and Understanding Robot Behavior, Gaze-Speech

Synchronization, Looking at Objects at Appropriate Times, and Natural Move-

ment.

3. FDR (Benjamini-Hochberg) Correction (p < .033) - Support for eight mea-

sures: Robot Empathy, Robot Caring, Robot Likeability, Human-Like Behav-

ior, Understanding Robot Behavior, Gaze-Speech Synchronization, Looking at

Objects at Appropriate Times, and Natural Movement.
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Robot&Intelligence
F[2,&90]&=&1.05,

p#=&.35,#η2&=&.02
p&=&.67 p&=&.33 p&=&.84 6.29 .75 6.40 .57 6.14 .77

Robot&Competence
F[2,&90]&=&.68,

p#=&.51,#η2&=&.02
p&=&.52 p&=&.65 p&=&.97 5.99 .77 5.94 .77 5.76 .89

Robot&Unpleasantness
F[2,&90]&=&.76,

p#=&.47,#η2&=&.02
p&=&.99 p&=&.50 p&=&.57 1.55 .79 1.37 .49 1.57 .70

Robot&Extraversion
F[2,&90]&=&.29,

p#=&.75,#η2&=&.006
p&=&.9 p&=&.95 p&=&.73 5.20 1.30 4.97 1.15 5.06 1.20

Understanding&Robot&
Behavior

F[2,&90]&=&18.087,

p&<&.001,#η2&=&.56
t(90)&=&4.63,&

p&<&.001,&d#=&.98
t(90)&=&5.29,&

p&<&.001,&d#=&1.12
p&=&.99 5.57 .95 5.63 1.59 2.83 1.15

Gaze%Speech&
Synchronization

F[2,90]&=&47.9,

p&<&.001,&η2&=&.52
t(90)&=&8.66,&

p&<&.001,&d#=&1.83
t(90)&=&8.28,&

p&<&.001,&d#=&1.75
p&=&.93 5.90 1.27 5.78 1.08 2.93 1.63

Looking&at&Objects&at&
Appropriate&Times

F[2,90]&=&14.6,

p&<&.001,&η2&=&.54
t(90)&=&4.82,

p&<&.001,&d#=&1.02&&
t(90)&=&5.12,

p&<&.001,&d&=&1.08
p&=&.98 5.72 1.67 6.10 .99 3.28 1.43

Natural&Movement
F[2,90]&=&16.7,

p&<&.001,&η2&=&.27
t(90)&=&4.79,&

p&<&.001,&d#=&1.01
t(90)&=&5.19,&

p&<&.001,&d#=&1.09
p&=&.92 4.70 1.62 4.83 1.60 2.77 1.38
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Figure 6.3: Summary of the Results Using FDR (Benjamini-Hochberg) Control. The
Highlighted Cells Indicate Statistically Significant Results At p < .033
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6.2.5 Results for Hypothesis 5 (H5)

Hypothesis 5 (H5) states that “The LSHG-S condition improvements over the

NHG-S condition will be comparable to those of the TSHG-S condition.” The results

revealed that the number of measures (Bonferroni correction - 7, FDR correction -

14) in which LSHG-S showed significant improvements over NHG-S was comparable

to the number of measures (Bonferroni correction - 7, FDR correction - 10) in which

TSHG-S showed significant improvements over NHG-S.

1. Original Results (p < .5): LSHG-S showed significant improvements over NHG-

S in 15 measures: SAM: Valence, Creativity, Person at Ease, SAM: Arousal,

Robot Empathy, Robot Loyalty, Robot Integrity, Robot Caring, Robot Engage-

ment, Robot Likeability, Human-Like Behavior, Understanding Robot Behav-

ior, Gaze-Speech Synchronization, Looking at Objects at Appropriate Times,

and Natural Movement. TSHG-S showed improvements over NHG-S in 10 mea-

sures: Creativity, SAM: Arousal, Robot Empathy, Robot Caring, Robot Like-

ability, Human-Like Behavior, Understanding Robot Behavior, Gaze-Speech

Synchronization, Looking at Objects at Appropriate Times, and Natural Move-

ment. These results support H5 as LSHG-S elicited positive responses in five

additional measures than the TSHG-S, when compared to NHG-S.

2. Bonferroni Correction (p < .0024) - Both LSHG-S and TSHG-S showed signifi-

cant improvements over NHG-S in seven measures: SAM: Arousal, Robot Like-

ability, Human-Like Behavior, Understanding Robot Behavior, Gaze-Speech

Synchronization, Looking at Objects at Appropriate Times, and Natural Move-

ment. These results fully support H5.

3. FDR (Benjamini-Hochberg) Correction (p < .033) - LSHG-S showed significant
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improvements over NHG-S in 14 measures: SAM: Valence, Creativity, Per-

son at Ease, SAM: Arousal, Robot Empathy, Robot Loyalty, Robot Integrity,

Robot Caring, Robot Likeability, Human-Like Behavior, Understanding Robot

Behavior, Gaze-Speech Synchronization, Looking at Objects at Appropriate

Times, and Natural Movement. TSHG-S showed improvements over NHG-

S in 10 measures: Creativity, SAM: Arousal, Robot Empathy, Robot Car-

ing, Robot Likeability, Human-Like Behavior, Understanding Robot Behavior,

Gaze-Speech Synchronization, Looking at Objects at Appropriate Times, and

Natural Movement. These results support H5, since LSHG-S elicited positive

responses in four additional measures than the TSHG-S, when compared to

NHG-S.

6.3 Results for Social Acceptance

Participants' Positive 
Affective State

Figure 6.4: Radar Plot Comparing the Means of TSHG-S, LSHG-S, and NHG-S
Conditions Using Bonferroni Correction
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Participant’s Positive 
Affective State

Consistency and Appropriateness 
of the Robot's Head Movements

Participants' Perception 
of the Robot

Figure 6.5: Radar Plot Comparing the Means of TSHG-S, LSHG-S, and NHG-S
Conditions Using FDR Control

Social acceptance is a measure of how well the robot performs across three cat-

egories of measures: Participants’ Positive Affective State, Participants’ Perception

of the Robot, and Consistency and Appropriateness of the Robot’s Head Movements.

In order to calculate social acceptance of each head gaze generation condition, the

three independent categories for each condition were represented on a radar plot and

the area under the radar plot was calculated.

The radar plot consists of three equiangular spokes, called radii, with each spoke

representing one of three independent categories. The data values on each spoke

are the mean corresponding to a head gaze condition and measure category. Since

two questions – SAM:Valence and SAM:Arousal – from Self Assessment Manikin

(SAM) [55] used a nine point Semantic Differential scale, their means were re-scaled

to a seven point scale. For example, the mean for Consistency and Appropriateness

of the Robot’s Head Movements category in the LSHG-S condition using Bonferroni

correction (Fig. 6.4) is (5.57 + 5.9 + 5.72 + 4.7)/4 = 5.47.
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Condition Bonferroni Correction
(square units)

FDR Correction
(square units)

LSHG-S 39 41.39

TSHG-S 38.55 41.36

NHG-S 19.15 23.07

Table 6.2: Area under the Radar Plot.

Fig. 6.4 illustrates the radar plot with Bonferroni correction, while Fig. 6.5 shows

the radar plot using FDR correction. The calculated area for each condition and

correction is shown in Table 6.2 and reflects a measure of overall social acceptance.

Both LSHG-S and TSHG-S conditions have comparable areas, irrespective of the

correction method applied, suggesting that the LSHG-S condition engendered high

levels of social acceptance similar to the TSHG-S condition. In both plots, the

TSHG-S and LSHG-S conditions have a larger area under the graph when compared

to the NHG-S condition, suggesting that they achieved greater social acceptance

than NHG-S.

6.4 Influence of Covariates on the Measured Attributes

Using an ANCOVA, the influence of gender, age, video gaming experience, robot

ownership, pet ownership, past experience with robots, and ethnicity on the 21

measured attributes was analyzed.

1. Participants who had more experience with robots got more agitated with the

robot (F [1,84] = 4.82, p = .03, η2 = .05) and found the robot to be less

Extraverted (F [1,84] = 9.98, p < .001, η2 = .11).

2. Increased age led to a higher perception of a better Chance of Rescue (F [1,84]

= 8.97, p = .003, η2 = .09) by a robot.
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Head Gaze Act Average number
for TSHG-S

Average number
for LSHG-S

Fixate 64 58

Avert 56 61

Concurrence 22 17

Fixate(Object) 7 7

Confusion 1 1

Scan 1 1

Total 151 145

Table 6.3: Average Number of Head Gaze Acts for TSHG-S and LSHG-S from the
Log Files Rounded to the Nearest Whole Number

3. Male participants rated the robot as being more unpleasant than female par-

ticipants (F [1,84] = 5.42, p = .02, η2 = .06).

