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ABSTRACT 

 In recent years, the acoustic noise emitted by electric motors has become an 

important topic. Many manufactures of adjustable speed drive (ASD) make effort to 

reduce the acoustic noise from electric motors. And low acoustic noise motors can be 

widely applied in the next generation transport system such as electric shipboard, more 

electric aircraft and electric vehicle. Traditionally, LC passive filters can be employed to 

decrease acoustic noise by mitigating the pulse-width modulation (PWM) generated 

voltage/current harmonics in the audible noise range. However, the bulky passive filters 

contribute to additional volume and cannot effectively eliminate harmonics at low 

switching frequency.  

In this thesis, an active output filter (AOF) is proposed to replace passive filters 

in ASD. The proposed AOF is implemented by the harmonic injection strategy, which 

can compensate voltage/current harmonics at the arbitrary frequency. Therefore, the 

acoustic noise, which partly generates from PWM inverter-fed ASD, is decreased 

dramatically. In addition, AOF offers a substantial volume reduction and high power 

efficiency by using wide-band gap devices. In this thesis, two different motor drive 

structures including single-phase ASD, three-phase ASD are investigated to verify the 

advantages of the proposed AOF. 
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1. INTRODUCTION  

1.1 Background 

Electric energy becomes the major source of energy around the word nowadays. 

The estimated electric production of the world increases rapidly every year shown in 

Fig. 1-1. And about 46% of the electric energy is consumed by different motor drives 

[1]. It is obvious that optimization design of motor drive is very significant for electric 

consumption reduction. 

 

 

Fig. 1-1. Annual electric production in the world [2]. 
 

An electric motor is a system that converters electrical energy into mechanical 

energy. Motors power rating is from several hundred watts to several hundred kilowatts. 

Electric motors are always classified according to power source type and operation 

theory as shown in Fig. 1-2. Generally speaking, DC motor is applied for low power area 

and its power efficiency is not very high. On the other hand, AC motor is suitable for 
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high power application and provides high power efficiency. AC motor includes 

synchronous motor and induction motor. Induction motor is more cost-effective than 

synchronous motor and hence, it is widely applied in the electric vehicle, fan, pump and 

so on in the industrial and residential areas.   

 

 

Fig. 1-2. Electric motor categories [3]. 
 

 In order to control the induction motor operation, some induction motor drives 

are developed in recent years. Constant speed drive (CSD) and adjustable speed drive 

(ASD) are both popular drive system for induction motor application.  For CSD, the 

operation frequency is fixed and hence the motor speed cannot be changed. As for ASD, 

the motor speed can be adjusted by controlling the operation frequency, which can 

satisfy modern induction motor requirement.  In addition, ASD system can achieve 

higher power efficiency and improve reliability and robust dynamic performance [4]. 

When a motor is run at half speed, it consumes significantly less energy than it does at 

full speed. 
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1.1.1 Overview of Adjustable Speed Drive 

A typical motor drive system is composed of ASD, induction motor, controller 

and measurement unit, which is shown in Fig. 1-3. 

ASDPower Source Motor

Measurement
Unit

Load

Controller

Fig. 1-3. Motor drive system using ASD 

A detailed ASD shown in Fig. 1-4 includes several power electronics blocks as 

follows: 

• Front end three-phase rectifier

• DC link filter

• Back end 3-phase inverter

• Passive filter

M

Three Phase 
Main Inverter

Three Phase 
Rectifer

Lf

Cf

VLL

Vdc

DC link
Passive Filter

Fig. 1-4. Traditional three-phase ASD system. 
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The frond end three-phase rectifier converts utility AC voltage to DC voltage. 

After DC link filter including the inductor and electrolytic capacitor, the DC link voltage 

can be derived as: 

 32dc L LV V
π −=  (1-1) 

where L LV −  represents line-line RMS voltage. 

 The 3-phase PWM inverter transfers DC voltage to 3 phase AC voltage. The 

output AC voltage amplitude and frequency can be controlled by the inverter. Output 

passive filter is employed to reduce the voltage/current harmonics. The ideal AC voltage 

amplitude can be determined as [5]: 

 , 3
2

a
AN L L dc

mV V− =  (1-2) 

where am  denotes the modulation index. 

Combining (1-1) and (1-2), the output AC voltage amplitude can be expressed as 

the input line voltage. 

 ,
3 6

2
a

AN L L L L
mV V− −=  (1-3) 

 

1.1.2 Need for Low Acoustic Noise in ASD 

The environmental problem related to acoustic noise produced by electric motor 

has been an important topic recently. The sound was defined as the wave motion by 

Helmholtz and others. A sound wave in air comes from variations in pressure above and 

below undisturbed air. There are two widely used measurements to represent sound 
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level: sound intensity and sound pressure [6]. Sound intensity is defined as the sound 

power per unit area. The standard threshold for sound intensity is: 

12 210oI Wm− −=  (1-4) 

             This value corresponds to 0dB. Therefore, the real sound intensity can be 

calculated relative to (1-3). 

10( ) 10log ( )
o

II dB
I

=  (1-5) 

In the practical world, the surrounding environment is vital in shaping the sound 

wave during the transmission. Another measurement sound pressure level (SPL) is 

popular due to the consideration of the surrounding factors. Sound pressure is defined as 

the pressure vibration amount and the standard threshold value is: 

5 22 10oSPL Nm− −= × (1-6) 

Similar with sound intensity, SPL is also described in dB and determined as 

following. Generally, SPL is used to represent how loud the sound is. 

2

10 2( ) 10log ( )
o

SPLSPL dB
SPL

= (1-7) 

Table 1-1 shows the SPL level restriction of common sounds. It is clear heave 

industry such as aircraft, shipboard, submarine exist the severe acoustic noise issue. In 

these applications, acoustic noise is mainly from electric motors. Therefore, designing 

the low acoustic noise ASD system is very attractive. On the other hand, low acoustic 

noise ASD is beneficial to avoid the sonar tracking in shipboard and submarine 

applications. 
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Table 1-1. Sound pressure level of common sounds 
Example of sound SPL (dB) 
Threshold of pain 130 
Vehicle 80 
Open public area 40 
Office 35 
Aircraft  120 
Shipboard  100 
Submarine 130 

1.1.3 Acoustic Noise Sources in Electric Motor 

In order to reduce the acoustic noise in electric motor, it is necessary to figure out 

the sources of acoustic noise as illustrated in Fig. 1-5. Normally, the sources are 

classified into three categories: 

• Mechanics

• Aerodynamic

• Electromagnetic

6 



Fig. 1-5. Noise generation in typical electrical machines. 

This chapter will review these sources in ASD system with induction motor. 

First, the relationship with vibration and noise is introduced. In the induction motor, a 

surface vibrates or moves to induce the disturbance. The movement of these surfaces is 

defined as the vibration. The propagated sound by these surfaces is defined as the 

acoustic noise [7].   

(1) Mechanical Origins 

Some usual mechanical sources include bearings, rotor unbalance, concentricity 

and resonance. Bearings are connection between rotor and stator, which allow the 

displacement of rotor and stator. The bearing effect becomes more significant with the 

speed incensement. Sleeve bearings produce the low magnitude of acoustic noise, while 

rolling ball bearings induce more acoustic noise, especially for low power and small 

induction motor [8]. Main factors affect the bearing vibration are following: (1) 

geometry discrepancies between rolling elements; (2) mechanical resonance frequency 

of the ring; (3) operation temperature; (4) alignment of the shaft.  

Rotor unbalance is another cause of the mechanical vibrations. If the rotor 

winding distribution is not uniform and there is a mismatch between the geometric 

center of the body and gravity center, then the dynamic force is induced to excite the 

vibration during the rotation [9]. Unbalance rotor results from asymmetry structure, 

material uniformities and so on.  

Concentricity of the rotor and stator is important to maintain the uniform 

permeance of the airgap. For induction motor, the radial force is smaller than other 
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motor types, and hence, it is slightly more tolerant to concentricity misalignment. 

Generally, induction motor has several natural resonant frequencies. Resonance 

will occur if the excitation magnetic force frequency matches the natural frequency or 

multiple of it, which results in huge vibration at the resonant frequency [10]. 

(2) Aerodynamic Origins 

 Aerodynamic source results from air disturbance with the motor rather than 

motor vibration. The first part of aerodynamic related noise is the fluctuation of air 

pressure due to rotor rotation, which depends on rotating speed. The second part is from 

periodic fluctuation of air due to resonance excitation, which is independent of rotating 

speed. 

(3) Electromagnetic Origins 

For induction motor, it is necessary to excite the magnetic flux to provide the 

mechanical rotation. No matter which magnetic flux excitation method is used, this will 

induce the vibration in the induction motor, which is mainly located in the air-gap. The 

electromagnetic noise depends on two types of harmonics [11]: 

• Space harmonic: it is related to discretization of stator and rotor winding. 

These harmonic is the function of the stator and rotor slot number and 

distribution. Space harmonic exists even with the pure sinusoidal power 

supply. 

