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ABSTRACT 

Fatigue is the most common mechanical cause of engineering failures, but it is 

not well understood. Current methods of predicting fatigue failure rely on empirically-

derived equations instead of having a truly scientific foundation. These have very high 

uncertainties, and they often do not consider the cycling frequency even though it has 

been proven to affect fatigue life. The power density theory is a new way of describing 

fatigue. It is based on the concept of power density, which is physically equivalent to the 

amount of power deposited into a unit volume. Power density results from changes in 

stress magnitude over time. Stress alternations that occur across a broad bandwidth of 

frequencies must be factored in. Higher frequencies coupled with faster changes in stress 

contribute more power density. Power density accumulates at every frequency and time, 

damaging the part. After this accumulation reaches the material’s power density 

threshold, a fundamental property of the material, it is expected to fail by fatigue. 

A previously-published multiaxial vibration fatigue test was referenced and 

replicated using computer simulations, and the concept of power density was applied to 

predict its results. This served as a feasibility study for the theory, as well as an example 

of how to apply it. The power density response of the system was analyzed, and the 

failure locations were predicted for each of the ten load cases considered. The predicted 

failure locations followed the same trend as the experimental results. These results were 

promising, so more research is recommended to further test and develop the power 

density theory. Further examination of the theory could result in a better understanding 

of fatigue failure, improving engineering work across many industries. 
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CHAPTER I   

INTRODUCTION 

I.1 Fatigue Failure

The stresses in components often vary over time. A specimen can crack after 

enough repeated stress fluctuations even if the stresses remain well below the material’s 

ultimate strength. This is known as fatigue failure. Unlike static failures, which usually 

yield before completely failing, fatigue failures generally occur suddenly with very little 

perceptible warning. Additionally, there is currently no reliable, scientific way to predict 

how long a part will last under alternating stresses. As a result, the majority of 

mechanical engineering failures occur in this manner. 

Fatigue failure is caused by fluctuating plastic deformation, often on a 

microscopic level. This can occur even when the main body of a part behaves elastically 

[1]. Repeated local yielding can cause microcracks to form by crystallographic 

propagation. The microcracks decrease local ductility and create small stress 

concentrations. After these cracks are initiated, continued stress alternations cause them 

to propagate incrementally, forming visible macrocracks. Eventually, the cracks reach a 

critical size where the remaining material can no longer support the loads. The part then 

fractures suddenly [2,3]. 

The number of stress cycles that occur before these cracks initiate and propagate 

has been proven to depend on the frequency at which the alternations occur [4,5,6,7]. 

Higher cycling frequencies typically cause cracking and failure after fewer cycles than 

lower-frequency fluctuation. However, this trend is not accounted for in most fatigue 

calculations. 

I.2 Methods of Predicting Fatigue Failure

One of the most commonly used methods of predicting fatigue failure is the 

stress-life method [3]. It is based on the concept that every material has a fatigue 

strength related to the number of stress alternations that it experiences. After a specimen 
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experiences a certain number of alternations at the corresponding fatigue strength, it is 

expected to fail. The fatigue strength (S’f) after N number of cycles is estimated using the 

following equation:  

(𝑆𝑓
′)

𝑁
= 𝜎𝐹

′ (2𝑁)𝑏 (1) 

where σ’F is the true stress experienced by the part and often needs to be approximated. 

The coefficient b is calculated as follows:  

𝑏 = −
log(

𝜎𝐹
′

𝑆𝑒
)

log(2𝑁𝑒)
(2) 

where Se is the endurance limit and Ne is the endurance limit’s corresponding cycles to 

failure. The endurance limit is the lowest stress at which fatigue failure would be 

expected after a very large number of cycles. It is estimated using the following 

equation:  

𝑆𝑒 = 𝑘𝑎𝑘𝑏𝑘𝑐𝑘𝑑𝑘𝑒𝑘𝑓𝑆𝑒
′ (3) 

where S’e is the endurance limit of an idealized test specimen. The k factors modify the 

equation depending on the part’s surface condition and size, the stress levels and 

temperatures it experience, and miscellaneous other factors. Each k factor is estimated 

empirically, usually using multiple empirically-determined constants and curve fits.

The stress-life method has many obvious issues. There is no proper scientific 

basis for most of the values and equations that are used. Instead, it relies on empirical 

equations and probabilities based on many variables. Many values with high 

uncertainties are combined, causing the potential error to compound. Additionally, it is 

based on static properties despite the fact that fatigue is a dynamic event. It neglects the 

cycling frequency even though it has a proven effect on a part’s lifetime. All time-

domain methods of predicting fatigue failure have this problem. Many newer fatigue 

calculations still utilize the stress-life relationship between the fatigue strength and its 

corresponding number of cycles to failure. Thus, these newer methods inherit many of 

the issues inherent in the stress-life method. 

The strain-life method [3] has shown to be more accurate than the stress-life 

method. It uses the strain amplitude at the local discontinuity that eventually fails to 
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estimate the relationship between the strain amplitude and the number of cycles to 

failure. It utilizes the Manson-Coffin relationship to estimate the total-strain amplitude 

(
Δε

2
) at which the part is expected to fail after N number of cycles:  

 
Δε

2
=

𝜎𝐹
′

𝐸
(2𝑁)𝑏 + εF

′ (2𝑁)𝑐 (4) 

where E is the modulus of elasticity and b and c are constants that fit the strain-life curve 

to empirical data. σ’F and ε’F are the true stress and strain experienced by the failure 

location that correspond to fracture after one cycle. This relationship is used to predict 

the fatigue damage and eventually failure of a specimen. 

 Strain-life’s usefulness is limited by the lack of “strain concentration” 

information for determining the total strain at a discontinuity. It also uses compounding 

idealizations, resulting in high uncertainty [3]. Like in the stress-life method, cycling 

frequency is not considered at all. Despite these issues, strain-life concepts are often 

used in newer methods of predicting fatigue failure. 