4. Caucasian participants viewed the robot to be more extraverted than Asian

participants (F [1,84] = 2.58, p = .04, η2 = .10).

5. Increased video gaming experience resulted in increased perception of Natural

Movement (F [1,84] = 11.56, p = .03, η2 = .04) and Robot Synchronization

(F [1,84] = 11.02, p = .001, η2 = .06).

6.5 Log Analysis

The log files for each of the 62 interactions (31 TSHG-S and 31 LSHG-S) were

analyzed post-hoc. The average number of overall head gaze acts for LSHG-S and

TSHG-S conditions were similar at 151 and 145 respectively (Table 6.3), for an

interaction of 15 minutes. However, there are small differences in the average number

of fixate, avert and concurrence head gaze acts between the two conditions. The

number of fixate and avert head gaze acts differ because of probability, and the

total number of head gaze acts that are possible in the script. The reason for less

number of fixate head gaze acts in the LSHG-S condition is because more number of
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fixate head gaze acts occur with probability 1 in the TSHG-S condition (40) than the

LSHG-S condition (28). The reason for more number of avert head gaze acts in the

LSHG-S condition is because the total number of avert head gaze acts possible in the

script for the LSHG-S condition is 71, compared to 64 for the TSHG-S condition. In

case of the concurrence head gaze act, the participant might have responded faster

in the LSHG-S condition, and not allow the concurrence head gaze act to occur as

often during the interaction.

6.6 Summary

This section presented the statistical analysis and results of data collected as

a part of a complex, large-scale human-robot interaction study. The results were

corrected for multiple testing using Bonferroni correction and FDR (Benjamini-

Hochberg) correction. Three important results were observed irrespective of the

correction used – (1) Hypothesis H1 and H2 - The results for H1 and H2 showed

that LSHG-S elicited higher levels of social acceptance than NHG-S across three

categories of measures: Participants’ Positive Affective State, Participants’ Percep-

tion of the Robot, and the Consistency and Appropriateness of the Robot’s Head

Movements, (2) Hypothesis H3 and H4 - The results for H3 and H4 showed that

participants’ in the TSHG-S condition rated the robot more positively than the par-

ticipants’ in the NHG-S condition across three categories of measures: Participants’

Positive Affective State, Participants’ Perception of the Robot, and the Consistency

and Appropriateness of the Robot’s Head Movements, and (3) Hypothesis H5 -The

results for H5 revealed that LSHG-S performs at least as well as the TSHG-S when

compared to NHG-S, irrespective of the type of correction used. These results assume

particular significance because the LSHG-S condition used loose head gaze-speech

synchronization, and was not expected to perform as well as it did.
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Using the Bonferroni correction, Hypothesis H1 was supported in one measure –

SAM:Arousal, while the FDR correction revealed support for four measures – SAM:

Valence, Creativity, Person at Ease, and SAM: Arousal. Hypothesis H2 was sup-

ported in six measures after Bonferroni correction – Robot Likeability, Human-Like

Behavior, Understanding Robot Behavior, Gaze-Speech Synchronization, Looking at

Objects at Appropriate Times, and Natural Movement. However, FDR correction re-

vealed support for Hypothesis H2 in four additional measures – Robot Loyalty, Robot

Empathy, Robot Integrity, and Robot Caring. The Bonferroni correction showed sup-

port for Hypothesis H3 in one measure – SAM: Arousal, while the FDR correction

supported Hypothesis H3 for two measures – Creativity and SAM: Arousal. Hypoth-

esis H4 was supported in six measures after Bonferroni correction – Robot Likeability,

Human-Like Behavior, Understanding Robot Behavior, Gaze-Speech Synchroniza-

tion, Looking at Objects at Appropriate Times, and Natural Movement. However,

FDR correction revealed support for Hypothesis H4 in four additional measures –

Robot Loyalty, Robot Empathy, Robot Integrity, and Robot Caring. Hypothesis

H5 is supported because the number of measures (Bonferroni correction - 7, FDR

correction - 14) in which LSHG-S showed significant improvements over NHG-S was

comparable to the number of measures (Bonferroni correction - 7, FDR correction -

10) in which TSHG-S showed significant improvements over NHG-S.
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7. DISCUSSION ∗

The results from the 93 participant human-robot interaction study revealed that

LSHG-S was socially acceptable for human-robot interaction. LSHG-S was success-

ful in eliciting positive responses from participants’ for measures of Participants’

Affective State, Participants’ Perception of the Robot, and Consistency and Appro-

priateness of the Robot’s Head Movements, when compared to NHG-S. Additionally,

LSHG-S performs at least as well as the TSHG-S when compared to NHG-S irre-

spective of the type of correction used - Bonferroni or FDR (Benjamini-Hochberg).

These results are surprising because LSHG-S did not use semantic understanding to

precisely match head gaze with dialog. The findings from this experiment suggests

that 1) affordances in the sentence structure of dialog and time delays that were

developed as a part of this research effort are adequate, and 2) autonomously gen-

erated head gaze-speech coordination is both possible and acceptable. This section

discusses and interprets the results of the experiment, analyzes four factors that may

be relevant for user perception of head gaze-speech synchronization, and addresses

five limitations of the experiment.

7.1 Interpretation and Discussion of the Results

The results from this experiment indicated that that LSHG-S performs better

than NHG-S, and at least as well as TSHG-S when compared to NHG-S irrespective

of the type of correction used - Bonferroni or FDR (Benjamini-Hochberg). The Bon-

ferroni correction is the most conservative test for multiple testing. It is expected

that the measures that are statistically significant after this correction will be highly

∗Reprinted with permission from “Evaluation of Head Gaze Loosely Synchronized with Synthetic
Speech for Social Robots” by Srinivasan, V., Bethel, C.L., Murphy, R.R, 2014. IEEE Transactions
on Human-Machine Systems, Accepted for Publication, Copyright [2014] by Vasant Srinivasan.
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replicable in other studies. The measures where LSHG-S was preferred to NHG-S are

as follows: SAM:Arousal, Robot Likeability, Human-Like Behavior, Understanding

Robot Behavior, Gaze-Speech Synchronization, Looking at Objects at Appropriate

Times, and Natural Movement. The results for Consistency and Appropriateness

of the Robot’s Head Movements are particularly strong, and suggest that head gaze

behaviors generated by the robot were consistent, appropriate, and sensitive to the

context. The results reinforce recent findings from Kirchhof & Ruiter [54] that ges-

ture comprehension is temporally more flexible than gesture production, and that

participants tolerate loose synchronization of head gaze with speech.

FDR (Benjamini-Hochberg) provides a good balance between discovery of statis-

tically significant measures and limitation of false discovery occurrences. It maintains

good statistical power and attempts to ensure the accuracy of statistically significant

results while controlling the proportion of false discoveries. Using the FDR correc-

tion, the LSHG-S demonstrated high levels of social acceptance when compared to

NHG-S in seven additional measures across the three categories: SAM: Valence,

Creativity, Person at Ease, Robot Empathy, Robot Loyalty, Robot Integrity, and

Robot Caring. The high creativity level of the participants in the LSHG-S condition

suggests that participants experienced less stress, and were more relaxed compared

to the NHG-S condition [70].

The results for Participants’ Affective State and Participants’ Perception of the

Robot suggest that the participants perceived the robot as a friendly companion [66].

While this result is significant for social robotics in general, it has strong applica-

bility to eldercare and therapeutic robotics, in addition to the victim management

application presented in this dissertation. A rescue operation might take up to 6-10

hours after a victim is located [40], during which it is psychologically helpful for

the “victim” to perceive the robot to be social and following human interpersonal
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communication norms [14].

7.2 Interpretation and Discussion of the Covariates

The purpose of including covariates in ANOVA is two-fold:

1. To reduce error variance and explain unexplained variances in terms of the

covariates, so as to improve the accuracy of the test and better assess the main

effect.

2. To remove the bias of variables that confound the results (i.e., a variable that

varies systematically with the experimental manipulation).

While covariates relationship does not imply causation, several interesting trends

were observed:

1. People experienced with robots got more agitated with the robot and found the

robot to be less Extraverted. This could be because of the type of robot these

people owned. They might all be “Roomba” owners, who are used to robots

that aren’t social and are tools. They were confused and agitated by the

sociableness of it. They also probably perceive robots as task completer’s and

so assumed it wouldn’t be extraverted. The type of robot influences people’s

experience with the robot and therefore should be measured and controlled in

future experiments.

2. Increased age led to a higher perception of a better Chance of Rescue. Old

people seem to have a lot of faith in “the future” and “technology” making

life better. This arguably makes sense because they have witnessed many life

improvements due to other technology, so they are more likely predisposed

to believing a rescue robot will be a life changing technology that actually

increases Chance of Rescue.
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3. Male participants rated the robot as being more unpleasant than female par-

ticipants. Humans resonate more to communications delivered by a gendered

voice that matches their own, rather than by an oppositely gendered voice,

regardless of whether the voice is human or synthesized [77]. The male par-

ticipants may not have related as well to the female voice used. Females may

have related better or neutrally to a female voice.

