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ABSTRACT 

Biocatalysts have been increasingly targeted to produce bio-fuels, 

pharmaceuticals and synthetic and natural chemicals due to a rising interest in 

sustainability and safety. The use of biocatalysts can eliminate the need for brute 

chemical synthesis and the toxic materials utilized in the process. Beta-carotene is a 

favorable candidate for microbial production as it is naturally produced in several 

different organisms and the pathway of production is well characterized. A brightly 

colored pigment which is used in a wide array of industries such as nutraceuticals, food 

and cosmetics, beta-carotene has a predicted market value of 247 million dollars by 

2019. This work focuses on applying upstream and midstream approaches to maximize 

titer, yield and productivity of beta-carotene production under fed-batch operation using 

a carotenoid hyper-producer (SM14), an engineered strain of Saccharomyces cerevisiae. 

Bench-top bioreactor experiments determined ethanol feeding, when compared to 

glucose feeding, results in a 64% improvement in productivity. Glucose and ethanol 

feeding increased the maximum titer to 179 mg/L which is a 44% improvement when 

compared to batch experiments. In addition, yield was increased to 21 mg/g DCW, a 

22% improvement compared to batch results. Response Surface Methodology (RSM) 

was utilized to optimize minimal YNB media for maximum biomass and titer 

production. Sixteen different compositions were studied and the analysis showed that 

optimal composition results in an improvement of 243.35% in biomass production, 

198.21% in titer and 106.49% in productivity. 
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1. INTRODUCTION  

1.1 Process Development for Microbial Production  

Microbial production of pharmaceuticals, synthetic and natural chemicals and 

bio-fuels is a growing field of research and development due to an increasing interest in 

producing the materials required to sustain human life in a more sustainable manner.  

However, a significant challenge in implementing microbial production at industrial 

scale is the optimization and development of the numerous stages of the process. 

The three main stages of production (summarized in Figure 1) - upstream, 

midstream and downstream – need rigorous optimization in order to maximize the three 

basic metrics of a microbial process – yield, titer and productivity (Lee & Kim, 2015).  

Upstream development includes selection of a host and target pathway for 

producing the bio-product of interest. Thorough metabolic flux analysis and metabolic 

balances are required to optimize the yield and titer of the process. At this stage, shake 

flask experiments are used to study if the selected host and pathway have sufficient 

productivity to advance to later stages of development.  

Midstream development involves refining the parameters of production for larger 

scale. For example, an optimal growth medium is required to maintain substrates and 

nutrients at levels that are productive while minimizing the cost of raw materials for the 

process. In addition, scale-up is especially difficult because the factors that affect the 

transition from shake flask scale to bench top bioreactor scale greatly vary depending on 

the host, strain and target product. The mode of fermentation – batch, fed-batch or 
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continuous – is also investigated in this stage of process development. Fed-batch and 

continuous cultures require optimized feeding profiles and can also demand controllers 

that manipulate feeds using online variables as inputs. Greater analysis of parameters 

such as pH, temperature and dissolved oxygen (DO) are also required to maintain and/or 

increase the yields and titers achieved at smaller scales. Iterative experiments testing 

several different conditions and feeding profiles are required to optimize yield, titer and 

productivity.  

Downstream development involves optimizing the purification and separation of 

the product of interest. Often times, recycling of media and cells can also be utilized in 

order to increase titer and productivity and decrease costs of raw materials. Separations 

and purification of the target product is most often the costliest portion of microbial 

production.  

This work will focus on upstream and midstream approaches to developing a fed-

batch process to maximize the production of beta-carotene.  
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Figure 1 Summary of the stages of development for microbial production processes 

(Lee & Kim, 2015). 

1.2 Upstream Development 

1.2.1 Microbial Host Selection 

Microorganisms have been used for centuries to produce fine alcohols, cheeses 

and breads. In recent decades, the advantages of microbial growth have been harnessed 

as biocatalysts to produce organic products at an industrial scale without the use of 

dangerous and toxic starting materials such as heavy metal catalysts, organic solvents 

and strong acids and bases. Moreover, biocatalysts typically produce the compounds 

with the desired stereochemistry naturally which is of particular importance when 

producing chemicals for human consumption (Du, Shao, & Zhao, 2011). Additionally, 

microbes have been targeted to use cheap and renewable carbon sources such as glucose 

to produce value added compounds. Tractable microbes, such as Escherichia coli (E. 

coli) and Saccharomyces cerevisiae (S. cerevisiae), are some of the safest and well 

characterized industrial organisms.  

Process 
Development  

targetting optimal, 
maximal production 

using biocatalyst

Upstream
Microbial Host Selection, Target 

Pathway Selection, Strain 
Engineering, Metabolic Flux Analysis

Midstream
Media Optimization, Optimization of 
Culture Conditions, Optimization of 

Feeding Profiles, Scale-Up

Downstream Purification and Separation
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Historically, biocatalyst utilization was limited by our ability to manipulate the 

pathways that produce target chemicals. However, due to the emergence of molecular 

biology techniques capable of rapid genetic engineering and whole cell profiling, the aim 

to manipulate biocatalysts to achieve profitable yields and productivities is an achievable 

task (Hong & Nielsen, 2012; I.-K. Kim, Roldão, Siewers, & Nielsen, 2012; Sagt, 2013).  

While efforts to implement microbial production of chemicals have progressed, 

several issues still need to be addressed in order to increase productivity of the 

organisms. The challenges include identifying the appropriate biocatalyst and pathway 

for producing the product of interest, establishing the optimal growth conditions for the 

cultivation of the biocatalyst, identifying bottlenecks of production by parsing through 

metabolic flux information and developing high throughput methods to engineer the 

production pathways for higher yields and screen for higher producers (Lee & Kim, 

2015).  

Advances in metabolic engineering techniques and merging of computational and 

experimental approaches have been able to increase the productivity and yields of 

industrial strains and address the challenges described above. The recent development of 

the CRISPR-Cas9 (Sander & Joung, 2014) method allows for rapid genome editing with 

higher efficiency and accuracy than ever before. CRISPR-Cas9 also allows for several 

gene disruptions (knock-outs) to be performed simultaneously, which drastically 

decreases the time required for gene editing. With the ability to rapidly modify 
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organisms in parallel, a systems approach to optimization of biocatalyst production is 

feasible.  

 The baker’s yeast S. cerevisiae has GRAS (Generally Regarded as Safe) status 

and has been used as a biocatalyst for centuries. Its genome was sequenced in 1996 

(Goffeau et al., 1996) and has been well annotated which allows for both modeling and 

genetic modifications with greater ease. In addition, S. cerevisiae is highly tolerant to a 

vast array of challenging conditions with varying pH, temperature and toxicity which 

makes it a great candidate for industrial applications (Hong & Nielsen, 2012). 

Under aerobic conditions, S. cerevisiae metabolizes glucose to produce energy 

for cell maintenance and growth. Under anaerobic (oxygen limited) conditions, energy is 

derived from metabolizing glucose to ethanol (fermentation), which may result in 

decreased growth rates due to the toxic effects of ethanol if concentrations reach 

inhibitory levels. A defining feature of S. cerevisiae is its ability to grow under anaerobic 

conditions (van Dijken, Weusthuis, & Pronk, 1993), another reason it is a preferred 

biocatalyst for industrial application. Ethanol fermentation can also occur when glucose 

concentrations are maintained above a critical threshold. This phenomenon, called 

overflow metabolism or the Crabtree effect, is a significant challenge in fermentations 

involving S. cerevisiae (Postma, Verduyn, Scheffers, & Van Dijken, 1989).  

