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ABSTRACT 

 

Hot waterflooding is a well-known method of thermal enhanced oil recovery. 

Prediction of the reservoir behavior is generally obtained through numerical simulation. 

The finite volume simulator is the most common tool to simulate the thermal reservoir. 

However, the computational cost of modeling large-scale, fine-grid, heterogeneous 

reservoirs is high due to the nonlinearity and complexity of the non-isothermal problem. 

The streamline-based simulator complements the finite volume simulator in generating 

faster results by decoupling the 3D flow equation into several 1D problems along the 

streamlines. Implementation of the streamline simulator in the thermal model has been 

introduced by several researchers. As of now, the heat conduction part is mostly solved 

using the operator splitting technique at the end of a global time step. This technique can 

introduce the operator splitting error and may not be a unique solution.  

This work proposes a new approach to handle heat conduction in a streamline 

simulation by solving it simultaneously with the pressure equation along the gridblocks. 

A 2D, quarter five-spot well pattern with one injector and one producer was tested on the 

new streamline simulator, and the results are in agreement with the commercial finite 

volume simulator. Compared to the operator splitting method, the new approach is slightly 

slower due to a larger set of linear equation systems. However, the better accuracy 

compensates for the longer computational time, and it is still much faster than the 

commercial thermal simulator. 
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NOMENCLATURE 

 

1D One-Dimensional 

2D Two-Dimensional 

3D Three-Dimensional 

API American Petroleum Institute 

CFL Courant-Friedrichs-Lewy 

CMG Computer Modelling Group 

CPU Central Processing Unit 

FIM Fully Implicit Method 

EOR Enhanced Oil Recovery 

GB Gigabyte 

IMPES Implicit Pressure Explicit Saturation 

NSPCG Non-Symmetric Preconditioned Conjugate Gradient 

PDE Partial Differential Equation 

RAM Random Access Memory 

SAGD Steam Assisted Gravity Drainage 

SPU Single Point Upstream 

STARS Commercial Thermal Reservoir Simulator 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Introduction 

 A huge part of the world oil resources comes from the heavy oil, which can be 

described as oil with viscosity larger than 100 cp and API gravity less than 22 (Pasarai 

2007). Current total worldwide heavy oil and bitumen resources are estimated around 9 

trillion bbls with the largest heavy oil resources located at Orinoco Belt in Venezuela 

(Alboudwarej et al. 2006). The high viscosity of heavy oil leads to flow difficulties. For 

example, typical recovery factors under primary recovery range from 1 to 10% (Curtis et 

al. 2002). This is considered inefficient. Thermal recovery methods by hot fluid injection 

have enhanced the recovery of viscous oils by reducing the viscosity with increasing 

temperature, causing more oil to be recovered. According to the data from U.S. 

Department of Energy, thermal recovery methods take up to 50% of local Enhanced Oil 

Recovery (EOR) production (Zhu, Gerritsen, and Thiele 2010). Several thermal methods 

such as hot waterflooding, steamflooding, and cyclic steam stimulation are widely used, 

as well as in-situ combustion and the currently popular steam-assisted gravity drainage 

(SAGD) to produce heavy crude oil. During a heavy oil project, forecasts of reservoir 

behavior to thermal fluid injection are necessary. Numerical reservoir simulation is the 

most common way to yield predictions. 

The standard industry practice of thermal reservoir simulation has been to use the 

traditional finite volume (FV) technique that applies a fully implicit (FIM) time stepping 
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method (Aziz and Settari 1979). This method has been found to be stable to handle rapid 

changes in properties and can utilize larger time steps compared to the explicit IMPES 

method. However, high computational cost is encountered during the simulation of real 

field-scale models with fine grid resolution due to the complexity of thermal problem and 

strong nonlinearity. Moreover, the method could predict erroneous results if the numerical 

scheme choice is not controlled. Since then, several techniques of improving the simulator 

efficiency have been proposed (Tamim, Abou-Kassem, and Farouq Ali 1999). A simple 

method with a balanced thermodynamic detail and computational efficiency was still not 

available until the mid-decade of the 2000s where thermal streamline-based simulators 

were growing. 

 Streamline-based simulator solves the pressure equation implicitly to calculate a 

set of streamlines that illustrate the flow in reservoir. The displacement process is captured 

in one-dimensional (1D) solution along each streamline. Solving transport phenomena 

such as fluid mass or heat along the streamline grid rather than Eulerian gridblocks 

provides several advantages. The solutions will be grid insensitive and less affected by the 

grid orientation effects. It also provides better indication of flow features which is very 

helpful in dynamic reservoir characterization. Also, we can use large global time step 

because it does not need to be under the grid-based stability limitations. In steady-state 

isothermal case, streamline method is an ideal way to quantify the relationship between 

injector and producer, determine flow pattern, and assess various field development 

scenarios. 
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Based on the success of streamline application in steady-state isothermal problems, 

we try to implement the method to unsteady-state non-isothermal case that typically occurs 

in thermal recovery process. The developed 2D thermal streamline simulator will solve 

the pressure, saturation, and temperature. A different approach will be made when taking 

account the heat conduction effect. Instead of using operator splitting, heat conduction 

will be solved simultaneously with pressure. It is believed that this approach will generate 

better results. The simulator is implemented in FORTRAN 90 codes with hot 

waterflooding as the base case in simulating the performance of thermal recovery method. 

Hot waterflooding is a great starting case for streamline simulation research before 

expanding to a more complicated process such as steamflooding or SAGD. Results from 

the developed simulator will be validated with the data from CMG STARS, a commercial 

thermal finite volume simulator. 

 

1.2 Literature Review 

1.2.1 Streamline Simulation 

Streamline itself is defined as the curve that is instantaneously tangent to the 

velocity vector of the flow (Bear 1972). Streamline-based simulation offers a very 

different technique of calculating variables over the ordinary grid-based finite volume 

simulation. In this method, we use streamlines instead of Eulerian grids to solve 

conservation equations. Two different time steps and grids are employed. Pressure is 

updated with larger time steps (or global time steps) on gridblocks, while saturation and 

temperature are updated with smaller time steps (or local time steps) on 1D grids along 
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each streamline using the time-of-flight variable instead of arc-length coordinate. 

Streamline method is faster than finite volume method because it can take large global 

time steps with fewer pressure solutions (Osako, Datta-Gupta, and King 2003). This 

method is also insensitive to grid orientation effects commonly associated with finite 

volume method. Many advantages of streamline simulation have led its application to 

various commercial software (King and Datta-Gupta 1998).  

Contrast to the early streamtube simulation, streamline simulation does not require 

explicit computation of volume elements. Instead, it replaces them with calculation along 

lines. Each streamline can be thought as the center of streamtube where the velocity is 

obtained from a previous numerical finite volume calculation. In comparison, velocity in 

streamtube simulation must be determined from the volumetric flux per unit of explicit 

streamtube area. With streamlines, geometry is already implicit making it simpler to 

calculate in three-dimension (3D) (Pasarai 2007). Application of streamtube is also limited 

to 2D pattern flood whereas streamline application covers full range of compositional and 

multiphase displacements in 3D (Batycky 1997).  

The majority of streamline simulators make use of Pollock’s algorithm for tracing 

streamlines (1988). This is a semi-analytical method that points out the exit point of a 

streamline and its time-of-flight inside of a gridblock by assuming a linear interpolation 

of the velocity field from the fluxes of gridblock faces (Pasarai 2007). The tracing 

technique was further developed by introducing the variable time-of-flight to portray 

transport phenomena in a porous medium (Datta-Gupta and King 1995). Time-of-flight is 

the time required for a trace to reach a distance, s, along a streamline (Batycky 1997). 
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Current streamline simulators employ the concept of time-of-flight because of the 

simplicity and its ability to decouple a 3D problem into series of 1D problem. The 

discovery of time-of-flight variable is the most significant contribution in streamline 

simulation (Pasarai 2007). 

In solving the conservation equations along streamlines, analytical or numerical 

techniques can be used. Analytical solution is restricted to fixed streamline paths and only 

applicable to uniform initial conditions. The numerical solution is more general and 

appropriate for changing well and mobility conditions (Pasarai 2007). The built simulator 

in this project will only utilize the numerical technique. Batcyky solved the 1D saturation 

equation numerically with a single point upstream (SPU) weighting finite difference 

explicit in time and spatially discretized the equation in time-of-flight (τ) variable (1997). 

Based on his observation, there is a refinement of streamlines in the high-velocity area 

and reduced resolution in the low-velocity area.  