4. Caucasian participants viewed the robot to be more extraverted than Asian par-

ticipants. Caucasians are generally Western and individualistic, while Asians

are generally Eastern and collectivistic [78, 79]. This would explain the attri-

bution of extraversion as a projection of self onto the robot.

5. Increased video gaming experience resulted in increased perception of Natural

Movement and Robot Synchronization. This could be because people with

a lot of video gaming experience feel comfortable interacting with artificial

intelligence characters and are used to movements and synchronization that

are non-human, which may not be perfect.

7.3 Four Factors Relevant for User Perception of Head Gaze-Speech

Synchronization

This work identifies four factors that are important for user perception of speech-

gaze synchronization, which may also explain why the LSHG-S condition performed

well.

1. Gesture comprehension is temporally more flexible than gesture production:

The gesture-speech synchrony might be a consequence of the production sys-

tem, but may not be essential for comprehension [54]. If people were very

sensitive to TSHG-S, then the results would have indicated that the partici-
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pants would have a preference for the TSHG-S over LSHG-S, which was not

the case. The semantic and temporal flexibility of head gaze production with

robots requires further investigation.

2. Expectation of gaze in a semi-humanoid robot: The expectations of gaze from

a robot with a low degree of anthropomorphism and a more mechanical ap-

pearance may not be as high as those required for human interpersonal in-

teractions. Survivor Buddy has a low degree of anthropomorphism, with a

mechanical appearance. It does not have eyes, hands, or even the shape of a

human head. The author considers that even though Survivor Buddy was able

to have an intelligent conversation with the participants, they do not hold it

to the same high standards required in human interpersonal communication,

or even human-android communication.

3. Importance of synchronization at the start and end of turns is greater than

at the middle of turns: Yamazaki et al. [11] discuss that timing is critical at

the start and end of turns for conversation. Cassell et al. [22] emphasize the

importance of middle of turn events for superior performance; however, the

timing of these events has not been examined. The proposed method has pre-

cise synchronization at the start and end of turns, however, it approximates

the semantic structure during the middle of turns to support autonomous gen-

eration. These approximations did not adversely impact the participants, and

resulted in performance similar to that of TSHG-S. The timing of the middle

of turn events may be of relatively low importance.

4. Absence of lips: Humans perceive speech-lip asynchrony as unnatural [80], and

prior work suggests that speech needs to be tightly synchronized with lips, but

not with gestures [54]. In the experiment, the Survivor Buddy robot did not
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have lips. This could possibly explain why the participants did not perceive

LSHG-S to be unnatural, but instead found it to be equivalent to that of

TSHG-S.

7.4 Limitations of the Experiment

The study was limited in five aspects, listed below in no particular order.

1. Implementation used a priori sensor data: The robot did not have object recog-

nition or speech recognition capabilities. This is because this research focused

on the generation of appropriate head gaze behaviors, not recognition of objects

or speech, which are challenging research areas in their own right. However,

these limitations can be expected to be addressed in the future.

2. Limited to head gaze, no eye gaze: The implementation generated only head

gaze acts and ignored eye gaze. However, the inference from the sentence

structure, time delays, and typing could readily extend to eye gaze if the robot

had mechanical or virtual eyes. Of the two body components, head gaze may

be more immediately valuable as many robots do not have eyes capable of

gaze. For example, robot animals often have fixed cameras or lights for eyes,

and non-anthropomorphic robots do not have eyes at all.

3. Single domain validation: The experiment showed that gaze primitives val-

idated in other domains (TSHG-S condition) had positive results for victim

management, as shown by the high rating of the TSHG-S condition. Because

the performance of the LSHG-S condition (which used approximations) was as

good as the TSHG-S condition for victim management in a search and rescue

domain, the expectation is that the results will transfer to other domains. The
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next step is to validate the system in the field using a very realistic setting.

Validation of the system in other domains can be explored in future work.

4. Controlled conversational interaction: The conversational interaction was di-

rected by the robot (using a hidden operator). This method was adopted be-

cause speech recognition tools are unreliable, and affect the repeatability and

consistency of the experiment across conditions. Future speech recognition sys-

tems will permit the participants to have a collaborative dynamic conversation

with the robot.

5. Purposeful dialog - In the study, the robot followed a 911 protocol and its goal

was to gather as much information as possible about the victim (participant)

and the environment. The content of the dialog had a sense of purpose attached

to it and the objective of the dialog was very goal-oriented, in a question/answer

form. The LSHG-S generation mechanism needs to be evaluated for casual

dialog, in which content is less goal-oriented and more of small talk (a discussion

on what the weather is like etc).

7.5 Summary

This section has interpreted and discussed the results associated with a large-scale

93 participant human-robot interaction study designed to evaluate the effectiveness

and appropriateness of LSHG-S. The results from the experiment demonstrated a

high level of social acceptance of LSHG-S in the key areas of Participants’ Positive

Affective State, Participants’ Perception of the Robot, and Consistency and Appro-

priateness of the Robot’s Head Movements. LSHGS performs at least as well as

the TSHG-S when compared to NHG-S, irrespective of the type of correction used

- Bonferroni or FDR (Benjamini-Hochberg). Statistically significant results for all
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measures of the Consistency and Appropriateness of the Robots Head Movements cat-

egory was found even with the more conservative Bonferroni correction, suggesting

high replicability of these results. Since the participants tolerated LSHG-S, the affor-

dances developed as a part of this research effort are adequate and socially acceptable

for human-robot interaction. The LSHG-S is a more viable and practical method

for the generation of head gaze than the commonly used TSHG-S. This is because

LSHG-S does not require manual annotation, LSHG-S performs better than NHG-S,

and at least as well as TSHG-S when compared to NHG-S. The research identified

four factors that may have impacted the result outcomes: gesture comprehension is

temporally flexible than gesture production, expectation of gaze in a semi-humanoid

robot, importance of synchronization in start and end of turns is more than middle

of turn, and absence of lips. This is followed by a discussion of five limitations of

the study: implementation used a priori sensor data, limited to head gaze, no eye

gaze, single domain validation, controlled conversational interaction, and purposeful

dialog.
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8. CONCLUSIONS AND FUTURE WORK

This work developed a computational theory for social head gaze as a pro-

grammable framework, so that head gaze-speech acts can be autonomously and

consistently generated. The fundamental primary research question – “What is a

computational theory of social head gaze for social agents?” was answered using four

related secondary research questions as follows:

1. What is the appropriate set of social head gaze behaviors required for a natu-

ralistic human-robot interaction?

This research surveyed 32 human-robot interaction studies of social head gaze

in Section 2 and identified through a process of generalization and mining, a

set of six head gaze acts and three types of percepts that have been successful

in making a robot comforting, more socially consistent, and predictable to the

user(s). The six head gaze acts that have been identified were: Fixate, Avert,

Concurrence, Scan, Confusion, and Short Glance. The three types of percepts

reported were: external, linguistic, and internal.

Sections 3 and 4 detail the substitution of affordances for linguistic and inter-

nal percepts of head gaze, so that the state of an interaction can be inferred

autonomously. Affordances are conditions or objects that are directly per-

ceivable without any memory, inference, or interpretation [37]. A set of eight

affordances from the sentence structure, time delays, and typing (Initial Word,

Word following Punctuation : . ! ?, After 75% of Words between Punctuation

: . ! ?, Carriage Return, Elapsed Listening Time > 6 sec, Elapsed Idle Time >

15 sec, Number of Deletes/Retypes by an Operator > 5 within a Time Interval

t = 15 sec, and The Object Name Tag) were proposed.
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2. How can social head gaze be expressed as behaviors or schemas, which are

common representations in both psychology and robotics?

Section 3 maps social head gaze unto a behavioral robotics framework. The

behavioral robotics framework expresses social head gaze as a set of five be-

haviors – Communicating Social Attention, Regulating an Interac-

tion, Manifesting an Interaction, Projecting a Mental State, and

Establishing Agency. Section 4 describes the implementation of the five

behaviors as nine production rules. The production rules are if-then statements

that uniquely map the affordances onto head gaze acts.

3. Is it possible to evaluate through sound experimental methods the effectiveness

and appropriateness of the head gaze acts generated using the behavioral robotics

framework?

A large-scale 93-participant experiment was conducted to test the efficacy of

LSHG-S. The details of the experiment were presented in Section 5. The data

analysis and results were provided in Section 6. Five hypotheses were evaluated:

(a) Hypothesis 1 (H1): Participants who interact with a robot exhibiting the

LSHG-S condition will evaluate their experiences more positively than

participants who interact with a robot exhibiting the NHG-S condition.

(b) Hypothesis 2 (H2): Participants who interact with a robot exhibiting the

LSHG-S condition will evaluate the robot more positively than partici-

pants who interact with a robot exhibiting the NHG-S condition.

