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ABSTRACT

Data mining is an analytic process for discovering systematic relationships between

variables and for finding patterns in data. Using those findings, data mining can create

predictive models (e.g., target variable forecasting, label classification) or identify differ-

ent groups within data (e.g., clustering). The principal objective of this dissertation is to

develop data mining algorithms that outperform conventional data mining techniques on

social and healthcare sciences. Toward this objective, this dissertation develops two data

mining techniques, each of which addresses the limitations of a conventional data mining

technique when applied in these contexts.

The first part (Part I) of this dissertation addresses the problem of identifying im-

portant factors that promote or hinder population growth. When addressing this problem,

previous studies included variables (input factors) without considering the statistical de-

pendence among the included input factors; therefore, most previous studies exhibit multi-

collinearity between the input variables. We propose a novel methodology that, even in the

presence of multicollinearity among input factors, is able to (1) identify significant factors

affecting population growth and (2) rank these factors according to their level of influence

on population growth. In order to measure the level of influence of each input factor on

population growth, the proposed method combines decision tree clustering and Cohen’s d

index. We applied the proposed method to a real county-level United States dataset and

determined the level of influence of an extensive list of input factors on population growth.

Among other findings, we show that poverty ratio is a highly important factor for popula-
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tion growth while no previous study found poverty ratio to be a significant factor due to its

high linear relationship with other input factors.

The second part (Part II) of this dissertation proposes a classification method for

imbalanced data — data where the majority class has significantly more instances than the

minority class. The specific problem addressed is that conventional classification methods

have poor minority-class detection performance in imbalanced dataset since they tend to

classify the vast majority of the test instances as majority instances. To address this prob-

lem, we developed a guided undersampling method that combines two instance-selecting

techniques — ensemble outlier filtering and normalized-cut sampling — in order to ob-

tain a clean and well-represented subset of the original training instances. Our proposed

imbalanced-data classification method uses the guided undersampling method to select

the training data and then applies support vector machines on the sampled data in order

to construct the classification model (i.e., decide the final class boundary). Our computa-

tional results show that the proposed imbalanced-data classification method outperforms

several state-of-the-art imbalanced-data classification methods, including cost-sensitive,

sampling, and synthetic data generation approaches on eleven open datasets, most of them

related to healthcare sciences.
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1 INTRODUCTION

Data mining is an analytic process for discovering systematic relationships between

variables and for finding patterns in data. Using those findings, data mining can create pre-

dictive models (e.g., target variable forecasting, label classification) or identify different

groups within data (e.g., clustering). Although data mining is already well-established and

widely used in many fields including computer vision, natural language processing, and

bioinformatics, data mining techiniques were not as widely used in the social and health-

care sciences until recently. Indeed, there is a growing interest to develop data mining

techniques specifically tailored for the unique discovery problems arising in many fields

such as the social sciences (Attewell et al., 2015).

In the social sciences, a very important problem is that of identifying the factors that

promote or hinder population growth; data mining tools are ideal for addressing this prob-

lem. Identification of such factors is important for the effective public policy development

plan and the allocation of infrastructure investments that align with the future population

growth. To understand and explain population growth in terms of its underlying factors

(i.e., economic, social, infrastructural, or amenity factors), population researchers have

used statistical models such as linear regression analyses (Carlino and Mills 1987; Clark

and Murphy 1996; Beeson et al. 2001; Chi and Voss 2010; Chi and Marcouiller 2011; Ice-

land et al. 2013). However, these studies sometimes showed inconsistent results between

one another due to the presence of multicollinearity — a near-linear relationship between
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two or more input factors. Specifically, these previous studies included input factors with-

out considering the statistical dependence among the included input factors.

In the healthcare sciences, a very important problem is that of determining the ac-

ceptance/rejection of cancer treatment plans; data mining tools are ideal for addressing

this problem. For example, proposed radiation therapy (RT) plans need to be reviewed

by RT experts to determine whether these RT plans are acceptable. This review process

involves a laborious manual evaluation and a large amount of human resources. Thus,

an automated system to classify the proposed RT plans as acceptable or erroneous can be

useful in reducing the overload of RT experts and eliminating human errors. However, an

RT-plan classification system developed using conventional classification methods would

have poor erroneous-case detection performance. This is because (1) among the RT plans,

erroneous cases are very rare and (2) conventional classification methods are designed to

minimize the number of misclassified cases over the training data, and thus they would

tend to predict the vast majority (if not all) of the test set cases as acceptable cases.

The principal objective of this dissertation is to develop data mining algorithms that

outperform conventional data mining techniques on social and healthcare sciences. To-

ward this objective, this dissertation develops two data mining techniques, each of which

addresses the limitations of a conventional data mining technique when applied in these

contexts. First, we propose a novel data mining methodology that can identify significant

input factors affecting a given target variable, even in the presence of multicollinearity.

Moreover, the proposed method can rank these input factors according to their influence

2



on the target variable. Then, we apply our proposed method to a real dataset in demo-

graphic research — identification of significant factors promoting or hindering population

growth (Part I). Second, we develop a classification method for imbalanced data — data

where the majority class has significantly more instances than the minority class. Then, we

apply our proposed imbalanced-data classification method to eleven open datasets, most

of them related to healthcare sciences (Part II).

Part I of this dissertation addresses the problem of identifying important factors that

promote or hinder population growth. When addressing this problem, previous studies

included variables (input factors) without considering the statistical dependence among

the included input factors; therefore, most previous studies exhibit multicollinearity be-

tween the input variables. As most of these studies are based on regression analysis, their

results are usually not consistent due to this multicollinearity. Moreover, these previous

studies did not provide the level of influence (importance) of each input factor on pop-

ulation growth. Thus, we propose a novel methodology that, even in the presence of

multicollinearity among input factors, is able to (1) identify significant factors affecting

population growth and (2) rank these factors according to their level of influence on pop-

ulation growth. In order to measure the level of influence of each input factor on popula-

tion growth, the proposed method combines decision tree clustering and Cohen’s d index.

Specifically, the proposed method first employs decision tree clustering to group commu-

nities into several clusters so that each cluster has similar values in the target variable (i.e.,

population growth) and also has similar values in each input factor. This clustering allows
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us to find the clusters with the highest and lowest population growth while also ensuring

that the constituents within each cluster have similar characteristics. Then, Cohen’s d in-

dex is used to measure the level of difference of each input factor between the clusters

with the highest and lowest population growth, and thus identify the level of influence

of each input factor on population growth. Even in the presence of multicollinearity, the

final output of the proposed model is not affected by the correlation between input factors

because decision tree clustering is not affected by the correlation between input factors

and because the level of influence of the input factors on the target variable is measured

independently for each input factor.

Part II of the dissertation proposes a classification method for imbalanced data —

data where the majority class has significantly more instances than the minority class. The

specific problem addressed is that conventional classification methods have poor minority-

class detection performance in imbalanced dataset since they tend to classify the vast ma-

jority of the test instances as majority instances. To address this problem, we develop

a guided undersampling method that combines two instance-selecting techniques — en-

semble outlier filtering and normalized-cut sampling — in order to obtain a clean and

well-represented subset of the original training instances. Specifically, the ensemble fil-

tering technique aims to remove the outlier instances from both the majority and minority

training data while normalized-cut sampling method aims to obtain a sample of majority

instances that is spread out over the majority class region. Our proposed imbalanced-data

classification method uses the guided undersampling method to select the training data

4



and then applies support vector machines on the sampled data in order to construct the

classification model (i.e., decide the final class boundary).

The remainder of this dissertation is organized as follows. Section 2 addresses the

problem of identifying important factors for population growth (Part I). This section de-

scribes the details of the previous population growth models that have been used to identify

factors predicting population growth. It also presents the proposed methodology for mea-

suring the level of influence of each input factor on population growth. Then, it provides

results on a real county-level dataset. These results show that the proposed method iden-

tifies significant factors for population growth even in the presence of multicollinearity

and ranks the factors according to their level of influence on population growth. Section

3 addresses the imbalanced-data classification problem (Part II). This section presents a

detailed literature review associated with the underlying data mining techniques of the

proposed method. It also describes our proposed imbalanced-data classification method

and shows that the proposed method achieves better performance than several state-of-

the-art imbalanced classification methods. Section 4 summarizes the contributions of this

dissertation.

5



2 PART I: A NEW METHODOLOGY FOR MEASURING THE

LEVEL OF INFLUENCE OF EACH INPUT FACTOR ON

POPULATION GROWTH

2.1 Introduction

Communities often face significant economic and social challenges that must be un-

derstood and overcome to ensure a stable and sustainable setting for their inhabitants and

the physical environment where they reside. As communities constantly change, under-

standing the factors that promote such change and the consequences of such change is

critical. For instance, in the case of communities with an initially low population density

experiencing boomtown scenarios, examples of such factors and consequences would be

physical infrastructure failing to meet the expansion demand, public policy inhibiting/lim-

iting growth, poor social integration, and involvement in community affairs (Graber, 1974;

Gilmore, 1976; Hunter and Smith, 2002; Smith et al., 2001). Without an appropriate un-

derstanding of the causes of community change, the resulting local experiences can be

detrimental to the local living conditions; that, on occasion, can lead to the collapse of the

community.

In order to develop integrated models capable of relating economic, policy, and geo-

graphic factors together to identify factors predicting population growth, previous studies

have typically used statistical regression analyses such as ordinary least squares models

or two–stage least squares lagged adjustment models (see, for example, Carlino and Mills
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1987; Clark and Murphy 1996; Beeson et al. 2001; Chi and Voss 2010; Chi and Mar-

couiller 2011; Iceland et al. 2013). While highly important, these methodologies contain

certain weaknesses. First, these statistical approaches do not determine the level of in-

fluence (importance) that each input factor has on population growth. In other words,

these studies focused on identifying which input factors are better at predicting population

growth, but did not rank the input factors according to their level of influence on popula-

tion growth. This is because a low p-value (e.g., < 0.05) indicates that we can reject the

null hypothesis (i.e., the coefficient of the corresponding input factor is equal to zero) but

does not indicate the level of influence of the factor on population growth. Second, multi-

collinearity, which refers to a linear relationship between two or more input factors, may

impact the usefulness of regression analysis (Greene, 2012; Chatterjee and Hadi, 2006;

Montgomery et al., 2012). Since most previous studies selected input variables without

considering their statistical dependence from each other (except the studies which intro-

duced statistical techniques to avoid multicollinearity — see, for example, Deller et al.

2001; Chi and Voss 2010; Chi and Marcouiller 2011; Iceland et al. 2013), most previous

studies exhibit multicollinearity between input variables and thus, this multicollinearity

impacts the consistency of the results obtained using regression analysis.

To overcome the issues explained above, we develop a comprehensive data mining

analysis of population growth. In this study, the proposed method employs population

growth as our target variable. First, the proposed method uses decision tree clustering to

group communities into several clusters so that each cluster has similar values in the target
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variable (i.e., population growth) and also has similar values in each input factor. This

clustering allows us to find the clusters with the highest and lowest population growth

and ensures that the constituents within each cluster have similar characteristics. Second,

Cohen’s d index is used to identify the level of influence that each input factor has on popu-

lation growth by measuring the level of difference of each input factor between the clusters

with the highest and lowest population growth. Even in the presence of multicollinearity,

the final output of the proposed model is not affected by the correlation between input

factors because decision tree clustering is not affected by the correlation between input

factors and because the level of influence of the input factors on the target variable is mea-

sured independently for each input factor.

The remainder of this chapter is organized as follows: Section 2.2 summarizes pre-

vious models of community growth, focusing on population growth models. Section 2.3

introduces the data employed in this study and shows that there is a high level of mul-

ticollinearity among the input variables. Section 2.4 presents the proposed method and

Section 2.5 presents the results. Section 2.6 compares the results of our proposed method

to those of previous studies, and shows how multicollinearity impacts the consistency of

the results obtained using regression analysis. Section 2.7 summarizes the main findings,

and Section 2.8 addresses the limitations of the proposed method and suggests further

research directions.
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2.2 Literature Review

Community researchers using secondary data draw usually from two approaches

to explain community growth. The first approach, characteristic of very early studies of

community growth, focused on understanding community growth from an economic or a

demographic perspective independently. Using this approach, academics with particular

training were studying community growth based mainly on their area of expertise. Typi-

cally, economists were measuring economic growth through economic data while demog-

raphers and sociologists were examining community growth as measured by demographic

data (see, for example, Pearl and Reed 1920; Pritchett 1891).

The second approach is more comprehensive and uses different types of information

(e.g., demographic, economic, environmental, and policy variables) to explain community

growth. As research advanced, researchers examining economic growth realized that de-

mographic factors (e.g., population density, percentage of minorities present, educational

attainment of the population), environmental factors (e.g., climate, topography, natural

amenities), and policy factors (e.g., taxes, subsidies, regulations) needed to be included

as input factors in their models in addition to economic factors (see, for example, Carlino

and Mills 1987; Clark and Murphy 1996; Quigley 1998; Deller et al. 2001). Similarly,

studies examining population growth also noted the importance of combining different

types of explanatory factors such as economic factors (e.g., income, labor mobility), and

cultural and environmental factors (e.g., personal preferences on community and residen-

tial characteristics) as predictors of population growth besides demographic factors (see,
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for example, Leslie and Richardson 1961; Sjaastad 1962; Golant 1971; Zelinsky 1971;

Speare 1974; Fuguitt and Zuiches 1975; Greenwood 1975; Carlino and Mills 1987; Clark

and Murphy 1996; Brown et al. 1997; McGranahan 1999; Deller et al. 2001; Beeson et al.

2001; Rupasingha and Goetz 2004; Brown 2002).

