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ABSTRACT 

 

Smart or adaptive structures that use multifunctional materials to control the 

response of a structure have been of considerable interest in recent years. Some examples 

are foldable and flexible structures that can be actuated by non-mechanical stimuli 

(thermal, electrical, magnetic, solvent, light, etc.). This study presents analyses of smart 

flexible and foldable structures, such as slender beams and thin plates/shells integrated with 

distributed polarized piezoelectric patches. The studied smart flexible and foldable 

structures are undergoing large rotations and relatively small strains that are triggered by 

electro-mechanical actuations. The electric actuation is done by stimulating the bonded 

patches with electric voltages, while the mechanical actuation is in the form of prescribed 

external surface- and/or body forces. Both elastic and viscoelastic material responses are 

considered for the foldable and flexible host structures. For the behavior of piezoelectric 

material, a nonlinear electro-mechanical constitutive equation is taken into account to 

incorporate large electric field inputs. Two types of piezoelectric patches are considered, 

namely piezoelectric wafer and active fiber composites. The governing equation of the 

Reissner‟s beam theory is first adopted in order to describe the large deformations of the 

flexible and foldable systems, and modified for the electro-active beams to derive 

analytical solutions. This study is then extended to 3-D deformation of plates and shells 

with considering bending and membrane stiffness subjected to large rotation and 

displacements. Co-rotational finite element method is used to numerically solve the 

governing equation of the smart flexible plates. Simulations of various shape changes in 

smart flexible and foldable systems are presented and parametric studies are also conducted 

in order to examine the effects of material and geometrical parameters on the overall 

performance of smart systems. 
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1. INTRODUCTION 

 

1-1 Literature review 

Recent development of smart or adaptive foldable (flexible) structures allows for 

controllable reconfiguration into various shapes, which have many engineering applications, 

e.g. artificial skins, morphing aircraft, flexible robots for use in hazardous environments, 

deployable space structures, etc. Various designs of compliant mechanisms have been 

developed for flexible wings, i.e., tensegrity structures [1, 2], corrugated composite systems 

[3], or using compliant cellular trusses underneath the wing‟ panels [4]. Limited designs have 

also been considered for compliant structures activated with non-mechanical actuators such 

as piezoelectric, soft electro-active materials, and shape memory actuators [5]. Another type 

of compliant structures is in the form of a thin polymeric sheet whose microstructure 

comprises of arrangements of active materials [6-8]. One of widely used active flexible 

polymeric systems comprises of piezoelectric ceramics dispersed in homogeneous polymeric 

thin plates, termed as electro-active composites, which form lightweight flexible (compliant) 

active materials, allowing for large bending and twisting deformation while maintaining 

small strains. The use of piezoceramics based materials has an advantage, for actuator 

applications, where a relatively low voltage is possible to achieve certain deformations, but 

the brittle nature of ceramics limits the deformations. Integrating piezoceramics with softer 

materials, such as polymers, allows for generating compliant and flexible systems that can be 

actuated by electric field inputs. Typical compliant systems are in the forms of slender/thin 

structures where high aspect ratios are shown in their dimensions (rod, filament, and sheet). 

When subjected to external stimuli, compliant systems generally experience large 

deformations. Depending on the geometrical shapes and materials considered, compliant 

systems can experience relatively small strains while undergoing large rotations [9, 10]. This 

study considers electro-active flexible/foldable structures in the forms of slender beams and 

thin plates/shells having piezoelectric materials (ceramics or polymers) as active components 

and polymeric substrates. When piezoceramics is being used, the existence of piezoelectric 
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ceramics limits the strains in the flexible structures and large deformation in such structures 

are predominantly due to large rotations.  

 

1-1-1 Large deformation analyses of structures 

There have been analytical and numerical studies presented on simulating large 

deformations in flexible structures, such as slender beams, thin plates and shells, subjected to 

a mechanical stimulus. Most of these studies have considered elastic and homogeneous 

structures. The commonly used analytical methods for obtaining solutions to large 

deformations of elastic beams include power series, equivalent systems [11], e.g., pseudo-

linear systems, which solve the nonlinear problems by transforming the equations into a set 

of linear equations, and elliptical integrals [12, 13], while the numerical approaches include 

Runge-Kutta, shooting method and finite element analyses, see Tada and Lee [14], Yang [15] 

and Chajes [16]. In the analysis of slender beams undergoing large deformations, the slope of 

the deflected middle axis cannot be neglected in determining the curvature of the deformed 

beam. Reissner [17] formulated the governing equations for large in-plane displacements and 

finite strains of elastic beams subjected to mechanical loadings. Later, Irschik and Gerstmayr 

[18] derived the Reissner‟s governing equations for originally straight beams based on 

continuum mechanics. The governing equations are expressed in the Lagrangian 

configuration and results in a system of nonlinear differential equations, which can be solved 

numerically or analytically depending on the prescribed boundary conditions.  

Limited studies have been done on analyzing nonlinear deformations of smart beams, 

rods, plates and shells. Lagoudas and co-authors [19-21] studied the deformations of flexible 

rods with embedded shape memory alloys by using shear-lag model in order to approximate 

the axial forces and moments induced by the actuators. Banerjee et al. [22] presented 

nonlinear shooting and Adomain decomposition methods in order to obtain solutions to large 

deformations of cantilever beams under mechanical loadings, which can be extended to 

predict large deformations in cantilever beams with piezoelectric materials. Moderate and 

large deformation of plates are governed by coupled nonlinear differential equations for 

which analytical solutions are available only for very few cases involving simple geometries 

and loading conditions. Regarding smart plates, Chen and Chen [23] studied piezoelectric 
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layered-plates by adopting von Karman theory and using finite difference method in order to 

obtain solutions to the governing equations. Xue et al. [24] derived nonlinear partial 

differential equations for thin plates made of piezoemagnetic and piezoelectric materials 

under mechanical loads by considering von Karman theory.  Jayakumar et al [25] also 

adopted von Karman strain displacement relations in studying large deformation of simply 

supported piezo-laminated composite beams under distributed transverse load. Von Karman 

theory considers up to quadratic terms in definition of strain components and neglects higher 

order terms and so is suitable for moderate deformations and strains including rotations and 

translations in slender beams. The governing equation in von-Karman theory is not suitable 

for problems involving folding or rolling of the thin/slender structures.  

One of the commonly used numerical techniques to solve for large deformations of 

plates and shells is finite element method (FEM). For finite element (FE) analysis of 

structures, three Lagrangian kinematic descriptions have been developed: (a) total 

Lagrangian (TL), (b) updated Lagrangian and (c) co-rotational (CR). For the TL approach, 

the governing equations are written with respect to the original configuration of the body 

while for the UL method, the reference configuration is updated and for each step or 

increment, the equations are formulated with respect to equilibrated configuration from the 

previous step. The CR description is based on a separation of rigid body displacements from 

the deformational displacements. In the CR method, the deformational component is 

typically formed based on small strain measures, although other general strain measures are 

also possible. The governing equations are expressed with respect to the current 

configuration obtained from the rigid body motion of the original configuration. The 

limitation of the CR method is that the rigid body displacements and rotations can be large 

but the strains must remain relatively small, when the small strain measures are considered 

for the deformation part, while there is no such limitation for the TL and UL method. 

The CR formulation was first introduced by Wempner [26] in 1969 and Belytschko et 

al. [27] in 1973. Fraeijs de Veubeke [28] developed a co-rotated dynamic frame attached to 

the flexible bodies to split their mean rigid body motions from the deformations and used 

Hamilton‟s principle for vibration analyses. The concept of co-rotated frame attached to the 

element allows for maintaining linear formulations for the deformation of the element, which 

was discussed by Bergan and Horrigmoe [29] and Argyris [30]. This concepts was developed 
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later by Rankin and Brogan [31] and Nour-Omid and Rankin [32] where they presented 

element independent CR formulation which was later improved by Nour-Omid and Rankin 

[32]. The formulation relies on using rotation projector to form the tangent stiffness directly 

from the CR formulation. Cardona [33] used the CR concept for analyzing mechanical 

deformations of components of flexible mechanisms. Crisfield developed the concept of 

consistent CR formulation in which the tangent stiffness formulation was written directly 

from the variation of the internal force [34-36] and presented the formulation for beam 

elements [34]. Felippa and Haugen [37] summarized the existing CR formulations, combined 

the invariant nature of Bergan et al. [29] formulation and the equilibrium and consistency of 

the formulation of Nour-Omid and Rankin, and presented a unified theoretical framework for 

co-rotational finite element (CRFE) in geometrically nonlinear analyses of structures. Cai et 

al. [38] used the CR formulation of plane elements with large rotations for analysis of slender 

plate structure under static loads leading to large rotations. Li et al. [39] developed a 

quadrilateral curved shell element by adding rotational nodal variables for co-rotational 

element formulation to derived an explicit expression of the element strain energy and 

verified reliability and computational efficiency of the element through modeling some 

curved shell structures under mechanical loadings. 

Co-rotational finite element (CRFE) formulation allows the use of linear finite 

element approaches to capture the nonlinear deformations whereas large rigid body motions 

are treated separately and therefore it is computationally efficient. Recently, by using the CR 

formulation, triangular flat shell elements were constructed by researchers for nonlinear 

analysis of shells and plates subjected to small strains and large rotations due to mechanical 

loads [40-42]. Cai and Atluri [43, 44] considered also CRFE method for analyzing plates 

with moderate strains by adopting the von-Karman nonlinear strains in the rotated element 

frame. To the best of our knowledge, the CRFE method has not been used for studying 

deformations in smart flexible plates/shells actuated by non-mechanical stimuli. 

 

1-1-2 Responses of piezoelectric ceramics and active fiber composites 

Piezoelectric ceramics such as lead zirconate titanate (PZT) or barium titanate 

(BaTiO3) used are commonly used in actuator and sensor applications due to their relatively 
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large electro-mechanical coupling properties, compared to those of piezoelectric polymers 

such as polyvinlidene fluoride (PVDF). In order to actuate PVDF significantly large voltage 

is required as compared to the voltage required in piezoelectric ceramics. The crystal 

structures in piezoelectric ceramics possess electro-mechanical coupling effect due to electric 

polarization. The piezoelectric effects become noticeable once the piezoelectric materials 

have been polarized to align the dipoles in the crystalline. Thus, prior to using piezoelectric 

materials in applications, they are polarized by applying high electric field until saturation 

polarization is reached, which is typically done at high temperatures. In applications, piezo 

actuators are generally operated under electric field stimulus lower than the coercive field 

limit, which is the amount of electric field that cause reorientation of the dipoles in opposite 

of poling direction, in order to avoid depolarization.  

In actuation applications, it is often necessary to apply high electric field inputs to the 

piezoelectric components in order to obtain large deformations. When subjected to high 

electric fields, the polarized piezoelectric materials often experience nonlinear electro-

mechanical responses. Tiersten [45] was among researchers who studied nonlinear electro-

mechanical behaviors of polarized piezoelectric ceramics. He formulated an electro-

mechanical constitutive model by considering higher order terms of the electric field in order 

to describe the nonlinear electro-mechanical coupling behavior of piezoelectric ceramics 

(PZT-G) materials. A higher order electro-mechanical model can also be applied to other 

electro-active materials such as electrostrictive materials, where one can consider only even 

terms. A limited number of studies have considered nonlinear electro-mechanical response of 

piezoelectric materials due to large electric fields [46-48], but for small deformations. In the 

present study, higher order terms of the electric field are taken into account in the electro-

mechanical constitutive relation of smart structures undergoing large deformations, mainly 

due to large rotations, but the strains remain small. The small strain limit is partly due to the 

use of piezoelectric ceramics based materials. In general, slender structures whose 

dimensions are not of comparable orders of magnitude can also experience relatively small 

strains while undergoing large rotations (or bending), see Naghdi and Vongsarnpigoon 

(1983) and Srinivsasa (2015). 

Due to its brittle nature piezoelectric ceramics is not suitable for applications that 

involve large deformations. One solution to improve deformations that can be attained by 
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piezoelectric ceramics is to use it in shape of fibers embedded in a polymeric matrix. The 

assembly is called active fiber composites (AFC), which was originally proposed by Ben and 

Hagood [8]. AFCs, made from piezoelectric lead zirconate titanate (PZT) fibers and an epoxy 

matrix, were originally developed as actuators for adaptive materials systems (see an 

example of AFC on Figure 1) and to amplify deflection caused by piezoelectric effect. A 

schematic of AFC architecture is shown in Figure 2. PZT fibers are embedded in the epoxy 

matrix and are aligned along the longitudinal direction. The electric field is applied to PZT 

fiber through the aluminum electrode wires that are placed on the top and bottom of the 

fibers and aligned in the lateral direction perpendicular to the longitudinal direction of AFC 

fibers. Electrodes that are placed on the top and bottom in the thickness direction of the AFC 

patch have the same electric potential. Thus, the electric field on the central plane of the AFC 

is zero. Electrodes that are adjacent to each other in the longitudinal direction of the AFC 

have the opposite electric potentials. As a result, an electric field is formed in the longitudinal 

direction of fibers [49]. However, the electric field lines along the fibers are not distributed 

uniformly, where the maximum electric fields are typically near the electrodes. The main 

advantages of AFC compared to PZT wafer are 1) higher toughness due to capability of AFC 

to absorb more strain energy from the polymer substrates, 2) larger deformation (bending 

and/or twisting) related to piezoelectric effect, 3) potential of large-scale actuation and 

sensing in complaint and flexible smart structures and mechanisms, and 4) the existence of 

polymers prevent catastrophic failure due to fiber breakage (particularly in AFC due to the 

placement and arrangement of electrodes even when fracture occurs in some part of fibers the 

AFC still has the electro-mechanical coupling function). The microstructure of AFC enables 

it to easily be integrated in curved structures as well.  

