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ABSTRACT

I present three essays pertaining to the management of supply chain risks in this

dissertation. The first essay and the second essay analyze supply chain risks from

a financial perspective, while the third essay analyzes supply chain risk with the

objective of maximizing societal benefits in health care.

In my first essay, I consider a firm facing inventory decisions under the influence

of the financial market. With stochastic analytical methods, the purpose of this

essay is to examine the optimal inventory decisions under a variety of conditions.

I have identified the relevant factors impacting such decisions and the firm’s value.

Moreover, I have studied the benefits brought by efforts to improve the random

capacity of the firm. I conclude that the financial market can significantly impact

both a firm’s inventory decisions and process improvement incentives.

In my second essay, I model a stylized supply chain managed by a base-stock

inventory policy where the decision maker holds concerns about the down-side risk

of the supply chain cost. With stochastic analytical methods, the purpose of this

essay is to obtain solutions of the problem of minimizing Conditional Value-at-Risk

under various supply chain scenarios. I find that various supply chain parameters

may influence the optimal solution and the optimality of a stock-less operation. I

conclude that operating characteristics of a supply chain can shape its inventory

policy when down-side risks are taken into account.

For my third essay, the purpose of this essay is to investigate the operational

decisions of a medical center specializing in bone marrow transplants. Using the

queuing system method, I formulate the medical center as a queuing system with

random patient arrivals and departures. I find optimal decisions and efficient frontiers
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regarding waiting room size and the number of transplant rooms with the objective

of maximizing patient health benefits. I conclude that the design of a health care

delivery system is crucial for health care institutions to sustain and improve their

social impacts.

In each of the three essays, I use analytical and numerical approaches to optimize

managers’ decisions with respect to various sources of risk.
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1. INTRODUCTION

Operations management is beginning to interface with other disciplines, creat-

ing new fields such as the operations-finance interface and health care operations

(Chopra et al., 2004). However, the development of operations and supply-chain

management faces challenges such as the complexity of the systems involved, the

connections with other disciplines, the uncertainties associated with the decisions,

and the unique characteristics of individual application fields. For comprehensive

reviews of the field of the operations-finance interface, see Hatzakis et al. (2010) and

Zhao and Huchzermeier (2013). For a comprehensive review of the field of health

care operations, see Langabeer (2008).

Uncertainty in operations and supply chains comes from various sources. Lee and

Billington (1993) identify three sources of uncertainty: demand, process, and supply.

Demand uncertainty comes from volume and product mix, process uncertainty comes

from yield and capacity, and supply uncertainty comes from quality of components

and delivery. In this dissertation, I adopt a prescriptive approach to manage the

uncertainties in operations and supply chains related to finance and health care. We

consider three different subjects and I analyze each subject separately.

Operations management is about creating value (Cohen and Kleindorfer, 1993).

While value creation is essential for the survival and growth of businesses, decision-

makers need to be mindful of the risks involved (Tang, 2006), which may even un-

dermine the value of a firm in the financial market by tactical short-term decisions

of the firm. How will the financial market impact inventory decisions in the presence

of demand risk and supply risk? Under what circumstances should a decision maker

pay special attention to financial risk? These questions motivate Section 2, in which
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I describe a simple firm and evaluate the financial market value impact of inventory

decisions using the Capital Asset Pricing Model (CAPM) which allows monetizing

the riskiness of supply chain cash flows. I examine the problem under various scenar-

ios to see when and how the financial market impacts inventory decisions. Moreover,

I investigate when and how capacity process improvement can best enhance the firm

value. I find that the correlation between demand and market returns could impact

both the optimal ordering decision and the benefits of capacity process improvement.

The findings of Section 2 contribute to the operations-finance literature in exploring

the effects of random capacity limits on firm operating decisions and firm value and

demonstrating that capacity process improvement could be worthwhile under certain

situations.

Besides short-term decisions (e.g., the newsvendor model), risk also manifests it-

self in supply chains in the long-term. How will demand risks and supply risks impact

the inventory decisions of risk-averse decision-makers? What factors contribute to the

discrepancy between decisions made by risk-neutral and risk-averse decision-makers?

These questions motivate Section 3, in which I describe a stylized supply-chain model

managed by a base-stock inventory policy consisting of a production system and an

inventory location. I consider a finite-horizon model without time-discounting. I

obtain solutions to the problem of minimizing Conditional Value-at-Risk for these

three scenarios. I also conduct numerical studies to investigate the impact of various

parameters on the optimal solution. I discover an easy-to-use approximation of the

optimal base-stock level, and I find that the optimal base-stock level increases in ca-

pacity utilization, the importance of back-orders, and risk sensitivity of the decision

maker. The findings of Section 3 contribute to the operations-finance literature and

the supply chain risk management literature in bringing to attention how operating

characteristics can impact the inventory policy of a down-side-risk minimizing supply

2



chain.

Not-for-profit service organizations often face the need to create value for the

communities they serve (Hansmann, 1980; Dees et al., 1998; Drucker, 2001), espe-

cially in the health care industry (Himmelstein et al., 1999; Porter and Teisberg,

2006). As a result, these service organizations need to manage operational risk

within their service systems to create the most value for society rather than max-

imizing profit. How should decision makers predict the performance of a medical

center specializing in bone-marrow transplants? How should the system be designed

to balance patient waiting time to be treated and patient overflow due to no waiting

room available? These questions motivate Section 4 of this dissertation. In Section

4, I describe a problem faced by a medical center specializing in bone marrow trans-

plantation and formulate a queuing-based model. I then investigate the key factors

impacting the optimal decisions with analytical approaches and numerical studies.

I discuss the results of the analysis and provide managerial insights. I find that

myopically increasing the number of waiting rooms in the presence of a shortage of

treatment capacity actually hurts patients’ health benefits. The findings of Section

4 contribute to the health care operations literature in demonstrating how effective

design of service-delivery systems could mitigate the effect of congestion and improve

the well-beings of the society in general. In Section 5, I present a summary of this

dissertation.
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2. FINANCIAL RISK AND A NEWSVENDOR WITH RANDOM CAPACITY

2.1 Introduction

Companies today use strategies such as supply chain management (Christopher

and Ryals, 1999) to maximize shareholder value (Lazonick and O’Sullivan, 2000) or

equivalently, to maximize the value of the firm’s common equity on the financial

market, commonly called market capitalization or firm value. However, maximizing

firm value is not easy due to the uncertainties in supply chains. In addition to de-

mand uncertainties, supply uncertainties could manifest themselves in various forms.

Some of these supply uncertainties come from technical issues; for example, Apple

has reportedly cut its shipment targets for the Apple Watch in half due to an issue

regarding the production of display panels (Business Insider, 2016). Other supply

uncertainties may derive from business issues; for example, the launch of RIM Play-

Book was delayed by one month by display shortages created by Apple (PCMag,

2016). All these uncertainties motivate firms to deliberate on their inventory and

process improvement decisions, especially when these decisions have a great eco-

nomic impact for a business (e.g., capital-intensive goods). It is also well illustrated

that firm value can be influenced by the diverse risk profiles derived from the match

between supply and demand. For example, over a two-day period, the mean stock

market reaction ranges from -6.79% to -6.93% due to excess inventory (Hendricks

and Singhal, 2009). It is therefore crucial to identify firm-value-maximizing inventory

and process improvement decisions, the focus of this paper.

2.1.1 Motivation

Despite the importance of maximizing firm value, most operations and supply

chain models manage inventories by maximizing one component of firm value, namely
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the expected profit (e.g. Khouja, 1999), but neglect another component of firm value:

the financial-market valuation of risky inventory decisions. This lack of awareness

of financial-market risk may lead to sub-optimal inventory and purchasing decisions

that hurt the firm’s value on the financial market due to demand randomness (Sing-

hal, 2005) and supply randomness (Hendricks and Singhal, 2008). The potential to

improve firm value through better management of financial-market risk motivates us

to investigate a research question: how would managers maximize firm value through

inventory decisions in the presence of both demand and capacity randomness?

To study this research question, we consider a (buyer) firm which sells an item

with random demand, and the item is purchased from a supplier with random ca-

pacity. Managers of the buyer firm face a newsvendor-type decision and aim to

maximize the firm value. To investigate how random capacity affects inventory de-

cisions, we consider a setting where both demand and capacity are correlated with

market return (defined as the return of the portfolio that consists of all assets ac-

cessible to investors with weights proportional to market value). Positive correlation

between demand and market return exists in many durable-goods industries such

as the automobile industry, while negative correlation between demand and market

return can be found in many low-end industries where demand improves when the

economy suffers, as in the case of basic apparel with low-income target customers.

On the other hand, negative correlation between capacity and market return exists

in many industries where suppliers may allocate less capacity to a low-priority buyer

because other buyers order more during an economic boom, while positive correla-

tion between supplier capacity and market return can be found in the aforementioned

low-end industries. Moreover, the supplier may not be in the same industry or the

same country as the buyer firm, which may also lead to positive correlation between

capacity and market return.
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2.1.2 Contributions

Our paper contributes to the literature at the operations-finance interface by un-

derscoring the importance of capacity randomness in firm value, which agrees with

and complements empirical studies in supply chain risk management (e.g., Hendricks

and Singhal, 2014). We find that the firm-value-maximizing inventory ordering deci-

sion depends on capacity when the random capacity is correlated with market return.

This finding is different from previous studies (Anvari, 1987; Kim and Chung, 1989)

that assume infinite capacity, since we incorporate limited, random capacity and

highlight its role in determining firm value.

We illustrate how the optimal inventory ordering decision responds to changes in

various factors and discuss the implications of such changes. Of particular interest,

we find that although higher mean capacity enables more robust supply of items, it

may lead to a lower order quantity. This finding is different from Ciarallo et al. (1994),

where the expected-profit-maximizing inventory ordering decision is independent of

capacity, since we take into account how the financial market would price demand

and capacity risks.

Moreover, we show that supplier capacity may neutralize or amplify the effect of

demand-introduced systematic risk depending on the setting, which has implications

in matching supply and demand to maximize firm value (Hendricks and Singhal,

2009). We also show that although both capacity and demand randomness may

introduce systematic risk into a firm, the impact of capacity randomness is relatively

small in size compared to that of demand randomness. However, the impact of

capacity randomness may be large when the capacity utilization is high. Managers

with the objective of maximizing firm value should evaluate systematic risks from

demand and supply before making inventory decisions.
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2.1.3 Literature review

In addition to the newsvendor model (Anvari, 1987; Kim and Chung, 1989), the

the Capital Asset Pricing Model (CAPM) (Sharpe, 1964; Lintner, 1965) approach

has been used in multi-period supply chain settings. In continuous-review inventory

models, Singhal and Raturi (1990) have shown that a firm’s opportunity cost of cap-

ital depends on inventory parameters and policies; Singhal et al. (1994) examine a

continuous-review (Q, r) model and obtain approximate solutions of the optimal pol-

icy under the CAPM framework. For periodic-review inventory models, Inderfurth

and Schefer (1996) analyze an order-up-to inventory policy and characterize the op-

timal reorder level for both the backorder case and the lost-sales case. The CAPM

framework has also been used by Shan and Zhu (2013) and Rajagopalan (2013) to

estimate the opportunity cost of capital tied-up in inventories. Despite using the

CAPM approach, these studies do not incorporate randomness at the supply source,

which is prevalent in modern supply chains (Bollapragada et al., 2004; Chopra and

Sodhi, 2004) and a key focus of our paper.

Random capacity is a form of order quantity uncertainty without dependence on

the quantity ordered, and multiple studies have examined its role in operations man-

agement. Ciarallo et al. (1994) consider an inventory model with random capacity

and discover that the optimal inventory order decision is not affected by random

capacity in the single-period case. Dada et al. (2007) consider purchasing from mul-

tiple suppliers with random capacity and find that the quantity ordered from each

supplier depends on its reliability. Wang et al. (2010) examine the trade-off between

dual sourcing and reducing randomness in supplier capacity and highlight factors

influencing the trade-off. These studies do not consider the financial market risk of

inventory decisions and limit the sources of capacity randomness to technical fac-
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tors. Consequently, they do not recognize that random capacity can be the result

of supplier business conditions associated with the financial market, a key aspect of

our model. To the best of our knowledge, this paper is the first attempt to apply

the CAPM framework to a company facing inventory decisions when both demand

and capacity are random and correlated with the financial market.

We organize the rest of this paper as follows. Section 2 analyzes a newsvendor firm

with random capacity under CAPM and explores the optimality conditions. Section

3 investigates the optimal inventory ordering decision and discusses comparative

statics. Section 4 presents some numerical results. Section 5 summarizes our findings

and provides managerial insights.

2.2 A newsvendor firm with random capacity under CAPM

We consider a company which faces random demand, random capacity, and a

newsvendor-type inventory decision. The sequence of events for the company is as

follows. First, the firm places an order of size Q; second, payment for goods is made

after supplier delivery of the order at the beginning of a period; third, sales revenue

(including revenue from salvaging unsold goods) is collected at the end of the period.

Let random capacity Y ∼ F (Y ) and random demand Z ∼ G(Z). Denote the unit

selling price as r, the unit salvage value as s, the unit purchasing cost as a, and the

risk-free interest rate as rf . For clarity, we assume that a is in beginning-of-period

dollars while r and s are in end-of-period dollars.

8



We use the following notations:

Q = order quantity,

f(·, ·), f(·, ·, ·) = probability density function of two/three jointly distributed variables,

Φ(·), φ(·) = cumulative and density functions of the standard normal distribution,

µX , σX = the expected value and the standard deviation of random variable X,

respectively,

Cov(·, ·) = the covariance operator,

δBC = the correlation coefficient between random variables B and C,

aB = [A− µB]/σB, where B is a r.v., for example, qX = [Q− µX ]/σX ,

rM , rf = the expected market return and the risk-free interest rate, respectively,

Ω = the market price per unit of risk given by Ω = (rM − rf )/σ2
M ,

sR = Ω · σM = (rM − rf )/σM is Sharpe’s (1964) ratio.

M = the market return,

cF =
r − a(1 + rf )

r − s
, the newsvendor critical fractile.

In the following lines, we generalize the classic newsvendor model by using a

CAPM framework. The CAPM penalizes systematic risk, defined as positive covari-

ance of a firm’s cash flow with the market return. To capture the systematic risk,

we need to analyze the random cash flow of the newsvendor firm. For any given Q,

9



the random end-of-period cash flow of the inventory investment V (Q) is given by:

V (Q) =



rQ if Y ≥ Q and Z ≥ Q

rY if Y < Q and Z ≥ Y

rQ− (r − s)(Q− Z) if Y ≥ Q and Z < Q

rY − (r − s)(Y − Z) if Y < Q and Z < Y

(2.1)

We define an auxiliary function U(Q) = min{Y,Q}. Letting D1(Q) be the end-of-

period value of the negative cash flow (cash outlay) at the beginning of the period,

we arrive at D1(Q) = −a(1 + rf )U(Q). The value of the random cash flow (or end-

of-period realized random profit) at the end of period is D(Q) = D1(Q) + V (Q) =

[r − a(1 + rf )] · U(Q) − (r − s) · [U(Q) − Z]+. In a simpler setting with no market

correlation, Ciarallo et al. (1994) shows that the order quantity maximizing the

expected profit E[D(Q)] for a random-capacity newsvendor, denoted by QC , is the

same as that of the classical newsvendor model with unlimited capacity, namely

QC = G−1
(
r−a(1+rf )

r−s

)
.

Following the approach of Kim and Chung (1989), our objective is maximizing

the firm value after the inventory decision. Based on CAPM’s additivity property

(Thorstenson, 1988), this inventory decision is independent of other projects and

products inside the firm. As a result, our objective is equivalent to maximizing the

market valuation of the random cash flow associated with the inventory investment.

In addition, this objective is equivalent to maximizing S(Q), the increase in the

current value of the firm as a consequence of the inventory investment project, where

Q is the decision variable. The increase in firm value S(Q) based on the CAPM

10



framework can be expressed as:

(1 + rf )S(Q) = [E(D(Q))− ΩCov(D(Q),M)] (2.2)

It is important to note that systematic risk enters the firm via correlation between

the firm’s cash flow and market return (as it can be observed from Equation 2.2).

In other words, the correlations between demand/capacity with the market return

channel systematic risk into the firm. To focus on the interplay of financial risk

and capacity randomness, we assume independence between random demand and

random capacity; such independence can be found when the supplier and the buyer

firm are located in different countries and/or different industries. Moreover, we do not

consider changing the selling price after observing the realized capacity level, since

for long lead-time items, the prices are often announced before capacity randomness

is realized (e.g. Walsh, 2008; Lowensohn, 2009). In the next section, we continue to

analyze the ordering decision that maximizes the firm value increase (S(Q)).

2.3 Obtaining and analyzing the optimal ordering decision

We now consider the case that both the demand Z and the capacity Y are cor-

related with the market return M . Following previous studies (Anvari, 1987; Kim

and Chung, 1989) and the fact that available capacity can often be approximated

with a normal distribution, we assume that Y , Z, and M are jointly normally dis-

tributed. For instance, a production system with unreliable parallel machines has a

random available capacity that is binomially-distributed. In turn, such random ca-

pacity can be approximated by a normal distribution. We characterize the optimal

order quantity Q∗ in Lemma 2.3.1. All proofs are in the Appendix.
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Lemma 2.3.1. The optimal order quantity Q∗ is characterized by:

[1− Φ(q∗Y )] [cF − Φ(q∗Z)− sRδMZφ(q∗Z)]− sRδMY φ(q∗Y ) · [cF − Φ(q∗Z)] = 0 (2.3)

Lemma 2.3.1 indicates that the optimal ordering decision depends on both de-

mand characteristics and capacity characteristics. We define Φ(q∗Z) as the service

level received by customers, which will be called customer service level, and 1−Φ(q∗Y )

as the service level received by the firm from the supplier, which will be called sup-

plier service level. Clearly, the optimal order quantity Q∗ relates to q∗Z = Q∗−µZ
σZ

and

q∗Y = Q∗−µY
σY

, impacting both customer service level and supplier service level.

We now introduce some notations that will be used later. Define

Ha(Q) = cF − Φ(qZ)− sRδMZφ(qZ)

and

Hb(Q) = cF − Φ(qZ).

Let Qa characterized by Ha(Qa) = 0 be the unlimited-capacity CAPM solution (An-

vari, 1987; Kim and Chung, 1989). Let

Qb = µZ + Φ−1

(
r − a(1 + rf )

r − s

)
σZ

denote the classical newsvendor solution and note that Hb(Qb) = 0. It can be shown

that Ha(Q) > 0 ⇔ Q < Qa and Hb(Q) > 0 ⇔ Q < Qb; conversely, Ha(Q) <

0 ⇔ Q > Qa and Hb(Q) < 0 ⇔ Q > Qb. We shall call δMZ as the market-

demand correlation and δMY as the market-capacity correlation. In Corollary 2.3.2,

we investigate the relative position of Q∗ with respect to Qa and Qb.
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Corollary 2.3.2. The relative location of the optimal ordering decision (Q∗) with re-

spect to the unlimited-capacity CAPM solution (Qa) and the classical newsvendor

solution (Qb) can be characterized as follows:

(a) Under negative market-capacity correlation (i.e., δMY < 0), the optimal solution

Q∗ is located between Qa and Qb; in this case, Q∗ ∈ (Qa, Qb) under positive market-

demand correlation and Q∗ ∈ (Qb, Qa) under negative market-demand correlation.

(b) Under positive market-capacity correlation (i.e., δMY > 0), the optimal solution

Q∗ is not located between Qa and Qb. In this case, Q∗ /∈ (Qa, Qb) under positive

market-demand correlation and Q∗ /∈ (Qb, Qa) under negative market-demand cor-

relation; if ∂2

∂Q2S(Q∗) < 0, Q∗ < Qa < Qb under positive market-demand correlation,

and Qb < Qa < Q∗ under negative market-demand correlation.

Under negative market-capacity correlation, we observe that the financial-market

impact on the order quantity from the market-demand correlation is partially miti-

gated; under positive market-capacity correlation, the financial-market impact on the

order quantity from the market-demand correlation is amplified; the intuitions be-

hind these observations based on Corollary 2.3.2 are outlined in Subsection 3.1 after

we present Proposition 2.3.5. We confirm the second-order condition ∂2

∂Q2S(Q∗) < 0

during extensive numerical experiments reported in Section 5 and use this finding

as an assumption in Propositions 2.3.3-2.3.7. We present comparative statics of the

optimal ordering decision in the following subsections.

2.3.1 Impact of the financial market

We begin by showing how the financial market risk appetite impacts the optimal

ordering decision.

Proposition 2.3.3. As Sharpe’s ratio (sR) rises, the optimal ordering decision (Q∗)

moves away from the classical newsvendor solution (Qb).
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When Sharpe’s ratio rises, systematic risk becomes more undesirable, lifting the

impact of financial market risk on firm value through demand uncertainty and ca-

pacity uncertainty. If Q∗ > Qb or equivalently δMZ < 0, as Sharpe’s ratio rises, the

optimal ordering decision increases to channel more negative systematic risk into

the firm since the financial market penalizes systematic risk more heavily. In this

case, a side-effect of a higher Sharpe’s ratio is a higher customer service level, which

puts pressure on the supplier service level. If Q∗ < Qb or equivalently δMZ > 0,

the opposite is true since the firm avoids positive systematic risk more strongly as

Sharpe’s ratio rises. Managers should beware that their inventory decisions need

to reflect the change in financial market conditions and prepare for the change in

customer and supplier service levels.

Now we investigate how market-demand correlation impacts the optimal ordering

decision.

Proposition 2.3.4. As market-demand correlation (δMZ) becomes more positive, the

optimal ordering decision (Q∗) decreases.

When market-demand correlation becomes more positive, the systematic risk

introduced into the firm via market-demand correlation becomes more positive, since

the impact of demand on the firm’s cash flow is positive. Under this scenario, the

optimal ordering decision decreases to avoid undertaking too much systematic risk

since systematic risk becomes more undesirable. Moreover, lower order quantity

drives customer service level lower and supplier service level higher. Managers should

evaluate market-demand correlation carefully if they want to introduce a new product

to the market, since the optimal order quantity can be impacted. It is also important

to note that results similar to Propositions 2.3.3 and 2.3.4 can be found in unlimited-

capacity CAPM newsvendor models (Anvari, 1987; Kim and Chung, 1989), but our
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study has extended these results to more general settings allowing for a finite capacity

and a market-capacity correlation.

Now we investigate how market-capacity correlation impacts the optimal ordering

decision.

Proposition 2.3.5. As market-capacity correlation (δMY ) becomes more positive, the

optimal ordering decision (Q∗) moves away from the classical newsvendor solution

(Qb).

When market-capacity correlation becomes more positive, the systematic risk

introduced into the firm via market-capacity correlation shifts towards being more

positive. The outcome is that more negative market-capacity correlation may par-

tially compensate for the impact of random capacity and pull the optimal ordering

decision closer to the classical newsvendor solution. The intuition is that when both

demand and capacity impact the firm’s cash flow, we have that the end-of-period

random cash flow D(Q) = −[a(1 + rf ) − s]Y + (r − s)Z, where the coefficient of

capacity is opposite in sign and smaller in magnitude with respect to that of de-

mand (i.e., 0 < a(1 + rf ) − s < r − s). It follows that market-capacity correlation

amplifies the impact of market-demand correlation if they have different signs (i.e.,

δMY δMZ < 0), which helps to explain the behavior described in Proposotion 2.3.5.

Managers should note that market-capacity correlation impacts the optimal ordering

decision and plan accordingly if market-capacity correlation changes.

2.3.2 Impact of capacity characteristics

We now examine how capacity impacts the optimal ordering decision.

Proposition 2.3.6. As the mean capacity (µY ) increases, the optimal ordering decision

(Q∗) increases when δMY δMZ > 0 and decreases when δMY δMZ < 0.

Different from prior studies without firm-value considerations (Ciarallo et al.,
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1994), we find that capacity does influence order quantity. In Proposition 2.3.6,

we have shown that the optimal ordering decision increases in the mean capacity

only when δMY δMZ > 0 and find that an increase in mean capacity may reduce the

optimal ordering quantity in some cases.

In particular, with a positive market-capacity correlation, a higher mean ca-

pacity brings more capacity-induced systematic risk to the firm. As a response to

the increase in capacity-induced systematic risk, the optimal ordering decision moves

towards both the unlimited-capacity CAPM solution (Qa) and the classical newsven-

dor solution (Qb) to avoid incurring more systematic risk. Conversely, with negative

market-capacity correlation, the optimal ordering decision moves away from the clas-

sical newsvendor solution and towards the unlimited-capacity CAPM solution. This

move leverages on the reduction in negative capacity-induced systematic risk when

the mean capacity rises.

Managers should take caution that higher supplier capacity does not necessarily

lead to a lower order quantity, as one may expect. For example, if the buyer firm

switches to a new supplier with higher mean capacity ceteris paribus, the manager

needs to increase the order quantity when the market-capacity correlation is identical

in sign with the market-demand correlation.

2.3.3 Impact of product profitability

We now examine how product profitability impacts the optimal ordering decision.