In the early and mid–1980s, studies used simple statistical tools such as correla-

tion coefficient analyses (see, for example, Leslie and Richardson 1961) or ordinary least

squares regressions (see, for example, Speare 1974; Greenwood 1975) when they con-

ducted their statistical analyses. However, by the end of the 1980s, Carlino and Mills

(1987) published their seminal article that moved community growth research forward. A

trend was set to understand community growth by exploring economic and social factors

simultaneously using a two–stage least squares lagged adjustment regression model. Re-

search published during this period contained economic and population models at the same

time. Such models were characterized by the inclusion of large sets of input variables/-

factors (economic, social, political, infrastructural, biophysical, and geospatial) that were

used as predictors for the two models present (economic and population). The two–stage

least squares lagged adjustment regression models became the predominant statistical tool

of studies during the 1990s (see, for example, Clark and Murphy 1996; Beeson et al. 2001;

Rupasingha and Goetz 2004).

Recently, some studies have focused on improving community research models by

overcoming the issue of multicollinearity. The issue of multicollinearity arises when there

is a near-linear relationship among two or more input variables, and this multicollinear-
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ity leads to inaccurate estimates or low statistical significance values. The favored two–

stage least squares lagged adjusted regressions of the 1990s were very vulnerable to multi-

collinearity. Previous studies that used regression analyses selected several input variables

in the same type of category (i.e., high school degree ratio and college degree ratio in the

education category) without considering the statistical dependence from other variables

and thus, are most likely exposed to the risk of multicollinearity. When multicollinearity

is predominant, (1) small changes in the data produce wide swings in the parameter es-

timates; (2) coefficients may have very high standard errors and low significance levels

even though they are jointly significant and the R2 for the regression is quite high; and,

(3) coefficients may have the wrong sign or implausible magnitude in a regression analysis

(Greene, 2012). Therefore, to overcome this multicollinearity issue, some researchers used

only a subset of the input variables for calculating the level of significance (see, for exam-

ple, Chi and Voss 2010; Iceland et al. 2013). Alternatively, Chi and Marcouiller (2011)

and Deller et al. (2001) overcame this problem by merging the input variables into sev-

eral category variables using Principal Factor Analysis (PFA) and Principal Component

Analysis (PCA) respectively.

Table 1 shows the list of significant factors for population growth determined by

previous regression-based studies. One observation, as mentioned in Section 2.1, is that

previous studies did not provide the level of influence of each input variable on population

growth. Another important observation of this table is that the results of previous popula-

tion growth studies are not consistent with each other. For example, the variable College
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Table 1: List of significant factors for population growth determined by previous regression-
based studies

Carlino Clark Beeson McGranahan McGranahan Chi Chi Significance
Variable et al. et al. et al. (1999) et al. et al. et al. Ratio

(1987) (1996) (2001) (2002) (2010) (2011)
Median Income ($) O O 100%
College Ratio (%) O X O 67%
Temperature Gap (◦F) O O O 100%
Poverty Ratio (%) X X 0%
July Humidity (%) O O 100%
Asian Ratio (%) 100%
January Temperature (◦F) O O 100%
WaterArea Ratio (%) O O O 100%
Crime Rate (per 1000) X 0%
Highway (TH$) O X X 33%
Black Ratio (%) X O O 67%
Population Density O O O 100%
January Sun (hour) O O O 100%
Local Net (%) X X 0%
Employment Rate (%) O O 100%
Hispanic Ratio (%) O 100%

Notes: O denotes the variables which were determined as significant for population growth by the corresponding
regression analysis. X denotes the variables which were determined as non-significant for population growth by
the corresponding regression analysis. Unmarked cells indicate that the corresponding study did not include the
corresponding variable. Significant ratio represents the ratio between the number of studies which determined
the variable as significant and the number of all studies which included the variable in their regression model. A
description of the list of variables appears in Section 2.3.

Ratio in Table 1 was determined as a significant factor for population growth by two pre-

vious regression analyses (Clark and Murphy 1996; Chi and Marcouiller 2011), while it

was determined as a non-significant factor for population growth by one previous regres-

sion analysis (McGranahan and Beale, 2002). Similarly, Table 1 shows that the variables

Highway Expenditure and Black Ratio were determined as significant factors for popula-

tion growth by one and two previous studies, respectively; while they were determined as

non-significant factors for population growth by two and one previous regression analyses,

respectively. This observation shows that results of previous studies are not consistent. We

12



attribute these inconsistent results to the multicollinearity between the input variables in-

cluded in the respective models. Section 2.6.2 demonstrates how multicollinearity impacts

the consistency of regression analysis results.

2.3 Data Description

Section 2.3.1 gives a brief description of the target variable (i.e., population growth)

and the input variables (factors) used in this study. In Section 2.3.2, using the input vari-

ables introduced in Section 2.3.1, we measure the level of multicollinearity among the

input variables and show that some of the variables have a high level of multicollinearity

with other input variables.

2.3.1 List of Variables

This study employs county-level United States dataset as the population growth data.

We chose the county level because a variety of categories of population data are available

at the county level but not at the sub-county level. The data used in this study consists of

3,108 counties in the United States (Alaska and Hawaii are excluded). This study also ex-

cludes counties that cannot be tracked because of administrative or name changes between

2000–2010. The target variable (population growth) as well as most of the input variables

were taken from the USA countiesTM dataset of the U.S. Census Bureau (2011). The only

exception were the natural amenity variables, which were taken from county-level natural

amenity data provided by the U.S. Department of Agriculture (2011).

The USA countiesTM dataset is part of a series of products featuring county-level
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Table 2: Description of target and input variables obtained from county-level US dataset

Target Variable
Category Variable Description County Average Year

Target Population Growth Percent change of county population from 2000 to 2010 5.26% 2010

Input Variable
Category Variable Description County Average Year
Income Median Income Median household income of the county $ 36,274 2000

Poverty Ratio People in poverty in the county given as a proportion 13.31% 2000
Federal Expenditure Amount of money that the federal government expended TH$ 484,422 2000

Policy Local Net Local government budget balance given as a proportion 1.10% 1997 – 2002*
Highway Local government highway expenditure TH$ 12,557 1997 – 2002*
Black Ratio Proportion of Black persons in the county 8.84% 2000

Race Asian Ratio Proportion of Asian persons in the county 0.77% 2000
Hispanic Ratio Proportion of Hispanic persons in the county 6.19% 2000
WaterArea Ratio Proportion of water area in the county 4.63% 2000
January Temperature Average temperature of January of the county 32.90◦F 1941 – 1970
January Sun Average sunny hours of January of the county 151.57 hours 1941 – 1970

Amenity Temperature Gap Temperature regression residual gap between January and July 0.00◦F 1941 – 1970
July Humidity Average July humidity of the county 56.13% 1941 – 1970
Urban Influence Code Urban–Rural classification - (categorical variable) 1941 – 1970
Topography Code Topographic classification of land formation - (categorical variable) 1941 – 1970
Crime Rate Number of violent crimes per 1000 persons in the county 0.24 2000

Other College Ratio Proportion of bachelor’s degree of the county 16.50% 2000
Employment Rate Proportion of employed people to population(15 and over) 65.94% 2000
Population Density Population per square mile of the county 245.10 persons/mile2 2000

*The data of Local Net and Highway is from the weighted averages of 1997 and 2002 because of unavailability
of year 2000.

data and contains a collection of data from most major departments and agencies such as

the U.S. Census Bureau, the Federal Bureau of Investigation, the Internal Revenue Ser-

vice, etc. The topics of the data vary from demographic to economic and governmental

data. The use of credible, governmental data ensures consistency with the data of other

papers.

In this study, the target variable, population growth, is defined as the percent change

of county population from 2000 to 2010. For input variables, many previous studies tried

to include as many input variables as possible (see, for example, Carlino and Mills 1987;

Clark and Murphy 1996; Beeson et al. 2001; Deller et al. 2001). To avoid including an

unnecessarily large number of input variables, we classified input variables into five cat-
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egories (Income, Policy, Race, Natural Amenity, and Others) and attempted to minimize

the number of input variables while ensuring each category was adequately represented;

this was achieved by selecting the variables that are commonly used ones in past studies.

Table 2 gives a description of each input–variable category followed by the explicit list

of variables within the category. A detailed description of the input variables appears in

Appendix A.

2.3.2 Multicollinearity among the Input Variables

This section measures the level of multicollinearity among the input variables used

in this study and shows that some of the variables have a high level of multicollinearity

with other input variables. The linear relationship between the input variables can be

measured by the so-called Variance In f lation Factor (VIF). Let Xi be the input variable

i and R2
i be the coefficient of determination when Xi is regressed against all other input

variables. Then, VIF of the input variable i is

V IFi =
1

1−R2
i
, i = 1, ..., p (2.1)

where p is the number of input variables (Chatterjee and Hadi, 2006). VIF of input variable

Xi measures the amount by which the variance of Xi’s regression coefficient is increased

due to the multicollinearity between input variables. If input variable Xi has a strong linear

relationship with other input variables, then its VIF would be large since R2
i would be

close to 1. Pan and Jackson (2008) suggested that a VIF in excess of 4 is an indication that

multicollinearity may cause problems in regression analysis.

Table 3 gives the VIF of each input variable described in Section 2.3.1 except for
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Table 3: Variance Inflation Factor (VIF) index of input variables. The VIF of input variable
is large if the input variable has a strong linear relationship with other input variables
(which refers to high level of multicollinearity). The variables are sorted in decreasing
order of VIF.

Variable Variance Inflation Factor (VIF)
Federal Expenditure (TH$) 5.65
Highway (TH$) 5.21
Median Income ($) 5.00
Poverty Ratio (%) 4.97
College Ratio (%) 2.55
Black Ratio (%) 2.15
January Temperature (◦F) 2.03
Hispanic Ratio (%) 2.00
Asian Ratio (%) 1.94
July Humidity (%) 1.78
January Sun (hours) 1.58
Crime Rate (per 1000) 1.38
Employment Rate (%) 1.37
Temperature Gap (◦F) 1.32
Population Density (per mile 2) 1.29
WaterArea Ratio (%) 1.15
Local Net (%) 1.03

Notes: Bold text indicates that corresponding input factor has a high VIF index (VIF ≥ 4.0). TH$ means
thousand $.

the nominal variables (urban influence code and topography code). The factors whose VIF

exceeded 4 are median income (5.00), poverty ratio (4.97), federal expenditure (5.65),

and highway expenditure (5.21). VIF values of all other input variables are less than

3. Therefore, the four above-mentioned input variables have a high linear relation with

other input variables, and there exists multicollinearity between the input variables. Two

extreme examples are (1) poverty ratio, which has a high negative correlation with median

income (-0.79) and (2) highway expenditure, which has a high positive correlation with
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federal expenditure (0.89).

2.4 Method of Analysis

The proposed approach groups counties into clusters and uses a decision tree method

to find the classification rules of each cluster. Then, Cohen’s d index is used to measure the

level of influence that each input factor has population growth (target variable). This ap-

proach (decision tree combined with Cohen’s d index) not only avoids the multicollinear-

ity issue but allows us to rank the input factors according to their level of influence on the

population growth. The reminder of this section provides a detailed description and the

implementation of the method.

2.4.1 Decision Tree: Clustering of Counties

Clustering analysis partitions the data records (counties in our case) into clusters,

such that closely related data records are in the same cluster and disparate data records are

in different clusters. Among clustering analysis approaches, our proposed method uses

Classi f ication And Regression Tree (CART), first introduced by Breiman et al. (1984).

The proposed method uses the CART algorithm instead of other clustering methods be-

cause its results are easy to interpret. Another advantage of CART is that it can use nominal

variables as input variables without the computational burden incurred by other methods

in the presence of nominal input factors (Loh, 2011).

Conceptually, the CART algorithm partitions the data records in the input variable

space as follows. The algorithm starts with one node (the root node) containing all of the
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data records. Then, it chooses a splitting input variable, for example x1, and a splitting

point, s, and partitions the data records into two interior nodes (also called child nodes)

such that one node contains all the data records satisfying x1(i)≥ s where x1(i) is the value

of input variable x1 of data record i and the other node contains all the data records satisfy-

ing x1(i)< s. The splitting input variable and splitting point are chosen so that the sum of

the heterogeneities with respect to the target variable on the child nodes is minimized —

the technical details are given below. The splitting procedure is applied recursively until

a pre-specified stopping criteria is met. In other words, each interior node is further split

into child nodes unless the stopping criteria has been met. A lea f node, a node that cannot

be further split, contains the data records comprising a cluster created by the model. Note

that there is a unique path from the root node to each leaf node (cluster). Moreover, from

these paths, one can easily extract the classification rules needed to determine which data

records belong to each cluster.

The splitting procedure in the CART algorithm chooses the splitting variable j and

splitting point s in order to minimize the following function (Hastie et al., 2009):

min
j,s

[ ∑
record i: x j(i)≥s

(y(i)− c1)
2 + ∑

record i: x j(i)<s
(y(i)− c2)

2], (2.2)

where y(i) is the response of data record i, x j(i) is the value of input variable j of data

record i, c1 = average(y(i)|x j(i)≥ s), and c2 = average(y(i)|x j(i)< s).

A practical implementation of any decision tree model (including CART) needs to

consider when to stop partitioning the dataset (the stopping rule). Otherwise, the CART

algorithm would terminate with only one data record on each leaf node. While previous
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research proposed several stopping rules, our proposed method uses the stopping rule pro-

posed by Duda et al. (2001), as the clusters obtained should be of comparable sizes for

clustering analysis to give meaningful results. The details of the stopping rule by Duda

et al. (2001) are as follows: if an interior node contains more records than a pre-specified

number (500 in our case), then the node is split, and the splitting point s is chosen so that

both child nodes have at least a pre-specified number of records (250 in our case). Thus,

the proposed stopping rule guarantees that all clusters will contain between 250 and 500

counties. These thresholds (250 and 500) are chosen because this study expects to parti-

tion the counties into roughly 10 clusters. (This said, we tried several other stopping rules,

and the clusters obtained had very similar characteristics to those found using this rule.)