AFC electro-mechanical coupling properties also allow its use as sensors or emitters-

receivers in various applications. As some examples of its applications, acoustic emission 

(AE) sensor, emitter-receiver pair for acoustic-ultrasonic (AU), strain gage [50], transducer 

probes for medical diagnostic ultrasound health monitoring of fetus, SONAR [51] and aero-

elastic and structural acoustic control of rotary wing aircraft and rotor blades [52, 53] can be 

mentioned. 

Some observations have showed the nonlinear and time-dependent responses of 

AFCs. Limited studies are available on the electro-mechanical nonlinear behavior of AFCs. 
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Mollayousef [49] and Ben Atitallah et al. [54, 55] have studied material characterization of 

AFC under a wider range of electro-mechanical loads. Mollayousef used a unit cell approach 

to characterize its electro-mechanical properties. Ben Atitallah et al. measured the material 

properties via experiments and showed nonlinear time and temperature dependent response 

of the composite under high temperatures and different strain rates as well as high electric 

voltages. Tajeddini et al. [56] modeled relaxation properties of AFCs and predicted creep 

response of the material under different temperatures and stress levels with quasi linear 

viscoelastic (QLV) approach.   

 

 

 

 

 

Figure 1.1. An AFC sample, manufactured by Advanced Cerametrics Incorporated 

 

 

 

 

Figure 1.2. Schematic of an AFC [54] 

 

1-1-3 Viscoelastic nature of polymers and large deformations analyses in viscoelastic 

structures 

In many flexible structures, polymers are widely used because they can undergo large 

deformations, they are generally lightweight which is important in many applications, and 
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they can be easily fabricated with a relatively low cost. One of the prominent characteristics 

of polymers is their time-dependent (viscoelastic) behavior. It is noted that piezoelectric 

ceramics also show time-dependent responses (creep, hysteretic effect, loss and stored 

electro-mechanical properties that are frequency dependent). It is then necessary to consider 

the time-dependent behaviors in the smart structures with viscoelastic polymeric substrate 

and piezoelectric ceramics when they are subjected to mechanical and electrical stimuli. 

There are limited studies that address large deformations of viscoelastic solids. Ya-Peng and 

Ya-Fei [57] used the updated Green strain tensor and Kirchhoff stress tensor for analyzing 

large deformations in viscoelastic beams and used FEM for obtaining the solutions to the 

governing equations. Some analytical and numerical studies of large deformation beams with 

linear viscoelastic constitutive model are discussed by Holden [58], Baranenko [59], Lee 

[60], Vaz and Caire [61]. Few studies such as [62-64] have been reported on simulating 

moderate deformations and strains of viscoelastic plates by using von-Karman type strain-

displacement relations. To the best of our knowledge, very limited studies address nonlinear 

deformation of active viscoelastic structures. Beldica and Hilton [65] studied stress, 

deformation and failure of a fiber composite beam with piezoelectric layers by considering 

general nonlinear anisotropic viscoelastic constitutive relations for piezoelectric layers and 

the beam. For incorporating large deformations they took into account a large rotation in 

expressing the curvature of the middle axis of the beam. Muliana and Tajeddini [66, 67] 

studied large deformations of viscoelastic homogeneous and composite beams semi-

analytically by adopting Reissner‟s theory of beams to handle large curvature problems and 

considering load effect of the electrically activated thin piezoelectric patches. Yang and 

Zhang [68] studied bending of piezoelectric cylindrical shells based on nonlinear strains and 

applying finite difference method to solve the governing equations.    

 

1-2 Scope of the present study 

The focus of present study is on analyzing nonlinear deformations of elastic and 

viscoelastic smart flexible and foldable systems, such as slender beams, plates, and shells 

having multiple piezoelectric patches. The flexible structures are subjected to electrical and 

mechanical actuations in order to achieve large deformations and rotations. Linear and 



9 
 

nonlinear electro-mechanical constitutive models are incorporated for the piezoelectric 

patches, while elastic and viscoelastic behaviors are considered for the host structures. The 

results from the present analyses are useful for designing autonomous flexible devices that 

are activated by non-mechanical stimuli.  

Smart flexible beams are considered first in Chapter 2. Analysis of large deformations 

of a smart elastic slender cantilever beam, i.e., homogeneous elastic beam with arbitrary 

number of piezoelectric actuator patches is presented. The beam is assumed relatively slender 

so that the effect of the transverse shear deformations on the lateral deflections of the beam 

can be neglected. The actuators are piezoelectric patches attached to the top and bottom 

surfaces of the beam symmetrically with respect to the middle axis or plane of the structure. 

To induce large deformations and curvatures in the beam, each pair of the actuators opposite 

to each other on the top and bottom of the substrate are subjected to large electric fields in a 

way that they experience opposite elongation and contraction along the longitudinal axis of 

the beam. The governing equations for large deformations in an elastic beam formulated by 

Reissner [17] are adopted and modified to include the electro-mechanical coupling effect 

from the piezoelectric patches. Analytical solutions of the governing equations are then 

presented for the deformations of the beams. When the cantilever smart beam is also 

subjected to mechanical loads, the nonlinear shooting method [22] is used to convert the 

boundary value problem from the governing equations of the deformations of the beams to an 

initial value problem, and a 4
th

-Runge-Kutta method is used to numerically solve the initial 

value problem.  

In Chapter 3, three-dimensional deformations of smart elastic shells integrated with 

piezoelectric patches undergoing large deformations are studied. Co-rotational finite element 

method is used for numerically solving the equations that govern the deformations of the 

electro-active shells. As in Chapter 2, a nonlinear electro-mechanical constitutive equation 

for the active piezoelectric materials is taken into account. Preliminary results of the 

deformations and shape changes of electro-active elastic shells are presented. It is noted that 

the nonlinear electro-mechanical constitutive model based on higher order function can also 

be used to capture electro-mechanical responses of other electro-active materials, such as 

electrostrictive, in which only the even terms are needed. 
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Chapter 4 discusses smart structures with viscoelastic characteristics and so time-

dependent structural response is taken into account. As there are several advantages of using 

AFCs as mentioned above, it is expected that the integrated AFCs with the flexible shells will 

improve the actuation and deformation capability in the electro-active flexible structures. In 

addition, many of flexible structures consist of polymeric host structures, in which they show 

prominent viscoelastic behaviors. Formulation of CRFE of electro-active viscoelastic shells 

is presented in this chapter. 

Chapter 5 presents conclusions and possible future research. 
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2. ANALYSIS OF SMART ELASTIC AND VISCOELASTIC BEAMS 

WITH GEOMETRIC NONLINEARITIES

 

  

2-1 Distributed piezoelectric actuators on the supporting beam 

 Actuators, such as piezoelectric ceramics, have been widely used to actively control 

deformations and vibrations (Crawley and de Luis [69]) and reducing noises (Dimitriadis and 

Fuller [70]; Wang, Dimitriadis and Fuller [71]) in structures. To understand the behaviors of 

structures induced by actuators, equations that govern the deformations in active structures 

and constitutive models for all constituents have been formulated. There have been several 

studies done on developing models that describe the interaction between actuators and host 

structures. Crawley and de Luis [69] developed a model for piezo-ceramic patches bonded to 

the surface or embedded into the beams. They showed that the perfectly bonded distributed 

actuators result in two equivalent concentrated moments acting at the edges of an actuator 

patch. Im and Atluri [72] proposed a refined model including the transverse shear and axial 

forces in addition to the bending moments induced by actuators. Wang and Rogers [73] used 

the classical laminated plate theory to determine the equivalent force and moment induced by 

the actuator patches attached to or embedded into laminated beams and plates. Dimitriadis, 

Fuller and Rogers [74] also presented a two-dimensional model for piezo-ceramic patches 

ideally bonded on top and bottom surfaces of a rectangular plate, and showed that the 

resultant moments induced by the piezo-ceramic patches were along the edges of piezo-

ceramic patches under an assumption of pure bending. The above studies focus on small 

deformations based on Euler-Bernoulli or classical Kirchhoff-Love plate theories of beams or 

plates integrated with piezoelectric actuators. 

In this chapter, large deformations of active beams activated by piezoelectric 

materials are modeled. It is assumed that patches are perfectly bonded to the supporting 

structure and their thickness is much smaller than that of the host structure so that their effect 

                                                           
 Reprinted with permission from “Nonlinear deformations of piezoelectric composite beams” 

by Vahid Tajeddini and Anastasia Muliana, 2015. Composite Structures, Vol. 132, p. 1085-

1093, Copyright by Elsevier. 
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on the geometry and properties of the overall responses of the active beams is negligible. The 

actuators are needed to prescribe an external electrical stimulus. Quasi-static equilibrium and 

compatibility conditions are considered to estimate the bending moments induced by the 

actuator patches to the supporting beams or plates. When piezoelectric ceramics are 

considered, the patches are considered in the forms of several small segments distributed in 

the substrates as in practical applications the brittle nature of ceramics would lead to 

cracking. However, when other soft active materials are considered, such as piezoelectric 

polymers, it is possible to have long and continuous active components integrated to the 

substrates. 

In this study, for each piezoelectric patch attached to the top surface of the supporting 

beam, there is a similar patch attached to the bottom surface and the geometry of the entire 

smart structure remains symmetric in the thickness direction of the structure and inducing 

bending moment about the middle-axis of the beam thickness. However this condition can be 

relaxed with a consequence of having axial-bending coupling effect. In rest of the study, a 

pair of patches is referred to two patches attached on top and bottom surfaces of the 

supporting structure. Also, the top and bottom piezoelectric patches have the same through 

the thickness poling direction, and in order to induce bending the piezoelectric patches are 

activated by applying voltages in opposite directions through their thickness.  

Consider a segment of the beam in Figure 2.1 with its middle axis in x-direction and 

with a pair of piezoelectric patches bonded on the top and bottom surfaces. The thickness of 

the bonding agent and its effect on the overall deformations of the beams are neglected. The 

actuators with the same through the thickness poling direction as mentioned are excited by 

electric voltages in opposite directions. The magnitude and direction of the applied electric 

field are in such that the overall effect of the pair of active patches induces moments to the 

substrate which is discussed later. Incorporating the interaction of the patches and the 

substructure, the bottom actuator undergoes strain ac while the top one undergoes strain

ac . The axial deformation is assumed linearly varied through the thickness, and imposing 

small strain measures, the axial strain in the beam b  also linearly varies through the 

thickness of the beam as shown in Figure 2.1. At the interfaces between active materials and 

substrates displacement continuity is maintained. 
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Figure 2.1. Strain distribution in the cross section of beam by an active piezoelectric patch 

 

The piezoelectric material is assumed linear elastic with regard it its mechanical 

behavior, while linear and nonlinear responses are considered for the electro-mechanical 

coupling. The stress in the excited bottom actuator is expressed as 

 

( )ac p p acE                  (2.1) 

 

where 
pE is the elastic modulus of the piezoelectric actuator, 

p is the piezoelectric free 

strain, which is a strain in the actuator due to applied electric field without constraints to the 

actuator. The strain ac is generally smaller than 
p due to the constraints from imposing the 

compatibility condition between the beam and actuator, and equilibrium of forces and 

moments. The stress in the top patch has the same magnitude as the stress in the top patch in 

Eq. (2.1), but in compression. Thus, the moment Mac induced by the stressed actuators in Eq. 

(2.1) with the respect to middle axis of the beam is expressed as 

 

  
  ( )ac p p b p p acM t b t t E                  (2.2) 

εb X 

Y 

 

beam 

Piezoelectric patch 
-εac 

tb 

tp 
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where b is width of the beam; tp and tb are thicknesses of patches and the beam respectively.  