Proposition 2.3.7. We have the following results regarding the impact of product

profitability:

(a) When δMY < 0, the optimal ordering decision (Q∗) increases in the critical

fractile;

(b) When δMY > 0 and Q∗ < Q2b, the optimal ordering decision increases in the
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critical fractile;

(c) When δMY > 0 and Q∗ > Q2b, the optimal ordering decision decreases in the

critical fractile.

Note that Q2b is a critical threshold characterized by the equation 1−Φ
(
Q2b−µY
σY

)
−

sRδMY φ
(
Q2b−µY
σY

)
= 0. We find that under most circumstances, the optimal ordering

decision increases in the critical fractile cF since improved profitability encourages

a higher order quantity, increasing customer service level while reducing supplier

service level. However, managers should be careful that improved profitability may

mean a smaller order quantity when the impact of random capacity is extremely

strong (i.e., Q∗ > Q2b) and thus avoid always expanding the order quantity whenever

product profitability improves.

2.4 Numerical analysis

In this section, we explore the impact of system parameters further. We present

results from numerical experiments with ρ = µZ/µY = 0.6/1.0, a = 50/90 to account

for different levels of capacity utilization and product profitability. We assume µZ =

10, 000, σZ = 3, 000, {µY , σY } = {16, 667, 5, 000} or {10, 000, 3, 000}, r = 100,

s = 10, and that both the capacity and the demand are normally distributed. The

return of large-company stocks (i.e., the Standard & Poor’s 500 Index) is used as

a proxy for the market return, and the return of 10-year U.S. Treasury bonds is

used as the risk-free interest rate. We obtain rM = 11.8% and σM = 20.3% from

Morningstar Inc. (2012, p.32) and rf = 3.6% from Morningstar Inc. (2012, p.53).

Define margin as β =
r−a(1+rf )

r
. We focus on the difference in firm value and order

quantity between the the optimal inventory decision Q∗ and the classical newsvendor
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Figure 2.1: High Margin Scenario (a = 50) with Low Capacity Utilization (ρ = 0.6)

solution Qb. We denote the firm value difference as

∆S =
S(Q∗)− S(Qb)

S(Qb)
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Figure 2.2: High Margin Scenario (a = 50) with High Capacity Utilization (ρ = 1.0)

and order quantity difference as

∆Q =
Q∗ −Qb

Qb

.
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Figure 2.3: Low Margin Scenario (a = 90) with Low Capacity Utilization (ρ = 0.6)
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Figure 2.4: Low Margin Scenario (a = 90) with High Capacity Utilization (ρ = 1.0)

The numerical results are outlined in Figures 2.1 to 2.4, and in addition to confirming

our analytical results, we have three observations based on the numerical results:
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Observation 1. The percentage difference between the optimal inventory decision

and the classical newsvendor solution (∆Q) increases in the profit margin.

This increase is caused by a higher stake in unfulfilled demand in the high margin

scenario. Therefore, managers are advised to be more careful about financial market

risks for higher-profit products.

Observation 2. The sensitivity of valuation difference (∆S) and quantity difference

(∆Q) to the market-capacity correlation (δMY ) increases in the capacity utilization

(ρ).

This observation can be explained by the scarcity in capacity when capacity

utilization is high. Managers should pay more attention to supply-side risk under

this situation due to its impact on order quantity and firm value.

Observation 3. The larger the strength of market-demand correlation, the more sen-

sitive is the valuation difference (∆S) to the market-capacity correlation, which is

amplified under negative market-demand correlation.

The intuition is that a stronger market-demand correlation exposes the firm to a

higher magnitude of financial risk, and thus the market-capacity correlation becomes

more critical in neutralizing this financial risk. With a negative market-demand

correlation, the optimal ordering decision is higher than the classical newsvendor

solution. As a result, the random capacity and the market-capacity correlation be-

come more influential as the optimal ordering decision rises and capacity becomes

tighter. Therefore, managers should pay more attention to capacity risks when

market-demand correlation is highly negative.

2.5 Process improvement on random capacity

In this section, we investigate the impact of random capacity process improvement

on firm value when the random capacity is uncorrelated with market returns and the
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random capacity is generally distributed. Although process improvement is believed

to increase the firm value (Hendricks and Singhal, 1996; Keen, 1997) and impact

capital adequacy (Mizgier et al., 2015), it is not clear how and when the firm value

is maximized on the financial market via process improvement. To the best of our

knowledge, this essay is the first one to analyze the firm-value impact of improving

a generally-distributed random capacity using the CAPM framework.

As previously mentioned, we consider the case where the demand Z is correlated

with the market return M under the assumption that Z and M are jointly normally

distributed. In other words, Cov(Z,M) 6= 0, Z ∼ N(µZ , σ
2
Z), and M ∼ N(rM , σ

2
M).

Since the capacity randomness is due to technical failures and other exogenous fac-

tors, Y and M are independent, namely Cov(Y,M) = 0. We assume that f(Y ) is

continuous and has support (Ymin, Ymax).

The firm-value-maximizing order decision is characterized in Lemma 2.5.1.

Lemma 2.5.1. The optimal order quantity Q∗ = µz + q∗ZσZ is characterized by:

Φ(q∗Z) + sR δMZ φ(q∗Z) =
r − a(1 + rf ) + d

r − s+ d
(2.4)

Lemma 2.5.1 provides a necessary condition of the optimal solution, and we

continue to analyze the second-order condition in Lemma 2.5.2.

Lemma 2.5.2. Q∗ satisfies the second-order condition (SOC): ∂2

∂Q2S(Q∗) < 0 when

Q∗ < Ymax.

Having shown that Q∗ satisfies SOC in Lemma 2.5.2, we prove the optimality of

Q∗ in Theorem 2.5.3.

Theorem 2.5.3. Q∗ characterized by Equation 2.4 is the optimal order quantity.

(a) Q∗ is the unique optimal order quantity when Q∗ < Ymax.
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(b) Q∗ remains optimal but not uniquely optimal when Q∗ ≥ Ymax since any order

quantity no less than Ymax is optimal.

We focus on the discussion of Theorem 2.5.3(a) and assume Q∗ < Ymax hereafter

in this essay since Theorem 2.5.3(b) is a trivial case and only relevant when the

capacity is extremely scarce. Theorem 2.5.3(a) coincides with previous results in

the classical newsvendor model under CAPM (Anvari, 1987; Kim and Chung, 1989),

suggesting that the optimal order quantity under CAPM depends on the correlation

between demand and market return in addition to parameters already incorporated

in the classic newsvendor model. It follows that the financial market can impact

ordering decisions via the random demand since demand is correlated with market

return. Moreover, the fact that random capacity has no impact on the optimal

order quantity is analogous to similar findings in the classical newsvendor model

(Ciarallo et al., 1994), suggesting that the financial market cannot impact ordering

decisions via the random capacity under this scenario, since the random capacity is

not correlated with market return.

Let

cF =
r − a(1 + rf ) + d

r − s+ d

be the critical fractile (incorporating interest cost) andQC = G−1 (cF ) be the classical

newsvendor solution, noting that Q∗ = QC when δMZ = 0. It is easy to show that

Q∗ > QC when δMZ < 0 and Q∗ < QC when δMZ > 0. We analyze the differences

between the ordering decision that maximizes firm value and that maximizes the

expected profit in Corollary 2.5.4.

Corollary 2.5.4. We have the following results:

(a) Q∗ moves away from QC as sR increases.
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(b) Q∗ moves away from QC as |δMZ | increases.

(c) As σZ increases, both Q∗ and QC move away from µZ , and |Q∗ −QC | increases.

(d) As µZ increases, both Q∗ and QC increase with dQ∗/dµZ = dQC/dµZ = 1, and

|Q∗ −QC | stays the same.

(e) As cF increases, both Q∗ and QC increase.

Based on Corollary 2.5.4 (a), we find that since a higher Sharpe’s ratio (sR)

means a higher penalty by the financial market on systematic risk, Q∗ is pushed away

from QC to optimize the firm’s risk profile. Based on Corollary 2.5.4 (b), a larger

association between demand and market return makes the firm more susceptible to

risk in the financial market; thus deviation from the classical newsvendor solution is

desired to reduce the risk as |δMZ | increases. It follows that when systematic risk

introduced through demand is higher (sR and |δMZ | are higher), managers need to

pay special attention to their order quantity to maximize firm value.

We also find from Corollary 2.5.4 (c) that as demand risk σZ increases, both Q∗

and QC move away from µZ ; despite both moving in the same direction, the relative

difference increases in σZ , suggesting higher importance to account for financial risk

when demand variability rises. We also discover that the mean demand µZ has no

impact on the relative difference between Q∗ and QC based on Corollary 2.5.4 (d).

As the newsvendor critical fractile cF increases, both Q∗ and QC rise due to

increased profitability based on Corollary 2.5.4 (e), while their relative difference

remains the same due to an unchanged demand profile. We acknowledge that Kim

and Chung (1989) obtained results similar to Corollary 2.5.4 (b), (c) and (e) for the

classical newsvendor model under CAPM. However, different from Kim and Chung

(1989), we consider a more general setting by incorporating a random capacity limit
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and allowing δMZ to be negative, broadening the applicability of our results.

2.5.1 The role of capacity process improvement

In this section, we investigate the impact of capacity process improvement on firm

value. We first develop several properties of capacity process improvement under

the classic newsvendor model with random capacity, and then investigate if these

properties also apply under the CAPM newsvendor model with random capacity.

In Sections 3 and 4, we only consider the case where capacity process improvement

matters (i.e., Q∗ > Ymin). Let

P (Y ) = [r − a(1 + rf )]Y − (r − s)
∫ Y

0

(Y − Z)g(Z)dZ − d
∫ +∞

Y

(Z − Y )g(Z)dZ

− (r − s+ d)δMZsRΦ

(
Y − µZ
σZ

)
(2.5)

Also denote

P (Y ) =


P (Y ) if Y < Q∗

P (Q∗) if Y ≥ Q∗

The expression of the expected valuation increase of the newsvendor firm with ran-

dom capacity can be rewritten as

S(Q∗) = (1 + rf )
−1

{
P (Q∗)[1− F (Q∗)] +

∫ Q∗

0

P (Y )f(Y )dy

}
(2.6)

We begin our analysis by examining the role of capacity expansion without chang-

ing the shape of the p.d.f. of the random capacity, meaning that the mean capacity

improves, but the variability of capacity remains the same. We name this type of

capacity process improvement as mean-capacity improvement.

We also examine the benefits of process improvement by rescaling the p.d.f. of
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the random capacity towards the mean. We name this type of capacity process

improvement as capacity-variance reduction. Based on the transformation f̃(Y ) =

bf [µY + b(Y − µY )] where b > 0, the p.d.f. of the random capacity shrinks toward

its mean when b > 1, remains unchanged when b = 1, and expands when 0 < b < 1.

Recall that S(Q∗) is the firm valuation increase without capacity-variance reduction.

We denote S̃(Q∗) =
∫ +∞

0
P (Y )f̃(Y )dY as the firm valuation increase after capacity-

variance reduction. We explore how the financial market impacts the role of process

improvement under the CAPM framework in Proposition 2.5.5.

Proposition 2.5.5. We have that

(a) With mean-capacity improvement, the firm value increases.

(b) If δMZ ∈ [0, 1], the following are true for a firm with random-capacity:

(i) The firm value increase in (a) has diminishing returns and is bounded by

the firm value under unlimited capacity.

(ii) With capacity-variance reduction, the firm value increases.

(iii) The firm value increase in (ii) has diminishing returns and is bounded by

the firm value under deterministic capacity.

(c) If δMZ ∈ [−1, 0), under the sufficient condition Ymin ≥ µZ + σZ
δMZsR

, (i)-(iii) in

part (b) are true.

To illustrate the implications of Proposition 2.5.5, if the random capacity is nor-

mally distributed with mean µ and variance σ2, then either increasing µ or reducing

σ (while keeping the other parameter unchanged) increases the expected profit with

diminishing returns and bounded by the expected profit under unlimited capacity.

Proposition 2.5.5(a) and (b)(i) demonstrate the benefits of capacity expansions

but also caution its diminishing returns. It is worth noting that the condition in
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Proposition 2.5.5(c) is independent of cF , meaning that the only requirement is

that the firm’s risk profile satisfies certain properties. Focusing on the case when

δMZ ∈ [−1, 0), we find that when σZ increases, δMZ increases, µZ decreases, and sR

decreases, it becomes easier to satisfy the sufficient conditions in Proposition 2.5.5(c).

Although Proposition 1(c) may not always be satisfied, especially when |δMZ | is large,

we show in Section 2.5.2 that the results of Proposition 2.5.5 may hold even when

the sufficient condition in Proposition 2.5.5(c) is not satisfied.

2.5.2 Factors impacting process improvement

In this section, we focus on the impact of system parameters on the relationship

between process improvement and firm value with analytical results complemented

by numerical studies. Defining capacity scarceness as the ratio between mean demand

and mean capacity (i.e., ρ = µZ/µY ), we present numerical experiments with ρ = 0.1

or 1.0, r = 100, a = 50 or 90, s = 0, 40 or 80 (we only consider cases where s < a) and

d = 0 to account for different levels of capacity scarceness and product profitability.

We assume µZ = 10, 000, σZ = 1, 000, 2,000 or 3,000, µY = 100,000 or 10,000, and

σY /µY =0.1, 0.2, or 0.3. We assume that both the capacity and the demand are

normally distributed. We use the return of large-company stocks (e.g. the S&P 500

Index) as a proxy for the market return and the return of 10-year U.S. Treasury

bonds as the risk-free interest rate. We obtain rM = 11.8% and σM = 20.3% from

Morningstar Inc. (2012, p.32) and rf = 3.6% from Morningstar Inc. (2012, p.53).

We focus on the difference in firm value when the supply source undergoes process

improvement. The numerical results are outlined in Figures 1-3.

We focus on the following questions in the analysis:

1. What are the roles of the market-demand correlation (δMZ) and Sharpe’s rartio

(sR) in capacity process improvement?
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2. What is the role of the capacity scarceness (ρ) in capacity process improvement?

3. What is the role of the critical fractile (cF ) in capacity process improvement?

2.5.2.1 Impact of financial risk

In Figure 2.5, we see that as the ratio σY /µY decreases from 0.3 to 0.1, the

valuation difference S(Q) increases; however, the curve with δMZ = −1 increases

faster than the curve with δMZ = 0, which in turn increases faster than the curve

with δMZ = 1. We also notice diminishing returns in reducing capacity variability

(see Figure 2.5 for example), coinciding with Proposition 2.5.5. These observations

align with Corollary 2.5.6.

Corollary 2.5.6. We have the following results about the impact of financial risk:

(a) Regarding mean-capacity improvement:

(i) When the market-demand correlation (δMZ) increases, mean-capacity im-

provement is less beneficial to the firm’s market valuation.

(ii) When Sharpe’s ratio (sR) increases, mean-capacity improvement is more

beneficial to the firm’s market valuation under negative market-demand

correlation and less beneficial under positive market-demand correlation.

(b) Regarding capacity-variance reduction:

(i) When the market-demand correlation (δMZ) increases, capacity-variance

reduction is less beneficial to the firm’s market valuation if Q∗ ≤ µY .

(ii) When Sharpe’s ratio (sR) increases, capacity-variance reduction is more

beneficial to the firm’s market valuation under negative market-demand

correlation and less beneficial under positive market-demand correlation, if

Q∗ ≤ µY .
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Figure 2.5: The Role of δMZ in Firm Valuation (a = 90, s = 80, ρ = 1)

We attribute this observation to the negative systematic risk in this case, which

makes ordering additional units more desirable, since doing so brings market val-

uation increases to the firm. Firms should beware that their process improvement

efforts may not bring the anticipated benefits if their demand is positively corre-

lated with market returns. On the contrary, given the same level of investment in

process improvement, firms with demand negatively correlated with market returns

enjoy greater firm valuation increases compared to firms with demand positively cor-

related with market returns. It follows that firms are advised to understand their

demand characteristics prior to investing in capacity improvement projects, since in-

vestments in these projects can only be justified after having reasonable expectations

for their firm value benefits.
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2.5.2.2 Impact of capacity scarceness

When ρ is high, capacity process improvement matters more. In Figure 2.6, we

can see that when capacity scarceness ρ = 1, the increase in valuation difference

S(Q), as σY /µY decreases from 0.3 to 0.1, is larger than that when ρ = 0.1. We also

notice diminishing returns in process improvement in the mean capacity by compar-

ing curve pairs with the same δMZ value (and different values of ρ) in Figure 2.6.

These observations align with Corollary 2.5.7.

Corollary 2.5.7. When the capacity is more scarce, both mean-capacity improvement

and capacity-variance reduction are more beneficial.

According to Corollaries 2.5.6 and 2.5.7, firms should devote more efforts to capac-

ity improvement projects when (i) their capacity is tight and (ii) the market-demand

correlation is highly negative, since the potential benefits of capacity process improve-

ment is high when both conditions are satisfied. However, due to the diminishing

returns in capacity process improvement, managers should monitor the benefits and

avoid over-investing in such improvement.

2.5.2.3 Impact of the critical fractile

When the critical fractile cF is high, capacity process improvement matters more,

since not receiving a unit of product costs more. Taking cF = 0.897 for the parameter

setting in Figure 2.7 and cF = 0.338 for the parameter setting in Figure 2.6 as

examples, we observe that the impact of process improvement is larger in Figure 2.7,

by comparing curve pairs with the same δMZ value in each figure. This observation

aligns with Corollary 2.5.8.

Corollary 2.5.8. With higher critical fractile, both mean-capacity process improve-

ment and capacity-variance reduction become more beneficial.
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Figure 2.6: The Role of ρ in Firm Valuation (a = 90, s = 80, ρ = 0.1/1)

Corollaries 2.5.7 and 2.5.8 coincide with empirical findings that small and medium-

sized firms, which typically have lower margins and lower capacity cost, focus on

reactive measures such as overcapacity and safety stock in production to manage

supply chain risk, while large firms, typically with higher margins and higher ca-

pacity cost, focus on preventive measures such as strategic supplier development to

improve their supply process (Thun et al., 2011).

2.6 Summary and conclusions

In this essay, we analyze a firm with random capacity. We use the CAPM frame-

work to study how the financial market risk impacts the firm’s optimal inventory

decisions. Our results lead to several major findings.

First, we highlight that capacity randomness may influence the optimal order

quantity, sometimes significantly, in contrast to previous models that do not incor-
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Figure 2.7: The Role of cF in Firm Valuation (a = 10, s = 0, ρ = 0.1/1)

porate financial market risk (e.g. Ciarallo et al., 1994) or do not include supply

randomness (e.g. Anvari, 1987; Kim and Chung, 1989). Our first finding relates to

the case in which the random capacity is negatively correlated with market return

(e.g., many industrial products): the random capacity partially offsets the effect of

demand randomness, resulting in an optimal order quantity similar (but not identi-

cal) to the classical newsvendor solution. In this case, the random capacity serves as

a risk-neutralizer since its negative correlation with market return mitigates the sys-

tematic risk. We also find that when the random capacity is increasingly positively

correlated with market return (e.g., contra-business-cycle products), the optimal or-

der quantity moves away from the classical newsvendor solution. In this case, the

random capacity serves as a risk-amplifier since its positive correlation with market
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return amplifies the systematic risk.

Second, we find that a higher correlation between random demand and market

return is associated with a higher impact of the correlation between random capacity

and market return. Thus, managers should pay more attention to supply-side risk

when demand is highly correlated with market return.

Third, we show that when capacity utilization is tight or product margin is high,

the random capacity may impact the order quantity considerably. Managers are

also advised to incorporate random capacity and its correlation with the market

return when product margin is low and capacity utilization is high, avoiding excessive

exposure to systematic risk.

Fourth, we discover that an increase in average capacity does not necessarily

lead to an increase in the optimal ordering quantity due to avoidance of capacity-

induced systematic risk. We suggest that managers should carefully evaluate different

scenarios instead of relying on rules of thumb to increase order quantity whenever

average capacity improves.

Fifth, we highlight that the random capacity does not influence the optimal order

quantity, coinciding with previous studies that do not incorporate financial risk (e.g.

Ciarallo et al., 1994) or do not consider supply risk (e.g. Anvari, 1987; Kim and

Chung, 1989). However, although CAPM builds on the risk-averseness of investors

and demonstrates a trade-off between risk and returns, our finding differs from that of

Wu et al. (2013), where capacity uncertainty decreases the order quantity for a risk-

averse newsvendor. Moreover, we demonstrate that the correlation between demand

and market return does impact the benefit of process improvement. In general, we

find that higher correlation between demand and market return is associated with

higher impact of capacity on profit. In particular, we discover that when demand

is negatively associated with market return, capacity process improvement can be
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more beneficial than that when demand is not correlated or positively correlated

with market return. We also find that both higher capacity scarceness and higher

profitability increase the benefit of process improvement. Our findings can help

managers rationalize investment in process improvement activities by predicting the

increase in firm value brought about by process improvement. These findings may

also guide managers in choosing among suppliers (if the supply source is external)

based on each supplier’s contribution to firm value.

Future research may extend the CAPM framework to other strategic and oper-

ational decisions, such as acquiring suppliers with random capacity and evaluating

capacity investments with consideration of supply disruptions.
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3. SUPPLY-CHAIN MANAGEMENT UNDER THE CONDITIONAL

VALUE-AT-RISK CRITERION

3.1 Introduction

Recent economic studies show that the majority of individuals are risk averse

(Halek and Eisenhauer, 2001; Holt and Laury, 2002; Eckel and Grossman, 2002;

Harrison et al., 2007; Dave et al., 2010) and business managers are no exception

(Amihud and Lev, 1981; Schweitzer and Cachon, 2000; Haigh and List, 2005; Harrison

et al., 2009; Arreola-Risa and Keys, 2013). However, most of the published research

on stochastic supply chains either explicitly assumes decision makers are risk-neutral

or implicitly does so by focusing on minimization of expected cost. In this essay,

we study risk-averse decision makers who manage stochastic and capacitated supply

chains. The impetus for our research project stems from a consulting engagement

with one of the five largest oil and gas companies in the world. For confidentiality

reasons, the company will be called Company A.

Consider a supply chain which makes a single but very expensive item, say in

the hundreds of thousands of dollars. The item’s demand and production rates are

random with respective averages λ and µ. To keep the analysis tractable and at the

same time maximize research insight, we will follow related supply chain research

(e.g. Zipkin, 1986; Arreola-Risa, 1996) and will model demand and production as

Poisson processes. To smooth the random interaction of demand and production,

an inventory of the item may be desirable. The inventory holding cost rate per unit

is h and because the ordering cost is negligible, the inventory is to be managed by

a base-stock policy with parameter B, whose value is a decision variable. Demands

that arrive when the inventory is temporarily depleted are back-ordered at a cost
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rate of b per unit. Cost in a period is equal to the sum of inventory holding cost and

demand back-ordering cost in the period. Note that as a consequence of randomness

in both demand and production rates, cost in a period is a random variable as

well. Because managers are typically evaluated on their short-term performance

(Narayanan, 1985; Laverty, 1996; Marginson and McAulay, 2008), for example on

an annual basis, without loss of generality, we assume in this paper a period is one

year and the unit of analysis is annual cost. From this point on, the just-described

supply chain will be called the supply chain under study.

The supply chain manager is risk-averse and due to the order of magnitude of

annual cost, say in the hundreds of millions of dollars, he/she is interested in min-

imizing the following risk criterion: the average cost of all possible scenarios in the

top (1 − β) percentile of the annual cost probability distribution. In the financial

risk literature, this criterion is known as Conditional Value at Risk and is usually

denoted by CV aRβ. The parameter β reflects the decision maker’s risk sensitiv-

ity (the higher the β, the higher the risk sensitivity) and 0 < β < 1. As we will

see, CV aRβ is very intuitive and easy to use; interestingly enough, the supply-chain

manager in Company A wanted to use CV aRβ based on his business experience and

without knowing it was a formal criterion in the financial risk literature. At the

same time, according to Rockafellar and Uryasev (2002), CV aRβ has many desir-

able theoretical properties (positive homogeneity, translation-invariance, monotonic-

ity, sub-additivity, law-invariance, and co-monotonic additivity). These properties

make CV aRβ a spectral risk measure, meaning that it is an excellent and coherent

representation of subjective risk aversion. From this point on, the above described

risk-averse supply-chain manager will simply be called the manager.

In the supply chain under study, the value of B is the manager’s decision variable.

Obviously, different B values yield different annual cost probability distributions.

37



This paper addresses the following research questions:

1. What is the value of B whose associated annual cost probability distribution

has the minimum CV aRβ? This value will be denoted by B∗.

2. Under which conditions (if any) would a stockless operation be optimal (i.e.,

B∗=0)?

3. What should be the manager’s optimal adjustment (if any) to B∗ as the values

of the parameters λ, µ, β, h and b change?

4. Let B∗EC denote the base-stock value that minimizes expected annual cost. How

does the value of B∗ compare to B∗EC and what would be the penalty (if any)

in terms of CV aRβ for using B∗EC instead of B∗?

The remainder of this paper is organized into five sections. Section 2 contains the

mathematical definition of the first research question and a brief literature review.