Before solving the equation numerically, the irregular-spaced of τ grid must be 

converted to regular-spaced τ grid because the local time step is controlled by the local 

Courant-Friedrichs-Lewy (CFL) stability criterion in explicit time scheme. It was further 

found that implicit SPU is more efficient than explicit SPU, but produces larger numerical 

dispersion (Yan et al. 2004). Numerical stability can also be improved by choosing the 

right time step size for pressure updates (Osako, Datta-Gupta, and King 2003). The 

proposed guideline of time step size by Osako et al. pretty much eliminates the subjectivity 

of streamline simulation by introducing the automatic control of global time step. 
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 Updated properties are mapped from streamlines back to gridblocks at the end of 

each global time step. The mapping procedure is based on the assumption that the flux is 

constant along each streamline (Batycky 1997). However, this assumption is only valid 

for incompressible flow because compressible flow creates flux divergence along the 

streamline. Therefore, this variation of flux has to be taken into account when averaging 

the properties from streamlines to gridblocks for compressible flow. For compressible 

flow case, we also need to add a source/sink term to the 1D transport equation along the 

streamline. By doing this, the fluid volume changes with pressure is captured, and 

compressibility effect is well represented (Cheng et al. 2005). 

One of the most important advances in streamline simulation is the introduction of 

operator splitting method to decouple convective and diffusion parts in the transport 

equation. This method has been implemented in streamline simulators and shows 

reasonable accuracy and efficiency (Crane et al. 2000). Streamline works best for flow 

that is dominated by convection process and less suited for the diffusion process. Thus, 

operator splitting is needed to solve both processes separately. First, convective part is 

solved along 1D streamlines by finite difference method. The updated properties from 

streamlines are then used to compute new values of properties due to diffusion in the 

gridblocks. Various diffusion mechanisms such as capillary, gravity, and heat conduction 

effects can be modeled using the operator splitting technique (Pasarai 2007). A general 

workflow of the streamline-based simulator for a global time step can be seen in Figure 1 

(Zhu, Gerritsen, and Thiele 2010). 
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Streamline simulation is well known to be efficient and complementary to the 

traditional finite volume simulation in large, geologically complex and heterogeneous 

systems. Most of the computational work in streamline simulation comes from solving the 

transport equations along the independent 1D streamlines. This creates a great opportunity 

for parallelization in streamline simulation framework. Recent research shows promising 

results in parallel speed-up (Lof, Gerritsen, and Thiele 2008). The high computational 

efficiency of streamline simulation makes it suitable for cases requiring many simulations 

such as history matching, ranking and optimization problems. One apparent disadvantage 

of this simulation technique is that it is not mass conservative due to the errors produced 

while mapping the properties from Eulerian grid to 1D streamline grid. Improved methods 

Figure 1: General workflow of streamline-based simulation for a global time step 

(Zhu, Gerritsen, and Thiele 2010) 
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of mapping have been proposed to minimize the mass balance errors (Mallison, Gerritsen, 

and Matringe 2004). Regardless, studies show that the mass balance errors are relatively 

small, and streamline method still predicts the global sweep in heterogeneous reservoirs 

effectively (Zhu, Gerritsen, and Thiele 2010). 

 

1.2.2 Hot Waterflooding 

In a simple case, hot waterflooding involves the flow of water and oil phases only. 

Water that has been heated to a temperature higher than the reservoir condition but lower 

than the vaporization temperature is injected. The hot water will flow into cooler region, 

and some of the heat will be lost to surroundings until it is cooled back to initial 

temperature of the reservoir. This process will create oil bank that continues to grow ahead 

of the expanding heated zone. The primary role of heated water is to reduce oil viscosity 

so that the local displacement efficiency will be improved. Hot waterflooding is well 

suited for reservoir with low to moderate in-situ oil viscosity and various oil density. This 

type of reservoir is usually shallow where permeability of the order of 10’s of Darcies is 

common (Pasarai 2007).  

Field applications proved that hot waterflooding is able to recover additional 

volumes of oil and extend the economic life of a heavy oil reservoir (Kasrale, Sammon, 

and Jespersen 1993). Hot water injection is also the least expensive thermal enhanced oil 

recovery method (Farouq Ali 1974). Although steamflooding has three times more heat 

capacity than hot waterflooding method, it is costly to generate, and the field 

implementation is intensive. Another advantage of hot waterflooding is its capability of 
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providing higher injection pressure than steamflooding which is very efficient in 

maintaining reservoir pressure. 

Streamline simulation application to hot waterflooding was first proposed by 

Pasarai and Arihara. Their simulator solved both oil and water mass transport equations 

on the gridblocks and the energy equation along the 1D streamlines to take account of 

unsteady-state flow (Pasarai 2007). Later, Zhu et al. improved the simulation by fully 

solving both mass and energy transport along streamlines while rigorously taking account 

for compressibility and non-advective effects (2010). The developed simulator was tested 

in 2D case of a simple quarter five-spot with one injector and one producer. Based on their 

observation, Zhu et al. found that operator splitting may not be the unique solution to 

efficiently incorporate heat conduction effect into thermal streamline simulation. Most 

recently, the simulation was performed on a 3D real, field-scale reservoir with complex 

heterogeneity distribution and multiple wells (Siavashi et al. 2014). Their simulator 

produced results that were in agreement with commercial simulator. All of the previous 

streamline-based simulators for hot waterflooding utilize the operator splitting to model 

the heat conduction effect. 
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CHAPTER II 

RESEARCH STATEMENT 

 

Forecast of reservoir performance in a thermal enhanced oil recovery process by 

hot waterflooding is essential. The typical finite volume simulator requires high 

computational cost due to the complexity and nonlinearity of the thermal problem. 

Streamline-based simulator provides an alternative fast approximate solution and has been 

tested in the hot waterflooding case by several researchers. As of now, heat conduction 

effect is always incorporated in streamline-based simulator by using the operator splitting 

method which may not be the unique solution. 

This study evaluates a new approach to handle the heat conduction effect in a 2D 

streamline-based simulator. Instead of solving the heat conduction with operator splitting 

at the end of global time step, it is solved simultaneously with pressure equation on 

Eulerian grid at the beginning of global time step.  Comparison between the two methods 

is assessed. Furthermore, the speed and accuracy of the developed simulator are also 

compared with a commercial finite volume thermal simulator.  
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CHAPTER III 

GOVERNING EQUATIONS 

 

This chapter presents a mathematical model for thermal simulation of hot 

waterflooding using the streamline method. Starting with the general mass and energy 

balance equations, we further reduce the equations to a system of PDE by making key 

assumptions related to the hot waterflooding case. The mathematical derivation of 

streamline equations is also discussed, ranging from the coordinate transformation, 

streamline tracing, to the transport equation along the streamlines. 

 

3.1 General Mass Conservation  

Transport mechanism of a particular fluid component can be carried out by bulk 

flow and molecular diffusion. Darcy’s Law governs the bulk volumetric flux which is the 

volume flow rate per unit cross-sectional area. The generalized form of Darcy’s Law can 

be written as, 

𝑢⃗ 𝐽 = −
𝑘̿𝑘𝑟𝑗

𝜇𝑗
(∇𝑃𝑗 − 𝜌𝑗𝑔∇𝐷) ......................................................................................... (3.1) 

where 𝑘̿ is the permeability tensor, 𝑘𝑟𝑗 is the phase relative permeability, 𝑃𝑗 is the phase 

pressure, 𝜌𝑗 is the phase density, 𝜇𝑗 is the phase viscosity, 𝑔 is gravitational constant, and 

𝐷 is the reservoir depth. Here, the phase 𝑗 can be water, oil, or gas phase. On the other 

hand, diffusive flux per unit cross-sectional area is given by Fick’s Law, 

𝑢⃗ 𝐷𝑖𝑗
= −𝐷̿𝑖𝑗 ∙ 𝛻𝜔𝑖𝑗 ...................................................................................................... (3.2) 
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where 𝐷̿𝑖𝑗 is dispersivity tensor and 𝜔𝑖𝑗 is the mass fraction of component 𝑖 in phase 𝑗. 

