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ABSTRACT

We consider a smart microgrid environment where renewable power sources like

wind generators are available to service the thermal inertial load along with conventional

non-renewable energy sources. The flexibility in power consumption of thermal inertial

loads, like air-conditioners can be used towards absorbing the fluctuations in intermittently

available renewable power sources. Several optimization schemes can be used towards this

goal. We discuss and analyze some of these optimization models. An optimization model

which promotes renewable consumption by penalizing non-renewable consumption, but

does not account for variations in the load requirements, lead to an optimal solution in

which all the loads’ temperatures behave in a lockstep fashion. That is, the power is al-

located in such a fashion that all the temperatures are brought to a common value and

they are kept the same after that time, resulting in synchronization among all the loads.

We show that under a model which additionally penalizes the comfort range violation, the

optimal solution is in fact of a de-synchronizing nature, where the temperatures are inten-

tionally kept apart to avoid power surges resulting from simultaneous comfort violation

across many loads.

In the sequel, we additionally take into account several other factors, such as the pri-

vacy requirements from the users of loads, architectural simplicity, and tractability of the

solution. We propose a demand response architecture where no information from the end-

user is required to be transferred in order to optimally co-ordinate their power consumption.

We propose a simple threshold value based policy which is architecturally simple, compu-
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tationally inexpensive, and achieves optimal staggering among loads to smooth the vari-

ations in non-renewable power requirements. We show that it is possible to compute the 

optimal solution in a number of scenarios, and give a heuristic approach to approximate 

the optimal solution for the scenarios where information such as cooling/heating rates, etc. 

is not available.
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NOMENCLATURE

TCL Thermostatically controlled loads, air conditioners.

LSE Load Serving Entity, the aggregator which co-ordinates
the end-user’s air conditioners to achieve the desired de-
mand response

M (q0,q1) A binary Markov stochastic process, with transition
probability rates q0 and q1.

q0 Rate of transition from state ”wind off”. 1
q0
is the mean

time the wind is not available for consumption.

q1 Rate of transition from state ”wind on”. 1
q1
is the mean

time the wind is available for consumption.

qi j For general wind model the rate of transition from wind
state i to wind state j. In state i the loads can cool at rate
i c

M

Θm,i The minimum temperature level of the comfortable
range of temperatures specified by i-th end-user.

Θ( j)
M,i The maximum temperature level of the comfortable

range of temperatures, the j-th value of the upper tem-
perature specified by i-th end user

Θm,Θ
( j)
M The subscript i is dropped from Θm,i, and Θ( j)

M,i when
loads are homogeneous

r1 Rate of transition from a state with upper comfort level
Θ(0)

M to a state with upper comfort level Θ(1)
M

r2 Rate of transition from a state with upper comfort level
Θ(1)

M to a state with upper comfort level Θ(0)
M

ri j Rate of transition from a state with upper comfort level
Θ(i)

M to a state with upper comfort level Θ( j)
M
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1 INTRODUCTION

Motivated by the higher utilization of renewable energy sources, like wind, there is

significant interest in techniques to adjust to the uncertainty in the power generated by re-

newable sources, such as wind and solar while providing service to the loads. In addition to

generation side compensation, like automatic generation control, several demand response

schemes are proposed to efficiently support these renewable sources [31], [2], [16], [6],

[7], [11].

In this thesis, we propose to exploit thermal inertial loads to preferentially utilize a

renewable source such as wind power over non-renewable power sources. Using such a

scheme leads to twofold benefits. First, it promotes reduced consumption of costly and

polluting non-renewable generation, and second, the controllable thermal loads can absorb

temporary fluctuations in renewable sources, thereby helping stabilize the overall power

system. Some recent studies indicated that the thermal loads’ consumption accounts for

over 60% of the total energy consumption for an average consumer [32]. Therefore thermal

loads not only provide a substantial opportunity to be used as a controllable smart load, but

also are cost effective as they do not require additional infrastructure changes, e.g., adding

expensive energy storage units.

The users (or consumers) of thermostatic loads typically specify a desired comfort

range, within which they would like their temperature to lie. Of course, any change in

comfort range may lead to temporary violation of comfort, making the current tempera-
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ture fall outside the comfort range. Except for the short period when comfort range is so

changed, the demand response scheme is generally required to respect the imposed tem-

perature limits. This leads to an important design issue of what control policy design can

ensure such adherence. Several optimization criteria can be used. We discuss some of

these formulations, and the nature of the resulting demand response that arises from using

these criteria in Chapter 2.

We consider a system where a large number of distributed loads are supported by

a combination of renewable and fossil fuel generators. An issue that arises is that of

“resource-pooling”. In order to achieve effective demand response by absorbing fluctu-

ating wind power, and to that end, exploiting a large number of loads, we employ an archi-

tecture that consist of a central controller. We refer to such a controller as a load serving

entity (LSE) (also called “load aggregator” or simply an “aggregator”). For convenience

of exposition, we suppose that the thermal loads are all air conditioning loads, and that the

renewable energy source is wind.

Under a model where we need to ensure that load temperature stays within the com-

fort range at all times, during long periods when wind is not available, non-renewable

power is required to supplement it in order to avoid overheating. This leads to an im-

portant question of how to reduce the variations in the non-renewable power requirement

from such a system. Low peak to average ratio is desirable as it leads to reduced reliance

on costly operating reserves. We incorporate this goal by employing a quadratic cost term

in the optimization that prefers a reduced peak to average ratio.
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A system where only non-renewable power is used to cool a collection of thermal

loads is studied by Kundu et al. [16]. Their work shows that a collection of thermal loads

which consumes the constant power results from a distribution of loads where fraction of

heating and cooling loads between two temperatures is proportional respectively to the time

taken to heat or cool between the two temperatures. This leads to a population which is

evenly spaced in time and consumes a constant power without any variations. The presence

of stochastic wind power leads to an interesting complication. When stochastic generation

like wind, is a common source available for all the loads, a scenario where every load is

cooled together whenever sufficient wind is available, leads to a synchronization issue.

That is, the loads behave in a lockstep fashion. This is undesirable, because a sudden

simultaneous change in comfort range when wind power is not sufficient will lead to a

hugh surge in total non-renewable power consumption to cool the loads. To address this

issue we propose a scheme which explicitly models such comfort range variations, and

show that under a cost function which penalizes the variations in non-renewable power

consumption, it is optimal to stagger the loads. This “symmetry breaking” by staggering

hedges against coordinated comfort range change. Mathematically, this interestingly arises

from a local concavity of the cost-to-go function in HJB equation.

From a load’s perspective, another important issue arises, is that of the privacy of

load state information. Individuals do not want to reveal their thermal states to the ag-

gregator. Revealing such information can be linked to other activities of daily routines,

working schedules etc [14]. A solution where no instantaneous temperature measurement
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of load temperature is ever required to be communicated to the aggregator, is therefore

desirable. This leads to an important issue of how an aggregator can influence the “collec-

tive behavior” of the ensemble, i.e., their total power consumption, without any specific

information about individual temperatures.

There are also issues related to communication system requirements. A systemwhere

an aggregator sends a continuous signal to each of the loads is not desirable, as it requires

great communication bandwidth, and also raises concerns related to link reliability issues.

Thus, rather than seeking a centralized solution where the aggregator controls the cooling

of each load, we seek a solution where each load controls its own cooling in a distributed

fashion.

Consider a collection of identical air-conditioners, with each of load specifying a

comfort range [Θm,ΘM], within which its temperature should lie. Suppose renewable gen-

eration, say wind, is used to cool all homes whenever it is blowing. Non-renewable power

is only used when the temperature hits ΘM. Under such a scheme, eventually all the loads

will turn on and off at the same time. If due to some externality, loads change their ΘM at

the same time, this will result in a huge surge of non-renewable power, since all the loads

will start consuming non-renewable power together upon hittingΘM. Such “synchronized”

behavior is undesirable.

In Chapter 3, we propose and analyze a privacy-respecting policy to stagger the tem-

peratures of the loads within the comfort range by assigning each home a temperature at

which it should start non-renewable power consumption. By selecting these thermostat set-
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ting thresholds across the population of loads we can stagger the loads within their comfort

range. The distribution of these parameters can be used to control the “collective behav-

ior” of the ensemble of loads. We show that such optimal staggering can be analytically

determined when number of homes is large. Moreover, this scheme allows each load’s

cooling to be controlled individually by its own thermostat, with no information transfer

being required from the loads to the aggregator.
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2 MODELS FOR OPTIMAL DEMAND RESPONSE, AND

DESYNCHRONIZATION

We begin by considering the problem of direct load control. We address the prob-

lem of centrally controlling the thermostatically controlled loads (TCLs) in the presence of

stochastic renewable sources. For specificity, we assume that the renewable energy source

is wind. We will refer to the central controlling agent as a load serving entity (LSE). The

LSE serves two functions. First, it estimates and allocates the available renewable power

denotedW(t), along with non-renewable power to individual TCLs. Second, the LSE has a

separate communication channel to monitor each TCL’s state and sends the control actions

to all the loads. The LSE can utilize the knowledge of the states of the TCLs as well as the

renewable generation process to achieve predefined objectives. From the power distribu-

tion grid side the LSE acts as a cumulative load which co-ordinates TCLs efficiently.

The end-users are assumed to allow some flexibility in their load temperatures, speci-

fied as a continuous range of acceptable temperatures. We refer to such range as the comfort

range. From the grid’s perspective end-users can be incentivized to provide more margin

to compensate for stochasticity in renewable power generation, and in effect reduce grid

power consumption.

For simplicity we suppose that all the TCLs are air-conditioning loads. In our mod-

els we make several simplifications to focus on the central problem of interest, which is to

understand the nature of the optimal demand response. First, while in practice, residential
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thermal loads have a constant cooling rate and consume fixed power, we relax this and

assume that loads can be run at fractional capacity. This fractional cooling rate can be

approximated by fast switching (chattering) between two cooling rates. Second, we sim-

plify analysis by assuming constant ambient heating h, resulting in the fact that the rate of

change in temperature is assumed to be an affine function of power supplied P, resulting

in the temperature dynamics of ẋ = h−P, which we shall hereafter refer to as constant

rate dynamics. However the results can be easily extended to any linear dynamics, e.g., to

ẋ = ax+h−P. Here a is the capacity (inertia) parameter of the air-conditioners.