(c) Hypothesis 3 (H3): Participants who interact with a robot exhibiting the

TSHG-S condition will evaluate their experiences more positively than

participants who interact with a robot exhibiting the NHG-S condition.
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(d) Hypothesis 4 (H4): Participants who interact with a robot exhibiting the

TSHG-S condition will evaluate the robot more positively than partici-

pants who interact with a robot exhibiting the NHG-S condition.

(e) Hypothesis 5 (H5): The LSHG-S condition improvements over the NHG-S

condition will be comparable to those of the TSHG-S condition.

The results indicated strong support for each of the five hypotheses. The so-

cial acceptance of LSHG-S is similar to TSHG-S (manual annotation), and

preferred to NHG-S. LSHG-S performs at least as well as the TSHG-S when

compared to NHG-S in key areas of Participants’ Positive Affective State, Par-

ticipants’ Perception of the Robot, and Consistency and Appropriateness of the

Robot’s Head Movements, irrespective of the type of correction used - Bon-

ferroni or FDR (Benjamini-Hochberg). These results suggest that LSHG-S is

adequate for human-robot interaction. The potential problem of imprecisely

synchronized head gaze acts with speech affecting user perception of the robot

did not arise. The lag between the robot’s speech and gaze acts did not annoy

or confuse the human.

4. Does the level of synchronization between gaze acts and speech impact the nat-

uralistic perception of the social interaction?

The analysis of the results in Section 7 suggests that LSHG-S elicits high levels

of social acceptance when compared to NHG-S, and is adequate for human-

robot interaction. The Survivor Buddy robot interacted with a human in a

simulated victim management scenario using all five functions of head gaze

(Section 5). The change in synchronization for two functions such as engaging

in a verbal conversation with human(s) and referential gaze did not impact

the human’s perception of the robot’s overall head gaze during the interaction.
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This may have because of any of the four factors that could have impacted user

perception of head gaze-speech synchronization identified in Section 7 – Gesture

comprehension is temporally more flexible than gesture production, Expectation

of gaze in a semi-humanoid robot, Importance of synchronization at the start

and end of turns is greater than at the middle of turns, and Absence of lips.

8.1 Significant Contributions

This research provides seven contributions to the social robotics community.

These contributions arranged in the order of abstraction (abstract to implementation-

specific).

1. The findings from Sections 3, 4, 6, and 7 contribute to a fundamental un-

derstanding of the role of social head gaze in social acceptance (Section 6),

particularly with regard to the question of when less competence is tolerable

(Section 3), how social head gaze can be produced (Section 4), and the impor-

tance of the speech and gaze synchronization for the listener (Section 7).

2. It shows that autonomously generated head gaze-speech coordination is both

possible and acceptable. Researchers and practitioners do not have to manu-

ally annotate every situation using the Wizard-of-Oz approach [47]. As seen in

Section 6 a total of 137 out 145 head gaze acts that were manually annotated

for TSHG-S were generated autonomously using LSHG-S. Note that this num-

ber reflects only Fixate, Avert, Concurrence, and Scan head gaze acts. Note

that Fixate(Object) and Confusion head gaze were generated manually in both

conditions.

The results also indicate that synchronization of head gaze with speech is more

flexible than initially thought. This finding promotes implementation on robots
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with lesser capabilities (for example, a toy “Keepon” with low velocity/joints

limits).

3. Section 3 provides social robotics researchers and practitioners with a formal

vocabulary for social head gaze comprising of behavioral robotics nomencla-

ture, such as perceptual schemas, percepts (external, linguistic, and internal),

behaviors ( Communicating Social Attention, Regulating an Inter-

action, Manifesting an Interaction, Projecting a Mental State,

and Establishing Agency), and motor schemas (Fixate, Avert, Concur-

rence, Scan, Confusion, and Short Glance). These provide a common lexicon

and taxonomy that facilitates communication across diverse groups such as so-

cial scientists interested in understanding the fundamental aspects of the social

head gaze phenomena, or robot behavior designers/practitioners who need to

implement head gaze elements in a specific application that are autonomous,

consistent, repeatable, and natural.

4. While the robot generated socially acceptable head gaze behaviors in real-time

for a goal directed victim management scenario detailed in Section 5, it is ex-

pected that the robot can generate socially acceptable head gaze behaviors for

very open-ended, interactive scenarios. This is because LSHG-S is indepen-

dent of the content of dialog. However this needs to be validated in future

human-robot interaction studies. The ability to generate real-time head gaze

in open-ended interactive scenarios is very important in situations where robot

responses cannot be anticipated a priori (e.g. personal robots for eldercare or

museum tours).

5. This work contributes five new measures for victim management - Person at

Ease, Robot Empathy, Robot Integrity, Robot Loyalty, and Robot Caring. The
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list of items, and their reliability with regard to these five measures are reported

in Appendix I. Since these measures were statistically significant only for the

FDR correction and not the Bonferroni correction, these measures need to be

validated in future human-robot interaction studies.

6. The economic impact relates primarily to the amount of labor involved and

costs required for the modification of existing robots. Section 4 contributes a

novel mechanism for inferring affordances from sentence structure, time delays,

and typing that is independent of the semantics of dialog. This method reduces

the amount of labor involved, since higher social acceptance can be generated

with reduced manual effort and real-time operator workload for even unstruc-

tured dialog.

The behavioral robotics framework was derived in Section 3 from 32 previous

implementations of head gaze using a commonality analysis. Hence, it is ap-

plicable to a wide variety of robots (anthropomorphic, non-anthropomorphic).

7. The behavioral robotics framework simplifies creation, analysis, and compar-

ison of social head gaze implementations. The instantiation of a social head

gaze implementation is described in Section 4. The analysis and comparison

of two existing head gaze architectures using the behavioral robotics frame-

work and the Software Architecture Analysis Method (SAAM) is provided in

Appendix B.

8.2 Open Research Questions

There were five main open research questions that were revealed while performing

this research study. These following open research questions help inform Future Work

in the area of social head gaze for social robotics.
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1. What is the audio visual integration envelope for head gaze? The extent to

which humans tolerate loose synchronization of head gaze and speech needs to

be determined.

2. What is the impact of content conversation on head gaze acts? Currently, no

study has investigated the role of content or what the robot is saying in head

gaze.

3. What is the impact of head and eye gaze in a social interaction? Current work

addresses head gaze, not both of them together. There are indications from

psychology literature that eye gaze will have priority over head gaze [48], but

this needs to be investigated.

4. How does head gaze extend to multi-party situations, and can this be modeled?

Currently, head gaze is predominantly a feature of dyadic [1–11, 14–18,20, 23–

32,40,42,43,49] or triadic situations [13,41]. However, it is reasonable to assume

that robots will encounter multi-party situations often in the real world. Thus,

it is also worth asking whether a multi-party situation can be approximated to

several dyadic encounters.

5. What is the impact of distance and culture on parameters of head gaze? Hu-

mans tend to have exaggerated movements when they are further away from a

human [48, 50]. The effect of distance and culture on parameters of head gaze

(such as duration and range) needs to be studied.

8.3 Future Work

Five directions for future work have been identified.

1. Head-gaze speech synchronization merits further investigation. Additional

studies need to be conducted to answer critical questions such as: What is the
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extent to which humans tolerate loose synchronization of head gaze and speech?

Also, What factors affect expected synchronization of head gaze-speech? For

example, what role does people’s (perceived) appearance of the robot have on

head gaze-speech synchronization? and What is the impact of content conver-

sation on head gaze acts?

2. Validation testing needs to be conducted in other domains which have different

content of dialogue. While the study showed that a set of gaze acts, validated

in other domains, had positive results in the search and rescue domain, the

collection of gaze acts need to be applied in each of the original domains as

described in literature, as well as to new ones.

3. The behavioral robotics framework should be expanded to support both head

and eye gaze. The Coordination Function needs to be upgraded to support

both head and eye gaze at the same time.

4. The behavioral robotics framework should be extended to support multi-party

interactions. This would involve updating the implementation of Regulating

an Interaction behavior to support the short glance gaze act and upgrading

the Coordination Function to resolve any conflicts resulting from interactions

with multiple people.

5. The impact of time on human-robot interactions has not been investigated.

In a search and rescue scenario, the victims are expected to interact with the

robot for 4-6 hours. The effects of long-term interaction on social head gaze

needs to be investigated.
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8.4 Summary

This research was the first to propose LSHG-S and show that autonomous head

gaze-speech coordination is possible and does not require semantic understanding.

