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ABSTRACT 

 

More than half of the world’s oil and gas reserves are found in carbonate 

reservoirs. Most carbonates are fractured, vuggy reservoirs which can be defined as 

reservoirs that contain matrix, fractures and vugs. Vugs in such reservoirs can be isolated 

or connected to a global fracture system. Numerical modeling of naturally fractured, 

vuggy reservoirs presents many challenges due to the coexistence of three very different 

media and their complex interaction on multiple scales. With current computing 

capabilities, conventional fine-scale, single porosity models are not practical for 

modeling such reservoirs on the multi-well or the field-wide scale due to the massive 

number of grid blocks. Thus, an effective approach would be through a triple continuum 

model where matrix, fractures and vugs are separated into three different porosity 

systems. This work investigates mass exchange between different media with the final 

objective of providing a unified theory for the use of transfer functions in upscaling 

fractured, vuggy reservoir simulation models. 

In a triple continuum model, the fracture system provides the path for global 

fluid flow, while vuggy and matrix continua mostly contribute to the fluid storage; thus, 

the interporosity fluid exchange becomes very important and dominates the oil 

displacement of such reservoirs. Through the use of fine-grid explicit simulation models, 

this research analyzed the complex mechanisms of mass transfers between each two 

porosity systems. Different concept models are generated to show the effect of vug 

fraction, shape and distribution on oil displacement. New transfer functions for the 
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simulation of 3D two phase fluid flow in the triple continuum model to capture the 

complex flow mechanisms and emulate the results of the fine-scale, single porosity 

model are also provided. In addition, a general procedure of incorporating the proposed 

transfer functions into the triple continuum model along with a novel upscaling 

technique is presented.  

This paper provides the first investigation of the complex fluid exchange among 

different media in fractured, vuggy reservoirs. Results show that the use of the proposed 

transfer functions helps to reduce the size of simulation models for fractured, vuggy 

reservoirs, and improve the computation speed by orders of magnitude, while providing 

an accurate representation of the fine-scale results. 
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NOMENCLATURE 

 

 B             Formation volume factor, RB/STB 

C      Total compressibility, 1/Psia 

D      Depth, ft 

vF      Vug fraction 

g            Gravitational acceleration, m2/s 

vugH         Vug length along the direction of pressure gradient, ft 

k      Absolute permeability, md 

rk           Relative permeability 

l      Characteristic length of heterogeneous region, ft 

xL      length of grid block, ft 

fN      Number of fractures connected to the vug 

n      Number of normal sets of fractures 

p      Block pressure, psia 

ip      Initial pressure, psia 

capp      Capillary pressure, Psia 

q      Mass exchange rate, lbm/day 

S      Saturation 

T      Tansmissibility, md·ft 
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t      Time, day 

V      Volume, ft3 

      Shape factor, 1/ft2 

      Density, lbm/ft3 

      Gravity constant 

      Viscosity, cp 

      Mobility, 1/cp 

      Potential, psia 

      Porosity 
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CHAPTER I  

INTRODUCTION 

 

1.1  Problem Definition 

Fractured, vuggy reservoirs can be defined as reservoirs that contain long range 

fractures, matrix, and vugs with various size and distribution. Numerical modeling of 

naturally fractured, vuggy reservoirs presents many challenges due to the coexistence of 

three very different media and their complex interaction on multiple scales. The 

interaction of one medium with another is represented by an interporosity transfer 

function, an idea that was originally proposed by Barenblatt et al. (1960). The 

mechanisms of multiphase flow exchange between those three media depend on the 

combined effects of matrix-block size, connectivity and wettability of three media, rock 

and fluid characteristics, pressure and saturation history (Chilingar, 1996). Those are the 

major reasons that make the modeling of interporosity flow behavior very complicated. 

Since interporosity flow dominates the fluid recovery, it is important that adequate 

transfer functions are incorporated in any simulation models. 

In addition, the multi-scale heterogeneous nature of the vug system and various 

vug/fracture connected networks will add another challenge to the modeling and 

simulation of fractured, vuggy reservoirs. The vug geometries, connectivity and spatial 

distribution have a great impact on the fluid behavior in such reservoirs (Popov et al., 

2007). Vuggy pore space can be substituted into two groups: separate vugs that are 

isolated by matrix rock and connected vugs that are connected to the overall fracture 
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network (Lucia, 1999, Jennings et al., 2001). The size of separate vugs can vary from 

millimeters to centimeters in diameter depending upon their origin (Yu-Shu Wu et al., 

2006). Connected vugs are hard to characterize because the vugs are often larger than the 

cross section areas of core samples (Lucia, 2007). Fractures and vugs can form various 

types of connected networks which highly change the petrophysical characteristics of the 

formation rock. The performance of the simulation model is significantly impacted by 

how robustly these features are characterized and modeled. 

Another challenge arises from upscaling the fine-grid model into a triple-

continuum coarse model in that the coarse model tends to underestimate the oil recovery. 

This is caused by numerical dispersion, so that the saturation front doesn’t exist in the 

coarse model. Moreover, the fact that the capillary pressure in the coarse model is 

determined by average water saturation in the matrix grid block will also influence 

accuracy of the upscaling solution. 

With current computing capabilities, conventional fine-scale, single porosity 

models are not practical for modeling fractured, vuggy reservoirs on the multi-well or 

the field-wide scale due to the massive number of grid blocks. A triple-continuum 

reservoir model based on a commercial simulator is presented as an effective approach 

to modeling fractured, vuggy reservoirs on the coarse scale. This model consists of three 

different porosity systems, i.e. low permeability matrix, connected fractures and 

discontinuous vugs that can be isolated or connected to the fracture network. When the 

global flow occurs through fracture system, and when vuggy and matrix continua mostly 

contribute to the fluid storage; the interporosity flow dominates the oil displacement of 
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such reservoirs. Therefore, transfer functions that describe the interporosity flow are the 

heart of the triple-continuum reservoir model. Although many progress has been made 

on matrix-fracture transfer function, there hardly has been any investigations on 

interporosity flow between vugs and the other two media. This paper investigates the 

mass exchange between three different media with the final objective of providing a 

unified theory for the use of transfer functions in upscaling fractured, vuggy reservoir 

simulation models. At this point, we should understand that a triple-continuum model 

shall not be deemed as rigorous if the above mentioned challenges cannot be solved 

appropriately. 

 

1.2 Outline 

This dissertation is organized as follows: 

The second chapter provides a review of the most commonly used transfer 

functions in dual porosity models. Their formulations and limitations will be discussed 

in order to gain a comprehensive understanding on the use of transfer functions to 

describe interporosity flow, and thus to lay a good foundation for the development of 

matrix-vug transfer function and facture-vug transfer function in this study. In addition, 

the previous proposed approaches for modeling fluid flow through fractured, vuggy rock 

will be discussed in order to justify the necessity of using the triple-continuum model for 

field scale simulation. 

The third chapter focuses on the fluid exchange between matrix and vug systems 

where vugs are isolated by matrix from the overall facture network. Three dimensional 
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conceptual models based on the actual vuggy formation data is introduced in the first 

section. The second section starts with the sensitivity analysis of the vug spatial 

distribution on single-phase fluid exchange, and then through a history matching 

procedure, achieves the shape factor equations at the end. In the third section, 

mechanisms of two phase fluid exchange between matrix and vugs are first discussed, 

and a general process is proposed to generate a dynamic matrix-vug transfer function 

that can incorporate all the mechanisms. The last section proposes a novel upscaling 

method by adding a transmissibility multiplier table as an extra connection term of the 

proposed transfer function in order to improve the accuracy of the triple-continuum, 

coarse model. 