1.2.2 Ethanol Toxicity 

The toxic effects of ethanol can affect growth rate, cell vitality and cell death 

(Birch & Walker, 2000). It can affect many aspects of the cell metabolism by activating 
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production of heat shock-like proteins. This results in changes in RNA and protein 

synthesis as well. In the presence of ethanol, cell membranes are altered by increased 

fluidity which decreases integrity (D. Stanley, Bandara, Fraser, Chambers, & Stanley, 

2010). Ethanol tolerance is of interest in this work as increased ethanol concentrations in 

the culture allow for higher titers of beta-carotene. Therefore, managing the stress of 

ethanol with its positive effects on yield, titer and productivity are crucial. 

One approach to combating overflow metabolism in S. cerevisiae is utilizing 

fermentation modes such as fed-batch or chemostat in which the concentrations of the 

substrates can be controlled. Fed-batch operation with S. cerevisiae is a well-developed 

topic with established methods for optimization and control of feeding policies as well 

(Aiba, Nagai, & Nishizawa, 1976; Pham, Larsson, & Enfors, 1998; van Hoek, De 

Hulster, Van Dijken, & Pronk, 2000). A second approach to combating overflow 

metabolism is to engineer the biocatalyst to better tolerate the inhibitory effects of 

ethanol production.  Evolving the strain to grow in ethanol-stressed environments 

(Çakar, Seker, Tamerler, Sonderegger, & Sauer, 2005; Dragana Stanley, Fraser, 

Chambers, Rogers, & Stanley, 2010; Wallace-Salinas & Gorwa-Grauslund, 2013) and 

rational strain engineering to overexpress genes that confer ethanol tolerance (Hirasawa 

et al., 2007; Lewis, Elkon, McGee, Higbee, & Gasch, 2010; Watanabe, Watanabe, Akao, 

& Shimoi, 2009) have been used to address ethanol toxicity. However, the success of the 

approach is highly variable and depends on the target product and pathway.   
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A second approach to minimizing the effects of ethanol toxicity is to re-engineer 

the strain to increase its ethanol tolerance. A higher tolerance to ethanol could minimize 

the slowing down of growth rate and therefore result in higher yields. Furthermore, this 

approach could be especially important in producing β-carotene since specific yield from 

ethanol is significantly higher than specific yield from glucose (Reyes, Gomez, & Kao, 

2014). In identifying which genes should be targeted in order to increase ethanol 

tolerance, genes that are involved in the pathway of mevalonate synthesis (a pathway 

upstream of β-carotene synthesis) and also involved in minimize the negative effects of 

ethanol on growth could be the most beneficial to target. IDI1 (isopentenyl 

diphosphate:dimethylallyl disphospate isomerase) was identified as being involved in 

converting Δ3-isopentenyl-PP to dimethyllallyl-pyrophosphate and has been shown to be 

related to ethanol tolerance (Teixeira, Raposo, Mira, Lourenco, & Sa-Correia, 2009).  

1.2.3 Target Product: Beta-Carotene  

Beta-carotene is a brightly pigmented orange organic compound naturally 

produced in algae, plants, fungi and bacteria.  The perfectly symmetrical molecule has a 

system of conjugated double bonds and is flanked by two beta-ionone rings.  It is part of 

a larger class of molecules called carotenoids, marked by the 40 carbon composition and 

can be differentiated into carotenes (carotenoids with only carbon) and xanthophylls 

(carotenoids with oxygen) (Donhowe & Kong, 2014). Carotenoids are part of a larger 

class of molecules called terpenoids (isoprenoids) which are formed by 8 units of 

isoprene. The trans-beta carotene form can be cleaved into two units of vitamin A, 
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making it a valuable nutrition source for humans. It functions as an anti-oxidant in the 

human body and has been implicated in vision health (Grune et al., 2010). In 

photosynthetic microbes and plants, carotenoids are of high importance as they are 

utilized in absorption of light for photosynthesis and as protection against photo-

oxidation (Armstrong & Hearst, 1996).  

Beta-carotene is used in such industries as nutraceuticals, food and cosmetics. 

Market research showed that in 2014, the market value of beta-carotene was $197 

million dollars and is projected to grow to $247 million dollars in 2019 (Marz, 2015). 

The largest market for beta-carotene is North America where it is most commonly used 

in food and nutraceutical industries.  

 The production of beta-carotene dates back to 1940 when it was first synthesized 

at Roche in an effort to synthesize vitamin A using Grignard reactions. In the 1970’s, 

public concerns about the quality of food forced Roche to turn to microbial production 

of beta-carotene using micro-algae. Today, most of the beta-carotene produced is done 

so using chemical synthesis and in smaller quantities, algae extraction and fermentation 

are also used. It is typically produced into crystalline tablets for safe transport and ease 

of storage.   

1.2.4 Strain Engineering Approaches 

 The foundation of microbial production is the choice of organism and the product 

synthesis pathway to produce the bio-product of interest. Historically, the transfer of 

knowledge of strain engineering techniques from academic pursuits to industry has been 
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sluggish which presents hinders the development of the field and in increasing yield and 

productivity to surpass the benefits of brute chemical synthesis (Lee & Kim, 2015). 

Conversely, academics possess the resources and knowledge to quickly develop 

biocatalysts that produce bio-products of high value but fail to further develop the 

process by incorporating a systems level approach to microbial production (Hong & 

Nielsen, 2012). Fortunately, significant gains have been achieved in the field due to the 

integration of high-throughput approaches with feedback between the upstream, 

midstream and upstream variables. A more thorough understanding of a biocatalyst is 

achievable due to the development of genomic computational techniques and metabolic 

flux prediction capabilities.  

 In general, there are three overarching approaches to strain engineering: rational 

metabolic engineering, inverse metabolic engineering and evolutionary strategies (I.-K. 

Kim et al., 2012). Rational engineering allows for genomic changes to re-direct 

metabolic fluxes to produce a product of interest. This can be achieved through gene 

knock-outs or over-expression of genes, promoters and inducers. However, rational 

engineering approaches suffer from a host of difficulties such as the a priori knowledge 

of genomic functions, predicting the downstream and upstream effects of genomic edits 

and the difficulty of making precise and efficient genetic changes, especially in non-

model organisms. However, the large wealth of information available of widely used 

microbial platforms such as S. cerevisiae and E. coli, the emerging technologies in gene 

editing tools (such as CRISPR-Cas9) intracellular flux modelling (such as constraint 
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based flux balance analysis) (Long, Ong, & Reed, 2015; Reed, Famili, Thiele, & 

Palsson, 2006) allow for more systems level approaches to rational strain engineering. 

Inverse metabolic engineering (adaptive evolution, genomic libraries) is the 

methodology in which strains with genetic modifications that confer a desired 

characteristic are first selected or screened; these strains can be further rationally 

engineered or subsequently used to gain greater understanding of the determinants of the 

desired trait (Portnoy, Bezdan, & Zengler, 2011; Winkler & Kao, 2014). Using selective 

pressures, in adaptive laboratory evolution, the biocatalyst is cultivated to grow in the 

preferred conditions without enforcing strict regulations on the genomic changes 

occurring over time. Once the strain is able to adapt, the genomic, proteomic and 

metabolic changes that occurred in the process of adaptive evolution are studied. With 

careful strain design and selection of pressures on growth, adaptive laboratory evolution 

can be used to select for more successful producers.  