One may be tempted to conclude that the input factors chosen as splitting variables

by the CART algorithm are the variables with the highest influence on the target variable.

However, this would be incorrect as each splitting variable is only a high influence variable

when restricted to the data records in the node that it partitioned. Therefore, in order to

find the factors that contribute significantly to the value of the target variable, this study

uses Cohen’s d index after the clustering process; this procedure is described next.

2.4.2 Cohen’s d: Level of Influence of Each Input Factor

As argued in Section 2.2, previous population growth studies did not rank the input

factors according to their level of influence on population growth. Therefore, here we pro-

pose Cohen’s d index, first introduced by Cohen (1962) and Cohen (1988), as a measure

for the level of influence that each input factor has on population growth (target variable).
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Specifically, after grouping the counties into clusters using the CART algorithm, the pro-

posed method measures Cohen’s d index between the high and low population growth

clusters for each input variable in order to measure its respective level of influence on pop-

ulation growth and rank the input variables according to Cohen’s d index. Below, we give

a brief description of Cohen’s d.

Given two groups and a variable/factor of interest, Cohen (1962) introduced the

concept of effect size with the aim of quantifying the difference of the variable/factor be-

tween the groups in a units-free measure. Cohen (1962)’s effect size aims to measure the

difference in means, in units of standard deviation, and provide a standardized size of dif-

ference, which is independent of the variable’s specific metric. An important assumption

of Cohen’s effect size is that both groups are normally distributed and have equal variance.

Given two groups and a variable of interest, Cohen defined effect size as follows (Cohen,

1962):

Effect size =
µ1−µ2

σ
, (2.3)

where µ1− µ2 is the difference in means between group 1 and group 2, and σ is the

(common) standard deviation.

Using the same aforementioned assumption, Cohen (1988) formalized effect size

based on Cohen (1962) as follows. Given two groups and a variable of interest, Cohen

(1988) defined effect size of a variable, referred to as Cohen’s d, as

d =
x̄1− x̄2

s
, (2.4)
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for the directional case, and as

d =
| x̄1− x̄2 |

s
, (2.5)

for the non-directional case, where x̄1− x̄2 is the difference in sample means between

group 1 and group 2, and s, the pooled standard deviation, is defined as

s =

√
(n1−1)s12 +(n2−1)s22

n1 +n2−2
, (2.6)

where the group sizes and sample standard deviations of group 1 and group 2 are denoted

as n1, n2, s1, and s2.

Cohen (1988) provided an intuitive interpretation for the value of d based on the

(inverse) relation of d to the percent of overlap between the two groups’ distributions.

Specifically, assuming that the groups being compared are normally distributed with the

same variance, a Cohen’s d index of 0.0 indicates that the distribution areas of the two

groups have a 0% of non-overlap (i.e., the population distributions of both groups are per-

fectly superimposed). Similarly, a Cohen’s d indices of 0.2, 0.5, and 0.8 indicate a 14.7%,

33.0%, and 47.4% of non-overlap in the two distribution areas, respectively. In terms

of the percent of non-overlap of two distribution, Cohen (1988) suggested the guideline

of defining the term for size of d as small when 0.2 ≤ d < 0.5 (14.7%− 33.0% of non-

overlap), medium when 0.5 ≤ d < 0.8 (33.0%− 47.4% of non-overlap), and large when

d ≥ 0.8 (over 47.4% of non-overlap) for a common conventional frame of reference.
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2.4.3 Process of the Proposed Method

The following steps describe how the proposed method combines CART and Co-

hen’s d to determine the level of influence of each input variable/factor on the target vari-

able.

1. Use the CART algorithm to cluster the counties into several clusters.

2. Take the counties in the two clusters with the highest average target variable value

and create a group. Thus, this group will contain counties with both a high average

target value and relatively homogeneous input-variable values. Similarly, take the

counties in the two clusters with the lowest average target value and create a group.

These groups are referred to as a top group and a bottom group respectively.

3. For each input variable, calculate the Cohen’s d index between the top and bottom

groups.

4. Rank the variables according to Cohen’s d index; those with the highest (respectively

the lowest) index are the variables/factors with the highest (respectively the lowest)

influence on the target variable.

Figure 1 illustrates the process of the proposed method, decision tree combined with Co-

hen’s d index. Note that Cohen’s d, the proposed index for measuring the level of influence

of the variable between the groups, is measured independently for each variable. There-

fore, when Cohen’s d measures the level of influence of each input variable on population

growth, the correlation between input variables does not affect the calculation.

The general idea behind the above procedure is as follows. The top and bottom
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Figure 1: Process of the proposed method, decision tree combined with Cohen’s d

groups contain counties with relatively homogeneous input-variable values (this is a prop-

erty of the clustering obtained with CART algorithm). Moreover, the top and bottom

groups contain counties with high and low target variable values respectively. Since the

proposed procedure uses Cohen’s d to find the input variables on which these two groups

differ significantly regardless of correlations between the input variables, it is reasonable

to infer that the input variables/factors with the highest (lowest) Cohen’s d index are those

with the highest (lowest) influence on the target variable.

Note that an alternative procedure to CART clustering to find the counties in the top

(bottom) group is to include the individual counties with the highest (lowest) target vari-

able value. However, using CART clustering to find the top and bottom groups is a better

procedure because the groups clustered by CART will be homogeneous not only in the

target variable values, but also in the input variable values.
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2.5 Results

This section presents the results obtained by applying the proposed method to the

real county-level United States dataset described in Section 2.3. Using the CART algo-

rithm and population growth as the target variable, we partitioned the 3,108 counties into

10 clusters as shown in Figure 2. As previously mentioned, the decision tree model creates

a clustering that is easy to interpret. Specifically, given any county, it is straightforward

to determine the cluster it belongs to: start at the root node and follow the splitting rules

satisfied by the given county until a leaf node/cluster is reached. For example, Figure 2

shows that cluster 10, which is the cluster whose counties have the highest average popu-

lation growth (21.57%), contains the counties with a median income greater than or equal

to $42,447.5 and a January average temperature greater than or equal to 31.25◦F . On the

other hand, cluster 2, the cluster with the highest average population decrease (−6.25%),

contains the counties with a median income less than $42,447.5, a population density less

than 8.25 persons per square mile, and a temperature residual gap between January and

July greater than or equal to −0.13◦F .

For each cluster, Table 4 gives the cluster characteristics and the average value

(taken over all the counties in the respective cluster) of each variable. From the table, it is

interesting to note that even though there is a difference of input factor values between the

highest population growth cluster and the lowest population growth cluster, the ordering

of the clusters according to their population growth is not identical to the ordering of the

clusters according to any other input factor. This suggests that the relationship between
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Figure 2: Decision tree obtained by applying CART to the county-level United States
dataset. The number above each node denotes the number of counties inside the node; the
label on an interior node is the variable chosen to partition the data records in this node
into its two child nodes; the splitting rule and splitting point are given on the edge from
the parent node to each child node; the number inside each lea f node denotes the target
variable’s average value of the data records in the cluster.

population growth and each input factor among clusters is not linear. This supports the

Cohen’s d approach, which measures the difference between the high population growth

clusters and the low population growth clusters for each input factor, instead of estimating

the input factor coefficients in the linear regression analysis.

Table 5 gives Cohen’s d for each input factor when using population growth as the

target variable. The variables are sorted in decreasing order of the influence (Cohen’s d)

on population growth. Table 5 also gives the characteristics of the top (cluster 10 and 8)

and bottom (cluster 3 and 2) groups. According to the size of d described in Section 2.4.2,
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Table 4: Characteristics of the clusters obtained by applying CART to the county-level
United States dataset. The clusters are sorted in decreasing order of average population
growth.

Target Input Variables
Variable

Cluster Number of Population Median Poverty Federal Local Highway Black Asian Hispanic
ID Counties Growth Income Ratio Expenditure Net Ratio Ratio Ratio

(%) ($) (%) (TH$) (%) (TH$) (%) (%) (%)
10 255 21.57 51,198 8.01 1,423,880 0.98 35,974 9.80 2.61 7.70

8 250 12.96 37,643 12.13 968,993 0.73 18,752 13.08 1.12 8.54
9 318 11.27 50,266 6.72 839,383 -0.38 29,640 2.51 1.33 4.23
6 348 7.80 35,296 13.17 569,065 0.33 10,182 10.92 0.76 3.05
7 251 7.48 30,478 17.67 297,118 1.37 4,707 22.08 0.56 8.89
1 311 4.74 32,280 15.02 94,430 1.88 3,784 5.79 0.38 7.80
5 356 1.31 37,644 10.45 500,026 0.32 15,389 2.83 0.64 2.33
4 253 0.38 26,775 19.96 419,669 0.88 9,983 15.62 0.35 2.59
3 464 -1.52 31,673 15.27 77,067 1.61 3,042 9.70 0.26 6.79
2 302 -6.25 31,277 15.31 37,748 3.23 1,404 1.01 0.22 11.39

Average 310.8 5.26 36,274 13.31 484,422 1.10 12,557 8.84 0.77 6.19

Input Variables

Cluster Crime College Employment Population WaterArea January Temp. January July
ID Rate Ratio Rate Density Ratio Temp. Gap Sun Humidity

(per 1000) (%) (%) (per mile2) (%) (◦F) (◦F) (hours) (%)
10 0.31 25.94 67.38 944.90 8.56 40.37 -1.63 153.98 61.22

8 0.39 18.12 67.79 237.45 6.83 40.21 0.73 175.71 60.47
9 0.17 24.23 75.79 349.93 7.54 23.30 -0.47 141.99 54.58
6 0.28 14.88 64.58 351.41 4.25 38.78 -0.40 132.64 62.50
7 0.44 13.38 60.66 134.41 4.11 44.38 0.57 175.73 63.55
1 0.23 15.58 63.53 11.37 4.79 28.32 -4.36 143.43 43.81
5 0.17 16.17 67.26 224.75 6.71 23.15 -0.91 123.64 59.34
4 0.26 11.00 51.40 399.72 2.73 39.17 -0.18 132.17 64.24
3 0.17 12.75 63.86 17.95 1.51 32.04 2.65 163.44 53.50
2 0.14 15.25 75.10 3.82 1.09 26.62 2.90 180.72 42.48

Average 0.24 16.50 65.94 245.10 4.63 32.90 0.00 151.57 56.13

Notes: TH$ means thousand $.

it is observed that the input factors which have large Cohen’s d indices (d ≥ 0.8) are me-

dian income, college ratio, temperature gap, poverty ratio, July humidity, Asian ratio, and

January temperature. That is, if we use overall county average as the threshold values, we

expect counties that have a medium income greater than $36,274, a college degree ratio

greater than 16.5%, a temperature gap less than 0.00◦F , a poverty ratio less than 13.31%, a

July humidity greater than 56.13%, an Asian ratio greater than 0.77%, and a January tem-
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Table 5: Cohen’s d index of each input variable when using the county-level United States
dataset. The variables are sorted in decreasing order of Cohen’s d.

Bottom Overall Top
Variable Group Population Group Cohen’s d

Number of Counties 766 3,108 505 -
Population Growth (%) -3.38 5.26 17.31 -
Median Income ($) 31,517 36,274 44,488 1.86
College Ratio (%) 13.74 16.50 22.07 1.27
Temperature Gap (◦F) 2.75 0.00 -0.46 1.01
Poverty Ratio (%) 15.29 13.31 10.05 1.00
July Humidity (%) 49.15 56.13 60.85 0.91
Asian Ratio (%) 0.24 0.77 1.88 0.86
January Temperature (◦F) 29.90 32.90 40.29 0.86
WaterArea Ratio (%) 1.34 4.36 7.70 0.68
Crime Rate (per 1000) 0.16 0.24 0.35 0.67
Federal Expenditure (TH$) 61,565 484,422 1,198,689 0.62
Highway (TH$) 2,396 12,557 27,448 0.54
Black Ratio (%) 6.27 8.84 11.42 0.38
Population Density (per mile 2) 12.38 245.10 594.67 0.29
January Sun (hours) 170.25 151.57 164.73 0.19
Local Net (%) 2.25 1.10 0.86 0.18
Employment Rate (%) 68.29 65.94 67.58 0.04
Hispanic Ratio (%) 8.60 6.19 8.11 0.04

Notes: Bold text indicates that corresponding input factor has a large Cohen’s d index (d ≥ 0.8). TH$ means
thousand $.

perature greater than 32.90◦F to be more likely to have a high positive population growth.

It is counterintuitive that counties with high July humidity have a high positive population

growth; however, this is because the top group (high population growth group) has more

counties in the southern states of the United States such as Georgia or Florida than the

bottom group (low population growth group). This geographical difference between the

top and bottom group is a possible reason for the positive effect of high July humidity on

population growth.
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2.6 Discussions

Section 2.6.1 compares the results of our proposed method to those of previous

studies. Then, we discuss the reasons of differences between the results of our proposed

method and those of regression analysis. Section 2.6.2 shows how multicollinearity im-

pacts the consistency of the results obtained by using regression analysis while our pro-

posed method is not affected by the existence of multicollinearity.

2.6.1 Results Comparison with Previous Studies

This chapter aims to identify the level of influence that each input factor has on

population growth regardless of the presence of multicollinearity by using a decision tree

approach combined with Cohen’s d index. The Cohen’s d index analysis of every input

factor on population growth confirmed that income–related factors, such as median income

and poverty ratio, have a high influence on population growth. In addition, other factors

with high influence on population growth include college ratio, natural amenity (tempera-

ture gap, July humidity, January temperature), and Asian ratio factors. This finding aligns

with those reported earlier in the literature. Specifically, Carlino and Mills (1987) and

Clark and Murphy (1996) found that median income is a significant factor for population

growth; Clark and Murphy (1996) and Chi and Marcouiller (2011) found that college ratio

is a significant factor for population growth; and Clark and Murphy (1996), McGranahan

(1999) and McGranahan and Beale (2002) found that natural amenities are significant fac-

tors for population growth.