If a linear elastic beam is considered, the stress in the beam is given as: 

 

                b b bE                 (2.3) 

 

where bE  is the elastic modulus of the beam. Hence, an equivalent bending moment in the 

beam is obtained from following expression: 

 

         
2

0

2

b

b

t

b b

t

M E YbdY



                 (2.4) 

 

Considering the beam segment and the patches as a system, the equilibrium of 

moments about the middle axis of the beam gives 0acM M . By equating Eq. (2.2) and (2.4), 

the induced moment due to application of electric field in the piezoelectric patches is 

expressed as  

 

 
 

 

3
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3 6
2

p b p b p b

p

p

b b p b p b p

bt t t t E E
M

t
t E t t t t E


 


 

   
 

                        (2.5) 

 

If it is assumed that the thickness of the piezoelectric patches is much smaller than the 

thickness of the beam, 
p bt t , Eq. (2.5) can be approximated as 
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Depending on the magnitude of electric field applied and the response of piezoelectric 

material, the strain in the piezoelectric patches is expressed as follows: 

 

       
12

e

p d E                                                                     (2.7) 

 

when a linear electro-mechanical constitutive relation is considered, which is valid only for 

relatively small amount of electric field input. When a relatively large electric field input is 

considered, constitutive models with higher order electric fields are considered, such as a 

second order constitutive relation for large electric field [45]: 

 

                      
2

12 12

1

2

e e

p d E E HOT                                                (2.8) 

 

where 12d is piezoelectric constant and 
eE is electric field in thickness direction, Y, of the 

patch.  12 is the higher order piezoelectric constant. The above models in Eqs. (2.8) and 

(2.9) are for polarized piezoelectric samples, and valid for electric field smaller than the 

coercive electric limit of the materials, so that depolarization does not occur. As also seen 

from Eq. (2.8) when d12 is taken as 0, the second order terms can be used to describe electro-

mechanical responses of electrostrictive materials. 

As mentioned, it is assumed that the top and bottom piezoelectric patches have the 

same through the thickness poling direction. Also, as discussed, to induce only bending 

moment by a pair of patches on top and bottom of the beam, 
p of the top patch should have 

the same magnitude as of the bottom patch but with opposite sign. Consequently, according 

to Eq, (2.7), if the piezoelectric material show a linear behavior due to the electric field input, 
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the magnitude of the electric field applied to the patch on top should be the same as the one 

to the bottom patch but in opposite direction:  

 

            e e

top bottom
E E                (2.9) 

 

However, for a nonlinear behavior of the actuators according to Eq. (2.8), the applied electric 

field in top patch with respect to the on in bottom patch has different magnitude and may be 

in same direction or opposite direction as expressed in Eq. (2.10) and Eq. (2.11), 

respectively. 
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2-2 Formulations for nonlinear analysis of smart beams 

This study adopts the kinematic and governing equations for large deformation of 

beams, presented by Reissner [17], where large stretch and rotation are possible and the 

effect of the transverse shear deformations are accounted for. For the current study, a slender 

beam with integrated piezoelectric patches is considered so that the large deformation in the 

beam is mainly due to rotation, while the beam is undergoing small strains. Furthermore, the 

effect of transverse shear deformation is neglected. Consider an originally straight cantilever 

beam under electric field inputs applied to the pair of piezoelectric patches, which causes the 

beam to deform, as shown in Figure 2.2. 
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Figure 2.2. Deformation of a cantilever beam with a pair of piezoelectric patches to induced bending 

 

Following Reissner‟s formulation for large deformations of slender beams, the deformation 

of the beam actuated by non-mechanical effect is also studied. The beam is initially straight 

and subjected to the following internal shear force Q, normal force N and bending moment 

M. Consider a differential element of the straight beam with length ds at location s before 

deformation as shown in Figure 2.3a. After deformations, the current location of the element 

is x(s)=s+u(s) and y(s)=v(s), where u(s) and v(s) are the displacement in the x and y axes, 

respectively. The kinematic relations for the displacements and rotation of the beam element 

are written as:   

 

                                             
1 (1 )cos

(1 )sin

u

v

 

 

  

  
                                          (2.13) 

 

where   is the rotational angle of the cross-section when the beam deforms.; thus,   is the 

curvature of the deformed beam,   is the axial strain along the centroidal axis of the beam 

which, in case of no shear strain, is the same as the relative change of length of a differential 

element of the beam axis due to deformation. ()‟ stands for the derivative with respect to s, 

which is the distance along the length of the beam measured from its left end. Referring to 

M0 M0 
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ø s 
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Figure 2.3b, the force and moment equilibriums of the differential element lead to the 

following system of equations:  

 

                                              

(1 ) 0,

0,

0.

M Q

N Q

N Q







   

  

  

           (2.14) 

 

 

 

 

 

 

(a) 

 

 

 

 

(b) 

Figure 2.3. (a) Kinematics of an element of the beam before and after deformation and (b) free body 

diagram of an element of the beam  

 

A linear elastic constitutive relation for the beam (host structure) and equilibrium 

equations in terms of the axial force and bending moment lead to: 
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here bE A  and bE I  are the axial stiffness and bending stiffness of the beam respectively.  

Under a pure bending condition, deformation of a cantilever beam, Eqs. (2.13-15), 

can be solved analytically in order to obtain displacement components of the beam. In cases 

other than pure bending, for instance when the patches excite axial forces in the substructure 

or when mechanical loads are applied to the beam, closed form expressions for the deformed 

configuration are not necessarily available and a numerical method is then considered. One 

of the available numerical methods is nonlinear shooting method presented by Banerjee et al. 

[22] for obtaining solutions to large deformations of beams. The method is briefly described 

here and used for the analyses in Section 2.4.  

Consider a beam under a bending moment and concentrated forces Fx and Fy, shown 

in Figure 2.4. The bending moment at a point (x,y) of the cantilever beam is expressed as  

 

                        0 1 2( , ) ( ) ( ) ( ) ( )x y y xM x y F d y F d x M u s l u s l                     (2.16) 

 

where u(s) is a unit step function; Fx and Fy are the components of the concentrated force in x 

and y directions, respectively, and dx and dy are the x-direction and y-direction distance of the 

force from the clamped end.  

 

 

 

 

 

 

 

Figure 2.4. Configuration of cantilever beam under applied moment and force 
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By substituting Eq. (2.13) into moment-curvature relation in Eq. (2.15) and 

differentiating with respect to s, the first derivative of the curvature is given as: 

 

                                 1 2

1
( cos sin ) ( ) ( )y x o

b

F F M s l s l
E I

                         (2.17) 

 

where ( )s  is Dirac-Delta function. The boundary conditions for a cantilever beam are 

 

                 
0
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                                                                (2.18) 

 

The boundary value problem is transformed to an initial value problem (IVP) by 

estimating a value m for curvature at s=0. So the initial values for Eq. (2.17) are 

 

0
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0 ,
s

s
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                        (2.19) 

 

This initial value problem is then solved by 4
th

 order Runge-Kutta; then, the curvature 

at s=L named , which is equal to zero here, is used as a reference to evaluate the trial value 

m that is expected to be close to the actual value for 
0s




 . The trial value m is then modified 

and this procedure is repeated for several steps until the calculated 
s L




 is close enough to 

the  with a rate depending on the initial estimation for m. At each step, k, the formula for 

deriving km is expressed as  
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It is seen that  s Lm








should be calculated as well. The right side of Eq. (2.17) is 

expressed as ( , , )f s   and a new variable 
m








 is defined. By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                

introducing new variables as   and     , and after some algebraic manipulations, a 

system of first order differential equations is derived.  In each step k, 4
th

 order Runge-Kutta 

method is used to solve the IVP in Eq. (2.17):  
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which gives  s L s L
 

 
  and 

s L


  s Lm




 
 

 
. For the next step, the modified 1km  is 

calculated from Eq. (2.20) and the above procedure is repeated until the solution converges 

or 



s L
. Finally the curvature of the beam is determined and the deformed 

configuration of the beam can be obtained from the kinematic relations Eq. (2.13).  
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2-3 Governing equations for active viscoelastic beams 

In this section, a time-dependent parameter is taken into account for analyzing 

deformations in active beams with viscoelastic host structures. A constitutive relation for the 

axial strain in a linear viscoelastic beam is described as follows 

 

                               

0

( , , )
( , , ) ( )

t

b
d x y

x y t J t d
d

 
  
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                    (2.22) 

 

where  is the axial stress and ( )J t  is the creep function of the beam. The equation for the 

bending moment is obtained by multiplying both sides of Eq. (2.22) by a distance y measured 

from a mid-surface of the beam and integrating both sides over the cross-section area of the 

beam:  
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0M  is an induced moment in the beam as expressed in Eq. (2.4). By considering the time-

dependence material properties of the beam, similar to elastic case referring to from moments 

equilibrium conditions, 

 

0acM M
         (2.24) 

 

or in terms of strains, 
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( )bE t is the relaxation function of the viscoelastic substrate. To solve Eq. (2.25), Laplace 

transformation is utilized to make it a linear equation as follows 

 

   21
D D /

6
p b p p p b b ac p b p p act t t E t E t t t E s                (2.26) 

 

D represents time derivative and „~‟ denotes for the quantity in Laplace space. It should be 

noted that D means derivative with respect to s in Laplace space. From the Eq. (2.26), 

 

    2/ / 6 /ac p b p p p b b p b p ps t t t E t E t t t E s               (2.27) 

  

and by taking the inverse Laplace transformation ac as a function of time can be determined. 

The moment and strain relations are: 
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( )bE t ,the relaxation function, which is related to the creep function of the beam bJ  as 

follows 
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In this study, the mechanical response of the actuators is assumed linear elastic. Thus, 

p is given in Eq. (2.8) or (2.9). By assuming no longitudinal extension of the centroidal axis 

of the beam under pure bending moment, the strain can be written in terms of the curvature 

as y   . Thus, Eq. (2.23) is rewritten as  
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By solving Eq. (2.30) for curvature, the deformed configuration of the beam can be obtained 

in a similar way as for the elastic case. 

 

2-4 Boundary value problems 

This section presents analyses of boundary value problems for elastic and viscoelastic 

beams having several arrangements of piezoelectric patches. Linear and nonlinear electro-

mechanical responses are considered for the piezoelectric patches. Analyses of shape 

changing in smart beams controlled by electric field inputs are presented. 

 

2-4-1 Elastic beam with multiple pairs of piezoelectric patches 

Bending of smart cantilever beams with several pairs of piezoelectric patches is 

presented. Figure 2.5a shows an undeformed cantilever beam with a pair of piezoelectric 

patches with length lp attached to the top and bottom surface of the beam. The piezoelectric 

patches are assumed to be homogeneous having the same width as the beam. From Eqs. 
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(2.13) and (2.15), the closed form solution for the displacement components, u and v, in term 

of s are: 
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(2.31) 

 

 

 

(a) 

 

(b) 

Figure 2.5. Cantilever beam with one (a) and two (b) pairs of piezoelectric patches  

 

It is possible to attach several pairs of piezoelectric patches along the length of the 

beam and different magnitude of electric field can be applied to the piezoelectric patches in 
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order to induce various shape changes. Placing several small segment of patches is 

practically useful when piezoelectric ceramics is considered. Consider now a cantilever beam 

with two piezoelectric patches and geometric quantities shown in Figure 2.5b. The moments 

generated by the two pairs of the piezoelectric patches from left to right are 1M  and 2M , 

respectively. The closed form solutions for the displacement components of the elastic beam 

are: 
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In general, any number of piezoelectric patches can be added to the cantilever beam 

and a closed form solution for deformation of the beam under induced bending moments can 

be derived. The general procedure is to calculate the rotational angle of the axis of the 

deformed beam   from moment-curvature constitutive relation at first and then deriving 

deformation components in every location of the beam from the kinematics relation. In 

calculating the displacements, the compatibility condition (continuity displacements) at the 

interface of each two adjacent segments of the beam is considered as the boundary conditions 

for analyzing the deformation of each segment. Consider a part of the beam with multiple 

piezoelectric patches on its top and bottom as shown in Figure 2.6. Continuity of the 
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displacement between the adjacent segments of the beams leads to boundary conditions as 

follows:  
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              (2.33) 

 

                                         

 

Figure 2.6. A part of the beam with multiple attached patches with pair i shown 

 

From Eq. (2.13), the displacement components for segment i and i+1, respectively, are: 
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The constants (1) (2) (1)

1, ,i i ic c c 
and (2)

1ic 
are derived from Eq. (2.33). It should be 

noted that the rotation of segment i+1, 1i  , is constant due to no internal force or moment in 

the segment.   

As mentioned earlier, the induced bending moment depends on the axial strain in the 

excited actuator patches which may be linearly or nonlinearly proportional to the applied 
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electric field. The effect of linear versus nonlinear response of the piezoelectric material on 

the deformation of a cantilever beam with two pairs of piezoelectric patches is shown in 

Figure 2.7.  To obtain the results, the linear and quadratic terms of the piezoelectric 

coeficients are chosen as d13=0.18 nm/V and β13=8×10
-7

 n m
2
 /V

2
 [45] which are reported for 

piezoelectric material PZT G-1195. As seen in the figure, assuming a linear response of 

piezoelectric material with respect to electric field underestimates the bending moment. In 

this example, the position and length of the patches are 1 0.25l L 2 0.6l L and 

2 1 0.15p pl l L  , respectively and E
e
=1.3 MV/m. The magnitude of applied electric field is 

smaller than the coercive limit of the material. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7. Deflection of the cantilever beam with one pairs of actuator patches their strain depends 

on the electric field:  linearly and  quadratically  

 

Next, The deformation of a cantilever beam actuated electrically by the piezoelectric 

patches and mechanically by a concentrated force at its free end is analyzed by solving Eq. 