The fourth chapter investigates the fluid exchange between fracture and vug 

systems. Based on the simulation of fine-scale, explicit models, the mechanisms of two-

phase fluid exchange between fracture and vug systems are discussed, and then the 

effects of vug fraction (vug pore volume per coarse grid block volume) and connectivity 

on fluid exchange are analyzed. A general process is proposed to generate a two phase 

fracture-vug transfer function which combines a dynamic shape factor with the pseudo 

capillary pressure of vug system. 

The fifth chapter gives a conclusion of the results obtained through this work 

along with recommendations for future work in this area. 
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CHAPTER II 

LITERATURE REVIEW 

 

Since the 1960s, the study of fluid flow through naturally fractured reservoirs has 

been a hot spot in petroleum engineering research area, and many significant progress 

has been made on dual porosity models. Most commonly used transfer functions in dual 

porosity models are discussed in this chapter along with their limitations, to provide the 

foundation for developing two phase flow transfer functions for triple media-matrix, 

fractures and vugs. This chapter also discusses several studies that has been conducted to 

modeling naturally fractured, vuggy reservoirs for the last decade.  

 

2.1  Transfer Functions 

The interaction of one porosity system with another is represented by an 

interporosity transfer function. This idea was proposed originally by Barenblatt et al. 

(1960), and later become the base of other developed matrix-facture transfer functions 

(Abushaikha, 2008). 

Warren and Root (1963) developed an idealized model in order to study the flow 

behavior in naturally fractured reservoirs. Their model assumes to contain an orthogonal 

system of continuous, uniform fractures which are parallel to the principal axes of 

permeability. The matrix is represented as discontinuous identical, rectangular 

parallelepipeds which are homogeneous and isotropic. The flow in this model only 
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occurs through fracture system with local fluid exchange with the matrix blocks.  Fig.2.1 

demonstrates the idealization of the fractured porous media. 

 

Fig. 2.1—Idealization of the naturally fractured reservoirs (Warren and 

Root, 1963) 

 

The mathematical model for the single-phase fluid flow in homogeneous and 

anisotropic dual porosity reservoirs is described as (Warren and Root, 1963): 

t

p
C

t

p
C

y

pk

x

pk f

ff
m

mm

ffyffx




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
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                                              (2.1) 

Subscript f represents the fracture porosity system, and m  represents the matrix 

porosity system.  

A quasi-steady state is assumed to exist in the matrix blocks. The mass balance 

equation within the matrix system is expressed as: 

)( mf
mm
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p
C 








                                                                   (2.2) 
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 was defined as a shape factor that describes the communication between 

fractures and matrix.  

The single-phase dual porosity model is comprised of these two equations. 

Equation (2.2) is also treated as the transfer function, since no flow occurs between 

matrix blocks, which means the only flow exchange occurs in matrix system is through 

matrix and fractures. It is important to understand that the assumption of a quasi-steady 

state makes the solutions not accurate at early times. However, Warren and Root (1963) 

ultimately used the results in well testing, so the approximation in this case is adequate.  

For uniformly spaced fractures, the shape factor can be simplified as: 

2

)2(4

l

nn 
                                                                                                    (2.3) 

Kazemi et al. (1976) extended the single-phase flow equations derived by 

Warren and Root (1963) to multiphase flow in three dimensions. Their model accounts 

for imbibition, relative fluid mobility, gravity force, and variation in reservoir properties. 

Like the Warren and Root model, there are two flowing equations, one for fracture 

system, and another for matrix system. 

    
ffmfff S

t
DP  




                                         (2.4) 

 mamamf S
t





                                                                                   (2.5) 

Here, nww,  represents wetting and non-wetting phases, respectively, f = 

fracture system, ma  = matrix system. The transfer function mf  is defined as: 
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    
mafmamamf DPDPVk                                   (2.6) 

The material balance equation for a cubic matrix block is expressed as 
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
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   (2.7) 

From the material balance equation stated above, the definition of their shape 

factor is given as, 














222

111
4

zyx LLL
                                                                                          (2.8) 

where xL  is the matrix block size not the grid block size. 

As we notice, this mathematical model is simply a generalization of the single-

phase model by replacing the pressure term with potential. This generalization has the 

build-in assumption that linear superposition of the two mechanisms-imbibition and 

gravity segregation is appropriate (Sarma 2003). In addition, the gridblock averaged 

saturation and potential are used in calculating transfer functions, since we can’t get the 

saturation or pressure gradients at a smaller scale than the gridblock size. However, 

using gridblock average values in dual-porosity simulation will introduce some error to 

the solutions (Sarma 2003). To solve this, the matrix blocks may be required to further 

divided into sub-grid blocks to obtain a better definition of saturation distribution. 

However, this will increase the computational work dramatically, which may not be 

necessary.  
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Gilman and Kazemi (1983) continued to improve the dual porosity model by 

adding an upstream weighting factor   in their transfer function. 

       
maffmamamf DPDPVk    1 (2.9) 

where 1  if flow is from matrix to fracture, = 0 if flow is from fracture to 

matrix. The shape factor is calculated using the same formula as in Kazemi’s model. 

They noticed that the upstream weighting might not be appropriate, since saturation 

distributions cannot be found within the matrix block.  

They’ve also noticed that within a given gridblock, the fluid height for the 

fractures and matrix may not be the same. Therefore, the term gK was introduced to 

account for gravity forces in matrix-fracture fluid exchange. 

gfma KzDD                                                                                           (2.10) 

Here gK is a coefficient with a range from –0.5 to +0.5. By doing so, they made 

the gravity term saturation dependent. However, the use of phase density instead of 

density contrast makes the gravity term equal to zero, which is another shortcoming of 

this transfer function. 

Thomas, Dixon and Pierson (1983) provided another version of the 

matrix/fracture transfer function in three-dimensional, three-phase dual porosity model, 

where the transfer function accounts for capillary pressure, gravity, and viscous forces. 

To include the effect of gravity forces, they used pseudo relative permeability and 

capillary pressure curves for both the matrix and fracture systems. However, the flow 

between fracture cells is calculated by using input capillary pressure curves. The effects 
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of pressure gradient across the matrix block and gas diffusion from saturated fracture to 

under-saturated matrix on matrix/fracture flow were represented by an extra source term 

in the transfer function.  

In their model, the transfer term was defined as, 

 fm

m

b
rmf PP

B

kV
k 















 001127.0                                               (2.11) 

The value of shape factor in their single matrix block study was found to be 

process dependent and different from the one calculated using Warren and Root or 

Kazemi formula. An excellent agreement was achieved between the recoveries from the 

dual porosity model and the fine-grid model, when the shape factor equals to 25 (1 ft 

block) and 0.25 (10 ft block) in water/oil imbibition case, while equals to 2.0 (1 ft block) 

and 0.02 (10 ft block) in gas/oil case. These observations indicate that the Warren and 

Root and Kazemi formulas of shape factor lack in generality.  

For fluid flowing from fracture to matrix, special considerations are given to 

upstream relative permeability which is maintained at matrix rmk  corresponding zero 

cP , because flow is controlled by matrix properties. The matrix rmk  is multiplied by 

water saturation in fracture to account for fact that only the matrix blocks below the 

fracture water level will undergo imbibition. 

  wfPrwrw skk
C 0

                                                                                          (2.12) 

And for oil relative permeability: 

  ofmrwro skk                                                                                         (2.13) 
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Gas relative permeability is calculated as: 

  gfSSrgrg Skk
wcorg )1( 

                                                                            (2.14) 

For fluid flow from matrix to fracture, matrix/fracture transfer function is 

evaluated using unaltered matrix relative permeability and capillary pressure values. 

From their study, they concluded that the rate of recovery of oil and gas from a 

fractured reservoir was influenced by block size, wettability, and pressure and saturation 

history.  

Further inclusion of the pressure gradient in matrix/fracture transfer function is 

defined as, 

f

B

c
mmf P

L

L
PPq    )(                                                               (2.15) 

where  = oil, water, BL = distance over which P  acts, cL = characteristic 

length. 

