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ABSTRACT

In this thesis, a novel compositional multidisciplinary uncertainty analysis method-

ology is presented for systems with feedback couplings and model discrepancy. The ap-

proach incorporates aspects of importance resampling, density estimation, and Gibbs sam-

pling to ensure that, undermild assumptions, themethod is provably convergent in distribu-

tion. A key feature of the approach is that disciplinary models can all be executed offline

and independently. Offline data is synthesized in an online phase that does not require

any further model evaluations or any full coupled system level evaluations. The approach

is demonstrated on an aerodynamics-structures system, and a comparison to brute force

Monte Carlo simulation results is presented. The results demonstrate that our method has

captured the joint distribution of interest. This was achievedwithout any online evaluations

of models separately or as a coupled system.
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1 INTRODUCTION AND BACKGROUND

1.1 Motivation

In response to progress in science and technology, demands on modern aerospace ve-

hicles to have better performance, higher reliability and robustness, and lower cost and risk

are ever increasing [3]. This demand has led to the development of highly coupled systems

designed to exploit interactions among disciplines to achieve greater performance. There

is typically a great deal of uncertainty associated with such systems due to potential new

regimes of system behavior arising from unexpected multi-physics interactions. In tradi-

tional design practice, to account for such uncertainties, constraints imposed on the design

are often reformulated deterministically, with pre-defined safety factors and margins, to

ensure the reliability of a design. This approach will typically result in an overly conser-

vative design that cannot meet the demands placed on today’s modern aerospace systems.

Thus, there is a critical need for the development of advanced, scalable technologies aimed

at rigorously quantifying uncertainty in multi-physics aerospace systems.

Multidisciplinary uncertainty analysis of numerical simulation models entails the

propagation of uncertainty from model inputs to model outputs. Often, multidisciplinary

simulation capabilities are composed by integrating pre-existing disciplinary physics-based

models. For such composed multi-physics systems, the task of uncertainty analysis can be

challenging owing to the disciplinary models being managed by separate entities or housed

in separate locations, analysis capabilities running on different computational platforms,
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models with significantly different analysis run times, and the sheer number of disciplines

required for a given analysis. An engineering system may contain feedforward coupling

in which the output of an upstream discipline becomes an input to a downstream disci-

pline (one-directional coupling), or feedback coupling in which the two disciplines are

interconnected in such a way that the output of one becomes an input to the other (bi-

directional coupling). Complex, multi-physics systems often exhibit feedback coupling

(e.g., aeroelastic coupling in an aero-structural analysis of a wing) that can have a sub-

stantial impact on system level uncertainty analysis results. Further, the coupled nature of

multi-physics systems necessitates an iterative uncertainty analysis procedure in traditional

Monte Carlo based system level uncertainty analysis approaches that can be computation-

ally prohibitive.

1.2 Sources of Uncertainty

The sources of uncertainty in engineering systems are broadly classified into two

types of ’Aleatory’ and ’Epistemic’ uncertainty. Aleatory uncertainty refers to the un-

certainty which is due to the presence of physical variability and inherent randomness in

nature. This type of uncertainty is irreducible. Epistemic uncertainty arises because of lack

of knowledge regarding a particular quantity and/or a physical phenomenon. This type of

uncertainty can be reduced by gathering more information if available.

Kennedy and O’Hagan proposed the following classification of uncertainty sources

in computer models, as described in Ref. 4.

2



Parametric Uncertainty refers to uncertainty associated with inputs or parameters of

a model such as coefficients representing the physical properties of a model.

Parametric Variability is the uncertainty due to uncontrolled and/or unspecified input

conditions. Uncertain wind loading on an engineering structure, and uncertain operating

conditions for an aircraft (e.g., atmospheric conditions, gust encounters, etc.) can be ex-

amples of this type of uncertainty.

Residual Variability results from the uncertainty due to intrinsic random variation in

the process being modeled or in a lack of model detail to discriminate between conditions

that lead to different process values. Some examples of these conditions are chaotic flows

and turbulence in weather models.

Model Discrepancy is another source of uncertainty which results from underlying

missing physics, numerical approximations, and/or other inaccuracies of the computer

model that would exist even if all the parameters were known. This uncertainty is as-

sociated with the fact that no model is perfect, and an example of that can be in potential

flow solvers that ignore boundary layer effects and turbulence.

Observation Error is the uncertainty in experimentally measured data that may be

used for calibration or for solving an inverse problem.

Code Uncertainty refers to the uncertainty associated with not knowing the output

of a computer model given any particular input configuration until the code is run. For

example, this uncertainty arises when Gaussian process emulator is used as a surrogate

model to interpolate between known system responses.
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1.3 Research Objectives

The overall objectives of this thesis are to formulate the problem of propagating un-

certainty through a coupled system, and to create an efficient methodology for propagating

the uncertainty, and to demonstrate the methodology on a realistic example.

To alleviate the computational burden of multidisciplinary uncertainty analysis in

coupled systems composed of integrated disciplinary models, this thesis proposes a proba-

bilistic, sample-based compositional uncertainty analysis methodology. The presented ap-

proach in this thesis builds off of the work of Refs. 5 and 1, where a decomposition-based

uncertainty analysis methodology is developed for feedforward systems with parametric

input uncertainty. Recognizing that the disciplinary models composing the system are im-

perfect, the method in this thesis takes into account the model discrepancy associated with

coupling variables in the system.

