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ABSTRACT

We study the SO(3)D × SO(3)L sector of both the SO(8) and ISO(7) gauged

N = 8 supergravity in four dimensions. By uplifting an N = 3 critical point of

the latter theory, we get a wrapped AdS4×M6 in ten dimensional massive type IIA

supergravity. The dual three dimensional superconformal Chern-Simons theory is

identified through AdS/CFT correspondence. The conjecture is tested by comparing

the spin-2 Kaluza-Klein modes and spin-2 operators in the dual CFT, and by compar-

ing the Gravitional Euclidean Action of the gravitational solution and Free Energy

of the dual CFT. We review the non-perturbative method to study conformal field

theory called “Conformal Bootstrap” and apply it to study CFT’s with F4/SU(3)

flavor symmetry in 6−ε dimensions. The possibility of applying conformal bootstrap

to study AdS/CFT is also discussed.
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NOMENCLATURE

ABJM Aharony-Bergman-Jafferis-Maldacena

AdS Anti de-Sitter Space
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1. INTRODUCTION

Since its formulation [1], AdS/CFT correspondence has been playing a very im-

portant role in theoretical physics. This duality not only improves our understanding

of string theory, but also introduce a new non-perturbative method to study super-

conformal field theories. The supergravity limit of string theory is of special interest.

Let’s take the duality between AdS5×S5 and N = 4 super Yang-Mills as an example.

Type IIB supergravity has a solution describing N coincident D3-branes [2]:

ds2
10 =

1√
f(r)

ηµν +
√
f(r)(dr2 + r2dΩ2

5),

f(r) = 1 +
L4

r4
, L4 = 4πα′2gsN, (1.1)

whose near horizon (r → 0) limit is AdS5 × S5:

ds2
10 =

L2dz2

z2
+
L2

z2
(ηµνdx

µdxν) + L2dΩ5. (1.2)

Roughly speaking, supergravity is a good approximation to string theory when the

AdS5 radius is much larger than string length scale L2 � α′ (which is equivalent

to saying that α′ correction is negligible). Since L4 = 4πgsα
′2N , the condition is

equivalent to:

gsN � 1. (1.3)

Also, to suppress quantum effect so that classical supergravity is valid, the string

coupling constant need to be small

gs � 1. (1.4)
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According to AdS/CFT dictionary, string coupling is dual to Yang-Mills coupling

squared, gs = g2
YM/4π, and D3 brane number N is dual to the rank of gauge group

SU(N). The conditions (1.3) and (1.4) then tell us that the dual CFT should be in

the following limit [1]:

λ = g2
YMN � 1, N/λ = 1/g2

YM � 1. (1.5)

Clearly N � 1 is implied. For CFT at large N limit, the t’Hooft parameter λ plays

the role of coupling constant. Supergravity is therefore dual to the strongly coupled

conformal field theory. On one hand, this is good since one could use supergravity

as a non-perturbative method to study superconformal field theory. On the other

hand, however, it makes the testing of AdS/CFT correspondence difficult, since the

strongly coupled limit of superconformal field theory is complicated. The standard

examples of AdS/CFT correspondence involve maximally supersymmetric solutions

and conformal field theories [1]:

AdS5 × S5 ↔ Low energy effective action on D3 branes

AdS4 × S7 ↔ Low energy effective action on M2 branes

AdS7 × S4 ↔ Low energy effective action on M5 branes (1.6)

The low energy effective action on D2 branes was long known to be the N = 4

Super Yang-Mills theory. The low energy effective on M2 branes, on the other hand,

remains mysterious for many years, it was until in [3] that people constructed an

Lagrangian with six out of the eight supersymmetry manifest, which is normally

referred ABJM (Aharony-Bergman-Jafferis-Maldacena) theory. As denoted by the

quiver diagram in Figure 1.1. The theory contains two gauge group U(N)× U(N),

2



Figure 1.1: A quiver diagram for the ABJM theory.

whose kinetic terms are Chern-Simons terms whose Chern-Simons levels sum to zero.

Chiral multiplets transforms as bi-fundamentals of the two gauge group. The dual

solution of this theory is the AdS4 × CP3 solution of type IIA string theory, or

AdS4 × S7/Zk solution of M-theory [4, 5].

Let’s compare the isometry of the gravational solution solution and flavor sym-

metries of the dual ABJM theory. Follow the discussion in [3]. In M theory, the

solution is given by

ds2 =
L2

4
ds2

AdS4
+ L2dΩ2

S7

F4 ∼ Nvol(4),
L

lp
= (32π2N)1/6 (1.7)

where the internal space S7 clearly has 8 killing spinors, and therefore the solution

is maximal supersymmetric. One could write S7 as

ds2
S7 = (dψ′ + ω)2 + ds2

CP3 (1.8)

where

ds2
CP3 =

∑4
i=1 dzidz̄i∑4
i=1 zz̄

− |
∑4

i=1 zidz̄i|2

(
∑4

i=1 zz̄)2

dψ′ + ω =
i

(
∑4

i=1 zz̄)2
(zidz̄i − z̄idzi) (1.9)

3



It is then possible to perform a Zk quotient, which is the Hopf fibration explained

in [4], to get

ds2
S7/Zk

=
1

k2
(dψ + kω) + ds2

CP3 (1.10)

where ψ = kψ′. Preforming the reduction to type IIA supergravity in ten dimen-

sional, we get a solution (in string frame)

ds2
10 =

L3

k
(
1

4
ds2

AdS4
+ ds2

CP3)

e2φ =
L3

k3

F(4) =
3

8
L3vol(4), F(2) = kdω (1.11)

Under the branching of SO(8)→ SU(4)× U(1):

8s → 60 + 12 + 1−2

8v → 41 + 4̄−1 (1.12)

CP3 has only six killing spinors, which are the U(1) neutral ones. To get ABJM

theory, let’s start from the non-abelian N = 2 Chern-Simons Lagrangian [6]:

SN=2
CS =

∫
k

2π

(∫ 1

0

Tr[V D̄α(e−tVDαe
tV )]

)
(1.13)

the vector superfield consists of the gauge field Aµ, an auxiliary scalar field σ, and a

Dirac spinor χ, and scalar D. In components, the action is simply [7]:

SN=2
CS =

k

4π

∫
Tr(A(1) ∧ dA(1) =

2

3
A(1) ∧ A(1) ∧ A(1) − χ̄χ+ 2Dσ). (1.14)

where the trace are taken in the fudamental representation of the gauge group.

4



Introduce a few more terms, one could get a theory where the supersymmetry is

enhanced to N = 3 [6,8]:

SN=3 = SN=2
CS +

∫
d4θ(Q̄eVQ+ Q̃e−V Q̃) +

∫
dθ2(− k

4π
TrΦ2 + Q̃ΦQ). (1.15)

Notice that Φ has no kinetic term, and could be integrated out to get the superpo-

tential

W =
2π

k
(Q̃T aQ)(Q̃T aQ) (1.16)

where T a is the generator of the gauge group. The theory has an SU(2) flavor

symmetry.

The ABJM theory, on the other hand, consists of two copy of (1.15) with opposite

Chern-Simons level, coupled to two copy of chiral superfields through [3]:

Lint =
k

8π
Tr[Φ2

(2) − Φ2
(1)] + Tr(BiΦ(1)Ai) + Tr(AiΦ(2)Bi) (1.17)

One could integrated out the auxilary superfield Φ(1) and Φ2 and get the superpo-

tential

W =
2π

k
εabεcdTr[AaBbAcBd] (1.18)

In N = 2 language, the action has an explicit SU(2)× SU(2) symmetry, acting

separately on Ai and Bi. If one write the action in components, the extra SU(2)R

symmetry intervenes Ai and Bi and the symmetry group is enhance to SU(4)R.

Notice in (1.17) Ai and Bi plays the role of Q̃ and Q in (1.16), hence they form

doublets of SU(2)R. SU(4) is exactly the isometry of internal space CP3 of the dual

gravational solution.

In this thesis, we will study a specific example of AdS/CFT correspondence—the
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N = 3 theory (1.16) and its dual AdS solution. It was realized in [9] that Romans

term [10] induce a net Chern-Simons level to the dual conformal field theory, meaning

that the sum of Chern-Simons levels for all gauge group is proportion to the Romans

mass parameter m. (Notice the ABJM theory has zero net Chern-Simons level.)

Our solution would be a warped AdS4 ×M6 solution of Romans deformed type IIA

supergravity in ten dimensions. The internal space M6 has S6 topology.

A common way to search for AdS solutions in ten dimensional type IIA/IIB

or eleven dimensional M-theory is to search for critical points (vacuum solutions)

with positive cosmological constants in lower dimensional gauged supergravity the-

ories [11–16]. If the lower dimensional supergravity is a consistent truncation of the

corresponding higher dimensional theory, we could in principle be able to uplift the

solution to higher dimensions. Four dimensional SO(8) gauged N = 8 supergravity

is known famously as an consist reduction of eleven dimensional supergravity [17].

Recently, the dyonic ISO(7) gauged N = 8 supergravity is shown to be a consist

reduction of ten dimensional Romans deformed type IIA supergravity [18, 19]. The

dual solution of (1.16) shows itself as an N = 3 critical point of such a four dimen-

sional maximal supergravity theory. In Chapter 2, we will first classifies the critical

points in an SO(3)D × SO(3)L sector of N = 8 SO(8)/ISO(7) gauged supergrav-

ity [20, 21], and then uplift the N = 3 solution found in ISO(7) gauged theory to a

solution of massive type IIA supergravity in ten dimensions [21]. In Chapter 3, we

identify the dual three dimensional superconformal field theory in three dimensions,

and talk about various tests of the conjectured AdS/CFT correspondence [22].

We mentioned that one of the attractive features of AdS/CFT correspondence

is that supergravity is dual to strongly coupled limited the corresponding CFT. In

Chapter 4, we will introduce another non-perturbative method for conformal field

theory call “Conformal Bootstrap”. The idea of conformal bootstrap was introduced

6



in the 1970s by Alexander Polyakov [23] and also by Sergio Ferrara, Raoul Gatto

and Aurelio Grillo [24]. Its later application to two dimensional conformal field

theories lead to the famous work of Alexander Belavin, Alexander Polyakov and

Alexander Zamolodchikov [25], where two dimensional minimal models was classified.

In higher dimensions, it was re-introduced in 2008 to study the particle physics model

Conformal Technicolor, and later became extreme successful in the study of models

such as three dimensional Ising model [26, 27], O(N) vector models [28, 29], Gross-

Neveu(-Yukawa) models [30], and various superconformal theories [31–34]. We will

apply this method to study CFT with F4/SU(3) flavor symmetry in 6− ε dimension.

We will also discuss the possibility of applying conformal bootstrap to test AdS/CFT

correspondence.

Chapter 5 presents our conclusion and some discussion.
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2. FOUR DIMENSIONAL SUPERGRAVITY AND CRITICAL POINTS∗

The field content of four dimensional ungauged maximal supergravity is listed in

Table 2.1 [35]. The theory could be derived from eleven dimensional supergravity

Fields gµν µ Aµ χ φ
multiplicity 1 8 28 56 70

Table 2.1: Field content of four dimensional N = 8 supergravity.

by a seven torus reduction. The 35 complex (70 real) scalars parametrized the coset

E7(7)/SU(8). E7(7) is the global symmetry, and SU(8) is the R symmetry group—a

local symmetry whose gauge connection are composite fields made of scalars. It is

a general feature of supergravity theories that bosonic fields transform as represen-

tations of global symmetry group, while fermonic fields transform as representations

of R-symmetry group.

It is possible to gauge some of the generators of the global symmetry group to get

a gauged theory, for example, the famous de Witt-Nicolai theory [36] is the SO(8)⊂

E7(7) gauged version of the theory constructed in [35]. Recent years, it was noticed

that the possible gauging of [35] could be classified by the so called Embedding

Tensor formalism.

∗Part of the result reported in this chapter is reprinted Holographic RG flow in a new
SO(3) × SO(3) sector of ω-deformed SO(8) gauged = 8 supergravity by Yi Pang, C. N.
Pope and Junchen Rong, published in JHEP, 08:122, 2015, Copyright [2015] by The Authors,
[DOI:10.1007/JHEP08(2015)122]. JHEP articles are published on open access terms, with Cre-
ative Commons 4.0 (CC BY 4.0) license [https://creativecommons.org/licenses/by/4.0/] and the
copyright is retained by the authors. Part of the result reported in this chapter is also reprinted
with permission from N=3 solution in dyonic ISO(7) gauged maximal supergravity and its uplift to
massive type IIA supergravity by Yi Pang and Junchen Rong, published in Phys. Rev. D 92, no. 8,
085037 (2015), Copyright [2015] by American Physical Society, [DOI:10.1103/PhysRevD.92.085037].
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2.1 Embedding Tensor Formalism

The 4D maximal supergravity is characterised by the embedding tensor ΘM
α

which completely specifies the gauging [37]. Embedding tensor enters the Lagrangian

through the quantity

XM = ΘM
αtα, [XM , XN ] = −XMN

PXP . (2.1)

The second equation above implies that the gauged generators form a closed algebra.

Indices M,N . . . transform as 56 of E7(7) which decompose into 28⊕ 28 of SU(8) or

28⊕ 28′ of SL(8). The decompositions of 56 of E7(7) under SU(8) or SL(8) suggest

two different bases in which the E7(7) covariant quantities can be formulated.

In terms of the SL(8) basis in which VM = {V[AB], V
[AB]}, the pure scalar sector

of the 4D gauged maximal supergravity is given as

e−1L =
1

8
Tr(∂µM∂µM−1)

− 1

672
(XMN

RXPQ
SMMPMNQMRS + 7XMN

QXPQ
NMMP ), (2.2)

where MMN is the inverse of MMN constructed from the bilinear of the 56-bein as

MMN = (LL†)MN , L(φ)M
N = S†M

PL(φ)P
N , (2.3)

with

SM
N =

1

4
√

2

Γij
AB iΓijAB

ΓijAB −iΓijAB

 , LM
N = exp

 0 φijkl

φijkl 0

 . (2.4)

The indices M,N label the 56 irreps realized in the SU(8) basis, and therefore the

unitary matrix S converts the SU(8) basis to the SL(8) basis [15]. A,B, . . . denote

9



the fundamental representation of SL(8) while i, j, . . . denote the 8 representation of

SU(8). The 2-gamma matrices Γij
AB comprise the generators of SO(8) in the chiral

spinor representation. The position of the index is not crucial.