The fundamental primary research question – “What is a computational theory of so-

cial head gaze for social agents?” was answered using four related secondary research

questions: (1) What is the appropriate set of social head gaze behaviors required for

a naturalistic human-robot interaction?, (2) How can social head gaze be expressed

as behaviors or schemas, which are common representations in both psychology and

robotics?, (3) Is it possible to evaluate through sound experimental methods the ef-

fectiveness and appropriateness of the head gaze acts generated using the behavioral

robotics framework?, and (4) Does the level of synchronization between gaze acts and

speech impact the naturalistic perception of the social interaction?. LSHG-S was re-

alized using eight novel affordances for turn-taking and semantics from the sentence

structure, time delays, and typing: Initial Word, Word following Punctuation : .

! ?, After 75% of Words between Punctuation : . ! ?, Carriage Return, Elapsed

Listening Time > 6 sec, Elapsed Idle Time > 15 sec, Number of Deletes/Retypes by

an Operator > 5 within a Time Interval t = 15 sec, and The Object Name Tag. The

results from a 93-participant experiment indicated that LSHG-S elicited high levels

of social acceptance, performed as well as the TSHG-S condition when compared to

the NHG-S condition, and the participants’ were not annoyed or confused by the

head gaze. This suggests that the affordances developed as a part of this research ef-

fort are adequate and socially acceptable for human-robot interaction. A behavioral

robotics framework for social head gaze was developed to simplify creation, analysis,

and comparison of implementations. Seven contributions of the research to the social

robotics community were detailed followed by a discussion of five directions for future
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work.
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APPENDIX A

ROBOTS, SUBSYSTEMS, SOCIAL SCIENCE MODELS, AND

SYNCHRONIZATION USED FOR THE 32 MAJOR STUDIES.

Studies Robot Subsystems Model Sync

Imai et al. [27] Humanoid Sensor System, Perceptual Sys-

tem, Dialogue Mechanism, Joint

Attention Mechanism, and Ac-

tion Executive.

- -

Imai et al. [3] Humanoid - - -

Matsusaka

et al. [19]

Humanoid - [34,50] Tight

Breazeal

et al. [4]

Animal-Like Sensor System, Perceptual Sys-

tem, Reasoning System, Cogni-

tive System, Action Executive.

- -

Fincannon

et al. [40]

Non-Anthro-

pomorphic

- - -

Minato et al. [5] Android - - -

Sakamoto

et al. [6]

Humanoid Sensor System, Communicative

Units, and Action Executive.

- -

Sidner et al. [8] Animal-like Sensor System, Perceptual Sys-

tem, Conversation Model, and

Action Executive.

[33] Tight

Continued on next page
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Table A.1 – Continued from previous page

Studies Robot Subsystems Model Sync

Macdorman

et al. [7]

Android - - Tight

Kozima et al. [24] Animal-Like Perceptual System, Attention

Map, Habituation Mechanism,

and Emotion Expression.

- -

Bennewitz

et al. [41]

Humanoid Sensor System and Behavior

System

- -

Mutlu et al. [9] Humanoid - [22] Tight

Kuno et al. [10] Humanoid - [34] Tight

Yamazaki

et al. [11]

Humanoid - [34] Tight

Staudte &

Crocker [28,29]

Humanoid - [35,36] Tight

Mutlu et al. [13] Humanoid - Experiment,

[33,51,52]

Tight

Mutlu et al. [25] Humanoid,

Android

- Experiment Tight

Ishi et al. [20] Humanoid,

Android

- Experiment Tight

Bethel &

Murphy [14]

Non-Anthro-

pomorphic

- - -

Heerink et al. [26]Animal-Like - - -

Continued on next page

123



Table A.1 – Continued from previous page

Studies Robot Subsystems Model Sync

Shimada

et al. [15]

Android - - -

Holroyd

et al. [1]

Humanoid Collaboration Manager, Engage-

ment Recognition, Turn Policy,

Reference Policy, Response Pol-

icy, Maintenance Policy, and

BML Realizer.

[33,34]

[65]

Tight

Sirkin et al. [42] Humanoid - - -

Liu et al. [43] Humanoid,

Android

- Experiment -

Huang &

Mutlu [2]

Humanoid Perceptual System, Cognitive

System, Behavioral System,

Behavior Coordination System,

Behavior Generator, Activity

Model, Memory, and Social

Behavior Knowledge Base.

[33,34]

[35,36]

Tight

Huang &

Mutlu [16]

Humanoid Perceptual System, Cognitive

System, Behavior Selection Sys-

tem, Activity Model, Memory,

and Social Behavior Knowledge

Base.

[33,34]

[35,36]

Tight

Pitsch et al. [49] Humanoid - - -

Continued on next page
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Table A.1 – Continued from previous page

Studies Robot Subsystems Model Sync

Admoni et al. [17]Animal-Like - - -

Andrist &

Mutlu [23]

Humanoid Gaze Controller, Head Con-

troller, Speech Recognition, and

Dialogue Manager.

- -

Huang &

Mutlu [18]

Humanoid - Experiment Tight

Sauppe &

Mutlu [31]

Humanoid - [35,36] Tight

Admoni et al. [30] Humanoid - - Tight

Moon et al. [32] Humanoid - [35,36] Tight
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APPENDIX B

ANALYSIS OF EXISTING ARCHITECTURES

The Software Architecture Analysis Method (SAAM) is a five step process used

for evaluating existing architectures [81]:

1. Characterize a reference architecture of the domain. The behavioral robotics

framework was synthesized from 32 previous implementations using the two

step methodology for deriving reference architectures outlined in [59,60]. There-

fore, for this analyses we used the behavioral robotics framework described in

Section 3.

2. Describe the existing architecture in terms of the reference architecture. The

structural decomposition of the two systems architectures are mapped on to

the behavioral robotics framework, followed with an allocation of functionality

to the structure.

3. Choose a set of quality attributes with which to assess the architecture. The two

system architectures are evaluated for overall functionality. While any other

quality attributes – such as the modifiability to new environments, extension

of capabilities, and portability to different robot types [81] – can be used, these

attributes are not considered in the current evaluation because the existing

architectures are still in development and not mature.

4. Choose a set of concrete tasks which test the desired quality attributes. Overall

functionality is the number of head gaze behaviors supported by the architec-

ture.
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5. Evaluate the degree to which each architecture provides support for each task.

To architecturally support overall functionality, a subsystem to support the

behavior must be present. Additionally, best practices for architectural design

[59] require that the subsystems responsible for supporting behaviors should

be a) isolated in architectural description, that is the subsystem should be

isolated from the rest of the architecture, and b) non-monolithic. There should

be support for subdivision of functionality within the subsystem.

B.1 Human-Robot Collaboration Architecture

This section details the architectural description and analysis of the Human-

Robot Collaboration architecture.

B.1.1 Architectural Description

The re-characterization of the Human-Robot Collaboration architecture is shown

in Table B.1. The Raw Sensor Data component of the Human-Robot Collabora-

tion architecture is assigned to the Sensor Processing Module. Two subsystems,

Collaboration Manager and Behavior Recognition are allocated to the Perception

Module. The Collaboration Manager contains dialogue annotated with turn status.

The functionality of the behavior Recognition subsystem is to perceive behavior in-

dicators such as when a human initiates a connection. Three subsystems – Response

Policy, Turn Policy, and Reference Policy – are assigned to the Behavior Module. The

Turn Policy subsystem generates the head gaze required for engaging in a conversa-

tion. This subsystem performs the function of the Regulating an Interaction

subsystem. The Response Policy subsystem generates the head gaze necessary for

looking interested in humans, which is the function of the Communicating So-

cial Attention subsystem. The Reference Policy subsystem generates referential

head gazes for looking at objects in the environment. The subsystem captures the
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functionality of the Manifesting an Interaction subsystem. Two subsystems,

Maintenance Policy and Collaboration Manager, are allocated to the Action Arbi-

tration Module. The role of the Maintenance Policy subsystem is to prioritize the

head gaze policy. The Collaboration Manager described above has one additional

function. This subsystem is responsible for inhibiting turn or point gestures. Both

of these subsystems perform the function of the Coordination Function of the behav-

ioral robotics framework. The BML Realizer subsystem is allocated to the Action

Execution Module. This subsystem executes the overall output of the robot.

There are four points of interest to note in this re-characterization of the Human-

Robot Collaboration architecture:

1. The description of the Collaboration Manager subsystem is monolithic; hence,

it does not lend itself to a subdivision of functionality. This is because there is

limited structural separation between the perception of turn status, content of

dialogue, and behavior arbitration. The Collaboration Manager must provide

the dialogue, identify the turn events, and provide conflict resolution.

2. The coordination mechanisms exist in both the Collaboration Manager and

Maintenance Policy subsystems and their interactions are not fully defined and

isolated. For example, what happens when two rules have the same priority

has not been addressed.