• Time harmonic: it appears in the inverter-fed ASD. For PWM mode ASD, 

this harmonic mainly results from the current harmonic distributed in 

multiples of switching frequency sidebands. 
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1.2 Literature Review 

1.2.1 Analysis and Prediction of Acoustic Noise 

Beginning from the 20th century, researchers has contributed to investigating the 

acousice noise characterazation in the electric motor. In 1950s, Liwschitz Garik 

proposed the calculation methodology for air gap radial magnetic force in the induction 

motor. In 1965, H. Jordan put forward the geometric similarity theory of the motor 

design is not applicable for acousitc noise analysis. Instead of it, spherical radistor 

method is proposed to calculate the acousitc noise for induction motor [12]. In 1981, R. 

S. Girgis  analyzed the natural frequency and pointed out the resonance has the huge 

effect on acoustic noise [13]. In 1989, the acousic noise is  predicted based on vibration 

speed on the motor surface by Z. Q. Zhu[14]. 

From 1970s, with the cimputer technology development, finite element analysis 

(FEA) becomes a popular methodology to analyze the acoustic noise quickly. T. 

Kobayashi compared the acoustic noise for different slot number of the induction motor 

based FEA model [15].  

Recently, more and more acoustic noise analysis and prediction is based on 

experimental results. In [16], A. C. Binojkumar presented the carrier frequency and 

fundamental frequency effect on the acousitc noise in PWM inverter-fed ASD as shown 

in Fig. 1-6. It shows the overall noise level increases dramatically when the resonance 

occurs.  
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Fig. 1-6. Overall noise emmitted by 8-hp motor at various carrier and fundamental frequency 
[16]. 
 

Another emerging method is the acoustic noise imaging technique [17]. In this 

method, a 3D FEA has been modeled to calculate the acoustic noise on the motor surface 

as shown in Fig. 1-7. 

 

 
Fig. 1-7. 3D acoustic imaging for electric motor [17]. 
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1.2.2 Methods to Reduce The Acousitc Noise 

Basically, the asouctic noise can be reduced by optimizing motor design and 

ASD design.  For the motor design, S.R. Huang found oblique slot structure can reduce 

the acoustic noise effecttively [18]. J. L. Besnerais proposed the stator shape design rule 

to avoid the resonance between mechanical structure and PWM generated magnetic 

force [19].  In addition, dynamic rotor balancing methodology which figures out the 

rotor unbalance issue can reduce the acoustic noise from mechanic sources [20].  

 

 
(a) 

 
(b) 
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Fig. 1-8. (a) ASD output voltage and current without passive filter. (b) voltage and current with 
filter [21]. 
 

PWM mode inverter is widely used in the ASD system. The inverter controls the 

voltage to the motor by sending a series of high-voltage pulses to the motor as shown in 

Fig. 1-8(a), which may cause the resonance with the motor. Many manufactures such as 

Danfoss, Belden and Schneider take advantage of passive LC filter to generate the pure 

sine wave voltage shown in Fig. 1-8(b). Since the distortion is eliminated, the related 

acoustic noise is depressed.  However, passive filter still has some drawbacks: 

• A voltage drop is introduced between ASD and motor. 

• Increased cost and size. 

• Because gain is not low enough in low switching frequency as shown in Fig. 

1-9, cannot mitigate the acoustic noise in low switching frequency. 

 

Frequency (Hz)

Ga
in

 (d
B)

fr

 
Fig. 1-9. Transfer function of a typical damped LC filter employed in the 2.1 kHz switching 
frequency induction motor. 
 

Another traditional method is to apply high switching frequency over audible 

frequency range. For the human beings, the audible frequency range is about 20 to 20k 

Hz. However, some disadvantages in this strategy: 
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• Risk of motor insulation damage. 

• High thermal stress. 

• VA rating restriction. 

Recently, random PWM (RPWM) technology is proposed to mitigate the 

acoustic noise, RPWM is a low cost and digital control based strategy. In this strategy, 

the carrier frequency is modulated using the pseudorandom code, which can break up the 

regular tonal spectrum and spread harmonics over a wide range. Some popular RPWM 

methods are reviewed here. One is random pulse position modulation [22]. This 

technique is based on adjusting the duration of the zero vector or three pulse related 

positions in one switch period. Another methodology is random switching frequency 

modulation [23]. This modulation can be achieved through varying the carrier wave 

slope. The third strategy is the hybrid RPWM modulation [24]. This modulation is 

produced through randomly composing two opposite phase triangular carries with the 

same frequency. Fig. 1-10 shows the detailed waveforms of the hybrid RPWM. No 

matter which RPWM modulation is used, the PWM generated harmonics still exist in the 

audible frequency range, and hence, the overall emitted noise is not reduced 

dramatically.  
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Fig. 1-10. Hybrid RPWM modulation [24]. 

 

1.3 Research Objective 

In this thesis, an active output filter (AOF) is introduced as a retrofit replacement 

for the bulky LC filter to further reduce acoustic noise in ASD system installed in 

electric vehicle, shipboard and submarine. Contrary to the conventional series active 

power filter acting as the variable impedance [25], the proposed AOF is implemented by 

H-bridge switch using the harmonic injection methodology. Due to this characteristic, 

stator voltage/current harmonics in the audible frequency range can be completely 

eliminated in theory, which is beneficial to lower the acoustic noise of the induction 

motor dramatically. 
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Second, the proposed AOF operates at high switching frequency, which offers 

the high power density. In this thesis, the detailed volume comparison shows AOF 

volume is much smaller than traditional passive filter.  

Third, the proposed AOF can be dynamically adjusted for different operation 

conditions. For example, when the grid sags, the DC link voltage of AOF is reduced to 

generate the appropriate harmonic injection for this scenario.   

Fourth, compared to the intermediate DC voltage of ASD (after rectifier), the DC 

link voltage of AOF is much lower in three phase IM application, which is beneficial to 

decrease VA rating of AOF switches.  

Last, the ringing voltage overshoot is a severe issue in the long cable induction 

motor. By using the AOF, the stator current and voltage is almost pure sinusoidal 

waveforms. Therefore, the voltage peaking is mitigated during the switch transition. 

1.4 Thesis Outline 

 This thesis is organized in the following manner. In section 1, the brief 

introduction about AOF is provided. This section talks about the need for low acoustic 

noise ASD system and briefly analyzing the main acoustic noise sources in ASD system. 

Then, the previous work related to acoustic noise analysis in ASD and acoustic noise 

reduction methods is reviewed.  The drawbacks of the existing solutions are discussed 

and the research objective is presented. 

 In Section 2, the electromagnetic noise is analyzed to demonstrate   passive filter 

cannot mitigate the electromagnetic noise in low frequency range. However, by using 

AOF, the electromagnetic noise in the arbitrary frequency can be eliminated. The 
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proposed AOF concept is also detailed in section 2. The topology and control strategy is 

discussed. Small signal model of AOF is built for closed-loop control design. 

 Section 3 presents the single-phase ASD with AOF. The volume comparison 

between passive filter and AOF is shown in this Section. Simulation and experimental 

results illustrate the advantage of AOF for reducing the acoustic noise. 

 The AOF is applied in the three-phase ASD in Section 4. The step by step 

parameter design is detailed in design example. By using AOF, the power density is 

much higher than the passive filter. Simulation and experimental results show the 

acoustic noise is effectively suppressed in three phase ASD with AOF. 

Section 5 provides the conclusion of the work and future work. 
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2. PROPOSED ACTIVE OUTPUT FILTER 

2.1 Preliminary Electromagnetic Noise Analysis 

As mentioned in Section 1, the main acoustic noise sources include aerodynamic 

noise, mechanical noise and electromagnetic noise. For PWM inverter-fed ASD system, 

the electromagnetic noise is the dominate part of the overall acoustic noise. If PWM 

harmonics frequency is close to the mechanical natural frequency, the resonance will 

occur to induce the huge electromagnetic noise. Therefore, exploring the 

electromagnetic noise characterizations is necessary to find the low acoustic noise 

solution in ASD system. 

Typically, the electromagnetic noise can be determined from the radial vibration 

force density [26]. 

 2
0( , ) ( , ) / (2 )v t B tα α µ=  (2-1) 

where 𝐵𝐵(𝛼𝛼, 𝑡𝑡) is the air-gap flux density, 𝛼𝛼 is the angular position and t is the time. μ0 is 

the vacuum permeability, 4π×10-7 H/m. 

 Generally, flux density is the product of air gap MMF and the permeance. 

 ( , ) ( , ) ( , )B t F t tα α λ α=  (2-2) 

In (2-2), the peameance can be expressed as below [27]. 