(2.17) using the nonlinear shooting method. Three smart beams are studied and the responses 

are shown in Figure 2.8. The analyses are done by considering FxL
2
/EbI = FyL

2
/ EbI= 0.2 

where Fx and Fy are components of the applied F; all the patches are assumed to be the same 
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length and thickness and subjected to the same amount of electric field such that for each pair 

0 / bM L E I  = 1. This excersice is conducted to test the solution method presented in this 

study. 

 

 

 

 

 

  

 

 

 

        (a)                (b) 

Figure 2.8. Deformation of cantilever beam with one (a), two (b) and three (c) pairs of patches under 

electro-mechanical actuation 

 

2-4-2 Shape control applications  

Shape changes in thin smart flexible beams can be obtained by applying electric 

fields to the piezoelectric patches. Desired configurations can be achieved in principle by 

selecting appropriate values for the electric field inputs at different locations along the 

beams. The presented analyses can be used for preliminary design of flexible systems 

controlled by mechanial and non-mechanial stimuli. For example a gripper can be design in 

which the claws are in the forms of slender cantilever beams which can be folded, in order to 

hold an object, by by prescribing electric fields. Figure 2.9 shows a schematic of a four-claw 

gripper that consists of four cantilever thin beams as its claws. This type of gripper may be 

used in robots to grab and carry objects. 
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Figure 2.9. Schematic of a gripper with four smart beams as its claws 

 

Figure 2.10a shows an example of a deformed shape of a smart beam with two pairs 

of actuators placed at the locations 1 20.5 , 0.62 l L l L . The two actuators have the same 

length, 
1 2p pl l , but having different bending moments 2 12.92M M  with 1 / 8bM L E I and 

1

eE  =1.3MV/m with assumption of nonlinear response for the piezoelectric patches. The 

bending moments are the results of applying the electric fields through the piezoelectric 

patches, in Eq. (2.6). As far as the shape of the deformed beam is concerned, multiple 

variables can be controlled and studied, such as number of actuator patches, their geometrical 

properties, their location, magnitude of applied voltage etc. For instance, the same form for 

the deformation can be obtained by installing pairs of the patches with the same magnitude of 

induced moments and the same distance from each other, but by changing the length of one 

or both the pairs of patches. Figure 2.10b shows the deformation of the beam for same 

positions for the patches but 2 1M M , and 
2 12.92p pl l and E

e
=1.32MV/m. 

 

 

 

 

Folded 

deformation 

of the claw 
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(a) 

(b) 

Figure 2.10. U-shaped beam under actuation of two pairs of patches with same length (a) and 

different lengths (b) 
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Another example is folding of slender beams under actuation of multiple patches, 

which may be used in deployable systems. Figure 2.11 shows a beam with five pairs of 

patches attached to them. The beam is originally straight (figure 2.11a) with patch labels 

shown. Nonlinear response in terms of electric field is assumed for the actuators and an 

electric field E
e
=1.2 MV/m is applied to the patch number one and it generates bending

moment as 0 / 21bM L E I   which folds the tip of the beam into a ring- shape configuration 

(Figure 2.11b). Then, the next patch undergoes the same magnitude of electric field and 

another pair of moment induced to the beam so larger part of the beam folds (Figure 2.11c). 

This process of actuating can be continued by patches three, four and five, and the ring- 

shape moves to the left as seen in Figure 2.11c-e respectively. It should be noted that since 

the beam and the patches are elastic, the configuration of the beam does not depend on the 

history of applied electric fields.  

For this example the amount axial strain of the beam is calculated. According to Eq. 

(2.15), curvature of the beam is 

0 / bM E I 

 and under pure bending, axial strain along

thickness of the beam is calculated as 

x z 

.  Therefore, maximum axial strain of the 

beam is at 

/ 2z t 

 along the segments covered by the active patches. For the presented 

example, the calculated maximum axial strain is around 7%.  

(a) (b) 

Figure 2.11. Rolling configuration of an originally straight cantilever beam (a) under actuation of one 

to five active pair of patches (b-f) 
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(c)     (d) 

       (e)         (f) 

Figure 2.11. Continued 

2-4-3 Viscoelastic beam integrated with elastic piezoelectric patches 

Finally, a viscoelastic cantilever beam with two patches is considered. The patches 

with length lp1 and lp2 are attached at left and right ends of the beams, respectively as shown 

in Figure 2.12.  
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Figure 2.12. Cantilever viscoelastic beam with two patches in undeformed shape 

 

The nonlinear strain of the piezoelectric material is considered as 2

1 2

e e

p d E d E   . 

The properties of the beam and the patches are chosen as: 1 0.18d   nm/V, 2 d 0.8 f(m/V)
2
, 

63pE  GPa,   0/
0.8 1 0.95 1

t

bE e


    GPa where 0  is characteristic time lp1=lp2 =0.2 L 

and tp=0.1tb =0.1mm. As a common type of loading history, the time-dependent electric 

voltage is considered to increase from zero to a maximum value e

mE  fast and then remains 

constant. The following function which is continuous over time approximates very well the 

described load history input: 

 

           50( ) (1 )e e t

mE t E e                                   (2.35) 

 

The time-dependent deformation of the beam with relaxation function, is obtained 

and shown in Figure 2.13 for electric field histories, Eq. (2.35) with e

mE 1.4 MV/m and with 

three characteristic time, 0 =0.5, 2 and 20sec. The curvature of the shell increases gradually 

at early time but it almost remains unchanged after T=1sec and so the configuration of the 

structure remains constant although the relaxation modulus of the viscoelastic shell decreases 

over time. The reason is that during stress relaxation within the substrate, the induced 

moment, which depends on the relaxation modulus of the substrates (Eqs. 2.24 and 2.25), 

from the activated actuators also relaxes with time (refer to figure 2.14). 
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(a) 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure 2.13. Effect of time-dependent electric field on deformation of a viscoelastic smart beam with 

two pairs of actuator patches and with 0 equals (a) 0.5 sec (b) 2 sec and (c) 20 sec 
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(c) 

Figure 2.13. Continued 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14. Induced moment to the viscoelastic substrate beam with different time characteristics 

under shown electric stimulus E
e 



38 
 

In Figure 2.15 reconfiguration of another unconstrained beam with two active patches 

is shown. Changes in the deformation after T>0.1 sec is seen to be negligible with the same 

reason discussed previously.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15. Deformation of a free viscoelastic beam with two pairs of active patch 

 

In the next example, configuration of an actuated cantilever beam with two layers of 

active piezoelectric patches bonded along the length of the structure on top and bottom of it 

is calculated as shown in Figure 2.16. The relaxation function of the beam and applied 

electric field are the same as for the previous boundary value problem. As seen and expected 

similar to before, the shape of viscoelastic structure remains unchanged almost after the 

electric field input remains constant. It is noted that in the above analyses, only the time-

dependent responses of the polymeric substrates are considered while the responses of the 

active components are time-independent. When different time-dependent responses of the 

active materials and substrates are considered, different behaviors are expected, which will 

be shown later in Chapter 4. 
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Figure 2.16. Configuration of an originally straight (at T<0) cantilever viscoelastic beam under 

actuation of two active layers of piezoelectric 
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3.  ANALYSIS OF SMART ELASTIC SHELLS WITH GEOMETRIC 

NONLINEARITIES 

 

3-1 Deformations of thin shell with distributed piezoelectric actuators 

The smart beam analysis presented in the previous chapter is now extended to two-

dimensional structures, i.e., slender originally flat planar structures undergoing general three-

dimensional shape changes. Dimitriadis et al. [74] estimated the corresponding load induced 

from the piezoelectric patch to a supporting elastic plate to study linear vibration of simply-

supported plates with bonded distributed patches. They considered mainly small 

deformations structures and used a semi-analytical method based on Fourier series in order to 

obtain solutions to the governing equations. This study adopts the same approach as in 

Dimitriadis et al. [64] in terms of determining the induced bending moment from the 

piezoelectric patches and considers the slender plates undergoing large deformations.  

Consider a part of the shell with thickness 2h, with integrated actuators as shown in 

Figure 3.1. Since the patches are assumed perfectly bonded to the elastic isotropic 

homogeneous shell, the displacements at the interfaces of the shell and the piezoelectric 

patches are continuous; and due to the differences in the elastic moduli of the patches and 

substrate, stress discontinuities arise at the interfaces. In this case, the normal strains in the 

actuators are in the in-plane directions, which are perpendicular to the poling axis of the 

wafer. The induced stresses and strains at the interfaces are equal in the x- and y- directions 

and the resulting stress distributions in the x-z and y-z planes are identical. Figure 3.1 

represents the x-z and y-z stress distributions. Also, it is seen that the stress distributions due 

to the electric stimulus prescribed on the top and bottom actuators must be anti-symmetric 

about the neutral axis in order to create bending moments and curvatures. 
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Figure 3.1. Stress distribution in the structure section due to active piezoelectric 

 

Referring to Figure 3.1, the normal stress distribution within the shell results in the 

couples xm and
ym per unit length (bending moments): 

 

                                               

h

x x

h

h

y y

h

z dy dz m dy

z dx dz m dx

















                                             (3.1) 

 

The axial in-plane strain distribution is considered small and varies linearly along the 

thickness direction and expressed as: 

 

                             ,x x y yz z                                                  (3.2) 

 

where x and 
y are the curvatures of the neutral surface of the shell parallel to the x-z and y-

z planes. By considering a linear elastic constitutive model for isotropic material, and 

equations (3.1) and (3.2), the following moment-curvature expressions are obtained  
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where
plD is the flexural rigidity of the shell, 3 22 / 3(1 )plE h   with

plE denotes the elastic 

modulus of the shell. The objective is to determine the equivalent edge moments of the 

actuator patch such that the axial stresses at the surfaces of the shell are equal to the interface 

stresses of the shell when the patch is activated. The stress-strain relations at the interface for 

the linear elastic shell is  
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where the subscript i of the stress and strains denotes their measurement at the interface. On 

the other hand, the stress-strain relations of the actuator at the interface is expressed as 
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                       (3.5) 

where pE  and p  are the elastic modulus and Poisson‟s ratio of the patch respectively.  x p


and  y p
 denote the unconstrained (free) strains in x- and y- directions, respectively, due to 

application of electric fields to the piezoelectric patches, which are defined in terms of 

prescribed electric field in the same way as in the previous chapter as follows 
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where the linear electro-mechanical constitutive relation, Eq. (2.7-a), is valid for a relatively 

small amount of electric field input and the higher order terms of the electric fields are 

included for relatively large electric field input, Eq. (2.7-b).  

Considering a linear distribution of stresses in the thickness direction of the shell and 

the piezoelectric patches, the expressions for the axial stresses in terms of their magnitude at 

the interface are  

 

                                         

 
 

 
 

     

     

; ;

1 ,

1

xi y ipl pl

x ypl pl

x xi xip p pl

y yi y ip p pl

z z
h h

z

h

z

h

 
 

  

  

 

 
   

 

 
   

 

                        (3.7) 

 

From the moment equilibrium about the neutral axis of the shell in x- direction, 
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where t is thickness of the patch. Substituting Eq. (3.6) and (3.7) into Eq. (3.8) and evaluating 

the integrals results in 

 

                                  x g xipl p
                                                 (3.9) 
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where the geometric parameter kg is defined as 
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In a similar way, the stress relations at the interface are obtained in y- direction. 

  

                                 y g yipl p
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From Eqs. (3.4) and (3.5) by using the Eqs. (3.9) and (3.11), the expressions for the 

interface strains are derived as follow: 
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where 
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and 
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Substituting Eqs. (3.2) and (3.12) into Eq. (3.3), expressions for the couples xm and

ym are obtained as follows 
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                     (3.15) 

 

3-2 Co-rotational finite element (CRFE) analysis of smart thin shells 

In this section, 3-D deformations of smart thin planar structures undergoing small 

strains but large rotations due to electro-mechanical input are analyzed. The CRFE approach 

is adopted for obtaining the approximate solutions. The planar structure is considered as 

geometrically nonlinear shell structures. The co-rotational (CR) formulation is based upon an 

explicit separation of rigid body motions, including translations and rotations, from the total 

deformations. The benefit gained through this approach is that an existing linear finite 

element method is used for the deformational part of motion, while a nonlinear analysis is 

incorporated for the rigid body motions part. 

 

3-2-1 Kinematics of CR formulation 

Consider an individual triangular element deformed to a current configuration as 

shown in Figure 3.2. The element in its initial configuration is denoted C
0
. The motion of the 

element under an applied load carries it to a deformed configuration C
D
. The rigid-body 
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motion undergone by the element brings the initial configuration to the co-rotated 

configuration or dashed configuration C
R
.   