A key feature of this thesis is an offline/online approach to uncertainty analysis en-

abled by the compositional nature of an integrated multidisciplinary system. Specifically,

the approach is designed to use offline independent uncertainty analysis results for each

discipline of the composed system in an online synthesis procedure. Offline results can be

generated at any time (e.g., from a previous use of a disciplinary model) and do not require

knowledge of the specific input probability distributions that will be used in the composed

system level analysis. Further, the proposed online synthesis of offline data from the disci-

plinary models does not require any coupled system level evaluations. The result is that the

computational expense of coupled multidisciplinary uncertainty analysis is moved offline,
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allowing for substantial gains in computational efficiency. The proposed methodology

incorporates aspects of density estimation, Radon-Nikodym importance weights, and en-

semble Gibbs sampling to ensure convergence in distribution of system level uncertainty

analysis results under mild assumptions on the disciplinary models and probabilistic distri-

butions. The proposed methodology is demonstrated on an aero-structural system adapted

from Ref. 2.

1.4 Background

Multidisciplinary systems analysis and optimization is a wide area of research,

and numerous studies have dealt with the various aspects of coupled multidisciplinary

analysis in several engineering disciplines. Researchers have focused both on the de-

velopment of computational methods and on the application of these methods to sev-

eral types of multidisciplinary systems such as fluid–structure [6], thermal–structural [7],

fluid–thermal–structural [8].

Computational methods for multidisciplinary analysis can be classified into three dif-

ferent groups of approaches [9]. The first approach, known as the field eliminationmethod,

eliminates one or more coupling variables (referred to as “field”) by techniques such as in-

tegral transforms or model reduction. This approach is restricted to special linear problems

that permit efficient decoupling. The second approach, known as the monolithic or simul-

taneous method, treats the problem as a monolithic entity, and solves the coupled analysis

simultaneously using a single solver such as Newton–Raphson. The third approach, known

5



as the partitioned method, solves the individual analyses separately with different solvers.

The field elimination and monolithic methods tightly couple the multidisciplinary analyses

together, the partitioned method does not.

Given the presence of model discrepancy in a coupled multidisciplinary system, we

must be capable of propagating that uncertainty to system level quantities of interest. While

most of the methods for deterministic multidisciplinary analysis can easily be extended

to non-deterministic multidisciplinary analysis using Monte Carlo sampling, this may be

computationally expensive due to repeated evaluations of disciplinary analyses. Hence,

researchers have focused on developing more efficient alternatives. Previous work on

multidisciplinary uncertainty analysis has focused on approximations such as surrogate

modeling and simplified representations of system uncertainty. The use of surrogates for

disciplinary models in a composed system can provide computational savings, as well as

simplify the task of integrating components [10]. Approximate representations of uncer-

tainty, such as using mean and variance information in place of a full probability distribu-

tion have been used to avoid the need to propagate uncertainty between disciplines. Such

simplifications are commonly used in uncertainty-basedmultidisciplinary design optimiza-

tion methods as a way to avoid a system-level uncertainty analysis [3]. These approaches

include implicit uncertainty propagation [11], reliability-based design optimization [12],

robust moment matching [13–15], advanced mean value method [16], collaborative reli-

ability analysis using most probable point estimation [17], and a multidisciplinary first-

order reliability method [18]. Ref. 19 proposed worst case uncertainty propagation using
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derivative-based sensitivities.

Other recent work has focused on exploiting the structure of a givenmultidisciplinary

system. Ref. 20 present a likelihood-based approach to decouple feedback loops, thus re-

ducing the problem to a feed-forward system. Dimension reduction and measure transfor-

mation to reduce the dimensionality and propagate the coupling variables between coupled

components have been performed in a coupled feedback problem with polynomial chaos

expansions [21–23]. Coupling disciplinary models by representing coupling variables with

truncated Karhunen-Loève expansions, has been studied for multi-physics systems [24].

A hybrid method that combines Monte Carlo sampling and spectral methods for solving

stochastic coupled problems has also been proposed by Refs. 25 and 26. In addition to

the probabilistic techniques, non-probabilistic techniques based on fuzzy methods [27],

evidence theory [28], interval analysis [29] have also been studied for multidisciplinary

analysis under uncertainty.

Despite the extensive work on multidisciplinary uncertainty analysis, the formula-

tion of the model discrepancy function is still a challenging issue. Different prior formu-

lations have been assumed for model discrepancy in previous work. These formulations

include constant bias [30], physics-based deterministic function [31], Gaussian random

variable [32, 33] which can be with fixed or input-dependent mean and variance, uncor-

related random vector [34], random walk [30], and Gaussian random process [35–37].

Ref. 38 investigates Bayesian calibration with different prior formulations of model dis-

crepancy function and derives the corresponding likelihood functions.
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Review of the above studies reveals that the existing methods for multidisciplinary

uncertainty analysis are either computationally expensive or based on several approxi-

mations. Computational expense results from using deterministic methods with Monte

Carlo simulation which requires several thousands of evaluations of the individual dis-

ciplinary analyses, and also non-probabilistic techniques use interval-analysis-based ap-

proaches which require substantial computational effort. Approximations may come from

approximating the probability distributions with the first two moments, or approximations

of individual disciplinary analyses may be considered using derivative-based sensitivities

or linearizations at most probable point for reliability analysis.

In this thesis, the approach builds on the work of Refs. 5 and 1, where the challenges

of uncertainty analysis for feed-forward multidisciplinary systems were dealt with using a

decomposition-based approach. As shown notionally in Figure 1.1, the multidisciplinary

Figure 1.1: The decomposition-based feed-forward multidisciplinary uncertainty analysis
method of Ref. 1. The method decomposes the problem into manageable components and
synthesizes the system level uncertainty analysis without needing to evaluate the system in
its entirety. f1, f2 and f3 are the input-output functions associated with each component.

uncertainty analysis is decomposed into individual discipline level uncertainty analyses.