 More recently, frequency-domain methods of determining fatigue damage have 

been examined. The Dirlik method [8,9] combines one exponential and two Rayleigh 

probability densities to approximate the cycle-amplitude distribution (pa) from the stress 

using the following equation:  

 𝑝𝑎(𝑠) =
1

√𝑚0
[

𝐺1

𝑄
𝑒

−
𝑍

𝑄 +
𝐺2𝑍

𝑅2 𝑒
−

𝑧2

2𝑅2 + 𝐺3𝑍𝑒−
𝑧2

2  ] (5) 

where Z is the normalized amplitude, xm is the mean frequency, and the other parameters 

depend on the mean frequency and the spectral width as described by Dirlik [9]. The 

fatigue-life intensity 𝐷̅𝐷𝐾 is calculated by Dirlik using the following equation:  

 𝐷̅𝐷𝐾 = 𝐶−1𝑣𝑝𝑚0

𝑘

2 [𝐺1𝑄𝑘Γ(1 + 𝑘) + (√2)
𝑘

Γ (1 +
𝑘

2
) (𝐺2|𝑅|𝑘 + 𝐺3)] (6) 

where the parameters are described by Dirlik. This method is considered one of the most 

accurate frequency-domain methods for predicting fatigue failure. However, it still can 

have very large error for some cases [8]. It is also based on probabilities found from 

numerical simulations instead of having a proper scientific basis. 
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 Another frequency-domain approach is the Tovo-Benasciutti method [8,10]. This 

method estimates fatigue life by linearly combining upper and lower fatigue-damage 

intensity limits. The intensity of fatigue damage (𝐷̅𝑇𝐵) is then calculated using the 

following equation:  

 𝐷̅𝑇𝐵 = [𝑏 + (1 − 𝑏)𝛼2
𝑘−1]𝛼2𝐷̅𝑁𝐵 (7) 

where b is approximated using numerical simulation data, α2 and α2
k-1

 are spectral width 

parameters, and 𝐷̅𝑁𝐵 is the narrow-band damage intensity. This method has been found 

to be accurate under certain conditions [8]. Like the Dirlik method, though, it is a 

primarily numerical estimation instead of being based on true theory. It is not always 

able to predict fatigue lifetimes well. Additionally, frequency-domain methods do not 

appropriately consider the time domain, limiting their ability to fully capture the system 

response when the frequency response is not constant at all times. 

 In 2008, Abdullah et al. [11] attempted to use the time-frequency domain in 

fatigue analysis. They based their analysis on fatigue strain data. They used the concept 

of power spectral density (PSD) to take this data from the time domain and determine its 

power in the frequency domain. PSD is denoted by Sxx and calculated using 

 𝑆𝑥𝑥(𝜔) = lim𝑇→∞ 𝐸[|𝑥̂𝑇(𝜔)|2] (8) 

where T is the time interval being examined, 𝑥̂𝑇 is the Fourier transform of the signal, 

and E is the expected value [12]. Instead of doing this for the entire time interval, 

though, Abdullah et al. used the short-time Fourier transform (STFT) method to give the 

PSD at different time intervals. The resulting strain intensities were then used to 

determine the damage on the part due to each frequency at each time. This damage was 

considered relative to the expected strain life of the material (from the Manson-Coffin 

relationship, Equation 4) to estimate its fatigue life. There are multiple problems with 

this strategy. Because it uses the strain-life method to predict the number of cycles to 

failure, it inherits the uncertainty in that relationship. Even though the strains were 

separated by the frequencies at which they occurred, no discrepancy was made to 

account for the differences in fatigue damage from low frequencies versus high 

frequencies. The Manson-Coffin relationship is intended for use in the time domain. 
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Also, the STFT simply applies a Fourier transform to time intervals separately. The 

resulting values would be poorly localized in the time-frequency domain per the 

Uncertainty Principle, which is discussed in Chapter II. 

I.3 Time-Frequency Analysis 

Signal oscillation over time can occur at multiple frequencies simultaneously. It 

is impossible to determine all of the frequencies that contribute to the total signal at 

every time using a time-domain representation of the signal. The changes in stress due to 

each frequency are combined at every time interval, and all frequency information is 

lost. Meanwhile, frequency-domain representations of a signal – such as Fourier 

transforms [13] – are unable to discern the times at which oscillations occur at each 

frequency. For example, they would not see any difference among a signal that occurs at 

a low frequency before switching to a high frequency, a signal that occurs at the same 

high frequency before switching to the same low frequency, and a signal that occurs at 

both frequencies simultaneously. It is only by viewing the signal in the time-frequency 

domain that its full properties can be resolved. 

 A complete fatigue theory must account for the cycling in both the time and 

frequency domains. There are many methods of making the transformation from the time 

domain to the time-frequency domain. These need to be considered, and the best one for 

this application should be chosen. This is discussed in more detail in Chapter II. 

I.4 Finite Element Analysis 

Complex equations are usually required to define the properties and reactions in 

continuous bodies. If such equations even exist, they often require high-order 

calculations and differential equations. The difficulty of these calculations, along with 

the computation time needed to perform them, make it impractical to use continuum 

methods in most cases. The finite element method is a useful tool for simplifying many 

engineering problems. 
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In finite element modeling, bodies are discretized into an equivalent system of 

many smaller bodies. A system of simultaneous algebraic equations can then be solved 

to approximate the properties at a finite number of points on a body. These equations are 

often simplified to significantly streamline the required calculations. If the body is 

discretized into enough finite elements, this method can give very accurate results while 

requiring relatively little computation time and effort [14]. In addition, many 

commercially-available computer programs exist that assist with finite element analysis. 

The Abaqus finite element analysis software was used for this research. Abaqus 

is a highly versatile program that is capable of reliably and efficiently performing 

advanced finite element calculations. The Abaqus/Explicit analyzer was used to process 

the simulations. Abaqus/Explicit is based on the forward Euler algorithm, which is a 

mathematical method for integrating the equations of motion through time [15]. The 

integration time step is adaptive in time. This method is only conditionally stable, 

depending on the stability limit. It uses a lumped mass matrix M to calculate the nodal 

accelerations 𝑢̈ at any time t’ using the following equation:  

 𝑢̈(𝑡′) = 𝑀(𝑡′)−1[𝑃(𝑡′) − 𝐼(𝑡′)] (9) 

where P is the external load vector and I is the internal load vector. This integration 

scheme is optimized for nonlinear systems and transient loads [16]. Abaqus/Explicit was 

chosen for this research so that the transient stress waves across a broad bandwidth of 

frequencies could be well-captured. 

I.5 Research Objectives 

 Current fatigue methods can be successfully applied to some situations, but they 

are incomplete. A new way of viewing fatigue failure is necessary to more fully 

understand it. It should be less reliant on empirical or numerical data and instead have its 

foundation in proper scientific theory. Both the time and frequency domains must be 

considered to completely describe the response of the system. The primary objective of 

this research was to explore a scientifically-based method of predicting and explaining 

fatigue failure using time-frequency analysis. 
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 The power density theory was developed to satisfy these objectives. This theory 

is based on the real physical phenomenon of stress alternations, which are physically 

equivalent to depositing power into a volume. This process damages a material. Stress 

fluctuations cause more damage when they occur at higher frequencies. In order to 

determine the magnitude of the changes in stress that occur at each time and frequency, 

these changes are transformed into the time-frequency domain. The damage is then 

scaled based on both the changes in stress and their corresponding frequencies. 

The research focused on developing the power density theory. A feasibility study 

was then performed with computer simulations that recreated previous physical testing. 