In the sequel we will consider several end-user criteria. One possibility is to measure

end-user discomfort by the square of the amount by which the temperature of the load

exceeds a user specified maximum temperature ΘM. This corresponds in an optimization

framework to a cost function [(x−ΘM)+]2, where x is the temperature of a TCL and z+ :=

max(z,0). In contrast to such soft constraint, another possibility is to impose a hard upper

bound constraint ΘM . Then, in order to keep the temperature below ΘM , the TCL may

have to draw grid power if wind power is not available. In the simple model ẋ = h−P,

if x hits ΘM, and the wind is not blowing, the TCL will have to draw power of at least h.

The comfort setting ΘM could also be stochastic. In that case, we require that if x > ΘM,

then the TCL must draw maximum grid power M = (h+ c), where c > 0 is the maximum

cooling rate of the air-conditioner. We may also have a minimum temperature constraint

Θm. Then, when x hits Θm, the total of grid and wind power chosen must not be greater

than h to prevent over-cooling.
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Concerning reducing variations in the power Pn drawn from the non-renewables,

we will penalize variations in it by employing a quadratic running cost
∫ T

0 P2
n (t)dt, where

Pn(t) := ∑i P(n,i)(t) is the sum of the powers drawn by the individual TCLs indexed by i.

In place of the quadratic penalty, any other strictly increasing, strictly convex penalty in

the total non-renewable power drawn would also penalize variations.

For the wind model, there are several choices [25], [5]. For simplicity, we will focus

on a simplified wind process modeled as a two state continuous time Markov chain. States

“on” and “off” havemean holding times 1
q1
and 1

q0 respectively. Wewill refer to this process

as a M (q0,q1) process. In the on state the wind can provide W watts, while there is no

wind power in the off state.

By a “synchronizing policy” we will mean a policy which reduces the difference in

TCLs’ temperature states by allocating more cooling power to higher temperature TCL.

On the contrary a de-synchronizing policy may occasionally increase the temperature dif-

ference by providing power to a lower temperature TCL and thus cooling it, while letting

the higher temperature one increase. We note that a de-synchronizing policy may be a state

dependent policy that sometimes drives temperatures towards one another, and sometimes

apart, i.e., it need not always strive to separate temperatures.

2.1 Models for optimization

Now we describe several alternative models and optimization criteria, and the nature

of demand response that results from the combination of both.
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2.1.1 Contract violation probability model

One model of a contract with end users is to maintain their temperatures in a speci-

fied comfort range. This results in an objective of minimizing the probability of contract

violation. Consider N TCLs with temperatures denoted (x1,x2, ...,xN), following the tem-

perature dynamics ⃗̇x = f⃗ (P⃗) as a function of supplied power P⃗. Suppose the contractual

ranges are {[Θm,i,ΘM,i]}N
i=1. Then we obtain the following optimization problem to mini-

mize the contract violation probability:

Minimize
N

∑
i=1

Prob ({xi /∈ [Θm,i,ΘM,i]})

Subject to
d⃗x
dt

= f⃗ (P⃗(t)) (2.1)
N

∑
i=1

Pi(t)≤W (t) (2.2)

Pi(t)≥ 0 for i = 1,2, ..N (2.3)

W (t)v M (q0,q1). (2.4)

For this problem, we will show in the sequel that since all loads outside the comfort zone

contributes the same amount to cost, the loads which are nearer to the comfort zone are

preferred by the optimization policy because they can be brought within the comfort range

more quickly. The resulting scheme is not fair across loads, as the loads with maximum

discomfort are provided with lesser proportion of the available power.
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2.1.2 Variance minimization model

To correct the above bias we propose next a model in which the penalty function is

the square of the deviation above ΘM. The optimization problem is:

Minimize
∫ T

0

( N

∑
i=1

E[(xi(t)−ΘM,i)
+]2)|⃗x(0)]

)
Subject to .

d⃗x
dt

= f⃗ (P⃗(t))

N

∑
i=1

Pi(t)≤W (t)

Pi(t)≥ 0 for i = 1,2, ..N

W (t)v M (q0,q1).

Due to the convex quadratic penalty, keeping the TCLs’ temperatures apart from one an-

other costs more than keeping their temperatures the same. The result is that it is in fact

optimal to bring all TCLs to the same temperature and maintain them so.

2.1.3 Hard temperature threshold model

One may note that the preceding model does not guarantee any upper bound on the

maximum temperature level. Such a hard temperature constraint cannot be met without a

reliable supplemental non-renewable power source. Therefore, we introduce a hard tem-

perature upper bound in addition to a soft temperature comfort goal θso f t,i mentioned ear-

lier. We also allow for but penalize the non-renewable power required to operate within

the hard bound x ∈ [Θm,i,ΘM,i].
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This yields the optimization problem:

Min. E
[∫ T

0

( N

∑
i=1

[(xi(t)−Θso f t,i)
+]2 + γ

( N

∑
i=1

Pn,i(t)
)2

|⃗x(0)
)]

Subject to
d⃗x
dt

= f⃗ (P⃗w(t)+ P⃗n(t)) (2.5)

xi(t) ∈ [Θm,i,ΘM,i] for i = 1,2, ...,N (2.6)
N

∑
i=1

Pw,i(t)≤W (t) (2.7)

Pw,i(t)≥ 0,Pn,i(t)≥ 0 for i = 1,2, ...N (2.8)

W (t)v M (q0,q1).

In this model, at first sight one may speculate that keeping the TCLs apart hedges against

their hitting the maximum temperature at the same time, thereby reducing the term in the

cost function that is quadratic in the total power. However, it turns out that driving the

TCLs to the same temperature and then maintaining them at equal temperature continues

to be optimal, as we show in Section 2.3. We will thereby conclude that this model does

not result in the desired behavior of desynchronization.

2.1.4 Stochastic threshold variation model

We now introduce the additional feature that there could be environmental, social or

other extraneous events due to which the loads may change the set-point in a coordinated

fashion. To capture this effect we will assume that there are two levelsΘ(0)
M andΘ(1)

M , where

Θ(0)
M < Θ(1)

M . All the TCLs switch between these levels at the same time instants according

to a Markov process Θ(t)vM (r1,r2) with mean holding times 1
r1
and 1

r2
in the two states

Θ(1)
M and Θ(1)

M . Due to a sudden reduction in the set-point, a TCL that was previously
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within the desired temperature range [Θm,Θ
(1)
M ] may suddenly be at a higher temperature

than Θ(0)
M . When a TCL thereby violates the threshold constraint we will require that it be

provided grid power at the maximum possible level M that the TCL can sustain, to cool it

quickly:

Min.
∫ T

0
E
[( N

∑
i=1

Pn,i(t)
)2

|⃗x(0)
]

s.t. (2.5,2.7,2.8) and

xi(t) ∈ [Θm,Θ
(1)
M ] for i = 1,2, ...,N

Pn,i = M { if xi(t)> Θ(t)}

W (t)v M (q0,q1),T h(t)v M (r1,r2).

We will show that with this model the optimal power allocation results in de-

synchronization of the TCL temperature states. The optimal policy does not maintain all

the TCLs at the same state. When there are TCLs above a certain level it is optimal to keep

their temperatures different, to hedge against the future eventuality that the thermostats are

switched down to Θ(0)
M .

2.2 Synchronization and desynchronization properties of the optimal solutions

For simplicity, we will consider a homogeneous population of TCLs, with identical

temperature ranges, dynamics, heating, and comfort range variations. We illustrate all

results, for the N = 2 case. The results can be generalized to

Theorem 1. The optimal response in the contract violation probability model with
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M (q0,q1) wind process and linear dynamics is to provide all the wind power to the

coolest TCL that is outside the temperature range. Therefore the optimal policy is de-

synchronizing.

Theorem 2. Under the variance minimization model and M (q0,q1) wind process, the

optimal control policy is of synchronizing nature, for any linear dynamics.

Theorem 3. Under the hard temperature threshold model with M (q0,q1) wind process

and constant dynamics the optimal policy is of synchronizing nature.

In the sequel we illustrate the de-synchronizing nature of the optimal policy for the

stochastic threshold variation model with M (r1,r2) as the upper comfort threshold pro-

cess, by numerically computing its solution.

2.3 Proofs of results

Proof of Theorem 1: For N=2 and a wind power realization W (t,ω),ω ∈ Ω, and,

for initial state x⃗(0) = (x1(0),x2(0)) with ΘM < x1(0) < x2(0), let the optimal cost be

C∗
ω (⃗x(0)), and the resulting state

⋆x(t,ω). Now consider a policy Π̂, with resulting cost

Ĉω (⃗x(0)), which gives all the power to TCL1 while x1 > ΘM, and subsequently to TCL2

while maintaining TCL1 at ΘM, and denote the resulting state by x̂(t,ω). Due to linear

dynamics we have ⋆x1(t,ω)+
⋆x2(t,ω) = x̂1(t,ω)+ x̂2(t,ω), therefore the event {x̂1, x̂2 >

ΘM} ⊂ { ⋆x1,
⋆x2 > ΘM}. Also the probability of the event {x̂i > ΘM, x̂!i ≤ ΘM}, where !i
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denotes the TCL other than TCL i, is minimized by Π̂ we have,

C∗
ω (⃗x(0)) =

∫
{⋆xi>ΘM ,

⋆x!i≤ΘM}
1dt +

∫
{⋆x1,

⋆x2>ΘM}
2dt

≥
∫
{x̂i>ΘM ,x̂!i≤ΘM}

1dt +
∫
{x̂1,x̂2>ΘM}

2dt = Ĉω (⃗x(0)).