1.2.5 Development of SM14 

Transforming genes from other organisms into S. cerevisiae to produce bio-

products is of interest since the wealth of genetic information of the species allows for 

greater ease of genetic manipulation. Yeast species such as Xanthophyllomyces 

dendrorhous (X. dendrorhous), previously known as Phaffia rhodozyma (P. rhodozyma), 

produce carotenoids and the corresponding genes have been cloned into other organisms.  

In the following studies, an evolved strain of S. cerevisiae is used to over-produce beta-

carotene. Both X. dendrorhous and S. cerevisiae naturally biosynthesize geranylgeranyl 



 

 

11 

 

diphosphate (GGPP), a precursor of the carotenoid pathways, which allows for transfer 

of the carotenoid cassette into S. cerevisiae to produce the β-carotene (Verwaal et al., 

2007). The pathway was cloned into S. cerevisiae to generate the strain YLH2 capable of 

beta-carotene production. The strain used in this study is a carotenoid hyper-producer 

derived from YLH2 named SM14. SM14 was developed in the Kao Lab using adaptive 

evolution techniques. The Kao lab utilized the anti-oxidant properties of beta-carotene to 

select for higher producers in the presence of oxidative agent hydrogen peroxide (Reyes 

et al., 2014) . The pathway for carotenoid production is summarized in Figure 2.  

The carotenoid synthesis pathway involves some key intermediates such as 

acetyl CoA (the starting material for the pathway), mevalonic acid (MVA), isopentenyl 

pyrophosphate (IPP), dimethyllayl pyrophosphate (DMAPP) and geranyl geranyl 

pyrophosphate (GGPP) (Mata-Gómez, Montañez, Méndez-Zavala, & Aguilar, 2014). 

GGPP can be combined to produce phytoene which forms lycopene – the basis of many 

other carotenoids including beta-carotene. Ethanol has been implicated in upregulating 

the activities of some key enzymes in this pathway, which allows for higher productivity 

in the ethanol uptake phase of the fermentations utilizing SM14. It has been postulated 

that ethanol has a positive effect on the production of carotenoids due to the increased 

pool of acetyl-coA (a precursor to the mevalonate pathway). This phenomena has been 

studied in P. rhodozyma (Gu, An, & Johnson, 1997) from which the beta-carotene 

producing pathway is transplanted into ancestral strain of SM14. Ethanol has also been 

shown to stimulate activity in alcohol dehydrogenase and hydroxyl-methyl-glutaryl-CoA 
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(HMG-Co-A) reductase which increases flux through the mevalonate pathway (G. J. 

Kim, Park, Kim, & Ryu, 2003). This effect is less studied in S. cerevisiae. 

 

Figure 2 Summary of the pathway that was added to S. cerevisiae (Verwaal et al., 

2007). 

Bioreactor conditions for SM14 were optimized  for a batch mode of operation in 

Kao lab (M. Olson, 2014). It was observed that culture conditions of pH 4, 30 °C, 

stirring rate of 800 rpm result in the highest titers and therefore the same conditions will 

be maintained in the fed-batch experiments also.   
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1.3 Midstream Development  

1.3.1 Fed-batch Mode of Operation 

Fed-batch operation has been developed since the early 1900’s to increase yield 

and productivity. One of the earliest uses of fed-batch operation was in the production of 

yeast using malt wort (Lim & Shin, 2013).  Using high malt concentrations would inhibit 

the cell growth due to anaerobic production of ethanol, which is toxic to yeast. 

Therefore, malt wort was fed to the culture throughout the process to minimize the 

production of ethanol and increase biomass production. The success of this progress in 

microbial production during the era of World War I, led to the application of fed-batch 

to increase the production of penicillin using glucose as the carbon source.  

The fed-batch mode of operation is a variation of batch cultures where nutrients, 

carbon source or other necessary inputs for continued cell growth and product formation 

are fed into the reactor during the fermentation (Lim & Shin, 2013). Feed rates and the 

different feed compositions can be controlled and manipulated to influence the 

concentrations of the ingredients within the reactor. As the fermentation continues, the 

volume of the culture broth increases until the cells are harvested to extract the product 

of interest. Fed-batch allows for finer control of the concentrations of reactants required 

for the chemical and biochemical reactions taking place in the culture. This strategy is 

especially relevant when product formation results in feedback inhibition or reaction 

rates are highly dependent on reactant concentrations.  
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As suggested above, one method for combating overflow metabolism is to 

implement a fed-batch mode of operation for fermentation. Slow feeding of glucose 

allows the operator to maintain productive glucose levels while avoiding the sudden 

buildup of ethanol. This strategy prevents decreases in growth rate and allows for 

replenishing of nutrients to maintain production.   

 In addition to circumventing overflow metabolism, fed-batch operation is 

commonly also utilized in preventing catabolite repression. When glucose is rapidly 

metabolized by the microorganism resulting in accelerated growth rates, intracellular 

cAMP (cyclic AMP) concentrations decrease which results in reduced enzyme 

biosynthesis (Minihane & Brown, 1986). This phenomenon, called catabolite repression, 

can be limited by slow feeding of carbon sources, such as glucose. However, slow feed 

rates can regress product formation rates due to slower growth rates. To combat this 

issue, an optimized feeding profile can be developed using online measurements such as 

carbon dioxide evolution rate (CER) or oxygen uptake rate (OUR). 

A significant challenge in fed-batch operation is determining the optimal feeding 

profile to maximize yield and productivity. Commonly studied feeding patterns include 

constant, linearly increasing or decreasing, exponential and intermittent feed rates. It is 

of interest, depending on the particular aim, to control the concentrations of components 

such as substrates, nitrogen, phosphate or intermediates in the culture broth (Lim & 

Shin, 2013). Material balance equations can be used to describe the dynamics of these 

components. A simplified mathematical description of fed-batch operation would 



 

 

15 

 

include material balances for the cell mass, substrate, intermediate metabolites and the 

product. In this study, we applied a fed-batch mode of operation to guide the 

improvement of yields and productivities in S. cerevisiae using a simple constant feed 

pattern to study the effect of substrate feeding on the production of beta-carotene. 

1.3.2 Design of Experiments Using Response Surface Methodology 

There exists a myriad of experimental approaches to either confirming or 

nullifying a hypothesis. Most often, experiments are designed intuitively that offer 

insight into the problem that is being probed. However, a systematic approach to 

gathering data is appropriate when investigating a large number of variables whose 

effect is largely unknown. This approach, called design of experiments (DOE), applies 

statistics to develop models that relate input variables (called factors) to output variables 

(called responses) with higher efficiency than traditional methods (Hockman & 

Berengut, 1995). DOE allows for systematic changes to factors in order to study the 

response in a given experimental space. The traditional “one-factor at a time” approach 

can be laborious and may lead to incomplete analysis of the way in which the factors 

interact with each other (Li, Bai, Cai, & Ouyang, 2002).  

In this study, the response surface methodology (RSM) approach will be utilized 

to optimize the components of minimal Yeast Nitrogen Base (YNB) media. RSM is a set 

of statistical and mathematical techniques used to design experiments, deduce a 

statistical model and determine the response due to changes in factors in a given 

experimental space (Khuri & Mukhopadhyay, 2010; Li et al., 2002). Each factor is 
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varied over a certain range simultaneously with all the factors being tested, thereby 

creating a “surface” of responses. The surface can then be analyzed to find the 

appropriate conditions to match the desired effect (maximizing or minimizing the 

response).  In general, the relationship between the factors and the response can be 

summarized by (Khuri & Mukhopadhyay, 2010): 

𝑦 = 𝑓′(𝑥)𝛽 + 𝜖  

Equation 1 Generalized equation for modeling the relationship between factors and 

responses. 

