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ABSTRACT

Localization is an important required task for enabling vehicle autonomy. It entails

the determination of the position of center of mass and orientation of a vehicle from the

available measurements. In this paper, we focus on localization by using range measure-

ments available to a vehicle from the communication of its multiple on-board receivers

with roadside beacons (acoustic beacons in the case of underwater vehicles). The model

proposed formeasurements assumes that the true distance between a receiver and a bea-

con is at most equal to a predetermined function of the range measurement. The pro-

posed procedure for localization is as follows: Based on the rangemeasurements specific

to a receiver from the beacons, a convex optimization problem is proposed to estimate

the location of the receiver. The estimate is essentially a center of the set of possible

locations of the receiver. In the second step, the location estimates of the vehicle are

corrected using rigid body motion constraints and the orientation of the rigid body is

thus determined. Numerical examples provided at the end corroborate the procedures

developed in this paper.
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NOMENCLATURE

LP Linear Program

SDP Semidefinite Program

SOCP Second Order Coninc Program

MVE Maximum Volume Ellipsoid

OWTT One Way Travel Time

GPS Global Positioning System

V2I Vehicle to Infrastructure

IMU Intertial Measurement Unit

SOS Sum of Squares

SO(3) Special Orthogonal Group

AUV Autonomous Underwater Vehicle
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1. INTRODUCTION ?

Vehicles require the knowledge of their location and orientation for autonomous

guidance, navigation, and control [12]. Knowledge of its location is necessary to ensure

that the vehicle autonomously tracks a desired trajectory while the knowledge of its ori-

entation is important for accounting for gravity as well as for preventing rollover in large

trucks. The problem of localization deals with the estimation of location and orientation

of a vehicle. Localization therefore requires sensing, and correspondingly, localization

procedures are dependent on the available sensory measurements. Current vehicle plat-

forms are equipped with IMU/GPS, gyros, altimeters, pressure sensors, communication

devices or some subset of them to aid the localization [13, 10, 9, 14, 2]. Since sensorymea-

surements are usually contaminatedwith noise, the problem of localization also requires

filtering the noise in order to determine an accurate estimate of location and orientation.

While the present work is motivated by the the problem of infrastructure-aided lo-

calization for transportation applications, it is of independent interest to localization

problems appearing in other domains such as underwater vehicles. In this scenario, we

envision the infrastructure to be equippedwith a set of beacons which transmit informa-

tion to passing automated vehicles using their transmitters. Multiple receivers on-board

an autonomous vehicle receive the transmitted signal; the one-way travel time (OWTT)

between the signals can be used to determine the distance between the beacons and the

receivers on-board the vehicle. In the ideal scenario of noise-free sensorymeasurements,

one can use triangulation or multilateration to determine the location and orientation

of the vehicle.

?Reprinted with permission from "Estimation of Location and Orientation FromRangeMeasurements",
Sai KrishnaKanthHari and SwaroopDarbha,DSCC 2015, PaperNo. DSCC2015-9972, Copyright 2015 byASME
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2. LITERATURE REVIEW ?

The idea of infrastructure-aided navigation and control for automated vehicles is not

new and has been considered at least since California PATH’s Automated Highway Sys-

tems (AHS) program. However, this idea is useful for other applications such as Advanced

TrafficManagement Systems (ATMS) and Advanced Traveler Information System (ATIS);

one can design V2I (vehicle to infrastructure) communication protocols by which the

type of vehicle is identified alongwith the time stamp for the communication thereby ob-

viating the need for trafficmeasurement devices such as loop detectors which are error-

prone; moreover, a lot of processing is required to discriminate passenger vehicles from

trucks etc. using loop-detector data. However, this problem can be and, to some extent,

has been obviated with V2I communication [4]. In its current form, V2I schemes for ve-

hicle detection rely on GPS and wheel speed information from vehicles [4]. The wheel

speed is used to compute the vehicle speed near the location of the V2I station.

From the point of view of vehicle control, infrastructure-aided navigation does not

suffer fromGPS’s problemof blockage of line-of-sightwith the satellites in urban canyons.

Furthermore, the measurement of velocity in the ground frame and angular velocity of

wheels and yaw rate is required for the purposes of computation of slip and side slip an-

gles for accurate vehicle control; an independent measurement of velocity is currently

available only through the availability of GPS information, which as we noted before can

be a problem in urban canyons.

The orientation of the sprung mass of the vehicle is important for many applications

ranging from rollover prevention in trucks, estimation of slope of a road, estimation of

pitch angle etc., all of which find application in vehicle control and diagnostics. Earlier

?Reprinted with permission from "Estimation of Location and Orientation FromRangeMeasurements",
Sai KrishnaKanthHari and SwaroopDarbha,DSCC 2015, PaperNo. DSCC2015-9972, Copyright 2015 byASME
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work by Gerdes and his coworkers [2, 4, 1] dealt with the determination of vehicle ori-

entation and associated kinematic quantities such as sideslip angle using IMU/GPS and

other sensory information using Kalman filtering. The work proposed here is an alterna-

tive method which can supplement such schemes and is of independent interest in other

applications such as localization of Underwater Vehicles using acoustic beacons.