 0 1 2λ λ λ= Λ + +∑ ∑  (2-3)  

where the three terms denote permeance related to air-gap length, stator slotting and 

rotor slotting, respectively.  
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Due to the dominant effect of the first term in (2-3), the slotting permeance can 

be neglected. Therefore, in the PWM mode inverter-fed induction motor, air-gap flux 

density can be achieved as 

 
0 1

1
( , ) [ ( , ) ( , ) ( ( , ) ( , )

( , )) ( , ) ( , )]

k
k

k k
k k

B t F t F t F t F t

F t F t F t

υ µ
υ µ

υµ υ µ
υ µ

α α α α α

α α α

∞ ∞ ∞

=

∞ ∞ ∞ ∞

= Λ + + + +

              + +

∑ ∑∑

∑∑ ∑∑
 (2-4) 

where k is the stator current harmonic order. 𝜇𝜇 and v denote the slot harmonic order of 

stator and rotor, respectively. 

In (2-4), the first term is the fundamental flux density, which is always generated 

from fundamental frequency current. The second term denotes the flux density 

harmonics due to PWM generated current harmonics, which can be called pure PWM 

flux density harmonics. The third term represents flux density harmonics from the space 

harmonics in stator, rotor and intersection of stator and rotor. These harmonics are 

related to the slot configuration and number in the stator and rotor. The fourth and fifth 

term denote flux density harmonics produced by intersection of current harmonics and 

space harmonics. 

The amplitude of the pure PWM flux density harmonics is much higher than 

other types of flux density harmonics, especially for no load or light load operation [28]. 

Moreover, the dominant portion of pure PWM flux density harmonics are normally 

generated by the interaction between the fundamental air-gap field and the first order 

field harmonic due to current harmonics, and the frequencies are given by 

 0kf f f= ± −  (2-5) 
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 1 2 0k invf n f n f= ±  (2-6) 

where f0 denotes the fundamental frequency of stator current/voltage. fk and finv are the 

current harmonic frequency and inverter switching frequency, respectively. n1 and n2 are 

both integers, where, if n1 is an even number, n2 will be an odd number and vice versa. 

According to (2-4) - (2-6), magnetic noise is mainly distributed in the 

fundamental frequency and switching frequency sideband. For ASD system with LC 

filter, it can be predicted that magnetic noise peaking will appear in fundamental 

frequency and low order switching frequency sideband. However, due to the harmonics 

compensation at the whole frequency spectra, magnetic noise spike will be only in the 

areas of fundamental frequency in the induction motor with AOF. 

2.2 Topology 

The proposed AOF employs the DC voltage in the capacitor and transfers it to 

the AC harmonics which inject into the stator voltage and current. Due to the opposite 

phase harmonics injection, the PWM generated stator voltage/current harmonics are 

cancelled.  The proposed AOF has the following advantages: 

• ASD with the proposed AOF achieves higher power density. 

• AOF only includes a very small inductor which can carry large current without 

magnetic saturation. 

• The ringing voltage overshoot is eliminated at the motor terminals. 

• Acoustic noise of induction motor is lower than the conventional ASD with the 

passive filter. 

• Low DC link voltage of AOF decreases VA rating of switches. 
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The power stage of the proposed AOF is shown in Fig. 2-1. The proposed AOF 

block consists of small high frequency filter La, Ca, a DC-link capacitor Cd and the GaN 

FET based H-bridge inverter operating at high switching frequency (48 kHz). GaN FET 

is the emerging wide-gap-band device which offers high switching frequency, low on-

state resistance and no reverse recovery current. Due to the characteristic of GaN FET, 

the AOF can achieve high power density and low power loss. The DC link capacitor 

resembles a DC voltage source for voltage harmonics injection. The AOF output Vaof 

described by (2-7) provides the proper voltage injection to maintain the pure sinusoidal 

voltage for the load. 

 0cos( )aof inv z inv dcV V V V V M w t= − = −  (2-7) 

where M and Vdc represent modulation index and DC link voltage of main inverter, 

respectively. Vinv is the inverter output voltage including PWM harmonics. The value of 

Vinv is determined by the specific modulation strategy. Section 3 and 4 will introduce the 

single-phase inverter and three-phase inverter PWM modulation strategies, respectively. 

Due to the constant voltage in Cd, the switching function for H-bridge can 

derived from (2-7). 

 0cos( )inv dc
aof

cap

V V M w tS
V

−
=  (2-8) 
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Fig. 2-1. Proposed AOF topology. 
 

2.2.1 H-bridge 

Traditionally, Si based MOSFET and IGBT can be used in H-bridge. Due to the 

high switching frequency realized in this AOF, wide-band gap device such as GaN FET 

is suitable for this application. Meanwhile, the power loss of GaN MOSFET is lower 

than the Si based MOSFET. 

2.1.2 DC Link Capacitor 

The DC link capacitor is used to maintain the DC voltage constant. The capacitor 

can be selected as the electrolytic capacitor which offers the large capacitor value and 

related small size. The voltage rating of DC link capacitor depends on the ASD inverter 

DC link value and induction motor structure. 

2.1.3 Filter Inductor and Capacitor 

A small high frequency inductor La is employed in AOF. This inductor can 

remove the high frequency harmonics from H-bridge switch. Due to the high frequency 
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operation, ferrite core is a good candidate material for La. One limitation of the ferrite 

core is the low saturation point through high current. Thanks to the small value of filter 

inductor, it can carry on high current without saturation [29].  As for filter capacitor Ca, 

it is also used for high frequency harmonics elimination. Due to AC voltage across Ca, a 

small value film capacitor is chosen here. 

2.3 Control Strategy 

The control block diagram for AOF is shown in Fig. 2-2. The controller consists 

of two loops. The outer loop is used to regulate the DC link voltage by employing PI 

control, while inner loop is achieved to control the AOF output voltage Vaof. 

 

Vcap

Vcap_r
+

H-Bridge

Iaof

+
+

Vaof_r

PWM
RcapPI

Vaof_c
1

capV

Fig. 2-2. Control scheme for the proposed AOF. 

2.3.1 Outer Voltage Loop 

For proper operation of AOF, it is necessary to maintain Vcap constant. Vcap_r can 

be set as the fixed value according to the inverter DC link value. In addition, voltage 

drop induced by AOF parasitic parameters must be compensated. In Fig. 2-2, the 

compensated voltage obtained by the virtual resistance Rcap multiplied by Iaof is added to 

Vaof_r in order to produce the reference signal. 
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In this thesis, the digital PI control is implemented by DSP. A standard equation 

of PI controller in the s domain is 

 ( ) /pi p iG s K K s= +  (2-9) 

For digital implementation, (2-9) is transferred to z domain 

 ( ) [ / (1 )] ( )pi p iU z K K z E z= + −  (2-10) 

Define 𝐾𝐾1 = 𝐾𝐾𝑝𝑝 + 𝐾𝐾𝑖𝑖 and 𝐾𝐾2 = −𝐾𝐾𝑝𝑝 

 1 1
1 2( ) ( ) [ ] ( )pi piU z z U z K K z E z− −− = +  (2-11) 

Equation (2-11) can be rewritten as the difference equation as 

 1 2( ) ( 1) ( ) ( 1)pi piu k u k K e k K e k= − + + −  (2-12) 

which upi denotes the PI output value and e represents the error between voltage 

reference and sampled voltage. 

According to (2-12), present state and previous state are both recorded to realize 

the iteration in the digital PI controller. 

2.3.2 Inner Voltage Loop 

The AOF reference voltage includes the Vaof_r and voltage drop compensation 

Vaof_c. Considering the control speed and complexity, here only the open loop is used.  

To generate the appropriate PWM signal, AOF reference voltage is divided by DC link 

voltage and then compared to the carrier waveforms.  

2.4 Small Signal Model and Analysis 

In order to design the stable feedback control, open-loop transfer function is 

introduced based on small signal model. 
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For bipolar PWM control strategy used in AOF, H-bridge output voltage Vo 

varies between -Vcap and Vcap in one cycle as shown in Fig. 2-3. 

 

S1, S4

Vo

T+ T-
S2, S3

 

Fig. 2-3. Waveforms in one switching cycle. 

In the positive half cycle, the state variables can be derived from Fig. 2-4.  

 
L cap c invL i V V V
•

= − −  (2-13) 

 c
L

o

VCV i
Z

•

= −  (2-14) 

 aof inv cV V V= +  (2-15) 

 

capV

invV

C

L oZ

AOFV

Rs Ls Lr

rR
slip

Lm

 

Fig. 2-4. Equivalent circuit in positive half cycle. 

In the negative half cycle, the state variables can be derived from Fig. 2-5. 
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L cap c invL i V V V
•

= − − −  (2-16) 

 c
c L

o

VCV i
Z

•

= −  (2-17) 

 aof inv cV V V= +  (2-18) 

 

capV

invV

C

L oZ

AOFV

Rs Ls Lr

rR
slip

Lm

 

Fig. 2-5. Equivalent circuit in negative half cycle. 