Section 3 establishes that an exact expression of B∗ is intractable, and derives an

easy-to-use approximation of B∗. Section 3 also presents a simulation study con-

ducted to test the accuracy of the easy-to-use approximation of B∗ and identifies

conditions for the optimality of a stockless operation, answering the second research

question. Section 4 answers the third research question by means of comparative

statics. Section 5 deals with the fourth research question. Section 6 summarizes our

research insights and proposes some ideas for future research on managing stochastic

and capacitated supply chains under risk aversion.

3.2 Definitions and literature review

Let B ≡ S + 1. Since demand is a Poisson process, every arriving demand will

be for one unit of product and hence S could be interpreted as the reorder point.
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For mathematical convenience, we will find B∗ by finding first the optimal value of

S, from now on denoted by S∗.

Let K(S) denote the random annual cost as a function of S, pK(S)(·) denote the

probability distribution of K(S), and let ηβ be the lowest amount such that with

probability β, the annual cost will not exceed ηβ. For brevity, we use ζβ(S) to denote

CV aRβ(S). For a given S, let

Ψ(S, η) =

∫
K(S)≤η

pK(S)(y)dy (3.1)

be the cumulative probability function of K(S). Thus,

ηβ(S) = min{η ∈ R : Ψ(S, η) ≥ β} (3.2)

and

ζβ(S) = (1− β)−1

∫
K(S)≥ηβ(S)

K(S) pK(S)(y) dy. (3.3)

Let S∗ = arg min
S

ζβ(S) and ζ∗β = min
S
ζβ(S) = ζβ(S∗). The first research question

can now be succinctly re-stated as what is the S∗ that leads to ζ∗β? In the lines below,

we will put this research question into perspective via a brief literature review of

related work.

In recent years, a growing number of studies have applied the CVaR criterion

to analyze risk-related problems in operations and supply chain management. Some

of these studies deal with sourcing strategies (Tomlin and Wang, 2005), channel

coordination (Chen et al., 2014), and resource allocation (Wagner and Radovilsky,

2012). Other studies apply the CVaR criterion to inventory management settings,

such as classical newsvendor models (Gotoh and Takano, 2007), newsvendor models

with pricing decisions (Chen et al., 2009), newsvendor models with random capacity
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(Wu et al., 2013), and multi-period inventory models (Borgonovo and Peccati, 2009;

Zhang et al., 2009). However, none of these studies incorporate an important form

of supply risk: an endogenous stochastic lead time, as the one found in the supply

chain under study.

On the other hand, one can find many inventory and production papers dealing

with random lead times and/or capacitated production systems. For example, Ka-

plan (1970) considers an inventory model with an exogenous stochastic lead time and

characterizes the optimal policy. Many years later, Karmarkar (1987) explicitly mod-

els the supply process as a single-server queue, where the lead time is endogenous and

dependent on the capacity of the production system and on the order size. Zipkin

(1986) parallels Karmarkar’s approach but in a more general production setting mod-

eled as a queuing network. Lee and Zipkin (1992, 1995) examine serial queues and

network of queues, and obtain tractable approximations of the system performance.

Arreola-Risa (1996) analyzes a multi-period production-inventory model with multi-

ple products and a capacitated production system. Nevertheless, all of these papers

pursue minimization of expected cost, which is equivalent to assuming the decision

maker is risk-neutral.

To summarize, to the best of our knowledge, our paper is the first one to combine

a stochastic and capacitated supply chain with a risk-averse decision maker who

follows the CVaR criterion.

3.3 Finding the optimal base-stock level and optimality of a stockless operation

Let OO denote the number of outstanding production orders at the production

facility. Because the demand and production rates are Poisson processes and each

arriving demand triggers a production order for one unit, the steady-state distribu-

tion of OO is equivalent to the steady-state distribution of the number of customers
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in a M/M/1 queuing system. Hence in steady state, OO is geometrically distributed

with parameter ρ ≡ λ/µ at any point in time. The parameter ρ corresponds to the

average utilization of the production process capacity, which for brevity will be called

capacity utilization.

Let I(S) be the instantaneous (inventory holding and demand back-ordering)

cost rate given S, and pI(S)(·) be the probability distribution of I(S) at any point in

time. In the next proposition, we establish an expression for pI(S)(·).

Proposition 3.3.1. For the supply chain under study

pI(S)(y) =


(1− ρ)ρx, if y = h(S + 1− x) and 0 ≤ x ≤ S

(1− ρ)ρx, if y = b(x− S − 1) and x ≥ S + 1

(3.4)

At first sight, it appears that I(S) is geometrically distributed. Unfortunately,

further inspection of Proposition 3.3.1 indicates that pI(S)(·) does not resemble any

of the known probability mass functions. In addition, a moment’s reflection reveals

that to determine pK(S)(·), one would need to take convolutions of pI(S)(·), which is

patently intractable.

To understand the intractability, let’s define the instantaneous cost rate at time

t = θ as I(S, θ) = I(S)|t=θ and let T be equal to one year. Then K(S) =∫ T
0
I(S, θ)dθ = I(S, 0) · T +

∫ T
0

[I(S, θ) − I(S, 0)]dθ for a time horizon [0, T ]. Be-

cause I(S, θ) may have changed due to demand arrivals and production completions

as θ goes from 0 to T , and it is well-known that the state-transition behavior of an

M/M/1 queue is extremely complicated (Abate and Whitt, 1987, 1988; Leguesdron

et al., 1993), the integral
∫ T

0
[I(S, θ)− I(S, 0)]dθ is intractable.

To deal with this conundrum, we will assume that I(S, θ) − I(S, 0) ≈ 0, which

is true when T is small, since I(S, θ) → I(S, 0) as T → 0. We will approximate
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K(S) by K̂(S) = I(S, 0)T = I(S) since T = 1 year. Substituting K(S) by K̂(S) in

Equations 3.1, 3.2 and 3.3, leads to

Ψ̂(S, η) =

∫
K̂(S)≤η

pK̂(S)(y)dy (3.5)

η̂β(S) = min{η ∈ R : Ψ̂(S, η) ≥ β} (3.6)

ζ̂β(S) = (1− β)−1

∫
K̂(S)≥η̂β(S)

K̂(S) pK̂(S)(y) dy (3.7)

where the “hat” is used to denote an approximation. The minimizer of ζ̂β(S) will be

denoted by Ŝ∗. Recall that S∗ is the minimizer of ζβ(S). Later in this section, we

will test the accuracy of using Ŝ∗ to estimate S∗.

Much to our dismay, a direct minimization of ζ̂β(S) using Equations 3.4, 3.5, 3.6

and 3.7 is still intractable. Fortunately, the intractability goes away when we use the

“shortcut function” Fβ(S, η) proposed by Rockafellar and Uryasev (2002), where

Fβ(S, η) = η + (1− β)−1E([K̂(S)− η]+) (3.8)

and [x]+ = max{0, x}+. For brevity, set Ω(S, η) = E([K̂(S) − η]+). Accord-

ing to Rockafellar and Uryasev (2002), if {Ŝ∗, η̂∗β} = arg min
{S,η}

Fβ(S, η), then Ŝ∗ =

arg min
S

ζ̂β(S) and η̂∗β = η̂β(Ŝ∗), and it follows that Ŝ∗ = arg min
S

Ω(S). We will

first deal in Section 3.3.1 with minimization of Ω(S, η) with respect to S for any η.

Thereupon in Section 3.3.2 we will focus on minimizing Fβ(Ŝ∗, η) with respect to η.
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3.3.1 Minimizing Ω(S, η) with respect to S for any η

Let k0 = S + 1 − dη/he and k1 = S + 1 + dη/be. It is easy to show that if

h(S + 1) ≥ η, then

Ω(S, η) =

k0∑
k=0

[h(S + 1− k)− η](1− ρ)ρk +
∞∑

k=k1

[b(k − S − 1)− η](1− ρ)ρk. (3.9)

Similarly, it is easy to show that if h(S + 1) < η, then

Ω(S, η) =
∞∑

k=k1

[b(k − S − 1)− η](1− ρ)ρk. (3.10)

In the next proposition, we minimize E[K(S, η)] with respect to S using Equations 3.9

and 3.10. Keep in mind that k1 − k0 = dη/be+ dη/he is a constant.

Proposition 3.3.2. When η ≤ h(S + 1) the value of S which minimizes Ω(S, η) is

given by max{S∗1(η), S∗2(η)}, where

S∗1(η) = dη/he − 1, (3.11)

and

S∗2(η) =

 ln
(

h
1−ρ

)
− ln

{
−
[
hdη/he − η − h

1−ρ

]
+ ρk1−k0−1

[
bdη/be − η + bρ

1−ρ

]}
ln(ρ)


+ dη/he − 1.

(3.12)

On the other hand, when η > h(S + 1) the value of S which minimizes Ω(S, η) is

given by S∗3(η), where

S∗3(η) = dη/he − 2. (3.13)
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Recall that Ŝ∗ is the minimizer of Ω(S, η) for any given η. Building on Proposi-

tion 3.3.2, in the next theorem below we establish the value of Ŝ∗.

Theorem 3.3.3. The value of S which minimizes Ω(S, η) for any given η is equal to

Ŝ∗2(η) in Proposition 3.3.2. In other words,

Ŝ∗ =

 ln
(

h
1−ρ

)
− ln

{
−
[
hdη/he − η − h

1−ρ

]
+ ρk1−k0−1

[
bdη/be − η + bρ

1−ρ

]}
ln(ρ)


+ dη/he − 1.

3.3.2 Minimizing Fβ(Ŝ∗, η) with respect to η

Using Ŝ∗ in Theorem 3.3.3, we now proceed to optimize Fβ(Ŝ∗, η) with respect to

η. First, we have Fβ(Ŝ∗, η) = η + (1− β)−1Ω(Ŝ∗, η). Let η̂∗ = arg min
η

Fβ(Ŝ∗, η) and

Ω(Ŝ∗, η) = [h(Ŝ∗ + 1)− η]− ρk∗0+1

[
hdη/he − η − h

1− ρ

]
− hρ

1− ρ

+ ρk
∗
1

[
bdη/be − η +

bρ

1− ρ

]
= hk∗0 + hdη/he − η − ρk∗0+1

[
hdη/he − η − h

1− ρ

]
− hρ

1− ρ

+ ρk
∗
1

[
bdη/be − η +

bρ

1− ρ

]

where k∗0 = Ŝ∗ + 1− dη/he and k∗1 = Ŝ∗ + 1 + dη/be. Since

∂Fβ(Ŝ∗, η)

∂η
= 1 +

−1 + ρk
∗
0+1 − ρk∗1

1− β
(3.14)

it is easy to see that ∂
∂η
Fβ(Ŝ∗, η) is not necessarily continuous everywhere with re-

spect to η due to the discreteness of Ŝ∗, k∗0, and k∗1. Consequently, the first-order

condition ∂
∂η
Fβ(Ŝ∗, η̂∗) = 0 is not useful and we need to find an alternative method
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to minimize Fβ(Ŝ∗, η) with respect to η. For that purpose, in the theorem below we

demonstrate that, despite the discreteness of Ŝ∗, k∗0, and k∗1, Fβ(Ŝ∗, η) is continuous

in η. Moreover, in said theorem we establish membership of η̂∗ in two sets.

Theorem 3.3.4. Fβ(Ŝ∗, η) is continuous with respect to η. In addition, the local

minimums of Fβ(Ŝ∗, η) may only be located at η = vh and η = wb, where v, w ∈ N.

Given the state of affairs, in our quest for managerial insights we will now make

two mild assumptions: ρ ≤ β and the ratio q = b/h is an integer. Because usually

β ≥ 0.9 (see Rockafellar and Uryasev (2000, 2002) who say the most common values

of β are 0.90, 0.95 and 0.99), the first assumption should be satisfied in most practical

applications. Regarding the second assumption, we will show later in the paper that

the solution for cases where q < b/h < q+1 can be easily found by using the solutions

with q and q + 1.

Let m = bη/bc and n = η −mq. In Lemma 3.3.5, we establish the monotonicity

of a special function useful for proving Theorem 3.3.6.

Lemma 3.3.5. The function y(η) = ρmq+n+m+1[q + (ρ − 1)n + ρ] is monotonically

decreasing in η = (mq + n)h.

We are now prepared to postulate one of the fundamental results of this paper.

Theorem 3.3.6. When ρ ≤ β and q = b/h is an integer, Ŝ∗ is given by

Ŝ∗ = inf
{
S = (mq + n)− 1 : ρmq+n+m+1[q + (ρ− 1)n+ ρ] ≤ 1− β

}
(3.15)

and as a result

η̂∗β = inf
{
η = (mq + n)h : ρmq+n+m+1[q + (ρ− 1)n+ ρ] ≤ 1− β

}
(3.16)

For a set of parameter (λ, µ, β, h and b) values, to find Ŝ∗ and η̂∗β using The-
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orem 3.3.6 requires integer programming. As an alternative, in the corollary below

we provide a short-cut which does not require integer programming.

Corollary 3.3.7. If y ((m′q + n′ − 1)h) ≤ 1 − β, then Ŝ∗ = m′q + n′ − 2 and η̂∗β =

(m′q + n′ − 1)h and otherwise Ŝ∗ = m′q + n′ − 1 and η̂∗ = (m′q + n′)h, where

m′ =

⌊⌈
ln(q + ρ)− ln(1− β)

− ln ρ

⌉
/(q + 1)

⌋
n′ = max

{
0,

⌈
ln(q + ρ)− ln(1− β)

− ln ρ

⌉
−m′(q + 1)− 1

}

After a long journey, we have arrived at an easy-to-use approximation of B∗,

namely B̂∗ = Ŝ∗ + 1, where Ŝ∗ is obtained from Theorem 3.3.6 and Corollary 3.3.7.

In Section 3.3.4, we will present a simulation experiment to study the accuracy of

B̂∗ in estimating B∗.

3.3.3 Optimality of stockless operation

Intuitively speaking, the manager, being risk-averse, would be tempted to at

least have some product units in inventory to smooth the random interaction of

demand and production. So the second research question is posed again: under

which conditions, if any, would a stockless operation be optimal in the supply chain

under study? The next proposition provides the answer.

Proposition 3.3.8. When ρ ≤ β and q = b/h is an integer, a stockless operation is

optimal if ρ(q + ρ) < 1− β.

The condition in Proposition 3.3.8 indicates that it is indeed possible for a risk-

averse manager to optimally run a stockless operation. For example, when β = 0.9

and q = 1, a stockless operation is optimal if ρ = 0.05. This insight means that if

the manager had idle capacity at more than 95%, the buffering provided by such idle

capacity to cope with financial risk would be enough, and thus no inventory would be
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required to provide any extra buffering. As a second example, when ρ = 0.8, q = 1,

and β = 0.9, Proposition 3.3.8 says that the buffering provided by idle capacity at

20% is not enough to cope with financial risk (we know from the previous example

that more than 95% is needed) and additional buffering would have to come from

inventory, which essentially means a stockless operation is not optimal.

Note that the ratio q = b/h measures the relative economic impact of a back-

ordered unit when compared to the cost of having one unit in inventory. We will

refer to q as the back-orders economic impact. The condition in Proposition 3.3.8 also

indicates that when a stockless operation is optimal, and hence all of the buffering

against financial risk will come from idle capacity, the amount of idle capacity needed

is increasing in the manager’s risk sensitivity, and is also increasing in the back-orders

economic impact. The logical implication is that if the manager’s risk sensitivity

was high, the capacity utilization was high, and the back-orders economic impact

was high, a stockless operation being optimal would be extremely unlikely. This

implication is intuitively pleasing and complements similar results reported in prior

literature (Arreola-Risa and DeCroix, 1998; Rajagopalan, 2002; Arreola-Risa and

Keblis, 2013).

3.3.4 Simulation experiment

Because B̂∗ is an approximation of B∗, we know that ζβ(B̂∗) ≥ ζβ(B∗). We

then would like to determine the penalty for using B̂∗ instead of B∗, which will be

measured as a percentage and calculated as

% Penalty =
ζβ(B̂∗)− ζβ(B∗)

ζβ(B̂∗)
.

For this purpose, we conducted a simulation experiment on 54 supply chain scenarios

which should be representative of most practical situations. The 54 supply chain
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scenarios resulted from all combinations of the following parameter values: ρ=0.5

and 0.9; µ =10, 100, and 1000; h=1; b/h=1, 5, 25; β=0.9, 0.95, and 0.99.

For each scenario, we first simulated 10,000 instances and collected the annual cost

observed in each year (after discarding a warm-up period). Second, we constructed

the probability distribution of annual cost from the 10,000 simulated annual costs.

Next, we used the simulated annual cost probability distribution to find B∗ and to

compute ζβ(B∗) and ζβ(B̂∗). Lastly, we computed the % Penalty, where

%Penalty =
ζβ(B̂∗)− ζβ(B∗)

ζβ(B∗)
(3.17)

The results of the simulation experiment are summarized in Tables 3.1 and 3.2,

where the percentage of penalty is in parenthesis. The average penalty in Tables 3.1

is 1.58% and in Tables 3.2 is 0.43% for a grand average of 1.01%. These results

suggest that B̂∗ yields optimal or near-optimal solutions in a variety of supply chain

scenarios and its accuracy should be acceptable in practical applications.

Table 3.1: Accuracy of B̂∗ (ρ = 0.5)

β b/h B̂∗ B∗µ=10 B∗µ=100 B∗µ=1000

1 1 1 (0%) 1 (0%) 1(0%)
β = 0.9 5 4 4 (0%) 4 (0%) 4(0%)

25 7 7 (0%) 6 (3.10%) 6(1.96%)
1 2 2 (0%) 2 (0%) 2(0%)

β = 0.95 5 5 4 (0.36%) 4 (3.93%) 4(4.47%)
25 8 8 (0%) 7 (5.47%) 7(2.35%)
1 3 3 (0%) 3 (0%) 3(0%)

β = 0.99 5 7 7 (0%) 6 (8.56%) 6(4.97%)
25 10 10 (0%) 9 (6.46%) 9(0.94%)
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Table 3.2: Accuracy of B̂∗ (ρ = 0.9)

β b/h B̂∗a B∗µ=10 B∗µ=100 B∗µ=1000

1 13 14 (0.65%) 14 (0.56%) 14(0.03%)
β = 0.9 5 32 32 (0%) 31 (0.09%) 30(0.84%)

25 50 50 (0%) 50 (0%) 48(0.39%)
1 17 17 (0%) 17 (0%) 16(0.62%)

β = 0.95 5 37 38 (0.02%) 36 (0.07%) 34(1.29%)
25 57 57 (0%) 57 (0%) 54(0.68%)
1 24 25 (0.87%) 25 (0.51%) 22(2.13%)

β = 0.99 5 50 51 (0.10%) 50 (0%) 45(2.75%)
25 71 70 (0.07%) 70 (0.05%) 70(0.01%)

3.4 Post-solution analysis

Understanding the manager’s optimal behavior regarding the decision variable

B∗ when the supply chain setting changes is as important as finding the value of

B∗. With that goal in mind, in this section we address the second research question:

what should be the manager’s optimal adjustment (if any) to B∗ as the values of the

parameters λ, µ, β, h and b change? We will use B̂∗ to study the behavior of B∗.

The first result is presented in Proposition 3.4.1.

Proposition 3.4.1. B̂∗ is non-decreasing in β.

Everything else being equal, Proposition 3.4.1 states that if the manager’s risk

sensitivity increased, then his/her optimal strategy is to increase the optimal base-

stock level. The quantitative explanation is that even though the annual cost prob-

ability distribution did not change, the manager now wants to minimize the average

cost in a higher percentile, and doing so requires a higher optimal base-stock level.

The qualitative explanation is that, even though the supply chain setting did not

change (all other parameters stay the same), there is a psychological incentive to

desire a higher optimal base-stock level because the manager’s fear of financial risk
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got higher. The second result in presented in Proposition 3.4.2.

Proposition 3.4.2. B̂∗ is non-decreasing in q.

Everything else being equal, Proposition 3.4.2 states that if the back-orders eco-

nomic impact increases, then the manager’s optimal strategy is to increase the op-

timal base-stock level. The quantitative explanation is that when the back-orders

economic impact increases, the right tail of the annual cost probability distribution

will increase as well, which naturally leads to a higher optimal base-stock level. The

qualitative explanation is that when the back-orders economic impact increases, the

inventory holding cost per unit now appears cheaper when compared to the back-

ordering cost per unit, and consequently there is an economic incentive to increase

the optimal base-stock level. The third result is presented in Proposition 3.4.3.

Proposition 3.4.3. B̂∗ is non-decreasing in ρ.

Everything else being equal, Proposition 3.4.3 states that if capacity utilization

increases, then the manager’s optimal strategy is to increase the optimal base-stock

level. The quantitative explanation is that when capacity utilization increases, the

probability of incurring a large number of back-orders will increase, and with that,

the right tail of the annual cost probability distribution will increase as well, which

naturally leads to a higher optimal base-stock level. The qualitative explanation is

that when capacity utilization increases, congestion in the production system will

increase; with that, the average production lead time will increase as well, which

leads to the need for a higher base-stock level.

3.5 Expected cost minimization and its consequences

As mentioned at the beginning of this paper, the use of expected cost in supply-

chain management research is pervasive. Recall that B∗EC denotes the base-stock

value which minimizes expected annual cost. So it is possible, say due to mathematical
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convenience and ease of calculation, that the manager in the supply chain under study

would be tempted to use B∗EC instead of B∗. In this section, we examine the fourth

and last research question: how does B∗EC compare to B∗ and how does ζβ(B∗EC)

compare to ζβ(B∗)? The answer to the first part of the fourth research question is

provided in the proposition below using the approximation B̂∗.

Proposition 3.5.1. B̂∗ ≥ B∗EC .

Although we define CVaR assuming 0 < β < 1, in the proof of Proposition 3.5.1

we show that B̂∗ converges to B∗EC when β = 0. When one combines the result in

Proposition 3.5.1 with the result in Proposition 3.4.1, the following finding emerges:

if the manager in the supply chain under study decided to use B∗EC instead of B̂∗,

he/she would be accepting a greater than optimal financial risk since the buffer

provided by B∗EC would be less than the optimal or near-optimal buffer provided by

B̂∗. In addition, the higher the manager’s risk sensitivity, the greater the difference

between B̂∗ and B∗EC , and consequently the greater the unnecessary exposure to

financial risk. This finding is illustrated in Figures 3.1 and 3.2. The step-wise

pattern is due to B̂∗ and B∗EC being integers.

The answer to the second part of the fourth research question eludes analytical

treatment. However, Propositions 3.4.1 and 3.5.1 can be used again to arrive at the

following finding: because B̂∗ ≥ B∗EC and B̂∗ is non-decreasing in β, we know that

ζ̂β(B∗EC) ≥ ζ̂β(B̂∗) and ζ̂β(B∗EC)− ζ̂β(B̂∗) is non-decreasing in β. In other words, the

higher the manager’s risk sensitivity, the higher the financial penalty he/she would

pay for using B∗EC instead of B̂∗. The finding is illustrated in Figures 3.3 and 3.4.

The peculiar behavior of ζ̂β(B∗EC) in all three β values is due to the fact that B∗EC is

not optimal for minimizing CVaR.

Before closing this section, we want the reader to note that Figures 3.1 to 3.4 are
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Figure 3.1: B̂∗ vs. B∗EC (µ=1, ρ = 0.5)
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Figure 3.2: B̂∗ vs. B∗EC (µ=1, ρ = 0.9)

created by considering b/h values from 0.5 to 25 in increments of 0.5. When q = b/h

is an integer, we use Corollary 3.3.7 to calculate B̂∗. When q = b/h is not an integer,
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Figure 3.3: ζ̂β(B̂∗) vs. ζ̂β(B∗EC) (µ=1, ρ = 0.5)
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Figure 3.4: ζ̂β(B̂∗) vs. ζ̂βB
∗
EC) (µ=1, ρ = 0.9)

we use Theorem 3.3.4 to calculate B̂∗ numerically. As mentioned in the paragraph

after Theorem 3.3.4, we were able to easily obtain the optimal base-stock levels by
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using the solutions of problems with q1 = bb/hc and q2 = db/he. We observe that

B̂∗|q=q1 ≤ B̂∗|q=b/h ≤ B̂∗|q=q2 as shown in Figures 3.1 and 3.2.

3.6 Summary and conclusions

We considered a stochastic and capacitated supply chain whose manager is risk-

averse and wants to find B∗: the base-stock level which minimizes the CVaR of

annual cost. We showed that finding B∗ is an intractable problem and we developed

an easy-to-use approximation of B∗ denoted by B̂∗. We conducted a simulation

experiment in which B̂∗ yielded optimal or near-optimal solutions in a variety of

scenarios of the supply chain under study. Given the aforementioned accuracy of B̂∗,

we used B̂∗ to study the optimality of a stockless operation, to gain an understanding

of the manager’s optimal strategies when the supply chain parameters change, and

to explore the consequences for the manager of minimizing expected annual cost

instead of minimizing the CVaR of annual cost.