These analyses are then assembled in a provably convergent manner to the desired mul-
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tidisciplinary uncertainty analysis results. Taking this approach leads to several benefits,

such as enabling offline disciplinary analyses to be conducted when suitable, enabling

concurrent evaluation of the disciplinary models for online uncertainty analysis, avoiding

the challenges of integrating various disciplinary models that may have been created on

different computational platforms, and being consistent with many organizational struc-

tures. In the work presented in this thesis, the methodology of Ref. 1 is extended to handle

feedback coupling between disciplines, as well as model discrepancy associated with each

discipline. This concept is presented notionally in Figure 1.2, where a two-discipline sys-

tem is represented. It should be noted that the term compositional is used rather than the

term decompositional to stress the concept of integrating a set of information sources rather

than beginning with a monolithic system that is to be decomposed.

Figure 1.2: A depiction of the concept of a compositional multidisciplinary uncertainty
analysis approach for a two-discipline system with model discrepancy and feedback cou-
pling. Here, f1 and f2 are the model functions, X1,X2 and Y1,Y2 are the inputs and outputs
of the respective disciplines, and δ1 and δ2 are the additive model discrepancies associated
with the outputs. The approach composes disciplinary uncertainty analysis results without
needing to evaluate the coupled system.

In this example, each discipline takes as input, an output from the other discipline.

The output of each discipline has additive model discrepancy associated with it, denoted

9



by δ1 and δ2 for discipline 1 and 2 respectively. This source of uncertainty will be dis-

cussed in more detail in the following chapters. Note that it is this source of uncertainty

that necessitates an iterative approach to uncertainty quantification as discussed in Ref. 14,

which leads to substantial computational expense for multidisciplinary uncertainty analy-

sis. The remainder of this thesis is organized as follows. Chapter 2 presents the approach,

its key ingredients followed by the presentation of the algorithm and convergence analysis

of the approach. Chapter 3 presents the application of the approach and its results, and

conclusions are drawn in chapter 4.
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2 APPROACH

In this chapter, characterization of model discrepancy is presented. Then, the pro-

posed approach in this thesis, compositional multidisciplinary uncertainty analysis ap-

proach, is presented followed by a discussion of the methodological key ingredients of

importance resampling and Gibbs sampling. The use of effective sample size as a heuristic

indicator of the quality of a proposal distribution and as a means of identifying stationar-

ity is also discussed. Finally, the algorithm and convergence properties of the proposed

method are presented.

2.1 Model Discrepancy Characterization

Model discrepancy arises because mathematical models of reality are not perfect,

and thus, some aspects of reality may have been omitted, improperly modeled, or contain

unrealistic assumptions. Following Ref. 4, model discrepancy is represented here as an

additive stochastic process. For example, if we have a model that consists of a function

f (x), where x is an input vector to the model, and reality is denoted as fr(x), then the model

discrepancy of the model can be represented as

δ (x) = fr(x)− f (x), (2.1)

where here it is assumed that there are no parameters in the model to be calibrated. Typ-

ically, experimental data of reality (which will contain experimental variability) will be

available, which can be used to create a stochastic process representation for δ (x). In this
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thesis, it is assumed that model discrepancy has been quantified previously for all available

disciplinary models in the form of Gaussian processes. Thus, the Gaussian process model

discrepancy term will be added to the output of a disciplinary model, as shown notionally

in Figure 1.2. For example, for Discipline 1 in Figure 1.2, we have

Y1(x) = f1(x)+δ1(x), (2.2)

where δ1(x) is the Gaussian process representation of the model discrepancy of Discipline

1 and Y1(x) is the estimate of reality from Discipline 1 with quantified model discrepancy.

In this thesis, without loss of generality, the focus is on discrepancies that are not a function

of an input.

2.2 Compositional Multidisciplinary Uncertainty Analysis

The proposed compositional multidisciplinary uncertainty analysis approach for sys-

tems with feedback coupling, and model discrepancy, consists of an offline and online

phase. To make the discussion more concrete but without loss of generality, the aspects of

the approach are developed with the system presented in Figure 1.2 in mind. The approach

begins offline, by performing uncertainty analysis independently for each discipline of the

system. To do this, distributions must be proposed for inputs for each discipline, since the

distributions of the coupling variables are not known in advance. These distributions are

defined as proposals which are represented by πX1 and πX2 . This process is shown notion-

ally in Figure 2.1. As it is shown, the samples generated from the proposal distributions are

propagated through the disciplines with functions f1 and f2 to generate the corresponding
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samples of the discipline outputs. The underlying densities of the output samples are then

approximated as πY1 and πY2 using a density estimation technique such as kernel density

estimation [39].

Figure 2.1: A depiction of the offline uncertainty analysis process adapted from Ref. 1.
Here, πX1 , πX2 , πY1 , and πY2 are the densities associated with the inputs (proposals) and
outputs of the respective disciplines.

The online process consists of a Gibbs sampling procedure that is enabled by itera-

tively re-weighting the samples generated offline for each discipline through a combina-

tion of density estimation and sequential importance resampling. The use of importance

weights allows us to change underlying input probability distributions to each discipline.

These weights can then be used on the output probability distributions of each discipline.