It is interesting that no other study that included poverty ratio as input factor found
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poverty ratio to be a significant factor of population growth because of the limitation of

the regression analyses used in previous studies (see, for example, Clark and Murphy

1996; McGranahan and Beale 2002). For instance, in the study of McGranahan and Beale

(2002), they found that poverty ratio was not a significant variable and attributed the exclu-

sion of poverty ratio from the significant factors to the high negative correlation of poverty

ratio with high school completion rate. Similarly, in the study of Clark and Murphy (1996),

the poverty ratio was not included in the significant variable list. Next, we elaborate on

this observation.

2.6.2 Inconsistency of the Results Obtained by Using Regression Analysis

This section aims to explain why our method found poverty ratio to have a large in-

fluence on population growth, while all previous studies found poverty ratio was not a sig-

nificant factor for population growth. In addition, this section shows how multicollinearity

impacts the consistency of the results obtained by using regression analysis. Finally, this

section shows that the existence of multicollinearity does not affect the final output of our

proposed method.

First, we give a brief review of regression analysis. The standard linear regression

model in the case of a single target variable is an ordinary least square (OLS) and can be

expressed in matrix notation as follows:

Y = Xβ + ε, (2.7)

where Y is a n× 1 vector of n observations of the target variable, X is a n× p matrix of

input variables, β is a p×1 vector of coefficients, and ε is a n×1 vector of n error terms.
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Past studies used regression analysis to identify factors that promote community growth

such as economic growth or population growth (see, for example, Carlino and Mills 1987;

Clark and Murphy 1996; Beeson et al. 2001; Chi and Voss 2010; Chi and Marcouiller

2011; Iceland et al. 2013). From regression analysis, the model selects important factors

for community growth by their significant levels from the regression analysis. Also, the

model measures the direction of the effect of those factors by the sign of the corresponding

coefficient. For example, the positive coefficient of input variable Xi means that the target

variable increases as the input variable Xi increases. Thus, the direction of the effect of

input factor to target variable is positive when the coefficient of the input factor is positive.

Similarly, the negative coefficient of input variable Xi means that the target variable de-

creases as the input variable Xi. increases. Thus, the direction of the effect of input factor

to target variable is negative when the coefficient of the input factor is negative.

As mentioned in Section 2.3.2, poverty ratio has a high level of multicollinearity

(VIF of poverty ratio = 4.97), and has a especially high negative correlation with median

income (-0.79). We conjecture that this is why our results conflict with those on previous

studies. To support this conjecture we formulated, two ordinary least square models with

a different set of input variables.

Table 6 compares the results of regression analysis and our method for the variable

poverty ratio when using two different input variable datasets. The first dataset, dataset

original, includes the same input variables as the input variables used in Section 2.5 ex-

cept nominal variables (urban influence code and topographic code). The second dataset,
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Table 6: Comparison of results between our method (decision tree combined with Cohen’s
d index) and regression analysis for the variable poverty ratio when using two different
input variable sets.

Proposed (Decision tree + Cohen’s d) Regression
Average Poverty Ratio (%) Cohen’s d of Standardized p-value of
Bottom Overall Top Poverty Ratio Coefficient of Poverty Ratio
Group Population Group Variable Poverty Ratio Variable

original 15.29 13.31 10.05 1.00 0.08 0.01
(original−median income) 15.20 13.31 9.27 1.22 -0.35 0.00

dataset (original −median income), includes the same input variables as dataset original

except for the variable median income which was excluded. In both regressions, the p-

value of the variable poverty ratio is less than 0.05 (0.01 for the first dataset and 0.00 for

the second dataset). Thus, the variable poverty ratio is deemed as a statistically signif-

icant factor (at confidence level 0.05) for population growth in both datasets. However,

the results of the two regressions are inconsistent. In the first regression, the standard

coefficient of poverty ratio is 0.08, while the standard coefficient of poverty ratio in the

second regression is −0.35. We attribute this opposite sign of coefficient of poverty ratio

to the multicollinearity effect, in particular, the high correlation between median income

and poverty ratio.

In contrast, the results obtained with the proposed method are consistent. Specifi-

cally, in both datasets, the Cohen’s d index of the variable poverty ratio is always large

(d ≥ 0.8) (1.00 for the first dataset and 1.22 for the second dataset). Also, the average

poverty ratio in the bottom group (the two clusters with the lowest population growth) is

higher than the average of poverty ratio in the top group (the two clusters with the highest

population growth) in both of models. This observation indicates that, in both datasets,
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the top group (the two clusters with the highest population growth) is less poor than the

bottom group (the two clusters with the lowest population growth).

2.7 Conclusions

The results obtained with the proposed method complement the population growth

this literature in several ways. First, even in the presence of multicollinearity, the final

output of the proposed model is not affected by the correlation between input factors be-

cause decision tree clustering is not affected by the correlation between input factors and

because the level of influence of the input factors on the target variable is measured inde-

pendently for each input factor. That is, when the proposed method calculates the level of

influence that each input variable has on the target variable, the correlation between this

input variable and other input variables does not affect the calculation. In contrast, previ-

ous studies that used regression analysis included input variables without considering the

statistical dependence among the included input variables and thus, most previous studies

exhibit multicollinearity between the input variables used. Consequently, their results are

usually not consistent due to this multicollinearity.

Second, the proposed method not only identifies significant factors for population

growth, but also allows us to measure the level of influence that each input factor has on

the target variable. The proposed method uses data–clustering approach to group counties

into several clusters so that we can find the clusters with the highest and lowest popu-

lation growth while also ensuring that the constituents within each cluster have similar

32



characteristics. Using these clusters with high and low population growth, the proposed

method quantifies the level of influence that each input variable has on population growth

by measuring the Cohen’s d of each input variable between the clusters with high and low

population growth. Using a real county-level United States dataset, the proposed method

found that the factors with the highest influence on population growth, listed in decreasing

level of influence, are: median income, college ratio, temperature gap, poverty ratio, July

humidity, Asian ratio, and January temperature. In contrast, previous studies identified

these input factors as significant factors for population growth but did not rank the input

factors according to their level of influence (importance) on population growth.

2.8 Future Work

The method proposed in this chapter identified significant factors affecting popu-

lation growth and successfully provided the level of influence that each input factor has

on population growth. However, this study is limited as it focused on one region (United

States), one time period (2000-2010), and one scale (county). We acknowledge that the

statistical significance and the level of influence of the factors could vary from one region

to another, from one time period to another, and from one scale to another. Thus, general-

izing these results to other regions, other time periods, and other scales could be a valuable

direction of future research.

33



3 PART II: GUIDED UNDERSAMPLING FOR IMBALANCED

DATA CLASSIFICATION

3.1 Introduction

In an imbalanced dataset, the majority class has significantly more instances than

the minority class. Conventional classification methods perform poorly when the dataset

is imbalanced. This is because conventional classification methods are designed to min-

imize the number of misclassified instances over the training data, and thus they tend to

predict the vast majority of the test set instances as majority instances (Chawla et al.,

2004).

There are three approaches to address the imbalanced-data classification problem:

(1) the cost-sensitive approach, (2) the sampling approach, and (3) the synthetic data gen-

eration approach. The cost-sensitive classification methods assign, during the training

process, a lower misclassification cost (penalty) to the majority-class instances than to the

minority-class instances (throughout this part, the instances with the majority class label

are denoted as majority instances; similarly, the instances with the minority class label are

denoted as minority instances). However, determining the optimal cost ratio to use within

a cost-sensitive framework is challenging because the classification performance is very

sensitive to the cost ratio used (Byon et al., 2010; Pourhabib et al., 2015).

The sampling classification methods balance the number of instances between the

classes by oversampling the minority instances (i.e., resampling the minority instances
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with replication) or undersampling the majority instances. Despite the easy implementa-

tion and the generally improved performance, oversampling techniques might make the

classification model over-fit to the replicated instances (Mease et al., 2007) while under-

sampling techniques might not construct an accurate classification model due to the loss

of majority instances (Kubat and Matwin, 1997; Estabrooks et al., 2004).

The synthetic data generation classification methods balance the number of instances

between the classes by creating artificial minority instances. However, as argued by

Pourhabib et al. (2015), “the current literature does not present a consensus concerning

the effectiveness of data synthesizing mechanisms.” Moreover, using artificial data that

are not among the original observations always makes researchers less comfortable with,

as compared to the cost-sensitive and sampling approaches.

We propose a new imbalanced data classification method in this chapter, which

uses a guided undersampling method (GUM) for sampling the training data and then

applies support vector machines (SVM) on the sampled data in order to construct the

classification model (i.e., the class boundary); the resulting method is referred to as GU–

SVM hereinafter. GUM is an undersampling method for imbalanced-data classification,

which sequentially applies two instance-selecting techniques to obtain a clean and well-

represented subset of the original training instances: (1) first, GUM uses a modification

of the ensemble-based outlier-filtering technique (Verbaeten and Van Assche, 2003) to

remove both minority-class and majority-class outliers; (2) next, GUM applies a new

cluster-based undersampling technique to obtain a sample of majority instances that is
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spread out over the majority class region. This new undersampling method, which we call

normalized-cut sampling, uses Shi and Malik (2000)’s normalized-cut clustering to group

the majority instances into a pre-specified number of approximately balanced clusters, and

then forms a well-represented majority-class subset which comprises the medoid of each

cluster.

In terms of the three approaches mentioned above, GU–SVM falls into the broad cat-

egory of sampling approach, but it is a novel sampling method outperforming alternatives.

In particular, our proposed method makes the following contributions: (1) Our ensemble

outlier-filtering technique in GUM is specifically designed to work on imbalanced train-

ing data, and thus it achieves good outlier detection performances on both the majority

and the minority data. In particular, the minority-class outlier identification and removal

strategy in GUM is a unique procedure since, to the best of our knowledge, no previous

imbalanced-data classification method has attempted to remove minority instances due to

their scarcity. Yet, as Section 3.1 argues, removing minority outliers (in addition to major-

ity outliers) is instrumental to obtaining a good classification model. (2) The normalized-

cut sampling in GUM aims to obtain a subset of the majority instances that represents the

majority class region. To obtain such a subset, the normalized-cut sampling is designed so

that the selected instances are spread out over the majority region by grouping the majority

instances into approximately evenly divided majority-class clusters and selecting one in-

stance from each cluster. To the best of our knowledge, no previous undersampling-based

classification method has attempted to obtain such a “spread-out” subset.
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The remainder of the chapter is organized as follows. Section 3.2 presents the lit-

erature review of imbalanced-data classification and the ensemble-based outlier-filtering

technique. Section 3.3 gives the details of the two instance-selecting techniques that com-

pose the guided undersampling method and describes the GU–SVM. Section 3.4 describes

the datasets and computational experiments on which GU–SVM outperforms several state-

of-the-art imbalanced-data classification methods. Section 3.5 analyzes the relatively low

performance of GU–SVM in two of the datasets. Finally, Section 3.6 summarizes our re-

search undertaking and shares our thoughts on a further research direction (based on the

analysis in Section 3.5).

3.2 Literature Review

3.2.1 Imbalanced-data Classification

Conventional classification methods are designed to minimize the number of mis-

classified instances over the training data, and thus they tend to classify the vast majority

of the test set instances to the majority class in the imbalanced-data classification problem.

Previous classification methods that dealt with this imbalanced-data classification prob-

lem can be categorized into three approaches: the cost-sensitive approach, the sampling

approach, and the synthetic data generation approach. The following subsections summa-

rize the methods within each category.

Cost-sensitive Approach

The cost-sensitive approach assigns asymmetric costs to the misclassified majority

37



and minority instances during the training process. Specifically, the misclassification cost

of the minority class Cminor, referred to as the f alse negative cost, is set higher than the

misclassification cost of the majority class Cma jor, referred to as the f alse positive cost.

Even though this approach has two parameters Cma jor and Cminor, in practice only their ra-

tio matters, and thus only this ratio parameter Cminor/Cma jor, referred to as the cost ratio,

is added to the base classifier.

Domingos (1999), Maloof (2003), and Ling et al. (2004) used decision-tree classi-

fiers with asymmetric misclassification costs, namely a cost ratio greater than 1, to improve

classification performance in imbalanced-data classification problems. SVM algorithms

are also well suited for using the cost-sensitive approach. For instance, Lin et al. (2002),

Bach et al. (2006), and Masnadi-Shirazi and Vasconcelos (2010) introduced different cost

parameters, Cma jor and Cminor, where each parameter is the coefficient of the slack vari-

ables for the majority and minority instance, respectively, in the SVM objective function.

The main drawback of the cost-sensitive approach is that the classification performance is

very sensitive to the cost ratio used (Byon et al., 2010; Pourhabib et al., 2015); therefore,

determining the optimal cost ratio to use within the classifiers is very challenging.

Sampling Approach

The sampling approach balances the number of instances between the classes by

either oversampling the minority instances or undersampling the majority instances, and

uses only the sampled data during the training process. Oversampling techniques increase

the number of minority instances by resampling the minority instances with replication
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(Estabrooks et al., 2004; Byon et al., 2010). Since oversampling techniques simply ap-

pend replicated instances to the original dataset, they do not present a solution to the fun-

damental issue, the lack of minority instances; moreover, the constructed classifier might

over-fit to the replicated instances (Mease et al., 2007). Undersampling techniques de-

crease the number of majority instances by removing a pre-specified number of instances

from the majority class. Mease et al. (2007) used random-undersampling of the major-

ity instances without replacement, while Japkowicz (2000) used weighted no-replacement

undersampling with more weight on the majority instances near the minority instances.