3. In its current form, the architecture doesn’t include mechanisms for Project-

ing Mental State and Establishing Agency, which have been shown to

be important components of head gaze in other systems [4, 8, 25].
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Behavioral Robotics Framework Human Robot
Collaboration
Architecture

Robot Behavior
Toolkit

Architecture

Module Component Component Component

Sensor Processing
Module

Raw Sensor Data
Raw Sensor Data Raw Sensor Data

Internal State

Perceptual Module Perceptual System
Collaboration Manager Perceptual System

Behavior Recognition Cognitive System

Behavior Module

Communicating Social Attention Response Policy Behavior Selection
System and Knowl-
edge Base

Regulating an Interaction Turn Policy
Manifesting an Interaction Reference Policy
Projecting Mental State - -

Establishing Agency - -

Action Arbitration
Module

Coordination Function Maintenance Policy Behavior Coordina-
tion SystemCollaboration Manager

Action Execution
Module

Overall Response BML Realizer Behavior Generator

Table B.1: Allocation of the Components of Human-robot Collaboration Architec-
ture [1] and Robot Behavior Toolkit Architecture [2] on the Behavioral Robotics
Framework Based on Functionality.

B.1.2 Architecture Analyses

The overall functionality of the Human-Robot Collaboration architecture is three,

since the architecture is only capable of generating head gaze in three out of the

five behaviors: Communicating Social Attention, Regulating an Inter-

action, and Manifesting an Interaction. This because it consists of only

those subsystems (see Table B.1).

B.2 Robot Behavior Toolkit Architecture

This section details the architectural description and analysis of the Robot Be-

havior Toolkit architecture.
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B.2.1 Architectural Description

The re-characterization of the Robot Behavior Toolkit architecture is shown in

Table B.1. The Raw Sensor Data component of the Robot Behavior Toolkit architec-

ture is assigned to the Sensor Processing Module. Two subsystems, the Perceptual

System and the Cognitive System, are allocated to the Perception Module. The Per-

ceptual System transforms stimuli into a percept. The Cognitive System provides

internal and external percepts based on the information from the Perceptual Sys-

tem and the current action prescribed by the Activity Model. Two subsystems, the

Knowledge Base and the Behavior Selection System, are assigned to the Behavior

Module. The Knowledge Base is a collection of behavioral specifications in XML. The

Behavior Selection System queries the Knowledge Base for an appropriate behavior

based on the percept. Both these subsystems are responsible for the generation of

head gaze and perform the function of three behavioral robotics framework subsys-

tems: Communicating Social Attention, Regulating an Interaction, and

Manifesting an Interaction. The Behavior Coordination subsystem is assigned

to the Action Arbitration Module. The role of the Behavior Coordination subsystem

is to resolve conflicts and overlaps among behaviors by prioritization. This subsys-

tem performs the function of the Coordination Function of the behavioral robotics

framework. However, as was explicitly mentioned by Huang et al. [16], this subsys-

tem has not been implemented. The Behavior Generator subsystem is allocated to

the Action Execution Module. This subsystem organizes the coordinated behavior

in XML for execution.

There are two points of interest to note in this re-characterization of the Robot

Behavior Toolkit architecture:

1. The Knowledge Base subsystem is a collection of behavioral specifications in
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XML. The description of this subsystem is monolithic and not isolated. As

seen in Table B.1, each of the behaviors use the same subsystem.

2. The architecture does not support the following two components: Projecting

Mental State and Establishing Agency. These components have been

shown to be important components of head gaze in other systems [4, 8, 25].

B.2.2 Architecture Analyses

The overall functionality of the Robot Behavior Toolkit architecture is three.

The architecture is only capable of generating head gaze in three out of five behav-

iors: Communicating Social Attention, Regulating an Interaction, and

Manifesting an Interaction. This is because only these three behaviors have

been implemented (see Table B.1).
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APPENDIX C

EXPERIMENTAL STUDY CONSENT FORM
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APPENDIX D

EXPERIMENTAL STUDY INFORMATION SHEET
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APPENDIX E

EXPERIMENT PROTOCOL

The name of this study is: “Evaluation of a Search and Rescue Robot in a

Confined Space Simulated Disaster Site.” The purpose of this study is to evaluate

a robot that may be used in urban search and rescue operations. We will ask you

to evaluate your feelings and reactions to the robots with which you are interacting.

Here is how the study will go:

1. We will have you read and complete the informed and videotaping consent

forms.

2. You will be assigned a unique identifier or participant ID that you will use

throughout the experiment.

3. You will be given your door prize ticket.

4. If at any time you feel as though you are not able to continue with the exper-

iment just let us know and we will assist you in getting out of the confined

space box as quickly as possible.

5. You will be asked to complete a demographics questionnaire, so that we can

gather some basic information about you.

6. Once you complete this, you will be asked to wear an eye tracking goggle and

calibrate the eye-tracking system.

7. Next you will be asked to view a 3 minute video from an actual disaster to set

the scene.
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8. After the video is completed minutes are completed we will take you into the

simulated disaster site and place you in a moderately confined space so you

will have the sensation of being in a disaster setting.

9. You will be lying down on your right side during the robot interactions.

10. Next you will interact with the robot in one randomly assigned scenario. The

interaction will take approximately 7 minutes. During this scenario your inter-

action will be videotaped and we will be obtaining eye tracking information.

11. Once the interaction is complete we will assist you with sitting up, remove you

from the confined space simulated disaster site and remove the eye tracking

goggle.

12. You will be taken back to the desk area where you began the research study

and we will have you complete a post interaction questionnaire.

13. If at any point you have questions or do not understand any item(s) on the

assessments, please feel free to ask questions.

14. We will debrief you on the goals of the study. Then you will be free to leave

the study area. We ask that you do not discuss the details of your experiences

with others so that the study will not be impacted by participants having prior

knowledge of the study.
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APPENDIX F

INTERACTION SCRIPT

First word in Theme - Bold

First word in Rheme - Italics

Object Name - Small Caps

Hello. [Pause]

Can you hear me? [Pause]

I am a robot that has been sent to help you. The building you were in collapsed.

Please do not worry ; a rescue team is aware that you are trapped and knows where

you are. They are currently working to free you.

I will stay with you and remain in contact with the rescuers as they work to reach

you.

In the meantime, I will be here to help you and to keep you company. I will also be

assessing your health and mental state periodically as we wait.

I’m going to start by asking you a few questions. [Pause]

First, can you please tell me your name? [Pause]

You have been found in an area of the collapsed building that suffered a lot of dam-

age. Did you happen to see what caused the collapse? [Pause]

When the building collapsed, what level were you on? [Pause]

Is anyone with you? [Pause]

Did you see anyone on your floor before the building collapsed? [Pause]

Were you hit by falling rubble? [Pause]
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Are you experiencing any pain right now? [Pause]

I will notify the responders. [Pause]

Now I will ask a few questions to verify your mental state.

What is today’s date? [Pause]

What type of building were you in? [Pause]

Who is the current president of the United States? [Pause]

Thank you. Now, to keep you alert as we wait, I will lead you through a memory

exercise.

I’m going to list some objects and I will later ask you to repeat as many of them as

you can. Are you ready to begin? [Pause]

Here we go: vacuum, cat, doorknob, ladder, turkey, planet, pillow, fountain, choco-

late, wire, stone, lemon, concrete, vase, boat, candy cane, speaker, tape, steering

wheel, sock.

The rescuers are working very hard to rescue you. They are getting closer now.

I’m going to examine you for injuries. Please follow my instructions.

I will first be checking for neck injury. Can you comfortably move your head towards

the direction of the exit sign? [Pause]

In order to check for spinal injury, could you try to wiggle the toes on your right

leg.

Now your left leg.

Did you have any trouble with either of those tasks? [Pause]

There is a fire extinguisher over there. Can you point your free arm toward it?

[Pause]

Did moving your arm cause you any discomfort? [Pause]

I am passing your answers to the responders.

I will now test how many words you can remember from the list I gave you earlier.
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When I say “go,” you will have up to 30 seconds to list as many of the words as you

can remember. Go.

[Wait 30 seconds]

All right, Good job.

I am now going to assess the area surrounding you and will appreciate your help.

Can you tell me if there is anything hanging above you? [Pause]

What are you resting on? [Pause]

I can see that there is a level sign over there, but I can’t read the level number. Can

you tell me what it is? [Pause]

I didn’t hear you clearly. Could you repeat that? [Pause]

The rescuers are almost here. Hang in there.

I will now conduct another alertness test.

I will name a common object and your goal is to come up with as many uses for the

object as you can think of that do not include its common use. So, for example, if I

say “pencil,” you won’t say “writing” because a pencil is typically used for writing,

but you might say you could use it as a “chopstick,” or as a “dagger.”

Once I state the word, you will then have 30 seconds to state as many uses for that

object as you can think of. Don’t worry about being correct, just try to be creative.

Are you ready to start? [Pause for answer].

OK.

The first object is “shoe.” What can you use a shoe for apart from wearing it to

walk?

[Wait for 30 seconds]

Time’s up.

That’s great!

The next object is “a sheet of paper.” What can you use a sheet of paper for apart
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from writing on it? [Wait for 30 seconds]

Time’s up.