The research findings and managerial insights are many and diverse. We derived

a simple condition for the optimality of a stockless operation and showed that it is

possible to both eliminate inventory and achieve lowest CVaR for managers concern-

ing the working capital tied up in inventories. By analyzing the optimal solution,

we learned that the manager’s optimal strategy is to increase the buffering provided

by inventory when the manager’s risk sensitivity increases, the back-orders economic

impact increases, or the capacity utilization increases. Therefore, managers need to

monitor the supply chain’s operating characteristics and respond accordingly when

they change. We also found that if the risk-averse manager were to minimize ex-

pected annual cost instead of minimizing the CVaR of annual cost, he/she would

end up with a greater-than-optimal financial risk, which is not desirable and high-

lights the importance of using the CVaR-minimizing base-stock level suggested in
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this paper.

Because this paper is the first one to combine a stochastic and capacitated supply

chain with a risk-averse manager who follows the CVaR criterion, the directions for

further research are plentiful. We will list a few potential directions. One may

consider other risk management tools such as the mean-variance trade-off or option

pricing. The CVaR criterion could also be applied to study supply chain disruptions

and resilience. Given the identified link between capacity utilization and CVaR of

annual cost via the optimal base-stock level, the link could be utilized to investigate

the capacity investment problem. Lastly, having focused in this paper on the cost

over a short-term horizon, to consider long-term projects where the manager would

be interested in minimizing the CVaR of the total cost over say twenty or thirty

years may be a worthwhile research pursuit.
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4. BONE MARROW TRANSPLANTATION WITH FINITE WAITING ROOMS

4.1 Introduction

As the eighth most common type of cancer in women and the tenth most common

in men (Kasteng et al., 2007), leukemia is a very common cancer of the blood and

bone marrow leading to build-up of abnormal white blood cells (National Cancer

Institute, 2014). Siegel et al. (2015) estimate that a total of 54,270 leukemia cases

occurred in the United States in the year 2015, of which 30,900 cases are male

and 23,370 cases are female. It is projected that a total of 24,450 deaths due to

leukemia will occur in the United States in the year 2015 (Siegel et al., 2015). At

its current rate of incidence, it is estimated that approximately 1.5% of men and

women will be diagnosed with leukemia at some point during their lifetime, with

a five-year survival rate of 58.5% (National Cancer Institute, 2016). Older adults

above age 65 constituted 52.9% of new leukemia cases during 2007-2011 (National

Cancer Institute, 2016). Moreover, leukemia is among the most common childhood

cancers and 10.1% of new leukemia cases are patients below age 20. Hence, leukemia

is an important social issue and its cure is sought after by medical communities.

Routine treatment methods of leukemia include monitored waiting, targeted therapy,

radiation therapy and chemotherapy, all of which may block the disease progression

but provide no cure. However, patients with leukemia may potentially be cured by

stem cell transplant (National Cancer Institute, 2014). The operational challenge of

a stem cell transplant lies in designing the health care delivery system to maximize

patient health benefits. In this paper, we investigate how the design of medical units

can impact the health benefits received by leukemia patients, which has implications

for health care institutions, leukemia patients, and the society in general.
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Hematopoietic Stem Cell Transplantation (HSCT), used to treat approximately

50,000 people worldwide in 2006 (Appelbaum, 2007), is an effective and popular

method for treating leukemia and restoring the patient’s ability to produce new

healthy blood cells. HSCT consists of primarily bone marrow transplantation (BMT)

and secondarily umbilical cord blood transplantation.

The process of HSCT begins with harvesting healthy stem cells from the patient

him/herself or other individuals; with a sufficient amount of healthy stem cells, the

next step is transplantation of the stem cells, which is followed by severe myelo-

suppression; the final step is engraftment, where the transplanted healthy stem cells

thrive in bone marrows and replace the cancer cells. The aim of HSCT is the elimina-

tion of the underlying disease in the treatment recipient, together with full restoration

of hematopoietic and immune function (Duncombe, 1997).

Medical centers specializing in cancer treatment often have a BMT unit with

multiple rooms for surgery and recovery of patients, and they need to maintain a

certain number of waiting rooms (wards under observation) for incoming patients to

stay before receiving BMT. In the non-profit medical center that motivates this study,

patients arrive randomly and receive BMT if there is a transplant room available at

their time of arrival, or wait in one of the waiting rooms until a transplant room

becomes available to serve him/her. A transplant room hosts both the surgery and

recovery of a patient, since BMT requires a dedicated aseptic dust-free environment

that only a specially-designed transplant room can provide (PWI Engineering, 1997;

Dykewicz et al., 2000). The length of stay (LoS) of patients receiving BMT in

transplant rooms is usually several weeks.

However, having patients experience long waits prior to a transplant is unde-

sirable, since patients’ medical conditions may deteriorate while waiting in a ward.

Medical centers do not want to keep a high number of waiting rooms, which may
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lead to long waiting times. However, rejecting patients due to full waiting rooms is

also costly for both the medical center and the patient rejected, since the patient

may end up with limited and less beneficial alternatives.

The aim of this study is to investigate with queuing analysis how the perfor-

mance of a BMT unit is impacted by the number of waiting rooms and the number

of transplant rooms. We first formulate the problem with a constant number of

transplant rooms. Our first research question is: in the short run, how many waiting

rooms should be allocated to maximize patient health benefits? To answer this ques-

tion, we optimize the number of waiting rooms from a societal perspective (Siegel

et al., 1996) of maximizing the health benefits of the patients. Next, we explore the

second research question: in the long run, what is the trade-off between infrastruc-

ture investment and patient health benefits? We answer this question by illustrating

how the number of transplant rooms can impact the health benefits of patients with

different arrival rates to account for the growth of the patient base. We verify the

approximations we use via numerical simulation. We demonstrate that our analysis

can be useful for improving the performance of health care organizations.

We contribute to the literature in several fronts. First, we analyze a queuing-

based model with the objective of maximizing health benefits provided by the medical

center. We then predict system performance and propose methods to optimize the

number of waiting rooms. Second, we use sensitivity analysis to identify which

parameters most significantly affect the optimal policy and prioritize improvement

efforts. Third, we examine the option of adding/closing transplant rooms as patient

arrival rates change and demonstrate the cost/benefit trade-off under this scenario.

Lastly, we explore the sensitivity of system performance and the cost/benefit trade-

off to system parameters and provide managerial recommendations.

The remainder of the essay is organized as follows. Section 4.2 reviews the relevant
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literature on health-care applications of queuing theory and relevant literature on

approximation methods for queuing models with finite waiting rooms. Section 4.3

describes the model for optimizing the number of waiting rooms, and Section 4.4

describes the model for assessing the impact of the number of transplant rooms. In

Section 4.5, we summarize key findings and discuss the limitations of this study.

4.2 Literature review and background

Operational analysis may add significant value to health care services (Green,

2012) by improving the performance (Porter, 2010) in areas such as medical decision-

making (Zhang et al., 2012), surgical scheduling (Chow et al., 2011; Day et al., 2012),

hospital admission control (Helm et al., 2011), nurse staffing (Wright et al., 2006),

and congestion in patient transfer between different inpatient care units (Price et al.,

2011; Bretthauer et al., 2011).

4.2.1 Queuing analysis in healthcare

Among all approaches in operations management, queuing analysis has grown

to be a popular method in modeling healthcare delivery systems, since it can be

of great value in helping healthcare organizations to manage resource utilizations

and patient flow delays (Green, 2006). Prior studies have shown the effectiveness of

queuing analysis in the management of emergency departments (Wiler et al., 2011),

outpatient clinics (Dobson et al., 2012), organ transplant (Su and Zenios, 2004), bed

management (Cooper and Corcoran, 1974), and pharmacy (Shimshak et al., 1981).

Significant interest lies in the performance evaluation and optimization of healthcare

systems using queuing theory. Griffiths et al. (2006) model an Intensive Care Unit

(ICU) as a M/H/c/∞ queuing system and find that more nurses should be scheduled

for each shift to avoid the costly ad-hoc need of supplementary nurses. Su and Zenios

(2002) analyze a medical queuing system with patient reneging autonomously; they
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find that the Last-Come First-Served (LCFS) discipline may be the socially-optimal

queuing discipline rather than the First-Come First-Served (FCFS) discipline. Dob-

son et al. (2012) consider the batching of patients in a medical teaching facility and

show that in systems with limited buffer space, large batches can sometimes de-

grade efficiency by simultaneously increasing flow time and decreasing throughput,

though throughput generally increases with batch size. Mandelbaum et al. (2012)

consider a hospital with several heterogeneous wards that vary in service quality and

speed, who use a quality- and efficiency-driven regime to describe the patient rout-

ing process and propose routing algorithms that take into account fairness towards

hospital staffs. Véricourt and Jennings (2011) find that effective staffing policies

should deviate from threshold-specific nurse-to-patient ratios, which are stipulated

in some legislations, by taking into account the number of patients in the care unit.

Gorunescu et al. (2002) model the geriatric department of a hospital with no waiting

room and optimize the number of inpatient beds using the Erlang loss formula. They

demonstrate that the bed-count decision is analogous to setting the base-stock level

for an inventory system. None of these studies explore operational decisions such

as the number of waiting rooms and transplant rooms. We also differ from extant

literature in using quality-adjusted life years as the unit of measure instead of crude

measures such as mortality rate, which enables the decision-maker to maximize the

aggregate health benefit of all patients. For a comprehensive review of applications

of queuing theory in health care, see Appa Iyer et al. (2013).

4.2.2 Approximation of finite-waiting-room queuing systems

In this subsection, we outline the extant approaches for analyzing finite-waiting-

room queuing systems and the approach we adopt in this paper. Queuing systems

with finite waiting rooms have been examined by many studies despite technical
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difficulties associated with the truncation of waiting room size. As the simplest

case, Morse (1958) develops some closed-form expressions for exponential systems

and obtains results for optimizing the system, with waiting room size and service

rate as decision variables. Köchel (2004) proves several monotonic properties for

M/M/c/K systems. Jouini et al. (2007) prove that for an M/M/c/r+M system, the

probability of being served is strictly increasing and concave in the waiting room size.

For queuing systems with finite waiting rooms, researchers have made considerable

efforts in obtaining useful approximations for M/G/c/K and G/G/c/K systems,

since the performance measures are often intractable.

Smith (2004) discusses the optimal design and performance modeling of anM/G/1/K

queuing system. Closed-form expression of the performance measures of theM/G/1/K

system (such as blocking probability) cannot be obtained. Therefore, Smith devel-

ops a two-moment approximation based on approaches of Tijms (1992) and Kimura

(1996). Similarly, an exact solution of the M/G/c/K queuing system is only possible

with exponential service or a single server, or no waiting room at all. Smith (2003)

presents an approximation of the M/G/c/K queuing system based on a closed-form

expression of the finite capacity exponential queue. The approximation performs

well with small number of servers, but becomes too complex for larger numbers of

servers. Smith (2007) surveys the optimal design of the M/G/c/K queuing system.

Stidham (1992) considers the design of arrival rates and service rates, as an extension

of Dewan and Mendelson (1990).

Choi et al. (2005) present a simple two-moment approximation for some im-

portant performance measures of a GI/G/c/K queue, such as the loss probability,

the mean queue length, and the mean waiting time. Choi et al. also show that

the approximation is extremely simple yet satisfactory in its performance with ex-

tensive numerical studies. Sakasegawa et al. (1993) present an approximation for-
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mula for the blocking probability of GI/GI/c/K queues. Whitt (2005) considers an

M/G/s/r+GI queue, which has a Poisson arrival process, i.i.d. service times with a

general distribution, s servers, r extra waiting spaces, and i.i.d. customer abandon-

ment times with a general distribution. Whitt shows that the M/G/s/r+GI queue

can be approximated by M/M/s/r+M(n) queue with state-dependent abandonment

rates. The approximate distribution of waiting times can be numerically computed

and simulation experiments show that the approximation is quite accurate.

4.2.3 Using quality-adjusted life years as a decision criteria

We use quality-adjusted life years (QALYs), a health outcome measurement unit

that combines duration and quality of life(Zeckhauser and Shepard, 1976), as the

unit of measure of a BMT unit’s performance. We use QALYs since the QALY max-

imization criterion is justified in a multi-attribute utility theory framework (Pliskin

et al., 1980) and we can evaluate the benefit of BMT and the impact of waiting for

BMT in QALYs for each patient on average. The use of QALYs is routine in cost-

utility analysis of medical interventions and policies (Allen et al., 1989; Spiegelhalter

et al., 1992; Broome, 1993; Singer et al., 1995; Räsänen et al., 2006; Sassi, 2006)

as recommended by the U.S. Panel on Cost-Effectiveness in Health and Medicine

(Lipscomb et al., 1996) and used in health-care operations (Packer, 1968; Fanshel

and Bush, 1970; Zenios, 2002; Young and McClean, 2008; Zhang et al., 2012). Gold

et al. (2002) provide a comprehensive overview of QALYs.

There are four major types of leukemia: acute lymphocytic leukemia (ALL), acute

myeloid leukemia (AML), chronic myeloid leukemia (CML), and chronic lymphocytic

leukemia (CLL). Several studies have examined the effectiveness of BMT compared

with alternatives. Barr et al. (1996) examine the effectiveness of allogeneic BMT

in AML versus no-treatment and estimate that the average benefit is 0.73 QALY.
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Barr et al. (1996) also estimate that for ALL patients, allogeneic BMT brings an

average benefit of 0.12 QALY compared to no-treatment. Lee et al. (1998) find that

for CML patients, unrelated donor BMT leads to an average benefit of 5.25 QALYs

versus Interferon-α, a popular chemotherapy method. Based on these studies and

the composition of four types of leukemia patients, we estimate the average benefit

of the BMT procedure to be 1.435 QALYs per patient. For a comprehensive review

of economic evaluations of leukemia, see Kasteng et al. (2007).

Next, we estimate the risk of death in leukemia and convert it into QALYs. We

begin by estimating the mortality rate of leukemia patients using the five-year sur-

vival rate of 58.5% (National Cancer Institute, 2016). Assume the average mortality

rate is γ per day, we have (1 − γ)5×365 = 58.5% and γ = 2.94 × 10−4. Assuming

a discount rate of 3% and a life expectancy of 30 years, a statistical healthy life is

equivalent to
∑29

n=0(1+0.03)−n = 20.2 years of healthy life using the method of Hirth

et al. (2000). Thus, staying alive for one more day is on average equivalent to losing

1 + 20.2× 365× γ = 3.17 days for a healthy person with 30 years of life-expectancy.

For leukemia patients, we make quality-of-life adjustments based on CML patients’

quality of life coefficient (0.5), as reported by Tengs and Wallace (2000), leading to

1.585 quality-adjusted-life-days (QALD) per day for leukemia patients.

4.2.4 Two-moment approximation of the finite waiting room queuing system

It is common to assume that the arrival process of patients is Poisson, with sup-

port from the literature. Çinlar (1968) proves that the superposition of many point

processes converge to a Poisson process as the number of point processes approaches

infinity. Albin (1982) shows that the expected delay of a ΣGIi/M/1 queue can be

approximated by an M/M/1 queue. Two approximation methods are proposed by

Albin (1986).
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In this paper, we also consider the case that the arrival process is a point process

with generic distribution of inter-arrival times. Thus, we consider a GI/G/c/K

system in this paper, with general and independent inter-arrival times and i.i.d.

general service times to account for situations where the patient arrival process is not

Poisson, such as a deterministic arrival pattern where arrivals are equally spaced in

time. We develop expressions for system performance metrics, and then minimize the

expected cost per unit time by optimizing the size of waiting rooms. To approximate

GI/G/c/K queues, we use the method of Choi et al. (2005), which is shown to be

superior to other approximation methods. We show that the objective function of

the (approximated) expected cost per unit time has the same structure as that of the

M/M/c/K queue, and that Taylor approximations can be used to locate the optimal

solution.

We denote the patient arrival rate as λ and service rate as µ. We denote A as

the inter-arrival time of patients and S as the service time of each patient. We also

have the following notations:

We use some results and notations of the two-moment approximation of Choi

et al. (2005), which is exact for exponential arrival and service processes. Denote

aDn ≈ aR =
E[A2]

2E[A]
=

(1 + c2
A)a

2
, 0 ≤ n ≤ c+ r − 1 (4.1)

(bAn )bDn ≈ bR =
E[S2]

2E[S]
=

(1 + c2
S)b

2
, 1 ≤ n ≤ c+ r − 1 (4.2)

We know that aDc+r = a and bDc+r = b when the system is full.

The system state probabilities P̃A
n , P̃D

n , P̃n and parameters µ̃i, λ̃i, and γ̃i are

outlined on page 78 of Choi et al. (2005).

Denote B =
∑c−1

m=0

∏m
n=1

b−n(a−aR)
naR

and D =
∏c−1

n=1
b−n(a−aR)

naR
. The probability of
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Table 4.1: Key Notations

Notation Explanation
ADn : residual inter-arrival time at departure epochs when

number of customers in the system is n.
PA
n , PD

n , Pn: probability of having n customers at arrival epoches /
departure epoches / arbitrary time.

ADn : residual inter-arrival time at departure epochs when
number of customers in the system is n.

PA
n , PD

n , Pn: probability of having n customers at arrival epoches /
departure epoches / arbitrary time.

a = E[A] = 1/λ
b = E[S] = 1/µ
aDn = E[ADn ], 0 ≤ n ≤ c+ r
bAn = E[SAn ], 0 ≤ n ≤ c+ r
bDn = E[SDn ], 0 ≤ n ≤ c+ r
ρ = λ

cµ
= λb

c
, the nominal capacity utilization.

system being empty at arrivals P̃A
0 (c, r), the parameters φ, the loss probability P̃A

c+r,

the mean queue length L̃q, and the probability of system having full transplant rooms

but no patients waiting P̃A
c are outlined in Equations 5.a to 5.e in Choi et al. (2005).

We have φ = 1 if ρ = 1.

Note that b − c(a − aR) = 1/µ − c
(

1− 1+c2A
2

)
1
λ

= c
λ

(
ρ− 1−c2A

2

)
. It follows

that b− c(a− aR) is guaranteed to be positive when cA ≤ 1, which applies to most

commonly-observed arrival patterns. Assuming b−c(a−aR) > 0, we have that B > 0

and D > 0. Also note that caR + bR − b =
c(1+c2A)a

2
+ (c2s−1)b

2
= c

λ

(
1+c2A

2
+

c2S−1

2
ρ
)

. It

follows that caR + bR− b > 0 when cS ≥ 1 or ρ <
1+c2A
1−c2S

. In this paper, we restrict our

attention to the case when B > 0, D > 0, b− c(a− aR) > 0, and caR + bR − b > 0.
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4.3 Optimizing the number of waiting rooms

As previously discussed, the system we analyze is a G/G/c/K queuing system.

The total patient health benefit that the BMT unit generates per unit time is

Π(r) = Bλ− C1Lq − C2λP
A
c+r

and we want to find r∗ = arg max
r∈N

Π(r).

4.3.1 Using the two-moment approximation

Instead of maximizing Π(r), which is intractable, we maximize Π̃(r), the ap-

proximated version of Π(r) using the two-moment approximation described in Sec-

tion 4.2.4, since Choi et al. (2005) is a good approximation of G/G/c/K queuing

systems. We use the finite difference method to obtain r̃∗ = arg max
r∈N

Π̃(r), ac-

knowledging that r is discrete. For a function F (·), denote the difference between

adjacent function values as ∆F (r) = F (r + 1) − F (r). Our objective is to find

r̃∗ = inf{r ∈ N : ∆Π̃(r) < 0} such that when r > r̃∗, adding more waiting rooms

will not help. We present some analytical results in Lemmas 4.3.1 and 4.3.2.

Lemma 4.3.1. We have that when ρ = 1:

(a) ∆P̃A
0 (r) = − caR

caR+bR−b
P̃A

0 (r)P̃A
0 (r + 1)D

(b) ∆P̃A
c+r = −aR

a
b−c(a−aR)
caR+bR−b

P̃A
0 (r)P̃A

0 (r + 1)D2

(c) ∆L̃q = P̃A
0 (r)P̃A

0 (r + 1)D2 · caR·[b−c(a−aR)]
caR+bR−b

·
{

1
2(caR+bR−b)

r2 +
[

B
caRD

+ 1
caR+bR−b

·(
bR−c(a−aR)

ca
+ 1

2

)]
r +

[
B

caRD
+ bR−c(a−aR)

ca(caR+bR−b)

](
1− λaR + caR+bR−b

ca

)}
(d) ∆Π̃ = −P̃A

0 (r)P̃A
0 (r + 1)D2 · caR·[b−c(a−aR)]

caR+bR−b
·
{

C1

2(caR+bR−b)
r2 +

[
B

caRD
+ 1

caR+bR−b
·(

bR−c(a−aR)
ca

+ 1
2

)]
C1 ·r+C1

[
B

caRD
+ bR−c(a−aR)

ca(caR+bR−b)

](
1−λaR+ caR+bR−b

ca

)
−C2λ · 1

ca

}
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(e) r̃∗ = 0 if B2 − 4AC ≤ 0 and r̃∗ =
⌈
−B+

√
B2−4AC
2A

⌉
otherwise, where A =

− 1
2(caR+bR−b)

, B = −
[

B
caRD

+ 1
caR+bR−b

(
bR−c(a−aR)

ca
+ 1

2

)]
, and C =

[
B

caRD
+

bR−c(a−aR)
ca(caR+bR−b)

](
1− λaR + caR+bR−b

ca

)
− C2λ

caC1
.

We continue to examine the system performance when ρ 6= 1.

Lemma 4.3.2. We have that when ρ 6= 1:

(a) ∆P̃A
0 = P̃A

0 (r + 1)− P̃A
0 (r) = P̃A

0 (r)P̃A
0 (r + 1) · ρ

1−ρ(λaR − 1 + ρ)(φ− 1)Dφr

(b) ∆P̃A
c+r = P̃A

0 (r)P̃A
0 (r + 1)D2(φ− 1)φr · b−c(a−aR)

ca
·
[
B
D

+ 1
1−ρ(λaR − 1 + ρ)

]
(c) ∆L̃q(r) = P̃A

0 (r)P̃A
0 (r+ 1)D2φr[b− c(a−aR)] ·

{
ρ

1−ρ(λaR− 1 +ρ)
[

1
1−φ

1
caR+bR−b

−

1
ca

]
φr+1

[
φ−1
ca

+ 1
caR+bR−b

]
·
[
B
D

+ 1
1−ρ(λaR − 1 + ρ)

]
· r +

[
1−λaR

caR+bR−b
+ φ

ca

]
·
[
B
D

+

1
1−ρ(λaR − 1 + ρ)

]
+ ρ

1−ρ
(λaR−1+ρ)
caR+bR−b

·
[
− 1

1−φ + λaR

]
(d) ∆Π̃ = −P̃A

0 (r)P̃A
0 (r + 1)D2φr[b− c(a− aR)] ·

{
ρ

1−ρ(λaR − 1 + ρ)
[

1
1−φ

1
caR+bR−b

−

1
ca

]
C1φ

r+1
[
φ−1
ca

+ 1
caR+bR−b

]
·
[
B
D

+ 1
1−ρ(λaR−1 +ρ)

]
C1 · r+

[(
1−λaR

caR+bR−b
+ φ

ca

)
C1 +

φ−1
ca
λC2

]
·
[
B
D

+ 1
1−ρ(λaR − 1 + ρ)

]
+ ρ

1−ρ
(λaR−1+ρ)
caR+bR−b

·
[
− 1

1−φ + λaR

]
C1

4.3.2 The Taylor approximation methods

Due to the complexity of the expressions of ∆Π̃, we propose three approximation

methods based on the Taylor approximation to quickly identify the optimal number

of waiting rooms.

(A) φr ≈ 1+r(φ−1)+ r2−r
2

(φ−1)2 = (1−φ)2

2
r2+−φ

2+4φ−3
2

r+1, which is Taylor approx-

imation about φ in the neighborhood of φ = 1. We obtain r̃A = arg max
r∈N

Π̃A(r)

with Π̃A(r) ≈ Π̃(r) based on approximation (A).

(B) φr ≈ φr0
[
1 + lnφ(r − r0) + (lnφ)2

2
(r − r0)2

]
, which is Taylor approximation about

r in the neighborhood of r = r0. We use the optimal number of waiting rooms
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Table 4.2: Accuracy of Approximations of r̃∗

ρ c
Poisson arrival Deterministic arrival
r̃∗ r̃A r̃B r̃C r̃∗ r̃A r̃B r̃C

0.6 10 5 5 5 5 5 5 5 5
0.6 60 33 33 33 33 33 33 33 33
0.8 10 3 3 3 3 3 3 3 3
0.8 60 17 16 17 17 16 16 16 16
1 10 2 - - - 1 - - -
1 60 6 - - - 1 - - -
1.2 10 1 1 1 1 1 1 1 1
1.2 60 3 3 3 3 3 3 3 3

when ρ = 1 as r0. We then obtain r̃B = arg max
r∈N

Π̃B(r) with Π̃B(r) ≈ Π̃(r)

based on approximation (B).

(C) Same with (B) except that we use r0 = r̃A. We obtain r̃C = arg max
r∈N

Π̃C(r) with

Π̃C(r) ≈ Π̃(r) based on approximation (C).

The three Taylor approximation methods can analytically find the optimal num-

ber of waiting rooms. We evaluate their performance by comparing them with the

numerical solution without Taylor approximation and the simulation results.