Due to the loss of majority instances, undersampling techniques might not construct an

accurate classification model (Kubat and Matwin, 1997; Estabrooks et al., 2004). Some

researchers have used both oversampling and undersampling simultaneously (Weiss and

Provost, 2001; Estabrooks et al., 2004; Byon et al., 2010). Figure 3 illustrates the over-

sampling and undersampling approaches.

To address the aforementioned drawback of undersampling methods, some studies

undersample the majority instances using clustering techniques as a guide. For example,

Yen and Lee (2009) aimed to undersample more majority instances in the regions where

majority instances dominate minority instances. To achieve this, they divide all the training

instances (ignoring their class label) into a pre-specified number of clusters, then randomly

undersample the majority instances from each cluster considering the proportion of major-

ity instances in the cluster. Specifically, they undersample the majority instances so that

more majority instances will be sampled in the clusters with higher majority-instance pro-
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Majority class 
Minority class 

Figure 3: Oversampling approach increases the number of minority instances by resam-
pling the minority instances with replication. Undersampling approach decreases the num-
ber of majority instances by removing a pre-specified number of instances from the ma-
jority class.

portion than in other clusters. Wang and Shi (2014) designed an undersampling method

where the majority instances near the class boundary are more likely to be selected as sam-

pled data. To achieve this, they select the majority instances near the class boundary as the

seeds for the clusters in the initialization step of the majority-instance clustering. Then,

they form the majority-class subset which comprises the the center of each cluster obtained

after the majority-instance clustering process. Despite the improved performance, these

cluster-based undersampling methods might not construct an accurate classification model

as the selected instances obtained from aforementioned methods are not spread out over

the majority class region, and thus might misrepresent the majority class.
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Synthetic Data Generation Approach

As stated in this section, oversampling approaches sample several times each of the

existing minority instances, and thus do not directly address the fundamental issue of lack

of minority instances. To address this, synthetic data generation methods generate artifi-

cial minority instances (i.e., generate minority instances different to those in the original

dataset).

The synthetic minority over-sampling technique (SMOTE), proposed by Chawla

et al. (2002), generates a synthetic data instance for each minority instance by creating

an instance located between the selected minority instance and one of its minority-class

neighbors. Figure 4(a) illustrates the SMOTE method; for more details, we refer the reader

to the original paper. Han et al. (2005)’s borderline SMOTE (BSMOTE) method finds the

minority instances located near the class boundary (referred to as borderline instances).

Then, for each borderline instance, it generates possible many synthetic data instances us-

ing the SMOTE data generating process. Figure 4(b) illustrates the BSMOTE method; for

more details, we refer the reader to the original paper. Pourhabib et al. (2015)’s absent

data generator (ADG) relies on two criteria for creating the synthetic minority instances:

(i) new data should be close to the boundary between the majority-minority classes; and

(ii) new data should not be too far off from the existing minority points. ADG builds the

criteria into a kernel Fisher discriminant analysis formulation as two constraints. In ex-

ecution, ADG alternates between a generation phase and a revision phase, in which the

generation phase creates synthetic minority instances on the minority-class side of the
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(b) Borderline SMOTE method

Figure 4: (a) Illustration of SMOTE approach. The synthetic instances, A’, B’, and C’,
are created based on the existing minority instances, A, B, and C. (b) Illustration of
Borderline–SMOTE approach. Synthetic instance A’ is generated since half of the neigh-
bors of A are majority instances. There is no synthetic instance generated from B since all
of B’s neighbors are majority instances. There is no synthetic instance generated from C
since all of C’s neighbors are minority instances.

decision boundary, and the revision phase rebuilds the class boundary with the updated

training data.

Previous synthetic data generation studies show that the performance of the

synthetic-data-generation methods is better than that of sampling methods. However, us-

ing artificial data that are not among the original observations always makes researchers

less comfortable, so the pursuit to find more effective methods in the categories of cost-

sensitive approach or sampling approach has never ceased. The bottom line is that the jury

is still out about which of the approaches will prevail, so that these approaches will almost

surely co-exist for the foreseeable future.
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3.2.2 Outlier-filtering Technique

Outlier-filtering methods remove unrepresentative training instances (i.e., outlier in-

stances) of a given class so that the classification model’s performance is not affected by

the outliers. While the importance of outlier removal is well known, to the best of our

knowledge, there are very few previous studies that used outlier filtering for imbalanced-

data classification. Thus, most of this section reviews general purpose outlier-filtering

techniques.

The undersampling procedure in some undersampling methods can also be regarded

as an outlier-filtering method because its aim is to remove majority instances which are

believed (by the designers of each respective method) to hinder the performance of the

classification model. However, these undersampling procedures were not specifically de-

signed to identify and remove outliers; and these undersampling procedures put much less

effort to remove minority outliers than to remove majority outliers. For example, Kubat

and Matwin (1997)’s k-nearest neighbors-based undersampling procedure aims to remove

the majority instances that are either too close or too far from the minority class. Similarly,

Japkowicz (2000) used weighted no-replacement undersampling with more weight on the

majority instances near the minority instances.

Early outlier-filtering techniques used a single classifier to identify outlier instances

on the training data. For example, in his seminal paper, Wilson (1972) identified and re-

moved the training instances that were not correctly classified by a k-NN classifier (k was

set to three in his experiment). Similarly, John (1995) used a decision-tree classifier (C4.5)
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to identify and remove outlier instances; specifically after building the classifier, the in-

stances with different class-label from the class predicted on each tree leaf were deemed

as outliers.

The drawback of the single-classifier outlier-filtering methods is that they implic-

itly assume that the classifier being used is the most appropriate for the data, which is

obviously not always the case. Because ensemble outlier-filtering methods remove this as-

sumption, they are more robust than single-classifier methods (Brodley and Friedl, 1999).

As it has been proved that constructing a diverse set of base classifiers in an ensemble

is theoretically important to improve classification performance (see, for example, Krogh

and Vedelsby, 1995; Brown et al., 2005), ensemble-based outlier-filtering techniques use

either different base classification algorithms (Brodley and Friedl, 1999) or different sub-

sets of the training set to train multiple classifiers (Verbaeten and Van Assche, 2003).

Given a number of single classifiers in ensemble Nensem, Brodley and Friedl (1999) create

an ensemble classifier using Nensem single classifiers (each with a different classification

algorithm), and deemed as outliers the training instances that were not classified to their

original class by the ensemble. Verbaeten and Van Assche (2003) built an ensemble classi-

fier by partitioning the data into Nensem sets and train Nensem decision-tree classifiers (each

on a different subset). Then, training instances not classified by the ensemble classifier to

their original class are deemed outliers.

As noted previously, these ensemble outlier-filtering techniques were not specifi-

cally designed for imbalanced datasets. Therefore, we argue that these ensemble-based
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outlier-filtering techniques will have poor outlier-detection performance on imbalanced

datasets since: traditional classification methods will perform poorly to detect minority in-

stances; so, the base classifiers in these ensembles will perform poorly to detect minority

instances; thus, most of the minority instances will be incorrectly classified as majority

instances by most of the base classifiers; and consequently, most of the minority instances

will be deemed as outliers. Based on these reasons, replacing the base classifier used in

these ensemble methods with imbalanced-data classification methods may improve the

outlier detection performance. However, this is not possible in Verbaeten and Van Ass-

che (2003)’s approach because when building the partition, there will be extremely low or

none minority instances on each subset. In Section 3.3.1, we propose a manner to over-

come this limitation and simultaneously obtaining a balanced partition (i.e., each subset is

balanced).

3.3 Proposed Method

In this section, we propose an undersampling method for imbalanced-data classi-

fication, which aims to obtain a clean and well-represented subset of the original train-

ing instances. Our proposed undersampling method sequentially applies two instance-

selecting techniques — ensemble outlier filtering and normalized-cut sampling. We label

this undersampling method Guided Undersampling Method (GUM). Then, we propose an

imbalanced-data classification method, which uses GUM for sampling the training data

and then applies support vector machines (SVM) on the sampled data in order to construct
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the classification model. We label this imbalanced-data classification method Guided Un-

dersampling – Support Vector Machines (GU–SVM). We first give the details of the two

instance-selecting techniques that compose GUM in Sections 3.3.1 and 3.3.2, respectively,

and then describe GU–SVM in Section 3.3.3.

3.3.1 Ensemble Outlier-filtering Technique for Imbalanced Data

As argued in Section 3.2.2, traditional ensemble outlier-filtering techniques have

poor outlier-detection performance on imbalanced datasets because they were not designed

for this challenging datasets. To address this shortcoming, we propose to modify the

ensemble outlier-filtering technique so that the training sets of each single classifier in the

ensemble are balanced.

The main process of our ensemble outlier-filtering technique is based on Verbaeten

and Van Assche (2003)’s ensemble outlier-filtering method, which employs a pre-specified

number of single classifiers Nensem, each trained on a different subset of the training set.

Verbaeten and Van Assche (2003)’s technique works as follows:

1. Partition the original training set into Nensem equally-sized subsets. Note that even if

the initial training set is balanced, this partitioning process may create unbalanced

partitions.

2. Train Nensem C4.5 decision-tree classifiers, each on a different partition of the train-

ing set.

3. Predict the class of every instance in the original training set using the majority

voting scheme (classifying an instance to the class which receives at least Nensem/2
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Figure 5: Dataset partitioning scheme of our proposed ensemble outlier-filtering with im-
balance ratio r.

votes from the single classifiers).

4. Remove the outlier instances from the original training set. The outlier instances

are those whose predicted class differs from their true class.

Our modified ensemble outlier filter for imbalanced data makes changes to Steps 1 and

2 of Verbaeten and Van Assche (2003)’s technique, so that the new procedure guarantees

a balanced training set for each training partition. Specifically, given an original training

data Dtrain = Dma jority ∪Dminority with imbalance ratio r (i.e., r is the number of major-

ity instances divided by the number of minority instances), our ensemble outlier-filtering

technique for imbalanced data works as follows (Steps 3 and 4 are unchanged and thus are

not given here):

1. Partition Dma jority into r equally-sized subsets and build r distinct training subsets;

each composed of Dminority and one of the partitions of Dma jority. Note that the each

training subset is balanced (i.e., has an imbalance ratio of 1). Figure 5 illustrates the
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Figure 6: Removing minority outliers is particularly important to get an accurate classifi-
cation boundary.

dataset partitioning scheme of our ensemble outlier-filtering technique.

2. Train r SVM classifiers, each classifier on a different training subset.

The objective of the ensemble outlier filtering process is to enable the construction of a

classifier without a bias from outlier instances. Note that our outlier filtering process re-

moves outliers not only from the majority class but also from the minority class. Removing

minority instances seems counterintuitive due to their scarcity. However, we claim that re-

moving minority outliers is very important to build an accurate classifier — perhaps even

more important than removing majority outliers (whose adverse effects are dampened by

the presence of all the other numerous non-outlier majority instances).

We support this claim via the example given in Figure 6. Figure 6(a) plots the orig-

inal imbalanced data and the class boundary constructed by a cost-sensitive SVM (Cminor :
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Cma jor = 5 : 1) with the original imbalanced data, while Figure 6(b) shows the data plot of

the minority-outlier filtered data and the class boundary constructed by the cost-sensitive

SVM with the minority-outlier filtered data. Figure 6(a) shows that, for this particular

dataset, the minority outlier biases the decision boundary toward to the majority instances,

causing some majority instances to be misclassified. It is important to note that, due to

the higher penalty used on the misclassified minority instance, this single outlier is able

to “pull” the boundary in spite of causing five majority instances to be misclassified. Fig-

ure 6(b) shows that, for this particular dataset, the decision boundary constructed by the

cost-sensitive SVM with the minority-outlier filtered data correctly separates the majority

instances and the minority instances. Therefore, removing minority outliers is important

to obtain a good classification model.

3.3.2 Normalized-cut Sampling

As argued in Section 3.2.1, traditional undersampling methods might not construct

an accurate classification model due to the loss of majority instances. Specifically, sampled

majority instances, which are not spread out over the majority class region, may lead to an

inaccurate decision boundary on the regions where no instances are selected. Thus, here

we propose a new cluster-based undersampling method — normalized-cut sampling —

which undersamples the majority instances so that selected instances are spread out over

the majority class region, and thus are representatives of the majority class as a whole.

For this purpose, the proposed normalized-cut sampling method first runs recursively Shi

and Malik (2000)’s normalized-cut clustering to group the majority instances into a pre-
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specified number of approximately balanced clusters, and then forms the majority-class

sample by including the medoid (the instance with the smallest average distance to all the

instances in the given cluster) of each cluster. Below, we describe normalized-cut cluster-

ing and then describe how it is used in our normalized-cut sampling method.

Given a set of n-dimensional points (instances in our case), Shi and Malik (2000)’s

normalized-cut clustering aims to bipartition the data instances so that 1) the instances

within each cluster are as similar as possible while instances on distinct clusters are as

different as possible, and 2) both subsets contain approximately the same number of in-

stances. Normalized-cut clustering works as follows. The data instances are represented

with an undirected complete graph G = (V,E), where V is the set of data instances and

E contains an edge between each pair of data instances. The weight on the edge between

instances i and j, wi j, is a measure of the similarity between i and j. Shi and Malik (2000)

defined the wi j as:

wi j = e−‖xi−x j‖2
, (3.1)

where xi and x j are n-dimensional data of instance i and j, respectively. With this rep-

resentation, the clustering problem is formulated as a graph partitioning problem which

partitions V into the two subsets S and S̄ that minimize the following function:

Ncut(S, S̄) =
cut(S, S̄)

assoc(S,V )
+

cut(S, S̄)
assoc(S̄,V )

, (3.2)

where cut(S, S̄) is the total sum of the edge-weights (similarities) between the two par-

titions S and S̄ (i.e., cut(S, S̄) = ∑i∈S, j∈S̄ wi j), assoc(S,V ) is the total sum of the edge-

weights from nodes in S to all nodes in the graph G (i.e., assoc(S,V ) = ∑i∈S, j∈V wi j), and
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assoc(S̄,V ) is is the total sum of the edge-weights from nodes in S̄ to all nodes in the graph

G. Note that any partition where one of the subsets, say S, only contains a small set of

isolated nodes in the graph will have a large Ncut value since assoc(S,V ) will be very

small. Thus, normalized-cut clustering method creates a bipartition with roughly the same

number of instances in both clusters, S and S̄.