When the gauge group is a subgroup of SL(8) ⊂ E7(7), the embedding tensor

could be expressed in the following general form:

XABM
N =

−fABCDEF
fABEF

CD

 , XAB
M
N =

−gABCDEF
gABEF

CD

 ,

(2.5)

where fABCD
EF = 2

√
2δ

[E
[AθB][Cδ

F ]
D] and gABEF

CD = 2
√

2δ
[A
[Eξ

B][Cδ
D]
F ] . θBC and ξBC

are 8 × 8 matrix, the constraints on embedding tensor require them to satisfies the

following relations [38]:

θACχ
CB ∝ δCA , or θACχ

CB = 0 (2.6)

The solution [39]

θ = cos(ω)I8, θ = sin(ω)I8 (2.7)

correspondes to the SO(8) gauging, the existence of the parameter ω, hence the

existence of a whole one parameter family of SO(8) gauged N = 8 supergravity in

four dimensions surprised a lot of people, as the ω = 0 theory, or de Witt-Nicolai

theory was long assumed to be unique.

Another solution is also interesting:

θ = g · diag(I7, 0), ξ = m · diag(07, 1). (2.8)

which corresponds to the ISO(7) gauging. ISO(7) group is defined as the group of 8

10



by 8 matrix that preserves the metric

η = diag(I7, 0) (2.9)

which could also be constructed from SO(8) group by Inönü-Wigner contraction.

Take the so(3) algebra as an example

[R1, R2] = R3, [R2, R3] = R1, [R3, R1] = R2, (2.10)

scale the generators as

R1 → λR1, R2 → λR2, (2.11)

and take the singular limit λ → ∞, the algebra becomes the Euclidean algebra e2.

In a similar way SO(8) could be contracted into ISO(7).

It was explained in [38] that the SL(8) Cartan generator

Λred =

 I7

−7

 , (2.12)

acts on embedding tensor and rescales the electric and magnetic coupling constant

(g,m) separately. This rescaling can be compensated by a non-linear field redefi-

nition. Consequently, the only two inequivalent choices correspond to m = 0 and

m 6= 0. We will see later that this redefinition is actually inherited from ten dimen-

sional massive type IIA supergravity.
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2.2 SO(3)D × SO(3)L sector of N = 8 supergravity

2.2.1 Branching Rules and invariant four form

In our convention, we take the 70 scalars of N = 8 supergravity to transform

as 35v and 35c representation of SO(8), while the eight supersymmetry generators

transforms as 8s of SO(8). Denoting the 35v (35c) representation of SO(8) as (anti)

self-dual invariant four forms:

Φ =
1

4!
φijkldx

i ∧ dxj ∧ dxk ∧ dxl {i, j, k, l} ∈ 8s. (2.13)

Finding scalars invariant under a certain subgroup of the gauge group is then equiv-

alent to finding invariant four forms of the gauge group. We are going to follow the

following branching rules

SO(8) ⊂ SO(3)V × SO(3)R × SO(3)L ⊂ [SO(3)V × SO(3)R]D × SO(3)L

8s → (3,1,1) + (1,2,2) + +(1,1,1) → (3,1) + (2,2) + (1,1) (2.14)

The subscript “D” means the diagonal subgroup of SO(3)V ×SO(3)R. Since we have

only one singlet from 8s after the branching, the truncated theory, consisting of all

the field invariant under SO(3)D × SO(3)L subgroup of SO(8), would be an N = 1

supergravity. We will now work out explicitly the scalar sector of this theory. First

we have to find all the scalar invariant under such a group. Branching rules tells us

there are two singlets following from the branching of 35v representation of SO(8),

and another two singlets following from the branching of 35c. All we need to do is

to construct two four form invariant under SO(3)L × SO(3)D which are not (anti)

self-dual to each other and take the self-dual and anti-self dual parts of them to get

the four singlets. Starting with SO(3)× SO(4) subgroup, we have the following four

12



forms:

dx1 ∧ dx2 ∧ dx3 ∧ dx8 ∈ (1SO(3)V
,1SO(4))

dxi ∧ dxj ∧ dxa ∧ dxb ∈ (3SO(3)V ,6SO(4)) with i = 1, 2, 3 ∈ SO(3)

and a b = 4 . . . 7 ∈ SO(4)

. . .

or equivalently, SO(3)V × SO(3)L × SO(3)R:

dx1 ∧ dx2 ∧ dx3 ∧ dx8 ∈ (1SO(3)V ,1SO(3)R
,1SO(3)L

)

εijkη
î
abdx

i ∧ dxj ∧ dxa ∧ dxb ∈ (1SO(3)V ,3SO(3)R
,3SO(3)L

) with î = 1, 2, 3 ∈ SO(3)L

. . .

(2.15)

ηîab is the t’Hooft matrix. Under the SO(3)D × SO(3)L subgroup, they contains the

following singlets:

dx1 ∧ dx2 ∧ dx3 ∧ dx8 ∈ (1SO(3)D
,1SO(3)L

)

εijkη
i
abdx

i ∧ dxj ∧ dxa ∧ dxb ∈ (1SO(3)D
,1SO(3)L

) with i = 1, 2, 3 ∈ SO(3)D

. . .

(2.16)

Notice i is now taken to be SO(3)D index, and has been contracted. The dual form

are also invariant scalar to be kept, actually, they could be written as the following

ηiabη
i
cddx

a ∧ dxb ∧ dxc ∧ dxd = dx4 ∧ dx5 ∧ dx6 ∧ dx7

ηiabdx
i ∧ dxa ∧ dxb ∧ dx8

. . .

(2.17)
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where we have used the t’Hooft matrix:

η1 =



0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0


, η2 =



0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0


, η3 =



0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0


(2.18)

which transforms as 3 of SO(3)L, whose generators are chosen to be

B1 = −1

2
(R01 −R23)

B2 = −1

2
(R02 −R31)

B3 = −1

2
(R03 −R12). (2.19)

t’Hooft matrix are invariant under SO(3)R, whose generators are chosen to be

A1 =
1

2
(R01 +R23)

A2 =
1

2
(R02 +R31)

A3 =
1

2
(R03 +R12). (2.20)

Rij’s are so(4) generators, with (Rij)ij = −(Rij)ji = 1, and other elements equal to

zero.

In summary, the branching rules tell us that there are two complex scalar invariant

under the SO(3)D×SO(3)L subgroup of SO(8) (or ISO(7)), and they could be written
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as

Ψ1 = ψ1dx
1 ∧ dx2 ∧ dx3 ∧ dx8 + ψ̄1dx

4 ∧ dx5 ∧ dx6 ∧ dx7 ,

Ψ2 = ψ2(−dx1 ∧ dx2 ∧ dx4 ∧ dx7 + dx1 ∧ dx2 ∧ dx5 ∧ dx6 + dx1 ∧ dx3 ∧ dx4 ∧ dx6

+dx1 ∧ dx3 ∧ dx5 ∧ dx7 − dx2 ∧ dx3 ∧ dx4 ∧ dx5 + dx2 ∧ dx3 ∧ dx6 ∧ dx7)

+ψ̄2(dx1 ∧ dx4 ∧ dx5 ∧ dx8 − dx1 ∧ dx6 ∧ dx7 ∧ dx8 + dx2 ∧ dx4 ∧ dx6 ∧ dx8

+dx2 ∧ dx5 ∧ dx7 ∧ dx8 + dx3 ∧ dx4 ∧ dx7 ∧ dx8 − dx3 ∧ dx5 ∧ dx6 ∧ dx8)

(2.21)

To plug such an Ansatz into (2.4), we first need to specify our gamma matrix nota-

tion.

2.2.2 Gamma matrix Notation for SO(8)

SO(8) gamma matrices admit a real representation:

Γ1 = σ2 ⊗ σ2 ⊗ σ1 ⊗ σ0, Γ2 = σ2 ⊗ σ3 ⊗ σ0 ⊗ σ2,

Γ3 = σ2 ⊗ σ0 ⊗ σ2 ⊗ σ3, Γ4 = σ2 ⊗ σ0 ⊗ σ2 ⊗ σ1,

Γ5 = σ2 ⊗ σ1 ⊗ σ0 ⊗ σ2, Γ6 = σ2 ⊗ σ2 ⊗ σ3 ⊗ σ0,

Γ7 = −σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2, Γ8 = σ1 ⊗ σ0 ⊗ σ0 ⊗ σ0,

Γ9 = Γ1 . . .Γ8 = −σ3 ⊗ σ0 ⊗ σ0 ⊗ σ0. (2.22)

All of them are block off-diagonal:

Γi =

 0 Γ̂iIα

(Γ̂i)T
αI 0

 . (2.23)
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The 8 by 8 matrix Γ̂iIα is an invariant tensor carrying all three fundamental {8s,8c,8v}

index of SO(8), such a property are normally call the “triality” of the corresponding

lie algebra so(8), which could also be easily seen from the structure of the dykin

diagram in Figure 2.1. Notice that since Γ̂8
Iα = δIα, I and α index makes

Figure 2.1: Dynkin diagram of lie algebra so(8)=D4.

no difference under SO(7). The SO(7)+ invariant tensor C+αβρλ is proportional

to
∑

i,j=1,7 Γ̂ijT[αβΓ̂ijTρλ] , whilst The SO(7)− invariant tensor C−IJKL is proportional to∑
i,j=1,7 Γ̂ij[IJ Γ̂ijKL].

2.2.3 Scalar potential in the SO(3)D × SO(3)L invariant sector of SO(8) gauged

supergravity

Plug in the ansatz (2.21) into (2.4), (2.3) and then (2.2), we get the SO(3)D ×

SO(3)L scalar sector in N = 8 SO(8) gauged supergravity.

e−1L = R− 1
2

(
(∂φ1)2 + sinh2 φ1(∂σ1)2

)
− 3
(

(∂φ2)2 + sinh2 φ2(∂σ2)2
)
− V. (2.24)

where we have redefined the scalars as

ψ1 = 1
2
φ1e

iσ1 , ψ2 = 1
2
φ2e

iσ2 , (2.25)
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The potential can be expressed in terms of the superpotential W theory as

V = g2 · 2
(

4|∂W
∂φ1

|2 +
2

3
|∂W
∂φ2

|2 − 3|W |2
)
, (2.26)

In terms of ζ1, ζ2 defined as

ζ1 = tanh 1
2
φ1e

−iσ1 , ζ2 = tanh 1
2
φ2e

iσ2 , (2.27)

the superpotential W can be expressed as

W = −e−iω(1− |ζ1|2)−
1
2 (1− |ζ2|2)−3

[
4ζ3

2e
2iω− 3ζ4

2 − 1 + ζ1ζ
6
2e

2iω + 3ζ1ζ
2
2e

2iω− 4ζ1ζ
3
2

]
.

(2.28)

The potential appears to be more complicated

64
V

g2
= −256 cosh4 φ2

+2 coshφ1 cosh2 φ2(−57− 20 cosh 2φ2 + 13 cosh 4φ2 + 24 sinh4 φ2 cos 4σ2)

+8 sinhφ1 sinh3 2φ2 (cos(σ1 − 3σ2) + 3 cos(σ1 + σ2))

+4 sinh3 φ2

{
16(cos(2ω − 3σ2) + 3 cos(2ω + σ2))(1− coshφ1 cosh3 φ2)

+ sinhφ1 sinh3 φ2 (6 sin(2ω + σ1) sin 2σ2 − 2 cos(2ω + σ1 − 6σ2)

−8 sinhφ1(3 sinhφ2 + sinh 3φ2) cos(2ω − σ1)

−3
2

sinhφ1(17 sinhφ2 + 5 sinh 3φ2) cos(2ω + σ1) cos 2σ2

}
. (2.29)

Notice the potential is invariant under the following transformation:

ω → ω + π/4, σ1 → σ1 − π/2, σ2 → σ2 + π/2 (2.30)

ω → −ω, σ1 → −σ1, σ2 → −σ2 (2.31)
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Therefore, for inequivalent theory, ω lives in [0, π/8].

It is useful to compare our sector with other sectors that has been studied. The

symmetry group SO(3)D × SO(3)L could be embedded in SO(8) along the following

chain

SO(3)D × SO(3)L ⊂ G2 ⊂ SO(7) ⊂ SO(8). (2.32)

On the other hand the SU(3) invariant sector of N = 8 supergravity has been

throughly studied both in the original de Wit and Nicolai theory [11, 12, 40] and in

the ω deformed case [41], with the group embedding

SU(3) ⊂ G2 ⊂ SO(7) ⊂ SO(8). (2.33)

Using Newton-Raphson method, given the potential (2.29), we scanned for its critical

points. All the critical points with G2 or SO(7) symmetry are found, and they agree

with previous results. We also found two critical points with SO(3)D × SO(3)L

symmetry. One of them preserving N = 3 supersymmetry was first discovered

by [42]. For this critical point, the evolution of the two complex scalars and the

associated cosmological constant with ω are displayed in Figure 2.2. This is the first

N = 3 vacuum in SO(8) gauged N = 8 supergravity. The mass spectrum of the

fluctuations around this vacuum is given by [42]:

m2L2
0 : 1× (3(1 +

√
3)); 6× (1 +

√
3); 1× (3(1−

√
3)); 6× (1−

√
3);

4× (−9

4
); 18× (−2); 12× (−5

4
); 22× 0 . (2.34)

By virtue of supersymmetry, the Breitenlohner-Freedman bound [43] is respected.