Quandalle and Sabathier (1989) pointed out that the viscous forces, gravity 

forces and capillary forces in the matrix/fracture mass exchange are not equally affected. 

So they used three “flow coefficients” ( c , g and v ) to adjust their relative effects on 

matrix/fracture transfer function by the following expression at point x+ : 

    ofcomaccffxvfmaxxxmax PPPPPPK    

 2       (2.16) 

Equivalent formulas can be applied to the transfer function at points x-, y+, y-. 

However, at point z- the formula should include gravity forces: 
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where ggfoofwwf SSS  *
, and shape factor is defined the same as that 

given by Kazemi et al.(1976) . An equivalent formula can be substituted for mass 

transfer at point z-. 

However, they haven’t given expressions for those three coefficients, which 

prohibits its further application in dual porosity simulator. For flow from fractures to 

matrix, they found that special consideration should be given to evaluate upstream 

relative permeability the same as in Thomas’s model. They also pointed out that in the 

low fracture permeability case, the viscous effects in the transfer functions cannot be 

neglected. 

Lim and Aziz (1995) derived the equation of matrix/fracture shape factor, which 

accounts for the transient pressure change in the matrix instead of making the pseudo-

steady state assumption. Since the pressure diffusion dominates the flow mechanisms 

within matrix blocks, the single-phase shape factor was obtained by combining the 

analytical solutions of the pressure diffusivity equation with the mass balance equation 

of the matrix block. The single-phase matrix/fracture transfer function can be expressed 

as: 

)(
2

2

fm pp
k

L
q 




                                                                                  (2.22) 
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Here, the resulting shape factor is 2

2

L


for one set fracture, 2

22

L


for two sets of 

fractures, and 2

23

L


for three sets of fractures. 

It has been noted that although the derivation of shape factors is obtained without 

the assumption of pseudo-steady state, their shape factor equation is not accurate at early 

times as well due to the exponential approximation of the pressure diffusion solution 

they made in the derivation. 

Even though significant progress has been made towards generating suitable 

matrix-fracture transfer functions in dual-porosity models, there are hardly any studies 

on transfer functions taking into consideration of vugs. This dissertation is an attempt to 

investigate the interaction between matrix, fractures, separate vugs and connected vugs 

with the final objective of understanding the complex mechanisms controlling the mass 

transfers to achieve transfer functions more representative of the naturally fractured, 

vuggy reservoirs. 

 

2.2  Simulation Models for Naturally Fractured, Vuggy Reservoirs 

The commonly used methods for modeling fluid flow through fractured, vuggy 

rock include: (1) dual-porosity models (Kossack et al., 2001, 2006), (2) multiple-

continuum models (Abdassah and Ershaghis, 1986; Liu et al., 2003; Camacho-

Velazquez et al., 2005; Wu et al., 2006), and (3) explicit discrete fracture-vug and matrix 
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models (Carlson et al., 1993, Parney et al., 2000, DeGraff et al., 2005, Dershowitz et al., 

2007, Gulbransen et al., 2009, He et al., 2015).   

Kossack, et al (2001, 2006) presented a numerical scale-up technique that creates 

a composite capillary pressure curve and a composite relative permeability curve, which 

incorporate the behavior of vugs in matrix system, to be incorporated in a dual porosity 

simulator, in order to give the same oil recovery as in fine-scale model. However, the 

highly heterogeneous nature makes vuggy media so unique that it cannot be incorporated 

into matrix porosity system. 

A triple-continuum model was initially proposed by Abdassah and Ershaghis 

(1986) for the purpose of describing the anomalous slope changes in well tests of 

fractured reservoirs that could not be explained using dual-porosity models. Liu et al. 

(2003) later modified the triple-continuum model to describe single-phase fluid flow in 

fractured lithophysal reservoirs that contain fractures, rock matrices, and cavities.  In 

their model, the shape factors for all three interporosity flows were evaluated using the 

Warren-Root pseudosteady-state model, the same as that utilized by Abdassah and 

Ershaghis (1986). Yu-Shu Wu et al. (2006) developed a triple-continuum conceptual 

model to study the multiphase flow behavior through vuggy fractured reservoirs. In their 

conceptual model, a great number of small or isolated cavities are included in the matrix 

system, while the vug system represents larger cavities that are directly or indirectly 

connected to overall fracture network through small fractures. However, the fracture-

vug-matrix transfer functions in their model are just a general extension of matrix-

fracture transfer function, without taking into consideration of the unique petrophysical 
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nature of vugs. Clearly, there is a strong demand to accurately model fractured, vuggy 

reservoirs based on the physics of the interaction among different porosity systems.  

There have been some studies on using explicit discrete fracture-vug and matrix 

models to describe the flow behavior of naturally fractured, vuggy reservoirs. However, 

in those models, the number of grid blocks is too large for computers to handle, and 

therefore, flow problems may become computationally intractable for large scale models 

(Gulbransen et al., 2009). Arbogast et al. (2006) predicted that Darcy’s law could be 

applied to the macroscopic modeling of naturally fractured, vuggy reservoirs over large 

scales. But, some type of upscaling is needed to emulate the flow behavior in the vugular 

heterogeneous porous media (Popov et al., 2007). Most upscaling techniques used 

effective macroscopic permeability that is derived through solving the mathematic 

models on the microscale within an upscaling coarse block (Arbogast et al., 2006, Popov 

et al., 2007, Gulbransen et al., 2009, Yan et al., 2013, 2015). 
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CHAPTER III 

MATRIX-VUG TRANSFER FUNCTION 

 

We have through the previous two chapters motivated the need for appropriate 

transfer functions to describe interporosity flows in the triple-continuum model. This 

chapter focuses on the fluid exchange between matrix and vug. It starts with an 

introduction of the conceptual models used in this study, follows by the development of 

the shape factor equation of single-phase flow, and ends up with a complete definition of 

the two-phase matrix-vug transfer function. 

 

3.1  Conceptual Models of Fractured, Vuggy Formation 

Naturally fractured, vuggy formation consists of multi-scale fractures, low 

permeability matrix, and spatially varying vugs. Vugs, which are void spaces created by 

diagenesis, can be a significant resource of hydrocarbon reserves. Depend on their 

location and connectivity to the overall fracture system, vugs are usually classified into 

two groups- isolated vugs and connected vugs. Isolated vugs are defined as vugs that is 

interconnected only through matrix. Most of them are small-sized vugs with diameters 

from millimeters to centimeters. Connected vugs are defined as vugs that are directly or 

indirectly connected to the global fracture network through small fissures or micro-

fractures (Lucia, 1999, Jennings et al., 2001).  

CT scans of the vuggy rock (Fig. 3.1) show a random distribution of isolated 

vugs at core scale. As we can see, vugs vary in size, shape and number within a certain 
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distance. Fig. 3.2 shows the typical characteristics of fractured, vuggy reservoirs at field 

scale, with an overview of the complex connection between fractures, matrix and vugs of 

various sizes. Yu-Shu Wu (2006) conceptualized the fractured, vuggy formation as a 

multi-continuum system which consists of fractures, vugs, cavities and matrix in Fig. 

3.3. Based on the unique features of fractured, vuggy rock shown in core and outcrop 

images, several conceptual models are established in Fig. 3.4. In those models, vug 

number and distribution are assigned randomly in matrix blocks. Fractures that 

connected to vugs vary in number and location with respect to the direction of the fluid 

flow (pressure gradient). For real reservoir models, the distribution and connectivity of 

vugs with respect to fractures may be determined by geo-statistical method. 