Since optimizing Equation (3.2) is NP-hard, Shi and Malik (2000) proposed an

heuristic whose rough outline is as follows (for more details, we refer the reader to the

original paper). First, they reformulated the normalized cut problem as a minimization

problem of the Rayleigh quotient with integrality constraints on the variables. Then, they

showed that the continuous relaxation of the problem can be solved by finding an eigen-

vector of the matrix associated with the similarities between the nodes.

Next, we give the details of our normalized-cut sampling method. Given a train-

ing data Dtrain = Dma jority ∪Dminority, our normalized-cut sampling method undersam-

ples the majority instances so that the number of sampled majority instances is the same

as the number of minority instances. We denote the number of minority instances by

K = | Dminority |, and our algorithm is described as follows:

1. Construct G1 = (V,E) by assigning all ma jority instances to the node set V and all

node pairs in V to the edge set E. Use Equation (3.1) to assign the edge-weight

(similarity) between nodes i and j, wi j, just like in Shi and Malik (2000).

2. For k = 1, · · · ,K−1 do

2.a. Bipartition the graph Gk using Shi and Malik (2000)’s normalized-cut cluster-
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ing.

2.b. Construct a new undirected complete graph Gk+1 which only includes the in-

stances in the cluster with the largest number of instances (among the k + 1

clusters that have been found so far).

3. Form a subset which comprises the medoid (the instance whose average distance to

all the instances in the same cluster is minimal) of each cluster and return this subset

as the sampled majority instances.

After Step 2, we have K approximately balanced clusters because at each iteration we split

one of the given clusters into two clusters but we keep split the larger remaining cluster

until they are roughly the size of the minority set. Then Step 3 simply takes one data point

per cluster and forms the sample majority subset.

Note that our normalized-cut sampling method has a different objective from that

of other cluster-based undersampling methods. Specifically, our normalized-cut sampling

uses clustering in order to select a spread-out sample of majority instances to form a well-

represented subset of the majority class (well represented in the sense that it covers all

of the majority class region). By contrast, the cluster-based undersampling methods in-

troduced in Section 3.2.1 use clustering to sample/select more majority instances in the

regions where majority instances dominate minority instances (Yen and Lee, 2009) or

sample so that the majority instances near the class boundary are more likely to be se-

lected (Wang and Shi, 2014).

The main idea/motivation of our normalized-cut sampling method is similar to that
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of the stratified sampling method used in the context of statistical survey design. Stratified

sampling works as follows (Thompson, 2012): (1) Partition the population into subgroups

(strata) before sampling so that the instances within a subgroup share similar characteris-

tics; (2) randomly sample the instances from each subgroup so that the proportion of each

subgroup in the sampled data is equal to the proportion of each subgroup of the whole

population. Stratified sampling methods are widely used in statistical survey design when

the researcher aims to sample a representative subset of the whole population since strati-

fied sampling ensures that each subgroup is equally represented between in the population

and in the sample.

Despite the similarity in idea/motivation, the specific grouping/clustering techniques

used in stratified sampling and normalized-cut sampling are different. Specifically, one

hand, stratified sampling usually divides the original instances by thresholds of a lim-

ited number of known variables (e.g., gender or age); and these thresholds are set “by

hand” by the researcher and this creating subgroups have some meaning and importance

to human observers. While, on the other hand, normalized-cut sampling determines the

clusters via solving an optimization problem whose objective is that the distances between

the instances within a subgroup are as small as possible and the distances between the

instances on distinct subgroups are as large as possible. Thus, the sampled instances using

normalized-cut sampling are more representative of the population than those obtained

using stratified sampling (at the loss of “meaningfulness” to a human observer).
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3.3.3 Process of the Proposed Classification Method

Sections 3.3.1 and 3.3.2 give the details of the two instance-selecting techniques

— ensemble outlier filtering and normalized-cut sampling — that compose our proposed

guided undersampling method (GUM). The following steps describe how GU–SVM uses

GUM to construct the classification model for imbalanced data.

1. Given a training data Dtrain = Dma jority ∪Dminority with an imbalance ratio r =

|Dma jority|
|Dminority| , use our ensemble outlier-filtering technique described in Section 3.3.1 to

obtain the outlier-filtered training data, D′train = D′ma jority∪D′minority.

2. Given the outlier-filtered data instances D′train, apply to it the normalized-cut sam-

pling method described in Section 3.3.2. The normalized-cut sampling method re-

turns spread-out samples of D′ma jority, D′′ma jority, such that | D′′ma jority |= | D′minority |.

3. Apply the SVM algorithm on the data obtained from Step 2, D′′train = D′′ma jority ∪

D′minority in order to construct the classification model.

The general idea behind GU–SVM is as follows. GU–SVM uses GUM to obtain a clean

and well-represented subset of the training data and applies SVM on the sampled data in
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order to construct the classification model (i.e., the class boundary). More specifically,

GUM first uses our ensemble outlier-filtering technique to remove the outlier instances

from the training data (if not removed, those instances introduce bias in the classifica-

tion model). Note that our ensemble outlier filtering is specially designed so that it has

a good minority-outlier detection performance for imbalanced datasets. Next, GUM uses

our normalized-cut sampling on the (outlier-filtered) majority instances to select a subset

of the majority instances such that the selected instances are spread out over the majority

class region. Last, GU–SVM applies SVM on the guided sampled data in order to con-

struct the classification model.

Figure 7 gives a flowchart of the main procedures within GU–SVM. Figure 8 il-

lustrates GU–SVM on a two-dimensional simulated imbalanced dataset. Figure 8(a) illus-

trates the simulated dataset. Both majority and minority classes have a spiral-like distri-

bution; these two spiral distributions interlace in a jing-jang fashion. Figure 8(b) shows

the outlier instances identified by our ensemble outlier-filtering technique. Figure 8(c)

shows the outlier-filtered data using our ensemble outlier filtering. One hundred major-

ity instances and three minority instances are identified as outlier instances and removed

from the training data. Figure 8(d) shows the 77 majority instances that were selected

by normalized-cut sampling and the class boundary constructed by GU-SVM. Note that

GU-SVM selected a well-represented subset of the outlier-filtered training instances and

constructed an accurate classification model.
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3.4 Experiments

This section analyzes the performance of GU–SVM on several datasets and com-

pares it with five state-of-the-art imbalanced-data classification algorithms. This section

is organized as follows. Section 3.4.1 briefly reviews the five state-of-the-art classifica-

tion methods against which GU–SVM is compared. Section 3.4.2 describes the datasets

used in the performance evaluation. Section 3.4.3 explains the performance measures that

are employed in this study. Finally, Section 3.4.4 gives the results of our computational

experiments.

3.4.1 State-of-the-art Methods for Imbalanced-data Classification

This section briefly describes the five classification methods (raw-data SVM,

cost-sensitive SVM, random-undersampling SVM, SMOTE SVM, and BSMOTE SVM)

against which GU–SVM is compared. As mentioned in Section 3.2.1, with the excep-

tion of raw-data SVM, these state-of-the-art classification methods are widely used in the

imbalanced-data classification literature. We include raw-data SVM in the comparison

as a baseline classification method upon which every other method should improve. The

other four classification methods were chosen so that each of the imbalanced-data clas-

sification literature was adequately represented. The selected four classification methods

are the ones that have been commonly used in past studies (the cost-sensitive SVM –

cost-sensitive approach, the random-undersampling SVM – sampling approach, and the

SMOTE SVM and BSMOTE SVM – synthetic data generation approach).

Throughout this section, the imbalance ratio (defined as the number of majority in-
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stances divided by the number of minority instances) of the given original dataset is de-

noted as r. The raw-data SVM is the traditional SVM algorithm (Cortes and Vapnik, 1995)

applied directly on the raw data (the original imbalanced data). The cost-sensitive SVM

uses a traditional SVM algorithm with different penalty coefficients Cma jor and Cminor in

the SVM objective function, where Cma jor and Cminor are the cost parameters of the major-

ity and minority slack variables, respectively. Specifically, we choose the cost parameters

so that the cost ratio between the majority and minority classes, Cminor/Cma jor, is equal

to r. The random-undersampling SVM first undersamples the majority instances and then

applies a traditional SVM to the sampled data. The undersampling is applied by randomly

sampling without replacement the majority instances. Moreover, the final sample size is

chosen so that the sampled dataset has an imbalance ratio of 1 (i.e., dataset is perfectly bal-

anced). The SMOTE SVM (Chawla et al., 2002) generates new synthetic data instances

by interpolating between each of the minority instances and one of its k nearest minority

instances (k was set to five as in Chawla et al. 2002); then, the original training data and

the synthesized data are used for training a traditional SVM classifier. In the BSMOTE

method (Han et al., 2005), a borderline instance is defined as a minority instance that more

than half of its k nearest neighbors belong to the majority class (k was set to five as in

Han et al. 2005). The BSMOTE SVM method generates synthetic minority instances by

interpolating between each borderline minority instance and one of its nearest minority

instances; then, the original training data and the synthesized data are used for training a

traditional SVM classifier.
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Notice that one of the main components of each of the aforementioned meth-

ods is a traditional SVM. Throughout this experiment, for all of these methods, we

used exactly the same traditional SVM. In particular, we used the radial basis function

K(xi,x j) = exp(−γ ‖ xi− x j ‖2) as kernel function. We determined γ and the cost ratio

between the margin penalty and the total sum of the slack variables in the SVM objective

function through cross-validation of raw-data SVM (and that same γ and cost ratio were

used for every method on the respective dataset). All of the aforementioned classifica-

tion methods (as well as our proposed method) were implemented in MATLAB with the

LIBSVM tool package (Chang and Lin, 2011).

3.4.2 Datasets

The base datasets used in this study have the following three characteristics: (1) they

are open to the public; (2) they are widely used in previous imbalanced-data classification

studies; and (3) the area-under-the-curve (AUC, defined in Section 3.4.3), obtained from

the raw-data SVM on the dataset with an imbalance ratio of 5 (described in the eusuing

paragraph), was less than 0.95. This third characteristic is important because it is very

difficult to accurately discriminate/rank the performances of the methods on datasets that

are relatively easy even for the naive raw-data SVM. Table 7 lists the 11 base datasets used

in this study along with a brief description of each. Among the base datasets described

in Table 7, multi-class datasets were modified by labeling the class with the fewest num-

ber of instances as the minority class and the rest of the instances were combined in the

majority class. Finally, note that even though we considered a wide variety of sources, all
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Table 7: Description of 11 open datasets

Dataset Dim # of Inst. # of Maj. # of Min. Brief Description
Australian 14 690 383 307 Australian credit card approval
CMC 24 1473 1140 333 Contraceptive method choice
Ecoli 9 336 301 35 Localization site of protein
German 24 1000 700 300 German credit data
Glass 9 214 197 17 Glass type identification
Haberman 3 306 225 81 Breast cancer survival data
Heart 13 270 150 120 Heart disease detection
Liver 6 345 200 145 Liver disorder detection
Pima 8 768 500 268 Pima indians diabetes data
Vehicle 18 846 634 212 Vehicle type identification
Yeast 9 1484 1055 429 Localization site of protein

Note: Dim means Number of Features. # of Inst. means Number of Instances. # of Maj. means Number of
Majority-class Instances. # of Min. means Number of Minority-class Instances.

of the selected datasets happen to be available in the UCI Machine Learning Repository

(Lichman, 2013).

From each of the 11 base datasets in Table 7, we built four imbalanced datasets,

each with a different imbalance ratio (namely, 5, 10, 20, and 30). Specifically, given an im-

balance ratio r, r ∈ {5,10,20,30}, if the imbalance ratio of the base dataset is greater than

r, we selected all the minority instances in the base dataset and r times as many majority

instances using sampling without replacement. Otherwise, if the imbalance ratio of base

dataset is less than r, we selected all majority instances in the base datasets and undersam-

pled without replacement the minority instances so as to obtain the desired imbalance ratio

of r. Moreover, for each of 44 datasets (11 base datasets with four imbalance ratios), we

created 10 random datasets for repetition in order to minimize any effect from the random

sampling used to generate the datasets (throughout this chapter, these random datasets

for repetition are denoted as repetitions). Therefore, we generated 440 total datasets (10
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repetitions for each of 44 datasets). Consequently, in Section 3.4.4, whenever we report

the AUC of a given method on a particular dataset such AUC is the AUC average of 10

repetitions, each obtained via a five cross-validation. Finally, to increase the accuracy of

the AUC calculation, following the lead of Pourhabib et al. (2015), when performing the

cross-validations, the data instances that were not selected from the original base dataset

during the random sampling process were appended to the test set partition during the five-

cross-validations. This appending procedure is particularly important when measuring the

AUC of the datasets with large imbalance ratios as the AUC otherwise has huge variances

due to the extreme scarcity of the minority instances.

3.4.3 Performance Measure

To measure and compare the classification performance, we used the area-under-

curve (AUC) measure of the receiver operating characteristic (ROC) plot (Bradley, 1997).