The weighted output distributions converge in distribution to the output distributions that

would have resulted from the modified input probability distributions sampled from in the

first place. The overall online process is presented notionally in Figure 2.2 for the system

presented in Figure 1.2. Here, it is assumed that each discipline contains model discrep-

ancy, and the output of the systems (e.g., the quantity of interest) is the joint distribution
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of the coupling variables. The online process evolves this joint distribution iteratively via

Gibbs sampling of the conditional densities. For example, in Figure 2.2, the process begins

with the joint distributions πX1|Y2,πY1|X1,πX2|Y1 , and πY2|X2 . The initial distribution assumed

for each conditional distribution is given by the offline uncertainty analysis. From these

proposed distributions (πX1 and πX2), some samples are drawn to pass through each dis-

cipline independently to produce the initial samples from the target distributions (πY1|X1

and πY2|X2). In the online process, the joint distribution of each conditional distribution is

updated sequentially and iteratively using Radon-Nikodym importance weights. To do so,

the samples from πX1|Y2 and πX2|Y1 are re-weighted and updated followed by a density esti-

mation technique and using the ratio of densities of target and proposal distributions as the

Radon-Nikodym weights. By sequential importance resampling, πX1|Y2 and πX2|Y1 match

πY2|X2 and πY1|X1 respectively, so the target distributions are simulated and propagated with-

out rerunning the model online. This iterative process results in the convergence in distri-

bution of the joint distribution of Y1 and Y2 as the number of iterations grows. Hence, the

joint distribution of the two sources of uncertainty in the system is recovered without ever

performing a coupled system level analysis.

2.3 Key Ingredients of the Approach

As mentioned, the two key ingredients of the proposed approach are sequential im-

portance resampling and Gibbs sampling.
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Figure 2.2: A depiction of the online uncertainty analysis process. It should be noted that
the models f1 and f2 are not actually executed in the online process. Instead, the Radon-
Nikodym importance weights found for re-weighting the input proposal distribution are
passed on to the output distributions.

2.3.1 Sequential Importance Resampling

A key ingredient of the online approach is the iterative re-weighting of offline sample

information. This is achieved using sequential importance resampling [40]. The method is

used as follows. Consider a bivariate density of the random variablesY1 andY2 and assume

a bivariate normal distribution have been sampled whereY1 ∼N (0,2),Y2 ∼N (0,2), and

the random variables are independent. Contours of this density are shown in red on the left

in Figure 2.3 and samples of this distribution are shown with red dots on the same fig-

ure. These samples could then be propagated through a model, say f (Y1,Y2) to compute

statistics of interest such as the expectation, E[ f (Y1,Y2)]. Now suppose that instead of the

distribution represented by the red contours on the left in Figure 2.3, we wished to compute

the expectation of f (Y1,Y2) with Y1 and Y2 distributed jointly according to the distribution

15



represented by the blue contours on the left in Figure 2.3. A traditional approach would

require sampling from this distribution and then propagating these samples through the

model. However, importance resampling, which is based on the Radon-Nikodynm theo-

rem [41], allows us to compute this information by simply re-weighting the samples from

the original distribution, which we can then resample from with replacement.

Figure 2.3: The importance resampling process uses the realizations shown by red dots on
left figure, generated from a proposal distribution P(Y1,Y2) (corresponding density shown
as red solid contour on left figure) to approximate a target distribution Q(Y1,Y2) (blue dash
contour on left figure), by weighting the proposal realizations shown by blue dots on right
figure (adapted from Ref. 1).

The concept is demonstrated in Figure 2.3, where Radon-Nikodym importance

weights are used to re-weight the samples given by the red dots on the left figure. The

result is the blue dots on the right figure, where the size of the dots denotes the relative

weights given to the samples. These weights are the Radon-Nikodym derivatives of the

desired distribution with respect to the original distribution evaluated at the original sam-

ple points. Mathematically, if we wished to compute the expected value of some function
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f (Y1,Y2) using the density represented by the blue contours but had only samples of the

density represented by the red contours, we would proceed as follows. Referring to the

original distribution as the proposal distribution and denoting its density by p(Y1,Y2) and

referring to the desired distribution as the target distribution and denoting its density by

q(Y1,Y2), the expected value of f (Y1,Y2) with respect to the target distribution is given as

EQ[ f (Y1,Y2)] =
∫
P

q(Y1,Y2)

p(Y1,Y2)
f (Y1,Y2)p(Y1,Y2)dY , (2.3)

where P is the support of the proposal density and the target distribution is absolutely

continuous with respect to the proposal distribution. This integral can be evaluated with

Monte Carlo simulation as

EQ[ f (Y1,Y2)]≈
1
N

N

∑
i=1

f (Y i
1,Y

i
2)

q(Y i
1,Y

i
2)

p(Y i
1,Y

i
2)
, (2.4)

where the samples {Y i
1,Y

i
2} are drawn from the proposal distribution (i.e., the red contours

in Figure 2.3). This is the key aspect of the method. The proposal samples are propagated

through a model offline. Online, these samples are re-weighted so as to simulate a tar-

get distribution being propagated through a model. Importance resampling allows us to

achieve this simulation without rerunning the model online. It should be noted here that

sequential importance resampling (sampling from the discrete distribution given by the

Radon-Nikodym importance weights) is done followed by a density estimation technique

to update the joint densities in the online process. This is required because the Radon-

Nikodym weights are density ratios.
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2.3.2 Gibbs Sampling

The second key ingredient of the approach is Gibbs sampling. The presence of model

discrepancy in a multidisciplinary system with feedback coupling requires the addition

of that model discrepancy iteratively. That is, considering the system in Figure 1.2, if

we first evaluate Discipline 1 (with an initial estimate of the input to this discipline from

Discipline 2), we have an estimate of the output of Discipline 1 that feeds into Discipline

2. To this output, we add the discrepancy term denoted by δ1 in the figure. Discipline 2

can then be evaluated and to its output that feeds back into Discipline 1, we must add the

discrepancy term denoted by δ2 in the figure. This process must be repeated until some

form of convergence is achieved. Here, the convergence that is required is convergence

in distribution. That is, an iterative process is required that, when enough iterations have

occurred, the joint distribution of the coupling variables is stationary. One method for

achieving this is through the use of Gibbs sampling.