The other SO(3)D × SO(3)L critical point is non-supersymmetric. However, it

turns out to be stable against fluctuations. The mass spectrum of the perturbations
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around this vacuum depends on ω. For ω = π/8, it is listed below

m2L2
0 : 1× (6.72079); 1× (5.29013); 4× (−1.96647); 9× (−1.73861);

9× (−1.60284); 1× (−1.59124); 8× (−1.18046); 5× (−0.98076);

4× (−0.73134); 5× (0.61746); 1× (0.58185); 22× 0 . (2.35)

Notice again that the Breitenlohner-Freedman bound is not violated at this critical

point. For this critical point, the evolution of the two complex scalars and the

associated cosmological constant with ω are displayed in Figure 2.3. It should be

noticed that both critical points cease to exist when ω goes to 0 as the values of

cosmological constant diverge. For completeness, in Table 2.2, we list all the critical

points contained in the SO(3)D × SO(3)R invariant sector. Three remarks need to

be mentioned:

• a) The two transformations (2.30) and (2.31) combine into a symmetry for

ω = π/8:

σ1 → −σ1 − π/2, σ2 → −σ2 + π/2 (2.36)

which is explicit in the table.

• b) Points related by

φi → −φi, σi → σi + π

have the same location in the complex plain, hence should not be treated as

different points.

• c) It is interesting to see that there are two critical points with the same cos-

mological constant, but with different residue symmetry, one with G2, another

with SO(3)D × SO(3)L.
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symmetry φ1 σ1 φ2 σ2 V (g = 1) stability
N = 8
SO(8) 0 − 0 − −6

√

N = 0
SO(7)− 0.4195 π

2
0.4195 −π

2
−6.7482 ×

N = 0
SO(7)− 0.6406 −π

2
0.6406 π

2
−7.7705 ×

N = 0
SO(7)+ 0.4195 π 0.4195 π −6.7482 ×
∗N = 0
SO(7)+ 0.6406 0 0.6406 0 −7.7705 ×
N = 1

G2 0.4840 3π
4

0.4195 3π
4
−7.0397

√

N = 1
G2 0.6579 −1.9693 0.6579 1.9693 −7.9430

√
∗N = 1

G2 0.6579 0.3985 0.6579 −0.3985 −7.9430
√

∗N = 0
G2 log ϑ −π

4
log ϑ π

4
−4ϑ ×

∗N = 3
SO(3)D × SO(3)L log ϑ

3
3π
4

log ϑ π
4

−4ϑ
√

∗N = 0
SO(3)D × SO(3)L 0.3114 −π

4
0.9914 π

4
−10.271

√

Table 2.2: Critical points in the ω = π/8 theory of N = 8 SO(8) gauged supergavity.

(We use ϑ to denote the number
√

3 + 2
√

3. The mass spectrum of fluctuation
around the critical points are independent of ω, except for the last one. ω → 0, points
with marked with “*” disappear, while the two points with SO(7)− symmetry merge
into one become degenerate in energy.) Table reprinted with permission from [20].

We listed all the known critical points in SO(3)D × SO(3)L sector of SO(8) gauged

supergravity in Table 2.2.
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2.2.4 Scalar potential of the SO(3)D × SO(3)L invariant sector in ISO(7) gauged

supergravity

Plug in the ansatz (2.21) into (2.4) and (2.3), using (2.8) in (2.2), we get the

SO(3)D × SO(3)L scalar sector in N = 8 dyonic ISO(7) gauged supergravity.

V =
1

64
g2(coshφ2 − cosσ2 sinhφ2)2(cosσ2 sinhφ2 + coshφ2)

×
(

196 cos(σ1 + 3σ2) sinhφ1 sinh3 φ2 + 4 cos(σ1 − 3σ2) sinhφ1 sinh3 φ2

+35 cos(σ1 − σ2) sinhφ1 sinhφ2 + 467 cos(σ1 + σ2) sinhφ1 sinhφ2

+47 cos(σ1 − σ2) sinhφ1 sinh 3φ2 − 97 cos(σ1 + σ2) sinhφ1 sinh 3φ2

+4 cosσ1 sinhφ1 coshφ2(28 cos 2σ2 sinh2 φ2 + 47)

−2 coshφ1(28 cos 3σ2 sinh3 φ2 + 101 cosσ2 sinhφ2 − 7 cosσ2 sinh 3φ2

+ coshφ2(200 cos 2σ2 sinh2 φ2 + 226)− 50 cosh 3φ2)

−28 cosσ1 sinhφ1 cosh 3φ2 − 768
)

+gm sin2 σ2 sinh2 φ2(cosσ2 sinhφ2 − coshφ2)3 ×
(

3 sinσ1 sinhφ1 coshφ2

+ sinhφ2 (4 sinσ2 coshφ1 − sinhφ1 (3 sinσ1 cosσ2 + 4 sinσ2 cosσ1))
)

+
1

2
m2 (coshφ1 − cosσ1 sinhφ1) (coshφ2 − cosσ2 sinhφ2)6 . (2.37)

the potential can be expressed in terms of a superpotential W , with

V = 2
(

4|∂W
∂φ1

|2 +
2

3
|∂W
∂φ2

|2 − 3|W |2
)
, (2.38)
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where

W =
g

4
(cosh

φ2

2
+ eiσ2 sinh

φ2

2
)2(cosh

φ2

2
− eiσ2 sinh

φ2

2
)3

×
(

cosh
φ2

2
(7 cosh

φ1

2
− eiσ1 sinh

φ1

2
) + eiσ2(cosh

φ1

2
− 7eiσ1 sinh

φ1

2
) sinh

φ2

2

)
+

im

4
(cosh

φ1

2
− eiσ1 sinh

φ1

2
)(cosh

φ2

2
− eiσ2 sinh

φ2

2
)6. (2.39)

The location of the critical point depends on m/g, however, as mentioned before,

the effects due to different m/g can be compensated by a nonlinear field redefinition.

Therefore we can choose this ratio to be the one most convenient for our purpose.

In finding the locations of the critical points, we choose

m

g
= 2. (2.40)

The scalar potential (2.37) possesses an SO(3)L× SO(3)D invariant stationary point

preserving N = 3 supersymmetry of the original N = 8 theory which lies outside the

residual N = 1 supersymmetry of the truncated theory. In terms of the complexified

fields

ξ1 = tanhφ1e
iσ1 , ξ2 = tanhφ2e

iσ2 , (2.41)

the N = 3 point is given by

ξ1 =
3

5
− 2i

5
, ξ2 =

i

2
, (2.42)

The mass spectrum of the fluctuations around this vacuum has been obtained previ-

ously in [42] by a group theoretic method without referring to the detailed position
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of the critical point:

m2L2
0 : 1× (3(1 +

√
3)); 6× (1 +

√
3); 1× (3(1−

√
3)); 6× (1−

√
3);

4× (−9

4
); 18× (−2); 12× (−5

4
); 22× 0, (2.43)

where the AdS radius squared L2
0 = −6/V , V (g = 1,m = 2) = −32/

√
3. (The

integer to the left of the multiplication sign indicates the degeneracy of the mass

eigenvalue, while the number to the right indicates the corresponding mass squared.)

There is another N = 1 critical point with G2 global symmetry:

ξ1 = ξ2 = − i

4
. (2.44)

To obtain this critical point, we have combined the Newton-Raphson method with

the “inverse Symbolic Calculator” technique. The mass spectrum of the scalar fluc-

tuations around this vacuum is given by

m2L2
0 : 1× (4±

√
6); 14× 0; 27× (−1

6
(11−

√
6)), (2.45)

where the AdS radius squared L2
0 = −6/V , V (g = 1,m = 2) = −512

√
3/(25

√
5).

Besides the supersymmetric critical points, there are three more nonsupersymmet-

ric critical points, preserving SO(3)L × SO(3)D, G2 and SO(7)v global symmetries

respectively. The SO(3)L × SO(3)D invariant critical point is located at

ξ1 = 0.353669 + 0.0552267i, ξ2 = −0.0293804 + 0.534729i, (2.46)
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with the mass spectrum given by

m2L2
0 : 1× (6.72740); 1× (5.28662); 4× (−1.96422); 9× (−1.75110);

9× (−1.58816); 1× (−1.58552); 8× (−1.17591); 5× (−0.98271);

4× (−0.72962); 5× (0.62977); 1× (0.58436); 22× 0, (2.47)

where the AdS radius squared L2
0 = −6/V , V (g = 1,m = 2) = −18.662034. The G2

invariant point is given by

ξ1 = ξ2 =
i

2
. (2.48)

The associated mass spectrum has the simple structure

m2L2
0 : 2× 6; 14× 0; 54× (−1), (2.49)

where the AdS radius squared L2
0 = −6/V , V (g = 1,m = 2) = −32/

√
3. It should

be emphasized that the spectra associated with the nonsupersymmetric SO(3)R ×

SO(3)D-and G2-invariant critical points lie above the Breitenlohner-Freedman (BF)

bound. The last SO(7)v-invariant critical point is located at

φ1 = φ2 = −1
6

log 5
4
, σ1 = σ2 = 0. (2.50)

The mass spectrum of the SO(7)v-invariant critical point reads

m2L2
0 : 1× 6; 7× 0; 35× (−6

5
); 27× (−12

5
), (2.51)

where the AdS radius squared L2
0 = −6/V , V (g = 1,m = 2) = −15 × 5

1
6/2

1
3 . This

point is unstable against fluctuations as the mass squared of some scalar modes is
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symmetry ξ1 ξ2 V (g = 1,m = 2) stability
N = 0

SO(7)− −1
6

log 5
4
−1

6
log 5

4
−15× 5

1
6/2

1
3 ×

N = 1

G2 −i/4 −i/4 −512
√

3/(25
√

5)
√

N = 0

G2 i/2 i/2 −32/
√

3
√

N = 3

SO(3)D × SO(3)L
3
5
− 2i

5
i/2 −32/

√
3

√

N = 0 0.353 -0.0293
SO(3)D × SO(3)L +0.0552i +0.534i −18.6

√

Table 2.3: Critical points in the dyonic ISO(7) gauged N = 8 supergavity.

below the BF bound. The scalar mass spectra associated with the two G2-invariant

critical points and the single SO(7)v-invariant point coincide with those given in [16],

where the G2- and SO(7)v-invariant critical points in D = 4 maximal supergravities

with all gaugings are analyzed.

Details of all the critical points in the SO(3)R × SO(3)D-invariant sector are

summarized in Table 2.3.

2.3 Uplifting critical point into solution of massive type IIA supergravity

2.3.1 Supersymmetric SO(3)D × SO(3)L invariant solution in massive IIA

It was realized in [18] that the four dimensional dyonic ISO(7) gauged supergav-

ity is a consistent truncation of ten dimension massive type IIA supergravity. An

solution of the lower dimensional theory would then automatically be a solution of

the higher dimensional theory. In this and the following subsection, we will lift the

N = 3 SO(3)D × SO(3)L and the two G2 critical points to 10D.
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In terms of the auxiliary coordinates on S6

µ1 = sin ξ cos θ1 cosχ1, µ2 = sin ξ cos θ1 sinχ1,

µ3 = sin ξ sin θ1 cosψ, µ4 = sin ξ sin θ1 sinψ,

ν1 = cos ξ cos θ2, ν2 = cos ξ sin θ2 cosχ2,

ν3 = cos ξ sin θ2 sinχ2, (2.52)

which satisfy
∑4

A=1 µ
AµA +

∑3
i=1 ν

iνi = 1, the metric on the round S6 takes the

form

ds2
S6 = dξ2 + sin2 ξdΩ2

3 + cos2 ξdΩ2
2

= dξ2 + sin2 ξ
(
dθ2

1 + cos2 θ1dχ
2
1 + sin2 θ1dψ

2
)

+ cos2 ξ(dθ2
2 + cos2 θ2dχ

2
2). (2.53)

To lift the solution of the 4D dyonic ISO(7) gauged supergravity to that in the 10D

massive type IIA supergravity, we utilize the uplift formulas given in [18], in which

the internal components of the 10D metric, the dilaton, and various form fields are

constructed in terms of the SL(7)-covariant blocks of the D = 4 scalar matrixMMN :

gmn =
1

4
g2∆Km

IJK
n
KLMIJ,KL,

e−
3
2
φ̂ = −gmnÂmÂn + ∆xIxJMI8J8,

Âm =
1

2
g∆gmnK

n
IJxKMIJK8,

Âmn = −1

2
∆gpmK

p
IJ∂nx

KMIJ
K8,

Âmnp = ÂmÂnp +
1

8
g∆gmqK

q
IJK

KL
np MIJ

KL, (2.54)
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where Km
IJ = 2g−2g̊mnx[I∂nxJ ], K

IJ
mn = 4g−2∂[mxI∂n]xJ . Due to our gamma matrix

notation, {xI} are related to {µA, νi} by the similarity transformation

S = diag(1, 1, 1, 1,−1,−1, 1), (2.55)

which brings the SL(7)-covariant blocks of the D = 4 scalar matrix MMN into a

form invariant under the standard SO(3)D × SO(3)L transformation given in [20].

The convention of 10D massive type IIA supergravity, is adapted to be in accord

with [44], where the Lagrangian is take to be

L10 = R ∗ 1− 1

2
∗ dφ ∧ dφ− 1

2
e

3
2
φ ∗ F(2) ∧ F(2) −

1

2
e−φ ∗ F(3) ∧ F(3)

−1

2
e−

1
2
φ ∗ F(4) ∧ F(4) −

1

2
dA(3) ∧ dA(3) ∧ A(2)

−1

6
mdA(3) ∧ (A(2))

3 − 1

40
m2(A(2))

5 − 1

2
m2e

5
2
φ ∗ 1 (2.56)

Define various field strength

F(2) = dA(1) +mA(2), F(3) = dA(2)

F(4) = dA(3) + A(1) ∧ dA(2) +
1

m
A(2) ∧ A(2), (2.57)

and the equation of motions and Bianchi identities becomes

d(e
1
2
φ ∗ F(4)) = −F(3) ∧ F(4), d(e

3
2
φ ∗ F(2)) = −e

1
2
φ ∗ F(4) ∧ F(3),

d(e−φ ∗ F(3)) = −1

2
F(4) ∧ F(4) −me

3
2
φ ∗ F(2) − e

1
2
φ ∗ F(4) ∧ F(2),

d ∗ d(φ) = −5

4
e

5
2
φvol(10) −

3

4
e

3
2
φ ∗ F(2) ∧ F(2) +

1

2
e−φ ∗ F(3) ∧ F(3)

− 1

4
e

1
2
φ ∗ F(4) ∧ F(4),

dF(4) = F(2) ∧ F(3), dF(3) = 0, dF(2) = mF(3). (2.58)
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the following scalings leave the Lagrangian and equation of motions invariant:

Â(1) → τÂ(1), Â(2) → τÂ(2), Â(3) → τ 2Â(3), dŝ2
10 → τ

5
4dŝ2

10, eφ̂ → τ−
1
2 eφ̂,

Â(1) → κÂ(1), Â(2) → κ2Â(2), Â(3) → κ3Â(3), dŝ2
10 → κ2dŝ2

10, m→ m

κ
.