These simulations were executed using the Abaqus/Explicit program. The data from the 

simulations was processed with a MATLAB program that used the power density theory 

to predict fatigue failure. This served as an example for how the power density theory 

can be applied to a real problem. The power density results were compared to the 

experimental results as a test of the theory’s viability. Additionally, future research on 

the power density theory and the potential applications of it were considered. 

Some assumptions were required for the feasibility study. Because some 

dimensions of the previous testing were not known, these dimensions were estimated 

based on images of the experimental setup. Additionally, vibration excitations that were 

applied during testing were approximated in Abaqus as sinusoidal waves at the peak 

measured frequency. The amount of data that could be output was limited by the 

computer memory. Therefore, the simulations were not run until predicted failure. 

Instead, they completed shortly after the system reached a consistent response. This 

response was assumed to continue until the part failed. Power density calculations were 

only performed on the surface where the cracking occurred during physical testing, and 

the sampling frequency was limited. Both of these measures were taken to reduce the 

required computer memory. 
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 CHAPTER II    

 TIME-FREQUENCY ANALYSIS 

II.1 Time-Frequency Analysis 

 Proper time-frequency analysis can be used to transform a signal from the time 

domain to the time-frequency domain. It can resolve the contributions of each frequency 

to the total signal at each time. Taking a cross-section of the signal’s time-frequency 

representation at a single time should show how much each frequency contributes to the 

signal at that time. Similarly, taking the cross-section of a signal’s time-frequency 

representation at a single frequency should show how much that frequency contributes to 

the signal at each time. 

 The following three properties must be satisfied for a time-frequency analysis to 

be valid [17]. First, the transformed values at each time and frequency must be real, and 

integrating them over all times and frequencies must result in the total signal energy. 

This is represented in the following equation:  

 ∫ ∫ 𝜌𝑧(𝑡, 𝑓) 𝑑𝑡 𝑑𝑓
∞

−∞

∞

−∞
= 𝐸𝑧 (10) 

where ρz is the transformed signal energy at time t and frequency f and Ez is the total 

signal energy. Second, Equation 10 must also be true when only considering any given 

region of times and frequencies. Third, at any time, all peak values of the transformed 

signal must occur at the same frequency as the local maximum frequencies at that time. 

This ensures that the time-frequency localization is correct and that the signal’s 

components are being attributed to the appropriate times and frequencies. 

 One major limitation in time-frequency analysis is the Uncertainty Principle. In 

time-frequency analysis, the Uncertainty Principle [18] dictates that there is a limit to the 

precision at which both time and frequency can be known. Good time localization yields 

poor frequency localization, and good frequency localization yields poor time 

localization. For any application, the optimal balance of time and frequency localization 

must be chosen. Better time resolution is required for high frequencies while better 

frequency resolution is preferable at low frequencies. Time-frequency methods that use a 
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constant time-frequency resolution, such as short-time Fourier transforms [19], are 

unable to appropriately resolve all frequencies.  

 Another important consideration when performing time-frequency analysis using 

discrete data points is determining which frequencies can be included. When data points 

are taken at constant intervals, the highest frequency that can be reliably resolved is half 

of the sampling frequency [20]. This maximum resolvable frequency is called the 

Nyquist frequency. Signals oscillating at frequencies that exceed the Nyquist frequency 

may be interpreted incorrectly if the sampling frequency is lower than the Nyquist 

frequency. This would result in aliasing and misinterpretation of the signal. 

II.2 Wavelet Transforms 

There are many methods of performing time-frequency analyses. One such 

method is the continuous wavelet transform (CWT). CWT is a form of multiresolution 

analysis, meaning that it analyzes signals at different resolutions depending on their 

frequencies. It gives better frequency resolution at low frequencies and better time 

resolution at high frequencies. In CWT a wavelet function is applied as a windowing 

function. 

The wavelets are small waves, generally of finite length. They are compact-

supported functions beginning at zero and decaying to zero. The time period between 

these zero values is known as the window size. The window size of a wavelet can be 

stretched or compressed to give better time or frequency resolution, respectively. This 

window is shifted throughout the signal to apply the wavelet transform [21]. Figure 1 

includes an example of a wavelet that can be used for wavelet transforms – the Gabor 

wavelet. 

In continuous wavelet transforms, the windowing function is applied to a signal 

using the following equation to find the magnitude (W) of the signal function f at time t: 

 𝑊(𝑎, 𝑏) =
1

√𝑎
∫ 𝑓(𝑡)ψ (

t−b

a
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅∞

−∞
𝑑𝑡 (11) 

where 𝜓(𝑡)̅̅ ̅̅ ̅̅  is the complex conjugate of the analyzing wavelet ψ(t), b determines the 

time the window is localized around, and a is a scaling coefficient that determines the 
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“size” of the window and is greater than zero. The analyzing wavelet must satisfy the 

admissibility condition 

 ∫
|𝜓̂(𝜔)|

2

|𝜔|
𝑑𝜔 < ∞

∞

−∞
 (12) 

where ω is the frequency (in radians per second) and 𝜓̂(ω) is the Fourier transform of 

ψ(t) [22]. This Fourier transform is used to convert a signal from the time domain to the 

frequency domain and can be calculated using the following equation:  

 𝜓̂(𝜔) = ∫ 𝜓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞
 (13) 

II.3 The Gabor Wavelet Transform  

 The Gabor wavelet is used for power density calculations because it allows for 

the resolution in the time and frequency domains to be optimized with minimal 

uncertainty [22] from the Uncertainty Principle. It is expressed using the following 

equation:  

 ψ(t) =
1

√𝜋
4

√𝜔0

𝛾
exp [

−(
𝜔0
𝛾

)
2

2
𝑡2] exp (𝑖ω0𝑡) (14) 

where γ and ω0 are positive constants. The Gabor wavelet (left) and its Fourier transform 

(right) with 𝛾 = 𝜋√2/ ln(2)  and 𝜔0 = 2𝜋 are shown in Figure 1: 

  

Figure 1: Gabor Wavelet and Its Fourier Transform [22] 
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The Gabor wavelet is localized around the time 𝑡 = 𝑏 and frequency 𝜔 =
𝜔0

𝑎
 (in 

radians per second). The discrete Gabor wavelet transform uses the following equation 

to find the magnitude (W) of a function f at a single time and frequency: 

 𝑊(𝑎, 𝑏) =
1

√𝑎
∑ 𝑓[𝑘𝑇]Ψ (

kT−b

a
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑁−1
𝑘=0 𝑇 (15) 

where k is the time iteration being analyzed, N is the total number of times being 

analyzed, and T is the sampling period. The complex conjugate of the Gabor wavelet 

(𝛹̅) at this time and frequency is 

 Ψ (
kT−b

a
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
=

1

√𝜋
4

√𝜔0

𝛾
exp [

−(
𝜔0
𝛾

)
2

2
(

𝑘𝑇−𝑏

𝑎
)

2

] cos [𝜔0 (
𝑘𝑇−𝑏

𝑎
)] (16) 

Equations 15 and 16 can be repeated for the a and b values corresponding to each time 

and frequency under consideration. It is important to note that the magnitude of W has 

no absolute significance on its own. It is a relative term that gives the likelihood of each 

frequency contributing to the signal at each time. However, the relative magnitudes of W 

can be used to compare contributions between frequencies. 