Integrating positive cycle and negative cycle, the state variables can be 
determined as 

 '( ) ( )L cap c inv cap c invL i D V V V D V V V
•

= − − + − − −  (2-19) 

 '( ) ( )c c
c L L

o o

V VCV D i D i
Z Z

•

= − + −  (2-20) 

 '( ) ( )aof inv c inv cV D V V D V V= + + +  (2-21) 

Introducing the small signal disturbance, the state variables can be rewritten as 

'( ) ( )( ) ( )L L cap cap c c inv inv cap cap c c inv invL i i D d V v V v V v D V v V v V v
∧

• • ∧ ∧ ∧ ∧ ∧ ∧ ∧

+ = + + − − − − + − − − − − − (2-22) 

 '( ) ( )( ) ( )( )c c c c
c c L L L L

o o o o

V v V vC V V D d i i D d i i
Z Z Z Z

∧ ∧∧
• • ∧ ∧ ∧ ∧

+ = + + − − + − + − −  (2-23) 

 '( )( ) ( )aof aof inv inv c c inv inv c cV v D d V v V v D V v V v
∧ ∧ ∧ ∧ ∧ ∧

+ = + + + + + + + +  (2-24) 
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Only consider the first-order ac terms on both sides, hence: 

(2 1) 2L cap c inv capL i D v v v V d
∧
• ∧ ∧ ∧ ∧

= − − − + (2-25) 

c
c L

o

vCV i
Z

∧∧
• ∧

= − (2-26) 

aof inv cv v v
∧ ∧ ∧

= + (2-27) 

Small signal model shown in Fig. 2.6 can be constructed based on the state 

variables above. Fig. 2-6(a) represents the inductor current loop. The terms (2 1) capD v
∧

− , cv
∧

and 
invv
∧ are voltage control voltage sources. The term 2 capV d

∧  is determined only by the 

duty cycle variations and can be considered as the independent voltage source. Fig. 2-6(b) 

shows the small signal model for the voltage loop. 
Li
∧  and /c ov Z

∧ are both dependent 

current sources. Fig. 2-6(c) is the small signal model for the load loop, in which invv
∧ and 

cv
∧

are both voltage control voltage sources. 

2 capV d
∧

invv
∧L

cv
∧

(2 1) capD v
∧

−

(a)  
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Fig. 2-6. Small signal model for AOF. 
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∧

C c
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v
Z

∧
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aofv
∧

invv
∧

cv
∧

(c) 

The state variables can be written in the following matrix form: 

C
c

L L

inv
inv

cap

cap

v v

i i
A B d

vv
v

v

∧
•

∧

∧
• ∧

∧

∧ ∧
•

∧
∧
•

 
   
   
   
   = +   
   
   
     
 

c

L
aof

inv

cap

v

i
v C

v

v

∧

∧
∧

∧

∧

 
 
 
 =  
 
 
  
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In this two matrixes 

1 1 0 0

1 1 2 10

0 0 0 0
0 0 0 0

oZ C C
DA

L L L

 − 
 

− = − − 
 
 
  

 

0
2

0
0

capV
B L

 
 
 

=  
 
 
  

 

[ ]1 0 1 0C =  

Therefore, the control-output transfer function can be derived as 

 1( )aofv
C sI A B

d

∧

−
∧ = −  (2-28) 

Solve the above equation. 

 
2

2
( ) aof cap o

vd
o o

v V Z
G s

CLZ s Ls Zd

∧

∧= =
+ +

 (2-29) 

2.5 Conclusion 

The proposed AOF is introduced in this section. An H-bridge GaN based 

topology is employed to implement harmonic injection. The component of AOF is 
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detailed and control strategy is discussed. Based on the small signal model, the controller 

can be designed to achieve system stability. 
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3. SINGLE PHASE ASD WITH ACTIVE OUTPUT FILTER 

The proposed AOF aims to further mitigate acoustic noise and reduce the size for 

ASD system. Several industry areas such as shipboard, electric vehicle and submarine 

have the strict requirement for the acoustic noise. Therefore, the proposed ASD is of 

special interest to these areas. In this Section, single-phase ASD with AOF is introduced. 

The simulation and experimental results demonstrate the advantage of AOF for acoustic 

noise reduction. 

3.1 System Configuration 

AOF
M

A

a

a

b

A

Single POase 
Main Inverter

Active Output Filter

H-Bridge

Fd

La Fa

Lf

Ff Vdc

Iaof

Vcap

wr

VaofVo

TOree POase 
Diode RectiferVLL

 
Fig. 3-1. Single-phase ASD system with the proposed AOF. 

 

The power stage of the single-phase ASD system with AOF is shown in Fig. 3-1. 

IGBT based single-phase inverter operates at low switching frequency (2.1 kHz) based 

on SPWM strategy. According to (2-7), the AOF output voltage Vaof can be derived as 

 0cos( )aof ab Ab ab dcV V V V MV w t= − = −  (3-1) 
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Vab given by (3-2) denotes the single-phase inverter output voltage using 

naturally sampled reference and unipolar SPWM [30]. 

 0 inv 0
1

4 1cos( ) ( )sin( ) cos[( ) ]
2

dc
ab dc n

m n

VV V M t J m M n m n t
m

πω π ω ω
π

∞ ∞

= =−∞

= + ±∑ ∑  (3-2) 

In the practical digital controller, Vab is generated by main inverter switching 

function. 

 ( )ab dc a bV V S S= −  (3-3) 

where aS  and bS denote switching function of leg A and leg B, respectively. 

According to (3-1) and (3-2), Vaof can be rewritten as 

 inv 0
1

4 1 ( )sin( ) cos[( ) ]
2

dc
aof n

m n

VV J m M n m n t
m

ππ ω ω
π

∞ ∞

= =−∞

= ±∑ ∑  (3-4) 

Equation (3-4) can be used as the reference voltage for H-Bridge modulation. 

Assuming modulation index of H-Bridge ma_h=1, the minimum value of DC link voltage 

Vcap can be determined by 

 inv 00 1_

41 1max( ( )sin( ) cos[( ) ])
2

dc
cap n dct m na h

VV J m M n m n t V
m m

pp ω ω
p

∞ ∞∞

=
= =−∞

= ± =∑ ∑  (3-5) 

The switching function for H-bridge can be derived from 

 inv 0
1

4 1 ( )sin( ) cos[( ) ]
2

dc
n

m n
aof

dc

V J m M n m n t
mS

V

ππ ω ω
π

∞ ∞

= =−∞

±
=

∑ ∑  (3-6) 

3.2 Design Example 

A 1/2 horsepower rated single-phase ASD system is designed to verify the operation 

principle of the proposed AOF. The operation specifications are shown in Table 3-1.  
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Table 3-1: Single-phase ASD with AOF operation condition 

Description Value 
Input line-line voltage VLL 240V 

Intermediate DC voltage Vdc 324V 
Rated output power Po 1/2hp 

Main switching frequency finv 
AOF switching frequency fs 

2.1kHz 
48kHz 

DC link voltage Vcap 324V 
Rated stator voltage VAb 120V 

Rated frequency fo 60Hz 
Rated stator current IA 6.8A 

 

3.2.1 Parameter Design of AOF 

Considering the interval in which Vo equals to Vcap, the voltage of La can be 

expressed as 

 ( ) ( )
( )

pp
La a cap aof

s

I
V t L V V t

D t T
D

= = −  (3-7) 

Becuase switching frequency of AOF is much higher than the harmonic 

frequency of interest, the Vaof can be averaged as 

 _( ) ( )aof o avgV t V t≈  (3-8) 

Then substituting (3-8) into (3-7) 

 
( )

( ( ))aofs
a cap aof

pp cap

V tTL V V t
I V

= −
∆  (3-9) 

Differentiating (3-9) with respect to 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) , the maximum value of La is 

determined when 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) = 1
2
𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐. 

 

_ max4
cap s

a
pp

V T
L

I
≤

∆

 
(3-10) 
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The reactive power in filter capacitor Ca should be lower
 
than 10% of the output 

power [31].
  

20.1
6

e
a

o Ab

PC
f Vπ

≤ ×
 

(3-11) 

In (3-11), Pe is the electrical power which can be achieved as
 

 o
e

PP
η

=  (3-12) 

where 𝜂𝜂 represents power efficiency of induction motor.
 

In addition, the resonant frequency of the filter should be satisfied as [32].
 

 
1 110

22inv s
a a

f f
L Cπ

 < <
 

(3-13) 

where fs represents switching frequency of AOF. 

Assuming no power loss in AOF, the DC link current is the product of switching 

function and AOF output current. 

 ( ) ( )cap aof aofI t S I t=  (3-14) 

Due to AOF in series with the load, Iaof(t) is equivalent to the load current. 