(2.59)

Notice that the second scaling is merely based on the dimensionality. The scaling

symmetry of the 4D theory (2.12) reflects itself in the 10D theory as a combination of

the above two scalings with τ = λ20, κ = λ−14, where λ is identified as the parameter

of Λred in (2.12).

Notice also that the gauge transformations

A(1) → A(1) − dΛ(0) −mΛ(1), A(2) → A(2) + dΛ(1),

A(3) → A(3) + dΛ(3) − dΛ(0) ∧ A(2) −mΛ(1) ∧ A(2) −
m

2
Λ(1) ∧ dΛ(1). (2.60)

leave invariant the Lagrangian and equation of motion. The Romans parameter m,

induce a Stueckelberg type of transformation, where a two form could “eat” a one

form, and become massive.

The 10D solution corresponding to the N = 3 critical point is then obtained as

follows:

L−2dŝ2
10 = ∆−1(

3
√

3

16
ds2

AdS4
) + gmndy

mdyn, (2.61)

where

∆ = 3
9
8 2−

3
4 (cos 2ξ + 3)−

1
8 Ξ−

1
4 , Ξ = (24 cos 2ξ + 3 cos 4ξ + 37), (2.62)
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and the internal metric on the deformed S6 is given as

gmndy
mdyn = 3

√
3

4
(∆Ξ)−1

[
− sin2 2ξdξ2

+8(cos 2ξ + 3)dµ · dµ+ 4(cos 2ξ + 3)dν · dν

+16µAηiABdµ
Bεijkνjdνk − 16

cos 2ξ + 3
(dµAηiABµ

Bνi)2

]
,

(2.63)

where ηi’s are the generators of SO(3)R embedded in SO(4) ' SO(3)R × SO(3)L,

η1 =



0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0


, η2 =



0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0


, η3 =



0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0


. (2.64)

Denote Ki ≡ µAηiABdµ
B, various p-form fields can then be expressed as

L−1e
3
4
φ0Â(1) = Kiνi× 2

cos 2ξ + 3
,

L−2e−
1
2
φ0Â(2) = −Ξ−1

[
−8dνi ∧ Ki + 6 sin 2ξdξ ∧ νiKi

+2(3 cos 2ξ + 5)νiηiABdµ
A ∧ dµB

−(3 cos 2ξ + 5)εijkνidνj ∧ dνk
]
, (2.65)

L−3e
1
4
φ0Â(3) = −Ξ−1

[
6 sin 2ξεijkdξ ∧ Kiνj ∧ dνk

+2(3 cos 2ξ + 5)εijkνidνj ∧ dµA ∧ ηkABdµB

+4εijkKi ∧ dνj ∧ dνk +

8

3
csc2 ξεijkKi ∧ Kj ∧ Kk

]
+

3
√

3

8
Ω(3). (2.66)
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where dΩ(3) = vol(AdS4) which is the volume element of the “unit” AdS4. Finally,

the 10D dilaton is given by

e−
3
2
φ̂ = e−

3
2
φ0

∆Ξ

3
√

3(cos 2ξ + 3)
. (2.67)

Notice that everything is written in terms of SO(3)L × SO(3)D invariant quantities

(any function of ξ is invariant as µ · µ = sin2 ξ is an invariant quantity ). Here

we have introduced two constants L2 = 2−
1
12 g−25/12m1/12 and eφ0 = 2

5
6 g

5
6m−

5
6 using

the scaling symmetries (2.59). It is easy to checked that our solution satisfies the

equations of motion of massive type IIA supergravity.

2.3.2 G2-invariant solutions in massive type IIA

In our notation, we can write down the almost complex structure on unit S6 as

J(2) =
1

2!
Jmndy

m ∧ dyn = Ki ∧ dνi +
1

2
νiηiABdµ

A ∧ dµB +
1

2
εijkνidνj ∧ dνk, (2.68)

which satisfies JmnJ
nl = −δlm, and also −1

2
J(2) ∧ J(2) = ∗6J(2). The parallel torsion

of J(2) is

G(3) = −1

3
dJ(2). (2.69)

Then H(3) ≡ ∗6G(3) satisfies the relation

dH(3) = 2J(2) ∧ J(2), (2.70)
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where “∗6” is the Hodge dual defined with respect to the S6 metric. The uplift of

the N = 1 G2-invariant critical point gives rise to the 10D solution

L−2dŝ2
10 = α−3

(25
√

15

256
ds2

AdS4

)
+ αds2

S6 , α =
153/8

2
√

2
,

e−
3
2
φ̂ = e−

3
2
φ0α−1, L−1e

3
4
φ0Â(1) = 0,

L−2e−
1
2
φ0Â(2) =

1

4
J(2), L−3e

1
4
φ0Â(3) =

1

4
H(3) +

25
√

15

128
Ω(3), (2.71)

where ds2
S6 is the metric of the unit S6 given in (2.53). Again, we introduced L2 =

2−
1
12 g−25/12m1/12 and eφ0 = 2

5
6 g

5
6m−

5
6 using the scaling symmetries. It is recalled

that in [45], general N = 11 flux compactification of massive type IIA string has

been analyzed. Our N = 1, G2-invariant solution is a special case of their result.

The stable nonsupersymmetric G2-invariant solution is obtained by uplifting the

nonsupersymmetric G2-invariant critical point of the D = 4 theory and the result is

L−2dŝ2
10 = α−3

(3
√

3

16
ds2

AdS4

)
+ αds2

S6 , α =
33/8

23/4
,

e−
3
2
φ̂ = e−

3
2
φ0α−1, L−1e

3
4
φ0Â(1) = 0,

L−2e−
1
2
φ0Â(2) = −1

2
J(2), L−3e

1
4
φ0Â(3) = −1

2
H(3) +

3
√

3

8
Ω(3). (2.72)

1Here N = 1 means four real supercharges.
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Figure 2.2: The ω dependence of N = 3 SO(3)D × SO(3)L critical point. (Red dot:
ω = 0. Black dot: ω = π/4. Dashed line of the bottom plot corresponds to V0 = −6.)
Figure reprinted with permission from [20].
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Figure 2.3: The ω dependence of the N = 0 SO(3)D × SO(3)L critical point. (Red
dot: ω = 0. Black dot: ω = π/4. Dashed line of the bottom plot corresponds to
V0 = −6.) Figure reprinted with permission from [20].
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3. REFINED TEST OF ADS/CFT CORRESPONDENCE∗

3.1 Romans term and Chern-Simons conformal field theory

We have explained how to get (non)supersymmetric (warpped) AdS solution of

10 dimensional massive type IIA supergravity, by uplifting critical points of four

dimensional ISO(7) gauged N = 8 critical points. Now we will explain what the

dual field theory is. We know the Wess-Zumino coupling [46] on D2 brane is give by

SWZ = (2πl2s)
2µD2

∫
R1,2

F0 ·
1

2
tr[εµνρAaµ∂νA

a
ρ +

2

3
AaµA

a
νA

a
ρ] (3.1)

where µD2 is the D2 brane charge. This is exactly the Chern-Simons kinetic term.

Another way to get Chern-Simons terms on branes is through the Wess-Zumino

coupling on D4 branes, with the D4 branes wrap a two-cycle of the internal space,

the two form F(2) induce Chern-Simons terms on the three transverse dimension,

which is exactly the mechanism in ABJM theory [3]. For our N = 3 solution, the

internal space is S6, which has no two-cycle, it is then making sense to assume the

dual theory has only one gauge group.

The second important fact is that our solution preserves three supersymmetry, the

dual theory then need to be an N = 3 superconformal Chern-Simons field theory. As

we mentioned in the introduction, an N = 3 supersymmetric Chern-Simons theory

was constructed in [8], and was studied in [6], if one take the gauge generator in

∗Part of the result reported in this chapter is reprinted with permission from N=3 solu-
tion in dyonic ISO(7) gauged maximal supergravity and its uplift to massive type IIA supergravity
by Yi Pang and Junchen Rong, published in Phys. Rev. D 92, no. 8, 085037 (2015), Copy-
right [2015] by American Physical Society, [DOI:10.1103/PhysRevD.92.085037]; Evidence for the
Holographic dual of N = 3 Solution in Massive Type IIA by Yi Pang and Junchen Rong, pub-
lished in Phys. Rev. D 93, no. 6, 065038 (2016), Copyright [2016] by American Physical Society,
[DOI:10.1103/PhysRevD.93.065038].
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(1.16) to be the generators in the adjoint representation of the gauge group, (1.15)

could be written in components as [6]:

L =
k

4π

[
CS(A) + Tr(Dabsab −

1

2
χabχab + χχ+

1

6
sab[sbc, s

c
a])
]

+
1

2
|∇µqIa|2 +

1

2
qIaD

abqIb −
1

4
|sabqIc|2

+
i

2
ψIaγ

µ∇µψ
Ia − 1

2
ψ a
I sabψ

Ib + iq a
I χabψ

Ib + iqIaχψ
Ia. (3.2)

This would be the dual theory of our N = 3 solution.

Before talking about the detailed tests of this AdS/CFT correspondence, let say

a few words about the relation between the known critical point in dyonic ISO(7)

gauged N = 8 supergravity, which are listed in Figure 3.1, according to the hight of

cosmological constant. The N = 2 point found in [18] is also included. The figure

Figure 3.1: List of critical points according to the heights of their cosmological
constants. Figure reprinted with permission from [21].

indicates one could construct domain wall solution interpolating between these criti-

cal point, correspondingly, there should be RG flow running between these conformal
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field theories.

3.2 Short Kaluza-Klein multiplets and BPS protected operators

Even though the original proposed AdS/CFT correspondence (1.6) was between

maximal supersymmetric solution and maximal supersymmetric conformal field theo-

ries, it is widely believed that AdS/CFT correspondence is also valid in backgrounds

with reduced supersymmetry. As an example, we are going to study the warped

AdS4 ×M6 solution of type IIA supergravity (2.61), which has N = 3 reduced su-

persymmetry (six supercharges). To figure out the dual superconformal field theory,

let’s use a principle of AdS/CFT correspondence:

Principle 1: Isometries of the background solution becomes global symmetries of the

dual field theory.

A round six sphere has SO(7) isometry, the solution (2.61) however has only SO(3)L×

SO(3)D isometry. Pay attention to the term (dµAηiABµ
Bνi)2, dνi is a three vector of

SO(3)ν , while dµA and µA are both four vectors of SO(4) ∼ SO(3)L× SO(3)R. With

the help of t’Hooft matrix, dµAηiABµ
B is now a vector of SO(3)R. It is then clear that

(dµAηiABµ
Bνi)2 breaks SO(7) into SO(3)L×SO(3)D = SO(3)L×{SO(3)R×SO(3)V }D.

The dual N = 3 superconformal field theory should preserve two SO(3) ∼SU(2)

global symmetry group. One type of N = 3 superconformal field theories were

proposed in [6]. Depending on the number of chiral multiplets, the theory had

USp(2Nf ) × SU(2)R global symmetry, where SU(2)R is contained in the supercon-

formal group OSp(3|4). As USp(2) ∼ SU(2), the Nf = 1 theory is then a candidate

of the dual superconformal field theory, the symmetry of the two side of the corre-
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spondence match as:

SO(3)L ↔ USp(2) (3.3)

SO(3)D ↔ SU(2)R (3.4)

Notice SO(3)D becomes the R symmetry, which is in accord with the branching rules

(2.14), where the eight supersymmetry generators transforms as triplets of SO(3)D.

To test this proposal, we need to use another principle of AdS/CFT correspon-

dence:

Principle 2: Short Kaluza-Klein multiplets are dual to single trace gauge invariant

BPS operators of the dual superconformal field theory.

On the gauge theory side, one need to know the spectrum of the boundary CFT.

The BPS operators of this superconformal field theory was studied in [47], where the

following three BPS multiplets was shown to exist:

• short graviton multiplet DS(2, JR+ 3/2, JR|3), with jF = 0 and jR ∈ Z+∪{0},

• short gravitino multiplet DS(3/2, JR + 1, JR|3), with jF = jR ∈ 1
2
Z+,

• short vector multiplet DS(1, JR, JR|3), with jF = jR ∈ 1
2

+ 1
2
Z+.

If the proposed SCFT is indeed dual to the N = 3 solution (2.61), we’d better find

the same multiplets in Kaluza-Klein modes. The internal space of (2.61) is clearly

not homogeneous, this makes the study of Kaluza-Klein reduction quite complicated.