Gibbs sampling was first described by Ref. 46 and has also been referred to as suc-

cessive substitution sampling [47]. It is a Markov chain Monte Carlo based method for

generating samples from a joint distribution that cannot be directly sampled. Follow-

ing Refs. 47 and 48, suppose we have random variables (which can be vector-valued)

Y1, . . . ,Yk, and we wish to generate samples from the joint distribution of those random

variables, which we denote as πY1,...,Yk . Assume we have a complete set of conditional

distributions, πYi|{Y j, j ̸=i} for i = 1, . . . ,k, available for sampling. Then, starting from some

initial arbitrary set of values, y(0)1 , . . . ,y(0)k , where the superscript denotes the iteration num-
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ber of the Gibbs sampler, we draw a sample y(1)1 from π
Y1|Y2=y(0)2 ,...,Yk=y(0)k

. We then draw

a sample y(1)2 from π
Y2|Y1=y(1)1 ,Y3=y(0)3 ,...,Yk=y(0)k

, and continue in this manner up to yk from

π
Yk|Y1=y(1)1 ,...,Yk−1=y(1)k−1

, which completes one iteration of the Gibbs sampler. After m itera-

tions, we obtain (y(m)
1 , . . . ,y(m)

k ). For continuous distributions, Ref. 47 has shown, under

mild assumptions, that this k-tuple converges in distribution to a random observation from

πY1,...,Yk as m → ∞.

To demonstrate the applicability of Gibbs sampling to multidisciplinary uncertainty

analysis, consider again the system shown in Figure 1.2. Let y(0)1 be an initial estimate from

Discipline 1, where an arbitrary estimate from Discipline 2 has been assumed. This sam-

ple then can be propagated through Discipline 2, which generates a sample from the condi-

tional distribution, π
Y2|Y1=y(0)1

, which is denoted as y(1)2 . Then this sample can be propagated

through Discipline 1 to generate a sample from the conditional distribution π
Y1|Y2=y(1)2

, and

so on. By repeating this process many times, we ensure that the random sample, (y(m)
1 ,y(m)

2 )

converges in distribution to a random observation from the true joint distribution of Y1 and

Y2.

For compositional multidisciplinary uncertainty analysis approach and the system

represented by Figures 1.2 and 2.2, Gibbs sampling is performed over the conditional

joint distributions of X1|Y2,Y1|X1,X2|Y1, and Y2|X2. This begins with initial distributions,

π
X (0)

1
,π

Y (0)
1
,π

X (0)
2
, and π

Y (0)
2
, which were generated offline. Then Radon-Nikodym impor-

tance weights from the ratio of π
Y (0)

2
to π

X (0)
1

are used to generate the distribution π
X (1)

1 |Y (0)
2

as well as π
Y (1)

1 |X (1)
1
. Then Radon-Nikodym importance weights from the ratio of π

Y (1)
1

to
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π
X (0)

2
can be used to generate the distribution π

X (1)
2 |Y (1)

1
and π

Y (1)
2 |X (1)

2
, which completes one

iteration of the importance weighted Gibbs sampler.

2.4 Kernel Density Estimation

For applying sequential importance resampling, the importance weights that are the

ratio of the target density to the proposal density are computed for a given sample. Since a

sample-based approach is employed here to propagate uncertainty, a means of estimating

proposal and target densities from a set of samples is required. In particular for some

continuous random variable x with density function f (x), we require that for any density

estimate, f̂ (x),

lim
n→∞

f̂ (x) = f (x) (2.5)

at all points of continuity of the density f (x). For this, we use kernel density estimation,

f̂ (x) :=
1

nLd

n

∑
i=1

K(
x− x j

L
) (2.6)

where L> 0 is a smoothing parameter called the bandwidthwith the property that lim
n→∞

L= 0

and K is a kernel function satisfying

0 6 K(t)6 ∞ (2.7)

20



∫
Rd

K(t)dt = 1 (2.8)

∫
Rd

K(t)xdt = 0 (2.9)

∫
Rd

K(t)∥t∥2 dt < ∞ (2.10)

where t ∈ Rd and ∥ · ∥ is the Euclidean norm. Then, lim
n→∞

f̂ (x) = f (x) at every point x of

continuity of f (·) [50].

2.5 Effective Sample Size

As noted in Section 2.2, since the joint distributions of the coupled variables are

not known in advance, distributions must be proposed for the inputs of each discipline.

These proposal distributions come from the previous knowledge about the system, and can

impact the convergence performance of the compositional multidisciplinary uncertainty

analysis approach. In general, the quality of the proposal distributions cannot be evaluated

before executing the approach; but after knowing the importance weights, it can be done

by computing the effective sample size as

neff =
1

∑N
i=1(w(xi))2

, (2.11)

where N is the number of samples and w(xi) is the normalized importance weight assigned

to the proposal sample xi [42–44]. The effective sample size ranges from neff = 1 to neff =
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N. We have neff = N when all the samples have the same weights ( 1
N ), so the proposal and

target distributions are equal to each other, while neff = 1 shows that the weight of all the

samples except one sample is 0. Thus, effective sample size is often used as a heuristic for

determining when the proposal distribution adequately captures the target distribution [45].

This approach is taken here as discussed in Section 2.2, where the use of an unchanging

effective sample size is also considered as a heuristic indicator of stationarity in a target

distribution.