An ROC curve is a graphical plot that illustrates the performance of two-class classifica-

tion when the classification algorithm (here, the SVM) provides a continuous output, and

thus the class prediction can be varied by changing the classification threshold. The curve

is created by plotting each (False alarm, Detection power) point for the test data at var-

ious threshold settings, where the false alarm refers to the false positive rate (the ratio of

the misclassified majority instances compared to all majority instances) and the detection

power refers to the true positive rate (the ratio of the correctly classified minority instances

compared to all minority instances). After plotting an ROC curve, an AUC is computed

by measuring the area under the ROC curve. A higher AUC means a better classification
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performance in general since a higher AUC indicates that the corresponding classifica-

tion model has the higher detection power points in average against the given false alarm

points. The AUC of each classification method for each dataset is computed by the aver-

age value of AUCs over five cross-validations and ten repetitions (each over a randomly

sampled dataset as described in Section 3.4.2).

After obtaining the AUC of each classification algorithm for each dataset, one may

be tempted to consider taking the average value of the AUCs over all datasets to compare

multiple classification methods. However, this classification methods comparison with av-

erage AUCs would be incorrect as the AUC value differences between the classification

methods vary largely among the different datasets. For instance, the largest AUC dif-

ference between the classification methods of Ecoli data [imbalance ratio = 30] is 0.305

while the largest AUC difference between the classification methods of Australian data

[imbalance ratio = 5] is 0.012; see, for details, Table 8. Thus, ranking the classification

methods by using the average value of the AUCs over all datasets could be dominated by

the datasets that have the high AUC value differences between the classification methods.

Therefore, in order to compare the performance of classification algorithms without bias

from the AUC value differences between the datasets, this study uses the Friedman test, as

revised by Demšar (2006) for comparing of multiple classification methods.

The Freidman test is a non-parametric statistical test for detecting the differences

between the rank data. The null-hypothesis is that all ranks of classification methods are

equivalent, and if the null-hypothesis is rejected by the Freidman test, the post-hoc test
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is conducted to determine which classification methods have consistently higher or lower

ranks compared to others.

Mathematically, given N algorithms and M datasets, the Freidman statistic is calcu-

lated as follows (Friedman, 1937):

χ
2
F =

12M
N(N +1)

[∑
j

R2
j −

N(N +1)2

4
], (3.3)

where R j is the average rank value of algorithm j over all datasets. If M and N are large

(as a rule of thumb, M > 10 and N > 5, by Demšar 2006), the probability of χ2
F can be ap-

proximated by the probability of a chi-squared distribution with N−1 degrees of freedom.

If the null-hypothesis is rejected at significance level α , the post-hoc test is con-

ducted in order to determine which algorithms are significantly different from each other

based on the average rank differences of the algorithms. In the post-hoc test, the per-

formance of two algorithms is significantly different if the average rank difference gap

between the two algorithms is greater than or equal to the critical difference:

CD = qα

√
N(N +1)

6M
, (3.4)

where we set the critical value qα according to the post-hoc test designed by Nemenyi

(Nemenyi, 1963).

3.4.4 Results

This section provides the computational results obtained by applying GU–SVM on

datasets (described in Section 3.4.2), and compares its performance with that of the state-

of-the-art classification methods (described in Section 3.4.1). This section also exam-
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ines the classification performance of each of the two instance-selecting techniques —

ensemble outlier-filtering technique and normalized-cut sampling — separately in order

to investigate the effect that each instance-selecting technique has on the performance of

GU–SVM.

Performance Analysis of GU–SVM

Table 8 gives the AUC obtained by each classification method on each dataset. As

described in Section 3.4.2, each AUC reported in Table 8 is the AUC average of 10 repeti-

tions, each obtained via a five cross-validation. The classification methods shown in Table

8 include the five state-of-the-art classification methods introduced in Section 3.4.1 and

GU–SVM. In Table 8, RawSVM, CSSVM, and RandSVM represent raw-data SVM, cost-

sensitive SVM, and random-undersampling SVM, respectively. The bold-faced values are

the highest AUC value for each dataset. Note that, GU–SVM provides the highest AUC

values on 30 datasets out of total 44 datasets. Moreover, on the datasets not built from the

liver and glass base datasets, GU–SVM provides either the highest AUC value or an AUC

value (extremely) close to the highest AUC value. Thus, it is reasonable to conclude that

GU–SVM is the method of choice for 9 datasets out of the total 11 datasets. In Section 3.5,

we will analyze with more depth why GU-SVM performed poorly on the liver and glass

datasets. 3.5.

As argued in Section 3.4.3, it is not insightful to compare the techniques using the

average value of AUCs over all datasets. Instead, we compared them in terms of their
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Table 8: Average Area Under Curve (AUC). GU–SVM outperforms all other methods in
terms of AUC in most datasets.

Dataset
Base Imbalance

DataSet Ratio RawSVM CSSVM RandSVM SMOTESVM BSMOTESVM GU–SVM
Australian 5 0.882 0.887 0.892 0.889 0.888 0.894

10 0.843 0.858 0.879 0.866 0.867 0.890
20 0.780 0.820 0.851 0.819 0.825 0.871
30 0.752 0.793 0.832 0.799 0.799 0.879

CMC 5 0.601 0.709 0.699 0.675 0.679 0.705
10 0.552 0.686 0.677 0.614 0.620 0.687
20 0.529 0.668 0.663 0.568 0.563 0.677
30 0.499 0.639 0.644 0.545 0.529 0.657

Ecoli 5 0.932 0.948 0.946 0.949 0.941 0.945
10 0.898 0.944 0.941 0.920 0.924 0.943
20 0.716 0.940 0.940 0.868 0.870 0.943
30 0.638 0.937 0.940 0.770 0.795 0.943

German 5 0.680 0.679 0.675 0.687 0.689 0.696
10 0.659 0.657 0.642 0.664 0.669 0.669
20 0.632 0.632 0.610 0.640 0.642 0.633
30 0.631 0.630 0.604 0.636 0.634 0.643

Glass 5 0.834 0.843 0.742 0.827 0.822 0.735
10 0.793 0.830 0.726 0.818 0.800 0.718
20 0.671 0.768 0.630 0.713 0.697 0.641
30 0.685 0.759 0.613 0.718 0.689 0.634

Haberman 5 0.566 0.638 0.656 0.648 0.649 0.666
10 0.527 0.578 0.613 0.568 0.581 0.639
20 0.504 0.562 0.604 0.534 0.534 0.615
30 0.494 0.571 0.565 0.521 0.497 0.591

Heart 5 0.825 0.824 0.806 0.828 0.828 0.829
10 0.819 0.818 0.787 0.826 0.827 0.829
20 0.807 0.807 0.768 0.809 0.821 0.818
30 0.819 0.819 0.777 0.822 0.823 0.844

Liver 5 0.701 0.713 0.689 0.723 0.724 0.679
10 0.689 0.693 0.648 0.712 0.710 0.644
20 0.663 0.670 0.598 0.678 0.674 0.595
30 0.599 0.619 0.560 0.611 0.600 0.541

Pima 5 0.744 0.746 0.766 0.758 0.757 0.783
10 0.717 0.712 0.745 0.725 0.725 0.765
20 0.695 0.689 0.714 0.705 0.695 0.745
30 0.678 0.677 0.714 0.681 0.679 0.741

Vehicle 5 0.775 0.782 0.786 0.781 0.781 0.800
10 0.747 0.749 0.758 0.754 0.751 0.792
20 0.708 0.708 0.717 0.717 0.713 0.760
30 0.701 0.700 0.696 0.709 0.708 0.740

Yeast 5 0.703 0.731 0.743 0.738 0.735 0.749
10 0.652 0.693 0.724 0.680 0.672 0.733
20 0.615 0.651 0.687 0.624 0.616 0.718
30 0.593 0.628 0.669 0.599 0.587 0.703
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5 groups have mean column ranks significantly different from GU-SVM
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

GU-SVM

BSMOTESVM

SMOTESVM

RandSVM

CSSVM

RawSVM

5.09

3.61

3.55

3.23

3.45

2.07

Click on the group you want to test

Figure 9: Post-hoc analysis on the ranks of state-of-the-art classification methods and GU–
SVM. Average AUC rank of GU–SVM (2.07) is significantly lower than that of all other
methods.

ranks. Specifically, for each dataset (i.e., each row in Table 8), we ranked the classifica-

tion methods and then the methods are compared in terms of the average of their ranks,

hereafter called average AUC rank, they obtained. In this sense, GU–SVM has the lowest

average AUC rank (2.07) among all of the classification methods (the average AUC rank

of each method is found in Figure 9). In order to test whether the lowest rank of GU–

SVM is statistically significant, we performed the Friedman test, followed by a post-hoc

analysis. Specifically, under the null hypothesis that all classification methods have the

same average AUC rank, the Friedman statistic χ2
F was 58.7, and thus the null hypoth-

esis is rejected with a p-value 1.07× 10−11. Moreover, the post-hoc Nemenyi analysis,

as illustrated graphically in Figure 9, asserts that the average AUC rank of GU–SVM is
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significantly lower (at confidence level 0.05) than that of all other classification methods.

Specifically, in Figure 9, the average AUC rank of each classification method is denoted

as a triangle and the critical difference range obtained by the Nemenyi post-hoc analysis

is denoted as lines laid on the triangles. In this Nemenyi post-hoc analysis, two methods

are determined to be significantly different when their critical difference ranges do not

overlap.

The results from this section show that GU–SVM has the improved classification

performance compared to the state-of-the-art classification methods. The following sub-

section investigates whether the outstanding performance of GU–SVM can be attributed

only (or mostly) to one of the two instance-selecting techniques — ensemble outlier-

filtering technique and normalized-cut sampling — that compose GU–SVM.

Performance Analysis of GU–SVM’s components

To independently examine the classification performances of the ensemble outlier-

filtering and the normalized-cut sampling, we built two classification methods that employ

only one of the two instance-selecting techniques respectively and compare them with the

state-of-the-art classification methods. We refer to these methods as ensemble outlier-

filtering SVM (EOF–SVM) and normalized-cut sampling SVM (Ncut–SVM).

Ensemble Outlier-filtering Technique (EOF–SVM) The EOF–SVM consists on apply-

ing the traditional SVM algorithm to the ensemble outlier-filtered data. In other words,

EOF–SVM is the GU–SVM method, but without applying the normalized-cut sampling to
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Table 9: AUC performance of ensemble outlier-filtering SVM (EOF–SVM)

Imbalance
Ratio Australian CMC Ecoli German Glass Haberman Heart Liver Pima Vehicle Yeast

5 0.896 0.686 0.947 0.697 0.753 0.680 0.833 0.696 0.787 0.800 0.747
10 0.891 0.670 0.940 0.668 0.716 0.659 0.831 0.664 0.772 0.793 0.730
20 0.875 0.657 0.934 0.630 0.658 0.630 0.822 0.634 0.751 0.759 0.717
30 0.873 0.642 0.931 0.642 0.640 0.608 0.837 0.568 0.741 0.748 0.699

4 groups have mean column ranks significantly different from EOF-SVM
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Figure 10: Post-hoc analysis on the ranks of state-of-the-art classification methods and
EOF–SVM. Average AUC rank of EOF–SVM (2.20) is lower than that of all other meth-
ods; however, its rank is not significantly different from the rank of the SMOTE SVM
(3.23) by the Nemenyi post-hoc analysis.

the ensemble outlier-filtered training data.

Table 9 shows the AUC obtained by EOF–SVM on each dataset. As described

in Section 3.4.2, each AUC is the AUC average of 10 repetitions, each obtained via a

five cross-validation. To compare the performance of EOF–SVM with the state-of-the-art

classification methods, we ranked the AUCs of EOF–SVM in Table 9 and state-of-the-art

classification methods in Table 8. In this sense, EOF–SVM has the lowest average AUC
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rank (2.20) among all of the state-of-the-art classification methods (the average AUC rank

of each method is found in Figure 10). Then, we tested the significance of this result.

Specifically, under the null hypothesis that all classification methods have the same aver-

age AUC rank, the Friedman statistic χ2
F was 53.0, and thus the null hypothesis is rejected

with a p-value 1.59× 10−10. Moreover, the post-hoc Nemenyi analysis, as illustrated

graphically in Figure 10, asserts that the average AUC rank of the EOF–SVM (2.20) is

significantly lower (at confidence level 0.05) than the ranks of four classification meth-

ods — the raw-data SVM, the cost-sensitive SVM, the random-undersampling SVM, and

the BSMOTE SVM. However, the post-hoc Nemenyi analysis asserts that the rank of the

EOF–SVM is not significantly different from the rank of SMOTE SVM (3.23). This result

shows that EOF–SVM has a competitive classification performance comparable to several

state-of-the-art imbalanced data classification methods, though the rank of the EOF–SVM

is not significantly lower than that of the SMOTE SVM.

Normalized-cut Sampling (Ncut–SVM) The Ncut–SVM consists on applying the tradi-

tional SVM algorithm to the normalized-cut sampled data. In other words, Ncut–SVM is

the GU–SVM method, but without applying the ensemble outlier filtering to the training

data.

Table 10 shows the AUC obtained by Ncut–SVM on each dataset. As described

in Section 3.4.2, each AUC is the AUC average of 10 repetitions, each obtained via a

five cross-validation. To compare the performance of Ncut–SVM with the state-of-the-art

classification methods, we ranked the AUCs of Ncut–SVM in Table 10 and state-of-the-art
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Table 10: AUC performance of normalized-cut sampling SVM (Ncut–SVM)

Imbalance
Ratio Australian CMC Ecoli German Glass Haberman Heart Liver Pima Vehicle Yeast

5 0.900 0.701 0.948 0.685 0.786 0.669 0.824 0.701 0.777 0.795 0.756
10 0.892 0.682 0.946 0.659 0.758 0.649 0.817 0.660 0.751 0.778 0.735
20 0.876 0.664 0.946 0.631 0.660 0.630 0.807 0.623 0.747 0.745 0.718
30 0.882 0.633 0.947 0.630 0.640 0.589 0.827 0.556 0.740 0.717 0.703

classification methods in Table 8. In this sense, Ncut–SVM has the lowest average AUC

rank (2.41) among all of the state-of-the-art classification methods (the average AUC rank

of each method is found in Figure 11). Then, we tested the significance of this result.