For the last object, think of uses for that license plate lying over there. What

can you use it for apart from identifying a car?

[Wait for 30 seconds]

Time’s up.

That is all the information I need right now. Thank you for your help.

The rescuers are now approaching, so our interaction is complete. Please lay still

and await further instruction from the rescuers.

142



APPENDIX G

PRE-INTERACTION QUESTIONNAIRE ITEMS

1. What is your gender?

Male ◦ Female ◦

2. What is your age (in years)?

3. How many hours a week do you spend playing video games?

4. Do you own a robot?

Yes ◦ No ◦

5. Do you have a pet dog or cat?

Yes ◦ No ◦
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6. Think about your previous experience interacting with robots.

No
Experience

A lot of
Experience

1 2 3 4 5 6 7

How much experience
have you had interact-
ing with robots?

7. Please check one or more of the circles below that best describes your race/eth-

nicity.

Hispanic or Latino. ◦ American Indian or Alaska Native. ◦
Asian. ◦ Black or African American. ◦

Caucasian (White). ◦ Native Hawaiian or Other Pacific Islander. ◦
Middle Eastern. ◦
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APPENDIX H

POST-INTERACTION QUESTIONNAIRE ITEMS

1. Think of the robot you interacted with during the simulation. How well do

these words describe the robot?

Describes

Very Poorly

Describes

Very Well

1 2 3 4 5 6 7

Enthusiastic ◦ ◦ ◦ ◦ ◦ ◦ ◦

Frustrated ◦ ◦ ◦ ◦ ◦ ◦ ◦

Feminine ◦ ◦ ◦ ◦ ◦ ◦ ◦

Happy ◦ ◦ ◦ ◦ ◦ ◦ ◦

Inefficient ◦ ◦ ◦ ◦ ◦ ◦ ◦

Confident ◦ ◦ ◦ ◦ ◦ ◦ ◦

Funny ◦ ◦ ◦ ◦ ◦ ◦ ◦

Arrogant ◦ ◦ ◦ ◦ ◦ ◦ ◦

Cheerful ◦ ◦ ◦ ◦ ◦ ◦ ◦

Honest ◦ ◦ ◦ ◦ ◦ ◦ ◦

Helpful ◦ ◦ ◦ ◦ ◦ ◦ ◦

Kind ◦ ◦ ◦ ◦ ◦ ◦ ◦

In Control ◦ ◦ ◦ ◦ ◦ ◦ ◦

Humorless ◦ ◦ ◦ ◦ ◦ ◦ ◦

Jovial ◦ ◦ ◦ ◦ ◦ ◦ ◦

Extroverted ◦ ◦ ◦ ◦ ◦ ◦ ◦

Continued on next page
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Table H.1 – Continued from previous page

Describes

Very Poorly

Describes

Very Well

1 2 3 4 5 6 7

Introverted ◦ ◦ ◦ ◦ ◦ ◦ ◦

Warm ◦ ◦ ◦ ◦ ◦ ◦ ◦

Masculine ◦ ◦ ◦ ◦ ◦ ◦ ◦

Trustworthy ◦ ◦ ◦ ◦ ◦ ◦ ◦

Cold ◦ ◦ ◦ ◦ ◦ ◦ ◦

Confident ◦ ◦ ◦ ◦ ◦ ◦ ◦

Reliable ◦ ◦ ◦ ◦ ◦ ◦ ◦

Sympathetic ◦ ◦ ◦ ◦ ◦ ◦ ◦

Outgoing ◦ ◦ ◦ ◦ ◦ ◦ ◦

Likeable ◦ ◦ ◦ ◦ ◦ ◦ ◦

Sly ◦ ◦ ◦ ◦ ◦ ◦ ◦

Sincere ◦ ◦ ◦ ◦ ◦ ◦ ◦

Concerned about me. ◦ ◦ ◦ ◦ ◦ ◦ ◦

Unemotional ◦ ◦ ◦ ◦ ◦ ◦ ◦

Empathetic ◦ ◦ ◦ ◦ ◦ ◦ ◦

Shy ◦ ◦ ◦ ◦ ◦ ◦ ◦
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2. Indicate your agreement with the following statements.

Strongly Disagree Strongly Agree

1 2 3 4 5 6 7

The robot’s primary pur-

pose was to help me.

◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot’s primary pur-

pose was to help the res-

cuers.

◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot would only do

things that were in my

best interest.

◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot would follow

the rescuers’ orders, even

if it caused me harm.

◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot was more loyal

to me than the rescuers.

◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot was on my

side.

◦ ◦ ◦ ◦ ◦ ◦ ◦
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3. Indicate your agreement with the following statements.

Strongly Disagree Strongly Agree

1 2 3 4 5 6 7

The robot was engaging. ◦ ◦ ◦ ◦ ◦ ◦ ◦

I liked the robot. ◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot annoyed me. ◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot was friendly. ◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot made me feel

relaxed.

◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot was shy. ◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot made me ner-

vous.

◦ ◦ ◦ ◦ ◦ ◦ ◦

I trusted the robot. ◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot made me feel

safe.

◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot liked you. ◦ ◦ ◦ ◦ ◦ ◦ ◦
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4. Indicate your agreement with the following statements.

Strongly Disagree Strongly Agree

1 2 3 4 5 6 7

The robot saw the situ-

ation from my perspec-

tive.

◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot was concerned

about me.

◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot was oblivious

to my emotional state.

◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot wanted me to

be rescued.

◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot was empa-

thetic.

◦ ◦ ◦ ◦ ◦ ◦ ◦

I felt better with the

robot than I would have

felt if I were alone.

◦ ◦ ◦ ◦ ◦ ◦ ◦

If I were ever trapped,

I would prefer to wait

for rescue by myself than

with the robot.

◦ ◦ ◦ ◦ ◦ ◦ ◦

If I were ever trapped,

the robot would help me

pass the time.

◦ ◦ ◦ ◦ ◦ ◦ ◦
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5. How well do these words describe the robot?

Describes

Very Poorly

Describes

Very Well

1 2 3 4 5 6 7

Intelligent ◦ ◦ ◦ ◦ ◦ ◦ ◦

Harsh ◦ ◦ ◦ ◦ ◦ ◦ ◦

Fair ◦ ◦ ◦ ◦ ◦ ◦ ◦

Friendly ◦ ◦ ◦ ◦ ◦ ◦ ◦

Competent ◦ ◦ ◦ ◦ ◦ ◦ ◦

Incompetent ◦ ◦ ◦ ◦ ◦ ◦ ◦

Qualified ◦ ◦ ◦ ◦ ◦ ◦ ◦

Unpleasant ◦ ◦ ◦ ◦ ◦ ◦ ◦

Experienced ◦ ◦ ◦ ◦ ◦ ◦ ◦

Rude ◦ ◦ ◦ ◦ ◦ ◦ ◦

Cooperative ◦ ◦ ◦ ◦ ◦ ◦ ◦

Skilled ◦ ◦ ◦ ◦ ◦ ◦ ◦

Motivated ◦ ◦ ◦ ◦ ◦ ◦ ◦

Informed ◦ ◦ ◦ ◦ ◦ ◦ ◦

Unkind ◦ ◦ ◦ ◦ ◦ ◦ ◦

Quick Learner. ◦ ◦ ◦ ◦ ◦ ◦ ◦

Committed to the

task.

◦ ◦ ◦ ◦ ◦ ◦ ◦

Trained ◦ ◦ ◦ ◦ ◦ ◦ ◦

Continued on next page
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Table H.5 – Continued from previous page

Describes

Very Poorly

Describes

Very Well

1 2 3 4 5 6 7

Assertive ◦ ◦ ◦ ◦ ◦ ◦ ◦

Difficult to Use ◦ ◦ ◦ ◦ ◦ ◦ ◦

Dishonest ◦ ◦ ◦ ◦ ◦ ◦ ◦

Understandable ◦ ◦ ◦ ◦ ◦ ◦ ◦

Adaptive ◦ ◦ ◦ ◦ ◦ ◦ ◦

Aggressive ◦ ◦ ◦ ◦ ◦ ◦ ◦

Unhelpful ◦ ◦ ◦ ◦ ◦ ◦ ◦
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6. Think about your feelings while participating in the simulation. Indicate your

agreement with the following statements.

Strongly Disagree Strongly Agree

1 2 3 4 5 6 7

I remained focused. ◦ ◦ ◦ ◦ ◦ ◦ ◦

I felt stressed. ◦ ◦ ◦ ◦ ◦ ◦ ◦

I felt claustrophobic. ◦ ◦ ◦ ◦ ◦ ◦ ◦

I was bored. ◦ ◦ ◦ ◦ ◦ ◦ ◦

I felt like another per-

son was physically close

to me.

◦ ◦ ◦ ◦ ◦ ◦ ◦

I believed that rescuers

were on their way.