The proposedwork on localization differs from the literature in the following aspects:

(1) it relies only on the range information gathered by multiple on-board receivers of a

vehicle from fixed beacons (transmitters) in space whose coordinates are known a priori,

(2) the sensing model used in this work assumes that the radius of the sphere centered

at the beacon in which the receiver is guaranteed to be placed is an increasing function

of the measured distance between the beacon and the receiver, and (3) this work utilizes

a novel, but computationally efficient method based on the error model to process the

gathered information. The processing involves solving a semi-definite program (SDP)

(or its linear programming (LP) relaxation) to arrive at an estimate of the location and

orientation. A preliminary version of this work has been published as a conference paper

[5].

The rest of the work is organized as follows: In sections 3 and 4, we describe the

setup of physical problem and its mathematical formulation, respectively. In section 5,

we present formulations and algorithms to solve the associated optimization problems

for the location and orientation estimation and in section 6, we corroborate the effec-

tiveness of our proposed approach through extensive numerical results.

3



3. PROBLEM SETUP ?

A collection of beacons fixed in space and located at previously determined locations

aid a vehicle in its localization. Let Bi := (xbi , y
b
i , z

b
i ), i = 1, 2, . . . , N be the coordinates

of theN beacons and rj := (xj, yj, zj), j = 1, 2, . . . , L be the estimates of the locations of

theL on-board receivers of a vehicle. The problem setup is shown in figure 3.1 . Commu-

nication with the beacons provides the vehicle with an instantaneous measurement of

the distance between each on-board receiver in the vehicle and each beacon. LetDij be

the measured distance of a vehicle from the ith beacon while dij is the true value. These

measurements need not correspond it its true value; let φ(Dij) be an increasing function

that provides a bound on the true distance, dij , i.e., dij ≤ φ(Dij). Essentially, the sensing

model indicates that the jth receiver will always lie inside the sphere of radiusφ(Dij) and

centered at the ith beacon. The analytical form of the function is obtained using a set of

rangemeasurements obtained from the on-board receivers. The problem of determining

this function φ(·) is formulated as a semi-definite program in section 4.2. This sensing

model has been chosen so that it is amenable to experimental corroboration and makes

the subsequent formulation cleaner. Using the aforementioned notations, the problem

of localization is stated as follows:

Determine the estimates (xj, yj, zj), j = 1, 2, . . . , L of the location of the L on-board receivers

as well as the orientation of the vehicle that is treated as a rigid body using available information.

?Reprinted with permission from "Estimation of Location and Orientation FromRangeMeasurements",
Sai KrishnaKanthHari and SwaroopDarbha,DSCC 2015, PaperNo. DSCC2015-9972, Copyright 2015 byASME
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Figure 3.1: Problem setup

5



4. MATHEMATICAL FORMULATION*

In this section we present a mathematical formulation of the following three prob-

lems: (i) Optimal estimation of the location of the jth on-board receiver, (ii) determina-

tion of the function φ(·) for the sensing model, and (iii) estimation of orientation of the

vehicle from the location estimates of the on-board receivers.

4.1 Optimal estimation of the location of the jth on-board receiver

Since the distance measurements are available from each beacon, it is readily clear

that

‖rj −Bi‖ = dij ≤ φ(Dij), i = 1, . . . , N. (4.1)

The above set ofN distance constraints are convex in rj ; note thatBi are known a priori.

LetFj be the feasible values of rj for the above set of constraints. Essentially, the feasible

set is the set obtained by intersecting spheres centered at the beacons and of radii deter-

mined by the rangemeasurements gathered by the jth receiver; hence,Fj is a convex set.

The feasible set indicates the set of all possible locations of the jth receiver. The center

of the set Fj can be considered as the best estimate of rj . We consider two notions of

“center” of the set Fj : the center of the largest inscribed disk (referred to as chebyshev

center) and the center of the maximum volume inscribed ellipsoid. The former can be

computed via linear programming while the latter, via semi-definite programming.

6
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4.1.1 Chebyshev center of Fj 

Ifu is any unit vector and rc,j is the center of the chebyshev disk, then the Chebyshev

center of Fj can be computed by the following optimization problem:

(L1) max
l,rc,j

l, subject to: (4.2)

‖rc,j + lu−Bi‖ ≤ φ(Dij), i = 1, . . . , N, ∀u. (4.3)

The constraints (4.3) are convex conic constraints [3] and describe a disk. The radius of

the disk l is defined by the model for measurement and is characterized by the function

φ. These constraints can be relaxed to linear constraints in the same manner as approx-

imating a disk by a regular polygon circumscribing the disk. Note that for any vector

x, its norm ‖x‖ = maxv:‖v‖=1 v · x. Hence, the conic constraints can be recast as a

semi-infinite set of linear inequalities [3] as:

max
v:‖v‖=1

(v · rc,j + lv · u− v ·Bi) ≤ φ(Dij), i = 1, ., N, ∀u, j

The tightest inequality corresponds to u = v and hence, the semi-infinite linear pro-

gram describing the location estimation problem is:

(L2) max
l,rc,j

l, subject to:

v · rc,j + l ‖v‖ ≤ v ·Bi + φ(Dij), i = 1, . . . , N, ∀v.