The spin-2 modes, on the other hand, is calculable. We consider fluctuations of the

metric around the N = 3 background

ĝMN → ḡMN + ĥMN . (3.5)
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Similar to the cases studied in [48–52], applying the separation of variables to the

transverse and traceless (with respect to the AdS4 metric g4µν without the warp

factor) part of ĥµν ,

ĥµν = hµν(x)Y (y), ∇µ
4hµν = 0, gµν4 hµν = 0, (3.6)

we find that the spin-2 modes solving the homogenous linearized Einstein equation

satisfy

Y (y)L−2
0 (�4 + 2)hµν + hµνOY (y) = 0, L2

0 =
3
√

3

16
, (3.7)

where �4 is the Laplacian on the unit AdS4, and the operator O is given by

OY (y) =
∆−1

√
−ḡ10

∂M(
√
−ḡ10ḡ

MN∂N)Y (y)

=
1√
g̊6

∂m(∆−1
√
g̊6ḡ

mn∂n)Y (y), (3.8)

where g̊6 is the metric on the round S6. The operator O can be written explicitly as

L2
0O ≡ Õ =

1

2
∂2
ξ +

1

2
(3 cot ξ − 2 tan ξ)∂ξ +

1

2
sec2 ξCV + (2 csc2 ξ − 1)CF +

CR − CR
2

,

(3.9)

where CV , CF , CR and CL are the quadratic Casimirs associated with the subgroups

of SO(7):

SO(3)V , SO(3)F ≡ SO(3)L, SO(3)R ≡ SO(3)D, and SO(3)R (3.10)

Notice we have changed the notation of these subgroup, so as to make clear the field

theory correspondence, where F stands for “Flavor”, “R” stands for R-symmetry,

and “R” stands “right-handed”. When acting on scalars, these Casimirs can be
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expressed as bilinears of Lie derivatives associated with Killing vectors generating

the corresponding SO(3). Killing vectors associated with SO(3)V are given by

ξiV = εijkνj
∂

∂νk
, (3.11)

whilst Killing vectors associated with SO(3)F and SO(3)R take the form

ξiF = −µA(T iF )AB
∂

∂µB
, ξiR = −µA(T iL)AB

∂

∂µB
. (3.12)

In the expressions above ,

T 1
F = −1

2
(R12 −R34), T 2

F = −1

2
(R13 −R42), T 3

F = −1

2
(R14 −R23), (3.13)

T 1
R =

1

2
(R12 +R34), T 2

R =
1

2
(R13 +R42), T 3

R =
1

2
(R14 +R23), (3.14)

where the Rij are the SO(4) generators, with (Rij)ij = −(Rij)ji = 1, and all other

elements equal to zero. Then the quadratic Casimirs are given by

CF = LξiFLξiF , CR = LξiRLξiR , CV = LξiV LξiV , CR = (LξiR + LξiV )(LξiR + LξiV ).

(3.15)

The harmonic function Y (y) satisfies ÕY (y) = −m2Y (y) leading to

(�4 + 2)hµν −m2hµν = 0. (3.16)

From the equation above, one can solve for the AdS energies carried by the spin-2

modes. For each m2, we have

E0 =
1

2
(3 +

√
9 + 4m2). (3.17)
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To find eigenmodes for the operator Õ, it is useful to know the eigenfunctions of var-

ious Casimirs. We recall that spin-0 harmonics on a round 6-sphere are characterized

by (n, 0, 0), n = 1, 2 · · · representations of SO(7) and also form a complete basis for

smooth scalar functions on manifold with S6 topology. Thus, the decomposition of

the SO(7) harmonics under the SO(3)F × SO(3)R subgroup should give rise to a

complete functional basis on the internal space of the N = 3 solution (2.61) which

is a smooth deformation of S6. Since the SO(3)F × SO(3)R subgroup is embedded

in SO(7) via the chain

SO(7) ⊃ SO(4)×SO(3)V ' SO(3)F ×SO(3)R×SO(3)V ⊃ SO(3)F ×SO(3)R, (3.18)

we first branch the (n, 0, 0) irrep under the SO(4)× SO(3)V subgroup. This yields a

sequence of irreps of SO(4)× SO(3)V of the form (`, 0)jV , where (`, 0) correspond to

the highest weights of the SO(4) irrep. Here `, jV are non-negative integers. Under

the isomorphism SO(4) ' SO(3)F ×SO(3)R, the highest weights (`1, `2) of SO(4) are

related to the isospins (jF , jR) of SO(3)F × SO(3)R by

jF = 1
2
(`1 + 2`2), jR = 1

2
`1. (3.19)

This means further branching of (`, 0) under SO(3)F × SO(3)R leads to a sequence

of irreps with jF = jR. The analysis above suggests that the eigenfunctions of the

Casimirs CF , CR, CV should take the form

f(ξ)(αA1A2···Ap

p=2jF∏
k=1

µ̃Ak)(βi1i2···iq

q=jV∏
m=1

ν̃im), jF ∈
1

2
Z+ ∪ {0}, jV ∈ Z+ ∪ {0},

(3.20)
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where

µ̃A =
µA

sin ξ
, A = 1 · · · 4, ν̃i =

νi

cos ξ
, i = 1 · · · 3, (3.21)

and f(ξ) is a function of ξ which cannot be determined by group theoretical analysis.

Coefficients αA1A2...Ap and βi1i2...iq are totally symmetric, traceless with respect to

their indices and transform according to the (jF , jF , jV ) irrep of SO(3)F × SO(3)R×

SO(3)V . Since SO(3)R is the diagonal of SO(3)R × SO(3)V , the eigenfunctions of

its Casimir can be obtained by decomposing the product of αA1A2···Ap and βi1i2···iq in

terms of irreps of SO(3)R using Clebsch-Gordan coefficients. In the end, we achieve

the mutual eigenfunctions for CF , CR, CV , CR labeled by the quantum numbers

(jF , jF , jV , jR), jR = |jV − jF |, · · · , jV + jF , jF ∈
1

2
Z+ ∪ {0}, jV ∈ Z+ ∪ {0}.

(3.22)

For simplicity, we denote the eigenfunction obtained through the above procedure

by the abstract symbol

|ψ〉 = |jF , jF , jV , jR〉. (3.23)

It satisfies

CF |ψ〉 = cF |ψ〉, cF = −jF (jF + 1),

CR|ψ〉 = cR|ψ〉, cR = −jF (jF + 1),

CV |ψ〉 = cV |ψ〉, cV = −jV (jV + 1),

CR|ψ〉 = cR|ψ〉, cR = −jR(jR + 1), (3.24)

which also illustrates the normalization of the Casimirs. Substituting the ansatz

Y (y) = f(ξ)|jF , jF , jV , jR〉, (3.25)
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into (3.9) and making the change of variable

u = cos2 ξ, f̃(u) ≡ f(ξ), (3.26)

we arrive at an equation for f̃(u)

(1− u)2u2f̃ ′′(u) +
1

2
(7u3 − 10u2 + 3u)f̃ ′(u)

+

(
1

4
u(3u+ 1)cF +

1

4
(1− u)cV +

1

4
u(1− u)(cR + 2m2)

)
f̃(u) = 0.

(3.27)

By a further change of variable

f̃(u) ≡ ujV /2(1− u)jFH(u), (3.28)

the equation above is brought to the form of a standard hypergeometric differential

equation

u(1− u)
d2H

du2
+
(
c− (a+ b+ 1)u

)dH
du
− abH(u) = 0, (3.29)

where the constants are given by

a =
1

4
(−
√

12j2
F + 12jF − 4j2

R − 4jR + 8m2 + 25 + 4jF + 2jV + 5),

b =
1

4
(
√

12j2
F + 12jF − 4j2

R − 4jR + 8m2 + 25 + 4jF + 2jV + 5),

c = jV +
3

2
, (3.30)

There are two independent solutions to the hypergeometric differential equation

above

2F1(a, b, c, u), and u1−c
2F1(1 + a− c, 1 + b− c, 2− c, u). (3.31)
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The second solution should be discarded, since the corresponding f(u) is singular

at u = 0. The first solution converges for |u| < 1. It can be proved that for

(1−u)jF 2F1(a, b, c, u) to be regular at u = 1, the coefficient a must be a non-positive

integer. Regularity of the solution thus dictates the mass squared m2 to depend on

the quantum numbers quadratically

m2 =
1

2

(
2n(4jF + 2jV + 5) + 4jF jV + j2

F + 7jF + 4n2 + j2
R+ jR+ j2

V + 5jV

)
, (3.32)

where n ∈ Z+ ∪ {0}. A typical spin-2 excitation with AdS energy being an integer

is given by n = 0, jF = 0 and jV = jR, which leads to

m2 = jR(jR + 3), E0 = jR + 3, jR ∈ Z+ ∪ {0}. (3.33)

It should be noted that gravitons with the same SO(3)F ×SO(3)R quantum numbers

and AdS energies appear in the short graviton multiplet DS(2, jR + 3/2, jR|3) of

OSP(3|4) [53], which we quote in Table 3.1.

Since the supergravity background preserves N = 3 superconformal symmetry,

the spin-2 states (3.33) must form complete DS(2, jR+3/2, jR|3) multiplets together

with other lower spin states with proper quantum numbers and AdS energies. The

spin-2 states (3.33) are singlets with respect to SO(3)F , which means all the states

belonging to the short graviton multiplets are singlets of the flavor symmetry. On

the CFT side, the spectrum of BPS operators in the N = 3 superconformal SU(N)

Chern-Simons-matter theory with 2 adjoint chirals has been studied by [47]. It was

shown that the short multiplets DS(2, jR + 3/2, jR|3) composed by gauge invariant

operators are singlets of the flavor symmetry. Therefore, our results demonstrate

a perfect matching between the short graviton multiplets in the KK spectrum of
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∆\s 2 3/2 1 1/2 0

jR + 4
[JR − 1] [JR]

[JR − 1]
[JR − 2]

jR + 7/2 [JR],[JR − 1]

jR + 3 [JR]
[JR + 1], [JR] [JR]
[JR], [JR − 1] [JR − 1]

[JR − 1], [JR − 2] [JR − 2]

jR + 5/2
[JR + 1] [JR + 1], [JR]

[JR] [JR], [JR − 1]
[JR − 1] [JR − 1], [JR − 2]

jR + 2
[JR + 1] [JR]

[JR] [JR − 1]
[JR − 1]

jR + 3/2 [JR]

Table 3.1: Short graviton multiplet DS(2, jR + 3/2, jR|3)of OSP(3|4). The red one
denote the spin-2 mode. Table reprinted with permission from [22].

fluctuations around the N = 3 vacuum in massive IIA and the short multiplets

involving spin-2 operators in theN = 3 superconformal SU(N) Chern-Simons matter

theory with two adjoint chirals.

A list of the bulk spin-2 states labeled by their quantum numbers is given in Table

3.2, from which one can see that the spectrum includes long graviton multiplets with

rational dimensions. This feature has been observed for other M-theory and string

theory backgrounds [48, 54–57]. A class of long multiplets with rational dimensions

was termed as the “shadow” multiplets [57]. From the bulk point of view, shadowing

mechanism is related to the fact that the same harmonics also appear in other fields

belonging to short multiplets. In the spectrum obtained here, the long graviton

labeled by (jF , jV , jR, n) = (1, r, r, 0) carries E0 = r + 4. The corresponding long

graviton multiplets are shadows of vector multiplets.
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3.3 Euclidean Action and Free Energy

Another test of AdS/CFT correspondence involves the third principle:

Principle 3: Euclidean Action of the bulk solution is equal to F = − log(Z), where

Z is the partition function of the dual superconformal field theory on a Euclidean S3.

3.3.1 Supersymmetric Localization and Free Energy

Supersymmetric Localization is a powerful non-perturbative technique that allows

us to calculate exactly free energy and BPS Wilson line in certain supersymmetric

conformal field theories. It have been applied to various superconformal field theories

such as N = 4 super Yang-Mills theory [58] and ABJM theory [59]. Let’s follow [60],

and consider an N = 2 theory on S3, whose quiver diagram are show in Figure 3.2.

Every node denotes a gauge group, while every line denotes chiral multiplets. Lines

connects different nodes are bi-fudamental in (N, N̄) of U(N)a × U(N)b, while lines

connecting each nodes itself transform as adjoint representation of the gauge group.

We consider the case where the kinetic term of each group are Chern-Simons terms

with level the same Chern-Simons level k [7]:

LCS =
G∑
a=1

ka
4π

tr[εµνρAaµ∂νA
a
ρ +

2i

3
AaµA

a
νA

a
ρ − χ̄χ+ 2Dσ] (3.34)

the partition function are given by

ZS3 =
1

(N !)G

∫ G∏
a=1

[
N∏
i=1

dλai
2π

]
exp

[
ik

4π

i=1∑
N

(λai )
2

]
N∏
i 6=j

sinh2

(
λai − λaj

2

)
e−Fmatter

(3.35)
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Figure 3.2: A quiver diagram for the N = 2 Chern-Simons matter theory. Notice all
the gauge sectors have equal Chern-Simons level.

where Fmatter depends on the representation of chiral matter field. If the chiral

multiplets live in the bi-fudamental (N, N̄) of U(N)a × U(N)b:

F ab
matter = −

N∑
i,j=1

l

[
1−∆ab +

i

2π
(λai − λbj)

]
(3.36)

If the chiral multiplets live in the adjoint representation of U(N)c:

F adj,c
matter = −

N∑
i,j=1

l

[
1−∆c +

i

2π
(λci − λcj)

]
(3.37)

where we have defined

l(z) = −z log(1− e2πiz) +
i

2

[
πz2 +

1

π
Li2(e2πiz)− iπ

12

]
. (3.38)
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In general when the rank of the gauge group is not too small, the integral is difficult

to perform. A saddle point method was however proposed in [61] based on numerical

estimation in various examples. At leading order of O(1/N), the eigenvalues λai could

be approximated by

λai = N ν(xi + iyi) (3.39)

Using such an approximation, we could get a general formula for such theories [60]:

FSCFT =
3
√

3π

20 · 21/3

{
G+

∑
I∈matter fields

(1−∆I)
(
1− 2(1−∆I)2

)}2/3

k1/3N5/3.

+O(N5/3) (3.40)

∆I is the scaling dimension of chiral multiplets living in the adjoint or bifudamental

representation of U(N). For N = 2 theories, chiral multiplets are BPS protected

and alway have scaling dimension:

∆I = RI , (3.41)

where RI is the U(1)R ∈ OSP(4|2) charge of the chiral multiplets. Even though BPS

protected, since U(1)R group could mix with other flavor U(1) group, the R-charge

and ∆I of chiral multiplets could be renormalized. N = 3 theories could be viewed

as special cases of N = 2 theories where OSP(4|2) is enhanced to OSP(4|3). Since

U(1)R ∈ SU(2)R, U(1)R charge is fixed, and therefore not renormalized. For the

theory we are interested in, chiral multiplets are doublets of SU(2)R, therefore:

∆I = RI =
1

2
. (3.42)
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Plug it in (3.40), we get

FSCFT =
9π

40
31/6k1/3N5/3. (3.43)

The bulk calculation of the gravitational free energy is also easy to preform. The

number of massive D2-branes which is equal to the rank of the gauge group is deter-

mined by the quantized Page charge [62,63].