Taking the expectation yields the desired result. .

2.3.1 HJB equation for variance minimization model

Let the optimal cost-to-go from state (x1,x2) and wind condition i (i=1 in on state

and i=0 on off state) be V ∗
i (⃗x, t). The state-space is S = [0,∞)× [0,∞)×{0,1}. We denote by

A ⊂ R2
+ be the set of state-dependent admissible actions

A (⃗x, i) = {(P1,P2) :P1 +P2 ≤W if (wind i = 1),

P1 = P2 = 0 if (wind i = 0),

if(x j(t) = 0) then f (Pj)≥ 0}.

The Hamilton-Jacobi-Bellman equation is:

inf
(P1,P2)∈A (⃗x,i)

{1T [(⃗x−ΘM)+]2 +∇TV ∗
i (⃗x, t) f⃗ (P⃗)−qiV ∗

i (⃗x, t)

+qiV ∗
!i (⃗x, t)}+

∂V ∗
i

∂ t
(⃗x, t) = 0 For i = 0,1. (2.9)

Equation (2.9) involves the following minimization problem:

inf
(P1,P2)∈A (⃗x,i)

{
∂V ∗

i
∂x1

(⃗x, t) f (P1)+
∂V ∗

i
∂x2

(⃗x, t) f (P2)

}
. (2.10)

Since f (P) is linear, the infimum above is achieved for either P1 =W or P2 =W , depending

on whether ∂V ∗
i

∂x1
>

∂V ∗
i

∂x2
or ∂V ∗

i
∂x1

<
∂V ∗

i
∂x2

. When ∂V ∗
i

∂x1
=

∂V ∗
i

∂x2
, any allocation {(P1,P2) : P1+P2 =

W} is optimal.
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Lemma 1. The optimal cost-to-go function V ∗(⃗x, t) is component-wise non-decreasing in

x⃗.

Proof. For a realization of wind power W (t,ω), where ω denotes a sample point. Let the

optimal state trajectory from initial state (x1(0),x2(0)) be (x1(t,ω),x2(t,ω)). From initial

state y1(0)< x1(0), we provide the same power as before, except at timeswhen temperature

goes below Θm to obtain trajectory (ŷ1(t,ω),x2(t,ω)). Here ŷ1(t,ω) = max{Θm,y1(0)−

x1(0)+ x1(t,ω)}. We have,

V ∗
ω (⃗x(0))≥

∫ T

0
[(ŷ1(t,ω)−ΘM)+]2 +[(x2(t,ω)−ΘM)+]2dt

= V̂ω(x1(0),x2(0))≥V ∗
ω(x1(0),x2(0)).

Taking the expectation yields the desired result.

Lemma 2. If f (P) is a linear, then V ∗(⃗x, t) is convex in x⃗.

Proof. For a wind realization W (t,ω),ω ∈ Ω, and a pair of initial conditions x⃗(0)(0) and

x⃗(1)(0), we take a convex combination of the states x⃗(α)(0) := (1−α )⃗x(0)(0)+α x⃗(1)(0)

and provide the convex combination of the optimal power supplied from the former ini-

tial states, i.e., P⃗(α) = (1 − α)P⃗(0) + αP⃗(1). Due to linearity we obtain the trajectory

x⃗(α)(t,ω) = (1−α )⃗x(0)(t,ω)+α x⃗(1)(t,ω). Since x⃗(0)(t,ω), x⃗(1)(t,ω) ∈ [Θm,ΘM], it fol-

lows x⃗(α)(t,ω) ∈ [Θm,ΘM]. Letting V α(x(α)(0)) be the cost for this allocation, we obtain,

(1−α)V ∗
ω (⃗x

(0)(0))+αV ∗
ω (⃗x

(1)(0))

=
∫ T

0
(1−α)1T (⃗x(0)(t)−ΘM)+2 +α1T (⃗x(1)(t)−ΘM)+2dt

≥
∫ T

0
1T [(⃗x(α)(t))−ΘM)+]2dt =V α

ω (⃗x(α)(0))≥V ∗
ω (⃗x

(α)(0)).

15



Taking the expectation proves the desired result.

Proof of Theorem 2: Notice that Lemma (1) implies that ∂V ∗

∂xi
≥ 0 for i=1,2. Equation

(2.10) thus implies

(P∗
1 ,P

∗
2 ) =


(W,0) if ∂V ∗

1
∂x1

>
∂V ∗

1
∂x2

(0,W) if ∂V ∗
1

∂x1
<

∂V ∗
1

∂x2

.

Also, since V ∗
i (⃗x, t) is convex in x⃗, we have ∂V ∗

i (x1,x2)
∂xi

increases with xi for i = 1,2. So if

(x1,x2) is a temperature state with x1 > x2, then
∂V ∗

i (⃗x)
∂x1

>
∂V ∗

i (⃗x)
∂x2

, so the minimizer in the

HJB equation is P∗
1 =W,P∗

2 = 0. Therefore x1 decreases while x2 increases till x1 = x2. So

we conclude that the optimal policy is synchronizing in nature.

2.3.2 HJB equation for hard threshold model

LetV ∗
i (⃗x(0)) be the optimal cost-to-go from x⃗(0)when wind state is i (for i = 1when

wind is on, i = 0 when wind is off). The control variables are P⃗g and P⃗w, the allocated grid

and wind power vectors to the TCLs. The state-space is S = [Θm,ΘM]× [Θm,ΘM]×

{0,1}. Let Â (⃗x, i)⊂ R4
+ be the set of state dependent admissible actions.

Â (⃗x, i) ={(P⃗n, P⃗w) : Pw,1 +Pw,2 ≤W if (Wind i=1),

if (Wind i=0) Pw,1 = Pw,2 = 0,

if (x j(t) = 0) then f (Pn, j +Pw, j)≥ 0 for j = 1,2,

if (x j(t) = ΘM) then f (Pn, j +Pw, j)≤ 0 for j = 1,2}.

The Hamilton-Jacobi-Bellman equation is,
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inf
(P⃗n,P⃗w)∈Â (⃗x,i)

((1T P⃗n)
2 +∇TV ∗

i (⃗x, t) f⃗ (P⃗n + P⃗w))−qiV ∗
i (⃗x, t)

+qiV ∗
!i (⃗x, t)}+

∂V ∗
i

∂ t
(⃗x, t) = 0 For i = 0,1. (2.11)

For homogeneous loads with the state dynamics f (P) = S − P (here S = heating

due to ambient temperature when P = 0), the infimum term for control separates. So for

xi ∈ (0,ΘM), the optimal wind and grid power allocations are given by

P⃗∗
n (⃗x, i) = arg inf

P⃗n≥0

(
(Pn,1 +Pn,2)

2 − ∂V ∗
i

∂x1
Pn,1 −

∂V ∗
i

∂x2
Pn,2

)
(2.12)

P⃗∗
w(⃗x) = arg inf

(Pw,1+Pw,2=W )

(
−

∂V ∗
1

∂x1
Pw,1 −

∂V ∗
1

∂x2
Pw,2

)
. (2.13)

Lemma 3. The optimal cost-to-go function V ∗(⃗x, t) is component wise non-decreasing in

x⃗.

Proof. We use the same construction as Lemma 1. Letting (P̂1(t,ω),P2(t,ω)) be the power

used for trajectory (ŷ1(t,ω),x2(t,ω)), we have

V ∗
ω(x1(0),x2(0)) =

∫ T

0
(

⋆

Pn,1 +
⋆

Pn,2)
2ds

≥ V̂ω(y1(0),x2(0))≥V ∗
w(y1(0),x2(0)).

Taking expectations yields the result.

Lemma 4. V ∗(⃗x, t) is convex in x⃗.

Proof. We use the same construction as Lemma 2. Noting that x⃗(α)(t,ω) ∈ [Θm,ΘM] and
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(P⃗(α)
n , P⃗(α)

w ) ∈ Â (⃗x, i), we have

(1−α)V ∗
ω (⃗x

(0))+αV ∗
ω (⃗x

(1))

= (1−α)
∫ T

0
(1T P⃗n

(0)(t,ω))2 +α
∫ T

0
(1T P⃗n

(1)(t,ω))2ds

≥
∫ T

0
(1T (1−α)P⃗n

(0)(t,ω)+αP⃗n
(0)(t,ω)))2ds

=V (α)
ω (x(α)(0))≥V ∗

ω(x
(α)(0)).

taking expectation establishes the convexity of V ∗(⃗x).

Proof of Theorem 3: Equations (2.12),(2.13) specify the optimal power allocation.

Lemma (3) proves that ∂V ∗
i

∂x j
≥ 0, and from Lemma (4), ∂V ∗

∂x j
(⃗x) is a increasing function of

x j. Therefore when x1 < x2, ∂V ∗

∂x1
≤ ∂V ∗

∂x2
. Using this, the minimizers in (2.12)-(2.13) are as

follows

(P∗
w,1,P

∗
w,2) =


(W,0) if ∂V ∗

1
∂x1

>
∂V ∗

1
∂x2

.

(0,W) if ∂V ∗
1

∂x1
<

∂V ∗
1

∂x2
.

. (2.14)

(P∗
n,1(⃗x, i),P

∗
n,2(⃗x, i)) =



(1
2

∂V ∗
i

∂x1
(⃗x),0) if ∂V ∗

i
∂x1

>
∂V ∗

i
∂x2

(0, 1
2

∂V ∗
i

∂x2
(⃗x)) if ∂V ∗

i
∂x1

<
∂V ∗

i
∂x2

(1
2

∂V ∗
i

∂x1
(⃗x), 1

2
∂V ∗

i
∂x2

(⃗x)) if ∂V ∗
i

∂x1
=

∂V ∗
i

∂x2
.

(2.15)

Where P∗
n, j (⃗x, i) is the non-renewable power given to load j when wind is in state i (i = 0

and 1 meaning wind is off and on respectively). Thus we see that the optimal grid power

is allocated so that only the higher temperature TCL is cooled, until the lower temperature

TCL increases to the its temperature. Thereafter, both the TCLs are cooled at the same
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rate. Therefore we conclude the optimal policy is of synchronizing nature.