4.3.3 Numerical study evaluating the impact of parameter values

In this subsection, we conduct numerical studies with appropriate parameter

values to study the impact of system parameters on the optimal solution. We consider

four cases of nominal utilization (ρ = 0.6/0.8/1.0/1.2) to account for the various

demand scenarios. We consider two cases of capacity level (c = 10 and c = 60)

to account for various sizes of the bone marrow transplant department. We also

explore different patient arrival patterns by considering both Poisson patient arrival

and deterministic patient arrival. We present the results under Poisson arrival and

deterministic arrival in Table 1.
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We find that the three Taylor approximations behave satisfactorily in finding r̃∗,

meaning that using either approximation can greatly reduce the amount of compu-

tation needed while maintaining highly accurate solutions. This approximation can

be quite helpful for managers who need quick insights for their proposed designs.

We also find that higher nominal capacity utilization leads to a lower number

of waiting rooms in general, but also amplifies the impact of waiting rooms. This

finding is illustrated in Figure 4.1 and 4.2. In Figure 4.1 and 4.2, sub-figures (A) and

(B) represent Poisson arrival and Deterministic arrival, respectively. The trend that

higher nominal capacity utilization amplifies the impact of waiting rooms does not

always hold under Deterministic arrival, mainly because r̃∗ = 1 remains the same

when ρ increases from 1 to 1.2.

Comparing different patient arrival patterns, we discover that the optimal number

of waiting rooms under Deterministic patient arrival is equal to or slightly lower

than that under Poisson patient arrival. This finding is qualitatively intuitive since

Deterministic patient arrival minimizes the uncertainty in the arrival process, but

the magnitude of the difference between the two arrival patterns is shown to be

negligible, meaning that managers do not need to pay much attention to patient

arrival patterns.

4.4 Optimizing the number of transplant rooms

In this section, we consider a scenario where the BMT unit may adjust its num-

ber of transplant rooms, in addition to adjusting the number of waiting rooms. The

BMT unit wants to balance between the total health benefit received by the ar-

rived patients and the investment/savings associated with adjusting the number of

transplant rooms.

There are two options to adjust the number of transplant rooms:
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Figure 4.1: Impact of Utilization, Low-capacity Scenario (c=10)

1. Close some transplant rooms and yield cost savings;

2. Build additional transplant rooms at additional cost.

Note that building and closing transplant rooms take time and cannot be used as
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Figure 4.2: Impact of Utilization, High-capacity Scenario (c=60)

real-time adjustments of service capacity. Another question is, when demand grows

over time in the long-run, how will the optimal decision change? Our model may

also be used to optimize the design of new BMT units. Note that the expressions of
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∆Π̃(r) are very complex except when ρ = 1. Even when ρ = 1, we can hardly use

the expression to yield useful analytic results for adjusting the number of transplant

rooms, since changing c will result in a different value of ρ and the expressions under

ρ = 1 no longer apply.

We illustrate the trade-off between the two performance measures:

1. The health benefit created by the BMT unit: Π(r, c) ≈ Π̃(r, c).

2. The financial impact involved in adding/closing transplant rooms:

B(c) = C3(c− c0)+ + C4(c0 − c)+.

The cost of adding an additional transplant room and the cost of closing a trans-

plant room are estimated using real data. The cost of adding/closing per square foot

is $250 ∼ $300 (PWI Engineering, 1997), and we choose to use $275 per sq ft as

the estimate. The 10-bed unit at Sylvester Comprehensive Cancer Center in Miami,

FL has an area of 9,600 square feet (Sylvester Comprehensive Cancer Center, 2016),

from which we estimate the cost per bed as C3 = −C4 = $264, 000.

We present numerical results in Figures 4.3 to 4.10. We find diminishing returns in

adding transplant rooms, especially when capacity utilization is low. We also notice

that compared to Deterministic arrival, Poisson arrival is accompanied by a higher

degree of diminishing returns in adding transplant rooms. For the number of waiting

rooms, we discover that the optimal number of waiting rooms rises approximately

linearly with the number of transplant rooms.

4.5 Summary and conclusions

We modeled a research center specializing in BMT as a GI/G/c/K queuing

system and analyzed its performance using a two-moment approximation method.

On the one hand, we maximized the health benefits of patients by choosing the
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Figure 4.3: Small BMT Unit (c=10), Poisson Arrival, Cost

number of waiting rooms. We find that the number of waiting rooms impact the pa-

tients’ health benefits in a non-linear manner. In particular, higher capacity utiliza-

tion leads to a lower optimal number of waiting rooms, but amplifies each additional

waiting room’s marginal impact. We caution the managers that myopically adding

more waiting rooms is not necessarily helpful, and can be very harmful especially

when the capacity utilization is high.

On the other hand, we presented a cost-benefit trade-off for decision-makers when

selecting different combinations of number of waiting rooms and number of transplant

rooms. We find that the marginal benefits for adding more transplant rooms diminish

quickly when capacity utilization is relatively low, which allows an administrator to

rationalize the investment based on his/her trade-off between money and health

benefits. Generally, a higher capacity utilization enables adding transplant rooms
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Figure 4.4: Small BMT Unit (c=10), Poisson Arrival, Waiting Room

to bring about more marginal benefits. An hospital administrator should evaluate

the parameters accurately and avoid over-investment should the capacity utilization

appears to be relatively low. We also find that more transplant rooms require more

waiting rooms, indicating that these two types of resources are complementary, rather

than substitutive.

Future research may examine how hospitals performing BMT can respond to

cost-cutting efforts of health insurance providers. In particular, how current moves in

medical reimbursement from fee-for-service to bundled-payment may urge hospitals

design their health care delivery system more efficiently without sacrificing patients’

health, where our techniques in this essay may prove helpful.
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Figure 4.5: Small BMT Unit (c=10), Deterministic Arrival, Cost

Figure 4.6: Small BMT Unit (c=10), Deterministic Arrival, Waiting Room
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Figure 4.7: Large BMT Unit (c=60), Poisson Arrival, Cost

Figure 4.8: Large BMT Unit (c=60), Poisson Arrival, Waiting Room
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Figure 4.9: Large BMT Unit (c=60), Deterministic Arrival, Cost

Figure 4.10: Large BMT Unit (c=60), Deterministic Arrival, Waiting Room
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5. SUMMARY

I have included three essays in this dissertation. In my first essay, I analyze a

firm facing inventory decisions under the influence of the financial market. With

an analytical model, I examine the optimal inventory decisions under a variety of

conditions and identify the relevant factors impacting such decisions and the firm’s

value. I also study the benefits brought by efforts to improve the random capacity

of the firm. In my second essay, I model a stylized supply chain managed by a base-

stock inventory policy where the decision makers concern about the down-side risk

of the supply chain cost. I obtain solutions of the problem of minimizing Conditional

Value-at-Risk under various supply chain scenarios. Moreover, I study the influence

of supply chain parameters on the optimal solution as well as optimality of a stock-

less operation. In my third essay, I investigate the operational decisions of a medical

center specializing in bone marrow transplants. I formulate the medical center as a

queuing system with random patient arrivals and departures. I then present opti-

mal decisions and efficient frontiers regarding waiting room size and the number of

transplant rooms with the objective of maximizing patient health benefits. In each

of the three essays, I use analytical and numerical approaches to optimize managers’

decisions with respect to various sources of risk.
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Çinlar, Erhan. 1968. On the superposition of m-dimensional point processes. Journal

of Applied Probability 5(1) 169–176.

Cohen, Morris A, Paul R Kleindorfer. 1993. Creating value through operations: The

legacy of Elwood S. Buffa. Perspectives in Operations Management . Springer,

3–21.

Cooper, James K, Timothy M Corcoran. 1974. Estimating bed needs by means of

81



queuing theory. The New England Journal of Medicine 291(8) 404–405.

Dada, Maqbool, Nicholas C Petruzzi, Leroy B Schwarz. 2007. A newsvendor’s pro-

curement problem when suppliers are unreliable. Manufacturing & Service Oper-

ations Management 9(1) 9–32.

Dave, Chetan, Catherine C Eckel, Cathleen A Johnson, Christian Rojas. 2010. Elic-

iting risk preferences: When is simple better? Journal of Risk and Uncertainty

41(3) 219–243.

Day, Robert, Robert Garfinkel, Steven Thompson. 2012. Integrated block sharing: A

win-win strategy for hospitals and surgeons. Manufacturing & Service Operations

Management 14(4) 567–583.

Dees, J Gregory, et al. 1998. The meaning of social entrepreneurship. Unpublished

paper.

Dewan, Sanjeev, Haim Mendelson. 1990. User delay costs and internal pricing for a

service facility. Management Science 36(12) 1502–1517.

Dobson, Gregory, Hsiao-Hui Lee, Arvind Sainathan, Vera Tilson. 2012. A queueing

model to evaluate the impact of patient batching on throughput and flow time

in a medical teaching facility. Manufacturing & Service Operations Management

14(4) 584–599.

Drucker, Peter F. 2001. Managing the non-profit organization: Practices and prin-

ciples . Taylor & Francis.

Duncombe, Andrew. 1997. ABC of clinical haematology. bone marrow and stem cell

transplantation. BMJ: British Medical Journal 314(7088) 1179.

Dykewicz, Clare A., Harold W. Jaffe, Jonathan E. Kaplan. 2000. Guidelines for

preventing opportunistic infections among hematopoietic stem cell transplant re-

cipients: Recommendations of CDC, the Infectious Disease Society of America,

and the American Society of Blood and Marrow Transplantation. Morbidity and

82



Mortality Weekly Report: Recommendations and Reports 49(RR-10) 1.

Eckel, Catherine C, Philip J Grossman. 2002. Sex differences and statistical stereo-

typing in attitudes toward financial risk. Evolution and Human Behavior 23(4)

281–295.

Fanshel, Sol, JW Bush. 1970. A health-status index and its application to health-

services outcomes. Operations Research 18(6) 1021–1066.

Feller, Willliam. 1967. An introduction to probability theory and its applications ,

vol. 1. John Wiley & Sons.

Gold, Marthe R, David Stevenson, Dennis G Fryback. 2002. Halys and qalys and

dalys, oh my: similarities and differences in summary measures of population

health. Annual Review of Public Health 23(1) 115–134.

Gorunescu, Florin, Sally I McClean, Peter H Millard, et al. 2002. A queueing model

for bed-occupancy management and planning of hospitals. Journal of the Opera-

tional Research Society 53(1) 19–24.

Gotoh, Jun-ya, Yuichi Takano. 2007. Newsvendor solutions via conditional value-at-

risk minimization. European Journal of Operational Research 179(1) 80–96.

Green, Linda. 2006. Queueing analysis in healthcare. Patient flow: reducing delay

in healthcare delivery . Springer, 281–307.

Green, Linda V. 2012. OM Forum-the vital role of operations analysis in improving

healthcare delivery. Manufacturing & Service Operations Management 14(4) 488–

494.

Griffiths, JD, N Price-Lloyd, M Smithies, J Williams. 2006. A queueing model of

activities in an intensive care unit. IMA Journal of Management Mathematics

17(3) 277–288.

Haigh, Michael S, John A List. 2005. Do professional traders exhibit myopic loss

aversion? an experimental analysis. The Journal of Finance 60(1) 523–534.

83



Halek, Martin, Joseph G Eisenhauer. 2001. Demography of risk aversion. Journal of

Risk and Insurance 68(1) 1–24.

Hansmann, Henry B. 1980. The role of nonprofit enterprise. Yale Law Journal 89(5)

835–901.

Harrison, Glenn W, Morten I Lau, E Elisabet Rutström. 2007. Estimating risk

attitudes in denmark: A field experiment. The Scandinavian Journal of Economics

109(2) 341–368.

Harrison, Glenn W, Sebastian Moritz, Richard Pibernik. 2009. How does the risk

attitude of a purchasing manager affect the selection of suppliers? European

Business School Research Paper (09-10).

Hatzakis, Emmanuel D Manos, Suresh K Nair, Michael Pinedo. 2010. Operations

in financial servicesan overview. Production and Operations Management 19(6)

633–664.

Helm, Jonathan E, Shervin AhmadBeygi, Mark P Van Oyen. 2011. Design and

analysis of hospital admission control for operational effectiveness. Production

and Operations Management 20(3) 359–374.

Hendricks, Kevin B, Vinod R Singhal. 1996. Quality awards and the market value

of the firm: An empirical investigation. Management science 42(3) 415–436.

Hendricks, Kevin B, Vinod R Singhal. 2008. The effect of supply chain disruptions

on shareholder value. Total Quality Management 19(7-8) 777–791.

Hendricks, Kevin B, Vinod R Singhal. 2009. Demand-supply mismatches and stock

market reaction: Evidence from excess inventory announcements. Manufacturing

& Service Operations Management 11(3) 509–524.

Hendricks, Kevin B., Vinod R. Singhal. 2014. The effect of demandsupply mis-

matches on firm risk. Production and Operations Management 23(12) 2137–2151.

Himmelstein, David U, Steffie Woolhandler, Ida Hellander, Sidney M Wolfe. 1999.

84



Quality of care in investor-owned vs not-for-profit hmos. JAMA 282(2) 159–163.

Hirth, Richard A, Michael E Chernew, Edward Miller, A Mark Fendrick, William G

Weissert. 2000. Willingness to pay for a quality-adjusted life year in search of a

standard. Medical Decision Making 20(3) 332–342.

Holt, Charles A, Susan K Laury. 2002. Risk aversion and incentive effects. American

Economic Review 92(5) 1644–1655.

Inderfurth, Karl, Rainer Schefer. 1996. Analysis of order-up-to-S inventory policies

under cash flow market value maximization. International Journal of Production

Economics 46 323–338.

Jouini, Oualid, Yves Dallery, et al. 2007. Monotonicity properties for multiserver

queues with reneging and finite waiting lines. Probability in the Engineering and

Informational Sciences 21(3) 335.

Kaplan, Robert S. 1970. A dynamic inventory model with stochastic lead times.

Management Science 16(7) 491–507.

Karmarkar, Uday S. 1987. Lot sizes, lead times and in-process inventories. Manage-

ment Science 33(3) 409–418.

Kasteng, Frida, Patrik Sobocki, Christer Svedman, Jonas Lundkvist. 2007. Eco-

nomic evaluations of leukemia: a review of the literature. International Journal of

Technology Assessment in Health Care 23(01) 43–53.

Keen, Peter GW. 1997. The process edge: creating value where it counts . Harvard

Business Press.

Khouja, Moutaz. 1999. The single-period (news-vendor) problem: literature review

and suggestions for future research. Omega 27(5) 537–553.

Kim, Yong H, Kee H Chung. 1989. Inventory management under uncertainty: A

financial theory for the transactions motive. Managerial and Decision Economics

10(4) 291–298.

85



Kimura, Toshikazu. 1996. A transform-free approximation for the finite capacity

M/G/s queue. Operations Research 44(6) 984–988.
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APPENDIX A

PROOFS OF SECTION 2

Proof of Lemma 2.3.1. Based on Equation 2.2, we have that:

(1 + rf )S(Q) = [E(D1(Q))− ΩCov(D1(Q),M)] + [E(V (Q))− ΩCov(V (Q),M)]

(A.1)

(1 + rf )
∂

∂Q
S(Q) =

[
∂

∂Q
E(D1(Q))− Ω

∂

∂Q
Cov(D1(Q),M)

]
(A.2)

+

[
∂

∂Q
E(V (Q))− Ω

∂

∂Q
Cov(V (Q),M)

]

Part (I). We first prove that ∂
∂Q

E[D(Q)] = [1−F (Q)][r−a(1+rf )−(r−s)G(Q)].

Denote the normalized random variables y = [Y −µY ]/σY and z = [Z−µZ ]/σZ . We

have that E(U(Q)) = [1−F (Q)]·Q+
∫ Q

0
Y dF (Y ), E(D1(Q)) = (1+rf )[−a·E(U(Q))],

and ∂
∂Q

E(U(Q)) = 1−F (Q)−f(Q)Q+Qf(Q) = 1−F (Q). Define auxiliary function

W (Q) such that V (Q) = rU(Q) + (r − s)W (Q) where

W (Q) =



0 if Y ≥ Q and Z ≥ Q

0 if Y < Q and Z ≥ Y

Z −Q if Y ≥ Q and Z < Q

Z − Y if Y < Q and Z < Y
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E(W (Q)) =

∫ +∞

Q

∫ Q

0

(Z −Q)f(Y, Z)dZdY +

∫ Q

0

∫ Y

0

(Z − Y )f(Y, Z)dZdY

=

∫ +∞

Q

∫ Q

0

(Z −Q)f(Z)dZf(Y )dY +

∫ Q

0

∫ Y

0

(Z − Y )f(Z)dZf(Y )dY

= [1− F (Q)]

[∫ Q

0

Zg(Z)dZ −
∫ Q

0

Qg(Z)dZ

]
+

∫ Q

0

[∫ Y

0

Zg(Z)dZ −
∫ Y

0

Y g(Z)dZ

]
f(Y )dY

and

∂

∂Q
E(W (Q)) = −f(Q)

[∫ Q

0

Zg(Z)dZ −
∫ Q

0

Qg(Z)dZ

]
+ [1− F (Q)][Qg(Q)−Qg(Q)−G(Q)]

+ f(Q)

[∫ Q

0

Zg(Z)dZ −
∫ Q

0

Qg(Z)dZ

]
= −[1− F (Q)]G(Q).

Thus, we have that ∂
∂Q

E(D(Q)) = ∂
∂Q

E(D1(Q))+ ∂
∂Q

E(V (Q)) = −a(1+rf )
∂
∂Q

E(U(Q))+

r · ∂
∂Q

E(U(Q)) + (r − s) · ∂
∂Q

E(W (Q)) = [1− F (Q)][r − a(1 + rf )− (r − s)G(Q)].

Part (II). Recall that Y ∼ F (Y ) = Φ
(
Y−µY
σY

)
, a normal distribution and Z ∼

G(Z) = Φ
(
Z−µZ
σZ

)
, a normal distribution. Let R(Q) = U(Q)−Q, specifically R(Q) =

min{Y − Q, 0}. We know from Anvari (1987) that Cov(U(Q),M) = Cov(R(Q) +

Q,M) = Cov(R(Q),M) = F (Q) · Cov(Y,M). It follows that Cov(D1(Q),M) =

−a(1 + rf )F (Q) · Cov(Y,M).

To maximize S(Q), we need to find the expression ∂Cov(V (Q),M)/∂Q. Now we

calculate Cov(V (Q),M). Since Cov(V (Q),M) = rF (Q)Cov(Y,M)+(r−s)Cov(W (Q),M),

we focus on finding the expression of Cov(W (Q),M). We have that Cov(W (Q),M) =

E{[W (Q) − E(W (Q))][M − E(M)]} = E{W (Q)[M − E(M)]} − E{E(W (Q))[M −

E(M)]}. Let E{W (Q)[M−E(M)]} = Cov1(W (Q),M)+Cov2(W (Q),M)+Cov3(W (Q),M)+
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Cov4(W (Q),M), each part corresponding to one scenario of W (Q). It is easy to show

that E{E(W (Q))[M − E(M)]} = E(W (Q)) · E{[M − E(M)]} = 0.

1) For the case of Y ≥ U and Z ≥ Q, we have Cov1(W (Q),M) = E{[W (Q)][M−

E(M)]}|Y≥Q,Z≥Q = E{0 · [M − E(M)]}|Y≥Q,Z≥Q = 0.

2) For the case of Y < Q and Z ≥ Y , denoting yZ = [Y − µZ ]/σZ , we have

Cov2(W (Q),M) = E{[W (Q)][M−E(M)]}|Y <Q,Z≥Q = E{0 · [M−E(M)]}|Y <Q,Z≥Q =

0.

3) For the case of Y ≥ Q and Z < Q, denote yZ = [Y − µZ ]/σZ , we have

Cov3(W (Q),M) = E{W (Q)[M − E(M)]}|Y≥Q,Z<Q =
∫ Q

0

∫ +∞
Q

∫ +∞
−∞ [(Z − Q)]σMm ·

f(m,Y, Z) dm dY dZ.

Assume M , Y , and Z are jointly normally distributed, m, y, and z are the

normalized standard normal variables. We have that:

Cov3(W (Q),M) = σM

∫ qZ

−∞

∫ +∞

qY

[σZ(z − qZ)]

[∫ +∞

−∞
m · f(m|y, z) dm

]
f(y, z) dy dz

= σM

∫ qZ

−∞

∫ +∞

qY

[σZ(z − qZ)](yδMY + zδMZ) φ(y) dy φ(z) dz

= σM

∫ qZ

−∞
[σZ(z − qZ)] {δMY φ(qY ) + zδMZ [1− Φ(qY )]} φ(z) dz

= σM

∫ qZ

−∞
[σZ · z]zδMZ [1− Φ(qY )] φ(z) dz

+ σM

∫ qZ

−∞
{[σZ · zδMY φ(qY ) + [σZ(−qZ)]zδMZ [1− Φ(qY )]} φ(z) dz

+ σM

∫ qZ

−∞
[σZ(−qZ)][δMY φ(qY )] φ(z) dz

= σMσZδMZ [1− Φ(qY )][Φ(qZ)− qZφ(qZ)]

+ σM {[σZδMY φ(qY ) + [σZ(−qZ)]δMZ [1− Φ(qY )]} [−φ(qZ)]

+ σM [σZ(−qZ)]δMY φ(qY )Φ(qZ)

= σMσZδMZ [1− Φ(qY )]Φ(qZ) + σMσZδMY φ(qY )[−φ(qZ) + Φ(qZ)(−qZ)]
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4) For the case of Y < Q and Z < Y , denote yZ = [Y − µZ ]/σZ .

Case A: Assume M , Y , and Z are jointly normally distributed, m, y, and z are

the normalized standard normal variables. We have that:

Cov4(W (Q),M) = E{[W (Q)][M − E(M)]}|Y <Q,Z<Y

=

∫ Q

0

∫ Y

0

∫ +∞

−∞
[Z − Y ]σMm · f(m,Y, Z) dm dZ dY

=

∫ Q

0

∫ Y

0

[Z − Y ]

[∫ +∞

−∞
σMm · f(m|Y, Z) dm

]
f(Y, Z) dZ dY

= σM

∫ Q

0

∫ Y

0

[Z − Y ]

[∫ +∞

−∞
m · f(m|y, z) dm

]
f(y, z) dz dy

= σM

∫ qY

−∞

∫ yZ

−∞
[[σZ · z − σY · y + µZ − µY ]]

·
[∫ +∞

−∞
σMm · f(m|y, z) dm

]
f(y, z) dz dy

= σM

∫ qY

−∞

∫ yZ

−∞
{[σZ · z − σY · y + µZ − µY ]}

· (yδMY + zδMZ) φ(z) dz φ(y) dy

= σM

∫ qY

−∞

∫ yZ

−∞
σZ · z · zδMZ φ(z) dz φ(y) dy

+ σM

∫ qY

−∞

∫ yZ

−∞
{σZ · z · yδMY − σY · y · zδMZ} φ(z) dz φ(y) dy

+ σM

∫ qY

−∞

∫ yZ

−∞
{{[µZ − µY ]} · zδMZ} φ(z) dz φ(y) dy

+ σM

∫ qY

−∞

∫ yZ

−∞
{[−σY · y + µZ − µY ]} · yδMY φ(z) dz φ(y) dy
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We continue to further simplify the expression of Cov4(W (Q),M).