 ( ) 2 cos( )aof AI t I wt=  (3-15) 

Integrating (3-6), (3-14) and (3-15), Icap(t) can be defined as   

 inv 0
1

42 1( ) ( )sin( ) cos[( ) ]
2

dc
cap n

m ncap

VI t J m M n m n t
V m

pp ω ω
p

∞ ∞

= =−∞

= ±∑ ∑  (3-16)    

Considering the positive half cycle of H-bridge T+=DTs, the  
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1

1

( )

( )
sT D t T

cap d cap
T

Q I t dt C V
+

D = = D∫  (3-17) 

Substituting (3-17) into (3-16), the minimum value of Cd can be defined as: 

 
1 1

_ min

2 max[sin( ) sin ]A s
d s

cap

I TC T T T
V

ω ω ω
ω

≥ + −
∆

 (3-18) 

Because switching cycle of H-bridge Ts is a very small interval compared to 

output current cycle, (3-18) can be rewritten as 

 
_ min

2 sin( )max( )A s
d

cap

I T d tC
V d

ω
ω ω

≥
∆

 (3-19) 

Due to 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜔𝜔𝜔𝜔)
𝑑𝑑𝑑𝑑

= 𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔(𝜔𝜔𝜔𝜔) , it is not difficult to find max �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜔𝜔𝜔𝜔)
𝑑𝑑𝑑𝑑

� = 𝜔𝜔 . 

Therefore, DC link capacitor Cd can be determined in accordance with the limit of DC 

link voltage ripple. 

 ( , )

_ max

2 A B C s
d

d

I T
C

V
≥

∆
 (3-20) 

Based on the equations above and Table 3-1, the AOF parameters can be 

calculated as shown in Table 3-2. 

3.2.2 LC Passive Filter 

In order to do the comparison between AOF and LC passive filter, value of LC 

passive filter is calculated based on [33].  

 
1
8 0.2 2

dc
a motor

A inv

VL L
I f

≥ −  (3-21) 

 20.1
2

e
a

o Ab

PC
f Vπ

≤ ×  (3-22) 
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In (3-21), Lmotor represents the inductor value in the induction motor equivalent 

circuit as shown in Fig. 3-2 (𝜔𝜔 is the fundamental angular frequency). 

 
2

( )
r m m

motor motor motor s s
r m r

L L slip j L RZ R j L R j L
j L L slip R
ω ωω ω
ω

− +
= + = + +

+ +
 (3-23) 

 
2 2 2

2 2 2 2

( )
( )

m r r m r m
motor s

r m r

L R L L L L slipL L
L L slip R
ω

ω
+ +

= +
+ +

 (3-24) 
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Fig. 3-2. Single-phase ASD equivalent circuit with passive filter. 

 

According to Table 3-1, (3-21) and (3-22), specifications of LC filter are listed in 

Table 3-2.  

 
Table 3- 2: Specifications of LC filter and AOF in single-phase ASD 

Description LC Filter AOF 
Filter Capacitor Ca 33µF 15µF 
Filter Inductor La 3.2mH 68µH 

DC Link Capacitor Cd N/A 500µF 
 

3.2.3 Volume Comparison 

In order to compare the power density of AOF and LC filter, the volume of the 

components should be explored in detail.  

The value of capacitor is derived as 

35 

 



 

 _
2

v cVAC
d d

εε
= =  (3-25) 

where ε,𝑉𝑉𝑣𝑣_𝑐𝑐 and d denote dielectric permittivity, volume and layer thickness, 

respectively. 

Considering capacitor voltage approximately proportional to the dielectric layer 

thickness [34], (3-25) is rewritten as 

 
2

_
( )

v c
C kVV

ε
=  (3-26) 

In (3-26), it is assumed that 𝑘𝑘 ≈ 5𝑛𝑛𝑛𝑛/𝑉𝑉  and ε ≈ 10 × 10−11F/m for the 

aluminum electrolytic capacitor and 𝑘𝑘 ≈ 10𝑛𝑛𝑛𝑛/𝑉𝑉 and ε ≈ 3 × 10−11F/m for the film 

capacitor. Therefore, the capacitor volume in AOF and LC filter can be estimated as 

shown in Table 3-3. 

The value of inductor is given by 

 
2

_
2

v ln V
L

l
µ

=  (3-27) 

where µ,𝑉𝑉𝑣𝑣_𝑙𝑙 , n and l denote permeability, inductor core volume, air gap length and turns, 

respectively. 

According to Ampere’s Law, the magnetic flux density in the inductor is 

obtained as 

 
max

2 AnIB
l
m

=  (3-28) 

Integrating (3-27) and (3-28) 

 
2

_
max

2 A
v l

L IV
B
m

=  (3-29) 
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Assuming the inductor core is implemented by ferrite cores, it can be achieved 

thatµ ≈ 2000 × 4π × 10−7H/m. If 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 = 0.3𝑇𝑇, the inductor volume can be estimated 

based on (3-29), which is listed in Table 3-3. 

 
Table 3- 3: Volume comparison of LC filter and AOF in single-phase ASD 

Description LC Filter AOF 
Volume of Ca 2.1cm3 0.9cm3 
Volume of La 1479cm3 52cm3 

Volume of Ccap N/A 5.6cm3 
Volume of H-bridge and gate driver N/A 35.1cm3 

Overall Volume 1481.2cm3 93.6cm3 

 

 

 

Fig. 3-3. Volume distribution. 
 

 

Fig. 3-4. Overall volume comparison. 
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Fig. 3-3 shows the inductor accounts for most of the volume in both of passive 

filter and AOF. Owing to the much smaller inductor employed in AOF, the overall 

volume of AOF reduces to about 6.5% of LC filter as shown in Fig. 3-4. Note practical 

capacitor and inductor volume may be slightly different from the theoretic value. 

3.2.4 Transfer Function 

According to (2-29) and Table 3.1 – 3.2, the single-phase AOF control-output 

transfer function can be expressed as: 

 
11 3 8 2

7.8 10920( )
1.22 10 1.71 10 0.01 16.8

aof
vd

v sG s
s s sd

∧

∧ − −

+
= =

× + × + +
 (3-30) 

The pole-zero plot is shown in Fig. 3-5. Because all of poles are located in the left half 

plane, it can achieve the stability. However, the stability margin is not enough due to p1 and p2 

close to the imaginary axis. 
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Fig. 3-5: Pole-zero map of single-phase AOF control-output transfer function. 
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3.3 Simulation Results 

(1) Steady state operation 

 
(a)

(b)

(c)

(d)

 

Fig. 3-6. Single-phase ASD with AOF in 120V/60Hz steady state operation. (a) Inverter output 
voltage. (b) AOF output voltage and DC link voltage. (c) Stator voltage. (d) Stator current. 

 

First, the single-phase ASD system with AOF is simulated in the 120V/60Hz 

steady state condition based on PSIM. Fig. 3-6 shows the key waveforms in the rating 

condition. In Fig. 3-6(a), inverter output voltage is the unipolar PWM waveforms. Fig. 

3-6(b) shows the DC link voltage keeps constant at about 325V, which validates the DC 

link voltage is equivalent to intermediate stage DC voltage. In addition, the maximum 

value of AOF output voltage is the same as DC link voltage due to the modulation index 

ma_h=1. Fig. 3-6(c) illustrates the stator voltage is almost pure sinusoidal waveforms and 

the magnitude is 120V. Similarly, Fig. 3-6(d) shows stator current is the 60Hz sinusoidal 
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waveform and the magnitude is 6.8A. Both of stator voltage and current are in 

accordance with Table 3-1. 

(2) Load step operation 

 
(a)

(b)

(c)

 
Fig. 3-7. Single-phase ASD with AOF in load step operation. (a) AOF output voltage and DC 
link voltage. (b) Stator voltage. (c) Stator current. 
 

In Fig. 3-7(a), DC link voltage Vcap is nearly constant at 325V during the 

transition. In addition, amplitude and frequency of AOF output voltage Vaof varies with 

the load transition, which verifies the dynamic tuning of AOF. In Fig. 3-7(b), stator 

voltages change from 120V/60Hz to 80V/40Hz, which demonstrates the constant V/Hz 

operation.  The stator current steps down with the stator voltage as shown in Fig. 5-7(c).  
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(3) Line voltage step operation 

(a)

(b)

(c)

 
Fig. 3-8. Single-phase ASD with AOF in line step operation. (a) Three phase line voltage. (b) 
AOF output voltage and DC link voltage. (c) Stator voltage and current. 
 

The line transient operation is shown in Fig. 3-8. It can be observed that stator 

voltage keeps constant at 120V/60Hz during line step transition when grid voltage 

decreases from 240V to 150V. In addition, the DC link voltage of AOF changes with the 

intermediate DC voltage which is proportional to line voltage determined by (1-1).  
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(4) Harmonics comparison between LC filter and AOF 
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Fig. 3-9. FFT analysis of stator current harmonics at 120V/60Hz condition. (a) Single phase 
ASD with LC filter. (b) Single phase ASD with AOF. 
 

To verify the AOF advantage of harmonic elimination, the stator current 

harmonics comparison between LC filter and AOF is shown in Fig. 3-9. In the range of 

20 ~ 20k Hz (audible frequency range), stator current harmonics in ASD with the 

proposed AOF are much lower than LC filter, especially around the 2nd switching 

frequency. 