2.3.3 De-synchronized response under stochastic user preferences

The HJB equation in this case is the same as in the hard threshold model, but the

admissible actions need to be modified when the TCLs are above the thermostat set-point:

Ã (⃗x, i,Θ) = {(P⃗n, P⃗w) ∈ Â (⃗x, i) :

if (x j(t))> Θ(0)
M and Θ(t) = (0)

M ) then Pn,j = M}.

Lemma 5. If the optimal cost-to-go function is concave in the interval [a,b]× [a,b] ⊂

[0,ΘM]× [0,ΘM], then the optimal policy is de-synchronizing in nature in [a,b]× [a,b].

Proof. Notice that the HJB equations are the same as (2.11), with Â replaced by Ã . When

Θ(t) is Θ(0)
M all the TCLs having temperature above Θ(0)

M need to be necessarily provided

grid power M. This is neither synchronizing nor de-synchronizing. Otherwise, the solution

is given by equations (2.14) and (2.15).Nowwe observe that when the optimal cost-to-go is

locally concave ∂V ∗
i (⃗x)

∂x1
≥ ∂V ∗

i (⃗x)
∂x2

, when x1 < x2, thus both grid and wind power are allocated

to TCL1, thereby making it even cooler, while at the same time TCL2’s higher temperature

is rising even higher. Therefore the actions taken are de-synchronizing.

2.4 Numerical computation of solution

In this section we numerically compute the solution of HJB equation for the stochas-

tic user preference model, and exhibit the local concavity of the optimal cost-to-go func-

tion. Since the HJB equations (2.11) are a system of non-linear partial differential equa-

tions, an analytical solution is difficult to obtain. To compute the exact solution we use
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Figure 2.1: The optimal cost-to-go function is concave in the higher temperature region,
but is convex in the lower temperature region.

the value-iteration method [4]. To that end, we discretize both the temperature levels and

time. We also convert the continuous time Makrov processes for wind and thermostat set-

tings into two-state discrete time Markov chains. To obtain a state space which is the set

of integers, we use integer values for M and S, and optimize with respect to P⃗n, P⃗w in the

integer action space. This results in the following infinite time discounted cost problem

with discount factor β ∈ (0,1):

Minimize
∞

∑
t=0

β tE[(1T P⃗n[t])2]

Subject to. xi[t +1] = xi[t]+S−Pn,i −Pw,i for i = 1,2

x1,x2 ∈ {0,1,2...,ΘM}

Pw,1 +Pw,2 =W [t]

W [t]v M [q0,q1],Pg,i ≥ 0,Pw,i ≥ 0 for i = 1,2.

20



We use the value iteration algorithm to obtainVi [⃗x] for i = 1,2. Figure 2.1 illustrates

the local concavity in optimal cost-to-go function computed numerically. Figure 2.2 ex-

hibits a simulation under the optimal policy, for the initial conditions x1(0) = x2(0) = 95. It

shows that the optimal policy de-synchronizes the two TCLs when either of the TCLs is at

high temperature, while it attempts to synchronize themwhen they are at low temperatures.

Time−>
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em
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ra
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 −
>

 

 

Load 1
Load 2

Figure 2.2: Simulation under the optimal policy. Note that when either of the TCLs is
above a threshold temperature, the TCLs are separated apart, while at low temperatures,
the TCLs are brought to the same temperature.

2.5 Heuristic approximation of optimal solution

We now propose a simple heuristic approximation of the optimal policy which at-

tempts to capture its main characteristics. To do so, it is useful to plot the vector field

of rate of change of the temperature state vector. Figure 2.3 indicates a threshold above
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Figure 2.3: Vector field of the rate of change of temperature states under the optimal policy
when wind is off and thermostat is high. At higher temperatures the TCLs are separated,
while at low temperature they are brought closer together.

which the TCLs are de-synchronized; let us denote such a level by τ(i, j)h where i, j denote

the wind condition and thermostat setting respectively.
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Figure 2.4: Magnitude of the total non-renewable drawn by N = 2 TCLs when wind is on,
under the numerically computed optimal policy, when x1 = x2. Note that it can be linearly
approximated by parameters (Ph1,Ph2,Pl1,τ1,τ2).
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Similarly we can approximate the magnitude of the grid power allocated by two lin-

ear splines, one above τ(i, j) and one below, as shown in Figure 2.4. Therefore the overall

heuristic policy has five parameters (τ1,τ2,Ph1,Pl1,Ph2) per state. Figure 2.5 compares the

grid power drawn by the heuristic policy Π̂, the numerically computed optimal synchroniz-

ing policy Πsync, and a passive bang-bang policy Πbang for which the TCLs are turned on

and off when they hit Θm and ΘM respectively. One can note that the variations in power

trajectory are lesser under the heuristic policy than under the synchronized policy.
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Figure 2.5: Comparison of non-renewable power drawn for different policies for N = 10,
Θ(1)

M = 100,Θ(0)
M = 70. The heuristic de-synchronizing policy is smoother than the syn-

chronizing policy.
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3 PRIVACY RESPECTING ARCHITECTURE FOR OPTIMAL

DEMAND RESPONSE

There are several issues with the policy proposed in the previous chapter. First for

a large number of houses it becomes difficult to solve the optimization problem exactly.

The HJB Equation 2.11 is nonlinear, it therefore can not be solved directly. Also when

using numerical methods the complexity increases exponentially with the number of loads.

Second, since the control action is a function of temperature, the loads need to send their

temperature information back to the aggregator. This is both expensive with respect to

communication requirements, and is intrusive due to the revelation of its state variable to

the aggregator.

Motivated by these shortcomings, in this section we will introduce a threshold based

set-point policy. We will illustrate that the optimal solution for this set-point policy is easy

to compute. In-fact, under some conditions the policy turns out to be an explicit function

when the population size becomes infinite.

The aggregator under the threshold policy provides a “wind availability” signal to

the loads, which can also be regarded as akin to a “price signal”. The loads choose their

own comfort level set-points. Under this threshold policy, each load i, uses the wind upon

availability to cool itself, unless it is already at the lowest temperature allowed in its comfort

range.

When wind is not available the temperature of the loads rises. Consider a collec-
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tion of identical thermal inertial loads, each of which under a simple model follows the

following constant rate temperature dynamics,

ẋi = h−P

when load is supplied with power P. Here h denotes the ambient heating effect. We further

assume the maximum cooling power is h+ c, resulting in maximum cooling rate c.

Further, we assume the identical loads have a common desired comfort range

[Θm,ΘM(t)], within which they would like their temperature to lie. To prevent the sudden

demand increase resulting from a simultaneous comfort range, we assume that the upper

comfort setting is variable. Here we observe, that whenever this comfort setting change

happens, temperatures of some loads may exceed their upper comfort level. Under such a

situation, we use the non-renewable power to cool at a maximum cooling rate c, to restore

the user-provided comfort range specifications at the earliest.

We illustrate the threshold policy with a simple case. We assume that the upper

comfort level ΘM(t) is a piecewise constant Markov process with two levels Θ(0)
M and Θ(1)

M

with mean holding times 1
r0
and 1

r1
, respectively. Further, let wind also be a two-state

Markov process with states “Blowing” and “Not Blowing”, with respective mean holding

times 1
q1
and 1

q0
.

When wind is in “Blowing” state, each load uses wind to cool at maximum rate,

unless it is already in its lowest possible state, i.e. at x = Θm. At x = Θm, loads use just
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enough wind power to prevent over-cooling. Therefore we have

ẋ(t) =


−c When x > Θm and wind is blowing

0 When x = Θm and wind is blowing

Whenwind is in “Not Blowing” state, and the load is inside the comfort range (Θm,ΘM(t)),

loads heat at the rate h when they don’t use non-renewable power. The loads use the non-

renewable power whenever the loads are outside the comfort-range [Θm,ΘM(t)], and cool

themselves at the maximum rate c in order to return to comfort range quickly. In addition,

in a threshold policy, each load i is assigned with a threshold temperature Zi. Each load is

allowed to heat till it hits either its upper comfort level ΘM(t), or the threshold temperature

level Zi. Upon hitting either, the loads draw just enough non-renewable power to maintain

themselves at that temperature. This is shown in Figure 3.1.
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Not blowing

h+c

h

Figure 3.1: The wind process, the temperature, and non-renewable generation drawn.
Wind power is used whenever it is available to stay in the comfort range. Non-renewable
power is used, if it must, to maintain the upper limit (or Z-value) to prevent comfort viola-
tion.
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Therefore the temperature follows

ẋi(t) =



0 if xi(t) = min(Zi,ΘM(t)) & wind not blowing

h if xi(t)< min(Zi,ΘM(t)) & wind not blowing

−c if xi(t)> ΘM(t) unconditionally

Let Pw(t) and Pn(t) denote the wind and non-renewable power. For the policy de-

scribed above, we have

Pw(t) =


h+ c when x(t)> Θm

h when x(t) = Θm

,

and,

Pn(t) =


h+ c When x(t)> ΘM(t) and wind not blowing

h When x(t) = min(Z,ΘM(t))

For a collection of N loads, with the i-th load using the threshold Zi, where Θm ≤

Zi ≤ Θ(1)
M , let Z = (Z1,Z2, ...,ZN), and let us call the overall threshold policy as “Z-policy”.

Let xi(t) be the temperature of load-i at time t, and Pn,i(t) be the non-renewable power it

draws. When the user changes its comfort level, it may occasionally violate the temperature

range constraint. We penalize such violations by [(xi(t)−ΘM(t))+]2 (x+ :=max(x,0)), and

consider the average cost of such discomfort limT→∞
1
T
∫ T

0 ∑N
i=1[(xi(t)−ΘM(t))+]2dt.

We also require the total non-renewable power drawn ∑N
i=1 Pn,i(t) to be as constant

as possible. We penalize the variations in total non-renewable power drawn by imposing

a cost quadratic cost function limT→∞
1
T
∫ T

0 (∑N
i=1 Pn,i(t))2.