In an arbitrary control volume V within a permeable porous medium, a number of 

components are flowing through. The law of mass conservation declares that for a certain 

component 𝑖, the summation of net mass flux rate and sink/source rate must be equal to 

the mass accumulation rate. We can express this in the form of PDE, 

𝜕

𝜕𝑡
(∅∑ 𝜌𝑗𝑆𝑗𝜔𝑖𝑗

𝑛𝑝

𝑗=1
) + ∇ ∙ (∑ (𝑢⃗ 𝐽𝜌𝑗𝜔𝑖𝑗 − 𝑆𝑗∅𝜌𝑗𝐷̿𝑖𝑗 ∙ 𝛻𝜔𝑖𝑗)

𝑛𝑝

𝑗=1
) = ∑ 𝑞𝑗𝜔𝑖𝑗

𝑛𝑝

𝑗=1
 ........... (3.3) 

where ∅ is the porosity, 𝑆𝑗 is the phase saturation, and 𝑞𝑗 is the mass flow rate of a source 

or sink. The general form of Eq. (3.3) is applied to each component of interest. Later, we 

reduce the equation to a simpler form of continuity equation by making several 

assumptions related to the hot waterflooding model. 

 

3.2 General Energy Conservation  

Heat transportation mechanism can be due to conduction, convection, and 

radiation. Radiation seldom occurs in a reservoir, so it is safe to ignore the term in reservoir 

modeling. Conduction and convection process are analogous to the mass transport by 

diffusion and bulk flow, respectively. Heat conduction is caused by microscopic collisions 

of particles and electrons movement within a body. Fourier’s Law describes the 

conduction heat flux as, 

𝑢⃗ 𝐾 = −𝐾𝑇∇𝑇 ................................................................................................................ (3.4) 

𝐾𝑇 = (1 − ∅)𝐾𝑟 + ∅(∑ 𝑆𝑗𝐾𝑗
𝑛𝑝

𝑗=1
) ................................................................................ (3.5) 
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where 𝐾𝑇 is the total thermal conductivity, 𝐾𝑟 is the rock thermal conductivity, 𝐾𝑗 is the 

phase thermal conductivity, and 𝑇 is the temperature. In contrast to conduction, heat 

convection relates the process of heat transfer caused by fluid movement. The associated 

convective heat flux with negligible kinetic and potential energy is, 

𝑢⃗ 𝑇 = 𝑢⃗ 𝑗𝜌𝑗𝐻𝑗 ................................................................................................................. (3.6) 

where  𝐻𝑗 is the phase enthalpy.  

The main difference between non-isothermal and isothermal simulation is the 

addition of energy balance equation. Similar to mass balance equation, the summation of 

net heat flux rate and heat sink/source rate must be equal to the heat accumulation rate. 

For practical purposes, kinetic and potential energies will be negligible because of their 

small contribution in a typical thermal recovery process. Therefore, we can write the PDE 

of energy conservation as, 

𝜕

𝜕𝑡
(∅∑ 𝜌𝑗𝑆𝑗𝑈𝑗

𝑛𝑝

𝑗=1
+ (1 − ∅)𝜌𝑟𝐶𝑟𝑇) + ∇ ∙ (∑ 𝑢⃗ 𝐽𝜌𝑗𝐻𝑗

𝑛𝑝

𝑗=1
) − ∇ ∙ (𝐾𝑇∇𝑇) = ∑ 𝑞𝑗𝐻𝑗

𝑛𝑝

𝑗=1

 ...................................................................................................................................... (3.7) 

where 𝑈𝑗 is the internal energy of the phase and 𝐶𝑟 is the rock heat capacity. Unlike the 

mass conservation equation that requires one equation for each component, energy 

conservation only implements Eq. (3.7) for the whole system. 

 

3.3 Pressure Equation 

Streamline method employs a sequential procedure to model the reservoir, by 

separating the flow or pressure equation from the conservation equations. Several key 

assumptions are made to derive PDEs for our 2D hot waterflooding model such as: (1) it 
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only consists of two components: water and a pseudocomponent ‘oil’, (2) water and ‘oil’ 

components are immiscible which means that the ‘oil’ component is insoluble in water 

phase, and water component is insoluble in oil phase, (3) phase pressure of water and oil 

are always higher than bubble point pressure which indicates no formation of gas phase, 

(4) relative permeability is not a function of temperature, (5) gravity and capillary pressure 

are negligible, (6) heat loss to overburden and underburden does not occur, (7) 

contribution of diffusive flow is very small, (8) the rock is incompressible. Consequently, 

the mass conservation equations for water and oil components are reduced to, 

𝜕

𝜕𝑡
(∅𝜌𝑤𝑆𝑤) + ∇ ∙ (𝜌𝑤𝑢⃗ 𝑤) = 𝑞𝑤 ................................................................................... (3.8) 

𝜕

𝜕𝑡
(∅𝜌𝑜𝑆𝑜) + ∇ ∙ (𝜌𝑜𝑢⃗ 𝑜) = 𝑞𝑜 ...................................................................................... (3.9) 

Substitute Darcy’s Law in Eq. (3.1) into above equations and eliminate the gravity 

and capillary term, resulting in, 

𝜕

𝜕𝑡
(∅𝜌𝑤𝑆𝑤) − ∇ ∙ (𝜌𝑤

𝑘̿𝑘𝑟𝑤

𝜇𝑤
∇𝑃) = 𝑞𝑤 ........................................................................ (3.10) 

𝜕

𝜕𝑡
(∅𝜌𝑜𝑆𝑜) − ∇ ∙ (𝜌𝑜

𝑘̿𝑘𝑟𝑜

𝜇𝑜
∇𝑃) = 𝑞𝑜 ........................................................................... (3.11) 

Pressure equation is obtained by summing up Eq. (3.10) and (3.11), 

∅𝑐𝑡
𝜕𝑃

𝜕𝑡
− ∇ ∙ (

𝑘̿𝑘𝑟𝑤𝜌𝑤

𝜇𝑤
∇𝑃) − ∇ ∙ (

𝑘̿𝑘𝑟𝑜𝜌𝑜

𝜇𝑜
∇𝑃) = 𝑞𝑤 + 𝑞𝑜 ............................................ (3.12) 

with 

𝑐𝑡 = 𝑆𝑤𝜌𝑤𝑐𝑤 + 𝑆𝑜𝜌𝑜𝑐𝑜 .............................................................................................. (3.13) 
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where 𝑐𝑡 is the total compressibility, 𝑐𝑤 is the water compressibility, and 𝑐𝑜 is the oil 

compressibility. Note that the rock compressibility term is not involved because we 

assume that the rock is incompressible. Water and oil compressibility are defined as, 

𝑐𝑤 =
1

𝜌𝑤

𝜕𝜌𝑤

𝜕𝑃
 ................................................................................................................ (3.14) 

𝑐𝑜 =
1

𝜌𝑜

𝜕𝜌𝑜

𝜕𝑃
 .................................................................................................................. (3.15) 

To solve Eq. (3.12), boundary conditions are defined at wells and no-flow 

boundaries. The mass phase flow rate per unit volume, 𝑞𝑗, is determined from Peaceman 

equation as follows, 

𝑞𝑗 = 𝑊𝐼
𝑘𝑟𝑗𝜌𝑗

𝜇𝑗
(𝑃𝑤𝑒𝑙𝑙 − 𝑃) .......................................................................................... (3.16) 

where 𝑃𝑤𝑒𝑙𝑙 is the wellbore pressure, 𝑃 is the gridblock pressure, and 𝑊𝐼 is the well index 

which is defined as, 

𝑊𝐼 =
2𝜋𝑘𝑒∆𝑧

ln
𝑟𝑒
𝑟𝑤

+𝑠
 ............................................................................................................... (3.17) 

where 𝑠 is the skin factor, 𝑟𝑤 is the wellbore radius, ∆𝑧 is the height of gridblock, 𝑘𝑒 is the 

effective absolute permeability, and 𝑟𝑒 is the effective wellbore radius. Both 𝑘𝑒 and 𝑟𝑒 can 

be calculated by, 

𝑘𝑒 = √𝑘𝑥 𝑘𝑦⁄  ............................................................................................................. (3.18) 

𝑟𝑒 = 0.28 [
[(𝑘𝑦 𝑘𝑥⁄ )

1 2⁄
∆𝑥2+(𝑘𝑥 𝑘𝑦⁄ )

1 2⁄
∆𝑦2]

1 2⁄

(𝑘𝑦 𝑘𝑥⁄ )
1 4⁄

(𝑘𝑥 𝑘𝑦⁄ )
1 4⁄ ] ................................................................ (3.19) 

The unknown in Peaceman equation is either the mass phase flow rate for Dirichlet 

pressure-constrained well or the wellbore pressure for Neumann rate-constrained well 
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boundary condition. To fully solve the pressure equation, several auxiliary equations are 

needed as follows. 