 

𝑤ℎ𝑒𝑟𝑒 𝑥1, 𝑥2, … , 𝑥𝑘  𝑎𝑟𝑒 𝑘 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 

𝑥 = ( 𝑥1, 𝑥2, … , 𝑥𝑘)′ 

𝑓(𝑥)

= 𝑣𝑒𝑐𝑡𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑡ℎ𝑎𝑡 𝑐𝑜𝑛𝑠𝑖𝑠𝑡 𝑜𝑓 𝑝𝑜𝑤𝑒𝑟𝑠 𝑎𝑛𝑑 𝑐𝑟𝑜𝑠𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑜𝑓 𝑝𝑜𝑤𝑒𝑟𝑠  

𝑜𝑓 𝑥1, 𝑥2, … , 𝑥𝑘  𝑢𝑝 𝑡𝑜 𝑎 𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑑𝑒𝑔𝑟𝑒𝑒 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝑑  

𝛽 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑝 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑐𝑜𝑒𝑓𝑓𝑒𝑐𝑖𝑒𝑛𝑡𝑠 (𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 

∈ = 𝑟𝑎𝑛𝑑𝑜𝑚 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 𝑤𝑖𝑡ℎ 𝑎 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑧𝑒𝑟𝑜 

 

There are two main models that can be utilized for RSM: first-degree model 

(Equation 2) and second-degree model (Equation 3). This study will utilize a second-

order design.  
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𝑦 =  𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+ 𝜖 

Equation 2 First-degree model for RSM 

𝑦 =  𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑘

𝑖=1

∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑖<1

+ ∑ 𝛽𝑖𝑗𝑥𝑖
2

𝑘

𝑖=1

+ 𝜖 

Equation 3 Second-degree model for RSM 

 

RSM utilizes factorial design since it allows for all factors to be varied 

simultaneously which greatly reduces the number of experiments that need to be 

conducted (Plackett & Burman, 1946). The most common second-order designs are 3k 

factorial, central composite and Box-Behnken. In this study, a central composite design 

(CCD) is used to study the effects of varying media compositions on titer and biomass.  

Often, DOE is useful in optimizing a mixture of factors. For example, when 

determining the optimal compositions of media components targeted for maximum cell 

density, DOE can be used to experimentally study the effect of varying compositions. 

Then, a statistical model relating the composition to cell growth can be determined and 

utilized to relate composition and cell density.  

The advantages of using minimal media, such as YNB, include greater control of 

the composition and cheaper raw material costs when scaling up (Yee & Blanch, 1993). 

Furthermore, richer media often includes a high protein content, which makes 

downstream purification of bio-products more difficult.  Therefore, this study aims to 

enhance the production of beta-carotene by optimizing the concentrations of the three 
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components of YNB media: glucose, ammonium sulfate and YNB (a mixture of nitrogen 

sources, trace elements, salts and vitamins).  
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2. MATERIALS AND METHODS 

The fermentation experiments were conducted in a 3 Liter and 7 Liter 

autoclavable bioreactors (Applikon, Foster City). Before autoclaving, the pH probe was 

calibrated with pH 4 and pH 7 buffers. Dissolved oxygen (DO) probe was calibrated 

after stabilizing the probe with maximum air flow for 6-8 hours after autoclaving. The 

temperature, pH and stirring rate were maintained constant throughout the experiments 

using Applikon ezControl. The temperature was maintained at 30 °C, the pH was 

maintained at 4 using automatic addition of 2M HCl and 2M NaOH and the stirring rate 

was maintained at 800 rpm. Online measurements including pH, temperature, stirring 

rate, dissolved oxygen (DO), CO2 off-gas and O2 off-gas were also recorded using the 

Applikon ez Control and a BlueSens off-gas analyzer.   

Frozen stock cultures of SM14 were stored at -80°C. For bioreactor experiments, 

50 mL YNB inoculum cultures were started from a single colony of SM14 grown on a 

YNB+Agar plate. The inoculum culture was then grown for at least 48 hours to ensure 

exponential growth at 200 rpm and 30 °C. YNB media consists of 20g/L glucose, 1.7 

g/L YNB and 5 g/L ammonium sulfate and always filter sterilized. 

For batch experiments, a total of 3L of YNB were inoculated and duplicate samples of 3 

mL were drawn periodically for further analysis. Samples were stored at -20°C. 
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2.1 Fed-Batch Experiments: 

2.1.1 Glucose Feed Type 1 

In this experiment, 3 L of 20 g/L glucose in YNB is inoculated with the 50 mL 

SM14 culture. Then, the experiment is conducted in batch mode for 10 hours to ensure 

the culture reaches the beginning of the glucose consumption phase (which coincides 

with the beginning of the exponential phase). At 10 hours, 1 L of 200 g/L glucose in 

YNB is fed at the glucose consumption rate of 0.02133 L/hr continuously (calculated 

from several batch experiments). When the 1 L of feed was finished, the pump was 

turned off and the experiment was allowed to continue in batch mode until all carbon 

sources (glucose, ethanol and acetic acid) had been exhausted in the culture broth. The 

concentrations of the carbon sources were tested using HPLC analysis.  

2.1.2 Glucose Feed Type II 

This experiment was repeated using an initial 2 L of YNB media inoculated by the 50 

mL SM14 culture. Then, the culture was allowed to reach a state of glucose depletion 

(reaching a target glucose concentration of 1 g/L). The timing of this state was calculated 

using previous batch experiments. At this point, a 1 L of 20 g/L glucose in YNB was fed 

at a rate of 0.1574 L/hr. The glucose consumption rates when the glucose concentrations 

ranged from 5 g/L to 1 g/L in previous batch experiments were calculated and used as 

the feed rate during this experiment. After a 1 L of the feed had been finished, the 

experiment was allowed to continue in batch mode until all carbon sources had been 

exhausted (as described previously). 
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2.1.3 Ethanol Feed with 25 g/L Ethanol in YNB 

In this experiment, 3 L of 20 g/L glucose in YNB is inoculated with the 50 mL 

SM14 culture. The experiment was conducted in batch mode for 24 hours to ensure that 

the glucose had been depleted and that the culture had reached the ethanol consumption 

phase. The glucose depletion time was predicted using data from several batch 

experiments. At 24 hours, the ethanol YNB media was fed at a rate of 0.0268 L/hr 

continuously at the ethanol consumption rate (also calculated from previous batch 

experiments). The ethanol YNB media was prepared using 25 g/L ethanol, 5 g/L 

ammonium sulfate and 1.7 g/L of YNB.  When 1 L of the feed was finished, the 

experiment was allowed to continue in batch mode until all carbon sources had been 

exhausted as in previous experiments.  

2.1.4 Beta-carotene Analysis 

 An assay was developed by the Kao group for the analysis of beta-carotene, 

which is described here. A 500 µL sample of the culture is added to an O-ring tube. The 

sample is then centrifuged for 2 minutes at 13,000 rpm. The supernatant is removed 

using vacuum aspiration and the cell pellet is left undisturbed. To the pellet, 1 mL of 

dodecane and an approximate aliquot of 200 µL of acid-washed glass beads are added. 