The time period between data points must be constant when performing Gabor 

wavelet transforms. The frequencies (ω, in radians per second) that should be used are 

given by 

 𝜔 =
2𝜋𝑛

𝑁𝑇
,   𝑤ℎ𝑒𝑟𝑒 𝑛 = 0, 1, 2, …  (17) 



 

12 

 

When samples are taken at discrete intervals, the highest frequency that can be 

resolved is the Nyquist frequency. A sample signal and its Gabor wavelet transform are 

given in Figure 2: 

  

Figure 2: Gabor Wavelet Transform of a Sample Signal 
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 CHAPTER III    

 THE POWER DENSITY THEORY 

III.1 Power Density Theory 

 The power density theory is a macroscopic method of determining when a 

material subjected to alternating stresses is likely to fail by fatigue. It is based on the 

concept that changes in stress deposit power into a volume. These time gradients of 

stress can occur over a broad bandwidth of frequencies simultaneously. The changes in 

stress due to each frequency must be considered in fatigue calculations. Higher 

frequencies cause faster changes in stress, which inflicts more damage than lower 

frequencies. It is only by considering how much of the change in stress is due to each 

frequency at each time and then placing more significance on higher-frequency stress 

alternations that fatigue failure can be fully captured. 

Power density (PD) is defined as the amount of power deposited into a volume. It 

is calculated as the time variation of a stress σ as follows: 

 𝑃𝐷 =
𝑑𝜎

𝑑𝑡
= lim∆𝑡→0

Δ𝜎

∆𝑡
= lim∆𝑡→0 Δ𝜎 ∙ 𝑓 (18) 

where t is time and f is the frequency of the stress alternations. The normal and shear 

stresses in all directions must be considered. Power density’s metric units can be derived 

as 

 
𝑃𝑎

𝑠
≡

𝑁

𝑚2∙𝑠
≡

𝑁∙(
𝑚

𝑠
)

𝑚3 ≡
𝑊

𝑚3 (19) 

III.2 Power Density Calculations 

At a given time while a specimen is undergoing loading and unloading, its 

stresses oscillate at different amplitudes over a range of frequencies simultaneously. At 

each frequency, the power density causes damage to the material. High-frequency stress 

alternations cause more damage than low-frequency alternations. Therefore, it is 

necessary to separate the changes in stress by the frequencies at which they occur. A 

broad bandwidth of frequencies must be considered. 
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 Under cyclic loading, there is a change in stress in each of six directions at any 

given location and time interval. Using a Cartesian coordinate system, these can be 

labeled as Δσxx, Δσyy, Δσzz, Δτxy, Δτyz, and Δτzx. The changes in stress in every direction 

must each be transformed into the time-frequency domain separately. The Gabor wavelet 

transform can be used to accomplish this. 

For the purposes of power density calculations, the function f from Equation 15 

is the change of stress in time in a single direction, such as Δσxx. Applying Equation 15 

to the change in normal stress in the x-direction gives the following equation:  

 𝑊𝑥𝑥(𝑎, 𝑏) =
1

√𝑎
∑ Δ𝜎𝑥𝑥[𝑘𝑇]Ψ (

kT−b

a
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑇𝑁−1

𝑘=0  (20) 

where the Gabor wavelet transform magnitude in the normal x-direction is denoted as 

Wxx. The complex conjugate of the Gabor wavelet (𝛹̅) can be calculated using Equation 

16. Equation 20 gives Wxx as a function of a and b. These two variables can be converted 

into the times (t’) and frequencies (f’, in Hz) at which they occur using the following 

equations:  

 𝑡′ = 𝑏 (21) 

 𝑓′ =
𝜔0

2𝜋𝑎
 (22) 

This allows Wxx to be given as a function of t’ and f’. 

In a given time interval, the sum of the changes in x-direction normal stress at 

each frequency (Δσ’xx) must equal the total change in x-direction normal stress (Δσxx). 

This means that the relative magnitudes at each frequency and time interval (Wxx) can be 

scaled to determine the change in stress at that frequency and time interval using the 

following equation: 

 Δ𝜎𝑥𝑥
′ (𝑡′, 𝑓′) = 𝑊𝑥𝑥(𝑡′, 𝑓′) ∙

Δ𝜎𝑥𝑥(𝑡′)

∑ 𝑊𝑥𝑥(𝑡′,𝑓)∞
𝑓=0

 (23) 

Equations 20-23 can be repeated for each of the remaining directions of changes 

in stress. Thus, the changes in stress in each direction at each time interval and frequency 

(Δσ’xx, Δσ’yy, Δσ’zz, Δτ’xy, Δτ’yz, Δτ’zx) are now known (with the uncertainty inherent in the 

Gabor wavelet transform time-frequency analysis). 
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 Power density is non-directional even though it takes into account the stresses in 

all directions. This necessitates a method of resolving the change in stress tensor into a 

single scalar stress value. This value must be independent of the coordinate system used 

in determining the stress components.  

The method used to achieve this involves first finding the eigenvalues of the A 

matrix, where A is the matrix of change in stress tensors at each given time t’ and 

frequency f’:  

 A = [

Δ𝜎𝑥𝑥
′ (𝑡′, 𝑓′) Δ𝜏𝑥𝑦

′ (𝑡′, 𝑓′) Δ𝜏𝑧𝑥
′ (𝑡′, 𝑓′)

Δ𝜏𝑥𝑦
′ (𝑡′, 𝑓′) Δ𝜎𝑦𝑦

′ (𝑡′, 𝑓′) Δ𝜏𝑦𝑧
′ (𝑡′, 𝑓′)

Δ𝜏𝑧𝑥
′ (𝑡′, 𝑓′) Δ𝜏𝑦𝑧

′ (𝑡′, 𝑓′) Δ𝜎𝑧𝑧
′ (𝑡′, 𝑓′)

] (24) 

The three eigenvalues of A are then labelled Δσ’eig1, Δσ’eig2, Δσ’eig3. The resolved 

magnitude for the change in stress at time t’ and frequency f’, denoted as Δσ’, can be 

calculated as follows:  

 Δ𝜎′(𝑡′, 𝑓′) = √[Δ𝜎𝑒𝑖𝑔1
′ (𝑡′, 𝑓′)]

2
+ [Δ𝜎𝑒𝑖𝑔2

′ (𝑡′, 𝑓′)]
2

+ [Δ𝜎𝑒𝑖𝑔3
′ (𝑡′, 𝑓′)]

2
 (25)  

The change in stress tensors must not be resolved into their scalar magnitudes until after 

the Gabor wavelet transform is applied. Otherwise, the solution would not correctly 

account for changes in stress in different directions. Some frequencies may be cancelled 

out while others could be falsely increased. 