 

3.4 Experimental Results 

The experimental specifications are detailed in Table 3-4. Digital control is 

implemented by DSP C2000 and the prototype is shown in Fig. 3-10.  
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Table 3-4: Single phase ASD with AOF experimental specifications 
Description Value 

Intermediate DC voltage 200V 
Rated output power Po 1/2hp 

Main switching frequency finv 
AOF switching frequency fs 

2.1kHz 
48kHz 

DC link voltage Vcap 200V 
Rated stator voltage VAb 120V 

Rated frequency fo 60Hz 
Rated stator current IA 6.8A 

 

Single-phase 
Induction Motor

Start-up 
Capacitor

AOF

Main Inverter

Voltage SensorDSP

Small Filter

 
Fig. 3-10. Prototype setup for ½ hp single-phase ASD with AOF. 

 

ASD systemPower Source

Box with foam
Microphone

Recorder DFT analysis Results FIR low 
pass filter

 
Fig. 3-11. Block diagram of acoustic noise measurement system. 

 

The overall acoustic noise measurement system is shown in Fig. 3-11. In order to 

mitigate the noise from power source, power source is installed in the box with foam. 

Microphone is located in 0.5m away from the ASD system.  Then, the collected acoustic 
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noise about 5 second duration is stored in the recorder. A digital FIR low pass filter 

based on Matlab toolbox is used to allow only audible frequency signals passing. This 

filter is designed with the cut-off frequency of 20 kHz and stopband attenuation is about 

-80 dB/dec. Last, by using discrete fourier analysis (DFT) in Matlab, the acoustic noise 

spectra is achieved shown in the following experimental results. 

 

(1) 80V/40Hz Operation Condition 

First, the prototype operating at 80V/40Hz is tested as shown in Fig. 3-12 ~ Fig. 

3-16. By using AOF, the stator voltage only includes the fundamental frequency voltage 

as shown in Fig. 3-12, and hence, there is no voltage overshoot in the motor terminal. In 

the same figure, the DC link voltage Vcap keeps constant at about Vdc, which is in 

accordance with the theory analysis. The waveform of AOF output voltage has the good 

agreement with the simulation result. 

 

Vs [100V/div]

t [10ms/div]

Vcap [100V/div]

Vaof [200V/div]

 
Fig. 3-12. Single phase ASD with AOF at 80V/40Hz condition. Ch1: AOF output voltage. Ch2: 
AOF DC link voltage. Ch3: Stator voltage. 
 

44 

 



 

Fig. 3-13 and Fig. 3-14 illustrate the stator current harmonics comparison 

between LC filter and AOF. It can be observed that current harmonics are much lower 

by using AOF, especially for harmonics around low switching frequency sidebands.  

 

          

Is [5A/div] t [10ms/div]

Is_FFT [50mA/div] f [2.5kHz/div]
 

Fig. 3-13. Single phase ASD with passive filter at 80V/40Hz condition. Ch4: Stator current. 
ChM: FFT analysis of stator current. 
 

           

Is [5A/div] t [10ms/div]

Is_FFT [50mA/div] f [2.5kHz/div]
 

Fig. 3-14. Single phase ASD with AOF at 80V/40Hz condition. Ch4: Stator current. ChM: FFT 
analysis of stator current. 
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Fig. 3-15 demonstrates the acoustic noise spectrum in the induction motor with 

passive filter, in which some noise spikes are distributed around 2nd order switching 

frequency. It proves the analysis in Section 2 that current harmonics in low switching 

frequency cause the corresponding acoustic noise peaking. However, by using AOF, 

these noise spikes are dramatically suppressed shown in Fig. 3-16. In this case, the 

dominant area of acoustic noise is only arranged in the fundamental frequency. 
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Fig. 3-15. Acoustic noise spectrum of single phase ASD with passive filter at 80V/40Hz 
condition (inverter switching frequency is 2.1 kHz). 
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Fig. 3-16. Acoustic noise spectrum of single phase ASD with AOF at 80V/40Hz condition 
(inverter switching frequency is 2.1 kHz). 
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(1) 120V/60Hz Operation Condition 

The 120V/60Hz operation condition (rated condition) is also measured as shown 

in Fig. 3-17 ~ Fig. 3-21. Fig. 3-17 illustrate AOF removes most of harmonics from 

PWM mode inverter and provides the almost sinusoidal waveforms at the motor terminal. 

In addition, DC link voltage in 120V/60Hz condition (Fig. 3-17) equals to 80V/40Hz 

condition (Fig. 3-12) due to invariant intermediate DC voltage Vdc. 

 

Vs [100V/div]

t [10ms/div]

Vcap [100V/div]

Vaof [200V/div]

 
Fig. 3-17. Single phase ASD with AOF at 120V/60Hz condition. Ch1: AOF output voltage. Ch2: 
AOF DC link voltage. Ch3: Stator voltage. 
 

Fig. 3-18 shows the stator current harmonics using LC filter, which are mainly 

distributed in second and fourth order switching frequency sidebands. In similar with 

80V/40Hz condition, AOF operating at 120V/60Hz can also efficiently lower the stator 

current harmonics as shown in Fig. 3-19.   
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Is [5A/div] t [10ms/div]

Is_FFT [50mA/div] f [2.5kHz/div]
 

Fig. 3-18. Single phase ASD with passive filter at 120V/60Hz condition. Ch4: Stator current. 
ChM: FFT analysis of stator current. 
 

Is [5A/div] t [10ms/div]

Is_FFT [50mA/div] f [2.5kHz/div]
 

Fig. 3-19. Single phase ASD with AOF at 120V/60Hz condition. Ch4: Stator current. ChM: FFT 
analysis of stator current. 
 

Corresponding to stator current harmonics spectrum shown in Fig. 3-18, some 

noise spikes occur at low switching frequency sidebands by using LC filter, which is 

presented in Fig. 3-20. In similar with 80V/40Hz condition, these noise spikes are also 

eliminated due to AOF at 120V/60Hz condition shown in Fig. 3-21. 
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Fig. 3-20. Acoustic noise spectrum of single phase ASD with passive filter at 120V/60Hz 
condition (inverter switching frequency is 2.1 kHz). 
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Fig. 3-21. Acoustic noise spectrum of single phase ASD with AOF at 120V/60Hz condition 
(inverter switching frequency is 2.1 kHz). 
 

The overall acoustic noise of single-phase ASD system is presented in Fig. 3-22. 

Compared to LC filter, acoustic noise is reduced at least 0.6 dB at different operation 

conditions.  
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Fig. 3-22. Overall noise emitted by single-phase ASD at various fundamental frequencies 
operation conditions. 
 

3.5 Conclusion 

In this section, the proposed AOF is applied in the single phase ASD system. The 

overall system configuration along with the design methodology for components is 

discussed. The advantage of AOF is validated by the simulation and experimental 

results. 
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4. THREE PHASE ASD WITH ACTIVE OUTPUT FILTER 

In addition to single-phase ASD, the proposed AOF can be also applied in the 

three phase ASD. In the three phase ASD system, three AOFs are plugged in every 

phase to replace the LC filter. Three AOFs are controlled separately using the double 

loop strategy discussed in Section 2. 

4.1 System Configuration 

AOF
AOF
AOF

M

A, B, F

a, b, c

Fommon Point

a
b

c

A
B
F

TOree POase 
Main Inverter

TOree POase 
Diode Rectifer

Active Output Filter

H-Bridge

Fd

La Fa

Lf

Ff

VLL

Vdc

Iaof

Vcap

wr

VaofVo

o

Virtual 
Neural Point

 
Fig. 4-1. Three-phase ASD system with the proposed AOF. 

 

 The power stage of the three-phase ASD system with AOF is shown in Fig. 41. 

Three-phase diode rectifier converts the three-phase AC voltage to DC voltage. Lf and Cf 

are used to mitigate the DC voltage ripple. IGBT based three-phase inverter operates at 

low switching frequency (2.1 kHz) based on space vector PWM (SVPWM) strategy. 

According to (2-7), the AOF output voltage Vaof can be derived as 

 0cos( )aof ab Ab ab dcV V V V MV w t= − = −  (4-1) 
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Vao(bo,co) given by (4-2) denotes the virtual line-neural voltage of three-phase 

inverter [30]. 

 ( , ) 0 inv 0
0 1

cos( ) cos[( ) ]
2ao bo co dc mn

m n

MV V t A m n tω ω ω
∞ ∞

= =

= + ±∑∑  (4-2) 

where ωo and ωinv denote fundamental angular frequency and three-phase inverter 

switching angular frequency, respectively. In addition, Amn can expressed as 

2

0 0 0
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≠
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          − +

         + + +
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According to (4-1) and (4-2), Vaof  can be rewritten as 

 inv 0
0 1

cos[( ) ]aof mn
m n

V A m n tω ω
∞ ∞

= =

= ±∑∑  (4-3) 

Equation (4-3) can be used as the reference voltage for H-Bridge modulation. 