The O-ring tube is then placed on a cell disruptor and the cell pellet is disrupted for 6 

minutes twice. The sample is again centrifuged for 2 minutes at 13,000 rpm. If a 

noticeable cell pellet still remains, the disruption steps and subsequent centrifugation 

step is repeated until the pellet is broken and the β-carotene has been dissolved into the 
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dodecane phase. Then 200 µL of the sample can be added to a black, clear-bottomed 96 

cell culture plate and analyzed using a TECAN. This method is compatible with high 

throughput analysis which allows for many bioreactor samples to be analyzed in very 

little time. The raw data from the TECAN analysis was copied into an excel worksheet 

that included equations to convert the spectrophotometric analysis to concentrations of 

beta-carotene in the samples. The equations were found through creating a calibration 

curve using pure beta-carotene.  

2.1.5 HPLC Analysis 

 The glucose, ethanol and acetic acid content of the culture broth were analyzed 

using the HPLC (Agilent 1260 Infinity, Santa Clara CA) with an Aminex HPX-87H ion 

exchange column. Samples drawn from the bioreactor experiments (an approximate 

volume of 3 mL) were centrifuged at 8000 rpm for 8 minutes. The supernatant was then 

filtered through a syringe filter (0.22µm filter) into a HPLC vial. The conditions used for 

the column include: a flow rate of solvent at 0.6 mL/hour and a column temperature of 

50 °C. The RID analyzer was used.  

2.2 Media Optimization Experiments 

Design of experiments (DOE) was utilized to optimize the YNB defined and minimal 

media for the production of beta-carotene. Using the statistical software JMP, shake 

flask experiments were planned and analyzed through RSM. The three components of 

YNB are glucose (20 g/L), YNB (1.7 g/L) and ammonium sulfate (5 g/L). Each of the 

components were assigned a minimum and maximum value (Listed in  
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Table 1) and listed as a factor. The responses were targeted to be maximized and were 

defined as biomass and titer.  

The resulting DOE included 16 shake flask experiments with two biological 

replicates. Each flask containing a different composition of glucose, YNB and 

ammonium sulfate was started from a culture grown in non-supplemented YNB media. 

The non-supplemented YNB media culture was started from a single colony from a 

YNB plate. The culture was grown at 30C and 200 rpm for 48 hours. Then, 500 µL 

starter culture was added to each of the flasks in the DOE. The new cultures were grown 

at 30C and 200 rpm for 72 hours. At the end of the 72 hours, biomass was measured and 

beta-carotene analysis was conducted.  

Component  Minimum (g/L) Maximum (g/L) 

Glucose 20 100 

YNB 1.7 40 

Ammonium Sulfate 5 15 

 

Table 1 A summary of the minimum and maximum set for each component for the 

media optimization experiments. 

 



 

 

24 

 

3. RESULTS 

3.1 Batch Experiments 

 In batch experiments using SM14 and 20g/L YNB media, the results showed an 

average maximum titer of 123.15 mg/L, average yield of 17.25 mg/g DCW and an 

average productivity of  1.95 mg/L*hr (Table 4). These results served as targets that we 

sought to surpass by utilizing fed-batch. Many trends are very similar in batch and fed-

batch experiments. For example, the maximum titer coincides with the conclusion of the 

ethanol consumption phase. In addition, acetic acid trends were similar in that there is a 

build-up, depletion, build-up and depletion pattern in both batch and fed-batch. The 

batch experiments were extended to fed-batch using the same controlled parameters – 

pH 4, temperature of 30°C and agitation of 800 rpm (M. Olson, 2014; M. L. Olson et al., 

2016) 

Using batch experiments as a guide, glucose uptake rate for type I and type II and 

ethanol uptake rate were calculated. A simple mass balance was used to target steady 

state (Equation 4 and Equation 5). The equations were extended to ethanol uptake by 

replacing the glucose terms with ethanol terms.  
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𝐺2 =  
[𝐺1𝑉1 + 𝐺𝑐𝑜𝑛(𝑡2 − 𝑡1) + 𝐹𝑖𝑛𝐺𝑖𝑛(𝑡2 − 𝑡1)]

𝑉2
 

Equation 4 Mass balance equation used to calculate the feed rates for fed-batch 

experiments. 

 

𝑉2 =  𝑉1 + 𝐹𝑖𝑛(𝑡2 − 𝑡1) 

Equation 5 Volume balance equation used to calculate feed rates for fed-batch 

equation.  

𝑤ℎ𝑒𝑟𝑒 𝐺1 =  𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑎𝑡 𝑡1 

𝐺2 =  𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑎𝑡 𝑡2 

𝐹𝑖𝑛 =  𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑙𝑒𝑡 𝑓𝑒𝑒𝑑 

𝐺𝑖𝑛 =  𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑙𝑒𝑡 𝑓𝑒𝑒𝑑 

𝑉1 =  𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑢𝑙𝑡𝑢𝑟𝑒 𝑎𝑡 𝑡1 

𝑉2 =  𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑢𝑙𝑡𝑢𝑟𝑒 𝑎𝑡 𝑡2 

These equations were used in Microsoft Excel’s solver in order to target a specific 

steady state concentration. For glucose feed type I, 20 g/L of glucose was targeted. For 

glucose feed type II, 1g/L of glucose was targeted. And lastly for ethanol feed, 10g/L of 

ethanol was targeted. Using glucose and ethanol concentration data from batch 

experiment profiles (Figures 3 and 4), we calculated the uptake rates listed in Table 2. In 

glucose feed type II, glucose uptake rate of only the last 3-4 hours was considered to 

account for any differences in the uptake rate when lower concentrations of glucose are 

present in the culture.  
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Data from batch experiments 

used to calculate uptake rate 

Uptake 

Rate (L/hr) 

Uptake Rate 

(g/hr) 

Glucose Feed 

Type I 

Average of entire glucose 

consumption phase  

1.286 3.827 

Glucose Feed 

Type II 

Average of the last 3-4 hours of 

glucose consumption phase 

0.997 2.991 

Ethanol Feed 
Average of the entire ethanol 

consumption phase 

0.134 0.402 

 

Table 2 A summary of the uptake rates calculated from batch fermentation data. 
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Figure 3 Profiles of duplicate batch fermentations of SM14. 
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Figure 4 Comparison of each metabolite in duplicate batch fermentations of SM14. 
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In the bioreactor scale experiments, four different modes of operation are compared and 

summarized in  

Table 3. The resulting titer, productivity and yield of each type of experiment are 

summarized in  

Table 4 and Figure 11.  

 Feed 

Composition 

Feed 

Rate 

(L/hr) 

Time of 

Feeding 

(hours post 

inoculation) 

Target steady 

state 

concentration 

(g/L) 

Initial 

Volume 

(L) 

Final 

Volume 

(L) 

Batch 

 

N/A N/A N/A N/A 3 3 

Glucose Feed 

Type I 

 

 

1 L of 200 g/L 

Glucose in 

YNB Media 

0.02133 10-56 20 3 4 

Glucose Feed 

Type II 

 

 

1L of 20g/L 

Glucose in 

YNB Media 

0.1574 21-27.5 1 2 3 

Ethanol Feed 1 L of 25 g/L 

Ethanol in 

YNB Media 

(without 

glucose) 

0.0268 25.5-62.8 10 3 4 

 

Table 3 A summary of the experimental conditions of bioreactor scale experiments. 
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Average 

Max 

Titer 

(mg/L) 

Std. 

Dev 

Max 

Titer 

(mg/L) 

Average 

Productivity 

(mg/L*hr) 

Std. Dev 

Productivity 

(mg/L*hr) 

Average 

Yield 

(mg/g 

DCW) 

Std. 