 The resolved magnitude for the change in stress (Δσ’) is used to determine the 

power density. The power deposited into a volume results from the volume experiencing 

this change in stress magnitude in time. At a given time, the change in stress at every 

frequency contributes to the power density. The power density at time t’ and frequency f’ 

is labeled PD’ and is the product of the frequency and the change in stress at that 

frequency:  

 𝑃𝐷′(𝑡′, 𝑓′) = Δ𝜎′(𝑡′, 𝑓′) ∙ 𝑓′ (26) 

 The total power density from all frequencies at time t’ is labeled PD. It is 

calculated by adding the power density contributions from each frequency at that time 

interval:  

 𝑃𝐷(𝑡′) = ∑ 𝑃𝐷′(𝑡′, 𝑓)∞
𝑓=0  (27) 
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In practice, the highest frequency that can be considered is the Nyquist frequency, which 

is half the sampling frequency. 

 The accumulated power damage up to a time (PDaccum) is calculated by summing 

the power densities at every time interval up to time t’:  

 𝑃𝐷𝑎𝑐𝑐𝑢𝑚(𝑡′) = ∑ 𝑃𝐷(𝑡)𝑡′
𝑡=0  (28) 

This gives the total damage inflicted on the material from the power densities at every 

frequency and time interval. 

 Power density accumulation eventually damages the component enough to cause 

it to fail by fatigue. The material is expected to fail once the accumulated power density 

reaches a certain point – the “power density threshold (PDthreshold)”. In other terms, a 

material is expected to fail due to fatigue when the following equation is true:  

 𝑃𝐷𝑎𝑐𝑐𝑢𝑚 ≥ 𝑃𝐷𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (29) 

The power density threshold is an inherent material property, similar to tensile strength 

or fracture toughness. Every material has a defined power density threshold under 

certain conditions. In general, stiffer materials are likely to fail more quickly due to 

fatigue, so they would have lower power density thresholds. 

Factors such as surface finish, temperature, and manufacturing method may 

impact how the stress waves propagate through a material, which would affect how long 

it lasts under alternating stresses. For example, a rough surface would create stress 

concentrations that may increase the power density the component experiences, causing 

it to fail sooner. 

III.3 Applications for the Power Density Theory 

 The power density theory could be used during the design process whenever 

fatigue is a concern. Improved accuracy in fatigue calculations would make fatigue 

failures easier to predict and avoid. Additionally, less uncertainty would allow for 

smaller safety factors to be used, increasing efficiency. Designers could better optimize 

systems around fatigue failure. The theory is especially useful when stress alternations 

are expected to occur at multiple frequencies and directions. However, even single-
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frequency cyclic loading generally creates stress oscillation responses at multiple 

frequencies. 

 Another potential application for the power density theory is real-time tracking in 

systems. The magnitudes and frequencies of stress alternations could be monitored at 

locations of concern. When the power density at a point approaches the power density 

threshold, the part could be examined and repaired or replaced. 

Power density may also have applications related to other types of failure. For 

example, sudden impact creates broadband stress waves that propagate through a 

component. The high-frequency waves would create very high power densities, causing 

the power density threshold to be reached quickly. This implies that lower stresses 

would be required to break the component, as is seen in reality. 
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 CHAPTER IV    

 PREVIOUS MULTIAXIAL VIBRATION FATIGUE TESTING 

IV.1 Experiment Setup 

 A feasibility study was performed to test the validity of the power density theory. 

This study used computer simulations to replicate physical testing performed by Mršnik, 

Slavič, and Boltežar [23]. This testing was performed on a specimen made of cast 

aluminum. The part was designed to encourage a multiaxial, multiple-frequency 

structural response to the applied loads. It was cut into a “Y” shape with a weight 

attached to both of its arms. There was a large hole in the center of the sample and 

another smaller hole beneath that one. The smaller hole was used as a mounting point at 

which a horizontal force excitation was applied during testing. The base of the specimen 

was fixed to a shaker that applied vertical kinematic excitation. Accelerometers on each 

arm were used to measure the system response. A diagram of the Y-sample from Mršnik 

et al. is shown in Figure 3, and a picture of the test setup is shown in Figure 4: 

 

Figure 3: Schematic of the Y-Sample [23] 
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Figure 4: Experimental Setup [23] 

The vertical kinematic excitation was applied as a uniform, broadband frequency 

profile spanning from 380-480 Hz. This range was chosen to include the sample’s 

resonant frequency in the vertical direction. This expedited testing by increasing the 

stresses experienced by the part. For the horizontal force excitation, a broadband 

frequency profile spanning from 290-390 Hz was targeted. Again, this range included 

the resonant frequency mode in the direction of the applied force. According to Mršnik 

et al., the actual response was not as uniform as was intended. Figure 5 and Figure 6 

show the measured frequency responses in the horizontal and vertical directions, as well 

as the responses of the model created by Mršnik et al.: 
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Figure 5: Frequency Response Function in the Direction of Kinematic Excitation [23] 

 

Figure 6: Frequency Response Function in the Direction of Force Excitation [23] 

The force and kinematic loads were applied at these frequencies until surface 

cracking was detected for ten different load cases. The magnitudes of vertical kinematic 

excitation and horizontal force excitation applied to the system were different for each 

case. The measured root mean square loads from each case (from Mršnik et al.) are 

given in Table 1 and Figure 7: 
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Table 1: Measured Root Mean Square Horizontal Force and Vertical Acceleration Combinations 

 

 

Figure 7: Measured Root Mean Square Horizontal Force and Vertical Acceleration Combinations 

IV.2 Previous Fatigue Failure Prediction 

Mršnik et al. predicted the fatigue lifetime and failure location for each case 

using the Tovo-Benasciutti method [8,10,23], a numerical fatigue method in the 

frequency domain. The power spectral density (PSD), denoted at S(ω), was used to give 

Case Frms (N) arms (m/s2)

1 2.42 12.26

2 2.51 14.81

3 2.32 16.97

4 3.11 8.44

5 3.36 9.71

6 3.36 12.56

7 3.39 14.62

8 3.94 7.85

9 4.06 10.79

10 3.73 12.46
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the stress intensity in the frequency domain. The moments mi of the PSD were calculated 

using 

 𝑚𝑖 = ∫ 𝜔𝑖𝑆(𝜔)𝑑𝜔
∞

−∞
 (30) 

where ω is the frequency in radians per second. These moments can be used to find the 

expected positive crossings rate v0
+
, expected peak rate v, and spectral width parameters 

αi using the following equations: 