 Phase saturation equation, 𝑆𝑤 + 𝑆𝑜 = 1 

 Relative permeability is only a function of phase saturation, 𝑘𝑟𝑤 = 𝑆𝑤
2
 and 𝑘𝑟𝑜 = 𝑆𝑜

2
 

 Phase density is a function of both pressure and temperature, 

𝜌𝑗 = 𝜌𝑗
𝑟𝑒𝑓

exp[𝑐𝑗(𝑃 − 𝑃𝑟𝑒𝑓) − 𝛼𝑗(𝑇 − 𝑇𝑟𝑒𝑓)] ..................................................... (3.20) 

 Phase viscosity is only a function of temperature, 

𝜇𝑗 = 𝐴𝑗 exp(𝐵𝑗 𝑇⁄ ) .............................................................................................. (3.21) 

 Liquid enthalpy is calculated using the average heat capacity of the phase, 

𝐻𝑗 = ∫ (𝐶𝑝(𝑇))
𝑗
𝑑𝑇

𝑇

𝑇𝑟𝑒𝑓
= (𝐶𝑝̅)𝑗

(𝑇 − 𝑇𝑟𝑒𝑓) ......................................................... (3.22) 

 Internal energy can be calculated as, 

𝑈𝑗 = 𝐻𝑗 − 𝑃 𝜌𝑗⁄  .................................................................................................... (3.23) 

 

3.4 Streamline Equations 

3.4.1 Incompressible Flow 

The concept of time-of-flight (𝜏) is crucial in streamline simulation (Datta-Gupta 

and King 1995). The general 3D flow equation can be transformed by using 𝜏 as spatial 

coordinate into multiple 1D equations. By solving the 1D problems, the computational 

time and numerical dispersion are reduced (Batycky 1997). From the definition, time-of-

flight is the time required for a certain tracer to reach a distance (𝜁) along the streamline. 

Although the unit of this variable is in time, time-of-flight acts as the spatial coordinate in 
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streamline simulation. Properties in a 3D domain such as porosity and permeability are 

honored along streamlines by the use of 𝜏 coordinate (Pasarai 2007). In mathematical 

form, time-of-flight can be written as, 

𝜏(𝑠) = ∫
∅(𝜁)

|𝑢⃗⃗ 𝑡(𝜁)|
𝑑𝜁

𝑠

0
 ..................................................................................................... (3.24) 

Eq. (3.24) can be stated in differential form as, 

𝑢⃗ 𝑡 ∙ ∇τ = ∅ ................................................................................................................. (3.25) 

Coordinate transformation from the physical space in streamline simulation 

requires three new spatial coordinates. These are 𝜏 and two other bi-streamfunctions 𝜓 

and 𝜒 (Datta-Gupta and King 1995). The following is the relationship, 

 𝑢⃗ 𝑡 = ∇𝜓 × ∇𝜒 ........................................................................................................... (3.26) 

Assumption of incompressible flow is implicit in this representation because of the vector 

identity, 

∇ ∙ (∇𝜓 × ∇𝜒) = 0 ..................................................................................................... (3.27) 

Therefore, ∇ ∙ 𝑢⃗ 𝑡 = 0 is valid for incompressible flow. The coordinate transformation is 

facilitated by the simple Jacobian of coordinate transformation using Eq. (3.25) and (3.26), 

|
𝜕(𝜏,𝜓,𝜒)

𝜕(𝑥,𝑦,𝑧)
| = (∇𝜓 × ∇𝜒) ∙ ∇𝜏 = 𝑢⃗ 𝑡 ∙ ∇𝜏 = ∅ ................................................................ (3.28) 

The direct relationship between physical space and 𝜏 coordinate can be seen by 

rearranging Eq. (3.28), 

∅𝑑𝑥𝑑𝑦𝑑𝑧 = 𝑑𝜏𝑑𝜓𝑑𝜒 ................................................................................................. (3.29) 
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From the above equation, the transformation preserves pore volume along the streamlines. 

This is essential to maintain material balance. Gradient operator is now expressed in the 

(𝜏, 𝜓, 𝜒) coordinates as, 

∇= (∇𝜏)
𝜕

𝜕𝜏
+ (∇𝜓)

𝜕

𝜕𝜓
+ (∇𝜒)

𝜕

𝜕𝜒
 ............................................................................... (3.30) 

𝑢⃗ 𝑡 ∙ ∇= 𝑢⃗ 𝑡 ∙ (∇𝜏)
𝜕

𝜕𝜏
+ 𝑢⃗ 𝑡 ∙ (∇𝜓)

𝜕

𝜕𝜓
+ 𝑢⃗ 𝑡 ∙ (∇𝜒)

𝜕

𝜕𝜒
 .................................................... (3.31) 

The second and third terms on the right-hand side of Eq. (3.31) disappear because 

of the orthogonality between 𝑢⃗ 𝑡 and the bi-streamfunctions (𝜓 and 𝜒). At last, the final 

form of coordinate transformation from physical space (x,y,z) to 𝜏 coordinate in 

incompressible flow is, 

𝑢⃗ 𝑡 ∙ ∇= ∅
𝜕

𝜕𝜏
 ................................................................................................................ (3.32) 

 

3.4.2 Compressible Flow 

The flow along a streamline that is always tangent to the velocity vector is called 

longitudinal flux. In steady state condition, the fluid is only considered longitudinal, and 

the streamline does not move for a global time step. However, this is not valid for unsteady 

state or compressible flow because the fluid movement is not only tangent to the velocity 

vector but there is additional flow called transverse flux that moves across the streamline 

(Pasarai 2007). A clear illustration of these two fluxes is described in Figure 2. 

Transverse flux triggers the volumetric flux variation along the streamlines. As a 

result, the term ∇ ∙ 𝑢⃗ 𝑡 is not zero anymore. The new mathematical form of ∇ ∙ 𝑢⃗ 𝑡 is derived 

by Cheng et al. using Pollock’s algorithm for the case of compressible flow (2005). By 
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taking into account volumetric flux variation along streamlines, significant improvement 

of performance prediction can be achieved. To start off, Eq. (3.26) must be modified to 

include a scale factor, 

𝜌𝑢⃗ 𝑡 = ∇𝜓 × ∇𝜒 .......................................................................................................... (3.33) 

where 𝜌 is the effective density (equal to 1 for incompressible flow). The left-hand term 

of Eq, (3.3) can further be represented as a conserved flux,  

∇ ∙ (𝜌𝑢⃗ 𝑡) = ∇ ∙ (∇𝜓 × ∇𝜒) = 0  

𝑢⃗ 𝑡 ∙ ∇𝜌 + 𝜌∇ ∙ 𝑢⃗ 𝑡 = 0  

∅
𝜕𝜌

𝜕𝜏
+ 𝜌∇ ∙ 𝑢⃗ 𝑡 = 0 ...................................................................................................... (3.34) 

The above equation is equivalent to Eq. (3.27). 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 2: Illustration of longitudinal and transverse fluxes along the streamlines 

(Pasarai 2007) 
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As stated earlier, Pollock’s algorithm is utilized to derive ∇ ∙ 𝑢⃗ 𝑡 for compressible 

flow. Pollock assumes a linear relationship between the values of gridblock interstitial 

velocity on cell faces. Interstitial velocity is obtained by dividing the total Darcy velocity 

by the porosity. A schematic of Pollock’s application in 2D is represented in Figure 3. In 

mathematical form, 

𝑣𝑥 = 𝑣𝑥1 + 𝑎𝑥(𝑥 − 𝑥1)  

𝑣𝑦 = 𝑣𝑦1 + 𝑎𝑦(𝑦 − 𝑦1) .............................................................................................. (3.35) 

whereas the gradients are defined as, 

𝑎𝑥 = (𝑣𝑥2 − 𝑣𝑥1)/∆𝑥  

𝑎𝑦 = (𝑣𝑦2 − 𝑣𝑦1)/∆𝑦 ................................................................................................ (3.36) 

 

 

 

 

 

 

 

 

Figure 3: Pollock’s algorithm to trace streamline in 2D (Siavashi et al. 2014) 
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According to Cheng et al., ∇ ∙ 𝑢⃗ 𝑡 is now defined in 2D for compressible flow as, 

∇ ∙ 𝑢⃗ 𝑡 = 𝑎𝑥 + 𝑎𝑦 = 𝑎 ................................................................................................. (3.37) 

If we substitute Eq. (3.37) into Eq. (3.34), and integrating within a cell along a streamline, 

we can obtain the formulation for effective density, 

𝜌 = 𝜌𝑜𝑒
−(𝑎𝜏 ∅⁄ ) ........................................................................................................... (3.38) 

At injector, the effective density 𝜌𝑜 is equal to 1. If we start tracing the streamline 

from injector, then the variation of volumetric flux along the streamline is directly related 

to the assigned flux at injector 𝑄𝑜 in a way that, 

𝑄𝑖 = 𝑄𝑜
1

𝜌𝑖
= 𝑄𝑜𝑒

(𝑎𝜏 ∅⁄ ) .............................................................................................. (3.39) 

It is easier to work with volumetric flux in Eq. (3.39) rather than the effective density in 

Eq. (3.38). In addition, Eq. (3.32) applies to both incompressible and compressible flow. 