Cov4(W (Q),M) = σMσZδMZ

∫ qY

−∞
[Φ(yZ)− yZφ(yZ)] φ(y) dy

+ (σY δMZ − σZδMY )σM

∫ qY

−∞
yφ(yZ) φ(y) dy

+ [µZ − µY ]σMδMZ

∫ qY

−∞
[−φ(yZ)] φ(y) dy

− σMσY δMY

∫ qY

−∞
y2 · Φ(yZ) φ(y) dy

+ [µZ − µY ]σMδMY

∫ qY

−∞
y · Φ(yZ) φ(y) dy

= σMσZδMZ

∫ qY

−∞
Φ(yZ) φ(y) dy

− σMδMZ

∫ qY

−∞
[σY · y + µY − µZ ]φ(yZ) φ(y) dy

+ (σY δMZ)σM

∫ qY

−∞
yφ(yZ) φ(y) dy

+ (−σZδMY )σM

∫ qY

−∞
yφ(yZ) φ(y) dy

+ [µZ − µY ]σMδMZ

∫ qY

−∞
[−φ(yZ)] φ(y) dy

− σMσY δMY

∫ qY

−∞
y2 · Φ(yZ) φ(y) dy

+ [µZ − µY ]σMδMY

∫ qY

−∞
y · Φ(yZ) φ(y) dy

= σMσZδMZ

∫ qY

−∞
Φ(yZ) φ(y) dy − σZσMδMY

∫ qY

−∞
yφ(yZ) φ(y) dy

− σMσY δMY

∫ qY

−∞
y2 · Φ(yZ) φ(y) dy

+ [µZ − µY ]σMδMY

∫ qY

−∞
y · Φ(yZ) φ(y) dy

Now we derive ∂
∂Q

Cov(W (Q),M) and ∂
∂Q

Cov(V (Q),M) for all three cases. Re-

calling that Cov(W (Q),M) = Cov1(W (Q),M)+Cov2(W (Q),M)+Cov3(W (Q),M)+
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Cov4(W (Q),M), we have

Cov(W (Q),M) = σMσZδMZ

∫ qY

−∞
Φ(yZ) φ(y) dy − σZδMY σM

∫ qY

−∞
yφ(yZ) φ(y) dy

− σMσY δMY

∫ qY

−∞
y2 · Φ(yZ) φ(y) dy

+ [µZ − µY ]σMδMY

∫ qY

−∞
y · Φ(yZ) φ(y) dy

+ σMσZδMZ [1− Φ(qY )]Φ(qZ) + σMσZδMY φ(qY )(−φ(qZ))

+ σMσZδMY φ(qY )Φ(qZ)(−qZ)

∂

∂Q
Cov(W (Q),M) = Cov(Z,M)

{
Φ(qZ)φ(qY )

σY
− φ(qY )Φ(qZ)

σY
+

[1− Φ(qY )]φ(qZ)

σZ

}
− σMσZδMY qY φ(qZ)φ(qY )/σY − σMσY δMY q

2
Y Φ(qZ)φ(qY )/σY

+ σMδMY [µZ − µY ]qY Φ(qZ)φ(qY )/σY

+ σMσZδMY [−qY φ(qY )][−φ(qZ)]/σY

+ σMσZδMY φ(qY )[qZφ(qZ)]/σZ

+ σMσZδMY [−qY φ(qY )]Φ(qZ)(−qZ)/σY

+ σMσZδMY φ(qY )φ(qZ)(−qZ)/σZ

+ σMσZδMY φ(qY )Φ(qZ)(−1/σZ)
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∂

∂Q
Cov(W (Q),M) = Cov(Z,M)[1− Φ(qY )]φ(qZ)/σZ

+ σMδMY φ(qY )Φ(qZ) · −[Q− µY ]2

σ2
Y

+ σMδMY Φ(qZ)φ(qY ) · [µZ − µY ][Q− µY ]

σ2
Y

+ σMσZδMY φ(qY )Φ(qZ) · [Q− µZ ][Q− µY ]

σ2
Y

− σMσZδMY φ(qY )Φ(qZ)/σZ

= Cov(Z,M)[1− Φ(qY )]φ(qZ)/σZ − σMδMY φ(qY )Φ(qZ)

= Cov(Z,M)[1− Φ(qY )]φ(qZ)/σZ − Cov(Y,M)φ(qY )Φ(qZ)/σY

In this case,

∂

∂Q
Cov(V (Q),M) = r · ∂

∂Q
Cov(U,M) + (r − s) · ∂

∂Q
Cov(W,M)

= rCov(Y,M)φ(qY )/σY + (r − s)Cov(Z,M)[1− Φ(qY )]φ(qZ)/σZ

− (r − s)Cov(Y,M)φ(qY )Φ(qZ)/σY

= Cov(Y,M)φ(qY )/σY · [r − (r − s)Φ(qZ)]

+ (r − s)Cov(Z,M)[1− Φ(qY )]φ(qZ)/σZ

Knowing that ∂
∂Q

Cov(D1(Q),M) = −a(1+rf )Cov(Y,M)φ(qY )/σY , we have obtained

all the results needed to prove Equation A.4. We have the first order derivative:
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(1 + rf )
∂

∂Q
S(Q) =

∂

∂Q
E(D(Q))− Ω

∂

∂Q
Cov(D1(Q),M)− Ω

∂

∂Q
Cov(V (Q),M)

= [1− Φ(qY )][r − a(1 + rf )− (r − s)Φ(qZ)]

+ Ωa(1 + rf )Cov(Y,M)φ(qY )/σY

− ΩCov(Y,M)φ(qY )/σY · [r − (r − s)Φ(qZ)]

− Ω(r − s)Cov(Z,M)[1− Φ(qY )]φ(qZ)/σZ (A.3)

= [1− Φ(qY )]{r − a(1 + rf )− (r − s)Φ(qZ)

− (r − s)ΩCov(Z,M)φ(qZ)/σZ}

− ΩCov(Y,M)φ(qY )/σY · [r − a(1 + rf )− (r − s)Φ(qZ)] (A.4)

It follows from Equation A.4 and the FOC ∂
∂Q
S(Q∗) = 0 that

[1− Φ(q∗Y )] {cF − Φ(q∗Z)− sRδMZφ(q∗Z)} − sRδMY φ(q∗Y ) · [cF − Φ(q∗Z)] = 0.

Proof of Corollary 2.3.2. (a) Without loss of generality, assume δMZ > 0 and

thus Qa < Qb. Note that (r−s)−1(1+rf )
∂
∂Q
S(Q) = [1−Φ(qY )]·Ha(Q)−sRδMZφ(qY )·

Hb(Q). It follows that ∂
∂Q
S(Q) > 0 when Q ≤ Qa and ∂

∂Q
S(Q) < 0 when Q ≥ Qb.

Therefore, Q∗ ∈ (Qa, Qb). The case with δMZ < 0 can be proved in a similar manner

and is therefore omitted.

(b) Without loss of generality, assume δMZ > 0 and thus Qa < Qb. Note that

(r− s)−1(1 + rf )
∂
∂Q
S(Q) = [1−Φ(qY )] ·Ha(Q)− sRδMZφ(qY ) ·Hb(Q). It follows that

∂
∂Q
S(Q) = [1 − Φ(qY )]Ha(Q) − ΩCov(Y,M)φ(qY )/σY ·Hb(Q) < 0 if Qa ≤ Q ≤ Qb.

Therefore, Q∗ /∈ (Qa, Qb). The case with δMZ < 0 can be proved in a similar manner.
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It follows from Proposition 2.3.5 and Corollary 2.3.2 (a) that if ∂2

∂Q2S(Q∗) < 0,

Q∗ < Qa < Qb when δMZ > 0 and δMY > 0, and Qb < Qa < Q∗ when δMZ < 0 and

δMY > 0.

Proof of Proposition 2.3.3. This proof is based on the implicit function theo-

rem (Krantz and Parks, 2002). Let Π = (r−s)−1(1+rf )
∂
∂Q
S(Q∗) = [1−Φ(q∗Y )][cF −

Φ(q∗Z) − sRδMZφ(q∗Z)] − sRδMY φ(q∗Y )[cF − Φ(q∗Z)] = 0. Note that by assumption

∂Π/∂Q∗ = (r − s)−1(1 + rf )
∂2

∂Q2S(Q∗) < 0.

Since ∂Π/∂sR = −[1 − Φ(q∗Y )] · δMZφ(q∗Z) − δMY φ(q∗Y )[cF − Φ(q∗Z)] , we have that

dQ∗

dsR
= − ∂Π/∂sR

∂Π/∂Q∗
. Note that Π = [1 − Φ(q∗Y )][cF − Φ(q∗Z)] + sR · ∂Π/∂sR = 0. We

have that dQ∗

dsR
< 0 ⇔ ∂Π/∂sR < 0 ⇔ cF − Φ(q∗Z) > 0 ⇔ Q∗ < Qb and that

dQ∗

dsR
> 0⇔ ∂Π/∂sR > 0⇔ cF − Φ(q∗Z) < 0⇔ Q∗ > Qb.

Proof of Proposition 2.3.4. This proof is based on the implicit function theo-

rem (Krantz and Parks, 2002). Let Π = (r−s)−1(1+rf )
∂
∂Q
S(Q∗) = [1−Φ(q∗Y )][cF −

Φ(q∗Z)− sRδMZφ(q∗Z)]− sRδMY φ(q∗Y )[cF −Φ(q∗Z)] = 0. Since ∂Π/∂δMZ = [1−Φ(q∗Y )] ·

sRφ(q∗Z) > 0, we have that dQ∗

dδMZ
= −∂Π/∂δMZ

∂Π/∂Q∗
< 0.

Proof of Proposition 2.3.5. This proof is based on the implicit function the-

orem (Krantz and Parks, 2002). Let Π = (r−s)−1(1+rf )
∂
∂Q
S(Q∗) = [1−Φ(q∗Y )][cF−

Φ(q∗Z)−sRδMZφ(q∗Z)]−sRδMY φ(q∗Y )[cF−Φ(q∗Z)] = 0. Since ∂Π/∂δMY = −sRφ(q∗Y )[cF−

Φ(q∗Z)], we have that when Q∗ < Qb, [cF − Φ(q∗Z)] > 0 and dQ∗

dδMY
= −∂Π/∂δMY

∂Π/∂Q∗
< 0;

when Q∗ > Qb, [cF − Φ(q∗Z)] < 0 and dQ∗

dδMY
= −∂Π/∂δMY

∂Π/∂Q∗
> 0. Clearly, smaller size of

δMY pulls Q∗ closer to Qb.

Proof of Proposition 2.3.6. This proof is based on the implicit function theo-

rem (Krantz and Parks, 2002). Let Π = (r−s)−1(1+rf )
∂
∂Q
S(Q∗) = [1−Φ(q∗Y )][cF −

Φ(q∗Z) − sRδMZφ(q∗Z)] − sRδMY φ(q∗Y )[cF − Φ(q∗Z)] = 0. Note that by assumption
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∂Π/∂Q∗ = (r − s)−1(1 + rf )
∂2

∂Q2S(Q∗) < 0.

We have that ∂Π/∂µY = φ(q∗Y )/σY [Ha(Q
∗)−sRδMY q

∗
YHb(Q

∗)]. Note that Π(Q∗) = 0,

we have that

Ha(Q
∗)− sRδMY q

∗
YHb(Q

∗) > 0⇔ [1− Φ(q∗Y )]Ha(Q
∗)

− [1− Φ(q∗Y )]sRδMY q
∗
YHb(Q

∗) > 0

⇔ {[1− Φ(q∗Y )]q∗Y − φ(q∗Y )}sRδMYHb(Q
∗) < 0

⇔ {[1− Φ(q∗Y )]q∗Y − φ(q∗Y )}sRδMY (Q∗ −Qb) > 0

⇔ δMY (Q∗ −Qb) < 0

⇔ δMY δMZ > 0

, based on the result that [1−Φ(q∗Y )](Y − µY )/σ2
Y < φ(q∗Y )/σY (Feller, 1967, p. 175)

and Corollary 2.3.2 (b).

Proof of Proposition 2.3.7. This proof is based on the implicit function theo-

rem (Krantz and Parks, 2002). Let Π = (r−s)−1(1+rf )
∂
∂Q
S(Q∗) = [1−Φ(q∗Y )][cF −

Φ(q∗Z) − sRδMZφ(q∗Z)] − sRδMY φ(q∗Y )[cF − Φ(q∗Z)] = 0. Note that by assumption

∂Π/∂Q∗ = (r − s)−1(1 + rf )
∂2

∂Q2S(Q∗) < 0.

Note that dQ∗

dcF
= − ∂Π/∂cF

∂Π/∂Q∗
. Since ∂Π/∂cF = 1 − Φ(q∗Y ) − sRδMY φ(q∗Y ) which equals

zero when Q∗ = Q2b, we have that when δMY < 0, dQ∗/dcF > 0 for all values of Q∗;

when δMY > 0, dQ∗/dcF > 0 when Q∗ < Q2b and dQ∗/dcF < 0 when Q∗ > Q2b.

Proof of Lemma 2.5.1. We have the first-order derivative based on Equation A.1:

(1 + rf )
∂

∂Q
S(Q) = [1− F (Q)]{r − a(1 + rf ) + d− (r − s+ d)Φ(qZ)

− (r − s+ d)ΩCov(Z,M)φ(qZ)/σZ}
(A.5)
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We first present proof of Equation A.5.

Recall that Y ∼ F (Y ), a generic distribution with Cov(Y,M) = 0. Also recall

that Z ∼ G(Z) = Φ
(
Z−µZ
σZ

)
, where Z is normally distributed and correlated with the

market return. Let R(Q) = U(Q)−Q = min{Y −Q, 0}. We know from Anvari (1987)

that Cov(U(Q),M) = Cov(R(Q)+Q,M) = Cov(R(Q),M) = F (Q) ·Cov(Y,M) = 0.

It follows that Cov(D1(Q),M) = −a(1 + rf )Cov(U(Q),M) = 0.

To maximize S(Q), we need to find the expression ∂Cov(S(Q),M)/∂Q. We begin

by calculating Cov(V (Q),M). Define auxiliary function W (Q) where

W (Q) =



−d(Z −Q) if Y ≥ Q and Z ≥ Q

−d(Z − Y ) if Y < Q and Z ≥ Y

(r − s)(Z −Q) if Y ≥ Q and Z < Q

(r − s)(Z − Y ) if Y < Q and Z < Y

Since V (Q) = rU(Q) +W (Q), we have that Cov(V (Q),M) = Cov(D1(Q),M) +

Cov(W (Q),M) = Cov(W (Q),M). We focus on finding the expression of Cov(W (Q),M)

where

Cov(W (Q),M) = E{[W (Q)− E(W (Q))][M − E(M)]}

= E{W (Q)[M − E(M)]} − E(W (Q))E[M − E(M)]}

= E{W (Q)[M − E(M)]}.
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Let

E{W (Q)[M − E(M)]} = E{[W (Q)][M − E(M)]}|Y≥Q,Z≥Q

+ E{[W (Q)][M − E(M)]}|Y <Q,Z≥Y

+ E{W (Q)[M − E(M)]}|Y≥Q,Z<Q

+ E{[W (Q)][M − E(M)]}|Y <Q,Z<Y ,

(A.6)

where each part corresponds to one scenario of W (Q). Denote yZ = [Y − µZ ]/σZ

and qZ = [Q−µZ ]/σZ . Let m, z, and y be the normalized standard normal variables

of M , Z, and Y , respectively.

1) For the case of Y ≥ Q and Z ≥ Q, we have

E{[W (Q)][M − E(M)]}|Y≥Q,Z≥Q
−d

=

∫ +∞

Q

∫ +∞

Q

∫ +∞

−∞
[(Z −Q)]σMm · f(m,Y, Z) dm dY dZ

=

∫ +∞

Q

∫ +∞

Q

(Z −Q)

[∫ +∞

−∞
σMmf(m|Y, Z) dm

]
f(Y, Z) dY dZ

= σM

∫ +∞

qZ

∫ +∞

Q

(Z −Q)zδMZ f(Y ) dY φ(z) dz

= δMZσMσZ

∫ +∞

qZ

(z − qZ)z[1− F (Q)] φ(z) dz

= δMZσMσZ [1− F (Q)]

∫ +∞

qZ

(z2 − qZ · z) φ(z) dz

= δMZσMσZ [1− F (Q)]

{∫ +∞

qZ

z2 φ(z) dz − qZ
∫ +∞

qZ

z φ(z) dz

}
= δMZσMσZ [1− F (Q)]

{
[1− Φ(qZ) + qZφ(qZ)]− qZφ(qZ)

}
= δMZσMσZ [1− F (Q)][1− Φ(qZ)]
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2) For the case of Y < Q and Z ≥ Y , we have

E{[W (Q)][M − E(M)]}|Y <Q,Z≥Y
−d

=

∫ Q

0

∫ +∞

Y

∫ +∞

−∞
[(Z − Y )]σMm · f(m,Y, Z) dm dZ dY

= σM

∫ Q

0

∫ +∞

Y

[Z − Y ]

[∫ +∞

−∞
m · f(m|Y, Z) dm

]
f(Y, Z) dZ dY

= σM

∫ Q

0

∫ +∞

yZ

σZ [z − yZ ]zδMZφ(z) dz f(Y ) dY

= δMZσMσZ

∫ Q

0

∫ +∞

yZ

[z2 − yZ · z]φ(z) dz f(Y ) dY

= δMZσMσZ

∫ Q

0

{∫ +∞

yZ

z2φ(z) dz − yZ
∫ +∞

yZ

zφ(z) dz

}
f(Y ) dY

= δMZσMσZ

∫ Q

0

{[1− Φ(YZ) + yZφ(YZ)]− yZφ(YZ)} f(Y ) dY

= δMZσMσZ

∫ Q

0

[1− Φ(YZ)] f(Y ) dY
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3) For the case of Y ≥ Q and Z < Q, we have

E{W (Q)[M − E(M)]}|Y≥Q,Z<Q
r − s

=

∫ Q

0

∫ +∞

Q

∫ +∞

−∞
[(Z −Q)]σMm · f(m,Y, Z) dm dY dZ

=

∫ Q

0

∫ +∞

Q

(Z −Q)

[∫ +∞

−∞
σMm · f(m|Y, Z) dm

]
f(Y, Z) dY dZ

= σM

∫ qZ

−∞

∫ +∞

Q

[σZ(z − qZ)]zδMZ f(Y ) dY φ(z) dz

= δMZσMσZ

∫ qZ

−∞
[(z − qZ)]z[1− F (Q)] φ(z) dz

= δMZσMσZ [1− F (Q)]

{∫ qZ

−∞
z2 φ(z) dz +

∫ qZ

−∞
(−qZ)z φ(z) dz

}
= δMZσMσZ [1− F (Q)]

{
[Φ(qZ)− qZφ(qZ)] + (−qZ)(−φ(qZ))

}
= σMσZδMZ [1− F (Q)]Φ(qZ)

4) For the case of Y < Q and Z < Y , we have

E{[W (Q)][M − E(M)]}|Y <Q,Z<Y
r − s

=

∫ Q

0

∫ Y

0

∫ +∞

−∞
[(Z − Y )]σMm · f(m,Y, Z) dm dZ dY

= σM

∫ Q

0

∫ Y

0

[Z − Y ]

[∫ +∞

−∞
m · f(m|Y, Z) dm

]
f(Y, Z) dZ dY

= σM

∫ Q

0

∫ yZ

−∞
σZ(z − yZ) · zδMZ φ(z) dz f(Y ) dY

= δMZσMσZ

∫ Q

0

{∫ yZ

−∞
z2 φ(z) dz −

∫ yZ

−∞
yZz φ(z) dz

}
f(Y ) dY

= σMσZδMZ

∫ Q

0

{[Φ(YZ)− yZφ(YZ)]− yZ [−φ(YZ)]} f(Y ) dY

= σMσZδMZ

∫ Q

0

Φ(YZ) f(Y ) dY
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Now we derive ∂
∂Q

Cov(W (Q),M) and ∂
∂Q

Cov(V (Q),M). Recalling Equation A.6,

we have

Cov(W (Q),M) = Cov(Z,M)

{
− d[1− F (Q)][1− Φ(qZ)]− d

∫ Q

0

[1− Φ(YZ)] f(Y ) dY

+ (r − s)
∫ Q

0

Φ(YZ) f(Y ) dY + (r − s)[1− F (Q)]Φ(qZ)

}

and the first-order derivative is

∂

∂Q
Cov(W (Q),M) = Cov(Z,M)

{
d{f(Q)[1− Φ(qZ)] + [1− F (Q)][φ(qZ)/σZ ]

− [1− Φ(qZ)]f(Q)}+ (r − s)
{

Φ(qZ)f(Q)− f(Q)Φ(qZ)

+ [1− F (Q)]φ(qZ)/σZ

}
= Cov(Z,M)(r − s+ d)[1− F (Q)]φ(qZ)/σZ

We have that E(U(Q)) = [1−F (Q)] ·Q+
∫ Q

0
Y dF (Y ), ∂

∂Q
E(U(Q)) = 1−F (Q)−
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f(Q)Q+Qf(Q) = 1− F (Q), and E(D1(Q)) = (1 + rf )[−a · E(U(Q))].

E(W (Q)) = −d

{∫ +∞

Q

∫ +∞

Q

(Z −Q)g(Z)dZf(Y )dY

+

∫ Q

0

∫ +∞

Y

(Z − Y )g(Z)dZf(Y )dY

}

+ (r − s)

{∫ +∞

Q

∫ Q

0

(Z −Q)g(Z)dZf(Y )dY

+

∫ Q

0

∫ Y

0

(Z − Y )g(Z)dZf(Y )dY

}

= −d
{

[1− F (Q)]

[ ∫ +∞

Q

Zg(Z)dZ −Q(1−G(Q))

]
+

∫ Q

0

[∫ +∞

Y

Zg(Z)dZ − Y (1−G(Y ))

]
f(Y )dY

}
+ (r − s)

{
[1− F (Q)]

[ ∫ Q

0

Zg(Z)dZ −QG(Q)

]
+

∫ Q

0

[∫ Y

0

Zg(Z)dZ − Y G(Y )

]
f(Y )dY

}

and

∂

∂Q
E(W (Q)) = −d ·

{
− f(Q)

[ ∫ +∞

Q

Zg(Z)dZ −Q(1−G(Q))

]
+ [1− F (Q)][−Qg(Q)− 1 +G(Q) +Qg(Q)]

}
− d

[∫ +∞

Q

Zg(Z)dZ −Q(1−G(Q))

]
f(Q)

+ (r − s)
{
− f(Q)

[∫ Q

0

Zg(Z)dZ −
∫ Q

0

Qg(Z)dZ

]
+ [1− F (Q)][Qg(Q)−Qg(Q)−G(Q)]

}
+ (r − s)f(Q)

[∫ Q

0

Zg(Z)dZ −
∫ Q

0

Qg(Z)dZ

]
= [1− F (Q)][d− (r − s+ d)G(Q)].
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Thus, we have that ∂
∂Q

E(D(Q)) = ∂
∂Q

E(D1(Q))+ ∂
∂Q

E(V (Q)) = −a(1+rf )
∂
∂Q

E(U(Q))+

r · ∂
∂Q

E(U(Q)) + ∂
∂Q

E(W (Q)) = [1− F (Q)][r − a(1 + rf ) + d− (r − s+ d)G(Q)]. It

follows that

(1 + rf )
∂S(Q)

∂Q
=

[
∂

∂Q
E(D1(Q))− Ω

∂

∂Q
Cov(D1(Q),M)

]
+

[
∂

∂Q
E(V (Q))− Ω

∂

∂Q
Cov(V (Q),M)

]
=

∂

∂Q
E(D(Q))− Ω

∂

∂Q
Cov(D1(Q),M)− Ω

∂

∂Q
Cov(W (Q),M)

= [1− F (Q)][r − a(1 + rf ) + d− (r − s+ d)Φ(qZ)]

− Ω(r − s+ d)[1− F (Q)]Cov(Z,M)φ(qZ)/σZ

= [1− F (Q)]{r − a(1 + rf ) + d− (r − s+ d)

· [Φ(qZ) + ΩCov(Z,M)φ(qZ)/σZ ]}

After finishing the proof of Equation A.5, we can easily arrive at Lemma 2.5.1.

Note that q∗Z = [Q∗ − µZ ]/σZ . It follows from the FOC ∂
∂Q
S(Q∗) = 0 and the fact

that 1− F (Q∗) > 0. Note that ∂
∂Q
S(Q∗) = 0 when Q∗ ≥ Ymax.

Proof of Lemma 2.5.2. Noting that Q∗ satisfies Equation 2.4, the second-order
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derivative at Q = Q∗ becomes:

(1 + rf )
∂2

∂Q2
S(Q∗) = −f(Q∗)

{
r − a(1 + rf ) + d− (r − s+ d)Φ

(
Q∗ − µZ
σZ

)
− (r − s+ d)ΩCov(Z,M)φ

(
Q∗ − µZ
σZ

)
/σZ

}
+ [1− F (Q∗)](r − s+ d)φ(q∗Z)/σZ (A.7)

·
[
−1 + ΩCov(Z,M)

Q∗ − µZ
σ2
Z

]
= [1− F (Q∗)](r − s+ d)φ(q∗Z)/σZ ·

[
−1 + ΩCov(Z,M)

Q∗ − µZ
σ2
Z

]
(A.8)

We continue to examine the second-order condition at Q = Q∗. The following

analysis is similar to that of Chung (1990), but the random capacity introduces

additional complexities. From Equation 2.4, we have that

(r − s+ d)ΩCov(Z,M) = [r − (1− rf )a+ d− (r − s+ d)G(Q∗)]/g(Q∗) (A.9)

Substituting Equation A.9 into the second order condition, we obtain

(1 + rf )
∂2

∂Q2
S(Q∗) = −(r − s+ d)[1− F (Q∗)]

{
g(Q∗)− [Q∗ − µZ ][cF −G(Q∗)]/σ2

Z

}
(A.10)

Note that cF < 1.

Case 1: Cov(Z,M) > 0. When Q∗ ≤ µZ , a sufficient condition for ∂2

∂Q2S(Q∗) < 0

is cF > G(Q∗), and from Equation 2.4 we have cF > G(Q∗) since Cov(Z,M) > 0 and

hence ∂2

∂Q2S(Q∗) < 0. If Q∗ > µZ , we utilize the following property of the normal

distribution (Feller, 1967, p. 175): g(x) > [x − µZ ][1 − G(x)]/σ2
Z . Since cF < 1, we

have that g(Q∗) > [Q∗ − µZ ][cF − G(Q∗)] and hence ∂2

∂Q2S(Q∗) < 0. Thus for the
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case Cov(Z,M) > 0, we always have ∂2

∂Q2S(Q∗) < 0.