2.6 Algorithm

The proposed compositional multidisciplinary uncertainty analysis method for cou-

pled systems with model discrepancy is presented in Algorithm 1. The data necessary for

this algorithm are the samples generated from the proposal distributions as inputs and the

output samples of each discipline obtained independently in the offline process. The num-

ber of samples and the number of disciplines are represented as N and Nd respectively.

Since this approach is based on samples, to be able to compute the importance weights, the

densities of the inputs, πX , and outputs, πY , of the disciplines need to be estimated. The

algorithm starts from the first discipline, and computes the unnormalized weights (wun
i, j)

for each sample of disciplines (
{

xi, j
} j=1,...,Nd

i=1,...,N ) as wun
i, j =

πYj−1(xi, j)

πXj (xi, j)
, which is the ratio of the

target input density (output from the upstream discipline) and the proposal input density

computed at each sample previously simulated from the proposal input distribution. After

assigning weights to all the samples, N samples are drawn with replacement from the out-
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put samples, and the model discrepancy corresponding to the current discipline is added to

the importance resampled samples. From these updated samples, the probability density

of the output, which is the new target input distribution for the downstream discipline, is

updated. To compute the effective sample size, the weights assigned to the samples need

to be normalized to sum to unity. After repeating these steps for all the disciplines, one

iteration of the Gibbs sampler is completed, and M, which represents the number of Gibbs

iterations and is initialized to 0, is updated to M + 1. The algorithm stops when the rel-

ative difference between the effective sample size in the current Gibbs iteration and the

previous one, |n j
eff(M)−n j

eff(M−1)

n j
eff(M)

|, for all the disciplines is less than a user-defined threshold

(ε), which shows that the approach has converged to a stationary joint distribution of the

coupling variables.

23



Algorithm 1: Compositional Multidisciplinary Uncertainty Analysis.

Data: Offline sample sets of inputs
{
xi, j

} j=1,...,Nd
i=1,...,N and outputs

{
yi, j

} j=1,...,Nd
i=1,...,N

obtained from offline Monte Carlo based individual discipline analyses.
Result: The joint distribution of outputs of all the disciplines

{
Yj
}

j=1,...,Nd
and

their statistics.
Parameters: N = number of samples; Nd = number of disciplines; M = number

of Gibbs iterations; δ j = additive model discrepancy of discipline
j; neff = effective sample size; ε = user-defined threshold for the
iteration stopping criterion; wun

i, j = unnormalized weights; wi, j =
normalized weights

Initialize input and output distributions of
{

X j
}

j=1,...,Nd
(πX j) and

{
Y j
}

j=1,...,Nd
(πY j) using offline sample sets, and M = 0.
while max

j∈{1,...,Nd}
(ε j)> ε do

for j = 1 : Nd do
for i = 1 : N do

if j = 1 then

wun
i, j =

πYNd
(xi, j)

πXj (xi, j)

else

wun
i, j =

πYj−1(xi, j)

πXj (xi, j)

Importance resample from the discrete distribution given by the computed
weights.
Add the model discrepancy associated with the current discipline (δ j) to
the respective importance resampled samples.
Update the probability density of Yj (πY j) from the updated samples.
Normalize the unnormalized weights

{
wun

i, j

}
to obtain the normalized

weights
{

wi, j
}

i=1,...,N .
n j
eff(M) = 1

∑N
i=1(wi, j)2

ε j = |n j
eff(M)−n j

eff(M−1)

n j
eff(M)

|

M = M+1
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2.7 Convergence Analysis

In this section, the convergence properties of the proposed compositional multidisci-

plinary uncertainty analysis method are discussed. Convergence results from applications

of the law of large numbers, Skorokhod’s representation theorem, and the convergence

of kernel density estimation, importance weighted empirical distributions, and the Gibbs

sampler.

In the offline process of the compositional multidisciplinary uncertainty analysis

method, Monte Carlo analysis is performed and samples are generated from the input pro-

posal distributions of each discipline. The convergence of these input proposal samples to

their respective input proposal distributions follows from the law of large numbers [49].

From the generated input samples, the output samples are obtained independently for each

discipline, so the output variances and other distributional quantities can similarly be esti-

mated using Monte Carlo simulation results. By assuming that the function model of each

discipline, f j, is bounded and continuous, then as an application of Skorokhod’s repre-

sentation theorem, the output empirical distribution converges to the true output proposal

distribution of each discipline [49].

In the online process of the compositional multidisciplinary uncertainty analysis

method, importance sampling is used to weight the proposal samples, so as to approxi-

mate the target input distribution, using the samples previously simulated from the pro-

posal input distributions. The convergence of the sampling and importance resampling

(SIR) algorithm is discussed in Ref. 40. To apply SIR, the proposal and target densities
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need to be estimated from the corresponding samples to compute the importance weights.

By using a kernel density estimation method that is strongly uniformly convergent [50,51],

pointwise estimates of the densities are obtained where we are ensured to converge point-

wise as the number of samples increases to the true density [52]. Then, by an application

of Skorokhod’s representation theorem [49], the weighted empirical output proposal distri-

bution converges to the true output target distribution. As can be seen in Figure 2.2, these

target distributions are conditional distributions for each coupling variable conditioned on

all other coupling variables. Hence, iteratively sampling via the process of re-weighting

offline samples constitutes a Gibbs sampling process, which has been shown to converge

under certain conditions (i.e., compatible conditional distributions) to samples from the

true joint distribution of the coupling variables [53].