∫
S6

F̃(6) =

∫
S6

e
1
2
φ∗̂F(4) + A(2) ∧ dA(3) +

1

6
mA(2) ∧ A(2) ∧ A(2) = −(2π`s)

5N. (3.44)

Plugging the N = 3 solution, we get

1

(2π`s)5g5

16π3

3
= N. (3.45)

On the other hand, the gravitational free energy is inversely proportional to the

effective D = 4 Newton’s constant

Fgravity =
π`2

2G4

, `2 =
3
√

3

16
g−7/3(m/2)1/3, (3.46)

where ` is the radius of AdS4 and the effective D = 4 Newton’s constant is related

to the string length by

1

16πG4

=
2π

(2π`s)8g6
Vol(S6). (3.47)

In the equation above , Vol(S6) = 16
15
π3 is the area of a unit S6. Finally, using the

relation between the Romans mass parameter and the induced Chern-Simons level [9]

m = F(0) =
k

2π`s
, (3.48)
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we can express the free energy of the N = 3 supergravity solution in terms of k and

N :

Fgravity =
9π

40
31/6k1/3N5/3. (3.49)

This obvious agrees with the CFT localization result, which is another strong evi-

dence for the proposed AdS/CFT correspondence.
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(jF , jV , jR) n m2 E0 S(hort)/L(ong)
(0, 0, 0) 0 0 3 S

(0, 0, 0) 1 7 1
2
(3 +

√
37) L

(0, 0, 0) 2 18 6 L
(0, 1, 1) 0 4 4 S

(0, 1, 1) 1 13 1
2
(3 +

√
61) L

(0, 1, 1) 2 26 1
2
(3 +

√
113) L

(1
2
, 0, 1

2
) 0 9

4
1
2
(3 + 3

√
2) L

(1
2
, 0, 1

2
) 1 45

4
1
2
(3 + 3

√
6) L

(1
2
, 0, 1

2
) 2 97

4
1
2
(3 +

√
106) L

(1
2
, 1, 1

2
) 0 25

4
1
2
(3 +

√
34) L

(1
2
, 1, 1

2
) 1 69

4
1
2
(3 +

√
78) L

(1
2
, 1, 1

2
) 2 129

4
1
2
(3 +

√
138) L

(1
2
, 1, 3

2
) 0 31

4
1
2
(3 + 2

√
10) L

(1
2
, 1, 3

2
) 1 75

4
1
2
(3 + 2

√
21) L

(1
2
, 1, 3

2
) 2 135

4
15
2

L

(1, 0, 1) 0 5 1
2
(3 +

√
29) L

(1, 0, 1) 1 16 1
2
(3 +

√
73) L

(1, 0, 1) 2 31 1
2
(3 +

√
133) L

(1, 1, 0) 0 9 1
2
(3 + 3

√
5) L

(1, 1, 0) 1 22 1
2
(3 +

√
97) L

(1, 1, 0) 2 39 1
2
(3 +

√
165) L

(1, 1, 1) 0 10 5 L

(1, 1, 1) 1 23 1
2
(3 +

√
101) L

(1, 1, 1) 2 40 8 L

Table 3.2: An incomplete list of the KK spectrum of spin-2 states. The “Short”
and “Long” refer to the short and long multiplets which the spin-2 states belong to.
Here we remind the reader that jR = |jV − jF |, · · · , jV + jF , jF ∈ 1

2
Z+ ∪ {0}, jV ∈

Z+ ∪ {0}. Table adapted with permission from [22].
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4. CONFORMAL BOOTSTRAP

4.1 Introduction to Conformal Bootstrap

Scalar four point function for any CFT could be written as

< φ(x1)φ(x2)φ(x3)φ(x4) >=
∑
O∈φ×φ

1

x
2∆φ

12 x
2∆φ

34

λ2
Og∆O,lO

(u, v)

where g∆O,lO
(u, v) is the so called “conformal block”, which is a general function

that does not depend on the specific CFT. In four dimensions the conformal block

is given by

g∆,l(u, v) ≡ zz̄

z − z̄
(k∆+l(z)k∆−l−2(z̄)− (z ↔ z̄))

kβ ≡ xβ/22F1(β/2, β/2, β, x),

u = zz̄ =
x2

12x
2
34

x2
13x

2
24

, v = (1− z)(1− z̄) =
x2

23x
2
14

x2
13x

2
24

(4.1)

as computed by Dolan and Osborn [64, 65]. The crucial information here is that

conformal block g∆,l(u, v) is fully fixed by conformal algebra, while the information

of any given CFT is contained solely in OPE coefficient λO and operator spectrum.

Equating s-channel and t-channel, we get:

< φ(x1)φ(x2)φ(x3)φ(x4) > −(x1 ↔ x3) =
∑
O∈φ×φ

λ2
OF

∆φ

∆,l (z, z̄) = 0 (4.2)

where

F
∆φ

∆,l (z, z̄) ≡ v∆φg∆,l(u, v)− u∆φg∆,l(v, u)

u∆φ − v∆φ
. (4.3)
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Let’s make the following assumption:

Assumption: In φ× φ OPE, all spin-0 operators has scaling dimension ∆ ≥ ∆0.

(4.4)

If one finds that Fd,∆,l(z, z̄) > 0 for all the operator satisfying [66]:

∆ ≥ ∆0, for l = 0

∆ ≥ l + 2 (Unitary bound), for l > 0 (4.5)

Then (4.2) tells us that the assumption is invalid for “unitary” CFT’s, as such CFT’s

has real OPE coefficients, hence λ2
O > 0.

Instead of working with F
∆φ

∆,l (z, z̄) themselves, we could instead search for a linear

functional α such that

α(F
∆φ

∆,l (z, z̄)) ≥ 0

for

{
∆ ≥ ∆0, when l = 0

∆ ≥ ∆unitary, when l > 0
(4.6)

A commonly used basis for such a functional is that

α =
∑

m+n<Λ

amn∂
m
z ∂

n
z̄ (4.7)

The problem of searching for the coefficients amn that satisfies (4.6) could be con-

verted to a numerical semi-definite programming problem and solved using a semidef-

inite program solver call “SDPB”, which are specially designed for conformal boot-

strap problems [67]. We will come back to this, but for now, let’s warm up with

a two dimensional example—solving the two dimension Ising model. A throughout
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discussion of this example is could be found in [68].

4.1.1 2D Example

In two dimensions, the conformal block is given by

g∆,l(u, v) ≡ k∆+l(z)k∆−l(z̄)− (z ↔ z̄) (4.8)

Defined a vector

~v
∆φ

∆,l =

 F
∆φ

∆,l (0.5, 0.55)− F∆φ

∆,l (0.5, 0.4)

F
∆φ

∆,l (0.5, 0.6)− F∆φ

∆,l (0.43, 0.35)

 . (4.9)

The crossing equation (4.2) then tells us that

∑
O∈φ×φ

λ2
O~v

∆φ

∆,l = 0 (4.10)

Notice the crossing equation is supposed to be satisfied by any value of z and z̄, we

have just taken some specific value for them here. Also, since we are dealing with

Euclidean conformal field theory, z and z̄ should be taken to be independent.

In Figure 4.1 and 4.2, we plot such vectors on a two dimensional surface 1.

We have taken ∆φ = 1/8. Compare the two figures, we see that after making the

assumption that the first scalar has scaling dimension ∆ > 1.03, there is no points

above the dashed line, which simply means that there is no chance that (4.10) could

be solved by any set of real OPE coefficients. Hence we know that the first scalar

1The vectors are rescaled by the following function

f(l) =

{
1/(l/20), l 6= 0

1− (∆− l)/10, l = 0.
(4.11)

to make the plot look nicer.
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Figure 4.1: Plot of the vector defined in (4.9) with ∆φ = 1/8. Each curve stands for
vectors with different spin. The arrow shows the direction of increasing ∆, all curves
start with the vector with ∆ = ∆uintary. The black dot in the center stands for the
identity operator.

operator (except for the identity operator) appearing in the OPE has to have the

scaling dimension less that 1.03. Let’s remind ourself that the two dimensional Ising

model has the spectrum:

∆σ = 1/8, ∆ε = 1, (4.12)
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Figure 4.2: Plot of the vector defined in (4.9) with ∆φ = 1/8. Each curve stands for
vectors with different spin. The arrow shows the direction of increasing ∆. All curve
start with the vector with ∆ = ∆uintary, except for the spin-0 curve which starts
with ∆ = 1.03. The black dot in the center stands for the identity operator.

and the following fusion rules:

σ × σ ∼ 1 + ε

ε× ε ∼ 1 + ε

ε× σ ∼ σ. (4.13)

Taking ∆φ = 1/8 is equivalent to saying we are studying the first channel. Notice

the bound we got is with in 3% of the actual value ∆ε = 1. Considering we are doing
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the bootstrap by simply plotting dots, this is pretty remarkable.

4.1.2 CFT’s with Global Symmetry

It is possible to consider conformal field with global symmetry. Now the decom-

position of four point functions becomes:

< φI(x1)φJ(x2)φK(x3)φL(x4) >=
1

x
2∆φ

12 x
2∆φ

34

∑
i

P
(i)
IJKL

(∑
O∈i

λ2
Og∆,l(u, v)

)
where i ∈ {all irreps appearing in φ× φ}. (4.14)

take O(N) vector model as an example, the projector P
(i)
IJKL are now

P
(S)
IJKL =

1

N
δIJδKL

P
(T )
IJKL =

1

2
δILδJK +

1

2
δIKδJL −

1

N
δIJδKL

P
(A)
IJKL =

1

2
δILδJK −

1

2
δIKδJL (4.15)

equating the s-channel and t-channel :

< φI(x1)φJ(x2)φK(x3)φL(x4) > −{x1 ↔ x3, I ↔ K} = 0 (4.16)

and collect the coefficient of independent tensor structure δIJδKL, δILδJK and δIKδJL.

We got the following three crossing equation:

∑
S+

pS


0

F

H

+
∑
T+

p7


F

(1− 2
N

)F

−(1 + 2
N

)H

+
∑
A−

p14


−F

F

−H

 = 0 (4.17)
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These crossing equations were worked in [69] in a slightly different notation. They

were later applied to three dimensional O(N) vector model in [28].

Instead of repeating their work, we are going to consider the exceptional group

G2. The product of two fundamental irreps of G2 gives

7× 7 = 1 + 7 + 14 + 27 (4.18)

in terms of OPE, it is given by:

φI × φJ ∼ δIJO
(1) + dIJKO

(7)
K +O

(14)
[IJ ] +O

(27)
(IJ) (4.19)

satisfying O
(14)
[IJ ] dIJK = 0, O

(27)
(IJ), δIJ = 0 (4.20)

where dIJK are the famous invariant three form of G2. The constrains (4.20) guar-

antee that O
(14)
[IJ ] and O

(27)
(IJ) indeed lives in irreducible representation of G2. The

projector are now give by

P
(1)
IJKL =

1

7
δIJδKL

P
(7)
IJKL = −dIJMdKLM

P
(14)
IJKL =

1

2
δILδJK −

1

2
δIKδJL + dIJMdKLM

P
(27)
IJKL =

1

2
δILδJK +

1

2
δIKδJL −

1

7
δIJδKL (4.21)

we have assumed the normalization dIMNdNMJ = −δIJ , and the signs are fixed by

reflection-positivity. One could contract the projectors with δILδJK to get the correct

dimension of each representation. When we go from s-channel to t-channel, hence
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make the replacement {1, I, u} → {3, K, v}, one need to use the relation

dIJMdKLM = −1

3
(
1

2
δILδJK −

1

2
δIKδJL)− 1√

6
fIJKL (4.22)

where fIJKL = 1
3!
εIJKLMNPdMNP , corresponding to the Hodge dual of G2 invariant

three form. The coefficients has to do with our normalization. Collecting the co-

efficients of {δIJδKL, δILδJK − δIKδJL, δILδJK + δIKδJL, fIJKL}, we get the crossing

equations:

∑
1+

p1



0

0

F
7

−H
7


+
∑
7−

p7



−F
2

H

F
6

H
6


+
∑
14−

p14



−F

−H
F
3

H
3


+
∑
27+

p27



3F
2

0

5F
14

9H
14


= 0 (4.23)

One could try to bound the scalar operator in the singlet representation of G2, such a

plot is given in Figure 4.3, which appears to be equal to the bound for the first scalar

in 1 representation O(7). This is a very general feature for conformal bootstrap, as

observed in [70]. The bound for singlets of the subgroup turns to be equal to be

equal the bound for singlets of the parent group. Non-trivial results start to appear

when we introduce and bound the gap ∆ ≥ ∆l=1
7 for the first non-conserved current,

hence spin-1 operator in 7− channel of G2. The branching rule from O(7) to G2:

21→ 21 + 7 (4.24)

tells us that one need conserved current in 7 of G2 for the global symmetry to be

enhanced to O(7). Introducing a gap in this channel therefore allows us to study G2
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Figure 4.3: Bootstrap study of G2 invariant theory in D = 3. Bounds on the first
scalar in 1 representation of G2 are plotted, which appears to be equal to the bound
for the first scalar in 1 representation O(7).

invariant theory which are not O(7) invariant. Bounds for the massive spin-1 current

in four dimension are presented in Figure 4.4. Notice there seems to be a “kink”

resembling the two dimensional Ising model [71]. We are not sure whether such a

kink corresponds to an actual conformal field theory or not. A confirmation using

other methods such as d = 4 − ε loop calculation would be extremely interesting.

Our ultimately objective is, however, to use the G2 conformal bootstrap to study the

dual theory of the solution we found, this however requires the knowledge of the full

Kaluza-Klein spectrum, which has not been worked out yet. We hope to come back

to this problem in the future.
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Figure 4.4: Bootstrap study of G2 invariant theory in D = 4. Bounds on the non-
conserved current operator (spin-1) in 7 representation of G2.

4.2 CFT with F4/SU(3) flavor symmetry in 6− ε dimension

4.2.1 One loop calculation in 6− ε dimension

As an interesting application of conformal bootstrap, let’s consider a theory with

F4/SU(3) flavor symmetry in 6− ε dimensions:

L6−ε
int =

g

6
µε/2dIJKφ

IφJφK , (4.25)

where dIJK is the totally symmetric invariant tensor of F4/SU(3). For the case of F4,

the flavor symmetry group is taken to be the compact real form of the lie algebra f4,

which is also known as the isometry group of octonionic projective plane OP2 [72].