Dev 

Yield 

(mg/g 

DCW) 

Batch 123.15 8.15 1.95 0.01 17.25 1.22 

Glucose Feed Type I 177.83 1.01 0.94 0.09 20.80 1.55 

Glucose Feed Type II 123.13 1.75 1.69 0.20 15.16 0.33 

Ethanol Feed 179.09 1.48 1.55 0.35 21.18 0.68 

 

Table 4 A summary of the maximum titer, productivity and yield of each of the 

four types of bioreactor scale experiments. 

3.2 Glucose Feed Type I  

In the glucose feed type I experiments, the goal was to maintain a steady state 

glucose concentration of 20 g/L to allow for increased biomass production by 

maintaining availability of the primary carbon source, glucose. Feeding at the glucose 

uptake rate would prevent overwhelming the system with glucose which can lead to 

build up of ethanol at toxic levels (overflow metabolism). This required feeding glucose 

at the glucose uptake rate beginning at the onset of the glucose consumption phase (10 

hours post inoculation).  

This experiment was repeated twice. As seen in Figures 5 and 6, the glucose uptake 

rate increases as a result of feeding. In the first experiment (top panel of Figure 5), the 

glucose uptake rate increases till 32 hours and then holds steady until 56 hours, at which 
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point the feeding finished. Then, the glucose is consumed till completely depleted.  In 

the second experiment (bottom panel of Figure 5), the glucose uptake rate increased 

steadily and steady state was not observed. These discrepancies between experiments are 

attributed to differences between the inoculum cultures and inconsistency in the pump 

flow rates. Although the pumps were calibrated before each experiment, it was difficult 

to prevent stretching in the tubing.   

The glucose constant feed experiments increased the maximum titer by 44.4% when 

compared to batch experiments. This is attributed to the higher concentration of ethanol 

that resulted from an increased availability of glucose in the culture broth (Figure 5 and 

Figure 6). However, there was no significant increase in biomass which resulted in 

increased yields by 20.6%. Productivity is lower in glucose feed type I due to the 

elongated glucose consumption phase.  
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Figure 5 Profiles of duplicate glucose feed type I fermentations of SM14. 
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Figure 6 Comparison of each metabolite in duplicate glucose feed type I 

fermentations of SM14. 
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3.3 Glucose Feed Type II 

Glucose feed type II experiments (Figure 7 and Figure 8) served to observe the 

effects of maintaining low levels of glucose compared to maintaining higher levels as in 

glucose feed type I experiments. In addition, they also served in isolating the effects of 

fed-batch operation while maintaining the same amount of carbon source as compared to 

batch experiments (60g of glucose). 

The fermentation began with 2 liters of 20 g/L of glucose in YNB media and an 

additional 1 Liter of 20 g/L of glucose in YNB media was fed at the end of the glucose 

consumption phase (21 hours post inoculation) to maintain 1 g/L of glucose in the 

culture broth. The feed finished at 27.5 hours and continued in batch mode until acetic 

acid was depleted. By the end of the fed-batch phase, the glucose feed type II 

experiments were identical to batch experiments in terms of total glucose, nutrients and 

volume. As summarized in  

Table 4, fed-batch operation in the glucose feed type II experiments did not 

significantly increase the maximum titer and decreased the productivity and yield by 

13% and 12% respectively when compared to batch experiments. This finding signified 

that culture required a larger carbon source in addition to fed-batch operation in order to 

benefit in terms of increase in yield and titer. In addition, maintaining low levels of 

glucose did not allow for increased production of ethanol and therefore did not result in 

higher titers.  
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The result of glucose feed type II experiment demonstrates the challenge in 

optimizing this fed-batch profile. While feeding high concentrations of glucose lead to 

increased production of ethanol, the time required to consume the glucose extends run 

time and thereby decreases productivity. Moreover, increased ethanol concentrations 

lower growth rate of S. cerevisiae. However, ethanol is the carbon source that results in 

larger titers, yields and productivity when compared to glucose.  
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Figure 7 Profiles of duplicate glucose feed type II fermentations of SM14. 
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Figure 8 A comparison of each metabolite in duplicate glucose feed type II 

fermentations of SM14. 
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3.4 Ethanol Feed 

 In ethanol feeding experiments, the objective was to maintain a constant ethanol 

concentration in the culture broth by feeding 25g/L ethanol in YNB at the rate of ethanol 

uptake since batch experiments show highest productivity during the ethanol 

consumption phase. In the duplicate experiments (Figure 9 and Figure 10), the ethanol 

uptake rate increased along with the feeding of ethanol, so a clear steady state was not 

observed. Moreover, the second experiment of this type was able to consume the ethanol 

completely within 88 hours while the first experiment required 136 hours. This 

discrepancy was attributed to differences in inoculum cultures or pump control issues as 

described above.  

 The ethanol feeding experiments resulted in a maximum titer of 179.09 mg/L 

which increased the yield by 22.4 % and titer by 45% when compared to batch 

experiments. On average, the ethanol feed also resulted in higher productivity when 

compared to glucose feed type I experiments. This was due to a shortened glucose 

consumption phase, which allows for ethanol consumption to begin earlier and achieve 

the maximum titer at earlier stages in the experiment. Biomass growth was not affected 

by the ethanol feeding, largely due to the fact that ethanol concentrations remained 

below 10 g/L. Earlier inhibition studies in Karim lab have shown that growth inhibition 

begins around 30g/L of ethanol (Ordoñez et al., 2016). Other studies have shown that 

ethanol feeding can increase production of carotenoids in yeast. Gu et al. showed that an 

additional 0.2% ethanol concentration resulted in a yield of 2170 µg/g yeast compared to 
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1680 µg/g yeast in P. rhodozyma cultures without any additional ethanol (Gu et al., 

1997). They also concluded that carotenoid production using ethanol effect the activity 

of HMG-CoA reductase, which is under feed-back regulation by mevalonate in S. 

cerevisiae (Dimster-Denk, Thorsness, & Rine, 1994). This led them to believe that 

deregulation of HMG-CoA reductase increases flux through the isoprenoid pathway as a 

result of ethanol.  

 Ethanol feeding in microbial production is an uncommon practice due to higher 

average cost and variability in cost. However, large margins of profit due to the product 

value of beta-carotene would allow ethanol feeding a viable means of production.  



 

 

40 

 

 

Figure 9 Profiles of duplicate ethanol feed fermentations of SM14. 
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Figure 10 Comparison of each metabolite in duplicate ethanol feed fermentations of 

SM14. 
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3.5 Summary of Bioreactor Scale Experiments 

Fed-batch experiments of glucose feed type I and ethanol feed increased the tier 

and yield compared to batch experiments (as summarized in Figure 11). Average cellular 

yield for glucose feed type I was the highest among the four types of experiments 

compared. However, glucose yield was highest for ethanol yield by a very large margin. 

Surprisingly, ethanol yield was lower for fed-batch experiments than batch experiments. 

This indicates that after reaching maximum titer, ethanol cannot be used for biomass 

growth or increased beta-carotene production. This is also evidence that a physiological 

limitation is being reached in the fed-batch experiments since an approximate 180mg/L 

titer is achieved and further feeding of carbon sources and nutrients do not contribute to 

any further production of beta-carotene. Further optimization of the growth conditions, 

feed profiles and metabolic fluxes can increase the maximum titer of SM14 by 

increasing biomass growth. This can be achieved through high cell density fed-batch 

fermentations (Riesenberg & Guthke, 1999).  