The Jacobian of coordinate transformation from physical space to 𝜏 coordinate is 

different in compressible flow. Correct procedure of this term is crucial to minimize mass 

balance errors during mapping from streamlines to gridblocks. Thus, Cheng et al. modified 

Eq. (3.28) and (3.29) into, 

|
𝜕(𝜏,𝜓,𝜒)

𝜕(𝑥,𝑦,𝑧)
| = (∇𝜓 × ∇𝜒) ∙ ∇𝜏 = 𝜌𝑢⃗ 𝑡 ∙ ∇𝜏 = 𝜌∅ ............................................................ (3.40) 

∅𝑑𝑥𝑑𝑦𝑑𝑧 =
1

𝜌
𝑑𝜏𝑑𝜓𝑑𝜒 .............................................................................................. (3.41) 

 

3.4.3 Streamline Tracing 

Several works of literature have explained the procedure of streamline tracing and 

most of them use Pollock’s semi-analytical tracing algorithm as the reference (1988). This 
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method is consistent with the material balance equation. The time it takes for a particle in 

a streamline to flow across a gridblock face can be determined by integrating Eq. (3.35) 

into, 

∆𝑡𝑒,𝑥 =
1

𝑎𝑥
ln [

𝑣𝑥,𝑜+𝑎𝑥(𝑥𝑒−𝑥𝑜)

𝑣𝑥,𝑜+𝑎𝑥(𝑥𝑖−𝑥𝑜)
]  

∆𝑡𝑒,𝑦 =
1

𝑎𝑦
ln [

𝑣𝑦,𝑜+𝑎𝑦(𝑦𝑒−𝑦𝑜)

𝑣𝑦,𝑜+𝑎𝑦(𝑦𝑖−𝑦𝑜)
] ...................................................................................... (3.43) 

where subscript i means inlet, e means exit, and o means origin. The true exit face is the 

one that generates minimum time in Eq. (3.43). Then, the exit location of the streamline 

in a gridblock is obtained by using the minimum time (∆𝑡𝑒) and rearranging Eq. (3.43) as, 

𝑥𝑒 =
1

𝑎𝑥
(𝑣𝑥,𝑖 exp[𝑎𝑥∆𝑡𝑒] − 𝑣𝑥,𝑜) + 𝑥𝑜  

𝑦𝑒 =
1

𝑎𝑦
(𝑣𝑦,𝑖 exp[𝑎𝑦∆𝑡𝑒] − 𝑣𝑦,𝑜) + 𝑦𝑜 ...................................................................... (3.44) 

Calculations of the time and exit location are repeated to the next block until a sink 

is encountered. The time-of-flight is computed stepwise using the minimum time for each 

gridblock such that, 

𝜏 = ∑ ∆𝑡𝑒,𝑖
𝑛𝑔𝑏

𝑖=1
 ............................................................................................................. (3.45) 

where ∆𝑡𝑒,𝑖 is the current exit time of gridblock and 𝑛𝑔𝑏 is the number of cells that has 

been passed by the streamline. 

Most of the time, streamlines are launched from the gridblock faces of an injection 

well. Volumetric flux across each injection block face is uniform, and the streamlines are 

also uniformly distributed on the faces of injection block proportional to the assigned flux 
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across the block (Pasarai 2007). Therefore, the initial volumetric flux for each streamline 

is given by, 

𝑄𝑠𝑙 =
𝑄𝑓

𝑛𝑠𝑓
 ..................................................................................................................... (3.46) 

where 𝑄𝑓 is the assigned flux of the block face and 𝑛𝑠𝑓 is the number of streamlines 

launched from the block face. Careful consideration of the number of streamlines as a 

simulation input should be done so that each gridblock has at least one streamline passing 

through it. In the case where a certain active gridblock is not passed by a streamline, a new 

streamline is launched from the center of that block and traced backward to an injector. 

The process is continued until no missed cells are detected. 

 

3.4.4 Transport Equations on Streamline 

After a thorough explanation of the basis of streamline, it is time to implement the 

mass and heat transport equations into 𝜏 coordinate along the streamline. The term 

fractional flow is needed for coordinate transformation, and it is defined as, 

𝑓𝑗 =
𝑢⃗⃗ 𝑗

𝑢⃗⃗ 𝑡
=

𝑘𝑟𝑗 𝜇𝑗⁄

∑𝑘𝑟𝑗 𝜇𝑗⁄
 ........................................................................................................ (3.47) 

Substitute Eq. (3.47) into Eq. (3.8) to obtain, 

∅
𝜕

𝜕𝑡
(𝜌𝑤𝑆𝑤) + ∇ ∙ (𝜌𝑤𝑓𝑤𝑢⃗ 𝑡) = 𝑞𝑤 ............................................................................. (3.48) 

Streamline works better for a convective-dominated problem. As a result, we will 

not take account heat conduction in the heat transport equation along the streamline. Eq. 

(3.7) reduces to, 
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𝜕

𝜕𝑡
(∅[𝜌𝑤𝑆𝑤𝑈𝑤 + 𝜌𝑜𝑆𝑜𝑈𝑜] + (1 − ∅)𝜌𝑟𝐶𝑟𝑇) + ∇ ∙ (𝑢⃗ 𝑤𝜌𝑤𝐻𝑤 + 𝑢⃗ 𝑜𝜌𝑜𝐻𝑜) = 𝑞𝑤𝐻𝑤

𝑤 +

𝑞𝑜𝐻𝑜
𝑤  ......................................................................................................................... (3.49) 

where superscript 𝑤 indicates well condition.  

Substitute fraction flow term from Eq. (3.47) to Eq. (3.49) and rearrange the 

equation to get the following, 

∅
𝜕𝐸

𝜕𝑡
+ ∇ ∙ (𝐹𝑢⃗ 𝑡) = 𝑞𝑤𝐻𝑤

𝑤 + 𝑞𝑜𝐻𝑜
𝑤 ............................................................................ (3.50) 

where 𝐸 is the total energy per unit volume defined as, 

𝐸 = 𝜌𝑤𝑆𝑤𝑈𝑤 + 𝜌𝑜𝑆𝑜𝑈𝑜 +
(1−∅)

∅
𝜌𝑟𝐶𝑟𝑇 ..................................................................... (3.51) 

and 𝐹 is convective energy written as, 

𝐹 = 𝜌𝑤𝐻𝑤𝑓𝑤 + 𝜌𝑜𝐻𝑜𝑓𝑜 .............................................................................................. (3.52) 

In general, streamlines calculations are only performed outside the well block 

because all streamlines are launched from the face of the well block (Batycky 1997). If 

we expand the divergence operator, Eq. (3.48) and (3.50) will take form outside the well 

block as, 

𝜕

𝜕𝑡
(𝜌𝑤𝑆𝑤) +

𝜌𝑤𝑓𝑤

∅
∇ ∙ 𝑢⃗ 𝑡 +

𝑢⃗⃗ 𝑡

∅
∙ ∇(𝜌𝑤𝑓𝑤) = 0 .............................................................. (3.53) 

𝜕𝐸

𝜕𝑡
+

𝐹

∅
∇ ∙ 𝑢⃗ 𝑡 +

𝑢⃗⃗ 𝑡

∅
∙ ∇𝐹 = 0 ......................................................................................... (3.54) 

To transform the coordinate, substitute Eq. (3.32) into the above equations and use ∇ ∙ 𝑢⃗ 𝑡 

term from Eq. (3.37) to take account for fluid compressibility, 

𝜕

𝜕𝑡
(𝜌𝑤𝑆𝑤) +

𝜕

𝜕𝜏
(𝜌𝑤𝑓𝑤) = −

𝑎

∅
𝜌𝑤𝑓𝑤 ........................................................................... (3.55) 

𝜕𝐸

𝜕𝑡
+

𝜕𝐹

𝜕𝜏
= −

𝑎

∅
𝐹 .......................................................................................................... (3.56) 
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Eq. (3.55) and (3.56) are mass and heat transport equation in 𝜏 coordinate, respectively. 

 

3.4.5 Mapping Techniques 

The time-of-flight can vary between gridblocks and cause the fluid properties to 

be defined on irregular 𝜏 grid as shown in Figure 4. Before solving the transport equations 

along the streamlines, properties should be modified onto a regularly-spaced 𝜏 grid first. 