We therefore consider the problem of optimally selecting Z = (Z1,Z2, ...,ZN) to op-
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timize the overall cost

lim
T→∞

∫ T

0

1
T
{(

N

∑
i=1

Pn,i(t))2 + γ(N)
N

∑
i=1

[(xi(t)−ΘM(t))+]2dt},

where, γ(N) trades off discomfort against less variations in total non-renewable power con-

sumption.

Although we have considered a square cost in both power consumption and discom-

fort, any other cost function of total non-renewable powerCpower(∑N
i=1 Pn,i), and discomfort

to the customerCdiscom f ort(xi(t)) would invoke a similar analysis.

3.1 The probability distribution of load temperatures under a threshold policy

In order to evaluate the long-term average terms in the cost function, as a first step

we need to evaluate the probability distribution under a Z-policy. For two wind levels

(“Blowing” and “Not blowing”), and two upper comfort limits (Θ(0)
M ,Θ(1)

M ), let pz
i j(x) de-

note the probability density functions, after employing the Z-policy for x ∈ (Θm,Θ
(0)
M )∪

(Θ(0)
M ,Θ(1)

M ), where i = 0,1 denotes wind “Not blowing”, and “Blowing” respectively, and

j = 0,1 denotes ΘM equal to Θ(0)
M , and Θ(1)

M respectively. Since, under the threshold pol-

icy, the load will remain at Θm,Θ
(0)
M ,z each for a non-zero fraction of time, there will be

a probability mass at each of these temperatures. Denote by δ z
Θm, j, the probability mass

at x = Θm and comfort setting j as described above. Also let δ z
Θ(0)

M

, and δ z
z denote the

probability mass function at temperatures Θ(0)
M and z respectively. One may notice that

each of the four probability mass functions δ z
Θm,0,δ

z
Θm,1,δ

z
Θ(0)

M

, and δ z
z , are defined such that

they can only be associated with a unique wind and comfort level settings, and as a re-
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sult of this it is easier to evaluate the relation between density function pi j and probability

mass at the boundary. One can also notice that the total probability mass at x = Θm is

δ z
Θm

= δ z
Θm,0 +δ z

Θm,1.

Lemma 6. The density functions pz(x) := [pz
00, pz

01, pz
10, pz

11], and probability mass

δ z
Θm,0,δ

z
Θm,1,δ

z
Θ(0)

M

, and δ z
z under a z-policy for binary state wind and binary comfort set-

tings, are given by the following linear system;

D(x)
d
dx

pz(x) = Qpz(x) (3.1)

Q1δ z
Θ(0)

M

= D(Θ(0)
M −)pz(Θ(0)

M −)−D(Θ(0)
M +)pz(Θ(0)

M +) (3.2)

Q2δ z
z = D(Θ(1)

M −)pz(Θ(1)
M −) (3.3)

Q3δ z
Θm,1 +Q4δ z

Θm,1 = D(Θm+)pz(Θm+) (3.4)∫ z

Θm

1T pz(x)dx+δ z
Θm,0 +δ z

Θm,1 +δ z
Θ(0)

M

+δ z
z = 1. (3.5)

Here, D(x) is a diagonal matrix representing the dynamics of the states, Dii(x) := dx
dt

where i = 1,2,3,4 denote the states i j = 00,01,10,11 respectively. Therefore, for the de-

scription of z-policy in last section, we have (D22,D33,D44)(x) = (h,−c,−c) and D11(x) =
h for x < Θ(0)

M

−c for x > Θ(0)
M

Q denotes the generator matrix for continuous time Markov process whose columns

are Q1,Q2,Q3,Q4, i.e. Q = [Q1
...Q2

...Q3
...Q4]. Q1,Q2,Q3, and Q4 respectively denote rates

of transition vectors out of states i j = 00,01,10, and 11.

Lemma 7. The density function pz(x) satisfies the conservation law 1T D(x)pz(x) = 0,∀x∈
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[Θm,Θ
(1)
M ].

Proof. In equation (3.1), Q is the generator matrix of a Markov process, thus 1T Q = 0,

which yields d
dx1T D(x)pz(x) = 0. Also we have 1T D(Θi)pz(Θi) = 0, at each of the bound-

ary points (Equations (3.2-3.4)). So we have 1T D(x)pz(x) conserved at each temperature

x.

The above method can also be generalized to more states of wind levels and comfort

settings. In particular when there are W wind states and C comfort setting levels below

temperature threshold z, there are W ×C number of states. The differential equation 3.1

will still be the same, and will consist ofC linear differential equations involvingC vectors

of W C variables, resulting in a total of C 2W variables.

To solve for these we will need to evaluate the boundary conditions. Let δ z
Θm,i denote

the probability mass at x = Θm, under wind condition i, i ∈ {1,2, ...W − 1} and comfort

settings Θ j, j ∈ {0,1,2, ...,C − 1}, and let δ z
Θ j

M
denote the probability mass at Θ j

M, j ∈

{1,2, ...,C }. This leads to additional W C variables.

To solve for these C 2W +W C variable we have the C +1 relations relating prob-

ability mass variables δ z
θ at θ ∈ {Θm,Θ

(0)
M , ...,Θ(C−1)

M } to each of C W states, thus a total

of (C +1)W C = C 2W +W C relations. We will still need the normalization equation ,

since their is a dependency due to conservation law of Lemma 7. Thus we can obtain the

distribution for arbitrary wind levels and comfort level setting.

In fact, the same formulation holds for any other dynamics too. The dynamics matrix

D(x) captures the effect of different dynamics. In particular, the cooling dynamics ẋ =
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Ax+b, can be solved in a similar fashion.

Temperature →
 

wind off Θ=Θ
1

wind off Θ=Θ
2

wind on Θ=Θ
1

wind on Θ=Θ
2

Θ
2

Θ
10

Figure 3.2: Temperature distribution of a particular load following, the set-point policy for
values (z,Θ(1)

M ,Θ(0)
M ,q0,q1,r0,r1,c,h) = (100,100,50,0.04,0.04,0.02,0.02,1.1,1). The

probability distribution consists of three point masses and four probability distributions
which are continuous everywhere except at Θ(0)

M

3.2 Optimization for finite loads case under Z-policy

Figure 3.3 shows typical temperature trajectories for the case when N = 3, and Z =

(60,70,80), with Θ(1)
M = 100. Since we are considering the average cost problem, we can

assume without loss of generality that all loads start with the same initial temperature.

In order to calculate the average cost, we need the distribution of ∑N
i=1 Pn,i, which entails

knowing the joint probability distribution of {Pn,i}N
i=1. More generally, as we consider a

large number of loads, which we do in the sequel, we need the joint distribution of the grid

power draws over the loads.

We resolve the dimensionality “curse” [3], by utilizing an important property of

stochastic domination. For any two loads i and j with Zi < Z j we have xi(t)≤ x j(t) for all
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t, regardless of the wind process realization. An important consequence is that whenever

the j-th load hits its upper temperature limit Zi, the i-th load has already hit its upper tem-

perature limit too. Using ω to denote a sample point in the probability space, we have the

following inclusion of events:

{X j(t,ω) = Z j} ⊂ {Xi(t,ω) = Zi}, if Zi < Z j. (3.6)

Now we can calculate the expected cost of a Z-policy. First consider just one TCL. The

W
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Time
 

 

Load
3

Load
2

Load
1

Θ
M

(t)

Z
3

Z
2

Z
1

Figure 3.3: When the wind is blowing, loads cool at the maximum rate, subject to not going
below temperature Θm. Load temperatures do not rise above minimum of Z and ΘM(t)

fossil fuel power drawn is h when Θ(t) = Θ(1)
M and the load temperature is at Z, while it is

h+c when X(t)> Θ(t). The cost due to discomfort is γ(1)[(x(t)−Θ(t))+]2, For any event

A, denoting Pi(A) := P(A∩{Θ(t) = Θi}) for i = 1,2. The cost of the Z-policy is

C(1)(Z) =h2P2(X = Z)+ [(h+ c)2P1(X > Θ(0)
M )+h2P1(X = Θ(0)

M )]

+ γ(1)
∫ z

Θm

[(x−Θ(0)
M )+]2(pz

00(x)+ pz
10(x))dx.
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For brevity let us denote the second term by Φ(z),

Φ(z) :=
∫ z

Θm

[(x−Θ(0)
M )+]2(pz

00 + pz
10)(x)dx.

Now we consider the case of two loads. In this case we need to consider the total dispatch-

able fossil fuel generation drawn by the two loads. Thus we need the joint probability

distribution of the two loads. Their marginals will not suffice, unlike the case of just one

load. It is here that we exploit the above stochastic dominance which provides informa-

tion on the joint-distribution of the loads. When (ΘM(t) = Θ(1)
M ) with Z1 ≤ Z2, the total

fossil fuel power is 2h when X2 = Z2 because X2 = Z2 ⇒ X1 = Z1. Also, when X2 < Z2

but X1 = Z1, the fossil fuel power is h. Similarly when ΘM(t) = Θ(0)
M , total fossil fuel

power is 2(h+c) when X1 > Θ(0)
M , (h+c)+h when X1 = Θ(0)

M but X2 > Θ(1)
M , and 2h when

X2 = Θ(1)
M . So the total costC(2) with relative weight γ(2) > 0 is,

C(2)(Z) = (2h)2P2(X2 = Z2)+h2P2(X2 < Z2 ∩X1 = Z1)

+(2h)2P1(X2 = Θ(0)
M )+(2(h+ c))2P1(X1 > Θ(0)

M )

+((h+ c)+ c)2P1(X2 > Θ(0)
M ∩X1 = Θ(0)

M )

+ γ(2)(Φ(Z1)+Φ(Z2)).