For comparison with other beta-carotene producing biocatalysts, Yu Lab 

engineered a strain of S. cerevisiae using an inducer/inhibiter free control system 

whereby they were able to control expression of MVA and squalene pathways by 

controlling the glucose concentration in the culture (Xie, Ye, Lv, Xu, & Yu, 2015). 

Using fed-batch operation and high-cell density fermentations (rich media composition), 

they were able to produce 1156 mg/L of carotenoids (39.06% beta-carotene). The yields 



 

 

43 

 

for their fermentation are comparable to fed-batch fermentations presented in this work 

(20.79 mg/g DCW).  

A significant challenge in analyzing the performance of each bioreactor 

experiment was deciphering the variability from run to run. Variability is minimized by 

maintaining the same reactor conditions such as pH, temperature, stirring rate, inlet flow 

rate and inoculum size. However, disturbances such as failure of pumps and differences 

in inoculum contribute to variability between the runs. Moreover, the difficulty in 

extracting beta-carotene from the cell creates a low signal to noise ratio. Each cell pellet 

was visually inspected to assure that the maximum number of cells was disrupted. Still, 

we noticed high variability between duplicate samples.  
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Figure 11 Summary of average yield, average maximum titer and average 

productivity from the four different types of fermentation experiments. 
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3.6 Media Optimization using Response Surface Methodology 

Although fed-batch operation using SM14 increased yields and titers as shown 

above, productivity needed improvement in order to substantiate the use of fed-batch 

operation. In addition, fed-batch operation did not result in significant gains in biomass 

when compared to batch experiments even while feeding larger amounts of carbon 

source. To address these issues, we explored media optimization in order to increase 

biomass which would in turn increase titer and productivity. 

The statistical software JMP, design of experiments (DOE) and RSM were 

utilized to investigate varying concentrations of glucose, YNB (vitamins, trace elements 

and salts) and ammonium sulfate – the three components of defined YNB media. 

Glucose serves as the main carbon source, YNB provides nutrients, trace elements and 

nitrogen and ammonium sulfate is the main nitrogen source. The 16 different 

compositions of the media and the resulting biomass and final titer that were investigated 

are summarized in Table 5, Table 6 and Figure 13. In general, the trends showed that 

higher glucose and YNB concentrations resulted in higher titer and biomass. However, 

increasing ammonium sulfate had little effect on increasing biomass or titer.  
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Flask 

Glucose 

(g/L) 

Ammonium 

Sulfate 

(g/L) 

YNB 

(g/L) 

Titer 

(mg/L) 

Biomass 

(g/L) 

Predicted 

Titer 

(mg/L) 

Predicted 

Biomass 

(g/L) 

1 77.6 12.5 21.85 46.46633 8.817702 49.29454 8.939677 

2 20 12.5 21.85 52.73711 7.960849 47.392 7.346367 

3 60 12.5 42 49.0284 8.021808 41.9862 7.416293 

4 20 5 42 42.06246 6.353058 43.84649 6.472223 

5 100 5 1.7 21.13924 4.061385 17.57987 3.747782 

6 100 20 42 36.42785 8.934286 35.50487 8.734981 

7 20 20 1.7 14.98239 2.905072 14.67992 2.698487 

8 100 20 1.7 19.09211 4.230927 18.46772 4.194497 

9 60 5 21.85 52.7977 9.160977 51.02828 8.784058 

10 100 5 42 37.80315 8.886662 39.26527 9.17598 

11 20 20 42 27.19571 4.307126 31.91474 4.703463 

12 20 12.5 21.85 48.91276 7.221722 47.392 7.346367 

13 77.6 12.5 21.85 40.61828 8.240879 49.29454 8.939677 

14 20 5 1.7 19.88077 3.297494 21.96341 3.579534 

15 60 20 21.85 48.37551 8.077052 45.50633 8.123035 

16 60 12.5 1.7 20.1225 3.425127 22.52609 3.699706 

Control 20 5 1.7 19.45991 3.230821 - - 

 

Table 5 A summary of the compositions of each of the flask with varying 

concentrations of glucose, ammonium sulfate and YNB. 
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Flask 

Average 

Biomass 

(g/L) 

Std. Deviation of 

Biomass (g/L) 

Average 

Titer 

(mg/L) 

Std. Deviation of 

Titer  (mg/L) 

Yield 

(mg/g) 

1 8.82 0.01 46.47 0.76 5.27 

2 7.96 0.66 52.74 2.70 6.62 

3 8.02 0.46 49.03 2.33 6.11 

4 6.35 0.49 42.06 1.53 6.62 

5 4.06 0.21 21.14 0.16 5.20 

6 8.93 0.28 36.43 1.70 4.08 

7 2.91 0.09 14.98 0.91 5.16 

8 4.23 0.07 19.09 0.81 4.51 

9 9.16 0.12 52.80 0.30 5.76 

10 8.89 0.00 37.80 0.29 4.25 

11 4.31 1.29 27.20 11.52 6.31 

12 7.22 0.48 48.91 2.01 6.77 

13 8.24 0.21 40.62 1.60 4.93 

14 3.30 0.18 19.88 0.64 6.03 

15 8.08 0.08 48.38 0.63 5.99 

16 3.43 0.06 20.12 0.09 5.87 

Control 3.23 0.13 19.46 0.15 6.02 

 

Table 6 Summary of results from RSM shake flask experiments. 

The general process used to optimize the media composition using JMP is as follows. 

First, the user defines the factors and responses that are being investigated in the 

experiment. In the case of optimizing media composition for SM14 media, the factors 

are glucose, YNB and ammonium sulfate concentrations while the responses are titer 

and biomass. Then, each of the responses requires an objective which can be in the form 

of maximizing, minimizing or targeting a specific value. Here, we chose to maximize the 

titer and biomass production. Next, JMP uses face-centered central composite design to 

determine the compositions that should be tested experimentally. The data from the 
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experiments was then used to fit a generalized second order model. In RSM, there are 

two main generalized models – first order and second order. Second order (Equation 6) 

was used in these studies since it provides a greater understanding of the relationship 

between separate factors. 

𝑦 = 𝛽0 + 𝛽𝐴𝐴 + 𝛽𝐵𝐵 + 𝛽𝐶𝐶 + 𝛽𝐴𝐵𝐴𝐵 + 𝛽𝐴𝐶𝐴𝐶 + 𝛽𝐵𝐶𝐵𝐶 + 𝛽𝐴𝐴𝐴2 + 𝛽𝐵𝐵𝐵2 + 𝛽𝐶𝐶𝐶2 

Equation 6 Generalized second order model used in RSM to fit experimental data. 

 

Using least squared error methods, JMP fits the experimental data to the 

generalized second order model and determines the values of the parameters (all β terms 

in Equation 6). Each of the factors is represented by A, B or C (Table 7). The estimated 

parameters are summarized in Table 8. There were two models created – one describing 

titer (beta-carotene) production and the other describing biomass production. The 

significance of each of the parameters is calculated using log-worth (Equation 7). If a p-

value of 0.01 is considered as significant, the equivalent log-worth would be 2. 

Analyzing the log-worth of each of the parameters for both models (listed in Table 8), it 

can be seen that the most significant parameters are the ones pertaining to glucose and 

YNB. Due to their low significance, parameters C, AC, BC A2 and C2 were removed. 

This resulted in a low R-squared value (below 0.9) when comparing the experimental 

data to the predicted data. Therefore, all parameters were left remaining in the model to 

maximize the fit. The comparison of experimental data to predicted model data is shown 

in Figure 12. 
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Factor  

Glucose (g/L) A 

YNB (g/L) B 

Ammonium Sulfate (g/L) C 

 

Table 7 The corresponding variable used for each factor in the generalized second 

order model.  