This will simplify the calculation of internode fluxes and provide stability in local time 

step. Property values can be assigned to regular 𝜏 grid using the following basis, 

 (∫ 𝑋𝑗𝑑𝜏
𝑠

0
)
𝑟𝑒𝑔𝑢𝑙𝑎𝑟

= (∫ 𝑋𝑗𝑑𝜏
𝑠

0
)
𝑖𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟

 ..................................................................... (3.57) 

where 𝑋𝑗 represents any property such as water saturation, pressure, or temperature.  

For example, the value of water saturation in the third cell of regular grid that is 

shown in Figure 5 can be computed by, 

(𝑆𝑤3)𝑟𝑒𝑔𝑢𝑙𝑎𝑟 =
(𝑆𝑤3)𝑖𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟(𝜏3−𝜏2

′ )+(𝑆𝑤4)𝑖𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟(𝜏3
′−𝜏3)

𝜏3
′−𝜏2

′  ............................................ (3.58) 

By applying Eq. (3.57), mass and heat are conserved in the transformation process. 

However, the transformation from irregular to regular 𝜏 grid creates one source of 

numerical diffusion during the streamline simulation (Pasarai 2007). 

After solving the transport equations along the streamline at the end of a global 

time step, water saturation and temperature are averaged back onto the Eulerian 

gridblocks. This action is highly dependent on the number of streamlines that pass through 

the cell. Because of the various volumetric flux along the streamline due to 
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compressibility, the averaging procedure must include the local volumetric flux and time-

of-flight variable in such that, 

𝑆𝑤̅ =
∑ 𝑆𝑤𝑖𝑞𝑖∆𝜏𝑖

𝑛𝑠
𝑖=1

∑ 𝑞𝑖∆𝜏𝑖
𝑛𝑠
𝑖=1

 ........................................................................................................ (3.59) 

𝑇̅ =
∑ 𝑇𝑖𝑞𝑖∆𝜏𝑖

𝑛𝑠
𝑖=1

∑ 𝑞𝑖∆𝜏𝑖
𝑛𝑠
𝑖=1

 ............................................................................................................ (3.60) 

where 𝑛𝑠 is the number of streamlines in a gridblock and 𝑞𝑖 is the local volumetric flux 

computed by Eq. (3.39). Mapping is one of the main sources of mass balance error in 

streamline simulation, so it must be taken with care. Mapping error affects saturation more 

than the temperature because it may contain sharp gradients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Discretization in irregular 𝝉 coordinate of several streamlines with time-

of-flight information in color (Pasarai 2007) 
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3.4.6 Operator Splitting 

Operator splitting technique is commonly used to decouple convective and 

diffusive terms in streamline-based simulation. Convective part is solved along the 

streamlines in 𝜏 coordinate while diffusive part is solved using finite difference method 

on Eulerian grid. By implementing operator splitting, diffusion term can be solved 

independently and in regions where they are important (Pasarai 2007). For mass transport 

equation, diffusive term refers to gravity and capillary effect. Meanwhile for heat transport 

equation, diffusive term refers to heat conduction. This study will focus only on the heat 

conduction effect.  

After the energy transport equation in Eq. (3.56) is solved, we get the new 

temperature distribution 𝑇𝑐 along the streamlines. These 𝑇𝑐 values are mapped back to 

gridblock using Eq. (3.60) and operator splitting of heat conduction part, 

𝜕𝐸

𝜕𝑡
−

1

∅
∇ ∙ (𝐾𝑇∇𝑇) = 0 ................................................................................................ (3.61) 

Figure 5: Transformation of irregular to regular 𝝉 grid (Siavashi et al. 2014) 
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is solved on Eulerian grid while holding other variables (pressure and saturation) constant 

and using 𝑇𝑐 as the initial condition. The utilization of operator splitting to the energy 

balance equation most likely introduces a splitting error and may not be the unique 

solution (Zhu, Gerritsen, and Thiele 2010). Thus, this study aims to provide a better 

alternative technique to capture the heat conduction effect in streamline simulation 

without operator splitting. 
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CHAPTER IV 

SIMULATION PROCEDURE 

 

4.1 General Workflow 

A schematic workflow of the new approach to streamline simulation taken in this 

study is illustrated in Figure 6. The main difference between general streamline 

simulation and this work is located in the treatment of heat conduction effect. Instead of 

Figure 6: General workflow of the streamline simulator using the new approach 
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using operator splitting, the heat conduction equation is decoupled from the general energy 

balance equation in Eq. (3.7) and solved simultaneously with pressure equation on the 2D 

Eulerian grid, 

−∇ ∙ (𝐾𝑇∇𝑇) = 𝑞𝑤𝐻𝑤
𝑤 + 𝑞𝑜𝐻𝑜

𝑤 ................................................................................... (4.1) 

The following is the general procedure to move the solution forward for a global 

time step: 

1. Make sure that the initial condition for each variable is available on all active 

gridblocks. 

2. Solve the pressure equation in Eq. (3.12) and heat conduction equation in Eq. (4.1) 

simultaneously for pressure and temperature. Use Newton-Raphson method to 

linearize the equations.  

3. Use Darcy’s Law in Eq. (3.31) to obtain the total velocity at gridblock faces. Interstitial 

velocity is determined by dividing Darcy’s velocity with porosity. 

4. Trace streamlines from injection block to producer as described in Chapter 3.4.3. 

5. Store the current values of pressure, temperature, and water saturation from the 

gridblock to every streamline passing through. Compute variables 𝜏, 𝑎, and 𝑄𝑖 for each 

gridblock. Transform all variables (𝑝, 𝑆𝑤, 𝑇, 𝜏, 𝑎, 𝑄𝑖) from irregular 𝜏 grid to regular 

𝜏 grid. 

6. Solve the mass transport equation in Eq. (3.55) and heat transport equation in Eq. 

(3.56) simultaneously along the streamlines for the updated values of saturation and 

temperature. Solution moves forward explicitly in time with small local time step until 
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the global time step is achieved. Transform back the updated variable values from 

regular 𝜏 grid to irregular 𝜏 grid. 

7. Map the updated saturation and temperature from streamlines to gridblocks using Eq. 

(3.59) and (3.60). All properties and well data at the end of global time step can be 

printed. 

8. Return to step 1 with the next global time step until simulation end time is reached. 

 

4.2 Solution of the Simulation 

The pressure equation in Eq. (3.12) and heat conduction equation in Eq. (4.1) are 

both solved simultaneously by the standard finite difference scheme on the Eulerian grid 

with a specified rate or pressure at the well and no-flow boundary conditions over the 

domain. Discretized form of pressure equation is highly nonlinear and is often solved 

using the Newton-Raphson method in an iterative sequence.  

The components of Jacobian matrix for this method are computed at the current 

iteration level. The residual form of Eq. (3.12) in 2D, 5-point discretization at location i, j 

can be expressed as, 

𝑅𝑝;𝑖,𝑗
𝑣+1 = 𝑇𝑋

𝑡;𝑖−
1

2

𝑣+1 (𝑃𝑖−1,𝑗
𝑣+1 − 𝑃𝑖,𝑗

𝑣+1) + 𝑇𝑋
𝑡;𝑖+

1

2

𝑣+1 (𝑃𝑖+1,𝑗
𝑣+1 − 𝑃𝑖,𝑗

𝑣+1) + 𝑇𝑌
𝑡;𝑗−

1

2

𝑣+1 (𝑃𝑖,𝑗−1
𝑣+1 − 𝑃𝑖,𝑗

𝑣+1) +

𝑇𝑌
𝑡;𝑗+

1

2

𝑣+1 (𝑃𝑖,𝑗+1
𝑣+1 − 𝑃𝑖,𝑗

𝑣+1) −
(𝑉𝑏∅𝑐𝑡)𝑖,𝑗

𝑣+1

∆𝑡𝑝
(𝑃𝑖,𝑗

𝑣+1 − 𝑃𝑖,𝑗
𝑛 ) + 𝑞𝑤;𝑖,𝑗

𝑣+1 + 𝑞𝑜;𝑖,𝑗
𝑣+1 = 0  ..................... (4.2) 

where the superscript 𝑣 is the iteration level and 𝑛 is the time level. As for the heat 

conduction effect, Eq. (4.1) takes residual form as, 
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𝑅𝑇;𝑖,𝑗
𝑣+1 = 𝑇𝑋