 

 

 

 

 

 

 

 

Figure 3.2. Co-rotational element kinematics  

 

Two types of coordinate systems are considered: global coordinate system defined by 

the triad of unit orthogonal vectors ( ,  ,  ) and local coordinate system of the element 

including initial coordinate system (  
 ,   

 ,   
 ) and co-rotated coordinate system (        ) 

which is the reference coordinate system for both C
R
 and C

D
. Regarding the notations used 

for variables, the superscripts 0 and R correspond to the variables at the initial and co-rotated 

configurations, respectively. Variables without superscript correspond to the deformed 

configuration. Subscripts correspond to the starting and ending points of the vector. The 

variables in the local coordinate system are referred by an overbar. When the variable is 

considered in the global coordinate system, the overbar is omitted. To establish an initial 

coordinate system of the element, the origin of the coordinate system is selected at the 

centroid of the triangular element. For the orientation of the coordinate system, the axis 0

1
e is 

parallel to the side 1-2 of the element, 0

3
e is perpendicular to the element plane determined by 

the three nodes of the element. In other words, the triad of unit orthogonal vectors of the 

coordinate system is derived as follows 

 



47 
 

  
0 00

0 0 0 0 021 3121
1 3 2 3 10 0 0

21 21 31

x ×xx
e , e = , e = e ×e

x x ×x
                      (3.16) 

 

where 
ba b a

0 0 0
x = x - x  , ( , 1,2,3)a b  and

a

0
x  refers to global position vector of element node a in 

element initial configuration C
0
.  

A vector x in the global coordinate system is related to its expression in the local 

coordinate as follows 

 

       
0

0
x = T x,

x = Tx
                 (3.17) 

 

where 0
T and T  are the transformation tensors of a location in C

0
 and C

D
, from global to 

local coordinate systems. Based on Eq. (3.1), 0
T is expressed as 

 

[ ]T 0 0 0

0 1 2 3
T e e e             (3.18) 

 

Similar to the initial coordinate system, the co-rotated coordinate system for the co-

rotated and deformed configurations of the element are established in terms of global 

position vectors of the nodes , ( 1,2,3)a a x in C
D
 and so transformation matrix T is 

expressed as 

 

[ ]T
1 2 3

T e e e                (3.19) 
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The position of the C
R
 is obtained through a rigid-body translation Cu  and rigid-body 

rotation 0
R .

 
The rigid body translation

 Cu is defined as the displacement of the centroid of 

the element.  The orthogonal rotation matrix 0
R  is expressed as  

 

                                                     
0

T
0

R T T                           (3.20) 

 

Translation of an element node a moves from the initial position 0

ax  to its deformed 

position
ax  in C

D
 is given by 

 

                                     0

a a a u x x                                 (3.21) 

 

According to the CR approach, this displacement can be split into rigid-body and 

deformational components:  

 

  a ra da u u u                       (3.22) 

 

where 

 

        

0 0R R

ra a a C Ca Ca

R

da a a

    

 

u x x u x x

u x x
                                  (3.23) 

 

where 
3 3

0 0

1 1

1 1
and

3 3

R R

C a C a

a a 

  x x x x  for a triangular element. Thus, the deformational or in 

this case an elastic translation of the node can be expressed as 
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                                              0 0 R

da a a Ca C Ca    u u x x u x                                   (3.24) 

 

In a local coordinate system, the displacement of the deformed body is expressed as  

 

                              0 0( )R R

da Ca Ca da a a Ca C Ca       u x x Tu T u x x u x               (3.25) 

 

where Ca a C x x x  and the rotation of a node a as it moves from its initial position in C
0 

to 

its deformed position in C
D
 can be described by the rotation tensor Ra. As for the 

translation, Ra is assumed to be decomposed into a rigid-body rotation R0 for nodal rotation 

in C
0 
C

R
 and a deformational rotation Rda as 

 

0a daR R R                          (3.26) 

 

From Eq. (3.5) and (3.11), the deformational rotation in the local coordinate system 

of C
R
 and C

D
 can be expressed as 

 

          
0

T

da aR TR T                      (3.27) 

 

In addition to the rotation matrix R, a pseudo-vector θ  is defined in the process of 

computation. θ  is the rotational pseudo-vector defined as θ n  where   is magnitude of 

the rotation angle 2 2 2

x y z       about an axis given by the unit vector n. The rotation 

matrix R is a nonlinear function of the rotational pseudo-vectorθ . Based on purely 

geometric analyses [35], a rotation of a vector r0 through an angle   about an axis oriented 

through the unit vector 
1 2 3[ , , ]T n n nn  gives a new vector r that can be represented as 
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                              2
0 where =(I+ sin + (1 cos ))  r Rr R N N                      (3.28) 

 

and 

 

                                        

3 2

3 1

2 1

0

spin( ) 0

0

n n

n n

n n

 
 

   
  

N n                                  (3.29) 

 

 On the other hand, the pseudo-vectorθ associated with a known R can be calculated as  

 

                                                

32 23

13 31

21 12

2sin

R R

R R

R R






 
 

   
  

θ n                                    (3.30) 

                    

In order to avoid numerical instability in computation, / sin   is set to one for small , e.g. 

 <10
-8

 or its truncated Taylor series can be used for,  <10
-2

 [42]. 

The finite element state of the triangular element is described by the nodal 

translational displacement au  and the rotational orientation aR  of the nodes. Total nodal 

displacement in the global coordinate system is denoted by an array 
a a ad u R

 
for a=1, 

2, 3.  The goal is to establish the deformational nodal displacement array dp for the element 

containing translational and rotational degrees of freedom as expressed below based on the 

finite displacement state ad of the nodes in global coordinate system: 

 

                                          
1 1 2 2 3 3{ }T

d d d d d d du u u  p                                      (3.31) 
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or in local coordinate system, is given as: 

 

                                            
1 1 2 2 2 2{ }T

d d d d d d du u u  p                                  (3.32) 

 

Another quantity used in the CREF approach is a pseudo-vector ω  denoting 

instantaneous rotation axis about which the rotational angle   is measured. In order to solve 

for the nonlinear finite element equations with iterative methods, the iterative incremental 

solutions represent the superposition additional infinitesimal incremental rotation daω  on 

the basis of finite rotation of the node expressed by pseudo-vector 
daθ . The incremental 

rotation daω  is related to 
daθ as follows 

 

            ( )da da da θ H θ ω                                   (3.33) 

 

where  

 

  

2

3

1
( ) spin( ) spin( )

2

da
da da da

da




   


θ
H θ I θ θ

ω
                           (3.34) 

 

3I  is 3×3 identity matrix, 

 

    

0

spin( ) 0 ,

0

daz day

da daz dax

day dax

 

 

 

 
 

  
  

θ                                (3.35) 

 

and 
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2

1 1
1 cot

2 2
da da

da

 




 
  

                                      (3.36) 

 

Again, for maintaining a numerical stability, for small 
da , say 3da  , truncated 

Taylor series of  is used: 

 

                                  2 4 61 1 1 1
...

12 720 30240 1209600
da da da       

  
            (3.37)   

                          

Equation (3.33) is used in order to update the rotational degree of freedom in the 

solution process by transforming from daω  to 
daθ . Also, the increment of the total 

displacements of a node a is expressed by { }T T T

a a a  d u ω while the total nodal 

displacements is represented as
a a ad u R , (a=1, 2, 3) as mentioned before. 

aω
 
also 

refers to an instantaneous rotation axis of the node a. To update the total rotation of the node 

a, at the end of each increment based on the derived incremental rotation pseudo-vector aω , 

the following formula is used: 

 

        
, ,( )a new a a oldR R ω R                                   (3.38) 

where  

2

2

3

sin( ) sin( / 2)1
( ) spin( ) spin( )

2 / 2

a a
a a a

a a

a ax ay az

I
 

  
 

   

 
    

 

  

R ω
          (3.39) 
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In order to avoid numerical instability, power series expansion of sin( ) /a a   and (

sin( ) /a a  )
2
 can be used for 3a  . 

 

3-2-2 Internal force and tangent stiffness 

In the co-rotated coordinate system of the element, the deformational displacement 

vector dp , Eq. (3.32), is related to the element internal force f and local element stiffness 

matrix K in a linearized form as follows 

 

df Kp              (3.40) 

    

where the vector dp is expressed in Eq. (3.32) and by denoting the internal forces and 

moments at each node a as an and am respectively, f is written as 

 

1 1 2 2 3 3[ ]T T T T T Tf n m n m n m                (3.41) 

 

It should be noted that Eq. (3.40) describes the deformation with respect to C
R
 in 

local coordinate system, and f and K are computed based on small deformations. However, 

with respect to C
0
 in the global coordinate system we deal with nonlinear equations as the 

internal force of the element is nonlinear in terms of displacements and the transformation 

matrices between the local and global coordinate systems depend on the displacement vector 

corresponding to large rotation effects. In the global coordinate system, the linearized 

relation between the tangent stiffness matrix TK of the element and its internal force vector is  

 

T f K d                        (3.42)  
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where d is the vector of total displacement.  

In order to derive TK  of the element, a relationship between the variation of the total 

displacementd  in global coordinate system and deformational displacement dp  in local 

coordinate system should be first obtained. For the element, the variation of

{ }T T T

d d d  p u θ  in terms of { }T T T

d d d  d u ω  is [37] 

 

d d p H d                                             (3.43) 

where  

3 1 3 2 3 3diag    H I H I H I H                      (3.44) 

 

is composed of submatrices 3I  and nodal submatrices ( ) ( 1,2,3)a a da a H H θ as in Eq. 

(3.34). For each node of the element, a, the variation of its deformational displacement vector 

dad is expressed as [42] 

 

                               
3

, 3

1 , 3

0
,

ab a u b

da ab b ab

b u b ab

 


 
     


U S G
d P d P

G I
               (3.45) 

 

where  

 

3

1
, spin( )

3
ab ab a a

 
   
 

U I S x           (3.46) 
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,u bG is the gradient of incremental rigid-body rotation of the element with respect to the nodal 

displacement vector for node b in local coordinate system. At each node, ,u bG is defined as 

    

23 13 21

,1 23 ,2 13 ,3 21

12 12

0 0 0 0 0 0
1 1 1

0 0 , 0 0 , 0 0
2 2 2

0 2 / 0 0 2 / 0 0 0 0

u u u

x x x

y y y
A A A

A l A l

     
     

       
           

G G G   

(3.47) 

 

where A is area of the element and , ( , 1,2,3)ij i j ij i jx x x y y y i j      in which x  and y

are the local coordinates of the element nodes. 

The derivation of 
abP is explained in details in [37, 40] and is not repeated here. 

abP is 

the submatrix of the projector matrix P  which is one of the main auxiliary matrices in the 

CR formulation to extract deformational translations and rotations from the total translations 

and rotations of the element. Thus, for an element, 

 

d d P d                            (3.48) 

 

From Eq. (3.42) and (3.47),  

 

 d el   p HP d HPT d                           (3.49) 

 

where elT  is composed of transformation submatrices T given in Eq. (3.19) as follows: 

 

diag[ ]el T T T T T T T                     (3.50) 
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The next step is to obtain the tangent stiffness of the elementK
T

by taking variation of 

the global internal force of the element f . Based on the virtual work invariance due to a rigid 

body motion 

 

                                                     
T T

d d f p f                                      (3.51) 

 

Thus, using Eq. (3.49), the global internal force can be written as 

 

T T T

elf T P H f                             (3.52) 

 

Taking the variation of f results in 

 

           ( )

T T T T T T T T T T T T

el el el el

GR GP GM M

T

    



   

   

K

f T P H f T P H f T P H f T P H f

K K K K d          (3.53) 

 

As seen, the tangent stiffness of the element in the global coordinate system includes 

four terms. The first three terms, GR GP GM K K K , are the components of geometric 

stiffness, GK , and the fourth term MK  is known as material stiffness. Here, the calculation of 

each term in details is presented in [37] and here only the results and expression for each 

term is presented.
 GRK is the rotational geometric stiffness expressed as 

 

   T

GR el nm el K T F GT                                  (3.54) 

 

where  
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,1 3 ,2 3 ,3 3

,1 ,1 ,3 ,3

,

[spin( ) spin( ) ...spin( ) spin( ) ]

u u u

T T T T T

nm p p p p

   



G G 0 G 0 G 0

F n m n n
                 

(3.55) 

 

where 
,p an and 

,p am are the force and moment components of vector T T

p f P H f .
 GPK

 
is the 

equilibrium projection geometric stiffness expressed as 

 

   T T T

GP el n el K T G F PT                                 (3.56) 

 

where  

 

               ,1 3 ,2 3 ,3 3[spin( ) spin( ) spin( ) ]T T T T

n p p pF n 0 n 0 n 0          (3.57) 

 

GMK is the moment-correction geometric stiffness due to variation of H and expressed as 

 

  
T T

GP el elK T P LPT                                   (3.58) 