Specifically, under the null hypothesis that all classification methods have the same aver-

age AUC rank, the Friedman statistic χ2
F was 45.1, and thus the null hypothesis is rejected

with a p-value 6.48×10−9. Moreover, the post-hoc Nemenyi analysis, as illustrated graph-

ically in Figure 11, asserts that the rank of the Ncut–SVM (2.41) is significantly lower (at

confidence level 0.05) than the ranks of two classification methods — the raw-data SVM

and the cost-sensitive SVM. However, the post-hoc Nemenyi analysis asserts that the rank

of the Ncut–SVM is not significantly different from the rank of cost-sensitive SVM (3.50),

SMOTE SVM (3.09), and BSMOTE SVM (3.36). This result shows that Ncut–SVM has a

competitive classification performance comparable to several state-of-the-art imbalanced

data classification methods, though the rank of the Ncut–SVM is not significantly lower

than that of the cost-sensitive SVM, the SMOTE SVM and the BSMOTE SVM.

Results From Performance Analysis of the Two Instance-selecting Techniques The

computational results obtained from comparing each of the two instance-selecting

techniques against the state-of-the-art classification methods respectively demonstrate
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Figure 11: Post-hoc analysis on the ranks of state-of-the-art classification methods and
Ncut–SVM. Average AUC rank of Ncut–SVM (2.41) is lower than that of all other meth-
ods; however, its rank is not significantly different from the ranks of the cost-sensitive
SVM (3.50), the SMOTE SVM (3.09) and the BSMOTE SVM (3.36) by the Nemenyi
post-hoc analysis.

that each of the two instance-selecting techniques — ensemble outlier-filtering and

normalized-cut sampling — has a competitive classification performance comparable to

several state-of-the-art imbalanced-data classification methods when combined to SVM.

However, their average AUC ranks are not significantly lower than some of the state-

of-the-art classification methods. Considering the significantly better classification per-

formance of GU–SVM (which combined these two techniques) against the state-of-the-

art imbalanced-data classification methods, the analysis of this section shows that both

instance-selecting techniques comprising GU–SVM method are essential for its outstand-

ing classification performance.
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Figure 12: Illustration of the concept of minority overlap index. The minority overlap in-
dex is the proportion of the minority class region that is inside of the majority class region,
A/(A+B). The empirical minority overlap index is calculated by counting the number of
minority instances in (A+B) and dividing this number by the number of minority instances
in A, which is 2/(2+3) = 0.4 in this figure.

3.5 Analyzing GU–SVM in the Two Datasets Where It Performed Poorly

The computational results on the previous section demonstrated that GU–SVM per-

forms significantly better than other state-of-the-art classification methods. However, from

Table 8, it is evident that GU–SVM failed to outperform most methods on two datasets:

the liver and glass base datasets. This section aims to explain the relatively poor perfor-

mance of GU–SVM on the liver and glass datasets. Specifically, we argue that GU–SVM

performance lags in datasets where a large portion of the region containing the minority

class is inside of the region containing the majority class. The next paragraph formalizes

this concept.

The minority overlap index is the proportion of the minority class region that is
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inside of the majority class region (Figure 12 illustrates this concept). To measure this

index empirically, we use the following procedure: 1) Identify the class boundary of each

class using a one-class SVM classifier. Specifically, in this study, we used Schölkopf et al.

(2001)’s classifier with parameter ν = 0.5 (Schölkopf et al. (2001) proved that given a

ν ∈ (0,1], their classifier is guaranteed to build a class boundary that includes at most, and

approximately for ν ≥ 0.5, ν fraction of the class instances). 2) Calculate the empirical

minority overlap index by counting the number of minority instances inside of both, the

majority and minority, class boundaries and dividing this number by the number of minor-

ity instances inside the minority class boundary. Note that this calculation is empirically

evaluating the ratio of the volumes of the intersection and the minority class; this empir-

ical calculation is needed because calculating the volumes of high dimensional bodies is

extremely difficult and time consuming.

Now, using the minority overlap index, we show that GU–SVM is indeed dominated

by almost all of the other five state-of-the-art methods only when the empirical minority

overlap index is very high (≥ 0.9). Figure 13 graphs, for each base dataset, the rank of

GU–SVM (average of average AUC ranks of four different imbalance-ratio datasets [5, 10,

20, 30] against the other five state-of-the-art methods) versus the empirical minority over-

lap index. Here, for each base dataset, its empirical minority overlap index is calculated

by using original datasets described in Table 7. Note that, among the 11 base datasets, the

ranks of GU–SVM are less than or equal to two, with the exception of the liver and glass

base datasets, which are the datasets with extremely high minority overlap indices (0.93
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Figure 13: Average AUC ranks of GU–SVM in the 11 base datasets, which is plotted by
the empirical minority overlap index. GU–SVM shows limited performance in the datasets
where the minority overlap index is above a certain threshold.

and 1, respectively); all other datasets have minority overlap indices of less than 0.9. This

result suggests that GU–SVM should be used for datasets with minority overlap index

< 0.9 while other methods (specifically, SMOTE SVM, BSMOTE SVM, or cost-sensitive

SVM) should be used for datasets with minority overlap index ≥ 0.9.

3.6 Conclusions

To improve classification performance in handling two-class imbalanced data, this

chapter presents GU–SVM, a new imbalanced-data classification method. We believe that
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the take-away message from our investigation can be summarized as follows:

• Outlier-detection and removal from both classes is crucial for handling imbalanced

data. In fact it makes a greater impact if one can identify and remove outliers in the

minority class.

• Researchers understand the importance of selecting representative subsets of data

while undersampling the majority class but how to best attain that goal is still un-

der debate. We believe that the proposed normalized-cut base approach, aiming at

spreading out the majority samples evenly, provides a new angle of looking at the

problem and produces competitive results.

• Each component mentioned above in and by itself improves the performance for

imbalanced data classification. Their combination makes a further, not negligible,

enhancement.

• GU-SVM does not always outperform its competitors. But we discover a minority

overlap index that can explain why and when GU-SVM may lose its edge. Using

this minority overlap index, practitioners can apply GU-SVM when its strength can

be taken advantage of or can apply the alternative methods otherwise.
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4 SUMMARY

The principal objective of this dissertation was to develop data mining algorithms

that outperform conventional data mining techniques on social and healthcare sciences.

Toward this objective, this dissertation developed two data mining techniques, each of

which addressed the limitations of a conventional data mining technique when applied in

these contexts.

The first part of this dissertation addressed the problem of identifying important fac-

tors that promote or hinder population growth. When addressing this problem, previous

studies included variables (input factors) without considering the statistical dependence

among the included input factors; therefore, most previous studies exhibit multicollinear-

ity between the input variables. Consequently, some of the results obtained via the regres-

sion analyses contradict each other. We proposed a novel methodology that, even in the

presence of multicollinearity among input factors, is able to (1) identify significant factors

affecting population growth and (2) rank these factors according to their level of influence

on population growth. In order to measure the level of influence of each input factor on

population growth, the proposed method combined decision tree clustering and Cohen’s d

index. We applied the proposed method to a real county-level United States dataset and

determined the level of influence of an extensive list of input factors on population growth.

Among other findings, we showed that poverty ratio is a highly important factor for popu-

lation growth while no previous study found poverty ratio to be a significant factor due to
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its high linear relationship with other input factors.

The second part of this dissertation proposed a classification method for imbalanced

data — data where the majority class has significantly more instances than the minor-

ity class. The specific problem addressed was that conventional classification methods

have poor minority-class detection performance in imbalanced dataset since they tend to

classify the vast majority of the test instances as majority instances. To address this prob-

lem, we developed a guided undersampling method (GUM) that combines two instance-

selecting techniques — ensemble outlier filtering and normalized-cut sampling — in order

to obtain a clean and well-represented subset of the original training instances. Our pro-

posed imbalanced-data classification method uses GUM to select the training data and

then applies support vector machines on the sampled data in order to construct the clas-

sification model (i.e., decide the final class boundary); the resulting method is referred

to as GU–SVM. Our computational results showed that GU–SVM outperforms (with sta-

tistical significance) several state-of-the-art imbalanced-data classification methods, in-

cluding cost-sensitive, sampling, and synthetic data generation approaches on eleven open

datasets, most of them related to healthcare sciences.

GU–SVM showed superior classification performance in most of the eleven imbal-

anced datasets, though GU–SVM was outperformed by other state-of-the-art classification

methods on datasets where a large portion of the region containing the minority class was

inside of the region containing the majority class. We quantified this observation by defin-

ing the minority overlap index, devising a method to calculate said index empirically, and
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showing that indeed GU–SVM is only outperformed by other state-of-the-art methods in

datasets with a very high empirically minority overlap index. Using this minority overlap

index, practitioners can apply GU-SVM when its strength can be taken advantage of or

can apply the alternative methods otherwise.
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APPENDIX: DETAILED DESCRIPTION OF THE INPUT

VARIABLES IN PART I

This appendix is dedicated to give a detailed description of the input variable ap-

peared in Part I. For input variables, many previous studies tried to include as many input

variables as possible (see, for example, Carlino and Mills 1987; Clark and Murphy 1996;

Beeson et al. 2001; Deller et al. 2001). To avoid including an unnecessarily large number

of input variables, we classified input variables into five categories (Income, Policy, Race,

Natural Amenity, and Others) and attempted to minimize the number of input variables

while ensuring each category was adequately represented; this was achieved by selecting

the variables that are commonly used ones in past studies.

Next we give a description of each input–variable category followed by the explicit

list of variables within the category.

Income

In this category, we include income–related indicators to capture factors that influence the

economic circumstances of individuals.

1. Median Income: Median household income of the county as measured in $US (data

from 2000, average: $36,274).

2. Poverty Ratio: People in poverty in the county given as a proportion (data from

2000, average: 13.31%).
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Policy

This category is intended to capture the government’s financial policy that may attract

households and firms to establish in the region. The variable Local Net provides the local

government’s fiscal spending tendency (i.e., deficit or surplus) by giving the local govern-

ment’s budget balance as a proportion of the difference between the local government’s

revenue and expenditure to the local government’s revenue. Specifically, the Local Net

of a given county is the difference between the county’s yearly revenue and expenditures

divided by the yearly revenue of the county. Since the data from 2000 for Local Net and

Highway are not available, we used the weighted averages of 1997 and 2002.

1. Federal Expenditure: Amount of money that the federal government expended in

the county as measured in $ (data from 2000, average: $484,422,000).

2. Local Net: Local government budget balance given as a proportion of the difference

between the local government’s revenue and expenditure to the local government’s

revenue (weighted average of 1997 and 2002, average: 1.10%).

3. Highway: Local government highway expenditure as measured in $ (weighted av-

erage of 1997 and 2002, average: $12,557,000).

Race

The race category includes county measures of ratio for specific races.

1. Black Ratio: Percentage of Black persons in the county (data from 2000, average:

8.84%).

2. Asian Ratio: Percentage of Asian persons in the county (data from 2000, average:
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0.77%).

3. Hispanic Ratio: Percentage of Hispanic or Latino origin persons in the county (data

from 2000, average: 6.19%).

Natural Amenity

The natural amenity category includes local amenities that can affect the productivity of

the corresponding county as well as migration patterns in and out of the county (Mc-

Granahan and Beale, 2002). To include information about summer temperature while

removing its correlation with January temperature, we adopt Temperature Gap, a residual

of regression of July on January temperature, introduced by McGranahan (1999). Low

Temperature Gap means low temperature residual gap between January and July, which

leads to consistent yearly temperature (low winter–summer temperature gap). Since resid-

uals are not correlated with independent variables, Temperature Gap is not redundant with

January temperature. We also included Urban In f luence Code, an urban–rural classifica-

tion code, designed by Ghelfi and Parker (1997) and Topography Code, a land formation

classification code, designed by McGranahan (1999). To be associated with the deci-

sion tree model, these two codes are implemented in the input variable dataset as a set of

dummy variables which take the value 0 or 1 to indicate the absence or presence of some

categorical effect that may be expected to shift the outcome.

1. WaterArea Ratio: Proportion of water area in the county (data from 2000, average:

4.63%).

2. January Temperature: Average county January temperature (data from 1941 to
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1970, average: 32.90◦F).

3. January Sun: Average county January sunny hours (data from 1941 to 1970, aver-

age: 151.57 hours).

4. Temperature Gap: Temperature regression residual gap between January and July

of the county (data from 1941 to 1970, average: 0.00◦F).

5. July Humidity: Average July humidity of the county (data from 1941 to 1970, aver-

age: 56.13%).

6. Urban In f luence Code: Urban–rural classification for counties. Responses range

from 1 to 9 with 1 being a metro county of 1 million population or more and 9 being

a non-metro with a population less than 2,500 (data from 1941 to 1970).

7. Topographic Code: Topographic classification of land formation. Responses range

from 1 to 21 with 1 being a flat plain and 21 being a high mountain (data from 1941

to 1970).

Others

This category includes input variables that do not fit in the previous categories but that we

think are relevant and other researchers have also included them.

1. Crime Rate: Number of violent crimes per 1000 persons in the county (data from

2000, average: 0.24).

2. College Ratio: Proportion of bachelor’s degree of the county (data from 2000, aver-

age: 16.50%).

3. Employment Rate: Proportion of employed people to population (15 and over) of
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the county (data from 2000, average: 65.94%).

4. Population Density: Population per square mile of the county (data from 2000,

average: 245.10 persons per square mile).
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