 𝑣0
+ =

1

2𝜋
√

𝑚2

𝑚0
 (31) 

 𝑣 =
1

2𝜋
√

𝑚4

𝑚2
 (32) 

 𝛼𝑖 =
𝑚𝑖

√𝑚0𝑚2𝑖
 (33) 

The Tovo-Benasciutti damage intensity (𝐷̅𝑇𝐵) was then calculated using the 

following equation:  

 𝐷̅𝑇𝐵 = [𝑏 + (1 − 𝑏)𝛼2
𝑘−1]𝛼2𝐷̅𝑁𝐵 (34) 

where the numerically-determined constant (b) and narrow-band damage intensity 

(𝐷̅𝑁𝐵) were found as follows: 

 𝑏 =
(𝛼1−𝛼2)[1.112(1+𝛼1𝛼2−(𝛼1+𝛼2))𝑒2.11𝛼2+(𝛼1−𝛼2)]

(𝛼2−1)2  (35) 

 𝐷̅𝑁𝐵 = 𝑣0
2𝐶−1(√2𝑚0)

𝑘
Γ (1 +

𝑘

2
) (36) 

The fatigue strength curve from the stress-life method was used to predict the 

fatigue lifetime of the material. Equation 1 was rearranged to the following form to 

determine constants C and k: 

 𝐶 = 𝑁 [(𝑆𝑓
′)

𝑁
]

𝑘

 (37) 

Both C and k were chosen based on the best fit of the numerical results to the 

experimental results and applied to all ten load cases. 

 These equations are based on uniaxial stress alternations. However, stresses 

occur in every direction in this experiment. To make these equations usable, six different 

multiaxial methods [23] were attempted to reduce the stress tensor to a single equivalent 

stress value: maximum normal stress [24], maximum shear stress [24], maximum normal 
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and shear stress [24], Preumont and Piéfort [25], Carpinteri-Spagnoli criterion [26], and 

the Projection-to-Projection approach [27]. The predictions using each of these methods 

were compared to the experimental results. 

IV.3 Test Results 

The experimental failure times were between 20 and 135 minutes. Mršnik et al. 

did not explicitly report the experimental fatigue lifetimes for each case except in 

comparison to their theoretical predictions. They found that the six multiaxial methods 

typically predicted similar fatigue lifetimes. However, their lifetime predictions 

sometimes deviated from their experimental results by 200% or more. Figure 8 compares 

the fatigue lifetimes projected using the maximum shear stress theory with the 

experimental results. The dashed line represents a 200% deviation, and the dotted line 

represents a 300% deviation. 

 

Figure 8: Previously Predicted Fatigue Lifetimes versus Experimental Results [23] 
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The results of these experiments showed that the failure location varied 

depending on the ratio of the force excitation magnitude to the kinematic excitation 

magnitude. More force-dominant excitations tended to result in cracks as much as 3.3 

mm lower than acceleration-dominant cases. The failure locations in Figure 9 were given 

in order of increasing force-dominance: 

 

Figure 9: Failure Locations for Each Case [23] 

For each case, the six multiaxial criteria always predicted approximately the 

same failure location. For more acceleration-dominant cases, they predicted that the 

cracking would occur on the outside of the sample, near the actual failure location (point 

C2 on Figure 10). After a certain level of force-dominance was reached in a case, the 

predicted failure location jumped to a location inside the center hole (point C1 on Figure 

10). This is different from the experimental results for the force-dominant cases, which 

showed cracking on the outside edge, a little below where acceleration-dominant cases 

failed. Figure 10 shows the time-to-failure contour and critical points predicted by 

Mršnik et al. for a force-dominant case (left) and an acceleration-dominant case (right): 
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Figure 10: Previously Predicted Failure Locations for Force- and Acceleration-Dominant Cases [22] 
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 CHAPTER V    

 POWER DENSITY FEASIBILITY STUDY METHODOLOGY 

V.1 Computer Simulations 

 A computer model of this experiment was built in Abaqus to test the feasibility 

of the power density method. Mršnik, Slavič, and Boltežar did not report some of the 

dimensions of the sample they tested. The unknown dimensions were estimated using 

the images they presented of their test setup and finite element model mesh. Pictures of 

the test setup were favored when accounting for any discrepancies between them and the 

mesh. Figure 11 gives the dimensions of the Abaqus model generated for the thesis 

work: 

   

Figure 11: Abaqus Model Dimensions 

The material of the actual Y-sample was AlSi7Cu3. Complete properties for this 

material are not available, though. Therefore, the material properties of AlCuMg1 were 

used in this model. This same assumption was made by Mršnik, Slavič, and Boltežar. 
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The model was meshed with explicit three-dimensional stress elements, allowing 

for nonlinearity and transient loads to be well-captured. Hex elements were used so the 

part would have freedom to deform in all directions. For explicit analysis in Abaqus, hex 

elements must be of a linear geometric order, but second-order accuracy was placed on 

the calculations. Nodes were placed approximately 0.4 mm apart near the middle of the 

sample where the stress waves were of most concern. The mesh gradually became 

coarser near the ends. A convergence study (Figure 22 in the Appendix) was performed 

to ensure that this element size was proper. The Abaqus mesh used for these simulations 

is shown in Figure 12: 

 

Figure 12: Y-Sample Mesh 

Kinematic excitation was applied vertically to the front and back faces on the 

bottom 10 mm of the model. It was assumed to be sinusoidal with a frequency of 465 
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Hz, the peak frequency found in the vertical direction of the physical tests (Figure 5). 

The excitation amplitude varied for each case such that the root mean square of the 

acceleration matched the values given in Table 1. These faces were also constrained to 

allow zero displacement in any other direction. A horizontal surface traction was applied 

to the lower hole. This excitation was assumed to be a 365 Hz sinusoidal wave, which 

was the peak frequency found in the horizontal direction of the physical tests (Figure 6). 

Attempting to recreate the random broadband frequencies would add too much 

complexity and computation time for the purposes of this feasibility study. The traction 

amplitude for each case created a root mean square force on the area that corresponded 

with the values given in Table 1. Additionally, standard gravity was assumed in the 

vertical direction for the whole part at all times. 

Running the simulations to predicted failure would have been impractical. A 

shorter time span could still be used for this feasibility study to determine which cases 

accumulated power density the fastest. Therefore, Abaqus/Explicit was used to run the 

simulations for 0.301 seconds, resulting in about 140 kinematic excitation cycles and 

about 110 force excitation cycles. This was long enough for the system to reach a steady 

power density accumulation pattern. The stresses were output every 1x10
-5

 seconds. This 

high sampling rate produced a large amount of data. Stresses could only be taken on the 

surface where cracking was observed (highlighted in Figure 9) due to computational 

memory limitations. Only one of the two sides needed to be examined due to symmetry. 