We will first use ε-expansion to show that these theories have stable IR fixed

points. The idea of ε-expansion in 6 − ε dimensions could be dated back to [73].
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Where the interaction

L6−ε
int = gµε/2φ3. (4.26)

was studied, and the 1-loop beta function was found to be

β(g) = − ε
2
g − 3

256π3
g3 (4.27)

Notice the beta function has a zero at imaginary vale of g, which is related to the

the so called ”Yang-Lee Edge Singularity” [74, 75]. The model with O(N) global

symmetry and the interaction

L6−ε
int = µε/2

1

6
g1τ

3 +
1

2
g2τ(φiφi)2. (4.28)

was considered more recently [76, 77], where τ is an O(N) singlet and φi is a O(N)

vector, in the pursuit of studying the critical O(N) vector model in five dimension

(by taking ε = 1). An IR fixed point was found for large enough N > Ncritical. In

1-loop calculation [76], Ncritical was found to be 1038, while in three loop calculation

Ncritical = 64 [77]. It is therefore an interesting problem to figure out the actual

Ncritical in five dimensions. In [78], the method of conformal bootstrap was imple-

mented and a kink was found for N as low as 35, which seems to indicated a much

lower Ncritical than the three loop result.

Throughout this subsection, we will follow the convention in [76]. The Feynman

rules could be summarized as in Figure 4.5.

Before calculation the beta function, we first need to consider the wave function

renormalization, as indicated by Figure 4.6. The graph is given by

D1 =
1

2
(−g2)dIabdJabI1 =

1

2
g2δIJI1 =

1

2
g2δIJ

∫
dDq

(2π)D
1

(p+ q)2

1

q2
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1
p2
δIJ −gdIJK

Figure 4.5: Feynman rules.

Figure 4.6: Wave function renormalization.

where we have used the relation

dIabdJab = δIJ (4.29)

which is in fact a choice of the normalization of the invariant tensor dIJK . The

integral I1 was preformed in the appendix A of [76],

I1 =
1

(4π)D/2
Γ(2−D/2)Γ(D/2− 1)2

(2−D/2)Γ(D − 2)
(

1

p2
)2−D/2

= − p2

6(4π)2

Γ(ε/2)

(M2)ε/2
+O(1) (4.30)

We have used the renormalization condition p2 = M2. The 1/ε pole in D1 must be
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canceled by the counter term −p2δφ, therefore

δφ = − g2

12(4π)3

Γ(ε/2)

(M2)ε/2
. (4.31)

The Feynman diagram related to vertex renormalzation is Figure 4.7. which is

Figure 4.7: Vertex renormalization.

D2 = (−g)3dIabdJbcdKcaI2 = −g3βI2 = −g3β′
∫

dDk

(2π)D
1

(p− k)2

1

(k + q)2

1

k2
. (4.32)

We have defined the constant β′ by

dIabdJbcdKca = −β′dIJK , (4.33)

which we will calculate later. The diagram has a 1/ε pole

D2 =
β′g3

2(4π)3

Γ(ε/2)

(M2)ε/2
. (4.34)
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canceled by the contour term −δg, so we have

δg =
β′g3

2(4π)3

Γ(ε/2)

(M2)ε/2
. (4.35)

For the calculation of the integral, we again refer the readers to the appendix A

of [76].

The Callan-Symanzik equation [79–81] for Green’s function with m external legs

is:

(M
∂

∂M
+ β(g)

∂

∂g
+mγφ)G(m) = 0. (4.36)

Apply it to G(2), we get

− 1

p2
M

∂

∂M
δφ + 2γφ

1

p2
= 0. (4.37)

Then the anamolous dimension is

γφ =
1

2
M

∂

∂M
δφ =

1

(4π)3

g2

12
. (4.38)

Apply the Callan-Symanzik equation to G(3), the beta function becomes

β(g) = − ε
2
g +M

∂

∂M
(−δg +

1

2
g(3δφ)) = − ε

2
g +

1 + 4β′

256π3
g3 (4.39)

Notice β′ = −1 give us back the single scalar result (4.26). We could now see that

for

β′ > −1

4
, (4.40)

the beta function has a real zero at

g2
∗ =

128π3ε

1 + 4β
. (4.41)
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Plug in (4.38), we get

γφ =
ε

6

1

1 + 4β
. (4.42)

Of course, for the critical point to exist, the flavor symmetry group we pick needs

to have at least a rank-3 totally symmetric tensor. F4 group is know to have such a

tensor carrying three fundamental (26 or (0, 0, 0, 1)) index, while SU(N) group have

such tensors carrying three adjoint index. For F4, β′ was calculated in [82,83] to be

β′F4
= 3/7. (4.43)

While for SU(N), one could use various Mathematica packages such as [84] to get

β′SU(N) = −
N
(
N − 12

N

)
2 (N2 − 4)

. (4.44)

Therefore, one loop result suggest that there exist a IR fixed point at 6−ε dimensions

F4 SU(3) SU(4)
β′ 3/7 3/10 -1/6

Table 4.1: The constant β′ defined in (4.33).

for F4 group and SU(N) with N ≤ 4, see Table 4.1.

Next we will calculated the anomalous dimension of scalar operators OIJ ∼ φIφJ ,

we need to consider the three point function < φI(p)φ
J(q)OIJ(p+ q) >, as indicated

by the Feynman diagrams in Figure 4.8. The operator OIJ ∼ φIφJ forms a re-

ducible representation of the flavor group, we therefore need to decompose them into
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Figure 4.8: Renormalization of operator OIJ ∼ φIφJ .

irreducible representation. For F4, this could be achieved using the projectors:

P
(1)
IJKL =

1

26
δIJδKL

P
(26)
IJKL = dIJMdKLM

P
(324)
IJKL =

1

2
δILδJK +

1

2
δIKδJL − dIJMdKLM −

1

26
δIJδKL

P
(52)
IJKL = (

2

9
)

(
1

2
δILδJK −

1

2
δIKδJL + 7(

1

2
dILMdJKM −

1

2
dJLMdIKM)

)
P

(273)
IJKL = (

7

9
)

(
1

2
δILδJK −

1

2
δIKδJL − 2(

1

2
dILMdJKM −

1

2
dJLMdIKM)

)
(4.45)

One could contract the generators with δILδJK and check that the projectors give the

correct dimension for each representation. The scalar operators form a irreducible

representation could be written as

O(i)IJ ∼ P
(i)
IJKLφ

KφL. (4.46)

Use (4.29) and (4.33), one could check the following relations:

P
(i)
KLPQdPMIdQMJ = Ai ·P(i)

IJKL, P
(i)
IJPQdPQMdMKL = Bi ·P(i)

IJKL. (4.47)
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with a little bit calculation, we get

A1 = 1, A26 = −β, A324 =
1

14

B1 = 0, B26 = 1, B324 = 0 (4.48)

In Figure 4.8, the first diagram gives

D3 = (−g)2P
(i)
KLPQdPMIdQMJI2 = Aig

2P
(i)
IJKLI2, (4.49)

while the second diagram gives

D4 = (−g)2P
(i)
IJPQdPQMdMKLI2 = −Big

2P
(i)
IJKLI2. (4.50)

The 1/ε pole is canceled by

δφ2∈i = −Ai
g2

2(4π)3

Γ(ε/2)

(M2)ε/2
+Bi

g2

12(4π)3

Γ(ε/2)

(M2)ε/2
(4.51)

then

δφ2∈1 = − g2

2(4π)3

Γ(ε/2)

(M2)ε/2
+ 0 = 6δφ

δφ2∈26 = β
g2

2(4π)3

Γ(ε/2)

(M2)ε/2
+

g2

12(4π)3

Γ(ε/2)

(M2)ε/2
= −(6β + 1)δφ

δφ2∈324 = − 1

14

g2

2(4π)3

Γ(ε/2)

(M2)ε/2
+ 0 =

3

7
δφ

(4.52)
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The anomalous dimension is given by

γφ2∈26 = M
∂

∂M
(−δφ2∈26 + δφ) = (12β + 4)γφ

γφ2∈1 = M
∂

∂M
(−δφ2∈1 + δφ) = −10γφ

γφ2∈324 = M
∂

∂M
(−δφ2∈324 + δφ) =

8

7
γφ. (4.53)

The anomalous dimension of dIJKφ
IφJφK , however, could simply be calculated by

the second derivative of beta function

∆φ3∈1 = d+
∂β(g)

∂g

∣∣∣∣
g=g∗

= d+ ε = 6. (4.54)

These are all the operators related to our later bootstrap study. Notice for the case

of SU(3) and SU(4), (4.52) is also valid, simply because the projectors take the same

form for these three irreps, as long as one make the replacement

26→ Adj, 324→ (S, S̄) (4.55)

For later reference, we summarize the scaling dimension of operators in D = 5.95

and D = 5 in Table 4.2 and Table 4.3. Notice for flavor group SU(4), in D = 5,

the scaling dimension of ∆φ2∈1 violates the unitary bound. It is possible that such a

IR fixed point would not survive in when one takes ε→ 1. We will skip this theory

when we do conformal bootstrap.

Another remark need to be mentioned, for SU(N) group, the interaction LI =

gdIJKφ
IφJφK has a hidden assumption that there is no fields transforms in the
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F4 SU(3) SU(4)
φI 1.97807 1.97879 2

φ2 ∈ 1 3.91930 3.91212 3.7
φ3 ∈ 1 6 6 6

φ2 ∈ 26/Adj 3.97807 3.97879 4

Table 4.2: Scaling dimension of operators in D = 5.95 from one loop calculation.

F4 SU(3) SU(4)
φI 1.56140 1.57576 2

φ2 ∈ 1 2.38596 2.24242 -2
φ3 ∈ 1 6 6 6

φ2 ∈ 26/Adj 3.56140 3.57576 4

Table 4.3: Scaling dimension of operators in D = 5 from one loop calculation.

fundamental representation of SU(N). A more general type of interaction is

LI =
g1

6
µε/2dABCφ

AφBφC + g2µ
ε/2ηi(φATA)ji η̄j (4.56)

where ηi are SU(N) fundamentals. We leave this theory for future research.
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4.2.2 Conformal Bootstrap study of CFT with F4/SU(3) in 6− ε dimensions

The crossing equations for four point function of scalar operators carrying adjoint

index of SU(N) has been worked out in [85],

∑
1+

λ2
1



F

0

0

−H

−H


+
∑

(S,S̄)+

λ2
(S,S̄)



3F
2

9F
5

F

9H
10

5H
2


+
∑

(S,Ā)−

λ2
(S,Ā)



F

−3
2
F

−F
6

H

5H
9



+
∑
Adj+

λ2
Adj+



0

F

0

4H
3

0


+
∑
Adj−

λ2
Adj−



0

0

−F

0

4H
3


= 0. (4.57)

Here we will simply work out the F4 crossing equations. Remember the four point

could be decomposed as

< φI(x1)φJ(x2)φK(x3)φL(x4) >=
1

x
2∆φ

12 x
2∆φ

34

∑
i

P
(i)
IJKL

(∑
O∈i

λ2
Og∆,l(u, v)

)
where i ∈ {1+,26+,324+,52−,273−}. (4.58)

where the projectors are given in (4.45). To go from s-channel to t-channel, hence

make the replacement {I, x1 → J, x3}, one need to use the following relation:

dIJMdKLM + dKJMdILM + dIKMdJLM =
1

14
(δIJδKL + δILδJK + δIKδJL) (4.59)
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This equation could also be viewed as the defining relation of f4 algebra. The tensor

dIJMdKLM has originally three independent choice of index structure, because of the

above relation, we are left with two independent tensors dJLMdIKMand dIJMdKLM −

dKJMdILM , which have definite parity (ignoring the δ’s) under I ↔ K. Make the

replacement

dIJMdKLM →
1

2
(dIJMdKLM − dKJMdILM)− 1

2
dIKMdJLM

+
1

28
(δIJδKL + δILδJK + δIKδJL)

1

2
dILMdJKM −

1

2
dJLMdIKM → −

1

4
(dIJMdKLM − dKJMdILM)− 3

4
dJLMdIKM

+
1

56
(δIJδKL + δILδJK + δIKδJL), (4.60)

in

< φI(x1)φJ(x2)φK(x3)φL(x4) > −{I, x1 ↔ J, x3} = 0 (4.61)

and collect independent tensor structures, we get

∑
1+

λ2
1



0

0

0

F
26

−H
26


+
∑
26+

λ2
26



H
2

−F
F
7

F
14

0


+
∑
273−

λ2
273



7H
18

7F
3

−5
3
F

F
3

7H
18



+
∑
52−

λ2
52



− 7
18
H

−7
3
F

−F
3

F
6

H
9


+
∑
324+

λ2
324



−H
2

F

13F
7

71F
182

7H
13


= 0. (4.62)
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We will now use these bootstrap equation to study conformal field theory in D = 5.95

with and D = 5 respectively.

Make the assumptions that:

• The first scalar operator in the 1+ channel has scaling dimension ∆ = ∆1st
1 ,

• the second scalar operator in the 1+ channel has scaling dimension ∆ ≥ ∆
(2nd)
1 ,

• the second scalar operator in the 26+/Adj+ channel has scaling dimension

∆ ≥ ∆
(2nd)
26/Adj. (The first scalar in this channel is simply ∆φ.)

We will test whether a conformal with the specific choice of {∆φ,∆
(1st)
1 ,∆

(2nd)
1 ,∆

(2nd)
26/Adj}

is allowed by conformal bootstrap.

For F4 invariant theory in D = 5.95, the result is given in Figure 4.9. The

blue curve assumes that there is only one relevant scalar which is F4 singlet in the

spectrum, while the red curve assume the second scalar which is F4 singlet has scaling

dimension bigger than ∆
(2nd)
1 = 6.05. For both curves, the second scalar operator

which lives in 26 representation is assumed to have scaling dimension bigger than

mean field theory value, hence ∆
(2nd)
26 = 2∆φ. Notice both curves has a sudden change

of slope around (∆φ,∆
1st) = (1.97807, 3.91930), which are the value calculated from

1-loop ε-expansion.