Case 2: Cov(Z,M) < 0. Let Qd = µZ + σ2
Z/[ΩCov(Z,M)]. When Q∗ > µZ ,

then from Equation A.10 we know ∂2

∂Q2S(Q∗) < 0 since we have cF < G(Q∗) from

Equation 2.4. When Q∗ = µZ , it can be shown that (1 + rf )
∂2

∂Q2S(Q∗) = −(r − s +

d)[1 − F (Q∗)]g(Q∗) < 0. When Q∗ < µZ , then it must be that Qd < Q∗ ≤ µZ . To

have ∂2

∂Q2S(Q∗) < 0, it must be that Q∗ > Qd, which can be shown below. From

Equation A.10, we have g(Q∗) − [Q∗ − µZ ][cF − G(Q∗)]/σ2
Z > 0 ⇔ σ2

Zg(Q∗) >

[Q∗ − µZ ][cF −G(Q∗)]⇔ G(Q∗) + σ2
Z/[Q

∗ − µZ ] · g(Q∗) < cF =
r−a(1+rf )+d

r−s+d .

Comparing to Equation 2.4, we have that G(Q∗) + σ2
Z/[Q

∗ − µZ ] · g(Q∗) < cF ⇔

ΩCov(Z,M) > σ2
Z/[Q

∗ − µZ ] ⇔ Q∗ > σ2
Z/[ΩCov(Z,M)] + µZ = Qd. If Q∗ < Qd,

we have that ∂2

∂Q2S(Q∗) > 0. Since ∂
∂Q
S(Q)|Q=0 = [r − a(1 + rf ) + d]/(1 + rf ) > 0,

∂
∂Q
S(Q∗) = 0, and ∂2

∂Q2S(Q∗) > 0, by the extreme value theorem, there must exist

0 < Q∗∗ < Q∗ such that ∂
∂Q
S(Q∗∗) = 0 and Q∗∗ is a local interior maximizer of

S(Q) in interval [0, Q∗]; it follows from the property of a local interior maxima

of a differentiable function that ∂2

∂Q2S(Q∗∗) ≤ 0, which conflicts with ∂
∂Q
S(Q∗∗) =

0 ⇒ ∂2

∂Q2S(Q∗∗) > 0 since Q∗∗ < Qd. It follows that Q∗ > Qd, and we have that

∂2

∂Q2S(Q) < 0 and the second-order sufficient condition is satisfied.

Case 3: Cov(Z,M) = 0. In this case, ∂2

∂Q2S(Q∗) = (1+rf )
−1σ−1

Z [1−F (Q∗)](r−s+

d)φ(qZ) < 0 for any given Q∗. Thus, ∂2

∂Q2S(Q∗) < 0 in all the three cases, regardless

of the sign of Cov(Z,M).

Proof of Theorem 2.5.3. Based on Lemma 2.5.1 and Lemma 2.5.2, suppose

there exist two stationary points satisfying both FOC and SOC denoted as Qa and

Qb, and no other stationary point satisfying both FOC and SOC exists between

Qa and Qb. Without loss of generality, let Qa < Qb, from FOC and SOC we have

that there exists εa, εb > 0 such that ∂
∂Q
S(Qa + εa) < 0 and ∂

∂Q
S(Qb − εb) > 0,
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where εa, εb are very small. It follows from the continuity of ∂
∂Q
S(Q) that there ex-

ists Qa + ε < Qc < Qb − ε such that ∂
∂Q
S(Qc) = 0, where Qc satisfies FOC and

should satisfy SOC based on Lemma 2.5.2. However, Qc satisfying SOC conflicts

with the assumption that no other stationary point satisfying both FOC and SOC

exists between Qa and Qb. Therefore, Q∗ is single-valued. Note that ∂
∂Q
S(Q)|Q=0 > 0

and lim
Q→+∞

∂
∂Q
S(Q) < 0. As S(Q) is a single-variable function, satisfying both the

first-order condition and the second-order condition ensures that Q∗ is the opti-

mal order quantity and S(Q∗) is the global maximum. Q∗ remains optimal when

Q∗ ≥ Ymax.

Proof of Corollary 2.5.4. This proof is based on the implicit function theorem

(Chiang, 1984, p. 208). Denote Π = Φ(q∗Z) + sR δMZ φ(q∗Z) − cF = 0. We have that

∂Π/∂Q∗ = − 1+rf
(r−s+d)[1−F (Q∗)]

∂2

∂Q2S(Q∗) > 0 based on Equation A.8 and Lemma 2.5.2.

Note that ∂Π/∂Q∗ = φ(q∗Z)(1− sR δMZ q
∗
Z)/σZ .

(a) Since ∂Π/∂sR = δMZ φ(q∗Z), we have that dQ∗

dsR
= − ∂Π/∂sR

∂Π/∂Q∗
=

δMZφ(q∗Z)

−∂Π/∂Q∗
. We have

that Q∗ < QC and dQ∗

dsR
< 0 when δMZ > 0, and that Q∗ > QC and dQ∗

dsR
> 0 when

δMZ < 0, meaning that Q∗ moves further away from QC as sR increases in either

case.

(b) Since ∂Π/∂δMZ = sR φ(q∗Z), we have that dQ∗

dδMZ
= −∂Π/∂δMZ

∂Π/∂Q∗
=

sR φ(q∗Z)

−∂Π/∂Q∗
< 0. It

follows that when δMZ > 0, Q∗ < QC and dQ∗

dδMZ
< 0, and that when δMZ < 0,

Q∗ > QC and dQ∗

dδMZ
< 0, meaning that Q∗ moves further away from QC as |δMZ |

increases in either case.

(c) Since ∂Π/∂σZ = φ(q∗Z)(−q∗Z/σZ)−sR δMZ q
∗
Zφ(q∗Z)(−q∗Z/σZ), we have that dQ∗

dσZ
=

−∂Π/∂σZ
∂Π/∂Q∗

= q∗Z = (Q∗ − µZ)/σZ . Similarly, dQC
dσZ

= (QC − µZ)/σZ . It follows that

when Q∗ > Qd,
d(Q∗−QC)

dσZ
= dQ∗

dσZ
− dQd

dσZ
= (Q∗ − QC)/σZ > 0; when Q∗ < QC ,
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d(Q∗−QC)
dσZ

= dQ∗

dσZ
− dQC

dσZ
= (Q∗ − QC)/σZ < 0; in both cases |Q∗ − QC | increases

in σZ .

(d) Since ∂Π/∂µZ = φ(q∗Z)σ−1
Z (−1 + sRδMZq

∗
Z) = −∂Π/∂Q∗, we have that dQ∗

dµZ
=

−∂Π/∂µZ
∂Π/∂Q∗

= 1 = dQC
dµZ

, and thus both Q∗ and QC increase with |Q∗−QC | remaining

the same.

(e) Since ∂Π/∂cF = −1, we have that dQ∗

dcF
= − ∂Π/∂cF

∂Π/∂Q∗
= 1

∂Π/∂Q∗
> 0 and that

dQC
dcF

= σZ
φ(qCZ )

> 0, where qCZ = (QC − µZ)/σZ .

Proof of Proposition 2.5.5. 1. Preliminaries:

Based on Equation 2.5, we have that

d

dY
P (Y ) = [r − a(1 + rf ) + d]− (r − s+ d)

∫ Y

0

g(Z)dZ

− (r − s+ d)δMZsRφ

(
Y − µZ
σZ

)
/σZ

= [r − a(1 + rf ) + d]− (r − s+ d)

[
Φ

(
Y − µZ
σZ

)
+ δMZsRφ

(
Y − µZ
σZ

)]
= (r − s+ d)

[
cF − Φ

(
Y − µZ
σZ

)
− δMZsRφ

(
Y − µZ
σZ

)]
(A.11)

is negative when Y ∈ [Ymin, Q
∗] based on Lemmas 2.5.1 and 2.5.2, It follows that

P (Y ) is an increasing function when Y ∈ (Ymin, Q
∗) until d

dY
P (Y ) = 0 at Y = Q∗,

and hence

P (Y ) =


P (Y ) if Y < Q∗

P (Q∗) if Y ≥ Q∗

is an increasing function when Y ∈ [Ymin, Q
∗] and non-decreasing otherwise.
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Note that (1 + rf )S(Q∗) = P (Q∗)[1 − F (Q∗)] +
∫ Q∗

0
P (Y )f(Y )dy. We explore

when P (Y ) is concave.

If δMZ = 0, the firm aims to maximize its expected profit, and we have that

d2

dY 2P (Y ) < 0 when Y ∈ {Ymin, Q∗}, meaning that P (Y ) is concave.

If δMZ 6= 0, we have that

d2

dY 2
P (Y ) = −(r − s+ d)

[
φ

(
Y − µZ
σZ

)
/σZ + δMZsR ·

(
−Y − µZ

σ2
Z

)
φ

(
Y − µZ
σZ

)]
= −(r − s+ d)φ

(
Y − µZ
σZ

)
/σZ ·

[
1− δMZsR ·

(
Y − µZ
σZ

)]
.

We cannot prove that P (Y ) is concave everywhere. However, note that Equation A.8

in the Proof of Lemma 2 shows that

(1 + rf )
∂2

∂Q2
S(Q∗) = −[1− F (Q∗)](r − s+ d)φ(qZ)/σZ ·

[
1− δMZsR

Q∗ − µZ
σZ

]
< 0.

When δMZ > 0, we have from Y < Q∗ that 1 − δMZsR ·
(
Y−µZ
σZ

)
> 1 − δMZsR ·(

Q∗−µZ
σZ

)
> 0 and hence d2

dY 2P (Y ) < 0.

When δMZ < 0, it follows that if 1 − δMZsR ·
(
Y−µZ
σZ

)
> 0 when Y ∈ (Ymin, Q

∗),

it is guaranteed that d2

dY 2P (Y ) < 0 when Y ∈ (Ymin, Q
∗). We arrive at a sufficient

condition for d2

dY 2P (Y ) < 0 when δMZ < 0 and Y ∈ {Ymin, Q∗}:

Ymin > µZ +
σZ

δMZsR
.

which is Result (c).

We proceed to prove several properties:

2. Result (a)

Since Pc(Y ) is increasing when Y ∈ (Ymin, Q
∗), we can proceed to show one
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property of S(Q∗).

We have that E(P )|∆Y=0 =
∫ +∞

0
P (Y )f(Y )dY . Shifting the p.d.f. of the random

capacity f(Y ) by ∆Y > 0, we have

E(P ) =

∫ +∞

0

P (Y )f(Y −∆Y )dY =

∫ +∞

0

P (Y + ∆Y )f(Y )dY.

It follows that

dE(P )

d∆Y
=

∫ +∞

0

∂

∂∆Y
P (Y + ∆Y )f(Y )dY =

∫ +∞

0

P
′
(Y + ∆Y )f(Y )dY > 0.

In other words, shifting f(Y ) to the right improves the expected profit E(P ). The

proof of part (a) is based on the fact that P (Y ) is a non-decreasing function and an

increasing function at certain intervals.

When P (Y ) is concave, we proceed to show additional properties of S(Q∗) in

Proposition 2.5.5(b).

3. Result (b)(i)

It follows from Result (a) that

d2E(P )

d(∆Y )2
=

∫ +∞

0

P
′′
(Y + ∆Y )f(Y )dY.

Note that P
′′
(Y + ∆Y ) = 0 when Y + ∆Y ≥ x∗ and P

′′
(Y + ∆Y ) < 0 when

Y + ∆Y < x∗. It follows that

d2E(P )

d(∆Y )2
=

∫ x∗−∆Y

0

P
′′
(Y + ∆Y )f(Y )dY < 0.

The proof of (b) is based on the fact that P (Y ) is a concave, non-decreasing func-

tion and an increasing function at certain intervals. Also note that lim
∆Y→+∞

E(P ) =
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∫ +∞
0

P (x∗)f(Y )dY = P (x∗).

4. Result (b)(ii)

Recall that Ẽ(P ) =
∫ +∞

0
P (Y )f̃(Y )dY =

∫ +∞
0

P (Y ) · bf [µY + b(Y − µY )] dY .

Let u = µY + b(Y − µY ) and hence y = (u − µY )/b + µY . Denote L(u) =

P [(u− µY )/b+ µY ].

(i) Using the first mean value theorem for integration (Sahoo and Riedel, 1998,

p.208), we have that

Ẽ(P ) =

∫ +∞

0

P [(u− µY )/b+ µY ] f(u)du

It follows that

dẼ(P )

db
=

∫ +∞

0

∂

∂b
P [(u− µY )/b+ µY ] f(u)du

=

∫ +∞

0

P
′
[(u− µY )/b+ µY ] · [−(u− µY )/b2]f(u)du

=

∫ µY

0

L′(u) · [−(u− µY )/b2]f(u)du+

∫ +∞

µY

L′(u) · [−(u− µY )/b2]f(u)du

= L′(u1)

∫ µY

0

[−(u− µY )/b2]f(u)du+ L′(u2)

∫ +∞

µY

[−(u− µY )/b2]f(u)du

where u1 ∈ (0, µY ) and u2 ∈ (µY ,+∞). Since P (·) is non-decreasing and concave,

L(·) is also non-decreasing and concave. It follows that L′(u1) > L′(u2) > 0. Note

that
∫ µY

0
·[−(u − µY )/b2]f(u)du > 0; also note that

∫ µY
0

[−(u − µY )/b2]f(u)du +∫ +∞
µY

[−(u− µY )/b2]f(u)du = −b−2
∫ +∞

0
(u− µY )f(u)du = 0 since µY = E[f(·)]. We

conclude that dẼ(P )
db

> 0.

5. Result (b)(iii)

117



(ii) Moreover, we have that

d2Ẽ(P )

db2
=

∫ +∞

0

∂2

∂b2
P [(u− µY )/b+ µY ] f(u)du

=

∫ +∞

0

∂

∂b

{
P
′
[(u− µY )/b+ µY ] · [−(u− µY )/b2]

}
f(u)du

=

∫ +∞

0

{
P
′′

[(u− µY )/b+ µY ] · (u− µY )2

b4

+ P
′
[(u− µY )/b+ µY ] · 2(u− µY )

b3

}
· f(u)du

=

∫ +∞

0

{
P
′′

[(u− µY )/b+ µY ] · (u− µY )2

b4

}
f(u)du− 2

a
· dẼ(P )

db

< 0

Compared to the original distribution f(Y ), f̃(Y ) is unchanged when b = 1 and

shrinks towards the mean when b > 1. Denote σ2 =
∫∞

0
(Y − µY )2f(Y )dY , we

have that σ̃2 =
∫∞

0
(Y − µY )2bf [µY + b(Y − µY )] dY =

∫∞
0
b−2(u − µY )2f(u)du =

σ2/b2. Thus, the transformation f̃(Y ) changes the variance of the random capacity

in proportion to 1
b2

. It follows that the expected profit Ẽ(P ) has an upper-bound

P (µY ) since lim
a→+∞

f̃(µY ) = 1.

Proof of Corollaries 2.5.6, 2.5.7 and 2.5.8. To begin with, we analyze how
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S(Q∗) changes as the mean-capacity improvement ∆Y increases using Equation A.11.

S(Q∗) = (1 + rf )
−1

{
Pc(Q

∗)[1− F (Q∗)] +

∫ Q∗

0

P (Y )f(Y )dY

}
= (1 + rf )

−1

∫ +∞

0

P (Y )f(Y )dY

S̃(Q∗) = (1 + rf )
−1

∫ +∞

0

P (Y )f(Y −∆Y )dY

= (1 + rf )
−1

∫ +∞

0

P (Y + ∆Y )f(Y )dY

dS̃(Q∗)

d∆Y
= (1 + rf )

−1

∫ +∞

0

P
′
(Y + ∆Y )f(Y )dY

= (1 + rf )
−1

∫ Q∗−∆Y

0

P
′
(Y + ∆Y )f(Y )dY

=
r − s+ d

1 + rf

∫ Q∗−∆Y

0

[
cF − Φ

(
Y − µZ
σZ

)
− δMZsRφ

(
Y − µZ
σZ

)]
f(Y )dY

Note that increasing dS̃(Q∗)
d∆Y

is a sufficient condition for increasing the benefit of

mean-capacity improvement, namely ∆S(Q∗) =
∫ ∆Y

0
dS̃(Q∗)
d∆Y

d∆Y . Now we discuss

how various parameter changes impact dS̃(Q∗)
d∆Y

.

Proof of Corollary 2.5.6. We prove each result separately.

(a) Increasing δMZ reduces both
[
cF − Φ

(
Y−µZ
σZ

)
− δMZsRφ

(
Y−µZ
σZ

)]
and Q∗ (Corol-

lary 2.5.4), and hence reduces dS̃(Q∗)
d∆Y

.

When δMZ > 0, increasing sR reduces both
[
cF − Φ

(
Y−µZ
σZ

)
− δMZsRφ

(
Y−µZ
σZ

)]
and Q∗ (Corollary 2.5.4), and hence reduces dS̃(Q∗)

d∆Y
. When δMZ < 0, increasing sR

increases both
[
cF − Φ

(
Y−µZ
σZ

)
− δMZsRφ

(
Y−µZ
σZ

) ]
and Q∗ (Corollary 2.5.4), and

hence increases dS̃(Q∗)
d∆Y

.
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(b) (i) We have that

d

dδMZ

(
dS(Q∗)

db

)
=

d

dδMZ

∫ bQ∗−(b−1)µY

−∞
P ′
(
u− µY

b
+ µY

)(
−u− µY

b2

)
f(u)du

=

∫ bQ∗−(b−1)µY

−∞

d

dδMZ

(r − s+ d)

[
cF − Φ

(
u− (b− 1)µY − µZ

bσZ

)

− δMZsRφ

(
u− (b− 1)µY − µZ

bσZ

)]
·
(
−u− µY

b2

)
f(u)du

= (r − s+ d)

∫ bQ∗−(b−1)µY

−∞
sRφ

[
u− (b− 1)µY − µZ

bσZ

]
·(

u− µY
b2

)
f(u)du

When Q∗ ≤ µY , it follows that bQ∗−(b−1)µY ≤ µY and we arrive at d
dδMZ

(
dS(Q∗)

db

)
<

0.

(b) (ii) We have that

d

dsR

(
dS(Q∗)

db

)
=

d

dsR

∫ bQ∗−(b−1)µY

−∞
P ′
(
u− µY

b
+ µY

)(
−u− µY

b2

)
f(u)du

=

∫ bQ∗−(b−1)µY

−∞

d

dsR
(r − s+ d)

[
cF − Φ

(
u− (b− 1)µY − µZ

bσZ

)

− δMZsRφ

(
u− (b− 1)µY − µZ

bσZ

)]
·
(
−u− µY

b2

)
f(u)du

= (r − s+ d)

∫ bQ∗−(b−1)µY

−∞
δMZφ

[
u− (b− 1)µY − µZ

bσZ

]
·(

u− µY
b2

)
f(u)du

WhenQ∗ ≤ µY , it follows that bQ∗−(b−1)µY ≤ µY . We arrive at that d
dsR

(
dS(Q∗)

db

)
<

0 if δMZ > 0 and d
dsR

(
dS(Q∗)

db

)
> 0 if δMZ < 0.

Proof of Corollary 2.5.7. It follows directly from Proposition 2.5.5(a).

120



Proof of Corollary 2.5.8. (a) Increasing cF increases both

[
cF − Φ

(
Y − µZ
σZ

)
− δMZsRφ

(
Y − µZ
σZ

)]

and Q∗ (Corollary 2.5.4), and hence increases dS̃(Q∗)
d∆Y

.

(b) We have that

d

dcF

(
dS(Q∗)

db

)
=

d

dcF

∫ bQ∗−(b−1)µY

−∞
P ′
(
u− µY

b
+ µY

)(
−u− µY

b2

)
f(u)du

=

∫ bQ∗−(b−1)µY

−∞

d

dcF
(r − s+ d)

[
cF − Φ

(
u− (b− 1)µY − µZ

bσZ

)
− δMZsRφ

(
u− (b− 1)µY − µZ

bσZ

)](
−u− µY

b2

)
f(u)du

= (r − s+ d)

∫ bQ∗−(b−1)µY

−∞

(
−u− µY

b2

)
f(u)du

If bQ∗− (b−1)µY ≤ µY ⇔ Q∗ ≤ µY , we have that
(
−u−µY

b2

)
< 0 for u ∈ (−∞, bQ∗−

(b − 1)µY ), and it follows that d
dcF

(
dS(Q∗)

db

)
> 0. Otherwise, if bQ∗ − (b − 1)µY >

µY ⇔ Q∗ > µY , we have that

d

dcF

(
dS(Q∗)

db

)
= (r − s+ d)

∫ bQ∗−(b−1)µY

−∞

(
−u− µY

b2

)
f(u)du

> (r − s+ d)

∫ +∞

−∞

(
−u− µY

b2

)
f(u)du = 0
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APPENDIX B

PROOFS OF SECTION 3

Proof of Proposition 3.3.1. Let OH and BO respectively denote the number

of units on hand and the number of units back-ordered. Note that at steady-state,

the probability distribution of OO is given by pOO(x) = (1 − ρ)ρx. From basic

principles we have that since OH(S) = S + 1−OO +BO(S), OH(S) ·BO(S) = 0,

OH(S) ≥ 0, BO(S) ≥ 0 and I(S) = h ·OH(S) + b ·BO(S), we have the distribution

of pI(S)(·) in Equation 3.4.

Proof of Proposition 3.3.2. When η ≤ h(S + 1), we obtain

Ω(S, η) =

k0∑
k=0

[h(S + 1− k)− η](1− ρ)ρk +
∞∑

k=k1

[b(k − S − 1)− η](1− ρ)ρk,

= (1− ρk0+1)[h(S + 1)− η] + hk0ρ
k0+1 − h

1− ρ
(ρ− ρk0+1)

+ ρk1 [−η − b(S + 1)] + bk1ρ
k1 +

b

1− ρ
ρk1+1,

= [h(S + 1)− η]− ρk0+1[h(S + 1)− η − hk0 −
h

1− ρ
]− hρ

1− ρ
,

+ ρk1 [−η − b(S + 1) + bk1 +
bρ

1− ρ
],

= [h(S + 1)− η]− ρk0+1

[
hdη/he − η − h

1− ρ

]
− hρ

1− ρ

+ ρk1
[
bdη/be − η +

bρ

1− ρ

]
.

Define ∆Ω(S, η) = Ω(S, η)− Ω(S − 1, η). Hence

∆Ω(S, η) = h+(1−ρ)ρk0
{[

hdη/he − η − h

1− ρ

]
− ρk1−k0−1

[
bdη/be − η +

bρ

1− ρ

]}
.

122



The value of S which minimizes Ω(S, η) is then given by sup{S ∈ N : ∆Ω(S, η) ≤

0} = max{S∗1(η), S∗2(η)}, where S∗1(η) and S∗2(η) respectively are as given in Equa-

tions 3.12 and 3.13. Note that Ω(Ŝ∗, η) = (1− ρ)(hdη/he− η) + ρdη/he+dη/be[bdη/be−

η + bρ
1−ρ ] when Ŝ∗ = dη/he − 1. Also note that k1 − k0 = dη/he+ dη/be.

When η > h(S + 1), we obtain

Ω(S, η) =
∞∑

k=k1

[b(k − S − 1)− η](1− ρ)ρk,

= ρk1 [−η − b(S + 1)] + bk1ρ
k1 +

b

1− ρ
ρk1+1,

= ρk1 [−η − b(S + 1) + bk1 +
bρ

1− ρ
],

= ρk1
[
bdη/be − η +

bρ

1− ρ

]
,

and it follows that ∆Ω(S, η) = (1− ρ)ρk1−1
[
bdη/be − η + bρ

1−ρ

]
.

Since bdη/be − η + bρ
1−ρ > 0, we want to increase k1 as much as possible. This yields

the minimizer S∗3(η) = dη/he − 2.

Proof of Theorem 3.3.3. We begin the proof by presenting two results.

(1) Let k0 = k0(S) be a function of S. We show that k0(S∗2) ≥ −1 .

Let Φ = −
[
hdη/he − η − h

1−ρ

]
+ρk1−k0−1

[
bdη/be − η + bρ

1−ρ

]
. Note that hdη/he−

η = h(dη/he − η/h) < h and that bdη/be − η = b(dη/be − η/b) ≥ 0. We have

Φ ≥ h
1−ρ − (hdη/he − η) > h

1−ρ − h = hρ
1−ρ . Note that ρ < 1. It follows that

k0(S∗2) =

⌊
ln( h

1−ρ )−ln(Φ)

ln(ρ)

⌋
≥
⌊

ln( h
1−ρ )−ln( hρ

1−ρ )

ln(ρ)

⌋
=
⌊
−ln(ρ)
ln(ρ)

⌋
= −1.
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(2) We show that S∗2 < S∗1 ⇔ Ω(S∗1 , η) > Ω(S∗3 , η).

S∗2 < S∗1 ⇔

 ln( h
1−ρ)− ln

{
−
[
hdη/he − η − h

1−ρ

]
+ ρk1−k0−1

[
bdη/be − η + bρ

1−ρ

]}
ln(ρ)


< 0

⇔ ln

(
h

1− ρ

)
− ln

{
−
[
hdη/he − η − h

1− ρ

]
+ ρk1−k0−1

[
bdη/be − η +

bρ

1− ρ

]}
> 0

⇔ ln

(
h

1− ρ

)
> ln

{
−
[
hdη/he − η − h

1− ρ

]

+ ρk1−k0−1

[
bdη/be − η +

bρ

1− ρ

]}

⇔ h

1− ρ
> −

[
hdη/he − η − h

1− ρ

]
+ ρk1−k0−1

[
bdη/be − η +

bρ

1− ρ

]
⇔ 0 > − [hdη/he − η] + ρk1−k0−1

[
bdη/be − η +

bρ

1− ρ

]
⇔ Ω(S∗1 , η)− Ω(S∗3 , η) > 0.