V.2 Power Density Calculations 

The results of the Abaqus simulations were post-processed using MATLAB. The 

MATLAB program used the simulations’ stress outputs to determine the power density 

accumulation of each element on this surface. These calculations were performed as 

described in the Power Density Theory section. 

The Gabor wavelet constant ω0 was defined as 2π so that 1/a would equal the 

frequency in Hz. The constant γ was set to equal 𝜋√2/ ln(2) = 5.336 per Goupillaud, 

Grossmann, and Morlet [28]. If the change in stress over a time interval (such as Δσxx) 
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was very small, any imprecision in Gabor transform magnitudes (such as Wxx) would be 

magnified when that value was scaled using Equation 23. This resulted in falsely high or 

low Δσ’xx values. Therefore, the median scale factor across all time intervals was used to 

transform Wxx to Δσ’xx. This was done for each element and stress direction separately. 

Scaling in this manner eliminated false extreme scaling and kept the results consistent 

for every time interval. 

At the beginning of the simulations, high frequency responses created high 

power densities. These responses faded quickly, and the power density accumulation 

stabilized. Only data from the 0.269-0.301 seconds time span was used. This avoided the 

initial high-frequency oscillations. The power density accumulation during this time 

span would be expected to continue until the sample cracked. This 0.032 seconds 

interval was long enough to capture about 15 kinematic excitation cycles and about 12 

force excitation cycles while maintaining a reasonable computation volume. Very close 

to the beginning and end of this interval, the Gabor wavelet transform could not 

accurately determine how much each frequency contributed to the stress alternations. To 

circumvent this issue, results from the first and last 0.001 seconds of the time span were 

not considered. All of the presented results occurred between 0.27 seconds and 0.30 

seconds. This allowed the power density accumulation for each case to be reliably 

compared. 

The highest frequency that could be resolved was limited by the sampling 

frequency. The power densities from frequencies higher than 50,000 Hz could not be 

determined in these simulations. For the purposes of this feasibility study, comparisons 

were performed neglecting differences in very high-frequency power densities among 

elements. A faster sampling rate would increase the required computational resources, 

but it would be necessary to resolve higher frequencies. 
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 CHAPTER VI    

 POWER DENSITY VALIDATION RESULTS 

VI.1 Simulation Failure Locations 

The power densities experienced by each element were compared for all ten load 

cases. The locations that accumulated the most power density over the measured time 

interval would be expected to fail first due to fatigue. Figure 13 shows the crack 

locations for each case, sorted from most acceleration-dominant to most force-dominant. 

It also shows the predicted power density accumulation at each location. Red indicates 

high accumulation, and blue indicates low accumulation. Elements that are darker red 

are predicted to have a higher probability of cracking first. The element with the highest 

predicted power density accumulation is highlighted as a yellow box. Because the 

experimental crack location images are pictures of a curved surface, the exact positions 

do not perfectly line up with the predicted power density accumulation at that location. 

Two locations emerged as having the highest power density accumulation, one 

on the upper half of the examined surface and one on the lower half. The force-dominant 

cases (Cases 4, 5, 8, 9, and 10) were predicted to have a higher probability of failing low 

than the acceleration-dominant cases (Cases 1, 2, 3, 6, and 7). This trend is in line with 

the experimental results and is a promising indication for the validity of the power 

density theory. 

The kinematic excitation caused the Y-sample’s arms to raise and lower, creating 

bending stresses that were highest at the examined surface. Inspection of the system 

showed that the kinematic excitation alone tended to cause the largest stress magnitudes 

at the height where acceleration-dominant cases failed. It also caused relatively large 

stresses at the height where force-dominant cases failed, although these magnitudes were 

significantly lower than at the upper location. At all heights, the kinematic excitation 

induced higher power densities near the middle than at the edges. 
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Figure 13: Experimental Versus Predicted Failure Locations for Each Case 
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The force excitation created bending about a different axis, causing the sample to 

sway in the direction of the applied force. This produced high stresses on the edges of 

the examined surface, especially on the lower half. As the level of force-dominance was 

increased, the power densities near the edges increased as well.  

An extremely acceleration-dominant case would be projected to fail on the upper 

half of the examined surface, near the middle. As force-dominance (and the associated 

power densities near the edges) increases, the predicted failure location moves towards 

the edge. Then, at a certain level of force-dominance – between that of Case 6 and Case 

10 – the predicted failure location switches from the upper portion to the lower portion. 

The power densities near the edges of the lower portion are mainly caused by the force 

excitation while the power densities in the upper portion are mainly caused by the 

kinematic excitation. At a level of force-dominance between that of Case 6 and Case 10, 

the force excitation creates a high enough power density difference between the lower 

portion and the upper portion to overcome the difference caused by kinematic excitation.  

The most force-dominant case, Case 8, was predicted to fail 5.2 mm lower than 

the most acceleration-dominant case, Case 3. This margin is wider than the 3.3 mm 

difference observed in the testing. This may be due to the finite element model having 

slightly different dimensions from the actual Y-sample since the exact dimensions were 

not given by Mršnik et al. Also, it was not clear whether the reported 3.3 mm difference 

was measured linearly or circumferentially along the curved edge. If Mršnik et al. 

measured linearly, the experimental difference would be closer to the difference found 

by the Abaqus simulations, which were measured circumferentially. 

The predicted failure locations of some cases – especially Case 10 – differed 

from the test results slightly. This is also likely a result of slight inaccuracies in the 

model’s dimensions. It was found that small changes in the model’s dimensions could 

affect the level of force-dominance at which the predicted failure location switched from 

the top half to the bottom half. Additionally, the predicted power density accumulation 

assumes that all elements have the same properties. Any inconsistencies in the real 
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sample – such as surface imperfections – could affect where it actually fails. In every 

case, the part cracked at a location that was predicted to have a high probability of 

failure. 

VI.2 Simulation Fatigue Lifetimes 

Table 2 gives the power density (in gigawatts per cubic meter) accumulated 

between 0.27-0.30 seconds by the critical element of each case. Without knowing the 

power density threshold for this material, fatigue lifetimes can only be estimated relative 

to each other. Additionally, since Mršnik et al. did not report the failure times for each 

case, the lifetimes predicted using power density cannot be compared with their results. 

Table 2: Power Density Accumulation of the Critical Elements 

   

The critical elements with higher power density accumulation are predicted to 

fail more quickly. Therefore, Case 3 is expected to fail first, and Case 4 is expected to 

last the longest. Force excitation and kinematic excitation both affected the predicted 

fatigue life. 