Assuming modulation index of H-Bridge ma_h=1, the minimum value of DC link voltage 

Vcap can be determined by 

 inv 00 0 1_

1 1max( cos[( ) ])
3cap mn dct m na h

V A m n t V
m

ω ω
∞ ∞∞

=
= =

= ± =∑∑   (4-4) 

According to (4-4), AOF DC link voltage Vcap is lower than main inverter DC link 

voltage Vdc, which proves the VA rating of AOF switch is lower than the main inverter 

switch as stated in Section 3. 

The switching function for H-bridge can be derived from (4-3). 
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+
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∑∑   (4-5) 
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Fig. 4-2. Control strategy for three-phase ASD with AOF. 

 

The overall control strategy is illustrated in Fig. 4-2. Voltage/Hertz speed control 

is implemented for induction motor speed adjustment [32]. The dq-abc transformation 

shown in Fig. 4-2 is determined by 

 

0

cos sin 1
2 2cos( ) sin( ) 1
3 3

2 2cos( ) sin( ) 1
3 3

s s
Ao d

Bo s s q

Co

s s

t tV V
V t t V
V V

t t

ω ω
π πω ω

π πω ω

 
 −

    
    = − − − •    
       

 + − +
 

 (4-6) 

In order to generate the reference signal of AOF Vaof_r, Vao(bo,co) and VAo(Bo,Co) 

should be achieved. VAo(Bo,Co) is the low frequency sinusoidal signal (e.g 60Hz) which 

can be generated from digital controller. However, Vao(bo,co) shown in (4-2) is too 

complicated to be generated directly. Because main inverter switching function is 
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generated by digital controller itself, Vao(bo,co) can be generated by main inverter 

switching function indirectly. 

 

Vab

Vbc

Vbc

Vao

Vco

Vbo
30°

30°

30°

 

Fig. 4-3. Three-phase vector diagram. 
 

The three-phase vector diagram is shown in Fig. 4-3. If S1 – S3 denote the 

switching function for phase A, B and C, respectively, the three-phase line-line voltage 

can be determined by 

 
1 2

2 3

3 1

( )
( )
( )

ab dc

bc dc

ca dc

V V S S
V V S S
V V S S

= −
 = −
 = −

 (4-7) 

According to Fig. 4-3, three-phase line-neural voltage can be expressed as  

 

2 1( )
3 3
2 1( )
3 3
2 1( )
3 3

ao dc ab bc

bo dc bc ca

co dc ca ab

V V V V

V V V V

V V V V

 = +

 = +

 = +

 (4-8) 

Integrating (4-7) and (4-8), Vao(bo,co) can be achieved by main inverter switching 

function. 
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3
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ao dc
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co dc
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V V S S S

V V S S S

 = − −

 = − −

 = − −

 (4-9) 

 

4.2 Design Example 

A 2/3 horsepower rated ASD system is designed to verify the operation principle 

of the proposed AOF. The specific operation specifications are shown in Table 4-1.  

 
Table 4-1: Three-phase ASD system operation condition with AOF 

Description Value 
Input line-line voltage VLL 240V 

Intermediate DC voltage Vdc 324V 
Rated output power Po 2/3hp 

Main switching frequency finv AOF switching 
frequency fs 

2.1kHz 
48kHz 

DC link voltage Vcap 187V 
Rated stator voltage VAB(BC,CA) 230V 

Rated frequency fo 60Hz 
Rated stator current IA(B,C) 2.5A 

 

For Output Filter La and Ca, the design criterion refers to single-phase ASD with 

AOF discussed in Section 3. As for DC link capacitor Cd, assuming no power loss in 

AOF, the DC link current is the product of switching function and AOF output current. 

 ( ) ( )cap aof aofI t S I t=  (4-10) 

Due to AOF in series with the load, Iaof(t) is equivalent to the load current. 

 ( , )( ) 2 cos( )aof Ao Bo CoI t I wt=  (4-11) 

Integrating (4-5), (4-10) and (4-11), Icap(t) can be defined as   
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inv 0 ( , )

0 1

2( ) cos[( ) ] cos( )cap mn A B C
m ncap

I t A m n t I wt
V

ww
∞ ∞

= =

= ±∑∑  (4-12)
   

 

Considering the positive half cycle of H-bridge T+=DTs, the capacitor is charging 

by 

 
1

1

( )

( )
sT D t T

cap d cap
T

Q I t dt C V
+

D = = D∫  (4-13) 

Substituting (4-12) into (4-13), the minimum value of Cd can be defined as: 

 ( , )
1 1

_ min

2
max[sin( ) sin ]A B C s

d s
cap

I T
C T T T

V
ω ω ω

ω
≥ + −

∆
 (4-14) 

Because switching cycle of H-bridge Ts is a very small interval compared to 

output current cycle, (4-14) can be rewritten as 

 ( , )

_ min

2 sin( )max( )A B C s
d

cap

I T d tC
V d

ω
ω ω

≥
∆

 (4-15) 

Due to 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜔𝜔𝜔𝜔)
𝑑𝑑𝑑𝑑

= 𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔(𝜔𝜔𝜔𝜔) , it is not difficult to find max �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜔𝜔𝜔𝜔)
𝑑𝑑𝑑𝑑

� = 𝜔𝜔 . 

Therefore, DC link capacitor Cd can be determined in accordance with the limit of DC 

link voltage ripple. 

 ( , )

_ max

2 A B C s
d

d

I T
C

V
≥

∆
 (4-16) 

Based on the equations above and Table 4-1, the AOF parameters can be 

calculated as shown in Table 4-2. 
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To compare the value and volume between LC passive filter and AOF, the LC 

passive filter for three-phase ASD system is designed shown in Table 4-2, which refers 

to Section 3.2. 

 
Table 4-2: Specifications of LC filter and AOF for three-phase ASD system 

Description LC Filter AOF 
Filter Capacitor Ca 15µF 10µF 
Filter Inductor La 5.1mH 50µH 
DC Link Capacitor Cd N/A 200µF 

 

The inductor and capacitor volume can be achieved by (3-26) and (3-29), 

respectively, which is detailed in Table 4-3. 

 
Table 4-3: Volume comparison between LC filter and AOF in three-phase ASD 

Description LC Filter AOF 
Volume of Ca  3.5cm3×3 2.1cm3×3 
Volume of La  533.9cm3×3 5.2cm3×3 
Volume of Ccap N/A 8.2cm3×3 
Volume of H-bridge and gate driver N/A 35.1cm3×3 
Overall Volume 1612.2cm3 151.8cm3 

 

 

 

Fig. 4-4. Volume distribution. 
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Fig. 4-5. Overall volume comparison. 

Fig 4-5 shows the inductor accounts for most of the volume in the passive filter. 

As for AOF, H-bridge and gate driver occupy over 80%. Owing to the much smaller 

inductor employed in AOF, the overall volume of AOF reduces to about 10% of LC 

filter as shown Fig. 4-5. Note practical capacitor and inductor volume may be slightly 

different from the theoretic value. 

According to (2-29) and Table 5.1 – 5.2, the three-phase AOF control-output 

transfer function can be expressed as: 

11 3 8 2

39 30680( )
3 10 2.36 10 0.06 47.2

aof
vd

v sG s
s s sd

∧

∧ − −

+
= =

× + × + +
(4-17) 

The pole-zero plot is shown in Fig. 4-6. Because all of poles are located in the 

left half plane, it can achieve the stability. However, the stability margin is not enough 

due to p1 and p2 close to the imaginary axis. 
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Fig. 4-6: Pole-zero map of three-phase AOF control-output transfer function. 
 

4.3 Simulation Results 

(1) Load step operation 

The design example is simulated using PSIM. Fig. 4-7 illustrates the load 

transient operation. In Fig. 4-7(a), DC link voltage Vcap is nearly constant at 187V 

( 1
√3

Vdc). In addition, amplitude and frequency of AOF output voltage Vaof varies with the 

load transition. In Fig. 4-7(b), three phase stator voltages change from 230V/60Hz to 

153V/40Hz, which demonstrates the constant V/Hz operation. 
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Fig. 4-7. Three-phase ASD with AOF load step operation. (a) AOF DC link voltage and output 
voltage. (b) Three-phase stator voltages. 
 

(2) Line step operation 
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Fig. 4-8. Three-phase ASD with AOF line step operation. (a) Three-phase line-line voltage. (b) 
Intermediate DC link voltage and AOF DC link voltage. (c) Three-phase stator voltages. 
 

The line step operation for three-phase ASD with AOF is illustrated in Fig. 4-8. 

In Fig. 4-8(a), the line-line voltage transfers from 240V to 190V at 0.2s. During this 
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transition, the DC link voltage of AOF changes from 187V to 150V with the 

intermediate DC voltage step-down shown in Fig. 4-8(b). It proves the ratio of DC link 

voltage and intermediate DC voltage still keeps 1
√3

. In Fig. 4-8(c), it can be observed that 

stator voltage keeps constant when line voltage sags.  