7



4.1.2 Maximum volume inscribed ellipsoid ofFj

The volume of the feasible set Fj is a measure of the uncertainty/confidence associ-

ated with the position of the jth on-board receiver. Here, the “best” estimate is given by

the center of the maximum volume ellipsoid Ej contained in Fj . The rationale behind

this approach is that the volume Vj of this ellipsoid Ej provides a lower bound for the

volume ofFj while the minimum volume of an ellipsoid containingFj is within
√

3Vj in

a three dimensional space [3]. Hence the volume Vj can be used as a proxy measure for

the volume ofFj . Moreover, the problem of determining the maximum volume ellipsoid

is convex while the problem of determining the minimum volume ellipsoid containing

Fj is intractable given the inequality constraints and the estimate of the center of this

ellipsoid is invariant under affine transformations unlike the chebyshev center [3].

Any x ∈ Ej can be written as x = Pju+ rc,j , where Pj � 0 (symmetric and positive

semi-definitematrix of appropriate dimension), rc,j is the center of the Ej and ‖u‖2 ≤ 1.

Using these notations, the problem of computing the maximum volume inscribed ellip-

soid Ej of Fj can be formulated as a SDP:

(L3) Vj := max log det Pj, subject to:

Pj � 0 and (4.4)

‖Pju+ rc,j −Bi‖ ≤ φ(Dij), i = 1, . . . , N, ∀{u : ‖u‖2 ≤ 1}. (4.5)

The constraints (4.5) are convex and represent the ellipsoid Ej that is constrained to lie in

the intersection of the of the spheres centered at the beacon locations of radii determined

by the range measurements gathered by the jth receiver.

Proposition 1. For a fixed value of i ∈ {1, . . . , N}, the set of infinite constraints (4.5) in

8



formulation L3 is equivalent to the following set of constraints :

λ ≥ 0 and


φ(Dij)− λ (rc,j −Bi)

T 0

(rc,j −Bi) φ(Dij)I3 Pj

0 Pj λI3

 � 0. (4.6)

Proof : See Appendix 1.

Hence, an equivalent formulation for computing the center of Ej is given by:

(L4) Vj = max log det Pj, subject to:
φ(Dij)− λ (rc,j −Bi)

T 0

(rc,j −Bi) φ(Dij)I3 Pj

0 Pj λI3

 � 0,

Pj � 0, and λ ≥ 0.

4.2 Determination of the function φ(·) for the sensing model

As stated in the aforementioned section, given that the measured distance from a

beacon i to an the on-board receiver j,Dij , the sensing model assumes that φ(Dij) is an

increasing function that provides a bound on the true distance dij . The ramification of

choosing an increasing functionφ is that the rangemeasurements that originate from the

beacons sufficiently far away from the vehicle will not matter. The model also provides

a bound on the true distance dij ≤ φ(Dij). In this section, we formulate the problem

of finding an increasing function φ using measurements and true distance data as a SDP.

This problem is solved off-line before the beacons and the on-board receivers are de-

ployed and can be considered as a part of the receiver calibration process. We consider

a set of true distance data indexed by the setK . For each data point dk, k ∈ K multiple

9



range measurements are obtained while placing an arbitrary beacon and an on-board

receiver dk units apart. Let [Dl
k, D

u
k ] denote the lower and upper bounds of the mea-

surements corresponding to the true distance dk, k ∈ K . DefineDl := mink∈K D
l
k and

Du := maxk∈K D
u
k . The problem now is to determine a univariate increasing function

φ : [Dl, Du]→ R+ that solves the following optimization problem:

min
∑
k∈K

(φ(Du
k)− dk), subject to: (4.7)

φ′(d) ≥ 0, ∀d ∈ [Dl, Du], and (4.8)

φ(Dl
k) ≥ dk, ∀k ∈ K, (4.9)

The constraints (4.8) enforce the function φ to be an increasing function in its domain

and the constraints (4.9) ensure for any range measurementDij between a beacon i and

an on-board receiver j, φ(Dij) provides an upper bound on the true distance dij . The

objective ensures that this bound obtained is the least upper bound while satisfying the

other constraints. To solve the above problem, we approximate φ(x) using a univariate

polynomial. The condition (4.8) is equivalent to the polynomial φ′(·) being non-negative

in the interval [Dl, Du]. We now state two known results using which we recast the non-

negativity restrictions on the univariate polynomial to a SDP.