 

where  

 

                            
3 1 3 2 3 3diag[ ]TL 0 L 0 L 0 L                       (3.59) 

 

where the nodal submatrix 
aL  is 
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  2

3

1
2 spin( ) spin( ) ( )

2

/

T T T

a da a da a a da da a da a da

da

da

d d

 

 




 
     
 



L θ m I θ m m θ θ m θ m H θ

   (3.60) 

 

  is defined already in Eq.(3.36) and Eq.(3.37). The material stiffness matrix is obtained by 

congruential transformation of the local stiffness to the global frame: 

 

T T T

M el elK T P H K HPT                                   (3.61) 

 

In summary, the following expression gives the tangent stiffness of the element in the 

global coordinate system: 

 

                            T T T T T T

T el n nm el   K T P H K HP P LP G F P F G T           (3.62) 

 

Also, by transforming the local internal stiffness of the element to the global frame, 

we can calculate the displacement components from Eq. (3.42) 

 

     
T T T

elf T P H f                                           (3.63) 

 

3-3 Flat triangular shell element   

The element used in this study is three-node linear flat shell element with six degree 

of freedom per node obtained by combining the Discrete Kirchhoff Theory (DKT) plate 

bending element [75] and optimal (OPT) membrane element [76] which includes drilling (in-

plane rotation) degree of freedom.   
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3-3-1 Plate bending element stiffness 

The configuration of the element with its nodal degrees of freedom is shown in Figure 

3.3. The formulation of the element [75, 77] is based on the discrete Kirchhoff theory for 

bending of thin plates with considering transverse shear deformations. However, in this 

study, the transverse shear deformation is neglected and the Kirchhoff hypothesis is 

introduced in a discrete way along the edges of the element to relate the rotational degrees of 

freedom to the transverse displacements. The explicit form of the stiffness of each element is 

presented here:  

 

 

 

 

 

 

 

 

 

Figure 3.3. Triangular plate bending element with its degrees of freedom     

 

As seen, schematically, in figure 3.3, the nodal displacement vector including degrees 

of freedom of the element is 

 

             
1 1 1 2 2 2 3 3 3

T

z x y z x y z x yu u u        U                   (3.64) 

 

The stiffness of the optimal plate element is obtained as follows  
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11

0 0

2 T

DKT A



  K B DB                                            (3.65)  

 

where A is area of the element and and are the in-plane components of the isoparametric 

area coordinates. B is the strain-displacement transformation matrix defined as  

 

    

31 , 12 ,

31 y, 12 y,

31 x, 12 x, 31 y, 12 y,

1
( , )

2

T T

x x

T T

T T T T

y y

x x
A

x x y y

 

 

   

 

 
 

   
 
     

H H

B H H

H H H H

    (3.66) 

 

where 
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 

    
 

     
      
 
  
 

 
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H              (3.67-a) 
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H                   (3.67-b) 
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H                           (3.67-c) 
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H                   (3.67-d) 

 

with  
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2 2

2 2 2

6 / ; 6 / ;

3 / ; 3 / ;

4,5,6 for 12,23,31, respectively

k ij ij k ij ij

k ij ij ij k ij ij

p x l t y l

q x y l r y l

k ij

   

 

 

                (3.68) 

 

Finally, the bending rigidity matrix D for a linear elastic plate is obtained as follows 

 

                                                
/2

2

/2

t

t

z dz


 D E                                            (3.69) 

 

where t is element thickness and E is the elasticity (material stiffness) tensor.  

 

3-3-2 Membrane triangular element stiffness 

The configuration of the membrane element with its nodal degrees of freedom is 

shown in Figure 3.3. In order to establish the membrane (plane stress) element and derive its 

elemental stiffness, the assumed natural deviatoric strain formulation (ANDES) discussed in 

[78] is adopted. The derivation of the stiffness is based on the natural strains, which are the 

normal strains in the in-plane directions measured along the sides of the triangular element. 

The element stiffness is composed of two parts: 1) basic stiffness which takes care of 

consistency in terms of force-moment equilibrium equations and their conjugate 

displacements and rotations and 2) higher order stiffness which takes care of accuracy and 

stability (rank sufficiency) of the solutions. To construct the higher order stiffness, deviatoric 

natural strain components are used. Here, deviatoric means change from the constant strain 

state and the natural strains are measured along the side direction of triangular element.  

The reasons to consider drilling degree of freedom (in-plane rotational degree of 

freedom) are to improve the performance of the element in terms of numerical aspects like 

mesh sensitivity, avoiding singularity in the tangent stiffness matrix and model construction 

without adding midside nodes and so keeping the model and mesh preparation simple and it 

simplifies the treatment of the shell intersections and also connection of shells to beam 
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elements in discretizing a domain which includes joints of beam and shell structures. Here, 

the explicit form of the membrane stiffness is presented. Details of its derivations can be 

found in [76, 79]. 

 

 

 

 

 

 

 

 

 

Figure 3.4. Membrane triangular element with its degrees of freedom    

  

As seen in figure 3.4, the nodal displacement vector including degrees of freedom of the 

element is 

 

                                        
1 1 1 2 2 2 3 3 3

T

x y x y x yu u u u u u     U     (3.70) 

 

The stiffness of the optimal membrane element is expressed as [76] 

 

           0

3

4

T Tt

A
   K LEL T K T      (3.71) 

 

where L is the element lumping matrix defined as [79] 
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1 2 3[ , , ]TL L L L  with 
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in expression of
jL , the nodal indices ( , , )i j k take cyclic permutations of (1, 2, 3); 
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and 

  

        1 1 2 2 3 3
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3-4 Solution procedure 

By defining the internal force and tangent stiffness of each element of the structure in 

the global frame, the structural tangent stiffness StK  and internal force StF  are obtained. The 

Newton-Raphson iterative algorithm with load control is adopted to determine the 

displacement solution of the structure under applied loads. Briefly, due to nonlinearity of the 

problem, the solution obtained by an increment-iterative process is as follows: Consider the 

equilibrium point of the structure after n load steps with known equilibrated displacement 

solution ( )n
U , structural tangent stiffness ( )n

StK  and internal force ( )n

StF  in the first iteration of 

(n+1)
th

 increment, the following equation is considered as the predictor: 

 

   
1

( 1) ( 1) ( 1)

(1) (1) 

n n n

St ext 


  U K F                       (3.76) 

 

where ( 1)

(1)

n 
U is the initial guess of the structure‟s incremental displacement by using ( )n

StK at 

the end of n
th

 increment as the trial for tangent stiffness ( 1)

 

n

St


K due to the (n+1)

th
 incremental 

load ( 1)n

ext 
F ; extF is the total external load applied to the structure and ( 1)n  is the load factor 

of the (n+1)
th

 load step. The subscripts and superscripts in the parentheses stand for the 

iteration number and increment number, respectively. 

The solution is updated as ( 1) ( ) ( 1)

(1)

n n n  U U U and then, the tangent stiffness and 

internal force of the structure is updated. Starting from the 2
nd

 iteration, the following 

equation is solved for each iteration (i)   

 

               
1

( 1) ( 1) ( 1)

( ) ( ) ( )

n n n

i St i ext St i 


   U K F F            (3.77) 
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and as for the first iteration, ( 1)n
U is updated and ( 1)

 

n

St


K and StF are calculated for next 

iteration. This process is repeated until iteration convergence criterion is met. The criterion in 

this study is considered as  

 

( 1)

( 1) 3

( 1)
10

n

i

n

 

 




U

U
           (3.78) 

 

To improve the computational efficiency, the load control strategy is adopted in 

which the magnitude of the load increment is adjusted depending on the convergence rate in 

previous step: a maximum allowable iteration imax is chosen for a single load step. For the n
th 

load step, if convergence does not occur after up to imax iterations, the load factor ( )n is 

reduced and incremental load is recalculated. On the other hand, if for the n
th 

load step, 

convergence occurs after j iterations where maxj i , the load factor is increased for 

computations of the next load step.  

   

3-5 Boundary value problems 

First, the CRFE solution is compared with the analytical solution for a cantilever 

beam under a bending moment along its free edge, as shown in Figure 3.5. Young‟s modulus 

and Poisson ratio of the beam are selected arbitrary here as 10 MPa and 0.2, respectively. It is 

seen that CRFE solution is in excellent agreement with the analytical solution obtained by 

Reissner‟s theory described in previous chapter. Figure 3.6 shows the deformed shapes of a 

cantilever thin shell under several magnitudes of bending moment along the free edge of the 

shell. Note that the displacements are normalized with respect to the length of the shell. 
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Figure 3.5. Comparison of predicted deformed configuration of the beam by CRFE method with 

Reissner‟s theory approach 

 

 

Figure 3.6. Deformed configuration of the beam subjected to a bending moment in N.m along its free 

edge 
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Table 3.1. Properties of the components of the smart shell 

Piezoelectric patch  Supporting shell 

d13 = d23 = 0.18 nm/V,       

d63 = 0, 

β13= 0.8 f(m/V)
2
 

Ep = 63 GPa 

νp = 0.28 

tp = 0.5 mm 

Epl = 2 GPa 

νpl = 0.1 

tpl = 5 mm 

 

 

In the following boundary value problems, several reconfigurations are simulated. 

The material properties are listed in Table 3.1. Convergence study is preformed to evaluate 

the size of elements needed for discretizing the domain for obtaining accurate results. Figure 

3.7 shows the configuration of a shell with one pair of patches stimulated by electric field 

with magnitude of 1.3 MV/m when a nonlinear behavior is considered for the piezoelectric 

material in terms of electric field or 9.2 MV/m when a linear electro-mechanical behavior is 

considered. The domain is discretized with 600 elements. The effect of number of elements 

on the maximum displacement of the shell at its free edge is shown in Figure 3.8. As seen, 

there is a little change in the result by changing the number of elements from 200 to 600 with 

average number of iterations equals 3 during load steps. Therefore the results with 400 

elements can be considered reasonably accurate although smaller element size leads to more 

accurate deflected configuration of the shell especially when quality of deflection is 

concerned. Moreover, in Figures 3.9 variations of translational and rotational displacements 

versus number of iterations until convergence are shown at two stages of loading: 0.1MV/m 

and 1.2MV/m. It should be noted that the criterion of zero residual load (Eq. (3.79)) was also 

checked in addition to Eq. (3.78) criterion, but for the problems considered here there is 

almost no change in the responses (less than 0.0001%) when only displacement residual or 

displacement and force residuals are considered. The variation of residual force versus 

iteration number is shown in Figure 3.10.  
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Figure 3.7. Configuration of the cantilever shell with one pair of active patches with 400 elements 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Convergence of the maximum displacement of the shell with one pair of patches 
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    (a) 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure 3.9. Translational and rotational displacement convergence criteria for the smart shell with one 

pair of patches at (a) 01 MV/m (b) 1.2 MV/m 
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       (a) 

 

 

 

 

 

 

 

 

 

 

      (b) 

Figure 3.10. Convergence of the residual load of the shell with one pair of patches at (a) 0.1 MV/m 

and (b) 1.2 MV/m 
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Similar convergence analysis is presented for a smart shell with two pairs of patches 

shown in Figure 3.11. The direction of applied electric field to one pair is opposite of the 

other one which leads to opposite curvature direction on location of the shell covered by the 

patches.  

 

 

 

 

 

 

 

 

Figure 3.11. Configuration of the cantilever shell with two activated pairs of patches in opposite 

directions 

 

Maximum tip displacement of the shell tip versus number of element used for 

discretization is shown in Figure 3.12 which implies that 600 elements give accurate results 

reasonably. Also, as in previous example, variation of convergence criteria versus iteration 

number at two load steps, 01 MV/m and 1.2 MV/m, are presented in figure 3.13 and 3.14. 
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Figure 3.12. Convergence of the maximum displacement of the shell with one pair of patches 

 

 

 

 

 

 

 

 

 

 

(a) 

Figure 3.13. Translational and rotational displacement convergence criteria for the smart shell with 

two pairs of patches at (a) 01 MV/m (b) 1.2 MV/m 
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(b) 

Figure 3.13. Continued 

 

 

 

 

 

 

 

 

 

 

(a) 

Figure 3.14. Convergence of the residual load of the shell with two pairs of patches at (a) 0.1 MV/m 

and (b) 1.2 MV/m 
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(b) 

Figure 3.14. Continued 

 

As seen in the two problems above, the load residual in each presented example 

decreases with increase of iteration number but no clear trend in variation of incremental 

displacements versus iteration number are observed.  