The following discussions are only based on the models with isolated vugs, since 

this chapter only considers the mass transfer between matrix and vug. Oil in isolated 

vugs must first move to the matrix and then though matrix flow into the overall fracture 

system. 
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Fig. 3.1—Slide images of vuggy cores segments (Ricardo et al. 2000) 

 

 

Fig. 3.2—Outcrop image of carbonate formation (Yu-Shu Wu et al, 2006) 
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Fig. 3.3—Schematic of a multiple-continuum system used to describe 

fractured, vuggy formation (Yu-Shu Wu et al, 2006). 

 

              

(a) Vug isolated from the global fracture network 

             

(b) Vug connected to the global fracture network 

Fig. 3.4—Schematic of the conceptual models designed to be representative 

of fractured, vuggy rock 
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There has been some theoretical studies on modeling fluid flow through naturally 

fractured, vuggy reservoirs. And the practical and efficient approach to model such 

reservoirs has been through a triple-continuum model, where long-range fractures, low 

permeability matrix, random distributed vugs (isolated or connected to overall fracture 

network) are treated as three different continua with different petrophysical 

characteristics. The fracture system provides the path for global fluid flow, while vuggy 

and matrix continua mostly contributes to the fluid storage. Each porosity system 

interacts independently with the other two porosity systems. And the interporosity flows 

among them are represented by transfer functions. As illustrated in Fig. 3.5, in this 

study, 12×12×12 fine-grid blocks are upscaled into one coarse cell which has fracture, 

matrix and vug blocks superimposed on each other and located at the center of the coarse 

cell. In the following sections, we will propose appropriate transfer functions to describe 

the flow between matrix system and vug system as well as the flow between fracture 

system and vug system. 

 

                

Fig. 3.5—Schematic of fine-grid model vs. triple-continuum model from 

simulation perception 
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3.2  Single-phase Matrix-vug Transfer Function 

3.2.1 Mechanisms of Single-phase Mass Transfer 

For single-phase flow, the mechanisms of mass transfer between matrix and vug 

include fluid expansion and viscous displacement. In most cases, fluid expansion will be 

the dominating mechanism. 

General form of single-phase matrix-vug transfer function is given as: 

)( mvmv

k



                                                                                         (3.1) 

Here,  is shape factor, also called geometric shape factor, account for the 

geometric part of interporosity flow behavior. The general form of shape factor for 

matrix and fracture transfer function is given by 2/ La , where a  is a constant that has 

been given different values in various dual porosity models discussed in the previous 

chapter. The formula of shape factor in matrix-vug transfer function will be developed in 

next section. 

3.2.2 The Effect of Vug Spatial Variation 

Vugs in conceptual models vary in size, shape and distribution. This spatial 

variation affects the flow behavior when initial oil in vugs flows into outside matrix. 

Therefore, different concept models of vug filled matrix blocks (surrounded by fractures 

on all sides) were generated to study the effect of vug spatial variation on fluid flow 

behavior.  

First, fine-grid, single porosity models with vug fraction increased from 3.20% to 

20.00% were built to evaluate the effect of vug fraction on oil recovery from vugs. See 
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Fig. 3.6 for the representation of fractures, matrix and vugs in fine-grid model, where 

blue area represents the vug, and red area represents matrix, which is surrounded with 

fractures on all the six sides. Subjected to the same pressure drawdown, the oil recovery 

curves corresponding to five different vug fractions are plotted in Fig. 3.7. As can be 

seen, for a reservoir with lower vug fraction, the oil recovery rate is faster. Therefore, 

vug fraction should be taken into consideration when investigating the mass transfer 

between matrix and vug. 

 

                                  

Fig. 3.6—X-Z cross-section of fine-grid, single porosity simulation model 

with the increase of vug fraction (blue areas correspond to vugs) 

 

 

 

 

Increase vug 

fraction 
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Fig. 3.7—Total oil recovery vs. time from fine-scale simulation: sensitivity to 

vug fraction 

 

In the next step, with the same vug fraction, vug number is increased from one to 

maximum (the maximum number is reached by dividing the vug pore volume by fine-

grid block volume) to study its effect on flow behavior. Fig. 3.8 shows the designed 

simulation models that have the same vug fraction but different vug number, which also 

gives different vug size. The result in Fig. 3.9 shows that as the vug number increases, 

the rate of oil recovery increases. A clear difference between the oil recovery curve of 

single-vug case and two-vug case is observed in Fig. 3.9, while the oil recovery curve of 

two-vug case is very close to the one has maximum vug number. So in the next section, 

three different scenarios - single-vug, two-vug, and vugs of maximum number - are 

investigated separately. Any vug numbers fall within two to the maximum number, we 

use average to get the shape factor value. 
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Fig. 3.8—X-Z cross-sections of fine-grid, single porosity simulation models 

with increased number of vugs 

 

 

(a) Vug fraction = 3.20% 

Fig. 3.9—Total oil recovery from fine-grid, single porosity models: 

sensitivity to number of vugs 
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(b) Vug fraction = 5.60% 

 

 

(c) Vug fraction = 8.00% 

      Fig. 3.9—Continued 
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(d) Vug fraction = 10.4% 

      Fig. 3.9—Continued 

 

3.2.3 Shape Factor 

Coarse models are built on a commercial reservoir simulator where fractures, 

matrix, and vugs are considered as three different flowing systems. The porosity and 

permeability were adjusted so that the matrix block, fracture block and vug block in the 

coarse model have the same pore volume and flowing capacity as in the fine-grid model. 

By changing the value of shape factor, a good agreement between the fine-grid model 

solutions and the coarse model results is obtained. An example is shown in Fig. 3.10. As 

mentioned in last section, cases with different vug numbers - single, two and the 

maximum number - are discussed separately, each with realizations of various vug 

fractions and grid block sizes. The history matching results for single-vug case are 

summarized in Table 3.1. A correlation of the shape factor with 2

1

x

v
L

F  for single-vug 

case is plotted in Fig. 3.11.  
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Fig. 3.10—Total oil recovery vs. time of the fine-grid, single porosity model 

matching with the tripe-continuum model (vug fraction=10.4%) 

 

Table 3.1—Shaper factor for cases with different vug fraction and grid 

block size (single-vug case) 

Vug fraction Lx 1/Lx/Lx Fv/Lx/Lx Shape Factor 

0.032 3 0.11 0.00351 0.33 

0.032 4 0.06 0.00198 0.19 

0.032 5 0.04 0.00127 0.12 

0.032 8 0.02 0.00050 0.045 
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0.128 5 0.04 0.00504 0.455 

0.144 5 0.04 0.00569 0.55 

0.16 5 0.04 0.00630 0.59 

0.2 5 0.04 0.00786 0.75 

0.23 5 0.04 0.00912 1.00 

0.302 5 0.04 0.01192 1.40 
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Fig. 3.11—Shape factor vs. 2

1

x

v
L

F  (single-vug case) 

 

As can be seen, two points with vug fraction greater than 20% deviate from the 

straight line, so the developed shape factor equation only apply to the vug fraction less 

than 20%, which is applicable, since most vug fractions in literature were found to be 

less than 20%. By eliminating these two points, a linear relationship between shape 

factor and 2

1

x

v
L

F can be reached at 

2

1
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F                                                                                                      (3.2) 

Fig. 3.12 shows the linear relation between shape factor and 2

1

x

v
L

F within 20% 

vug fraction for single-vug case.   
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Fig. 3.12—Shape factor vs. 2

1

x

v
L

F  within 20% vug fraction (single-vug case) 

 

Following the same procedure, Fig. 3.13 shows the linear relation between shape 

factor and 2

1

x

v
L

F  for two-vug case.  And after linear regression, the shape factor for two-

vug case can be expresses as: 
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Fig. 3.13—Shape factor vs. 
2

1

x

v
L

F  (two-vugs case) 

 

Fig. 3.14 shows the linear relation between shape factor and 2

1

x

v
L

F  for the case 

with maximum number of vugs.  Linear regression is used to get the shape factor 

equation for the case with maximum number of vugs as: 
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Fig. 3.14—Shape factor vs. 
2

1

x

v
L

F  (case with maximum number of vugs) 

 

As can be seen, the coefficient in the shape factor equation increases as the 

number of vugs in the representative model increases. That’s because the contact area 

between matrix and vug increases with the increase of the number of vugs in the 

representative model. These linear correlations developed on the basis of history 

matching allows the estimation of the shape factor in single-phase matrix-vug mass 

transfer. 
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vuggy reservoirs on the coarse scale. This section will propose a well-designed process 

to develop the matrix-vug transfer function. The whole process is conducted on a 

commercial reservoir simulator.  