Theorem 1. (Markov-Lukàcs theorem) Let a < b. Then a univariate polynomial p(x) is

non-negative on [a, b], if and only if it can be written as

p(x) =


s(x) + (x− a)(b− x)t(x), if degree(p) is even

(x− a)s(x) + (b− x)t(x), if degree(p) is odd

where s(x) and t(x) are ‘Sum of Squares’ (SOS). In the first case, we have degree(p) = 2k,

and degree(s) ≤ 2k, degree(t) ≤ 2k − 2. In the second, degree(p) = 2k + 1, and

10



degree(s) ≤ 2k, degree(t) ≤ 2k.

Proof : See [8].

Theorem 2. Let p(x) be a univariate polynomial of degree 2k. Then, p(x) is SOS if and only

if there exists a (k + 1)× (k + 1) positive semi-definite matrix P that satisfies

p(x) = [x]TkP [x]k

where, [x]k = [1 x x2 . . . xk]T .

Proof : See [7].

Let φ(x) = a0 + a1x+ · · ·+ anx
n be an nth degree polynomial whose coefficients are to

be determined. Then, we have

φ′(x) = a1 + 2a2x+ . . . nanx
n−1 =

n∑
i=1

iaix
i−1. (4.10)

The constraint (4.8) requires φ′(x) to be non-negative on [Dl, Du]. Suppose that the de-

gree of φ is even (the case when φ has an odd degree has a similar reduction and hence,

is not presented). Then by theorem 1, we have

φ′(x) = (x−Dl)s(x) + (Du − x)t(x) (4.11)

where, s(x) and t(x) are SOS. Let degree(φ′) = 2k + 1, then degree of s(x) and t(x) is at

most 2k. Then by theorem 2, we have

s(x) = [x]TkS[x]k, t(x) = [x]TkT [x]k (4.12)

where, S and T are (k + 1)× (k + 1) positive semi-definite matrices. Combining (4.10),

11



(4.11) and (4.12), we obtain:

2k+1∑
i=1

iaix
i−1 = (x−Dl)[x]TkS[x]k + (Du − x)[x]TkT [x]k.

Indexing the rows and columns ofS andT by {0, 1, . . . , k} and equating the coefficients

of theM th power ofx onboth sides of the above equation, we obtain a set of (2k+1) linear

equations relating the coefficients of the polynomial φ and then entries of the positive

semi-definite matrices S and T as follows:

(M + 1)aM+1 =

i+j=M−1∑
0≤i,j≤k

(Qij − Tij) +

i+j=M∑
0≤i,j≤k

(
DuTij −DlSij

)
. (4.13)

Hence, an equivalent SDP for computing the function φ, which is approximated by a

degree n polynomial is given by:

(L5) min
∑
k∈K

(φ(Du
k)− dk), subject to:

(4.13), (4.9), and S,T � 0.

Constraints (4.13) and the postive semi-definiteness of S,T together is equivalent to

enforcing the polynomial φ to be increasing; the constraints (4.13) and (4.9) are linear

constraints.

4.3 Estimation of the orientation of the vehicle from the location estimates of

the on-board receivers 

Suppose F is a frame of reference attached to the rigid body with its origin atO and

unit vectors ˆı,ˆ, k, respectively. Let the coordinates of the vehicle’s on-board receivers  

12



in F bewj = (aj, bj, cj), j = 1, 2, . . . , L, respectively and its estimated location in the

ground frame be rc,j = (xc,j, yc,j, zc,j). LetR be the rotation matrix associated with the

body describing its orientation. Let r0 = (x0, y0, z0) denote the estimate of the location

of the originO of the body frameF . Then, it is clear that the following rigid bodymotion

constraints must hold when there is no estimation error in the location of the on-board

receivers:

rc,j = r0 +Rwj, ∀j = 1, 2, . . . , L. (4.14)

Essentially, these constraints guarantee that the angles between line segments joining

the receivers as inferred from the location estimates will remain the same as their true

values and the distance between the receivers as inferred from their locationswill remain

the same as their true values. Compactly, one can rewrite the above equation as:

[
rc,1 · · · rc,L

]
=

[
r0 · · · r0

]
+R

[
w1 · · ·wL

]
. (4.15)

However, the estimates may not satisfy the above relationship due to errors in measure-

ments and subsequent location estimation of on-board sensors. In particular, the esti-

mate of the distance between the on-board receivers need not equal the actual distance

between them. As a consequence, the relative configuration of the on-board receivers

indicated by their location estimates will not be the same as the true relative configura-

tion of receivers. One then needs to correct these location estimates in order to ensure

that the distance between the on-board receivers is its true value. Since the errors in the

location estimates will be non-zero, let us define an error matrix,E as:

E :=

[
rc,1 · · · rc,L

]
−
[
r0 · · · r0

]
−R

[
w1 · · ·wL

]
. (4.16)

13



The problem of localization can now be posed as

(L6) J = min
r0,R∈SO(3)

trace(ETE) subject to (4.16).