It follows from result (2) that S∗2 is preferred to both S∗1 and S∗3 when S∗2 ≥ S∗1 .

And when S∗2 < S∗1 , we have that k0(S∗2) = S∗2 + 1− dη/he = S∗2 − S∗1 < 0; based on

result (1), we have that k0(S∗2) = −1 and thus S∗2 = −1 + dη/he − 1 = S∗3 . Based

on result (2), we have that when S∗2 < S∗1 , Ω(S∗1 , η) > Ω(S∗3 , η) and Fβ(S∗1 , η) >

Fβ(S∗3 , η); S∗2 = S∗3 is hence optimal. Therefore, Ŝ∗ = S∗2 is the optimal restocking

level for any given η.

Proof of Theorem 3.3.4. We characterize Fβ(η) and consider four possible sce-

narios. Denote x+ = x+ ∆x where ∆x→ 0+.

1) When η increases from vh to vh+, suppose that dη/be remains unchanged, it can

be shown that k∗0 will decrease by 1, and that Ŝ∗ and k∗1 remain the same. Let g(η) =
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−
[
hdη/he − η − h

1−ρ

]
+ρdη/he+dη/be−1

[
bdη/be − η + bρ

1−ρ

]
. When η increases from vh

to vh+, we have that g(vh) = h
1−ρ + ρv+dvh/be−1

[
bdvh/be − η + bρ

1−ρ

]
= ρ−1g(vh+); it

follows that k∗0 will decrease by 1 since k∗0 =
⌊
{ln( h

1−ρ)− ln[g(η)]}/ ln(ρ)
⌋

based on

Theorem 3.3.3. We now examine whether Fβ(Ŝ∗, η) is continuous when η increases

from vh to vh+. We have

(1− β)∆Fβ = −ρk∗0
[
h− h

1− ρ

]
+ ρk

∗
0+1 · h

1− ρ
= 0

This means a smooth transition from η = vh to η = vh+ in the value of Fβ(η). Note

that ∂
∂η
Fβ(Ŝ∗, η) increases in this case and η may be a local minimum.

2) When η increases from η = wb to η = wb+, suppose that dη/he = v remains

unchanged, it can be shown that k∗0 remains unchanged since g(wb) = g(wb+) and

k∗1 increase by 1. We have that

(1− β)∆Fβ = ρv+w+1−1

(
b+

bρ

1− ρ

)
− ρv+w−1

(
bρ

1− ρ

)
= ρv+w−1

(
bρ

1− ρ
− bρ

1− ρ

)
= 0

This indicates a smooth transition from η = wb to η = wb+ in the value of Fβ(η).

Note that ∂
∂η
Fβ(Ŝ∗, η) increases in this case and η may be a local minimum.

Note that if η increases from vh to vh+ and from η = wb to η = wb+ at the same

time, ∆Fβ can be decomposed into a cowbination of 1) and 2) and shown to be zero

as well. Note that ∂
∂η
Fβ(Ŝ∗, η) increases in this case and η may be a local minimum.

3) Suppose η increases from η0 to η0+ (let dη0/he = v + 1) and causes k∗0 to increase

by 1 (dη/he and dη/be remain the same, Ŝ∗ increases from S0 to S0 + 1) and k∗1 to

increase by 1. It must be that k∗0(η0+) =
⌊
{ln( h

1−ρ)− ln[g(η0+)]}/ ln(ρ)
⌋

= {ln( h
1−ρ)−
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ln[g(η0+)]}/ ln(ρ). It follows that ∆Ω(S0 + 1, η0+) = h + (1 − ρ)ρk
∗
0(η0+)g(η0+) = 0

and Fβ(S0, η0+) = Fβ(S0 + 1, η0+). It follows that Fβ(S0, η0) = Fβ(S0 + 1, η0) =

Fβ(S0 + 1, η0+). This means a smooth transition from η = η0 to η = η0+ in the

value of Fβ(η). Note that ∂
∂η
Fβ(Ŝ∗, η) increases in this case and hence η0 is not a

local minimum. It is worth noting that since the transition from η = vh to η = vh+

falls in case 1), we have that k∗0 remains constant during the jump from η = vh to

η = (v + 1)h for any n that satisfies case 3).

4) For any continuous interval that both k∗0 and k∗1 remain the same, we have Equa-

tion 3.14. Thus, the function Fβ(Ŝ∗, η) is linear in this interval when k∗0 and k∗1 remain

the same. Thus, no local minimum can be found in this interval unless ∂Fβ/∂η is

exactly zero (we do not consider this rare special case).

In sum, we have shown that Fβ(Ŝ∗, η) is a continuous function with respect to η.

Moreover, the local minimums of Fβ(Ŝ∗, η) are located at η = vh and η = wb.

Proof of Lemma 3.3.5. It is straightforward to show that when n ≤ q − 1, y(η)

is decreasing in η = (mq + n)h. We continue to show that the same result applies

when n = q.

∆y(η) = ρ(mq+q+1)+(m+2)[q + (ρ− 1) + ρ]− ρ(mq+q)+(m+1)[q + (ρ− 1)q + ρ]

= −ρ(mq+q)+(m+1)+1[q + 1− (ρq + 2ρ2 − ρ)]

= −ρ(mq+q)+(m+1)+1[(1− ρ)q + (1 + ρ− 2ρ2)]

Note that ∆y(η) < 0 when ρ ∈ (0, 1). Thus, y(η) is always decreasing in η =

(mq + n)h.

Proof of Theorem 3.3.6. (1) We first show that k∗0 ≥ 0 when η = nh. Since

g(nh) > h
1−ρ and k∗0(η) =

⌊
ln( h

1−ρ )−ln{g(η)}
ln(ρ)

⌋
, we have k∗0(nh) ≥

⌊
ln( h

1−ρ )−ln( h
1−ρ )

ln(ρ)

⌋
= 0.
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(2) We then show that a necessary condition for η = η̂∗ is that k∗0 = 0. Since

1 − ρ ≥ 1 − β, we have that ∂
∂η
Fβ(Ŝ∗, η) > 0 is possible only when k∗0 = −1. From

the proof of Theorem 3.3.4, we have that k∗0 = −1 is only possible when η increases

from nh to nh+ and k0 decreases by 1 from k∗0 = 0. Thus based on Theorem 3.3.4,

it must be that k∗0 = 0 when η = η̂∗.

Based on (1), (2) and Theorem 3.3.4, we only consider the case when k0 = 0 and

η = (mq + n)h. There are two cases:

Case 1: η increases from (mq + n)h to (mq + n+ 1)h and 1 ≤ n ≤ q − 1. Based

on the proof of Theorem 3.3.4, k∗0 will not increase. Based on (1), we know that k∗0

will remain zero.

∆Ω(Ŝ∗, η) = ρ(mq+n+1)+m+1[(q − n− 1)h+
bρ

1− ρ
]− ρmq+n+m+1

[
(q − n)h+

bρ

1− ρ

]
= ρmq+n+m+1

[
ρ(q − n− 1) +

qρ2

1− ρ
− (q − n)− qρ

1− ρ

]
h

= −ρmq+n+m+1[q + (ρ− 1)n+ ρ]h

Let ∆Fβ = h+(1−β)−1∆EL ≥ 0, we obtain ρmq+n+m+1[q+(ρ−1)n+ρ] ≤ 1−β.

Case 2: η increases from (mq)h to (mq + 1)h. Note k∗0 will remain zero based on

(1).

∆Ω(Ŝ∗, η) = ρ(mq+1)+m+1

[
(q − 1)h+

bρ

1− ρ

]
− ρmq+m

[
0 +

bρ

1− ρ

]
= ρmq+m

[
− qρ2

1− ρ
(ρ2 − 1) + (q − 1)ρ2

]
h

= ρmq+m[−qρ(1 + ρ) + (q − 1)ρ2]h

= −ρmq+m+1(q + ρ)h
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which is the same expression in Case 1 when n = 0. We can therefore obtain the

condition ρmq+n+m+1[q+ (ρ−1)n+ρ] ≤ 1−β in general for 0 ≤ n ≤ q−1. It follows

from Lemma 3.3.5 that there is one and only one local minimum of Fβ(Ŝ∗, η) that sat-

isfies η̂∗ = inf {η = (mq + n)h : ρmq+n+m+1[q + (ρ− 1)n+ ρ] ≤ 1− β}, which must

be the global minimum. We also have that Ŝ∗ + 1 = dη̂∗/he based on (2) and arrive

at Equation 3.15.

Proof of Corollary 3.3.7. The inequality below gives the upper bound and

lower bound of y(η) for a given η.

ρmq+n+m+1(ρq + 1) ≤ y(η) ≤ ρmq+n+m+1(q + ρ) (B.1)

Based on Theorem 3.3.6, we have one candidate of the optimal solution, whose upper

bound of y(η) is not higher than 1−β, that is, ρm
′q+n′+m′+1(q+ρ) ≤ 1−β. We have

that

m′(q + 1) + n′ + 1 =

⌈
ln(q + ρ)− ln(1− β)

− ln ρ

⌉
where

m′ =

⌊⌈
ln(q + ρ)− ln(1− β)

− ln ρ

⌉
/(q + 1)

⌋
n′ = max

{
0,

⌈
ln(q + ρ)− ln(1− β)

− ln ρ

⌉
−m′(q + 1)− 1

}

And η′ = (m′q + n′)h and S ′ + 1 = m′q + n′ =
⌈

ln(q+ρ)−ln(1−β)
− ln ρ

⌉
−m′ − 1. Another

candidate of the optimal solution is η′′ = (m′q+ n′− 1)h and S ′′ + 1 = m′q+ n′− 1.

If y(η′′) ≤ 1 − β, then (S ′′, η′′) is the optimal solution; otherwise, (S ′, η′) is the

optimal solution. Thus, S ′′ and S ′ are the lower-bound and upper-bound of Ŝ∗,

respectively.
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Proof of Proposition 3.4.1. Let β1 > β2. We have that 1 − β1 < 1 − β2.

Denote S1 = Ŝ∗|β=β1 and S2 = Ŝ∗|β=β2 as given in Theorem 3.3.6. Denote η1 =

inf{η = (mq + n) : y(η) ≤ 1 − β1} and η2 = inf {η = (mq + n) : y(η) ≤ 1− β2}

and correspondingly S1 = (η1 − 1)h and S2 = (η2 − 1)h. We have that η1 ≥ η2 since

y(η) decreases in η (Lemma 3.3.5). Hence, S1 ≥ S2 and the optimal base-stock level

is non-decreasing with increase in β.

Proof of Proposition 3.4.2. We first observe that y(η) = ρmq+n+m+1[q + (ρ −

1)n + ρ] = ρŜ
∗+m+2[q + (ρ − 1)n + ρ] is monotonically increasing in q for any given

Ŝ∗ (or equivalently, any given η). Let q1 > q2. Denote S1 = Ŝ∗|q=q1 and S2 = Ŝ∗|q=q2

as given in Theorem 3.3.6. Denote η1 = (S1 + 1)h and η2 = (S2 + 1)h. We have

y(η2)|q=q2 ≤ 1 − β and y(η2 + h)|q=q2 > 1 − β. We also have y(η2 + h)|q=q1 >

y(η2 + h)|q=q2 > 1− β since y(η) is monotonically increasing in q. Thus, η1 < η2 + h

and it follows that η1 ≤ η2, S1 ≤ S2 and B̂∗ is non-decreasing in q.

Proof of Proposition 3.4.3. We first establish that y(η) = ρmq+n+m+1[q + (ρ−

1)n+ρ] is monotonically increasing in ρ for any given Ŝ∗ (or equivalently, any given η)

since ∂y(η)/∂ρ = ρmq+n+m(mq+n+m+1)[q+(ρ−1)n+ρ]+ρmq+n+m+1(n+1) > 0.

Let ρ1 > ρ2. Denote S1 = Ŝ∗|ρ=ρ1 and S2 = Ŝ∗|ρ=ρ2 as given in Theorem 3.3.6.

Denote η1 = (S1 + 1)h and η2 = (S2 + 1)h. We have y(η2)|ρ=ρ2 ≤ 1 − β and

y(η2 + h)|ρ=ρ1 > y(η2 + h)|ρ=ρ2 > 1 − β. It follows that η1 < η2 + h and it follows

that η1 ≤ η2, S1 ≤ S2 and B̂∗ is non-decreasing in ρ.

Proof of Proposition 3.3.8. Based on Theorem 3.3.6, when m = 0 and n = 0,

we have y(η) = ρ(q+ρ) < 1−β. Since Ŝ∗ = inf {η = (mq + n)− 1 : y(η) ≤ 1− β},

whenever ρ(q + ρ) < 1− β is satisfied, we have Ŝ∗ = −1 and the optimal base-stock

level is zero.
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Proof of Proposition 3.5.1. When β = 0, we have that η̂0(S) = min[K̂(S)]

and CVaR of K̂(S) converges to the expected value of K̂(S) when β = 0, as shown

in Equation B.2.

ζ̂0(S) =

∫
K̂(S)≥η̂0(S)

K̂(S)pK̂(S)(y)dy = E[K̂(S)] = E[r(S)] (B.2)

It follows from Equation B.2 that Ŝ∗|β=0 = arg minS ζ̂0(S) = arg min
S

E[r(S)] = S∗EC .

Thus, B̂∗ converges to B∗EC when β = 0. Moreover, according to Proposition 3.4.1,

we have that B̂∗ ≥ B∗EC .
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APPENDIX C

PROOFS OF SECTION 4

Proof of Lemma 4.3.1. When ρ = 1, we have

∆P̃A
0 (r) = P̃A

0 (r + 1)− P̃A
0 (r) = −P̃A

0 (r)P̃A
0 (r + 1) · caR

caR + bR − b
D

∆P̃A
c+r = P̃A

c+r+1 − P̃A
c+r = ∆P̃A

0 (r) · 1

ca
[b− c(a− aR)]D

= −P̃A
0 (r)P̃A

0 (r + 1) · caR
caR + bR − b

D · 1

ca
[b− c(a− aR)]D

= −P̃A
0 (r)P̃A

0 (r + 1)D2 · aR
a
· b− c(a− aR)

caR + bR − b

∆L̃q = ∆P̃A
c

(
1

2
r2 +

1

2
r − λaRr

)
+ P̃A

c (r + 1) (r + 1− λaR) + P̃A
c+r+1 + r ·∆P̃A

c+r

= −P̃A
0 (r)P̃A

0 (r + 1) · caR
caR + bR − b

D · 1

caR + bR − b
· [b− c(a− aR)]D

·
(

1

2
r2 +

1

2
r − λaRr

)
+ P̃A

0 (r + 1) · 1

caR + bR − b
· [b− c(a− aR)]D (r + 1− λaR)

+ P̃A
0 (r + 1) · 1

ca
· [b− c(a− aR)]D − P̃A

0 (r)P̃A
0 (r + 1)D2 · aR

a
· b− c(a− aR)

caR + bR − b
· r
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∆L̃q = P̃A
0 (r)P̃A

0 (r + 1)D2 ·
{
− caR · [b− c(a− aR)]

(caR + bR − b)2
·
(

1

2
r2 +

1

2
r − λaRr

)
+
b− c(a− aR)

caR + bR − b
·
[
B/D +

caR
caR + bR − b

bR − c(a− aR)

ca
+

caR
caR + bR − b

r

]
· (r + 1− λaR)

+
b− c(a− aR)

ca

[
B/D +

caR
caR + bR − b

bR − c(a− aR)

ca
+

caR
caR + bR − b

r

]
− aR

a
· b− c(a− aR)

caR + bR − b
· r
}

= P̃A
0 (r)P̃A

0 (r + 1)D2 · caR · [b− c(a− aR)]

caR + bR − b

·
{
− 1

caR + bR − b

(
1

2
r2 +

1

2
r − λaRr

)
+

[
B

caRD
+

1

caR + bR − b
bR − c(a− aR)

ca
+

1

caR + bR − b
r

]
(r + 1− λaR)

+
1

ca

[
B(caR + bR − b)

caRD
+
bR − c(a− aR)

ca
+

caR
caR + bR − b

r

]
− 1

ca
· r
}

= P̃A
0 (r)P̃A

0 (r + 1)D2 · caR · [b− c(a− aR)]

caR + bR − b
·
{

1

2(caR + bR − b)
r2

+

[
B

caRD
+

1

caR + bR − b

(
bR − c(a− aR)

ca
+

1

2

)]
r

+

[
B

caRD
+

bR − c(a− aR)

ca(caR + bR − b)

](
1− λaR +

caR + bR − b
ca

)}

We see that the sign of ∂
∂r
L̃q depends on a quadratic function. Similarly, we continue

to show that the sign of ∂
∂r

Π̃ depends on a quadratic function and thus can be

optimized analytically, where Π̃ = C1L̃q + C2λP̃
A
c+r.

∆Π̃ = −C1∆L̃q − C2λ∆P̃A
c+r

= −P̃A
0 (r)P̃A

0 (r + 1)D2 · caR · [b− c(a− aR)]

caR + bR − b
·
{

C1

2(caR + bR − b)
r2

+

[
B

caRD
+

1

caR + bR − b

(
bR − c(a− aR)

ca
+

1

2

)]
C1 · r

+ C1

[
B

caRD
+

bR − c(a− aR)

ca(caR + bR − b)

](
1− λaR +

caR + bR − b
ca

)
− C2λ ·

1

ca

}
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Note that the above applies when r ≥ 0.

Proof of Lemma 4.3.2. When ρ 6= 1, we have

∆P̃A
0 (r) = P̃A

0 (r + 1)− P̃A
0 (r) = P̃A

0 (r)P̃A
0 (r + 1) · ρ

1− ρ
(λaR − 1 + ρ)(φ− 1)Dφr

∆P̃A
c+r = P̃A

c+r+1 − P̃A
c+r

=
[
P̃A

0 (r + 1)φr+1 − P̃A
0 (r)φr

] b− c(a− aR)

ac
D

=
[
∆P̃A

0 (r)φr+1 + P̃A
0 (r)(φ− 1)φr

] b− c(a− aR)

ac
D

= P̃A
0 (r)P̃A

0 (r + 1) · ρ

1− ρ
(λaR − 1 + ρ)D · (φ− 1)φr · φr+1 b− c(a− aR)

ac
D

+ P̃A
0 (r) · (φ− 1)φr · b− c(a− aR)

ac
D

= P̃A
0 (r)P̃A

0 (r + 1)D2(φ− 1)φr
b− c(a− aR)

ca

·
[

ρ

1− ρ
(λaR − 1 + ρ)φr+1 +

B

D
+

1− ρφr+1

1− ρ
(λaR − 1 + ρ)

]
= P̃A

0 (r)P̃A
0 (r + 1)D2(φ− 1)φr · b− c(a− aR)

ca
·
[
B

D
+

1

1− ρ
(λaR − 1 + ρ)

]
When φ < 1, P̃A

c+r decreases in r with reasonable parameter values.

∆L̃q(r) = ∆P̃A
c (r) ·

[
1− (r + 1)φr + rφr+1

(1− φ)2
− λaR ·

1− φr

1− φ

]
+ P̃A

c (r + 1) ·
[
−(r + 2)φr+1 + (r + 1)φr+2 + (r + 1)φr − rφr+1

(1− φ)2

− λaR ·
(1− φr+1)− (1− φr)

1− φ

]
+ ∆P̃A

c+r · r + P̃A
c+r+1
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∆L̃q(r) = P̃A
0 (r)P̃A

0 (r + 1) · ρ

1− ρ
(λaR − 1 + ρ)D · (φ− 1)φr · b− c(a− ar)

caR + bR − b
D

·
[

1− (r + 1)φr + rφr+1

(1− φ)2
− λaR ·

1− φr

1− φ

]
+ P̃A

0 (r + 1) · b− c(a− aR)

caR + bR − b
Dφr · [(r + 1)− λaR]

+ P̃A
0 (r)P̃A

0 (r + 1)D2(φ− 1)φr · b− c(a− aR)

ca
·
[
B

D
+

1

1− ρ
(λaR − 1 + ρ)

]
· r

+ P̃A
0 (r + 1) · b− c(a− aR)

ac
Dφr+1

= P̃A
0 (r)P̃A

0 (r + 1)D2φr[b− c(a− aR)] ·
{

ρ

1− ρ
(λaR − 1 + ρ)(φ− 1)

caR + bR − b
·
[

1− (r + 1)φr + rφr+1

(1− φ)2
− λaR ·

1− φr

1− φ

]
+

1

caR + bR − b
·
[
B

D
+

1− ρφr

1− ρ
(λaR − 1 + ρ)

]
· [(r + 1)− λaR]

+
φ− 1

ca
·
[
B

D
+

1

1− ρ
(λaR − 1 + ρ)

]
· r +

φ

ca
·
[
B

D
+

1− ρφr

1− ρ
(λaR − 1 + ρ)

]}
= P̃A

0 (r)P̃A
0 (r + 1)D2φr[b− c(a− aR)] ·

{
ρ

1− ρ
(λaR − 1 + ρ)

caR + bR − b
·
[

1− φr+1

φ− 1
+ (r + 1)φr − λaRφr + λaR

]
+

1

caR + bR − b
·
[
B

D
+

1

1− ρ
(λaR − 1 + ρ)

]
· [(r + 1)− λaR]

+
1

caR + bR − b
· −ρφ

r

1− ρ
(λaR − 1 + ρ) · [(r + 1)− λaR]

+
φ− 1

ca
·
[
B

D
+

1

1− ρ
(λaR − 1 + ρ)

]
· r +

φ

ca
·
[
B

D
+

1− ρφr

1− ρ
(λaR − 1 + ρ)

]}
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∆L̃q(r) = P̃A
0 (r)P̃A

0 (r + 1)D2φr[b− c(a− aR)] ·
{

ρ

1− ρ
(λaR − 1 + ρ)

caR + bR − b
·
[
φr+1

1− φ
+

1

φ− 1
+ λaR

]
+

1

caR + bR − b
·
[
B

D
+

1

1− ρ
(λaR − 1 + ρ)

]
· [(r + 1)− λaR]

+
φ− 1

ca
·
[
B

D
+

1

1− ρ
(λaR − 1 + ρ)

]
· r +

φ

ca

B

D
+
φ

ca

1− ρφr

1− ρ
(λaR − 1 + ρ)

}
= P̃A

0 (r)P̃A
0 (r + 1)D2φr[b− c(a− aR)] ·

{
ρ

1− ρ
(λaR − 1 + ρ)

[
1

1− φ
1

caR + bR − b
− 1

ca

]
φr+1

+
ρ

1− ρ
(λaR − 1 + ρ)

caR + bR − b
·
[
− 1

1− φ
+ λaR

]
+

1

caR + bR − b
·
[
B

D
+

1

1− ρ
(λaR − 1 + ρ)

]
· [(r + 1)− λaR]

+
φ− 1

ca
·
[
B

D
+

1

1− ρ
(λaR − 1 + ρ)

]
· r +

φ

ca

[
B

D
+

1

1− ρ
(λaR − 1 + ρ)

]}
= P̃A

0 (r)P̃A
0 (r + 1)D2φr[b− c(a− aR)] ·

{
ρ

1− ρ
(λaR − 1 + ρ)

[
1

1− φ
1

caR + bR − b
− 1

ca

]
φr+1[

φ− 1

ca
+

1

caR + bR − b

]
·
[
B

D
+

1

1− ρ
(λaR − 1 + ρ)

]
· r

+

[
1− λaR

caR + bR − b
+
φ

ca

]
·
[
B

D
+

1

1− ρ
(λaR − 1 + ρ)

]
+

ρ

1− ρ
(λaR − 1 + ρ)

caR + bR − b
·
[
− 1

1− φ
+ λaR

]}

We see that the sign of ∂
∂r
L̃q depends on a transcendental function. Similarly,

we continue to show that the sign of ∂
∂r

Π̃ depends on a transcendental function and

thus can be optimized with Taylor approximations, where Π̃ = C1L̃q + C2λP̃
A
c+r.
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∆Π̃ = −C1∆L̃q − C2λ∆P̃A
c+r

= −P̃A
0 (r)P̃A

0 (r + 1)D2φr[b− c(a− aR)] ·
{

ρ

1− ρ
(λaR − 1 + ρ)

[
1

1− φ
1

caR + bR − b
− 1

ca

]
C1φ

r+1[
φ− 1

ca
+

1

caR + bR − b

]
·
[
B

D
+

1

1− ρ
(λaR − 1 + ρ)

]
C1 · r

+

[(
1− λaR

caR + bR − b
+
φ

ca

)
C1 +

φ− 1

ca
λC2

]
·
[
B

D
+

1

1− ρ
(λaR − 1 + ρ)

]
+

ρ

1− ρ
(λaR − 1 + ρ)

caR + bR − b
·
[
− 1

1− φ
+ λaR

]
C1

}
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