Thus, the proposed compositional multidisciplinary uncertainty analysis approach

can perform the uncertainty analysis for coupled systems with model discrepancy in a

provably convergent manner under mild assumptions on the disciplinary functions and

the model discrepancy terms.
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3 APPLICATION AND RESULTS

3.1 Application

In this chapter, a demonstration of the effectiveness of the proposed compositional

multidisciplinary uncertainty analysis approach is presented. The application system of

interest is adapted from Ref. 2. The application is discussed followed by the description of

the results.

3.1.1 Aerodynamics-Structures System

The example problem that is used to demonstrate the method is a two-dimensional

airfoil in airflow from Ref. 2 and shown in Figure 3.1. As described in Ref. 2, the airfoil

Figure 3.1: Coupled aerodynamics-structures system adapted from Ref. 2.

is supported by two linear springs attached to a ramp. The airfoil is permitted to pitch

and plunge. The lift, L, and the elastic pitch angle, ϕ , are the coupling variables and also

the outputs in this system. A complete description of the problem can be found in Ref. 2
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and for the sake of completeness, the equations and variable values are presented in the ap-

pendix. A block diagram of the system is shown in Figure 3.2, where the considered model

discrepancies are highlighted. For this demonstration, the distribution of model discrepan-

cies are assumed to be δ1 ∼N (0,250) (N) and δ2 ∼N (0,1e−6) (rad), whereN (µ,σ2)

represents a normal distribution with mean µ and variance σ2. The objective then is to cor-

rectly estimate the joint distribution of L and ϕ using the compositional multidisciplinary

uncertainty analysis methodology.

Figure 3.2: Block diagram of the coupled aerodynamics-structures system adapted from
Ref. 2 showing the model discrepancies considered. L is the lift and ϕ is the elastic pitch
angle.

3.2 Results

In this section, the results of the compositional multidisciplinary uncertainty analysis

(CUA) approach applied to the coupled aerodynamics-structures system are presented. A

comparison to brute force Monte Carlo simulation results, the evolution of the joint distri-

bution of L and ϕ using the compositional multidisciplinary uncertainty analysis method-

ology, and convergence results for both increasing Gibbs iterations and increasing sample
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size for statistics of interest are presented.

The Monte Carlo results that are compared to the proposed methodology consisted

of generating 100,000 samples from the joint distribution of L and ϕ using Gibbs sam-

pling. The Gibbs sampler underwent 15 iterations for each sample, thus the models were

evaluated 1,500,000 times each. The compositional multidisciplinary uncertainty analysis

approach used 200,000 offline evaluations of each model independently. For the aero-

dynamics model of the example problem, an input distribution of ϕ ∼ N (0.017,4e− 6)

was used as the proposal. For the structures model, the independent input distribution,

L ∼ N (500,400), was used as the proposal. It should be noted here that these proposals

were completely independent (that is, all off-diagonal terms in the covariance matrix of

the joint distribution of the variables were zero), and that the offline evaluations of the

aerodynamics and structures models were run in isolation of each other. That is, there was

never any coupled system evaluation conducted offline.

Statistics of the joint distribution of L and ϕ are presented in Table 3.1 for both the

full Monte Carlo simulation approach (MCS) and the compositional multidisciplinary un-

certainty analysis (CUA) approach proposed here. The results demonstrate the mean, vari-

Table 3.1: Quantities of interest computed in MCS and CUA methods

Variable MCS CUA
µL 502.0265 502.0563
σ2

L 352.2087 353.0435
µϕ 0.0176 0.0176
σ2

ϕ 1.4240e−06 1.4318e−06
cov(L,ϕ) 0.0122 0.0123
cor(L,ϕ) 0.5447 0.5476
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ance, covariance, and correlation coefficient of the joint distribution are being estimated

well by the proposed approach. The joint distribution of the variables using each method is

shown in Figure 3.3 as contour plots. The left side of the plot is the MCS result whereas the

right side is the result of the proposed approach. Graphically it is clear that CUA method

has captured the joint distribution of interest. This was achieved without any online eval-

uations of either model separately or as a coupled system. Thus, the online cost of using

CUA method to propagate uncertainty through this system was negligible, whereas the

MCS approach incurred substantial computational cost.

Figure 3.3: Joint distributions represented with contour plots for both the MCS and
CUA methods. The MCS approach used 1,500,000 samples and the CUA approach used
200,000.

Figure 3.4 shows the evolution of the joint distribution of L and ϕ using the proposed

approach after one, three, and five Gibbs iterations. Red samples are generated from the

proposal distributions shown as red solid contours which are re-weighted to capture the

evolving target distribution, shown as blue dashed contours, and the weighted samples are

shown in blue dots in the plots below the distributions.

To demonstrate the convergence of the joint distribution of L and ϕ obtained using
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Figure 3.4: Evolution of the joint distribution of L and ϕ using the proposed approach after
one, three, and five Gibbs iterations. Red samples are generated from a proposal distribu-
tion shown as red solid contours which are re-weighted (weighted blue dots in below plots)
to capture the evolving target distribution, shown as blue dashed contours.

the compositional methodology, the Cramer von-Mises criterion [54] is computed between

the empirical joint distribution obtained by the proposed approach and that recovered by

brute force Monte Carlo simulation. The Cramer von-Mises criterion is defined as

ω =
∫ +∞

−∞
[Fn(x)−F∗(x)]2 dF∗(x), (3.1)

where Fn and F∗ are the cumulative distribution functions of the empirical distribution and

a desired distribution, respectively. Figure 3.5 presents the Cramer von-Mises criterion as

a function of the number of offline samples used in the proposed approach averaged over

100 independent simulations. Also, the effective sample size is shown as a function of

the number of offline samples averaged over the 100 independent simulations. The results
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show that the Cramer von-Mises criterion converges with the number of samples, and the

rate of convergence is 1/N, where N is the number of samples, which is expected based on

the dependence of the convergence analysis of the approach on the law of large numbers.