First, a three dimensional two-phase fine-scale, single porosity simulation model 

is introduced to provide a benchmark for triple continuum models. In this model, a vug 

filled matrix block 5.0 feet cube is divided into 10×10×10 grid blocks. After adding 

fractures of 0.01 feet thickness on all six sides of the matrix block, the model has 

12×12×12 grid blocks. See the left part of Fig. 3.15 for the cross-section of this 3D fine-

grid model. The porosities of matrix, fractures, and vugs are assigned as 06.0m , 

0.1f , and 0.1v  respectively. And the permeabilities of matrix, fractures, and 

vugs are assigned as mDkm 1.0 , mDk f 5000 , and mDkv 20000  

respectively. Matrix relative permeability curve and capillary pressure curve are shown 

in Fig. 3.16 and Fig. 3.17. Straight-line relative permeabilities and zero capillary 

pressure are assigned to the fractures and vugs. The number of vug grid blocks should be 

corresponding to the vug fraction which is varied by cases from 3.2% to 20.0%. Special 

attention should be given to the locations of vug grid blocks which is required to be 

isolated by matrix grid blocks from fractures, because here we only consider isolated 

vugs. At the top and bottom of the representative model, additional layers of fracture 

grid blocks are added for well connections. Twelve water injection wells, with twelve 

connections each, are located on the bottom fracture grid blocks. The injection rate can 

be vary to give a different pressure gradient across the representative model. Twelve 
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production wells are placed on the top of the model. Bottom-hole pressure is maintained 

at 4700 psi. Initial reservoir pressure is 4800 psi. The oil recovery as a function of time 

was recorded until the time when maximum oil recovery is reached.  

Next, a triple porosity simulation model of factures, matrix and vugs should be 

established to match the results of the fine-grid model. This model represents factures, 

matrix and vugs using three grid blocks superimposed on each other shown in the right 

part of Fig. 3.15. The porosities of fracture, matrix and vug grid blocks are recalculated 

to match the corresponding pore volumes in the single porosity, fine-grid model. An 

injection well and a production well should be placed on the extra fracture grid blocks 

which are on the top and bottom of the representative cell. These two wells run under the 

same schedule as they were in the fine-grid simulation. The total oil recovery is recorded 

and compared with the one got from the single porosity, fine-grid model. The goal here 

is to create a pseudo capillary pressure for the vug system so that the triple continuum 

model can match the results of the fine-grid model. 

Finally, models of different vug fractions and distributions are created, and then 

the procedure is repeated until all the models have been matched. The final form of 

matrix-vug transfer function will be given by summarizing the pseudo capillary pressure 

of vug system for all models. 
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Fig. 3.15—Schematic of the simulation process with cross-sections showing the fine-

grid model and the corresponding coarse model 

 

 

Fig. 3.16—Relative permeability curve for matrix rock 
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Fig. 3.17—Capillary pressure curve for matrix rock 

3.3.2 Two-phase Matrix-vug Mass Exchange Mechanisms 

The mass transfer mechanisms of a triple continuum model with multiphase flow 

include viscous force, capillary force, gravity, fluid expansion and mass diffusion. For 

oil-water cases, the diffusion of components from one phase to another can always be 

neglected (Kossack et al. 2001). The dominant forces for most naturally fractured, vuggy 

reservoirs are viscous force, capillary force and fluid expansion. Gravity may have a 

great influence on mass transfer for some cases. Next, we will discuss how these forces 

work together to displace oil from vugs. We will also investigate the sensitivity to the 

following parameters: wettability, density difference, vug shape, pressure gradient, and 

minimum capillary pressure. This choice is no arbitrary, as these parameters correspond 

to the magnitude of forces acting on the fluid exchange. 

Fractures, matrix and vugs are initially saturated with oil. As water injected into 

the system, the invasion of fractures by water happens very fast due to the high 
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permeability of fracture system, and then water starts flowing into matrix and replacing 

oil from the matrix system. When the water saturation in matrix reaches a certain level, 

water starts entering into vugs from side or bottom matrix grid blocks or both as 

illustrated in Fig. 3.18.  

 

                        

     Fig. 3.18—Saturation profile of the fine-grid, single porosity representative 

model in the early times 

 

In water wet cases, the capillary pressure will oppose the fluid exchange between 

matrix and vugs. However, the effect of capillary force will decrease as the water 

saturation in matrix increases. In the lower part of vugs, the pressure of vug grid blocks 

are always lower than the pressure of their surrounding matrix grid blocks, contributing 

to the mass exchange between matrix and vugs. The gravity force acts as a driving force 

in oil displacement from vugs. 

In oil wet cases, the capillary pressure will help drive water from matrix into 

vugs. And as the production time goes on, the capillary force increases, becoming the 
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dominating force in the later times. In the early times, the pressure of lower part of vugs 

is less than its surrounding matrix grid blocks. But as the water saturation of vugs 

increases, that pressure increases and finally becomes higher than the pressure of its 

surrounding matrix grid blocks. The gravity force works in the favor of an upward 

displacement of oil in vug system. 

In mix wet cases, capillary pressure will inhibit the fluid exchange between 

matrix and vugs in the early times, and later contribute to the oil displacement in vugs. 

The change of pressure difference between vug grid blocks and surrounding matrix grid 

blocks are following the same trend as in oil wet cases. The gravity force drives the oil 

displacement from vugs. A comparison of the average pressure of vug system and matrix 

system in water wet, oil wet and mix wet cases is shown in Fig. 3.19. 
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(a) Water wet                                                (b) Oil wet 

 

 

                               (c) Mix wet 

Fig. 3.19—Comparison of the average pressure of vug system and matrix system 

 

Effect of wettability 

As shown in Fig. 3.20, the final recovery of the water wet case is the highest 

among three different wettability cases, because it has the highest water saturation in 

matrix, and oil can be recovered 100% from vug system in all the three cases. In the 

early times, water can easily flow into matrix in the water wet case, so oil recovery is 

higher than those in oil wet case and mix wet case. However, because capillary force 

acts as a counterforce to fluid exchange in the water wet case, the oil recovery rate is 
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slower than the other two cases, resulting in oil recovery falling below the other two 

cases at the intermediate times. At the end, the final oil recovery of water wet case will 

reach the highest again.  

 

(a)Water saturation in matrix system                       (b) Total oil recovery  

Fig. 3.20—Sensitivity to wettability 

 

Effect of fluid density difference 

As shown in Fig. 3.21, the final recovery of the case with oil density of 31.8 

lb/ft3 is slightly higher than those of 47.2 lb/ft3 and 56.8 lb/ft3.  Because the case with 

higher density difference has a larger gravity force that helps to drive the water from 

fracture into matrix, and with the increase of matrix water saturation, capillary pressure 

will rise to help drive the water into vugs. On the other hand, gravity force that helps to 

displace oil in vug system will also increase due to the density difference. But as we 

calculate the gravity force using Equation (3.5), the value turns out to be very small in 

this case, which corresponding to the results shown in Fig. 3.21. 

HggP cg  /                                                                                        (3.5) 

Here, )/(0069444.0/ 22 inlbftlbgg c  . 
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Fig. 3.21—Sensitivity to density difference 

 

Effect of vug shape 

When the vug number per coarse cell increases, the vug size becomes smaller. 