Also, since, {X2 = Z2} ⊂ {X1 = Z1}, we have P({X1 = Z1}) = P({X1 = Z1} ∩ {X2 <

Z2})+P2({X2 = Z2}), i.e.,

P2({X1 = Z1}∩{X2 < Z2}) = δ Z1
Z1

−δ Z2
Z2
. (3.7)

When Θ(t) = Θ(0)
M , by a similar argument we obtain,

P1({X1 = Θ(0)
M }∩{X2 > Θ(1)

M }) = δ Z1

Θ(0)
M

−δ Z2

Θ(0)
M

. (3.8)
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This analysis extends to the case ofN loads. For any choice (Z1,Z2, ...,ZN) of the set points

with Z1 ≤ Z2....≤ ZN , we can evaluate the value of the average. It is

C(N) = γ(N)
N

∑
k=1

Φ(Zi)+N2[h2(P2(X1 = Z1)+

P1(XN = Θ(0)
M ))+(h+ c)2P1(X1 > Θ(0)

M )]+

N−1

∑
k=1

[
((N − k)h)2P2(Xk+1 = Zk+1 ∩Xk < Zk)+

(
(N − k)(h+ c)+(kh)

)2P1(Xk = Θ(0)
M ∩Xk+1 > Θ(0)

M )
]

Now we turn to an important issue concerning the choice of the scaling parameter γ(N).∫ T
0 (∑N

i=1 Pg,i)
2dt grows like Ω(N2), but

∫ T
0 ∑N

i=1[(xi(t)−Θ(t))+]2dt grows like Ω(N). We

therefore scale γ(N) as γ(N) = γ.N. Let Ĉ(N) := C(N)

N2 denote the normalized cost. It evaluates

to

Ĉ(N) =
γ
N

N

∑
k=1

Φ(Zi)+h2{P2(X1 = Z1)+ (3.9)

P1(XN = Θ(0)
M )}+(h+ c)2P1(X1 > Θ(0)

M )+

N−1

∑
k=1

[(
1− k

N

)2h2P2(Xk+1 = Zk+1 ∩Xk < Zk)+

((
1− k

N

)
(h+ c)+

( k
N

h
))2

P1(Xk = Θ(0)
M ∩Xk+1 > Θ(0)

M )
]

(3.10)

We thereby arrive at the following optimization problem for the case of a finite number N

of TCLs:

Minimize Ĉ(N)(Z)

s.t. Zi ≤ Zi+1 for i = 1,2, ...,N −1,

Z1 ≥ 0,ZN ≤ Θ(1)
M . (3.11)
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This problem is intractable because of the large number of constraints. Motivated by this

we next examine its infinite load population limit.

3.3 Continuum limit for binary wind and comfort setting model

We now consider the infinite population limit where there is a continuum of loads.

Let u(z) denote the fraction of loads with set points no more than z. Let U denote the

space of piecewise continuous increasing positive functions on [0,1], noting that u ∈ U .

The resulting cost, following a similar analysis to (3.10), is

C[0,1](u) =h2(δ Θ(1)
M

Θ(1)
M

+δ Θ(0)
M

Θ(0)
M

)+
∫ Θ(1)

M

Θm

[(hu)2(z)P2({Xz = z}∩{Xz+dz < z+dz}))+

(hu(z)+(h+ c)(1−u(z)))2 ×P1({Xz = Θ(0)
M }∩{Xz+dz > Θ(0)

M })]+

γ
∫ Θ(1)

M

Θm

Φ(z)u′(z)dz.

The first term is the cost of violation of upper temperature limit, while the second term

is that due to variability in total dispatchable fossil fuel generation. Note that from

(3.7),(3.8) P2({Xz = z} ∩ {Xz+dz < z + dz}) = −dδ z
z

dz dz and P2({Xz = Θ1} ∩ {Xz+dz >

Θ1}) =−
dδ z

Θ(0)
M

dz dz.

Define D1(z) := −dδ z
z

dz ,D2(z) := −
dδ z

Θ(0)
M

dz . The above can be simplified (as in [29])

to

C[0,1](u) =h2(δ Θ(1)
M

Θ(1)
M

+δ Θ(0)
M

Θ(0)
M

)+

[∫ Θ(1)
M

Θm

[γu′(z)Φ(z)+

(hu(z))2D1(z)+((h+ c)− cu(z))2D2(z)]dz
]
.

35



Ignoring the first term that does not deoend on u, we obtain the following Calculus of

Variations [20] optimization problem:

Min J[u] =
∫ Θ(1)

M

Θm

[
(hu(z))2D1 +(h+ c− cu(z))2D2+

γΦ(z)u′(z)
]
dz (3.12)

s.t. u ∈ U ,u(Θm) = 0,u(Θ(1)
M ) = 1. (3.13)

If one informally uses the Euler-Lagrange equation, one obtains the resulting solution

uEL(z) =
γΦ′(z)+2c(c+h)D2(z)
2(h2D1(z)+c2D2(z))

. This however need not be a positive increasing function or

satisfy the boundary condition uEL(Θm) = 0, uEL(Θ
(1)
M ) = 1. Figure shows a particular

solution where uEL /∈ U and uEL(Θ
(1)
M ) ̸= 1.

0

0.1

0.2

0.3

0.4

Temperature →
 

 

Euler Lagrange
solution u

EL
(z)

Θ
1 Θ

2

Figure 3.4: The Euler Lagrange solution obtained for the values used to find distribution
in Figure 3.2.

Therefore the Euler Lagrange solution is not admissible for all the scenarios. We

consider next how to solve this problem using Pontryagin’s Minimum Principle [26].
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3.3.1 Evaluation of optimal solution using minimum principle

We employ optimal control to solve the optimization problem. Assume that state

u(z) follows the dynamic system u̇(z) = f (u,v,z) for any admissible control v(z) ∈ V, and

z ∈ [Θm,Θ
(1)
M ]. Consider the cost function is J[u] =

∫ Θ(1)
M

Θm
g(u,v,z)dz.

Defining h(u,v,λ ,z) = g(u,v,z) + λ (z) f (u,v,z), the optimal control v∗(z) which

takes the state u(z) from u(Θm) = 0 to u(Θ(1)
M ) = 1, satisfies the following two conditions

[26]:

1. λ̇ (z) =−∂g
∂u

2. v∗(z) ∈ V is the pointwise minimizer of h(u,v,λ ,z).

Using Theorem 3.36 from [9], since u(z) ∈ U has bounded variation, and Φ(z) is

continuous, we have∫ Θ(1)
M

Θm

Φ(z)u′(z)dz = Φ(Θ(1)
M )−

∫ Θ(1)
M

Θm

Φ′(z)u(z)dz. (3.14)

We use (3.12),(3.14) to collect terms depending on u(z), and rewrite the cost in the follow-

ing equivalent way:

J′[u] =
∫ Θ(1)

M

Θm

u2(z)w(z)−u(z)(γΦ′(z)+2c(c+h)D2(z))dz

=
∫ Θ(1)

M

Θm

[
u(z)−uEL(z)

]2

w(z)

− (γΦ′(z)+2c(c+1)D2(z))2

4(h2D1(z)+ c2D2(z))
dz.

Here w(z) := (h2D1(z)+ c2D2(z))> 0. Thus, we will focus on optimizing the cost func-

tional J[u] =
∫ Θ(1)

M
Θm

w(z)[u(z)− uEL(z)]2dt, u(Θm) = 0 and u(Θ(1)
M ) = 1. Without loss of

generality, we can take uEL(z) ∈ [0,1] (otherwise replace uEL by max(0,min(1,uEL))).
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We first consider the Euler Lagrange solution uEL(z) obtained in Section IV. Using

the notations above, we set V = R, f (u,v,z) = v2 and g(u,v,z) = w(z)[u(z)−uEL(z)]2.

The optimizers v∗,λ ∗ satisfy,

λ̇ ∗(z) =−2(u(z)−uEL(z))w(z) (3.15)

u̇(z) = v∗2(z) (3.16)

v∗(t) = arg min
v∈R

[
w(z)(u(z)−uEL(z))2 +λ ∗(z)v2(z)

]
(3.17)

One can rewrite (3.17) as:

v∗(z) =



0 if λ ∗(z)> 0

−∞ if λ ∗(z)< 0

arbitrary if λ ∗(z) = 0 .

One can observe that λ ∗(z) can-not be strictly negative, as this leads to unbounded

u(z) from (3.16), and further results in infinite cost J. This also suggests that jumps in u(z)

are possible only at those points where λ ∗(z) is zero.

Also from (3.15), we observe that λ ∗(z) remains constant only on the points where

u(z) = uEL(z). It increases when u(z)< uEL(z), and decreases when u(z)> uEL(z). From

(3.16), (3.17) we observe that if λ ∗(z)> 0, then v∗(z) is zero, leading to a constant u(z). So,

λ ∗(z) > 0 implies u(z) = constant. Next, since u(z) has to be increasing from (3.16), we

conclude that λ ∗(z) can-not be constant on the points where uEL(z) is decreasing, however

λ ∗(z) can be constant when uEL(z) is increasing.

Nowwe consider uEL(z) obtained in Section IV. Since we require u∗(Θ(1)
M ) = 1, there
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are jumps at Θ(0)
M and Θ(1)

M . Next if uEL(z) is decreasing in [Θ(0)
M ,θ ] then λ ∗(z) is not

constant in [Θ(0)
M ,θ ] and u∗(z) is a constant in [Θ(0)

M ,θ ], let u∗|
z∈[Θ(0)

M ,θ ]
= κ . Since λ (z)

can not be negative, κ = u∗(Θ(0)
M ) < uEL(Θ

(0)
M ) and also since λ (Θ(1)

M ) needs to be zero,

u(Θ(1)
M )> min

z∈[θ ,Θ(1)
M ]

{uEL(z)}, so that λ (z) decreases when uEL(z)< κ . λ (z) decreases

to zero, and subsequently stays at zero, and u∗(z) remains equal to uEL(z) till Θ(1)
M . Note

that u∗(z) has a discontinuity at Θ(1)
M , since we require u∗(Θ(1)

M ) = 1. This is illustrated in

Figure 3.5.
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Figure 3.5: The incorrect solution from an incorrect application of the Euler Lagrange
results from Section V contrasted with the correct optimal solution obtained from the Pon-
tryagin’s minimum principle.