In the above formulation L6, trace(ETE) is the square of the Frobenius norm of the

error matrix E, and SO(3) = {R : det(R) = 1,R−1 = RT} is referred to as the

‘Special Orthogonal Group’.

14



5. ALGORITHMS*

In this section, we focus on solving the relevant optimization problems from the pre-

vious section. In section 5.1, we will outline a cutting plane algorithm to solve the for-

mulationsL2 andL3, respectively. In section 5.2, we will provide a solution procedure to

solve the problem of localization given by the formulationL6 and thereby determine the

optimal orientation thatminimizes the square of the Frobenius norm of the errormatrix,

E. As for the formulationL3 andL5, they can be solved to optimality using off-the-shelf

semi-definite solvers like SCS [6].

5.1 Location estimation procedure

5.1.1 Algorithm to estimate the Chebychev center

The procedure involves a relaxation of the semi-infinite LP in the formulation L2 to

a finite LP by ignoring all but finite constraints and providing an iterative way of adding

the required constraints from the dropped set of constraints. This generic procedure is

referred to as a cutting plane method (see [3]).

To that end, let v1, . . . ,vM be theM sides of a circumscribing polygon of the feasible

region, then a relaxation of L2 is given by

l̄max = max
l,rc,j

l, subject to:

vk · rc,j + l ‖vk‖ ≤ vk ·Bi + φ(Dij), i = 1, . . . , N, k = 1, . . . ,M.

Clearly, the feasible set of this LP, F¯
j contains the feasible set Fj of the original problem as 

all by finite constraints of the original semi-infinite LP have been dropped. Suppose the 

optimal solution, (l¯max, r¯c,j ), of the relaxed finite LP satisfies semi-infinite constraints; 

then it is clear that (l¯max, r¯c,j ) is optimal for L2. Otherwise, for some unit vector vM+1

15
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distinct from those considered before, and for some i, the following inequality holds:

vM+1 · r̄c,j + l̄max ‖vM+1‖ > vM+1 ·Bi + φ(Dij).

By adding the “cut”

vM+1 · rc,j + l ‖vM+1‖ ≤ vM+1 ·Bi + φ(Dij),

which must be satisfied by the optimal solution for the semi-infinite LP and violated by

the previously obtained optimal solution for thefinite LP,we improve the solution. This is

akin to finding another face of the polygon circumscribing the disk that cuts off a vertex

of the previously obtaining polygon. This cutting plane method can be used along with

an off-the shelf LP solver to solve the semi-infinite LP to arbitrary accuracy.

5.1.2 Algorithm to estimate the center of the maximum volume inscribed ellipsoid

A cutting plane algorithm similar to the one developed for computing the Chebychev

center in section 5.1.1 is developed to estimate the center of the maximum volume in-

scribed ellipsoid using the formulation L3. In this case, we relax the conic constraints

in (4.5) by ignoring all but finite constraints. We solve the initial conic SDP for a finite

number of u with ‖u‖2 ≤ 1 and add violated constraints iteratively.

To that end, let u1,u2, . . . ,uM beM vectors such that ‖uk‖2 ≤ 1, k = 1, . . . ,M .

Then a relaxation of L3 is given by

V̄j = max log det Pj, subject to: Pj � 0,

‖Pju+ rc,j −Bi‖ ≤ φ(Dij), i = 1, . . . , N, k = 1, . . . ,M.

Off-the-shelf primal dual interior point solvers can be used to solve the above conic SDP
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to obtain an optimal solution (P̄j, r̄c,j). If the solution to this relaxed problem is satisfies

all the constraints in (4.5), then it is optimal for L3. Otherwise, for a vector uM+1, with

‖uM+1‖ ≤ 1, distinct from the vectors considered before, and for some i, the following

inequality holds: ∥∥P̄juM+1 + r̄c,j −Bi

∥∥ > φ(Dij).

This produces the “cut”

‖PjuM+1 + rc,j −Bi‖ ≤ φ(Dij),

which was violated by the previously obtained optimal solution. The cut is added to the

relaxation and the problem is resolved to compute an improved optimal solution. This

process is iterated till the optimal solution satisfies all the constraints in (4.5).

5.2 Procedure for orientation estimation and correcting the location estimates

taking rigid body constraints into account 

The location estimates of the onboard receivers have been obtained without regard

to the rigid body motion constraints between them. Since receivers are attached to the

rigid body, the distance between any pair of them is pre-specified. The estimates may

not satisfy the distance constraints and even the angle between line segments joining

the receivers computed from their location estimates may not correspond to their true

values. For this reason, a correction procedure for the location estimates is required.

Fortunately, this pursuit involves the estimation of orientation of the body.