See the different vug shapes in Fig. 3.22. As show in Fig. 3.23, the bigger vug shape 

with higher vug height leads to a higher oil recovery. This is mainly caused by the fact 

that the pressure difference across the vug increases when the vug height (more 

accurately, the vug length along pressure gradient) increases.  

 

                                          

Fig. 3.22—Cross-section of models with different vug shape 
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(a) Vug fraction of 3.21%                           (b) Vug fraction of 10.39% 

Fig. 3.23—Sensitivity to vug shape (represented by vug height) 

 

Effect of injection rate  

As shown in Fig. 3.24, oil recovery becomes faster as the injection rate increases, 

because the pressure gradient across the vug is higher for cases with higher injection 

rate. 

 

 

Fig. 3.24—Sensitivity to injection rate 
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Effect of capillary pressure 

Four capillary pressure curves with different minimum values are displayed in 

Fig. 3.25. Fig. 3.26 shows total oil recovery curves corresponding to the four capillary 

pressure curves. Among them, the case with the lowest value of minimum capillary 

pressure shows the lowest oil recovery rate. Because in the case with lower capillary 

pressure, water in the vugs, instead of going upwards，tends to flow back to the matrix. 

 

  

Fig. 3.25—Capillary pressure for matrix rock 
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Fig. 3.26—Sensitivity to capillary pressure 

 

According to the sensitivity analysis results, conclusions can be summarized as 

listed below. 

1. The fluid exchange between matrix and vug is largely affected by rock and 

fluid characteristics and saturation history. For matrix with different 

wettabilities or capillary pressure curves, the transfer functions between 

matrix and vug should be different.  

2. Gravity has a minor effect on mass exchange between matrix and vugs. 

However, this may not be the case for vugs with significant heights.  

3. As the pressure gradient increases, the viscous force acting on the fluid 

exchange between matrix and vugs increases, which helps to enhance the 

speed of oil displacement from vug system. 

4. The developed matrix-vug transfer function should incorporate all the 

mechanisms discussed above. 
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3.3.3  Dynamic Matrix-vug Transfer Function 

For two-phase, 3D flow in triple porosity reservoirs, the mass balance equation in 

fracture domain can be expressed as 

   
fffvmfff S

t
qDpT  




 )(  (3.6) 

In matrix domain, 

   mmmvmfmm S
t

DpT  



 )(  (3.7) 

In vug domain, 

   vvfvmvvv S
t

DpT  



 )(   (3.8) 

Here,  is the phase (= oil or water), mf , mv  and fv  are the mass transfer 

terms between three flowing domains. In this section, only isolated vugs are considered, 

so 0fv . 

The transfer function between matrix and vug can be expressed as: 

)( mvmv

k



 (3.9) 

In Quandalle&Sabathier (1989) transfer function, three “flow coefficients” ( c ,

g and v ) were used to adjust the relative effects of three active forces (viscosity,

gravity, and capillarity) on fluid exchange between matrix and fracture. An extension 

was made to describe the transfer function between matrix and vug by replacing the 
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potential term with forces acting on matrix/vug fluid exchange. At point x+, the fluid 

exchange can be expressed as 

    omccmxmxvvmxxxmx PPPPPK    

 2                                   

(3.10)  

Equivalent formulas can be applied to describe fluid exchange at point x-, y+ and 

y-, while at point z+ (or z-), the fluid exchange formula is given as 

 
    









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
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mzmzvvm

zzzmaz
Plglg

lgPPPP
K











2/)2/(

)2/(
2

*                  (3.11) 

Here, oovwwv SS  *
 . 

A simplification was made on this transfer function by introducing a pseudo 

capillary pressure for vug system. The simplified transfer function is expressed as 

)()( _ mvcapvmmmvmmmv PPPkk                     (3.12) 

A comparison of these two transfer functions shows that, the developed pseudo 

capillary pressure should account for the viscous force and gravity force in fluid 

exchange. Fig. 3.27 shows a good matching results of oil recovery from the fine-scale 

simulation model and the triple-porosity, coarse simulation model, by adding a pseudo 

capillary pressure for vug porosity system (Table 3.2). 
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Fig. 3.27—Oil recovery vs. time for fine-grid, single porosity simulation and 

triple porosity simulation 

 

Table 3.2—Pseudo capillary pressure for vug system 

SW KRW KROW PCWO 

0 0.000 1.000 5.5 

1 1.000 0.000 5.5 

 

It is observed that the value of pseudo capillary pressure of vug system is 

constant. To determine its value, we design models with various vug fraction, vug 

distribution and injection rate. The choice of these variables is no arbitrary, since these 

parameters will influence the effects of viscous force and gravity force on fluid 

exchange. For each model, we change the value of pseudo capillary pressure of vug 

system to match the results from corresponding fine-grid, single porosity simulation. 

Results are listed in Table 3.3. Noted that all these cases are mix wet models with the 

same matrix relative permeability curve and capillary pressure curve.  
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Table 3.3—Pseudo capillary pressure of vug system for various models 

Vug 

Fraction 

 LP  /  Height No. of 

vugs 

CSA Pcap_vug 

0.032  2.475 2.00 1 3.00 4.50 

0.056  2.475 2.00 1 5.00 4.25 

0.080  2.475 3.00 1 6.00 5.80 

0.104  2.475 3.00 1 8.00 5.50 

0.128  2.475 3.00 1 9.00 5.80 

0.160  2.475 4.00 1 10.00 7.50 

0.199  2.475 3.00 1 13.00 5.30 

0.031  2.475 0.50 32 0.25 1.50 

0.055  2.475 0.50 56 0.25 1.25 

0.079  2.475 0.50 80 0.25 1.15 

0.102  2.475 0.50 104 0.25 0.90 

0.126  2.475 0.50 128 0.25 0.85 

0.031  2.475 1.00 2 2.00 3.00 

0.055  2.475 1.50 2 2.25 3.60 

0.079  2.475 2.00 2 3.00 4.00 

0.103  2.475 3.00 2 3.00 6.00 

0.126  2.475 3.00 2 4.00 5.50 

0.080  3.473 3.00 1 6.00 12.50 

0.080  4.531 3.00 1 6.00 19.00 

0.080  5.549 3.00 1 6.00 24.50 

0.080  6.567 3.00 1 6.00 29.50 

0.104  3.473 3.00 1 8.00 12.00 

0.104  4.531 3.00 1 8.00 17.50 

0.104  5.549 3.00 1 8.00 23.50 

0.104  6.567 3.00 1 8.00 29.00 

0.128  3.473 3.00 1 9.00 12.00 

0.128  4.531 3.00 1 9.00 17.00 

0.128  5.549 3.00 1 9.00 23.00 

0.128  6.567 3.00 1 9.00 29.00 

 

The multiple regression is applied on the history matching results, and indicates 

that the number of vugs per coarse cell and the cross section area of vug hardly have any 

impact on the value of psudo capillary pressure of vug system. As a result, the equation 

of pseudo capillary pressure of vug system in two-phase matrix-vug transfer function is 

expressed as: 
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DFC
L

P
BHAP vvugvcap 




_

                                                     (3.13) 

Here, vugH  is the vug length along the direction of pressure gradient 
L

P




, vF  is 

the vug fraction, A, B, C, D are constants that influenced by wettability, matrix capillary 

pressure, fluid density and so on. In this case, A = 2.00, B = 5.63, C = -7.22, D = -13.19. 

To obtain the equation of pseudo capillary pressure for vug system, engineers 

should follow the process that described in Section 3.3.1 with basic petrophysical 

parameters of the interested reservoir at hand. 

CPU computation time of the triple porosity simulation is shown to decrease 

significantly compared to that of fine-scale simulation.  