The effect of magnitude of electric stimulus on deformation of the shell with one 

active pair of patches is shown in Figure 3.15a.This reconfiguration under different 

magnitudes of stimulus is to resemble morphing shape change of wing for a micro aircraft 

whose conceptual design is proposed by DARPA and NASA seen in Figure 3.15b.  
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(a) 

 

 

(b) 

 

Figure 3.15. (a) Configuration of the cantilever shell under various magnitude of electric stimulus 

resembling (b) DARPA and NASA morphing wing concept 

 

In Figures 3.16a-b respectively, linear and nonlinear electro-mechanical responses of 

piezoelectric material as actuators are compared. Again, nonlinear piezoelectric coefficient is 

considered as β13=8×10
-7

 n m
2
/V

2
 [45]. Under the same magnitude of electric field

1.3MV/meE  , as seen, there is significant effect on deformed configuration of the structure 

with such magnitude of the stimulus for the actuators. Figures 3.17a and b show the axial 

strain distributions along the longitudinal direction of the shells corresponding to shells in 
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Figures 3.16a and b, respectively. Such ring shape configuration shown in Figure 3.12b can 

be useful for deployable applications. Besides, the strain magnitude over the covered areas 

with patches is relatively small for the shell undergoing large deformations shown in Figure 

3.16.  

 

 

 

 

 

 

 

 

   

(a) 

 

 

 

 

 

 

 

 

(b) 

Figure 3.16. Configuration of the cantilever shell under actuation of three pairs of piezoelectric 

patches with (a) linear behavior (b) nonlinear behavior in terms of electric field  

 

 



78 
 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

(b) 

Figure 3.17. Axial strain distribution (εx) of the cantilever shell under actuation of three pairs of 

piezoelectric patches (a) with (a) linear behavior (b) nonlinear behavior in terms of electric field  
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Another example is shown in Figure 3.18, where configurations of a smart shell with 

two substrate stiffness, 2 GPa and 0.01 GPa and two pairs of active patches is shown is 

activated by an electric field E
e
=0.9 MV/m. Nonlinear electro-mechanical responses is 

considered. As seen, the stiffness of the substrate does not affect amount of deflection 

significantly. It means that effect of the stiffness of the substrate on the magnitude of induced 

load is the same as on the magnitude of the bending rigidity of the structure; it is consistent 

with the results obtained in chapter 2 where change of relaxation function does not affect 

much configuration of actuate viscoelastic beam (see Figure 2.13 and 2.15). Such 

configuration can resemble deformed shape of flapping side wings or a tail wing of micro-

aerial vehicle.  

 

 

 

 

 

 

 

 

 

Figure 3.18. Configuration of the shell with two pairs of piezoelectric patches with two substrate 

stiffness  

 

Figure 3.19 shows configuration of the actuated smart shells with one pair of actuated 

piezoelectric patches. The shell is clamped along its two opposite edges as highlighted in the 

figure and actuated with electric field in magnitude of 1.3 MV/m. Distribution of axial strains 

in direction of length and width of the plate, ,x y   are shown in Figure 3.20a and b, 

respectively. Again this confirms that the plate is undergoing small strain and the 

deformation in this configuration is dominated by rotation. Other configuration of a smart 
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shell with four pairs of patches constrained only in its middle subjected to 0.9 MV/m electric 

field is shown in Figure 3.21. Finally, Figure 3.22 shows a shell with four pairs of patches 

where in contrast to previous cases, the direction of applied electric fields, E
e
= 0.9 MV/m are 

in opposite directions for the pairs. 

 

 

 

 

 

 

 

 

Figure 3.19. Configuration of the shell with two clamped edges under actuation of one pairs of 

piezoelectric patches 

 

 

 

 

 

 

 

 

 

 

 

(a) 

Figure 3.20. Axial strain distributions (a) εx and (b) εy over the shell with two opposite clamped edges 
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(b) 

Figure 3.20. Continued 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21. Configuration of the shell with free edges under actuation of four pairs of piezoelectric 

patches 
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Figure 3.22. Configuration of the smart shell with four pairs of piezoelectric patches stimulated in 

opposite directions  
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4.  ANALYSIS OF SMART SHELLS WITH GEOMETRIC 

NONLINEARITIES AND TIME-DEPENDENCE  

 

4-1 Introduction 

In this chapter, the study is extended to viscoelastic analysis so that it can contribute 

to wider range of applications where the structure is made of polymers and understand the 

impact of viscoelastic polymers have on the shape changes in active composites. Viscoelastic 

characteristics are considered for both components of the smart shell including the electro-

active patch and substrates. AFC, which shows viscoelastic effect, is considered for the 

electro-active patches. Material characterizations of AFC are also discussed in this chapter. 

The general higher order electro-active model can also be used for other electro-active 

materials, such as piezoelectric polymers and electrostrictive materials.       

 

4-2 Effect of distributed piezoelectric actuators on the supporting viscoelastic shell  

Similar to the elastic substrate case, the shell is assumed to be originally straight and 

one or multiple pairs of piezoelectric patches are bonded perfectly to the top and bottom of 

the substrate symmetrically with respect to the middle axis or plane of the shell. Patches may 

show either elastic or viscoelastic response. 

 

4-2-1 Elastic piezoelectric patch 

In Chapter 3, for a completely elastic smart structure in chapter 3 the Eqs. (3.9) and 

(3.11) in terms of strains are written as follows  

 

  
   

   
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(1 )

xi s yi p xi p p yi p p p
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    

    
             (4.1) 
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where  
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                       (4.2) 

 

where the parameters are the same as  the one defined in Chapter 3 and shown in Figure 3.1.  

 Now, by considering the time-independent response for the piezoelectric patches and 

linear viscoelastic constitutive relations for the substrate subjected to small strains under 

electric field stimulus, the viscoelastic version of Eq. (4.1) is rewritten as 
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 

 
     

(4.3) 

 

where A(t)=Es(t)/ (1-νs
2
),  Es(t) is the relaxation function of the substrate; the Poisson‟s ratio 

of the shell  s
is assumed to be constant in terms of time. Again, pE  and p  are the elastic 

modulus and Poisson‟s ratio of the piezoelectric patches respectively. The free strain of the 

elastic piezoelectric material 
p  is defined as before but here is a function of time if the 

electric stimulus changes over time.  

In more concise form, the Eq. (4.3) is written as  

 

 

 

( ) D ( ) ( ) D ( ) ( ) ( ) (1 ) ( )

( ) D ( ) ( ) D ( ) ( ) ( ) (1 ) ( )
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       

       

      

      
         (4.4) 

 

where D denotes time derivative operator and ' ' stands for convolution integral over [0, t]. 
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To solve the above set of integral equations, Laplace transformation is used to 

transfer the system of integral equations (4.3) to Laplace space and obtain the following set 

of linear equations, 
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 

D D D D (1 )D /
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                   (4.5) 

 

where superscript ' ~ '  again indicates transformed function in Laplace space. By solving the 

above system and then inverse Laplace transformation, the time-dependent interface strains 

are obtained and then in similar way to the elastic case, the time-dependent induced unit 

moments to the substrate are obtained as: 
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                      (4.6)                                  

 

4-2-2 Viscoelastic active fiber composites (AFCs) 

 This section presents responses of AFCs manufactured from Advanced Cerametrics 

Inc. Mechanical tests were conducted on AFC at Pennsylvania State University, which show 

significant viscoelastic response of AFC. Electro-mechanical tests were also done that 

indicate time-dependent behaviors of the coupling properties. Time-dependent constitutive 

models are formulated for the mechanical and electro-mechanical coupling responses for 

AFC. Experimental data are used for material characterization and model verification. 

Finally, the time-dependent constitutive models for the AFCs are incorporated to the smart 

flexible shells. 
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4-2-2-1 Electromechanical properties of the AFC 

The time-dependent relaxation function of the AFC is calibrated from experimental 

data obtained by Dr. Ounaies and her students at Pennsylvania State University reported in 

[56]. The time-dependent relaxation function of the AFC in fiber direction, 1, is assumed to 

have the following form: 

 

              
/
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p p n
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E t E e
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1

n
N

t
n

n

e





   is called the normalized relaxation function.   

is the time-dependent function at relaxed (equilibrium) condition and n , n =1,…,N, are 

series of relaxation times which indicate the speed of relaxation. Low values of n show fast 

relaxation processes, while large values of n indicate slow relaxation processes. Although 

the rate of relaxation process may change at different strain levels or temperatures, here we 

assume that temperature is kept constant (25
o
C) under applied electric field and also because 

of small strain case, the relaxation function is considered only time-dependent.  

Under a uniaxial tensile test in the fiber direction, the tensile elastic modulus of the 

AFC in the fiber direction 11
el
pE is measured as 9.76 GPa, from the elastic (instantaneous) 

response. Figure 4.1 shows the relaxation data from experiment and the fitted curve based on 

the Prony series of Eq. (4.7). Since 11( )pE t  is in the form of Prony series, for optimized data 

fitting, a nonlinear least square algorithm named Trust region reflective algorithm, was 

utilized in MATLAB (Mathworks, Inc.). The obtained parameters 1, ,..., N  
 

are 

presented in Table 4.1. 
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Figure 4.1. Time dependent relaxation function at room temperature 

 

Table 4.1. Normalized parameters of the relaxation function 

n ϒn τn (min) 

∞ 0.3934 - 

1 0.1449 1.04976 

2 0.00277 0.00923 

3 0.00069 49.75124 

4 0.1771 3.32799 

5 0.1078 0.01006 

6 0.1759 56.17978 
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For the piezoelectric coefficients of the AFC, the values reported by Khan et al. [80] 

are used. The linear piezoelectric coefficient in the fiber direction (d11) of the AFC is 

expressed as a time-dependent kernel function as follows 

 

                  
/

11 11, 0 11,

1

( )= 1 n

N
t

p p p n

n

d t d d e




                (4.8) 

 

Table 4.2. Parameters of the Prony series for piezoelectric coefficient  

n 
11,p nd

(pm/V) 
n  (min) 

0 110 - 

1 10 0.2 

2 120 1 

3 10 10 

4 140 60 

 

 

Based on the available experimental data, the nonlinear piezoelectric coefficient (βp11) 

is assumed to have similar time-dependent function and differs from the linear coefficient by 

a constant, which is calibrated from instantaneous response of the piezoelectric material. This 

approach is similar to the quasi-linear viscoelastic model, originally proposed by Fung [81]. 

Figure 4.2 shows the experimental data and estimated data from least square algorithm. The 

calibrated properties are 
5 2

11,0( 2.32 10 )e e

pd E E     and therefore, 

5

11 112.32 10 ( / )p pm V d    . The R-squared equals 99.1% which verifies the high 

accuracy of the modeled data.  
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Figure 4.2. Strain response of AFC in fiber direction  

 

The AFC is considered orthotropic with fibers in  direction 1; due to lack of 

experimental data, the properties in directions perpendicular to the fibers are approximated as 

22 11( ) (15 /19) ( )p pE t E t  [80] and
21 11( ) 0.5 ( )d t d t  [82]. The corresponding Poisson‟s 

coefficients (ν12 =0.28 and ν21= (15/19) ν12 [80] of the material are assumed time-

independent. 

 

4-2-2-2 Time-dependent interaction of the AFCs and the substrate 

The constitutive stress-strain for the AFC are written as: 
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Fibers of the AFC are assumed in x-direction. From the equilibrium conditions and 

considering continuity condition at interface strains, the following sets of equations in terms 

of unknowns 
y i and 

xi are: 

 

              

 

12

2 2
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12
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 (4.10) 

 

where  
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  (1 is in fiber direction)      (4.11-a) 

and 

                                         
5 2

1 12.32 10 ( / )e eF E m V E                                   (4.11-b)

   

By solving Eq. (4.10) in Laplace space, the induced time-dependent moments to the 

substrate can be derived as before.  
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4-3 Structural analysis of the viscoelastic substrate 

After computing the induced load from the elastic or viscoelastic actuators, the 

deformation analysis of viscoelastic thin substrate is performed using CRFE approach. The 

general stress-strain constitutive relation for the viscoelastic substrate in tensorial form is 

written as  

    0

( , )
( , ) ( )

t
pl

pl pl

t
t t d 




 


ε x

σ x E                                 (4.12) 

 

or in matrix components form as follows                                      

 

         

,

, ,

0

( , )
( , ) ( )

t
kl pl

ij pl ijkl pl

t
t E t d


  




 


x

x                          (4.13) 

 

As the following equations are related to the substrate the subscript „pl‟ of the 

quantities is omitted for simplicity. We deal with the plane stress situation, , , , 1,2i j k l  . In 

the FE formulation and incremental iterative process, the incremental quantities are 

expressed in discrete intervals of time. In order to determine small deformation 

displacements of an element, the incremental form of the viscoelastic constitutive equation is 

done in a similar procedure performed by Zocher et al [83] and presented here briefly. The 

incremental stress during the time increment dt from tn to tn+1 on interval [tn, tn+1] is written as 
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0 0
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n nt t

n n

t t
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ε x ε x

σ E E                      (4.14) 

 

or  
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          (4.15) 

 

The Wiechert model is chosen for describing components of the material relaxation tensor: 

                                        
1

( )
ijkl

ijklm

m

tN

ijkl ijkl ijkl

m

E t E E e



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
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In calculating the integrals in Eq. (4.14), /  ε  is approximated as a constant matrix, 

the strain rate •
ε , and t  ε ε  over the interval [tn, tn+1]. Thus, the incremental form of the 

constitutive Eq. (4.14) is written as  

 

                                                      • R  σ E ε σ                         (4.17) 
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For the FE implementation, the principle virtual work similar to the elastic problem 

but by considering time dependency can be written at t+Δt as 

 

                ˆ ˆ
e e e

t t t t t t t t t tdV dS dV   

  

     σ σ ε ε t ψ q ψ        (4.19) 
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where t and q are surface traction and body force vectors respectively;  is density of the 

medium and ψ is a vector arbitrary admissible displacement functions and each component 

of ε̂ is defined in terms of components of ψ as 
,

ˆ 0.5( )ij i j j,i    .  