Let,

ej := rc,j − r0 −Rwj, j = 1, . . . , L.
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The term ej describes the error in the estimate of the location to maintain a rigid body

constraint for the jth receiver and is a function of the the location r0 of the origin of

the body frame and the rotation matrix R that describes the orientation of the rigid

body. One can observe that trace(ETE) =
∑L

j=1 e
T
j ej and ej is a linear function of

r0 = (x0, y0, z0) andR. Hence, minimization over r0,R can be performed sequentially

since there are no constraints if we explicitly express trace(ETE) as a function of r0,R.

Let

w̄ =
1

L

L∑
j=1

wj, r̄ =
1

L

L∑
j=1

rc,j.

Minimization of trace(ETE) with respect to r0 yields

r0 =
1

L

L∑
j=1

[rc,j −Rwj] = r̄ −Rw̄.

Define for j = 1, . . . , L

r̃c,j := rc,j − r̄, w̃j := wj − w̄.

With these definitions and the optimizing value of r0,

ej = r̃c,j −Rw̃j, j = 1, . . . , L.

Correspondingly,

trace(ETE) =
L∑

j=1

(r̃c,j −Rw̃j)
T (r̃c,j −Rw̃j)

=
L∑

j=1

(
r̃Tc,j r̃c,j + w̃T

j w̃j

)
− 2 trace

((
L∑

j=1

w̃j r̃
T
c,j

)
R

)
.
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DefineW :=
∑L

j=1 w̃j r̃
T
c,j so that

R∗ = arg min
R∈SO(3)

trace(ETE) = arg max
R∈SO(3)

trace(WR).

This stems from the other terms being independent ofR.

Let the singular value decomposition ofW = UΣV T where U , V are the left and

right singular vectors ofW , respectively andΣ is a 3× 3 diagonal matrix consisting of

its singular values. The problem of maximizing trace(WR) over the set of all rotation

matrices is referred to as the “Orthogonal Procrustes problem” (see [11]).

Theorem 3. R∗ = V UT maximizes trace(WR) over the set of all proper rotation matri-

ces.

Proof : We have due to the property of trace of a product of matrices:

trace(WR) = trace(UΣV TR) = trace(UV TRΣ).

Note thatV ,R andU are all orthonormalmatrices, soX = UV TR is also an orthonor-

mal matrix. Suppose xii, i = 1, 2, 3 denotes the diagonal elements ofX , then

trace(WR) = trace(XΣ) =
3∑

i=1

σixii ≤
3∑

i=1

σi

where, σi, i = 1, 2, 3 are the singular values ofW . The maximum value in the above

equation is achieved whenX = UV TR = I i.e.,R∗ = V UT .

Remark 1. The minimum value of

trace(ETE) =
L∑

j=1

(
r̃Tc,j r̃c,j + w̃T

j w̃j

)
− 2(σ1 + σ2 + σ3).
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Remark 2. The location estimate of the origin of the body frame is r0 = r̄ −R∗w̄. If one

places the onboard receivers in such a way that the “center of mass” of the rigid body

(vehicle) coincides with the center of mass of the receivers, then the estimate of r0 is the

“corrected” estimate of the location of the center of mass. The error in localization (both

in the location estimation and orientation) from the “best” estimates of the locations of

the receiver is given by the sum of the singular values ofW , a norm referred to as the

nuclear norm ofW .

Remark 3. The updated estimate of the jth receiver’s location will be given by:

rc,j = r0 +R∗wj.
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6. NUMERICAL EXAMPLES AND SIMULATION RESULTS

The effectiveness of the procedures developed in this paper, and its implementation

are illustrated using 2-D and 3-D examples in this section. All the simulations were per-

formed on a Dell Precision Workstation with 12 GB RAM. The problem setup for the 3-D

problem is as follows:

Assume that a set of range measuring beacons are fixed underwater at a few prede-

termined locations, such that it engulfs an area in which an AUV is supposed to be local-

ized.(i.e., the AUV travels in such a way that it always lies in the convex hull of the sensor

network). The coordinates of the sensors with respect to an inertial frame of reference

are known. Say 8 sensors are placed at (-2,-2,-2) ,(-2,-2,12),(-2,2,-2), (-2,2,12),(-2,6,-2),(-

2,6,12),(12,-2,-2),(12,-2,12),(12,2,-2),(12,2,12),(12,6,-2),(12,6,12) with respect to the inertial

reference frame . The vehicle is equipped with a few on-board receivers which are fixed

with respect to the vehicle reference frame. The coordinates of these receivers in the

body reference frame are O (0,0,0) , A (1,0,0) , B (0,1,0) and C (0,0,1) . Given the rangemea-

surements of these on-board receivers by the acoustic beacons at various time instances,

determine the location (of the Center of Mass) and orientation of the vehicle.