 

3.4  A Novel Upscaling Method 

As shown in Fig. 3.28, the triple porosity, coarse model tends to underestimate 

the oil recovery from fine-grid, single porosity model at later times. This is caused by 

numerical dispersion when upscaling 1000 fine grid blocks into one coarse grid block. 

Here we use a simple homogeneous model which only contains high permeability 

fracture grid blocks to illustrate the upscaling effect, which leads to the coarse model 

solution deviating from the solution of fine-grid model. The fine-grid model and 

upscaled coarse model are shown in Fig. 3.29. The water saturation in the top grid block, 

which is highlighted in Fig. 3.29, as a function of time are compared for these two 

models. Results shows a big difference between these two water saturation curves in Fig. 

3.30. 
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Fig. 3.28—Oil recovery vs. time for fine-grid, single porosity simulation and 

triple porosity simulation (purple circle shows the deviation) 

 

      

Fig. 3.29—Cross-section of homogeneous fine-grid model vs. coarse model 
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Fig. 3.30—Average water saturation in target grid block 

 

To minimize the upscaling effect on coarse model, we proposed a 

transmissibility multiplier table for matrix system, which multiply the matrix 

transmissibility by specified constants as matrix water saturation increases. As we can 

see from Fig. 3.28, the difference between solutions from fine-grid model and coarse 

model exists in later times, so we only add multipliers to the matrix system beyond 

certain value of matrix water saturation, shown in Table 3.4. 

Table 3.4—Transmissibility multiplier table 

Sw-Swin 0 0.01 0.06 0.42 0.62 

TAMULT 1 1 1 2.8 5 

 

The matching result after applying proposed transmissibility multiplier table is 

shown in Fig. 3.31. 
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(a) Vug fraction = 10.4% 

         

(b) Vug fraction = 12.8% 

Fig. 3.31—Comparison of the matching results before (left) and after (right) 

applying transmissibility multiplier table  

 

However, the disadvantage of adding this transmissibility multiplier table is the 

prohibitive computing cost. For example, the CPU computation time of the case with 

vug fraction of 12.8% increases from 60 seconds to 95 seconds after adding the 

transmissibility multiplier table. But it is still desirable comparing to the computation 

time of fine-grid model which takes more than 1 hour. 
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CHAPTER IV 

FRACTURE-VUG TRANSFER FUNCTION 

 

4.1  Model Introduction 

In naturally fractured, vuggy reservoir, the presence of connected vugs can 

increase the reservoir permeability by orders of magnitude (Popov et al. 2007). Inability 

to model the fluid exchange between fractures and connected vugs will lead to a failure 

in the accurate prediction of the reservoir production. Since the fluid exchange between 

fractures and vugs drives the oil recovery in such reservoirs, the triple continuum model 

must incorporate an adequate fracture-vug transfer function.  

Additional fractures are added to the previous conceptual models so that vug is 

connected to the global fracture network. As shown in Fig. 4.1, fractures can be located 

perpendicular or parallel to the fluid flow direction. And the number of fractures that are 

connected to the vug can be varied case by case. Since most of connected vugs are larger 

cavities with sizes of several centimeters in diameter (Yu-shu Wu et al., 2006), only 

representative models with single vug inside are considered in this chapter. 
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(a) Natural fractures perpendicular to the fluid flow direction 

    

(b) Natural fractures parallel to the fluid flow direction 

Fig. 4.1—Cross-section of conceptual models for fractured reservoirs with 

connected vugs 

 

4.2 Mechanisms of Mass Transfer 

As shown in Fig. 4.2, fractures that intersect the upper part of vug provide flow 

path for oil flowing out of vug, while fractures that intersect the lower part of vug offer 

channels for water flowing into vug. Pressure difference is the driving force of this fluid 

exchange. However, in triple continuum models, the pressure of fracture grid block is 

always lower than the pressure of vug grid block, prohibiting water flow into vug. A 

pseudo capillary pressure of vug system is needed in this case to provide a pseudo 

capillary force that allows water flow from fractures into vug. For this reason, we kept to 
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use the pseudo capillary pressure of vug system that obtained from matching the matrix-

vug mass transfer in previous chapter, and by changing the shape factor in fracture-vug 

transfer function, a good match between oil recovery from the triple continuum model 

and the one from single porosity, fine-grid model is achieved. 

    

Fig. 4.2— Saturation profile of the fine-scale model at intermediate times 

 

4.3  Effect of Vug Connectivity 

Vug fraction is proven to have a great impact on fluid exchange between matrix 

and vug, however, whether it will influence the fluid exchange between fracture and vug 

is still unknown. Therefore, cases with vug fractions vary from 8.0%, 10.39% to 12.82% 

are created to investigate the effect of vug fraction on fracture-vug mass transfer. All 

three cases have one fracture connected to the vug at the same location shown in Fig. 

4.3. In addition, they all have the same pseudo capillary pressure of vug system. Good 
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agreements between fine-grid simulation solutions and triple continuum simulation 

solutions are achieved for all three cases at the same shape factor of 0.000009. See Fig. 

4.3 for the matched oil recovery curves. It can be concluded that the value of shape 

factor in fracture-vug transfer function is not depend on vug fraction. This is reasonable 

based on the fact that the contact area between fracture and vug is so small that can be 

treated as a point, and that the pressure difference acting on the fluid exchange is the 

same when fractures are connected to the vug at the same height. 

 

 

(a) Vug fraction = 8.0% 

Fig. 4.3— Oil recovery vs. time for fine-grid, single porosity simulation and triple 

continuum simulation for various vug fraction cases 

 

 

          Fine model 

          Coarse model 
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(b) Vug fraction = 10.4% 

 

 

(c) Vug fraction = 12.8% 

Fig. 4.3— Continued 

 

Since pressure difference is the driving force for fracture-vug mass transfer, the 

way that fractures interact with a vug could influence the value of driving force and thus 

have a significant impact on oil displacement from vug system. To investigate its effect, 
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two representative models, one with a fracture connected the vug at the direction 

perpendicular to pressure gradient (fluid flow direction) and another at the direction 

parallel to pressure gradient, are established. The oil recovery curves corresponding to 

different fracture directions are plotted in Fig. 4.4. As can be seen, the representative 

model that has a fracture perpendicular to pressure gradient is shown to have much 

lower oil recovery rate than the one with a fracture parallel to pressure gradient. 

Sensitivity analysis are performed by varying the number of fractures that connected to 

the vug for both cases. The results show that the oil recovery increases as the number of 

fractures connected to the vug increases (Fig. 4.5 and Fig. 4.6). 

 

 

Fig. 4.4— Effect of the direction at which a fracture connected the vug 
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Fig. 4.5— Sensitivity to the number of fractures (connected to the vug) that 

are parallel to pressure gradient 

 

 

 

Fig. 4.6— Sensitivity to the number of fractures (connected to the vug) that 

are perpendicular to pressure gradient  

 

4.4  Fracture-vug Transfer Function 

The previous section has demonstrated the effect of fracture direction on oil 

recovery. Therefore, two scenarios, one with fractures perpendicular to the pressure 

gradient direction and another parallel to the pressure gradient direction, should be 
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discussed separately. For each scenario, models with various number of fractures 

intersecting the vug and different pressure gradient are designed to determine the 

equation of shape factor in fracture-vug transfer function. By changing the value of 

shape factor, a good agreement can be achieved between oil recoveries from triple 

continuum model and fine-scale model. The matching results of two example cases with 

different fracture directions are shown in Fig. 4.7 and Fig. 4.8.  

 

 

(a) Vug is connected by one fracture                (b) Vug is connected by two fractures 

  
   (c) Vug is connected by three fractures        (d) Vug is connected by four fractures 

Fig. 4.7— Oil recovery vs. time for models with fractures perpendicular to 

the pressure gradient (4.545 psi/ft) 
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(a) Vug is connected by one fracture               (b) Vug is connected by two fractures 

  

(c) Vug is connected by three fractures          (d) Vug is connected by four fractures 

Fig. 4.8— Oil recovery vs. time for models with fractures parallel to the 

pressure gradient (4.545 psi/ft) 

 

Repeat the process mentioned above until all the models have been matched. 