Source 

Parameter Estimate 

(Beta-Carotene) 

Parameter Estimate  

(Biomass) Log-Worth 

B 9.73 1.86 4.282 

B2 -17.65 -2.94 3.769 

A -2.76 1.05 2.832 

AB 2.04 0.63 1.679 

C -2.71 -0.33 0.920 

AC -1.16 0.33 0.810 

BC -1.64 -0.22 0.497 

A2 -0.19 -0.10 0.276 

C2 -0.05 -0.04 0.167 

 

Table 8 A summary of all parameters for beta-carotene and biomass production 

and the corresponding significance as indicated by log-worth. 

𝑳𝒐𝒈𝑾𝒐𝒓𝒕𝒉 =  −𝒍𝒐𝒈𝟏𝟎(𝒑 𝒗𝒂𝒍𝒖𝒆) 

Equation 7 Conversion from p-value to LogWorth. 
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Figure 12 A comparison of the predicted beta-carotene production to experimental 

data (Top). A comparison of predicted biomass production to experimental data 

(Bottom). 
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Looking at biomass optimization alone, the highest biomass was achieved with 

the highest glucose concentration (100g/L). However, increased carbon source alone did 

not increase the biomass significantly. In flask 5, the glucose content was increased to 

100 g/L and all other components remained the same when compared to the control 

(non-supplemented YNB media). The biomass increased from 3.23 g/L (control) to 4.06 

g/L (flask 5) and titer increased from 19.46 mg/L (control) to 21.14 mg/L (flask 5). So, it 

is evident that in addition to increased carbon source, increased concentrations of 

vitamins and trace elements are also important in increasing the production of beta-

carotene. Because beta-carotene production is a growth associated process, it is 

important to also maintain high levels of biomass growth. Measurements from other 

flasks which had higher concentrations of YNB showed a much larger increase in 

biomass and titer.  In general, increased biomass resulted in higher titer production 

which resulted in decreased variation in the cellular yield across varying compositions.   
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Figure 13 A summary of biomass, titer and yield from RSM experiments. 
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Using the model, surface and contour plots were graphed to analyze the optimal 

compositions (Figure 14 and Figure 15). When searching the surface for maximum 

biomass growth, the maximum occurs when the media includes 100 g/L of glucose. 

However, for optimal beta-carotene and biomass production, the maximum occurs at 

79.10 g/L glucose, 5.17 g/L ammonium sulfate, 29.16 g/L YNB. At this composition, the 

model predicts a titer of 50.98 mg/L and a biomass of 9.58 g/L. This finding shows 

nutrient deficiency at the shake flask scale.   
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Figure 14 The response surface for predicted biomass (top) and predicted titer 

(bottom) by varying YNB and glucose. 
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Figure 15 Contour plot of biomass production model (Top). Contour plot of beta-

carotene production model (Bottom).  
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Figure 16  Overlapping contour plots of the RSM model for beta-carotene (red) and 

biomass (blue). 

Once the model was constructed and all the parameters were assigned, the 

optimal composition of the media was determined by optimizing biomass and titer. In 

JMP, each response is assigned a desired outcome – maximize, minimize or target a 

value (objective function) (Rushing, Ballard, Wisnowski, & Levin, 2012). The 

desirability function is an optimization algorithm, built into JMP, which profiles the 

“desirability” as determined by the assigned desired outcome of a given response. For 

example, when optimizing media for cell culture, the titer could be a possible response 

that should be maximized through manipulation of media components (factors). After 
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experimentation and statistical analysis, the desirability function can be used to find the 

values of the factors that result in the maximum value of titer. The desirability function 

varies over the range of each factor and itself ranges from zero to one. When multiple 

responses are considered, the desirability function can optimize all responses and 

determine the optimal values of all the factors with respect to the objective function. 

Although SAS does not reveal the exact code, they do describe the minimize and 

maximize desirability functions as a group of three smooth piecewise functions that have 

exponential tails and cubic middle.  

When optimizing the titer and biomass production in the media optimization 

described in this work, the objective function was set to maximize the factors. The two 

models are superimposed to find an optimal in both responses (Figure 16). In order to 

maximize the factors, we search the response surface for the points at which desirability 

is as close to one as possible (Figure 17). The resulting optimal composition was 79.10 

g/L of glucose, 5.17 g/L of ammonium sulfate and 29.16 g/L of YNB. This would result 

in a biomass of 9.58 g/L and titer of 50.99 mg/L. Compared with the control shake flask, 

the new composition of YNB media results in a 196.59% increase in biomass and a 

162.03% increase in titer.  
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Figure 17 The predicted model for glucose, ammonium sulfate and YNB. 

Using the optimal media composition found using shake flask experiments, a 

batch experiment at bioreactor scale was conducted (results summarized in Figure 18). 

The results showed a significant increase in biomass and beta-carotene production. 

There was a 243.35% improvement in biomass and 198.21% improvement in titer. 

However, cellular yield was 13% lower than typical batch fermentations. This could 

have resulted from the lower DO levels observed in the bioreactor due to large gains in 

biomass. Maintaining higher DO levels and implementing fed-batch fermentation using 

the optimized media could increase the cellular yield. The other metric of performance 

that we sought to improve was productivity. Using the optimized, productivity increased 
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to 4.03 mg/L*hr which is a 106.49% improvement when compared to batch experiments 

using SM14. 

 

Figure 18 A comparison of biomass (Top) and beta-carotene (Bottom) production 

using typical YNB media and optimized media in batch operation. 
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4. CONCLUSIONS AND FUTURE WORK  

Using fed-batch experiments, the yield and titer were increased (Table 4) when 

compared to batch experiments. However, productivity is slightly decreased in both 

glucose and ethanol feeding experiments when compared to batch due to extended 

glucose and ethanol consumption phases. The productivity of the ethanol feeding 

experiments is higher due to the shortened glucose consumption phase which allows for 

the ethanol consumption phase to begin and finish earlier than in the glucose feeding 

experiments.  

The profile of each bioreactor experiment shows that maximum titer is achieved 

when the available ethanol is completely consumed. This presents a design challenge 

when determining feeding profiles as increased ethanol results in higher titers and yields; 

however, productivity decreases as a consequence of an extended ethanol consumption 

phase. This issue is highlighted in the comparison between glucose feeding experiments 

and ethanol feeding experiments. This issue can be remedied by increasing cell density 

such that higher titers can be achieved in earlier phases of the experiment.  

Using DOE and RSM, we showed that fermentations with SM14 are nutrient limited 

and increasing the YNB and glucose concentrations of the media could significantly 

improve the biomass and titer production. The results from the batch experiment using 

the optimized media can be extended to fed-batch operation to further increase yield, 

titer and productivity.  



 

 

61 

 

In order to develop this fed-batch process for industrial implementation, 

computational modeling and controls would be required to optimizing feeding profiles. 

Currently, fed-batch modeling and an optimal controller for fed-batch are being 

developed in Karim group.  

In addition, more midstream development is required also to better characterize the 

fed-batch fermentations. A significant factor of fermentation, DO, would need to be 

characterized for SM14 fermentations. Preliminary results of DO controlled 

fermentations showed that optimal DO lies in the range of 70% to 95% saturation.  

Solid understanding of the fed-batch fermentations of SM14 would allow for 

implementation of continuous cultures. Preliminary continuous production models of 

SM14 (extended from batch models) show a significant increase in productivity when 

continuous fermentations are utilized. 
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