6.1 Simulation of range measurements

In reality, the rangemeasurements are available from theOneWayTravel Time (OWTT)

of pulses from the beacons to receivers. In the current example, these range values are

numerically simulated. To do so, the vehicle is assumed to follow a particular trajec-

tory in which the coordinates of its center of mass at each time instant are given by the

parametric equation r(t) = (2.5+ 2.5 cos(t) , 2.5 sin(t) , 5 sin(t/2) ) ,where t is the parame-

ter. 1000 discretization points are uniformly generated from the interval t∈ [0, π],which

correspond to the center of mass of the vehicle, and the principal axes directions of the
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vehicle at each point are given by the tangent, normal and bi-normal directions of the

curve at that particualr point These directions are calculated using Frenet - Serret for-

mulas. Assume that the vehicle is equipped with four on-board receivers, one of which is

located at the center of mass of the vehicle, and the other three are positioned one unit

away from the center of mass, along each of the three principal directions of the vehicle.

Once the sensor network is setup and the vehicle trajectory is decided, the actual dis-

tance (true distance) between the on-board receivers and the beacons can be computed

directly using the Euclidean distance formula for 3-D Cartesian coordinates. In general,

the range measurements given by the beacons are always noisy due to numerous rea-

sons. This is simulated by adding a White Gaussian Noise N(0,0.25) to the true distances

computed. Once the range measurements are available, the algorithms discussed in the

paper can be implemented.

6.2 Calibrating function

The model assumes that the receiver always lies in a sphere centered at the beacon

fromwhich the rangemeasurement is obtained. To ensure this, the radius of each sphere

should be greater than the corresponding true range value. Thus, a fitting functionwhich

engineers the measured range values to form radii of these spheres is required. As dis-

cussed in the paper above, this function should be a non-negative increasing polynomial.

For the computationof function coefficients, data sets containingplausible true range

values (chosen based on the application) and their corresponding range measurements

(measured multiple times for each true distance considered) are required. Experimen-

tally these data sets can be obtained by placing the receivers at different distances and

noting the beacon range measurements multiple times. In this example, numerical sim-

ulations were performed to obtain the data.
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6.2.1 Data generation for calibrating function

The permissible true distance values are restricted to a certain interval due to con-

straints like dimensions of the vehicle and location of the receivers on the vehicle, which

act as a lower bound to the permissible distance between the sensors and the receivers,

and the time permitted for the pulses to reach the receivers, which acts as an upper

bound to the distance between the sensors and the receivers. This also helps in neglect-

ing the sensors that are far away which are less reliable due to several reasons. Con-

sidering such aspects, the true ranges were restricted to the interval [2, 18] meters. A

set of 25 values uniformly distributed in this interval are picked to form the set of true

range values, and for each element in the set , 100 corresponding range measurements

are generated by adding white Gaussian noise to it, in order to mimic the error present

in actuality.Once the data set is available, the coefficients of the fitting polynomial can

be obtained as a solution of an SDP, as discussed in section 4.2

6.2.2 Computation of the coefficients of calibrating function

Let us choose a function of degree 4 f(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4(f ′(x) =

a1 + a2x + a3x
2 + a4x

3). Using Markov-Lukàcs and SOS theorems, the constraint (4.8)

can be re-written as :

(A(x))2(x−Dl) + (B(x))2(Du − x) ≥ 0,whereA(x) = [x]TkP [x]k, B(x) = [x]TkQ[x]k,

[x]k = [1 x x2 . . . xk]T ,P =

p11 p12

p12 p22

 � 0 andQ =

q11 q12

q12 q22

 � 0.

This upon simplification gives the following equations :

a1 = −Dlp11 +Duq11
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2a2 = p11 − 2Dlp12 + 2Duq12 − q11

3a3 = 2P12 −Dlp22 +Duq22 − 2q12

4a4 = p22 − q22.

Constraint (4.9) can be written as

a0 + a1D
l
k + a2(D

l
k)2 + a3(D

l
k)3 + a4(D

l
k)4 ≥ dk,∀k ∈ K,

and the objective is to minimize the function :

∑
k∈K

(a0 + a1D
u
k + a2(D

u
k)2 + a3(D

u
k)3 + a4(D

u
k)4 − dk),

The solution of this SDP is a0 = 0.4639 , a1 = 1.4362 , a2 = −0.1011, a3 = 0.0083,

a4 = −0.0002 and it forms the calibrating function

f(x) = 0.4639 + 1.4362x− 0.1011x2 + 0.0083x3 − 0.0002x4

6.3 Estimation of vehicle/receiver’s location

This function enables the conversion of rangemeasurements of each sensor-receiver

pair to the radii of the spheres centered on the beacons and containing the receivers The

intersection of such spheres corresponding to a particular receiver forms the feasible

region for its location. The center of this region can be considered as an estimate of

the receiver’s location. There are two notions of center 1) Chebyshev center 2) MVE

(Maximum Volume Ellipsoid) center, which are discussed below.
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6.3.1 Chebyshev center

It is the center of the sphere of maximum volume that can be inscribed in the fea-

sible region. Since the beacon locations are known apriori, and the calibrating function

has been calculated from the rangemeasurements, the Chebyshev center can now be ob-

tained as the solution of an LP relaxation as formulated in section 4.1.1, using a cutting

plane algorithm to solve the LP as discussed in section 5.1.1 ,for each discretization of the

trajectory. The root mean square error in the location estimate (of receiver O) was found

to be 0.39 units , and the maximum error was 1.10 units.