◦ ◦ ◦ ◦ ◦ ◦ ◦

I felt crowded. ◦ ◦ ◦ ◦ ◦ ◦ ◦

I felt optimistic. ◦ ◦ ◦ ◦ ◦ ◦ ◦

I felt lonely. ◦ ◦ ◦ ◦ ◦ ◦ ◦

I felt like I was part of a

team.

◦ ◦ ◦ ◦ ◦ ◦ ◦

I felt frustrated. ◦ ◦ ◦ ◦ ◦ ◦ ◦

I was scared. ◦ ◦ ◦ ◦ ◦ ◦ ◦

I was confident the res-

cuers would find me.

◦ ◦ ◦ ◦ ◦ ◦ ◦

I felt like I was all alone. ◦ ◦ ◦ ◦ ◦ ◦ ◦

I felt trapped. ◦ ◦ ◦ ◦ ◦ ◦ ◦
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7. Think back to your interaction with the robot and indicate your agreement

with the following statements.

Strongly Disagree Strongly Agree

1 2 3 4 5 6 7

The robot was looking at

me.

◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot was looking

away from me.

◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot was attentive

to me.

◦ ◦ ◦ ◦ ◦ ◦ ◦

I was interested in the

information presented to

me.

◦ ◦ ◦ ◦ ◦ ◦ ◦

The information pre-

sented to me was

enjoyable.

◦ ◦ ◦ ◦ ◦ ◦ ◦

I could understand the

robot well.

◦ ◦ ◦ ◦ ◦ ◦ ◦

I was attentive to the

robot.

◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot behaved

human-like.

◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot was attractive. ◦ ◦ ◦ ◦ ◦ ◦ ◦

Continued on next page
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Table H.7 – Continued from previous page

Strongly Disagree Strongly Agree

1 2 3 4 5 6 7

The robot was friendly. ◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot was opti-

mistic.

◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot was happy. ◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot was knowl-

edgeable.

◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot was irrespon-

sible.

◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot was intelli-

gent.

◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot was foolish. ◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot was ignorant. ◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot was sensible. ◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot felt like a

stranger.

◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot was aware of

its surroundings.

◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot was focused on

me.

◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot had a person-

ality.

◦ ◦ ◦ ◦ ◦ ◦ ◦

Continued on next page
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Table H.7 – Continued from previous page

Strongly Disagree Strongly Agree

1 2 3 4 5 6 7

The robot moved natu-

rally.

◦ ◦ ◦ ◦ ◦ ◦ ◦

The robot looked at the

objects at appropriate

times.

◦ ◦ ◦ ◦ ◦ ◦ ◦

8. How positive/negative did you feel about your interaction with the robot pre-

sented?

9. How agitated/comforted did you feel about your interaction with the robot

presented?
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APPENDIX I

LIST OF ITEMS AND RELIABILITY FOR THE 23 MEASURES

Measure Item Cronbach’s α

SAM: Valence [55] “How positive/negative did you feel

about your interaction with the robot

presented?”

-

Creativity [69] Summation of the the total number

of alternate uses participants gener-

ated within 30 seconds for three items:

“shoe,” “sheet of paper,” and “license

plate” during the interaction.

-

Memory [68] Summation of the the total number of

memorized items recalled by the par-

ticipant during the interaction. The

robot read off twenty different memory

items (“vacuum,” “cat,” “doorknob,”

etc) then the robot diverted the par-

ticipants attention for 30 seconds. The

robot then allowed 30 seconds for par-

ticipants to state as many of the items

as they could remember.

-

Continued on next page
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Table I.1 – Continued from previous page

Measure Item Cronbach’s α

Person at Ease [64] Index of four items: “I was scared,” “I

felt stressed,” “I felt frustrated,” and

“I felt trapped.”

.71

SAM: Arousal [55] “How agitated/comforted did you feel

about your interaction with the robot

presented?”

-

Chance of Rescue [64] Index of three items: “I was confident

the rescuers would find me,” “I believed

that rescuers were on their way,” and “I

felt optimistic.”

.78

Robot Empathy [64] Index of five items: “kind,” “sin-

cere,” “empathetic,” “sympathetic,”

and “concerned about me.”

.76

Robot Loyalty [64] Index of four items: “the robot’s pri-

mary purpose was to help me,” “the

robot would only do things that were in

my best interest,” “the robot was more

loyal to me than the rescuers,” and “the

robot was on my side.”

.76

Robot Integrity [64] Index of five items: “likeable,” “trust-

worthy,” “helpful,” “honest,” and “re-

liable.”

.77

Continued on next page
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Table I.1 – Continued from previous page

Measure Item Cronbach’s α

Robot Caring [64] Index of five items: “the robot liked

me,” “the robot saw the situation from

my perspective,” “the robot was con-

cerned about me,” “the robot was em-

pathetic,” and “the robot wanted me

to be rescued.”

.75

Robot Engagement

[1, 8, 65]

“The robot was engaging.” -

Robot Likeability [64] Index of five items: “I liked the robot,”

“the robot was friendly,” “the robot

made me feel relaxed,” “I trusted the

robot,” and “the robot made me feel

safe.”

.87

Human-Like Behavior [9] “The robot behaved human-like.” -

Robot Intelligence [9] “Intelligent.” -

Robot Detachment [64] Index of three items: “humorless,” “un-

emotional,” and “cold.”

.53 (unreliable)

Robot Confidence [64] Index of three items: “confident,” “in

control,” and“masculine.”

.26 (unreliable)

Continued on next page
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Table I.1 – Continued from previous page

Measure Item Cronbach’s α

Robot Competence [64] Index of eight items: “committed to

the task,” “competent,” “experienced,”

“informed,” “intelligent,” “qualified,”

“skilled,” and“trained.”

.84

Robot Unpleasantness [64] Index of seven items: “difficult to use,”

“dishonest,” “incompetent,” “rude,”

“unhelpful,” “unkind,” and “unpleas-

ant.”

.79

Robot Extraversion [64] Index of seven items: “outgoing,” “ex-

traverted,” “vivacious,” “jovial,” “en-

thusiastic,” “cheerful,” and “perky.”

.71

Understandability of

Robot Behaviors [65]

Index of three items: “I always knew

what object the robot looked at,” “I

could easily tell which objects the robot

looked at,” and “I could understand the

robot.”

.86

Gaze-Speech

Synchronization [65]

“The robot synched its movements

with what it was saying.”

-

Looking at Objects at

Appropriate Times [65]

“The robot looked at the objects at ap-

propriate times.”

-

Natural Movement [9, 65] “The robot movements were natural.” -
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APPENDIX J

QUESTIONS FOR DEBRIEFING

Participants were requested to answer the following questions following Bethel

and Murphy [82]:

1. What were you feeling during the interaction?

2. Were there any feelings that arose during the interaction that impacted you in

a positive way?

3. Were there any feelings that arose during the interaction that impacted you in

a negative way?

4. Was there anything that occurred during the interaction that was problematic

for you in any way?

5. Do you have any suggestions for improving the experimental process?

6. Do yo have any other comments or suggestions about this experiment?
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APPENDIX K

CALCULATION OF FDR CORRECTED SIGNIFICANCE LEVEL

1: Create a Vector A by sorting observed p-values
2: Create the vector B by computing j ∗ α

21
.

3: Subtract vector A from vector B; call this vector C.
4: Find the largest index, d, (from 1 to 21) for which the corresponding number in

vector C is negative.
5: Reject all null hypotheses whose p-values are less than or equal to pd (d indexes

vector A). The null hypotheses for the other tests are not rejected.

The FDR control algorithm is applied to the original results as shown in the Table

below. The largest index for which the corresponding number in vector C is negative

is 14. Therefore, the corrected significance level after the FDR (Benjamini-Hochberg)

correction [74] is p < 0.033.
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Original
p-values

Vector A
(Sorted p-values)

Vector B (j ∗ α
21
) Vector C
(Vector B - Vector A)

1 .02 .001 .0024 -.0014

2 .02 .001 .0048 -.0038

3 .47 .001 .0071 -.0061

4 .03 .001 .0095 -.0085

5 .001 .001 .0119 -.011

6 .3 .001 .0142 -.0133

7 .01 0.002 .0167 -.0147

8 .02 0.01 .019 -.009

9 .03 0.02 .0214 -.0014

10 .02 0.02 .0238 -.0038

11 .04 0.02 .0262 -.0062

12 .002 0.02 .0286 -.0086

13 .001 .03 .031 -.0095

14 .35 .03 .0333 -.0033

15 .51 .3 .0357 .2643

16 .47 .33 .0380 .2919

17 .75 .35 .0405 .3095

18 .001 .47 0.0429 .4271

19 .001 .47 .0452 .4248

20 .001 .51 0.0476 .4624

21 .001 .75 0.05 .7

163