Table 4.1 illustrated the history matching results for cases with fractures perpendicular to 

the pressure gradient. Here, the value of shape factor changes with the number of 

fractures, pressure gradient and pseudo capillary pressure of vug system. 
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Table 4.1—Shape factor for models with fractures perpendicular to the 

pressure gradient direction 

No. of  

fractures 
LP  /  Pcap_vug 

vugcapPLP _//
 

Shape factor 

0.5 2.470356 6.1 0.404976 0.000035 

1 2.470356 6.1 0.404976 0.00014 

1.5 2.470356 6.1 0.404976 0.00018 

2 2.470356 6.1 0.404976 0.0003 

2.5 2.470356 6.1 0.404976 0.0004 

3 2.470356 6.1 0.404976 0.0005 

4 2.470356 6.1 0.404976 0.00068 

5 2.470356 6.1 0.404976 0.00085 

0.5 3.525494 11.5 0.306565 0.00003 

1 3.525494 11.5 0.306565 0.00011 

1.5 3.525494 11.5 0.306565 0.00017 

2 3.525494 11.5 0.306565 0.00024 

2.5 3.525494 11.5 0.306565 0.00031 

3 3.525494 11.5 0.306565 0.00038 

4 3.525494 11.5 0.306565 0.00051 

5 3.525494 11.5 0.306565 0.00063 

0.5 4.545455 17 0.26738 0.00003 

1 4.545455 17 0.26738 0.0001 

1.5 4.545455 17 0.26738 0.000135 

2 4.545455 17 0.26738 0.0002 

2.5 4.545455 17 0.26738 0.00026 

3 4.545455 17 0.26738 0.00033 

4 4.545455 17 0.26738 0.00045 

5 4.545455 17 0.26738 0.00056 

0.5 5.556324 24 0.231514 0.000025 

1 5.556324 24 0.231514 0.00009 

1.5 5.556324 24 0.231514 0.00012 

2 5.556324 24 0.231514 0.00018 

2.5 5.556324 24 0.231514 0.00023 

3 5.556324 24 0.231514 0.00028 

4 5.556324 24 0.231514 0.00037 

5 5.556324 24 0.231514 0.00047 

 

Nonlinear regression is applied to get the equation of shape factor in fracture-vug 

transfer function: 
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B

f

vugcap

N
P

LP
A 




_

                                                                                   (4.1) 

Here, LP   is the pressure gradient, vugcapP _  is the pseudo capillary pressure 

of vug system, fN is the number of fractures connected to the vug, A and B are 

constants, in this case A=1.32, B=2.84*104. 

The underlying reason for this form of shape factor equation may be due to the 

fact that the mass exchange between fracture and vug in coarse model is equivalent to 

the total mass exchange in fine-grid model. 

         vugcapvfv

N

vfv PDPDPkDPDPk
f

_

1

     (4.2) 

For cases that have fractures parallel to the pressure gradient, Table 4.2 

illustrated the history matching results with the shape factor value corresponding to 

different number of fractures, pressure gradient and pseudo capillary pressure of vug 

system. 

Using nonlinear regression approach, the equation of shape factor in fracture-vug 

transfer function can be expressed as: 

CN
P

LP
A B

f

vugcap





_

                                                                              (4.3) 

Here, A=2.13*10-5, B=1.73, C=3.05*10-6 
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Table 4.2—Shape factor for models with fractures parallel to the pressure 

gradient direction 

No. of 

fractures 
LP  /  Pcap_vug 

vugcapPLP _//
 

Shape factor 

0.5 2.470356 6.1 0.404976 0.000005 

1 2.470356 6.1 0.404976 0.000009 

1.5 2.470356 6.1 0.404976 0.00002 

2 2.470356 6.1 0.404976 0.000033 

2.5 2.470356 6.1 0.404976 0.000045 

3 2.470356 6.1 0.404976 0.00006 

4 2.470356 6.1 0.404976 0.000092 

5 2.470356 6.1 0.404976 0.00013 

0.5 3.525494 11.5 0.306565 0.000005 

1 3.525494 11.5 0.306565 0.000009 

1.5 3.525494 11.5 0.306565 0.000015 

2 3.525494 11.5 0.306565 0.000025 

2.5 3.525494 11.5 0.306565 0.000036 

3 3.525494 11.5 0.306565 0.000046 

4 3.525494 11.5 0.306565 0.000071 

5 3.525494 11.5 0.306565 0.000102 

0.5 4.545455 17 0.26738 0.000005 

1 4.545455 17 0.26738 0.000009 

1.5 4.545455 17 0.26738 0.000017 

2 4.545455 17 0.26738 0.000026 

2.5 4.545455 17 0.26738 0.000034 

3 4.545455 17 0.26738 0.000043 

4 4.545455 17 0.26738 0.000065 

5 4.545455 17 0.26738 0.00009 

0.5 5.556324 24 0.231514 0.000005 

1 5.556324 24 0.231514 0.000008 

1.5 5.556324 24 0.231514 0.000016 

2 5.556324 24 0.231514 0.0000245 

2.5 5.556324 24 0.231514 0.000032 

3 5.556324 24 0.231514 0.000039 

4 5.556324 24 0.231514 0.000059 

5 5.556324 24 0.231514 0.000083 
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CHAPTER V 

CONCLUSIONS 

 

This work aims to solve the three challenges mentioned in Chapter 1, and 

provides a unified theory for the use of transfer functions in upscaling fractured, vuggy 

reservoir simulation models. The results developed in this work provide a new practical 

insight to the complex interporosity flow between three very different media in 

fractured, vuggy reservoirs. 

(1) The results of sensitivity analyses show that the oil recovery from isolated 

vugs depends on vug fraction and vug number per coarse gird block. Using 

the fine-grid, single porosity model as a benchmark, and based on the history 

matching results, the equation of shape factor is established and found to be 

linearly correlated to 
2

1

x

v
L

F . For case with different vug number, the 

coefficient of this linear correlation should be different. Those correlations 

developed on the basis of numerous simulation runs allow the estimation of 

shape factor for single-phase matrix-vug mass transfer. 

(2) The dominant mechanisms of multiphase fluid exchange between matrix and 

vug are viscous forces, capillary forces and fluid expansion. Gravity forces 

may play an important role when the vug has a very large height. To 

incorporate all these mechanisms, a pseudo capillary pressure for vug system 
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as a function of pressure gradient, vug height and vug fraction is generated as 

a dynamic matrix-vug transfer function through a well-designed approach. 

(3) A novel upscaling method is proposed to improve the accuracy of triple-

continuum, coarse model by introducing a transmissibility multiplier table as 

another connection term for the transfer function. 

(4) The two-phase fluid exchange between fracture system and vug system 

depends on the number of fractures connected to the vug as well as the 

fracture direction with respect to the pressure gradient, but has little to do 

with the vug fraction. For this reason, cases with fractures perpendicular to 

and parallel to the direction of pressure gradient should be considered 

separately. Following a well-designed procedure, the shape factor in fracture-

vug transfer function as a function of pressure gradient and the number of 

fractures connected to the vug are obtained. Combined this shape factor with 

proposed pseudo capillary pressure of vug system gives the fracture-vug 

transfer function. 

(5) The use of proposed transfer functions in triple-continuum models helps to 

reduce the size of simulation models, improve the computational efficiency 

by orders of magnitude for the simulation of FVRs on the field scale, while 

providing an accurate representation of the fine-scale results. 

(6) Based on the methodology proposed in this research, an easy-to-use tool 

should be developed for reservoir engineers to generate transfer functions 

automatically.  
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