Figure 3.5: Average Cramer von-Mises criterion and effective sample size over 100 runs
of the CUA approach as a function of the number of offline samples.

Certain quantities of interest, such as means, variances, and the covariance of the

joint distribution of L and ϕ also converge to their true values as shown in the follow-

ing numerical results. The expected value of the relative error of the mean and variance

estimates are computed as, E[ |µ̂q−µq|
µ̂q

] and E[ |σ̂
2
q−σ2

q |
σ̂2

q
] respectively, in which q refers to L

or ϕ . The expected value of the relative error of the covariance of L and ϕ is computed

as, E[ | ˆcov(L,ϕ)−cov(L,ϕ)|
ˆcov(L,ϕ) ]. The expectation is computed as the average of 100 independent

uncertainty analysis trials. The mean and variance, µ̂q and σ̂2
q , are obtained using the

full Monte Carlo simulation uncertainty analysis results, and µq and σ2
q , are the mean and

variance estimates (for L and ϕ ) obtained from the compositional multidisciplinary uncer-

tainty analysis approach. To assess the quality of the proposal distributions, the effective

sample size is computed once the target distribution is known after each Gibbs iteration.
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Figure 3.6 shows the expected error in estimating the covariance of L and ϕ , and also the

effective sample size as the number of Gibbs iterations increases. As it is seen, in this par-

Figure 3.6: Average effective sample size and the expected value of the relative error of
the covariance of L and ϕ using the CUAmethod with 200,000 samples and averaged over
100 runs versus the number of Gibbs iterations.

ticular example, the joint distribution is captured after a few Gibbs iterations. As shown

in the figure, the effective sample size and relative error in the covariance estimate level

off around the same number of Gibbs iterations. As discussed earlier, the leveling off of

the effective sample size is used as a heuristic to indicate that the approximation of the

target distribution is stationary. In this situation, the only mechanism for obtaining a better

estimate of the target is the introduction of more samples, which is a topic of future work.

Figure 3.7 shows the expected value of the relative error of the means and variances

of L and ϕ , as well as the effective sample size as the number of offline samples increases.

The results show that the proposed approach is effectively estimating the statistics of L and

ϕ .
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Figure 3.7: Average effective sample size and expected value of the relative error of the
mean and variance of L and ϕ computed using CUA approach averaged over 100 runs
versus number of samples on a logarithmic scale
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4 SUMMARY AND CONCLUSIONS

This thesis has presented a compositional multidisciplinary uncertainty analysis

methodology. The approach was motivated by the fact that often, multidisciplinary sim-

ulation capabilities are composed by integrating pre-existing disciplinary physics-based

models. For such composed multi-physics systems, the task of uncertainty analysis can be

challenging owing to the disciplinary models being managed by separate entities or housed

in separate locations, analysis capabilities running on different computational platforms,

models with significantly different analysis run times, and the sheer number of disciplines

required for a given analysis. Further, it is also often the case for such systems to exhibit

feedback couplings, which can lead to computationally prohibitive expense for uncertainty

analysis tasks. To ensure confidence in results obtained by such coupled system models,

uncertainty must be completely and rigorously quantified. Thus, there is a need to allevi-

ate the computational burden of multidisciplinary uncertainty analysis in coupled systems

composed of integrated disciplinary models. This was achieved by moving most of the

computational expense of multidisciplinary uncertainty analysis to an offline phase, that

can be conducted whenever there is the opportunity to do so. The key advantage of the

proposed approach is that there is no need to do system level uncertainty analysis, and all

the disciplinary analyses can be performed independently in the offline process. Offline

data is used in an online process that does not require any further model evaluations or any

system level analysis. The approach is demonstrated on a coupled aerodynamics-structures

35



system with model discrepancies.

So, the first objective of this thesis which was formulating the problem of propa-

gating uncertainty through a coupled system is achieved by the use of Gibbs sampling to

sample from the conditional distributions of each discipline conditioned on the output of

the other discipline. The other objective which was to create an efficient methodology

for propagating the uncertainty is achieved by the use of sequential importance resam-

pling which allows to modify the offline information intelligently without rerunning the

models, and the last objective is achieved by demonstrating the methodology on a cou-

pled aerodynamics-structures system which was used in Ref. 2 to demonstrate the global

sensitivity equations for coupled systems.

In future research, the approach needs to be extended to systems with parametric

uncertainty, and also some methods need to be investigated for adaptively introducing new

samples online, for situations where proposals are inadequately capturing targets.
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APPENDIX A

MISCELLANEOUS

Aerodynamics-Structures System

Aerodynamics Model

L = q.S.CL

θ = ϕ +ψ

CL = uθ + r[1− cos[(π/2)(θ/θ0)]]

Structures Model

R1 = L/(1+ p) R2 = Lp/(1+ p)

d1 = R1/k1 d2 = R2/k2

ϕ = (d1 −d2)/[C.(z̄2 − z̄1)]

Data

z̄1 = z1/C z̄2 = z2/C ā = a/C

h̄1 = ā− z̄1 h̄2 = z̄1 − ā p = h̄1/h̄2

S = B.C

B = 100cm; C = 10cm; z̄1 = 0.2; z̄2 = 0.7

k1 = 4000N/cm; k2 = 2000N/cm

ā = 0.25; q = 1N/cm2; θ0 = 0.26rad; ψ = 0.05rad

u = 2π; r = 0.9425
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