6.3.2 Maximum Volume Ellipsoid (MVE) center

Similar to Chebyshev center, theMVEcenter is the center of the ellipsoid ofmaximum

volume that can be inscribed in the feasible region. This notion of center is better than

the Chebyshev center in that it is invariant to affine transformations, and it also provides

an upper bound on the volume of uncertainty in the form of a corresponding minimum

volume ellipsoid inscribing the feasible region, the volume of which is
√

3 (incase of a 3-

D problem) times the volume of the maximum volume ellipsoid inscribed in the region.

This problemhas been formulated as a second order conic program, and solved using two

methods. It can either be converted to an equivalent SDP formulation using S-lemma

and Schur complement as discussed in section 4.1.2 and Appendix 1,or a cutting plane

algorithm can be implemented on the conic problem as explained in section 5.1.2. Even

though the cutting planemethod is expected yield faster results due to its computational

simplicity, both the methods took the same time in yielding the optimal solution. This is

due to the advancement of the SDP solvers over time. The root mean square error in the

location estimate of receiver O was found to be 0.33 units and the maximum error was

0.92 units.
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6.4 Estimating the orientation and correcting the location estimates

The receiver locations obtained from either the Chebyshev or MVE estimates help

in locating the center of mass of the vehicle. But these estimates need not conform to

the rigid body norms. Hence there is a need to correct these estimates such that the

initial distance between the receivers and their relative orientations are preserved. This

correction also enables the estimation of the vehicle orientation (as a solution of the

Orthogonal Procrustes problem) in the inertial reference frame. At each time step, the

receiver locations are updated and the vehicle orientation is obtained as explained in

section 5.2. The initial orientation of the vehicle, the relative orientation of the receivers

after the intermediate( location estimate) step using MVE center, and the final updated

are shown in figure 6.1 . Since the receivers are chosen in such a way that the vectors

joining them form the direction cosines of the body, their relative orientation directly

represents the vehicle orientation.
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Figure 6.1: Relative orientation of on-board receivers - Actual (blue) After 1st step (red)

After rigid body corrections (green)
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7. SUMMARY

The problem of localization, which is very important for vehicle autonomy has been

solved using a 2-step procedure. Only range measurements were used to estimate the

location and orientation of the vehicles. The lack of GPS availability in the case of un-

derwater vehicles and its lack of desired accuracy in case of roadside vehicles has been

tackled in this work. A good error model, which assumes that the true distance between

the receiver and the beacons is at most equal to a predetermined function of the range

measurement was used to circumvent the errors in communication. The first step of

estimation involves the estimation of receiver locations from a set of feasible locations

formed by the intersection of spheres centered at the beacons, with radius equal to the

predetermined function of themeasured ranges to the receiver. The second step involves

the correction of these estimates so that they conform to rigid body principles , and si-

multaneously estimating the orientation of the vehicle. A 3-D numerical example has

been used to illustrate the efficacy of the procedures developed above.
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APPENDIX A

PROOF OF PROPOSITION 1

For a fixed value of i ∈ {1, . . . , N}, (4.5) is given by

‖Pju+ rc,j −Bi‖ ≤ φ(Dij), ∀{u : ‖u‖2 ≤ 1}.

We can convert the above constraint to an equivalent semi-definite constraint using

Schur Complement as follows:

 φ(Dij) (Pju+ rc,j −Bi)
T

Pju+ rc,j −Bi φ(Dij)I3

 � 0, ∀{u : ‖u‖ ≤ 1}.

Equivalently,

⇔ x2φ(Dij)+2xyT (Pju+rc,j−Bi)+φ(Dij)y
Ty ≥ 0, ∀[x;y], {u : ‖u‖ ≤ 1},

⇔ x2φ(Dij) + min
u:‖u‖≤1

2xyTPju + 2xyT (rc,j − Bi) + φ(Dij)y
Ty ≥ 0, ∀[x;y],

⇔ x2φ(Dij) − 2x ‖Pjy‖ + 2xyT (rc,j − Bi) + φ(Dij)y
Ty ≥ 0, ∀[x;y],

⇔ x2φ(Dij)+2yTPjξ+2xyT (rc,j−Bi)+φ(Dij)y
Ty ≥ 0, ∀{(x,y, ξ) : ξTξ ≤ x2},

31



⇔ ∃λ ≥ 0 :


φ(Dij)− λ (rc,j −Bi)

T 0

(rc,j −Bi) φ(Dij)I3 Pj

0 Pj λI3

 � 0.

The last two equivalences follow from Cauchy-Schwarz inequality and the S-lemma [3],

respectively.
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