By considering the known equilibrium condition at t and substituting Eq. (4.17) into 

Eq. (4.19) gives  

 

ˆ ˆ ˆ
e e e e e

t t t t t t t t t RdV dS dV dV dV   

    

              εE ε t ψ q ψ εσ ε σ

   

(4.20) 

 

After some algebraic manipulations, the stiffness matrix, internal and external force 

vectors of the element can be derived as follows  

 

;
e e

e

T t T R TdV dV dV
 

     f B σ B σ K B EB               (4.21) 

 

By determining the stiffness and internal forces of an element of the substrate, the 

aforementioned CRFE formulations in the previous chapter are used in the same way as for 

the elastic case in Chapter 3 in order to derive the stiffness tensor and force vector for the 

entire domain. The solution procedure and the iterative algorithm used here are also the same 

as the one described in Chapter 3. 

 

4-4 Boundary value problems 

In this section, through some boundary value problems time-dependent deformations 

of smart shells subjected to electric stimuli are shown. The relaxation function of the 

isotropic substrate is expressed as 
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( ) 0.4 1.6 GPat

sE t e                      (4.22) 

 

The Poisson‟s ratio of the viscoelastic substrate is assumed time-independent and the 

same as for elastic shell. The materials properties for the patches and thickness of the 

components are the same as before presented in Table 4.1. Again, nonlinear response of 

piezoelectric material in terms of electric field is taken into account. 

The electric field stimulus is assume to be a time dependent function defined as 

follows, which has continuous time derivative during [0 t] so that Laplace transformation can 

be used easily for the convolution integrals.   

 

               /
( ) (1 )rt te e

mE t E e


              (4.23)   

          

A small viscoelastic shell with one pair of elastic piezoelectric patches is subjected to time-

dependent electric field as described in Eq. (4.23) with 1.1MV/me

mE   and 0.02secrt  for 

total actuation time T. Thus, the load almost reaches to e

mE  and remains constant in less than 

0.1 sec. The configuration of the shell for different times is shown in Figure 4.3. As seen, the 

curvature of the shell increases gradually at early time but it almost remain unchanged after 

T=0.5sec and so the configuration of the structure remains constant although the relaxation 

modulus of the viscoelastic shell decreases over time, Eq. (4.22). 

The reason is similar the one described in Chapter 2 for smart beams; during stress 

relaxation within the substrate, interaction between the substrate and the patch also decreases 

under constant stimulus and because the induced moment from the activated patch also 

depends to the relaxation function thus, induced moment from the activated patch to the 

substrate decreases which makes up for rigidity reduction of the structure and so the shape 

remains constant. Figure 15 shows the induced moments to the substrate under the 

aforementioned electric stimulus, Eq. (56). When the electric stimulus increases from zero to 

nearly its maximum value, the induced moment increases at first and later it decreases with 

time because as the electric stimulus remains constant and the modulus decreases with time. 
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Figure 4.3. Configuration of the smart viscoelastic shell under actuation of one pair of elastic 

piezoelectric patches at different actuation time, T. 

 

 

 

 

 

 

 

 

 

Figure 4.4. Induced moment by the elastic actuator to the viscoelastic substrate under shown electric 

stimulus E
e 

 

Figure 4.5b shows numerical simulation of lateral deformation of another wing 

concept for mini UAVs (Figure 4.5a) by considering elastic piezoelectric actuators and 
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viscoelastic substrate. Similar to the previous case, it is seen deformation of the structure 

increase fast for 0<T<0.5sec due to increase of applied electric field but then remains almost 

constant for T>0.05 sec. 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

(b) 

Figure 4.5. (a) A UAV concept and (b) configuration of the smart viscoelastic shell under actuation of 

two pairs of elastic piezoelectric patches at different actuation time, T. 

 

The fact that under a constant electric stimulus to the elastic piezoelectric actuators, 

configuration of the viscoelastic structure is almost time-independent or stable over time is 

important in practice. Because it enables engineers to use polymers in designing for example 

lightweight structures with desired shape changes under certain stimulus magnitudes without 

being concerned about time effect on their configurations. 

In the following examples, we consider the actuators made of AFCs with viscoelastic effects. 

The material properties of the AFCs are the ones presented in section (4-2-2-1). A slender 

viscoelastic shell with one pair of AFC patches is subjected to time-dependent electric field 
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as described in Eq. (4.23) with 0.5MV/me

mE   and 0.02secrt  . The configurations of the 

shell for different times are shown in Figure 4.6. As seen, the curvature of the shell increases 

over time but its rate of increase reduced gradually. For large enough T, the configuration of 

the structure almost does not change, which is at the relaxed conditions for both the actuator 

and substrate. So here, unlike for the elastic patch, the viscoelastic effect on the deformation 

is observed. In this case the significant time-dependent effect is due to the piezoelectric 

coefficient of the AFC that change with time (Eq. (4.8)). The piezoelectric effect of the AFC 

leads to increase of the induced moment to the substrate over time. As time increases, 

reduction of the rate of the piezoelectric effect is seen until it becomes almost constant and 

thus, the deformation of the structure does not increase noticeably after some time. 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Configuration of the smart viscoelastic shell under actuation of one pair of AFC patches at 

different actuation time, T 

 

In Figure 4.7a and b, a viscoelastic shell with non-uniform width actuated by four 

active pairs of AFC patches with 0.5MV/me

mE  for the time-dependent stimulus is shown. 

Over time the four arms along four edges of the square shape base fold gradually which can 

resemble a self-folding actuated box.   
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(a) 

 

 

 

 

 

 

 

(b) 

Figure 4.7. Configuration of the smart viscoelastic shell under actuation of four pairs of AFC patches 

at (a) T=0.1 sec and (b) T=1 sec 

 

In next two examples, twisting configurations of two smart viscoelastic plate after 

T=0.1 sec and 1sec with two pairs of quadrilateral-shape patches stimulated in the same 

directions (Figure 4.8) and opposite directions (Figure 4.9) are shown from different view 

angles. 
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(a) 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure 4.8. Configuration of the smart viscoelastic shell under actuation of two pairs of AFC patches 

at T=0.1 sec and 1 sec form two view angles (a,b) 
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(a) 

 

 

 

 

 

 

 

 

 

(b) 

Figure 4.9. Configuration of the smart viscoelastic shell under actuation of two pairs of AFC patches 

in opposite directions at T=0.1 sec and 1 sec form two view angles (a,b) 
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In next analysis, the substrate is assumed to be elastic; Figure 4.10 shows 

configuration of a smart shell consisting of an elastic substrate actuated by one pair of AFC 

patches. For the electric field input 0.5MV/me

mE  and 0.02secrt  . As seen the 

deformation increases relatively fast at early time due to manly an increase of electric 

stimulus magnitude and then increases slowly over time because of the viscoelastic effect of 

the actuator related to increase of the piezoelectric coefficients of the actuator.   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10. Configuration of the smart elastic shell under actuation of one pair of AFC patches at 

different actuation time, T 
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5.  CONCLUSION 

 

5-1 Summary of the work 

In this research, structural analyses of flexible elements including beams, plates and 

shells under electro-mechanical actuations have been studied. The structures are undergoing 

large deformations, mainly due to large rotation, but strains remains relatively small under 

electric field actuation. Multiple piezoelectric patches attached on top and bottom surfaces of 

the substrate structure, symmetrical with respect to middle of the substrate in thickness 

direction, have been considered. By applying electric voltage, the patches were stimulated 

and consequently the substrate was actuated based on calculated interaction between the 

patch and the substrate. The calculation of the induced load from the actuated patches to the 

substrate was performed based on perfect bonding of patches to the substrate so that the 

stresses transmitted to the substrate almost along the edges of the patch. Large deformations 

like folding were desired for actuated structure which demands relatively large electric field 

stimulus. Therefore, nonlinear electro-mechanical coupling effects were considered for the 

behavior of the active piezoelectric patches. The thickness of the patch was considered much 

smaller than the thickness of the substrate to that extent that the structure can be assumed 

reasonably with uniform thickness equal to the thickness of the substrate. The nonlinear 

electro-mechanical constitutive model can also be used for other type electro-active materials 

such as electrostrictive materials, in which the even terms in the higher order electric field 

variables are considered. 

For cantilever smart beams under the application of electric actuation, the governing 

equations based on the Reissner‟s theory were successfully solved analytically. On the other 

hand, under electro-mechanical actuation, 4
th

 –order Runge-Kutta method was used for 

modeling deformation of the actuated beam.  

For numerical simulation of the structural response of smart plates and shells, co-

rotational Lagrangian approach was adopted. This approach was especially beneficial for 

analyses dealing with small strain but large rotations and nonlinear geometry is mostly 

related to the rigid body rotations and translations. Incremental iterative process with 
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Newton-Raphson algorithm was used for the nonlinear analysis. At each incremental time 

step, linear finite element analysis was used to calculate the trial small deformational 

rotations and translations of each element of the discretized domain of the structure, and then 

by using some purely geometrical translation and rotation tensors and coordinate 

transformations, rigid body deformations and therefore the total large displacements of the 

structure were determined.  

Polymers are common materials for manufacturing flexible foldable structures which 

may show time-dependent behavior; therefore, other than elastic analysis, viscoelastic 

analysis was also performed to count stress relaxation in the actuated polymeric structure 

over time. The viscoelastic characteristic was considered also for the AFCs actuator. AFCs 

with polymeric matrix have higher toughness and easier to use as actuators for 

reconfiguration of foldable structures. Thus, it is important to also consider time-dependent 

behavior of AFC patches which influence the shape changes in the foldable systems. 

Through various simulations for elastic and viscoelastic beams and shells, different 

reconfigurations of the actuated structures have been presented. Three types of simulations 

were performed including elastic patches with elastic substrate, elastic patches with 

viscoelastic substrate and viscoelastic patches with viscoelastic substrate.  

It was seen that stiffness of substrate does have notable effect on amount of 

deformation of the actuated structure as the change in rigidity of the structure neutralized by 

the change in induced load by the piezoelectric patches perfectly bonded to the substrate. 

Therefore, for instance, for viscoelastic substrate with elastic patches under constant 

stimulus, although relaxation function of the substrate decreases over time, reduction of 

induced moment prevents further deformation of the structure. This can gives elastic 

piezoelectric actuators advantage over viscoelastic actuators in applications where time-

dependent deformation is undesirable.  

Moreover, by manipulating some parameters such as locations and sizes of the 

patches and magnitude of electric stimulus, some interesting configuration with practical 

application were presented such as U-shape configuration promising for manufacturing soft 

robotic grippers, morphing shape change of wings of micro air vehicles and self folding of a 

box useful for packaging.  
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5-2 Future works 

1- Taking into account large strains by modifying CRFE or using another method like 

updated Lagrangian FE method to analyze smart foldable structures to extend the 

application of the presented work to large strain situations where applied loads are 

much larger than one considered and/or other types of loads exist which may lead to 

other types of deformation, for example, large stretch. 

2- Considering thermal loads and also performing viscoelastic analysis for different 

temperatures as temperature plays a significant role on the viscoelastic response of 

polymers, and flexible smart structures may be subjected to variation of temperatures 

in practical applications. 

3- Omitting the assumption of patches being perfectly bonded which affects analysis of 

traction and induced loads between the piezoelectric patch and the substrate so that 

more realistic conditions are taken into account due to possible existing 

manufacturing defects. 

4- Considering problems with the piezoelectric actuators are embedded inside the 

structure rather than only attached on its surface. Because in some cases, the actuators 

in shape of fibers or particles can also be used for reinforcing the structure stiffness 

similar to the AFC patches with piezoelectric fibers inside polymeric matrix. Also, 

manufacturing very thin patches to be bonded on surface of a thin flexible structure is 

difficult. Besides, foldable structures with surface bonded actuators with notable 

thickness compared to substrate thickness should be analyzed.   

5- Performing parametric study in more depth for numbers, geometries and locations of 

distributed patches and electric field magnitude to establish a systematic way of 

predicting desired configurations for the actuated structures. 

6- Considering energy dissipation and hysteresis of the piezoelectric material in the 

analysis to extend the feasibility of the work when for example the smart structure is 

subjected to periodic electric stimulus versus time. This can be done to assess the life 

performance of such foldable/flexible structures actuated by electric field inputs. 
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