Case Frms (N) arms (m/s2) PDacc (GW/m3)

1 2.42 12.26 582.45

2 2.51 14.81 660.47

3 2.32 16.97 726.53

4 3.11 8.44 536.60

5 3.36 9.71 581.62

6 3.36 12.56 617.11

7 3.39 14.62 676.78

8 3.94 7.85 676.00

9 4.06 10.79 700.65

10 3.73 12.46 652.85

Highest Power Density Accumulation
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Among acceleration-dominant cases, higher forces resulted in higher power 

densities. This can be seen by comparing Case 2 with Case 7. Both cases were 

acceleration-dominant and were predicted to fail at the same location. Case 7 had a 

lower acceleration than Case 2 but a higher force. The increased force resulted in faster 

power density accumulation for Case 7 than Case 2. Similarly, acceleration magnitude 

affected the power density accumulation in force-dominant cases, although to a slightly 

lesser degree. Higher accelerations caused power density to accumulate faster. 

VI.3 Power Density Response 

The power density response at the critical element for each case was analyzed. 

There was a notable difference between the critical elements of the acceleration-

dominant cases (on the upper half of the examined surface) and those of the force-

dominant cases (on the lower half of the examined surface). The responses were similar 

among acceleration-dominant cases, with the main difference being the magnitudes of 

the stresses and power densities. The same was true among force-dominant cases. 

  Figure 14 shows the resolved changes in stress (Δσ’) experienced by the critical 

element of Case 1 – an acceleration-dominant case – from 0.27-0.30 seconds. Figure 15 

shows the resulting power density contributions by each frequency at each time (PD’): 
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Figure 14: Resolved Change in Stress Magnitudes for the Critical Element of Case 1 

  

Figure 15: Power Densities Due to Each Frequency at Each Time for the Critical Element of Case 1 



 

36 

 

The biggest changes in stress were at low frequencies, close to those of the 

applied excitations. However, because power density is weighted by frequency, higher 

frequencies contributed significantly to the power density of each element. Power 

density peaks can be seen around the excitation frequencies as well as at approximately 

9,000 Hz. The power density response was consistent throughout this time period. 

The power densities at each frequency combined to give the total power densities 

at each time (PD) shown in Figure 16. The figure only includes 0.28-0.29 seconds so 

that more detail can be seen, but the power densities were similar for the rest of the time 

period. 

  

Figure 16: Total Power Densities at Each Time for the Critical Element of Case 1 

These power density oscillations accumulated over time to form a nearly linear 

trend. This accumulation between 0.27 seconds and 0.30 seconds is shown in Figure 17.  
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The values shown for power density accumulation (PDacc) start at zero. In reality, power 

density had accumulated prior to this time. However, only the accumulation during this 

time period (after the stress alternations had stabilized) was considered so that initial 

high-frequency stresses did not affect comparisons between elements. 

  

Figure 17: Power Density Accumulation at the Critical Element of Case 1 

Figure 18 through Figure 21 show how the power density accumulated between 

0.27 seconds and 0.30 seconds in Case 4, which was force-dominant. Other force-

dominant cases gave similar results. 
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Figure 18: Resolved Change in Stress Magnitudes for the Critical Element of Case 4 

  

 Figure 19: Power Densities Due to Each Frequency at Each Time for the Critical Element of Case 4  
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Figure 20: Total Power Densities at Each Time for the Critical Element of Case 4 

  

Figure 21: Power Density Accumulation at the Critical Element of Case 4 
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At the critical elements of the force-dominant cases, there was an additional peak 

frequency around 25,000 Hz that contributed to the power density. This very high-

frequency peak helped contribute enough power density in the force-dominant cases to 

cause the predicted failure to switch to the lower portion of the examined surface, even if 

it did not experience quite as high of stresses as the upper portion. 

From the simulations, bending in the horizontal direction always occurred at the 

same frequency as the force excitation. However, bending of the Y-sample’s arms up 

and down due to kinematic excitation happened at almost twice the frequency of the 

applied acceleration. Small changes in the model were found to affect this frequency. If 

the inertia of the arms in the model was decreased – by changing the length of the arms 

or the size of the weights on the end – the bending frequency increased. Similarly, 

increasing the arm’s inertia slowed the bending in the vertical direction. Changes that 

caused the arm to bend faster resulted in higher power densities per cycle even if they 

lowered the stresses. This is a difference between the power density theory and most 

time-domain theories. Time-domain theories estimate that lower stresses would cause 

less damage, regardless of the frequencies at which they occur. 
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 CHAPTER VII    

 FUTURE RESEARCH AND CONCLUSIONS 

VII.1 Recommended Future Research 

 The results of this feasibility study indicate that the power density theory may be 

a viable explanation for fatigue failure. However, more research needs to be done to 

further validate the theory. This includes physical testing. The feasibility study provides 

a guideline for developing an experimental plan to establish and confirm that the power 

density threshold is a fundamental material property. Stress alternations at multiple 

frequencies could be applied to parts until a fatigue crack forms. While this is occurring, 

their three-dimensional strains over time could be monitored with a strain gauge. The 

strains could then be converted into the corresponding stress tensor, and the power 

density accumulation at the time of failure could be calculated. Under the power density 

theory, parts of the same material would be expected to fail after approximately the same 

amount of power density has accumulated (the power density threshold), regardless of 

the stress magnitudes and frequencies that made up the power density. 

 A similar process could be used to determine the power density thresholds for 

various materials. Once the power density thresholds of materials have been determined, 

power density could be used to predict fatigue lifetimes. Until then, power density can 

only be used to compare which locations or designs would fail earlier than others. 

Other details of power density will also need to be examined to further understand it. 

The ways in which different frequencies and stresses in all directions contribute to the 

material’s power density should be researched.  In addition, other applications of power 

density outside of fatigue, such as impact, should be explored. 

VII.2 Conclusions 

Current methods of predicting fatigue failure lack a proper scientific basis. They 

rely on empirically-derived equations and often neglect important factors, such as the 

frequencies of stress alternations. Although these theories are often useful, they have 
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high levels of uncertainty and do not provide parameters that are of definitive physical 

meaning. In contrast, the power density theory is a new way of viewing fatigue failure 

that is based on the physical phenomenon of power being deposited into a volume during 

stress oscillations. It quantifies fatigue with two physical parameters, stress variation and 

the frequency at which it occurs. 

The results of the feasibility study showed that the failure locations predicted 

using power density followed the same trend as the experimental results. This indicates 

that the power density theory may be a viable alternative for characterizing fatigue 

failure. In order to further validate and develop this theory, additional research must be 

performed in the future. The development of a scientific theory that can accurately 

explain and predict fatigue failure would be enormously beneficial in a wide range of 

engineering applications. This opportunity to advance our understanding of fatigue 

should be pursued. 
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 APPENDIX 

Convergence Study 

Figure 22 shows the results of the convergence study. This was performed on Case 6, 

which is in between the most force-dominant and acceleration-dominant cases. The 

maximum deflection was determined based on the application of the most extreme 

forces applied to the sample. The feasibility study was performed using 95,095 elements. 

 

Figure 22: Convergence Study 
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