Notice that the above κ satisfies
∫ y2

y1
(κ − uEL(z))w(z)dz = 0, for y1 := sup{z < θ :

uEL(z) < κ} and y2 := inf{z > θ : uEL(z) > κ}. For a general uEL(z), we can find an

optimal solution u∗(z) in a similar way. We first find the partition {Θ(0)
M = θ0,θ1, ...,θN =

Θ(1)
M }, such that (WLOG) uEL is increasing in [θ2i,θ2i+1], and decreasing in [θ2i−1,θ2i], and

finding κi such that
∫ y2i+i

y2i−1
(κi −uEL(z))w(z)dz = 0, for y2i−1 = sup{z < θ2i : uEL(z) < κi}
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and y2i+1 = inf{z > θ2i : uEL(z)> κi}. This is shown in Figure 3.6.

Let us denote this operator which transforms the Euler Lagrange solution uEL(z) to

optimal solution u∗(z) via the minimum principle as P[.], i.e. u∗(.) = P[uEL(.)].
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Figure 3.6: The optimal solution in the general case will remain equal to the Euler Lagrange
solution in some intervals but will remain constant in other intervals.

3.4 Extension of results for general models

3.4.1 Model with more upper comfort levels

Consider three upper comfort levels Θ(0)
M ,Θ(1)

M ,Θ(2)
M . In this situation, when the com-

fort range for identical loads toggles to Θ(1)
M , all the loads whose set-points are between

Θ(0)
M and Θ(1)

M remains unaffected. Therefore, under the event {ΘM(t) = Θ(1)
M } the cost
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will be a function of the fraction of set-points below Θ(1)
M , i.e. u(Θ(1)

M ). In particular,

Power cost=Cost when {ΘM = Θ(2)
M }+

Cost when {x ≥ ΘM = Θ(1)
M }+

Cost when {x ≥ ΘM = Θ(0)
M }.

Cpow[u] =
∫ Θ(2)

M

0
DΘ(1)

M (z)(hu(z)+

(h+ c)(1−u(z)−u(Θ(1)
M )))2+

Dz(z)h2u2(z)+DΘ(0)
M (z)((h+ c)−u(z))2dz,

where DΘi(z) :=−
δ z

Θi
dz =− d

dzP(Xz = Θi) for i = 1,2, and Dz(z) :=−δ z
z

dz =− d
dzP(Xz = z),

and

Discomfort cost=
∫ Θ(2)

M

0
E[(x−ΘM(t))+)]2u(z)dz

Cdisc[u] =
∫ Θ(2)

M

0
Φ1(z)u′(z)+Φ2(z)u′(z)dz.

Where Φi(z) =
∫ z

0 [(x−Θ(0)
M )+]2(p1i + p0i)(z)dz, for i = 1,2. Total cost C[u] =CPow[u]+

γCdisc[u].

After simplification the cost function can be re-written as,

J[u] =
∫ Θ(2)

M

0
(u(z)−uEL(z,u(Θ

(1)
M )))2w(z)dz+C′(u(Θ(1)

M )).

For u ∈ U ,

uEL(z,u(Θ
(1)
M )) =:

γΦ′(z)+2c(c+h)(DΘ(0)
M (z)+DΘ(1)

M (z)(1−u(Θ(1)
M )))

2(h2Dz(z)+ c2DΘ(0)
M (z)+ c2DΘ(1)

M (z))
,

and C′(u(Θ(1)
M )) := Φ(Θ(2)

M ) +
∫ Θ(2)

M
0 (h + c)2(D1(z) + D2(z)(1 − u(Θ(1)

M ))) −
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u2
EL(z,u(Θ

(1)
M ))w(z)dz.

The calculus of variations problem is difficult to solve because the functional J[u] also

contains point evaluations u(Θ(1)
M ). We propose to solve this iteratively, first by replacing

u(Θ(1)
M ) with a variable v obtaining the optimizer u∗(z) for a fixed v, and then updating v

such that |u∗(Θ(1)
M )− v| decreases in each step. Thus we can obtain an optimal solution

u∗(z) with v = u∗(Θ(1)
M ).

For an initial guess v0 of u∗(Θ(1)
M ) the problem reduces tominimizing J[u] =

∫ Θ(2)
M

0 (u−

uEL(z,v0))
2w(z)dz, whose solution from Section (3.3.1) is obtained as P[uEL(.,v0)](z).

Lemma 8. Let v be such that v = P[uEL(.,v)]. Then v lies between v0 and

P[uEL(.,v0)](Θ
(1)
M ).

Proof. As P[u] is increasing in u, and uEL(.,v) is decreasing in v, if v0 ≤ v then v ≤

P[uEL(.,v)]. On the other hand, if v0 ≥ v, then v ≥ P[uEL(.,v)], which yields the desired

result.

Therefore, we define a range in which v lies, let v↑0 := max(v0,P(uEL(.,v0))(Θ
(1)
M )),

and v↓0 := min(v0,P(uEL(.,v0))(Θ
(1)
M )).

For (n+1)-th iteration we update the values of vn,v
↑
n,v

↓
n as, vn+1 = v↑n+v↓n

2 , v↑n+1 =

min(v↑n,max(vn,P[uEL(.,vn)](Θ
(1)
M ))), and v↓n+1 =max(v↓n,min(vn,P[uEL(.,vn)](Θ

(1)
M ))).

Lemma 9. The iteration tuples (v↓i ,v
↑
i ) converges to the same unique value as i → ∞. That

is, there exist a v such that v↓i → v, and v↑i → v as i → ∞. Morever such a v is a fixed point

of the function P[uEL(.,v)](Θ
(1)
M ), i.e. it satisfies v = P[uEL(.,v)](Θ

(1)
M ).
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Proof. It is clear by induction that for all i, v↑i ≥ v↓i , since for all i, as vi =
v↑i +v↓i

2 , we have

max(vi,P[uEL(.,vi)](Θ
(1)
M ))> v↓i and min(vi,P[uEL(.,vi)](Θ

(1)
M ))< v↑i .

Also, the sequences {v↑i } and {v↓i } are both monotonically decreasing and increasing

respectively, therefore they must converge. It remains to show that both of these sequences

converges to the same point. To show that, we will prove that the range spanned by v↑i , and

v↓i decreases with i, in particular, v↑n+1 − v↓n+1 ≤
v↑n−v↓n

2 , which then concludes the proof, as

v ∈ [v↓i ,v
↑
i ].

Assume, first that vi ≤ P[uEL(.,vi)](Θ
(1)
M ), then

v↑i+1 − v↓i+1 = min(v↑i ,P[uEL(.,vi)](Θ
(1)
M ))− vi

≤ v↑i − vi =
v↑i − v↓i

2
.

On the other hand, if vi > P[uEL(.,vi)](Θ
(1)
M ), then

v↑i+1 − v↓i+1 = vi −max(v↓i ,P[uEL(.,vi)](Θ
(1)
M ))

≤ vi − v↓i =
v↑i − v↓i

2
.

This concludes the proof to show that there is a unique point v and v↑i ,v
↓
i → v as i → ∞.

The same technique can be used for more than three comfort settings, In particular

for C comfort settings, we will have C −2 such tuples (v↑,v↓), which can be iterated in a

round-robin fashion to obtain the optimal solution.
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Figure 3.7: Convergence of the parameters v↑n,v
↓
n, and vn with iteration numbers along with

the optimal solutions u∗(.,vi) for i = 1,2,3,4.

3.4.2 Extension to multiple wind models

Consider the case when we have a binary model for comfort setting and, ternary

model for wind states, namely 0, 1, 2. In state 0, the wind is not available, so houses heat

at the rate h. In state 2, all houses can cool at the maximum rate c. In addition, we have an

intermediate state 1, in which all the houses can be cooled at a rate c/2.

This system can be solved by using the technique in Section (3.1), to

obtain the density functions p00, p10, p20, p10, p11, p21, and the probability masses

δ0,0,δ0,1,δΘ(0)
M ,0

,δ
Θ(0)

M
,δ

Θ(1)
M
. We notice when x > ΘM and wind is in state 1, we can cool

the loads at a maximum rate c by providing c/2 non-renewable power, which adds to the

cost function.

Without delving further into finite loads case, we directly write the cost function for
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the case of asymptotic loads scenario. The cost function is,

C[u] =
∫ Θ(1)

M

0
(−δ z

z )
′h2u2(z)(−δ z

Θ(0)
M ,0

)′(hu(z)+(h+ c)(1−u(z)))2

+(D̂)(z)(
c
2
(1−u(z)))2dz+ γ

∫ Θ(1)
M

0
Φ(z)u′(z)dz,

where D̂(z) = − d
dzP(Xz > Θ(0)

M ∩ W = 1). Denoting Dz
y = − d

dxδ z
y for y =

z,(Θ(0)
M ,0), and (Θ(0)

M ,1), and simplifying the above expression we obtain the optimiza-

tion problem

J[u] =
∫ Θ(1)

M

0
(u−uEL(z))2w(z)dz

s.t. u ∈ U

u(0) = 0,u(Θ(1)
M ) = 1,

where uEL(z) =
γΦ′(z)+2c(c+h)Dz

Θ(0)
M ,0

+cD̂(z)

2(h2Dz
z(z)+c2Dz

Θ(0)
M

(z)+( c
2 )

2D̂(z))
, and w(z) = h2Dz

z(z)+c2Dz
Θ(0)

M

(z)+( c
2)

2D̂(z).

We notice that this is the exact same problem as solved in section (3.3.1), whose

solution P[uEL(.)](z) gives the optimal distribution for set-points.