𝐾𝑇;𝑖−
1

2

𝑣+1 (𝑇𝑖−1,𝑗
𝑣+1 − 𝑇𝑖,𝑗

𝑣+1) + 𝑇𝑋
𝐾𝑇;𝑖+

1

2

𝑣+1 (𝑇𝑖+1,𝑗
𝑣+1 − 𝑇𝑖,𝑗

𝑣+1) + 𝑇𝑌
𝐾𝑇;𝑗−

1

2

𝑣+1 (𝑇𝑖,𝑗−1
𝑣+1 −

𝑇𝑖,𝑗
𝑣+1) + 𝑇𝑌

𝐾𝑇;𝑗+
1

2

𝑣+1 (𝑇𝑖,𝑗+1
𝑣+1 − 𝑇𝑖,𝑗

𝑣+1) + 𝑞𝑤;𝑖,𝑗
𝑣+1 𝐻𝑤

𝑤;𝑣+1 + 𝑞𝑜;𝑖,𝑗
𝑣+1𝐻𝑜

𝑤,𝑣+1 = 0  ....................... (4.3) 

Residual form in Eq. (4.2) requires boundary conditions that are imposed via the 

well equation. When the bottomhole pressure is specified, Dirichlet-type boundary 

condition applies and no additional equations are required in Eq. (4.2) because the flow 

rate can be defined by the existing variables. However, if the flow rate is specified, then 

Neumann-type boundary condition applies and an additional equation is required, 

𝑅𝑤;𝑖,𝑗
𝑣+1 = (𝑇𝑤

𝑤 + 𝑇𝑜
𝑤)𝑖,𝑗

𝑣+1(𝑃𝑤 − 𝑃𝑖,𝑗
𝑣+1) + 𝑞𝑡;𝑖,𝑗

𝑣+1 = 0 ...................................................... (4.4) 

Consider the flow in x-direction, the transmissibility terms in Eq. (4.2), (4.3) and 

(4.4) are defined as, 

𝑇𝑋
𝑡;𝑖±

1

2

= (𝑇𝑔𝑇𝑡)𝑖±
1

2

 ..................................................................................................... (4.5) 

𝑇
𝑔;𝑖±

1

2

=
2

(
∆𝑥

𝑘𝐴
)
𝑖
+(

∆𝑥

𝑘𝐴
)
𝑖±1

 .................................................................................................... (4.6) 

𝑇
𝑡;𝑖±

1

2

= 𝑇
𝑤;𝑖±

1

2

+ 𝑇
𝑜;𝑖±

1

2

= (
𝑘𝑟𝑤𝜌𝑤

𝜇𝑤
)
𝑖±

1

2

+ (
𝑘𝑟𝑜𝜌𝑜

𝜇𝑜
)
𝑖±

1

2

 .................................................. (4.7) 

𝑇𝑋
𝐾𝑇;𝑖±

1

2

= (
𝐴𝐾𝑇

∆𝑥
)
𝑖±

1

2

 .................................................................................................... (4.8) 

Total phase transmissibility in Eq. (4.7) is evaluated with upstream weighting while the 

thermal conductivity in Eq. (4.8) is obtained with harmonic averaging. 

The set of linear equations in Newton-Raphson method can be expressed as, 

𝐽𝑣(𝛿𝑋)𝑣 = −𝑅𝑣 ............................................................................................................ (4.9) 

𝑋𝑣+1 = 𝑋𝑣 + (𝛿𝑋)𝑣 ................................................................................................... (4.10) 
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where 𝐽𝑣 is the Jacobian matrix, 𝑅𝑣 is the residual matrix, and 𝑋 is either the unknown 

pressure or temperature.  In this work, we use the linear solver NSPCG (Nonsymmetric 

Preconditioned Conjugate Gradient) pack to solve Eq. (4.9) (Kincaid et al. 1984). An 

example illustration of the matrix form in Eq. (4.9) is described as follows. 

Assume a 2D reservoir with the uniform 3x3 gridblocks in column-ordered, as 

shown in Figure 7. An injector is placed at the 1st block and a producer is at the 9th block. 

Flow rate is specified for injector while bottomhole pressure is specified for producer. The 

resulting matrix based on Eq. (4.9) is developed in Figure 8. From the figure, Jacobian 

matrix structure can be divided into several blocks of 2x2 elements. Additional column 

and row are included to represent the well equation due to a rate-constrained well 

condition. 
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4 7 

Figure 7: A sample 3x3 reservoir grid in 2D ordered by columns 
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The solution in time-of-flight grid is now discussed as follows. By applying the 

explicit term in time, the discretized forms of mass transport equation in Eq. (3.55) and 

heat transport equation in Eq. (3.56) can be written as, 

1

∆𝑡
[(𝜌𝑤𝑆𝑤)𝑖

𝑛+1 − (𝜌𝑤𝑆𝑤)𝑖
𝑛] +

1

∆𝜏
[(𝜌𝑤𝑓𝑤)

𝑖+
1

2

𝑛 − (𝜌𝑤𝑓𝑤)
𝑖−

1

2

𝑛 ] = −(
𝑎

∅
𝜌𝑤𝑓𝑤)

𝑖

𝑛

 ............ (4.11) 

1

∆𝑡
[𝐸𝑖

𝑛+1 − 𝐸𝑖
𝑛] +

1

∆𝜏
[𝐹

𝑖+
1

2

𝑛 − 𝐹
𝑖−

1

2

𝑛 ] = − (
𝑎

∅
𝐹)

𝑖

𝑛

 .......................................................... (4.12) 

Figure 8: Corresponding matrix structure of Newton-Raphson method based on 

the system shown in Figure 7 



 

35 

 

where subscript 𝑖 denotes the time-of-flight grid location, and 𝑛 is the time level. All 

interblock quantities in the above equations are evaluated using the upstream weighting 

method. Both Eq. (4.11) and Eq. (4.12) are solved simultaneously along the streamlines. 

Local time step that is smaller than global time step is used based on the Courant-Fredrich-

Lewy stability criterion (Siavashi et al. 2014), 

∆𝑡 =
𝑁𝑐∆𝜏

max[(𝑣𝑠
𝑚𝑎𝑥)𝑠𝑙

𝑚𝑎𝑠𝑠,(𝑣𝑠
𝑚𝑎𝑥)𝑠𝑙

ℎ𝑒𝑎𝑡]
 ................................................................................... (4.13) 

where 𝑁𝑐 is the CFL number, 𝑣𝑠
𝑚𝑎𝑥 is the maximum shock speed, subscript 𝑠𝑙 means 

streamline, and the superscripts 𝑚𝑎𝑠𝑠 and ℎ𝑒𝑎𝑡 refers to mass and energy transport 

equations respectively. 

 

4.3 Simulation Data Input 

The developed simulator is tested in a 2D heterogeneous reservoir model with a 

configuration of 200 x 200 x 1 gridblocks. The volume of each gridblock is 3.125 x 3.125 

x 6 m3. A quarter five-spot well pattern of hot waterflooding is simulated for 1000 days. 

An injector is placed at the bottom left (block 1,1,1) and a producer is at the top right 

(block 200,200,1). Hot water of 80oC is injected with a constant rate of 300 m3/day while 

the producing well is operated under the minimum bottomhole pressure constraint of 400 

kPa. Fluid compressibility is honored in this simulator. 

The rock is assumed to be incompressible with a constant porosity of 0.2. At the 

initial condition, oil saturation is equal to 1, temperature is set to 20oC, and the pressure is 

at the value of 500 kPa throughout the reservoir. Permeability values are isotropic but non-
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uniform, and its distribution can be seen in Figure 9. Properties of reservoir rock and fluid 

are summarized in Table 1 and Table 2, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Reservoir rock properties 

Property Value 

Reservoir area (m2) 390,625 

Thickness (m) 6 

Porosity 0.2 

Rock thermal capacity (kJ/m3.K) 2300 

Rock thermal conductivity (W/m.K) 3.5 

 

Figure 9: Permeability distribution of the simulation model 
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Table 2: Reservoir fluid properties 

Property Water Oil 

Viscosity Parameters 

𝐴𝑗 (cp) 4.735 x 10-3 9.554 x 10-3 

𝐵𝑗 (K) 1515.7 1868.1 

Density Parameters 

𝜌𝐽
𝑟𝑒𝑓

 (kg/m3) 998 972 

𝑐𝑗 (1/kPa) 4.5 x 10-7 7.3 x 10-7 

𝛼𝑗 (1/K) 3.0 x 10-4 4.0 x 10-4 

Thermal Properties 

𝐾𝑗 (W/m.K) 0.619 0.133 

(𝐶𝑝̅)𝑗
 (kJ/kg.K) 4.19 2.02 

Reference Condition 

𝑃𝑟𝑒𝑓 (kPa) 100 

𝑇𝑟𝑒𝑓 (K) 293.15 
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CHAPTER V 

SIMULATION RESULTS 

 