 

(4) Harmonics comparison between LC filter and AOF 

To verify the AOF advantage of harmonic elimination, the stator current 

harmonics comparison between LC filter and AOF is shown in Fig. 4-9. In the range of 

20 ~ 20k Hz (audible frequency range), stator current harmonics in ASD with the 

proposed AOF are much lower than LC filter, especially around the 1st and 2nd switching 

frequency. 
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Fig. 4-9. FFT analysis of stator current harmonics operating at 230V/60Hz. (a) Three-phase ASD 
with LC filter. (b) Three-phase ASD with AOF. 
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4.4 Experimental Results 

The 2/3 hp ASD system prototype is implemented and tested. The specifications 

of this prototype are the same as the design example shown in Table 4-1. The acoustic 

noise measurement system shown in Fig. 3-9 is used to analyze the acoustic noise 

spectra.  

(1) 153V/40Hz operation condition 

First, the prototype operating at 153V/40Hz is measured as shown in Fig. 4-10 ~ 

Fig. 4-13. Fig. 4-10 presents the main inverter output voltages which include abundant 

PWM harmonics. By using AOF, the three phase stator voltages only include the 

fundamental frequency voltage as shown in Fig. 4-11, and hence, there is no voltage 

overshoot in the motor terminal. In the same figure, the DC link voltage Vcap keeps 

constant at about 𝟏𝟏
√𝟑𝟑

Vdc, which is in accordance with the theory analysis. Fig. 4-10 and 

Fig. 4-11 verify the AOF effectively eliminate the switching frequency harmonics from 

the PWM mode inverter. 

 

Vbc [500V/div]

Vca [500V/div]

t [4ms/div]

Vab[500V/div]

 
Fig. 4-10. Main inverter output voltage of three-phase ASD with AOF at 153V/40Hz condition. 
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VBC [250V/div]VCA [250V/div]

t [4ms/div]

VAB[250V/div]

Vcap[250V/div]

Fig. 4-11. DC link voltage and three phase stator voltage of three-phase ASD with AOF at 
153V/40Hz condition. 

Fig. 4-12 illustrates the stator currents harmonics comparison among no filter, 

LC filter and AOF. It can be observed that current harmonics are much lower by using 

AOF, especially for harmonics around low switching frequency sidebands. 

Ia [2A/div] Ib [2A/div] Ic [2A/div]

Ia_FFT [5mA/div] f [2.5kHz/div]

t [4ms/div]

(a) 
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Fig. 4-12. Three phase stator current and frequency spectrum of three-phase ASD at 153V/40Hz 
condition. (a) without filter. (b) with LC passive filter. (c) with AOF. 



Ia [2A/div] Ib [2A/div] Ic [2A/div]

Ia_FFT [5mA/div] f [2.5kHz/div]

t [4ms/div]

(b) 

Ia [2A/div] Ib [2A/div] Ic [2A/div]

t [4ms/div]

Ia_FFT [5mA/div] f [2.5kHz/div]

(c) 
                                                       Fig. 4-12. Continued

Fig. 4-13 demonstrates the acoustic noise spectrum comparison among no filter, 

LC filter and AOF. In Fig. 4-13(b), acoustic noise is reduced by using LC filter, however, 

some noise spikes are still distributed around 1st and 2nd order switching frequency. It 

proves the analysis in Section 2 that current harmonics in low switching frequency cause 

the corresponding acoustic noise peaking. Last, these noise spikes are dramatically 
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suppressed by using AOF as shown in Fig. 4-13(c). In this case, the dominant area of 

acoustic noise is only arranged in the fundamental frequency. 
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(c) 
Fig. 4-13. Acoustic noise spectrum of three-phase ASD system at 153V/40Hz condition. (a) 
without filter. (b) with LC passive filter. (c) with AOF. 

65 



 

(2) 230V/60Hz operation condition 

The 230V/60Hz operation condition (rated condition) is also measured as shown 

in Fig. 4-14 ~ Fig. 4-17. Fig. 4-14 and Fig. 4-15 illustrate AOF removes most of 

harmonics from PWM mode inverter and provides the almost sinusoidal waveforms at 

the motor terminal. In addition, DC link voltage in 230V/60Hz condition (Fig. 4-11) 

equals to 153V/40Hz condition (Fig. 4-15) due to invariant intermediate DC voltage Vdc. 

 

t [4ms/div]

Vbc [500V/div]

Vca [500V/div]

Vab[500V/div]

 

Fig. 4-14. Main inverter output voltage of three-phase ASD with AOF at 230V/60Hz condition. 
 

t [4ms/div]

VBC [250V/div] VCA [250V/div]VAB[250V/div]

Vcap[250V/div]

 
Fig. 4-15. DC link voltage and three phase stator voltage of three-phase ASD with AOF at 
230V/60Hz condition. 
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Fig. 4-16 shows the stator current harmonics comparison among no filter, passive 

filter and AOF. Even though passive filter is beneficial to reduce the current harmonics, 

some harmonics are still distributed in 1st and 2nd order switching frequency sidebands 

shown in Fig 5-16(b). In similar with 153V/40Hz condition, AOF operating at 

230V/60Hz can also efficiently eliminate the stator current harmonics in low witching 

frequency sidebands as shown in Fig. 4-16(c).  

IA [2A/div] IB [2A/div] IC [2A/div]

Ia_FFT [5mA/div] f [2.5kHz/div]

t [4ms/div]

(a) 

IA [2A/div] IB [2A/div] IC [2A/div]

Ia_FFT [5mA/div] f [2.5kHz/div]

t [4ms/div]

(b) 
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IA [2A/div] IB [2A/div] IC [2A/div]

Ia_FFT [5mA/div] f [2.5kHz/div]

t [4ms/div]

(c) 

Fig. 4-16. Three phase stator current and frequency spectrum of three-phase ASD at 230V/60Hz 
condition. (a) without filter. (b)with passive LC filter. (c) with AOF. 

Corresponding to stator current harmonics spectrum shown in Fig. 4-16(a), huge 

noise spikes occur at 1st and 2rd order switching frequency sidebands, which is presented 

in Fig. 4-17(a). By using passive filter, these noise spikes are reduced to 52.1 dB and 

30.9 dB as shown in Fig. 4-17(b). In similar with 153V/40Hz condition, there is no noise 

spike due to AOF at 230V/60Hz condition shown in Fig. 4-17(c). 

70

60

50

40

30

20

10

0
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

Frequency (Hz)

So
un

d 
Pr

es
su

re
 L

ev
el

 (d
B

) 80

90

0

51.3 dB

34.1 dB

(a)  

68 

Fig. 4-17. Acoustic noise spectrum of three-phase ASD system at 230V/60Hz condition. (a) 
without filter. (b) with LC passive filter. (c) with AOF. 
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The overall acoustic noise of three-phase ASD system is presented in Fig. 4-18. 

Acoustic noise is the lowest at different operation conditions by using AOF.  
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Fig. 4-17 Continued. 

Fig. 4-18. Overall noise emitted by three-phase ASD at various fundamental frequencies 
operation conditions. 



4.5 Conclusion 

In this Section, the proposed AOF is used in three-phase ASD system. The 

system configuration and control strategy including AOF and three-phase ASD are 

discussed. The 2/3 hp design example proves the proposed AOF occupies much smaller 

area than the traditional passive filter. The advantage of AOF in the acoustic noise 

reduction is validated by the simulation and experiment. 
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5. CONCLUSION AND FUTURE WORK

In this thesis, the design of the active output filter (AOF) is introduced. The 

proposed AOF is implemented by an H-bridge and a DC link capacitor. The control 

strategy for the H-bridge maintains the DC link voltage and realizes the harmonics 

injection.  

The proposed AOF can replace the bulky LC passive filter in single-phase ASD 

and three-phase ASD. The design example for 1/2 hp single-phase ASD system proves 

the AOF volume is only 6.5% of the passive filter. In addition, 2/3 hp three-phase ASD 

system is presented to demonstrate power density of AOF is about 10 times higher than 

LC filter.  

Simulation results show the dynamic operation of ASD with AOF. Experimental 

results show that the stator voltages at motor terminals are approximately sinusoidal 

waveforms without voltage spikes by using AOF. Even though traditional LC filter can 

eliminate high switching frequency harmonics, low switching frequency harmonics such 

as 1st and 2nd order harmonics still exist in ASD system. In the ASD with AOF, 

harmonics in the whole spectrum are suppressed, and hence, the acoustic noise is 

reduced accordingly, especially for low switching frequency acoustic noise.  

Future work will be done to explore the following areas: 

• More experiments for transient operation of single-phase ASD and three-

phase ASD.

• Applying AOF for open-end winding ASD system

• Electro-magnetic analysis of induction motor based on Maxwell
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• H-bridge and gate driver volume optimization 
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