The same analysis can be extented for an arbitrary numberW > 3wind states, where

the states are numbered such that in state w ∈ [0,1, ...,W −1] the available wind power is

sufficient to cool all the houses at a rate ic
W −1 . (Therefore the available wind power in

state i is h+ ic
W −1 .) If there are C set-points, then the solution of the problem is given by

P[uEL(., v⃗∗)], where uEL is given by equation (3.18)

uEL(z, v⃗) =
γΦ′(z)+2c(c+h)(Dz

Θ(0)
M

(z)+∑C
j=2(1− vi)Dz

Θ j
(z))+2c∑W −1

i=1 ((1− i
W −1 )D̂Θ(0)

M
(z)−∑ j=1 C viD̂Θ j (z)

2(h2Dz
z(z)+ c2Dz

Θ(0)
M

(z)+∑W −1
i=1 (1− i

W −1 )
2c2D̂(z))

(3.18)
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and v⃗∗ = (v∗2,v
∗
3, ...,v

∗
C−∞) is the fixed point of the equations

v∗j = P[uEL(., v⃗∗)](Θ j)

for j = (2,3, ...,ΘC−∞).

3.4.3 Numerical solution for non-homogeneous loads

The solution for the homogeneous loads scenario, with uniform change of set-points

is not easy to generalize. In the general case, there can be many sources of in-homogeneity,

the cooling and heating rates could be different for different loads, and the set-point changes

could be arbitrary. All such factors could lead to non-coupled temperature trajectories.

Computation of the overall power is difficult under the non-coupled temperature case, as

the complexity of the state-space increases geometrically in this case.

We can use numerical simulation to get an estimate of the optimal solution for a

general scenario. The idea is to calculate the optimal solution for a population N of loads,

which will give us the density function ũ(x) = 1
N ∑N

i=1 I(x ≥ z∗i ) as an approximate of the

asymptotic optimal solution. (Where I(x) is an indicator function)

We used the coupling from the past algorithm to estimate the joint probability distri-

bution P(X⃗ < x⃗) from the perfect samples. The cost function comes from the joint distri-

bution as

ũ(z) = ∑
S⊂{1,2,...,N}

R⊂{1,2,...,N}−S

(
1
N ∑

i∈S, j∈R

(
Pc

i (xi)+Ph
j (zi))

)2
×P(XS = zS ∩XR > ΘR)+

N

∑
i=1

γ
1
N
E[(Xi −Θi)

+]2,

where Ph
i (zi) := Power required to maintain the temperature of house-i at set-point zi, and
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Pc
i (xi) :=Power required to cool the house-i at temperature xi.

For simplicity, consider the casewhere the loads are identical to the previous sections,

but the set-point changes are independent. The cost function simplifies to

ũ(z) = ∑
S⊂{1,2,...,N}

R⊂{1,2,...,N}−S

(
h
|S|
N

+(h+ c)
|R|
N

)2

×P(XS = zS ∩XR > ΘR)

+
N

∑
i=1

γ
1
N
E[(Xi −Θi)

+]2,

where for any setU , we denote the event XU > YU as {Xi > Yi,∀i ∈U}.

The solution ũ({zi}) resulting from the optimization may have discontinuities; there-

fore using this as a distribution to generate set-points will result in an accumulation at the

points of discontinuity. One may use interpolation, or smoothing the discrete distribution

by any convolution kernel g(x) using operator K[u](x) =
∫

g(x− z)u(z)dz to resolve this

issue. This is shown in Figure (3.8).

Temperature

Numerical Solution for finite population

Smooth version of the solution

Figure 3.8: The numerical solution obtained from using coupling from the past algorithm,
for a scenario with five loads when the upper comfort level is allowed to change indepen-
dently.
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3.5 Simple heuristic approaches for sub-optimal threshold policy

In a practical scenario where the air-conditioner parameters, comfort range values,

etc., are not known, it is difficult to analyze and propose an optimal threshold policy. A

suboptimal heuristic which adaptively updates the thresholds’ distribution to minimize the

overall cost is desired to tackle this scenario.

A general heuristic method can be proposed when the distribution is chosen from a

class Fα of distributions, where a function ϕ(.,α) ∈ Fα is characterized by a parameter

α . A sequence {ϕ(.,αn)} ⊂ Fα is chosen to achieve Ĵ(ϕ(.,αn)) ≥ Ĵ(ϕ(.,αn+1). Here

Ĵ(ϕ) is an estimate of the average cost, when ϕ is the chosen threshold distribution. The

total grid power consumed and the total discomfort cost are assumed to be accessible to

the aggregator, without any loss of privacy information from the end-user. The aggregator

then estimates the average cost for a long duration and adapts the heuristic distribution to

achieve the low overall cost.

Several classes of distributionsFα can be chosen. One such choice is the polynomial

distribution on [Θm,ΘM] i.e.,

F N
α ([Θm,ΘM]) =

{
N

∑
i=0

αizi ≥ 0 :
N

∑
i=1

iαizi−1 ≥ 0 for z ∈ [Θm,ΘM]

}
,

However, as we have shown in the previous sub-sections that there is a discontinuity

at the intermediate comfort levels, a polynomial distribution is unable to fit properly.

We therefore consider a set of piecewise polynomials defined on a partition of com-

fort range, i.e., restriction of the overall distribution on a segment of comfort range to one
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such polynomial above. The parameterized class of distributions becomes,

F
(N,T )
α ([Θm,ΘM]) = {( f1, f2, .. f2T ) : fi ∈ F N

αi
([Θm +

(i−1)∆Θ
2T ,Θm +

i∆Θ
2T ]),

fi(Θm +
i∆Θ
2T )≤ fi+1(Θm +

i∆Θ
2T )}.

For large N the constraint set ∑N
i=1 iαizi−1 ≥ 0 becomes complex. For simplicity of

implementation, assume that N = 0, i.e. the distribution is piecewise constant in [Θm,ΘM],

i.e, we would need an adaptive rule for a set of parameters {αi}2T

1 , s.t. αi ≤ αi+1, and

αi ≥ 0, and the distribution f |
[Θm+

(i−1)∆Θ
2T ,Θm+

i∆Θ
2T ]

≡ αi.

3.5.1 Algorithm for heuristic policy

First we assume that the distribution is piecewise constant. In our first approach

we suppose that there are fixed partitions (T=constant). The adaptive law is assumed to be

similar to gradient descent (α̇i =−ε ∂J
∂αi

), where ε is the learning rate parameter. In discrete

system we have used αi(k+1) = αi(k)−ε Ĵ(k)−Ĵ(k−1)
αi(k)−αi(k)

, where k is the time index, and Ĵ(k)

is the simulated cost at time k. To make the algorithm robust, we stop the adaptation when

the increase in the cost is smaller than a value ∆J

In the successive refining approach, we double the number of partitions each time

after finding an (sub)optimal distribution. Each (sub)optimal solution for one partition size

is considered as the initial solution for the optimization of the next stage where we double

the number of partitions.

There are several benefits of this approach over the fixed partition one. First, this

algorithm reduces the cost more rapidly than fixed partition scheme, as initially when the

partitions are bigger, adaptation results in a bigger change in overall cost reduction. Sec-
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ond, we can stop the sub-partition after the cost reduction is not significant, thus it saves

the un-necessary partitioning computation and adaptation. Third, using this approach also

reduces search space requirements for adaptation, as the (sub)optimal solution at a coarser

level gives a good starting point for the finer level partition.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

20 Partitions
Euler Lagrange Solution

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

21 Partitions
Euler Lagrange Solution

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

22 Partitions
Euler Lagrange Solution

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

23 Partitions
Euler Lagrange Solution

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

24 partitions
Euler Lagrange Solution

Figure 3.9: Successive refinement heuristic with piecewise constant distribution, where the
distribution is optimized for a fixed partiton size. Subsequently each partition is subdivided
into two and further optimization is done with previous optimal solution as the initial guess.

Using a piecewise constant distribution has an issue of discontinuity, i.e., the TCL set-

point can accumulate the points to discontinuity. To resolve this minor issue, we considered
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piecewise linear distribution, where the distribution is the line-segment joining at mid-

points of the partitions at levels αi, i.e. the class

F T
α (z) = { z−αi−1

αi −αi−1
: z ∈ [Θm +

∆Θ
2T (i− 1

2
),Θm +

∆Θ
2T (i+

1
2
)]

for 0 = α0 ≤ α1 ≤ α2...≤ αN ≤ α2T+1 = 1},

where ∆Θ = ΘM −Θm.
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Figure 3.10: Successive refinement heuristic with piecewise linear distribution.
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4 SUMMARY AND CONCLUDING REMARKS

We have considered a holistic approach of utilizing an intermittent renewable energy

source such aswind to support thermal inertial loads in amicrogrid environment. In the first

part of this thesis we have focused on the issue of reducing non-renewable power variations

while adhering to the comfort specifications of end-users of the loads. We have analyzed a

scenario where a common wind source is available to support a number of identical loads.

We have identified a key factor of comfort range variation, due to which, even identical

loads are treated differently. We have proposed an heuristic method to generalize the nature

of the optimal demand response to a large number of loads, for which the exact optimal

solution is difficult to obtain.

In the second part of this thesis, we have considered an additional issue of the privacy

of the end-user. We have proposed a simple architecture where no information from loads

is conveyed, and therefore no privacy is lost. We have calculated the optimal solution for

a continuum limit of loads, which can used to control the collective behavior of the loads,

without knowing their individual temperatures. We have shown that an explicit solution is

analytically computable in a number of scenarios. For the cases where analytical solution

is not available but parameters, such as ambient heating rate, cooling rates, are known, we

have demonstrated a numerical approach to compute the solution. When such parameters

are not available, we proposed and demonstrated an adaptive heuristic approach to obtain

reasonable demand response from thermal loads.
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Several open directions are available for further research. One direction is to gen-

eralize from the microgrid environment to the electric grid, where no information about

renewable source is available, and several market structures determine the price of non-

renewable consumption and utilization of renewable power sources. Another direction is to

incentivize the end user to adhere to a comfort range prescription, where we allow comfort

range changes but incentivize (penalize) the desired (undesired) comfort range changes.
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