The reservoir model described in the previous chapter is employed to simulate hot 

waterflooding using the new approach of streamline simulation. CMG STARS, a 

commercial finite volume thermal simulator is used to validate the results from our 

developed simulator. Another important note is to compare the results with operator 

splitting technique, which is currently the general method to incorporate heat conduction 

effect in most streamline simulators. Streamlines are updated every 50 days until it reaches 

the simulation end time of 1000 days. From the injection well block, 100 streamlines are 

launched to solve the mass and heat transport equation as shown in Figure 10. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Trace of streamlines from injector to producer 
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Figure 11: Comparison of the computed water saturation between simulators after 

1000 days 

CMG STARS 

Streamline: New Approach 

Streamline: Operator Splitting 
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Figure 12: Comparison of the computed temperature between simulators after 

1000 days 

CMG STARS 

Streamline: New Approach 

Streamline: Operator Splitting 
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As can be seen in Figure 10, streamlines tend to cluster at the top right area where 

the permeability is relatively high. This is one of the typical behavior in streamline 

simulation where it provides higher resolution along preferential flow paths (Datta-Gupta 

and King 2007). Figure 11 compares the water saturation distribution from all simulators. 

The streamline simulators produce a quite similar saturation pattern to STARS but with 

smeared front. This might be due to numerical dispersion from the mapping procedure in 

streamline method and high heterogeneity of permeability. From Figure 12, temperature 

front is seen to move slower than the saturation which is caused by the high thermal 

capacity of the rock.   

Based on the temperature distribution, our approach matches better to STARS than 

the operator splitting method. Heat conduction is well known to make the temperature 

front retarded (Pasarai 2007). Our approach yields smooth progression of temperature 

front whereas the operator splitting generates sharp front with small “fingers”. This 

indicates that the new method is more suitable to handle heat conduction than operator 

splitting.  

Oil production rate and water cut are represented through Figure 13 and 14 and 

are in agreement with the reference CMG STARS with error around 5.2% and 6.3%, 

respectively. Although the temperature front difference between our approach and 

operator splitting can be recognized in Figure 12, their difference in production profile is 

almost negligible. All simulators are run on Intel Xeon 3.7 GHz CPU with 32 GB RAM. 

The commercial simulator takes 24.2 minutes to finish the simulation. Run time and 

speedups of the streamline simulators are found in Table 3. 
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Figure 13: Plot of the oil production rate over time 

Figure 14: Plot of the water cut over time 
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Both streamline simulators run much faster than CMG STARS with a speedup 

factor around 2. However, our new approach is slightly slower than the operator splitting 

technique. Because we solve the heat conduction simultaneously with pressure equation, 

the set of linear equation system becomes large and more complex. This will require more 

computational effort than the operator splitting which decouples the heat conduction from 

pressure equation. Nevertheless, the higher computational cost is compensated by better 

accuracy. From Table 3, it can be seen that our new approach provides better result with 

less error than the operator splitting. The error term here is computed as the relative L2 

norm. Thus, the trade-off is speed versus accuracy. 

 

Table 3: Simulator performance 

Property New Approach Operator Splitting 

Run time 11.33 10.52 

Speedup factor 2.1 2.3 

𝑆𝑤 error at 1000 days (%) 7.58 9.24 

𝑇 error at 1000 days (%) 1.66 2.51 

 

Another thing to be considered here is the temperature error difference between 

the two streamline simulators. Even though the error is reduced in our new approach, it is 

relatively small decrement. This can be caused by the fact that hot waterflooding process 

relies mainly on the convective flow. Therefore, change of conduction treatment will not 

affect the overall system too much. In the future, this new approach can be implemented 
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to a case where heat conduction plays an important role such as reservoir with heat loss to 

overburden or the steamflooding case.  It will be interesting to see the relationship between 

speed and accuracy of the new approach in these cases. 

Speed and accuracy of the simulation solution also depend on the number of 

streamlines and pressure updates. Table 4 gives an idea of how the number of streamlines 

affects the simulation. Run time of CPU is the lowest at 100 streamlines, and it increases 

if we try to reduce or add more streamlines. A large number of streamlines is undoubtedly 

producing high run time. On the other hand, a small number of streamlines is also time-

consuming because more missed gridblocks are needed to be traced back. Thus, 100 

streamlines is the optimum case for our study in terms of speed. Regarding accuracy, 

adding more streamlines tend to improve the solution even though the change is not that 

significant. For the case of 200 streamlines, the error in temperature is slightly higher than 

in the case of 150 streamlines. This is a consequence of the mapping error that comes with 

a large number of streamlines.  

 

Table 4: Simulator performance at various number of streamlines with 20 pressure 

updates 

Property SL = 25 SL = 50 SL = 100 SL = 150 SL = 200 

Run time 15.20 12.74 11.33 17.65 23.41 

𝑆𝑤 error at 1000 days (%) 7.84 7.67 7.58 7.50 7.46 

𝑇 error at 1000 days (%) 1.78 1.70 1.66 1.62 1.64 

 



 

45 

 

The sensitivity of simulation to the pressure updates is given in Table 5. By 

updating pressure more often, the CPU time is apparently rising, and the accuracy is 

improved since we are capturing the temporal velocity field better in each pressure update. 

On the other hand, frequent pressure updates can increase the error due to the frequent 

mapping.  In this case, 20 pressure updates give the optimum speed and accuracy. 

Although 40 pressure updates give slightly better accuracy, it is not worth the double CPU 

run time. 

 

Table 5: Simulator performance at various pressure updates with 100 streamlines 

Property PU = 2 PU = 5 PU = 10 PU = 20 PU = 40 

Run time 5.90 8.84 10.62 11.33 23.57 

𝑆𝑤 error at 1000 days (%) 16.18 12.56 9.10 7.58 7.04 

𝑇 error at 1000 days (%) 5.01 3.19 2.45 1.66 1.54 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

 

6.1 Conclusions 

In this thesis, a new streamline simulator is developed using a new approach to 

heat conduction treatment. Instead of solving the heat conduction at the end of global time 

step using the common operator splitting technique, it is solved simultaneously with the 

pressure equation along the gridblocks. The simulator is used to model hot waterflooding 

process in a 2D heterogeneous reservoir.  

Results from the new streamline simulator are in good agreement with commercial 

thermal finite volume simulator, CMG-STARS. In addition, the new approach is more 

accurate than the operator splitting method. From the map of water saturation and 

temperature, the new approach generates smoother front compared to operator splitting 

which creates some small artificial “fingers”. Therefore, our new approach captures the 

heat conduction effect better than the operator splitting method. 

The run time of the new approach is slightly slower than the operator splitting. 

This is due to the fact that it has to solve a larger size of linear equation systems along the 

gridblocks for both pressure and heat conduction. However, the new approach is still two 

times faster than the commercial simulator. Thus, our new streamline simulator is still 

very efficient in simulating thermal reservoir model. 

Evaluation of the number of streamlines and pressure updates is also discussed in 

this study. We can achieve higher accuracy with a large number of streamlines and more 
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frequent pressure updates. But, keep in mind that generating more streamlines or updating 

velocity field too often can lead to an increase in error from mapping. Additionally, higher 

speedup can be achieved with a moderate number of streamlines and less frequent pressure 

updates. In short, we need to consider the tradeoff between speed and accuracy to obtain 

the optimum number of streamlines and pressure updates. 

 

6.2 Future Work 

The improvement of accuracy in this new approach may not be too significant in 

the hot waterflooding process due to the convection-dominated condition. It will be even 

better to implement the new approach to the cases where heat conduction plays an 

important role such as a reservoir with heat losses to underburden and overburden. We 

expect higher accuracy of the new approach compared to operator splitting in this kind of 

case because our new approach captures the heat conduction effect better. The speedup of 

streamline simulator can also be higher when we perform code optimization. 

The developed simulator in this study is based on several key assumptions. To 

generate more realistic results comparable to real reservoir condition, we need to extend 

it to 3D, 3-phase, multicomponent simulator with gravity and capillary pressure effect. 

The relative permeability can also be made dependent on temperature, and the porosity is 

assumed to be changing over time. Lastly, if we already enhance the simulator in the hot 

waterflooding case, then it is time to perform the new approach on other thermal enhanced 

oil recovery processes such as steamflooding, SAGD, in-situ combustion, and many more. 

Modifications to the new approach may be needed as it can become problem-dependent. 
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