For SU(3) invariant theory in D = 5.95, the result is given in Figure 4.10. The

blue curve assumes that there is only one relevant scalar which is SU(3) singlet in the

spectrum, while the red curve assumes the second scalar which is SU(3) singlet has

scaling dimension bigger than ∆
(2nd)
1 = 6.05. For both curves, the second scalar op-

erator which lives in Adj representation is assumed to have scaling dimension bigger

than free theory value, hence ∆
(2nd)
26 = 2∆φ. Notice the curves have a sudden change

of slope around (∆φ,∆
1st) = (1.97879, 3.91212), which are the value calculated from

1-loop ε-expansion. This is a nontrivial check of our previous calculation.
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Figure 4.9: Bootstrap study of F4 invariant theory in D = 5.95. Allowed choice of
{∆φ,∆

1st} is indicated. The second scalar operator in 26+ channel is assumed to

have scaling bigger than ∆
(2nd)
26 = 2∆φ. For the red curve, the second scalar in 1+

channel is assumed to have scaling bigger than ∆
(2nd)
1 = 5.95. For the blue curve, the

second scalar in 1+ channel is assumed to have scaling bigger than ∆ ≥ ∆
(2nd)
1 = 6.05.

The black dot indicates the result form 1-loop calculation.

Now let’s focus to theories in five dimensions. We study F4 and SU(3) invariant

theory in D = 5 in Figure 4.11 and Figure 4.12, we make the assumption that

there is only one relevant scalar operator which are F4/SU(3) singlet. The three

curves correspond to three different choices of ∆
(2nd)
26/Adj—the second scalar operator

lives 26/Adj of F4/SU(3). Notice that as we increase the value of ∆
(2nd)
26 , the curve

starts to surround the black circle. Our guess is that the actual value of (∆φ,∆
1st
1 )

is somewhere around the circle. Notice the location of the circle does not match

the 1-loop calculation (black dot). This is however not to be worried. Since one

has to take the limit ε→ 1 to extrapolate the ε-expansion result to five dimensions,
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Figure 4.10: Bootstrap study of SU(3) invariant theory in D = 5.95. Allowed choice
of {∆φ,∆

1st} is indicated. The second scalar operator in Adj+ channel is assumed

to have scaling bigger than ∆
(2nd)
Adj = 2∆φ. For the red curve, the second scalar in 1+

channel is assumed to have scaling bigger than ∆
(2nd)
1 = 5.95. For the blue curves,

the second scalar in 1+ channel is assumed to have scaling bigger than ∆
(2nd)
1 = 6.05.

The black dot indicates the result from 1-loop calculation.

there is no guarantee that one loop calculation should be correct. Remember that

for three dimensional Ising model, the 4− ε 1-loop expansion tells us that the critical

exponent [86]:

ν =
1

2
+

1

12
ε ≈ 0.583333 (4.63)

corresponds to the scaling dimension

∆ε = 1.28571. (4.64)
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Figure 4.11: Bootstrap study of F4 invariant theory in D = 5. Allowed choices of
{∆φ,∆

1st} is indicated. The second scalar operator in 1+ channel is assumed to

have scaling bigger than ∆
(2nd)
1 = 5. For the blue, yellow, and red curve, the second

scalar in 26+ channel is assumed to have scaling bigger than ∆
(2nd)
26 = 2∆φ, 3.3 and

3.5 respectively. The black dot indicates the result from 1-loop calculation.

The more precise result form conformal bootstrap is however [29]:

ν = 0.629971(4), ∆ε = 1.412625(10). (4.65)

It is of course of great interest to study the precise spectrum using either higher loop

ε-expansion [87], or mixed operator conformal bootstrap [27].

4.3 Superconformal Bootstrap and AdS/CFT

As we mentioned in the introduction, AdS/CFT correspondence provides us a

new method to study conformal field theory. Especially, the supergravity limit of

75



Figure 4.12: Bootstrap study of SU(3) invariant theory in D = 5. Allowed choices
of {∆φ,∆

1st} is indicated. The second scalar operator in 1+ channel is assumed to

have scaling bigger than ∆
(2nd)
1 = 5. For the blue, yellow, and red curve, the second

scalar in 26+ channel is assumed to have scaling bigger than ∆
(2nd)
1 = 2∆φ, 3.2 and

3.3 respectively. The black dot indicates the result from 1-loop calculation.

string theory is dual to

N � 1, λ� 1 (4.66)

limit of the corresponding conformal field theory. There has been a lot nontrivial

tests of the correspondence. For example, the spectrum of BPS protected operators

match precisely with the Kaluza-Klein spectrum of AdS5×S5 [88]. In general, some

kind of BPS protection mechanism was necessary to carry out the calculation form

both the conformal field theory side and the supergravity side. When this is not the

case, the field theory side of calculation becomes extremely difficult.

In [89,90], the authors calculated the anomalous dimension of the double trace op-

eratorOIOJ , by first calculating the four point function< OI(x1)OJ(x2)OK(x3)OL(x4) >
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using Witten diagrams [91] in AdS5, and then take the limit x3 → x4. The operator

OI ∼ Tr[φiφj] is the chiral primary operators of N = 4 Super Yang-Mills theory.

The result turns out to be

γOIOI =
1

16N2
+O(1/N4) (4.67)

where N is the rank of the gauge group SU(N). Notice the double trace operator is

not BPS-protected, and therefore one in general do not know how to calculate its

anomalous dimension in CFT side. It was until very recently, such a prediction form

AdS/CFT was tested using N = 4 super conformal bootstrap [32]. Interestingly, the

result matches the AdS calculation beautifully.

Another interesting phenomenon happens when the supergravity solution is not

maximally supersymmetric. Take the N=3 solution discussed in Section 2.3.1 as an

example. We have shown in Table 3.2 that the corresponding Kaluza-Klein spectrum

contains long multiplets. Unlike string state, whose dual operator has large anoma-

lous dimension of the order λ1/4 [1], these supergravity states has finite anomalous

dimension as λ→∞. In terms of standard AdS/CFT dictionary, the dual operators

should be ”single trace” operators which are not BPS-protected. In this section, we

prepare the basic information for implementing superconformal bootstrap to study

the spectrum of a superconformal field theory with known AdS dual [92], we will

leave the numerical bootstrap as a future project.

4.3.1 N = 1 Superconformal bootstrap

Before discussing applying conformal bootstrap to ADS/CFT, we need to prepare

some basics about superconformal bootstrap. The basic ingredients are worked out

in [31, 93]. We will give a short review here. Consider the four point function <

φφφ†φ† >. For simplicity, we take φ (and φ†) to be chiral (and anti-chiral) operators,
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or simply the lowest (power in θ) component of the chiral superfield Φ (and Φ†). Its

scaling dimension and U(1)R charge of this operator are related by

∆φ =
3

2
r. (4.68)

As fixed by chiral condition.

Before performing conformal bootstrap, the first task one encounter is to work out

the “selection rules”, or in other words, which operator could appear in the operator

product expansion of φ× φ or φ× φ†. Equivalently, one could ask the question, for

the three point function

< ΦΦO†I >, or < ΦΦ†OI > (4.69)

to be non-vanishing, what condition does OI need to satisfy. In [94], the general

structure of three point in four dimensional superconformal field theory has been

worked out. Applying the condition that Φ is chiral [31], one could work out the

selection rules. Instead of using superspace method, one could requires that the oper-

ators appearing in φ×φ OPE to be annihilated by the superconformal transformation

generator Q̄ (contained in superconformal algebra). The final conclusion are equiv-

alent. There are three type of superfields OI that with non vanishing < ΦΦO†I >:

• Chiral multiplet Φ2, with r = (2rφ) and l = 0. This operator lives in the N=1

chiral ring, and are clearly BPS-protected:

∆ = 2∆φ.

Only one operator in this multiplet appears in φ× φ OPE, which is the super-
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conformal primary, with

∆ = ∆φ, l = 0. (4.70)

• Non-chiral short multiplet Oα1...αs1
α̇1...α̇s2 with s1 − s2 = 1/2, spin l = 2s2 odd,

r = 2rφ−1. This operator is also BPS-protected, and therefore have the scaling

dimension

∆ = 2∆φ + l + 1.

Only one operator in this multiplet appears in φ× φ OPE, which is the level-1

SUSY descendant, with

∆ = 2∆φ + l, l even. (4.71)

• Non-chiral long multiplet Oα1...αs1
α̇1...α̇s2 with l = 2s1 = 2s2 even, rφ = 2r − 2.

These operators are not BPS-protected, their scaling dimension just need to

satisfy unitarity bound

∆ ≥ 2|∆φ − 3|+ l + 2.

Only one operator in this multiplet appears in φ× φ OPE, which is the level-2

SUSY descendant, with

∆ ≥ |2∆φ − 3|+ l + 3, l even. (4.72)

Notice the first two type have the same expression for their scaling dimension and

are both BPS-protected, we will call them “BPS” when we write down bootstrap

equations. The third family will be referred as “non-BPS”.

For Φ × Φ† OPE, the condition is greatly relaxed, the only condition for <
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ΦΦ†OI > to be non vanishing is that the superconformal multiplet OI needs to

be neutral

r = 0, ∆ ≥ l + 2. (4.73)

where l could be either even or odd. We will call these operators “’neutral’ operator

when we write bootstrap equations. More than one operator in this multiplet appears

in φ× φ OPE, which will be clear shortly.

The four point function of chiral primaries are:

< φ(x1)φ†(x2)φ(x3)φ†(x4) >=
1

x
2∆φ

12 x
2∆φ

34

∑
∆≥l+2

λ2
OG∆,l(u, v) (4.74)

where the superconformal blocks G∆,l(u, v) is simply a linear combination of confor-

mal blocks:

G∆,l(u, v) = g∆,l(u, v) +
1

4

∆ + l

∆ + l + 1
g∆+1,l+1(u, v) +

1

4

∆− l − 2

∆− l − 1
g∆+1,l−1(u, v)

+
(1

4

∆ + l

∆ + l + 1

)(1

4

∆− l − 2

∆− l − 1

)
g∆+2,l(u, v), (4.75)

as computed in [93]. Notice the superconformal block are determined by the SO(4,2)

and U(1)R quantum numbers of the “superconformal” primaries. Conformal pri-

maries in the same supermultiplet have OPE coefficients proportional to each other,

as they are related by supersymmetry. The conformal primaries in a superconformal

multiplets with spin s1 = s2 = l/2 and scaling dimension ∆0 is listed in Table 4.4,

the special case l = 1 “long graviton multiplet” could be found in [95]. When the

unitary bound ∆0 ≥ l + 2 is saturated, some conformal primaries decouples, which

are generally referred as the phenomenon of “multiplet shorten” [96]. The same

phenomenon could be observed in the expression of superconformal block, when you
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(s1 + l/2, s2 + l/2) ∆ R-charge

(1/2, 1/2) ∆0 + 1 0 *

(1/2, 0) ∆0 + 1/2 −1
(0, 1/2) ∆0 + 1/2 +1
(0, 1/2) ∆0 + 3/2 −1
(1/2, 0) ∆0 + 3/2 +1

(0, 0) ∆0 0 *
(0, 0) ∆0 + 1 +2
(0, 0) ∆0 + 1 −2
(0, 0) ∆0 + 2 0 *

(1/2,−1/2) ∆0 + 1 0
(−1/2, 1/2) ∆0 + 1 0

(0,−1/2) ∆0 + 1/2 +1
(−1/2, 0) ∆0 + 1/2 −1
(0,−1/2) ∆0 + 3/2 −1
(−1/2, 0) ∆0 + 3/2 1

(−1/2,−1/2) ∆0 + 1 0 *

Table 4.4: N=1 long multiplets with spin-l, satisfies the unitary bound ∆0 ≥ l + 2,
in terms of quantum numbers of the conformal group SO(4,2) and the U(1)R group.
The last column denotes the conformal primaries appear in (4.75).

take ∆ = l + 2 in (4.75), the last two terms vanish. “Multiplet shorten” for most

general multiplets (for example, s1 6= s2) are summeried in [97].

The crossing equation:

< φ(x1)φ†(x2)φ(x3)φ†(x4) > −(x1 ↔ x3) = 0 (4.76)

tells us that ∑
∆≥l+2

λ2
OF∆,l = 0. (4.77)

This equation itself could give us bounds for the scaling dimension of operators

appear in φ× φ†, which is the approach take in [93]. However, to get more stringent
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bound, one need to consider another four point function [31]

< φ(x1)φ†(x2)φ(x4)φ†(x3) > =
1

x
2∆φ

12 x
2∆φ

34

∑
O

λ2
OG∆,l(u/v, 1/v)

=
1

x
2∆φ

12 x
2∆φ

34

∑
O

λ2
O(−1)lG̃∆,l(u, v) (4.78)

where

G̃∆,l(u, v) = g∆,l(u, v)− 1

4

∆ + l

∆ + l + 1
g∆+1,l+1(u, v)− 1

4

∆− l − 2

∆− l − 1
g∆+1,l−1(u, v)

+
(1

4

∆ + l

∆ + l + 1

)(1

4

∆− l − 2

∆− l − 1

)
g∆+2,l(u, v), (4.79)

we have used the general relation for conformal blocks

g(u/v, 1/v) = (−1)lg∆,l(u, v). (4.80)

Consider a different order of contraction of (4.78), and using the selection rules, we

get:

< φ(x1)φ(x4)φ†(x2)φ†(x3) >=
1

x
2∆φ

12 x
2∆φ

34

( ∑
BPS, l even

λ2
Og2∆φ+l,l(v, u)

+
∑

non-BPS, l even

λ2
Og∆,l(v, u)

)
.

(4.81)

Collecting (4.77), (4.78) and (4.81), we get

∑
netural±

λ2
O


F∆,l

F̃∆,l

H̃∆,l

+
∑

BPS+

λ2
O


0

F2∆φ+l,l

−H2∆φ+l,l

+
∑

non-BPS+

λ2
O


0

F∆,l

−H∆,l

 = 0 (4.82)
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The crossing equation was derived in [31, 93], and could be easily generalized to

superconformal field theories with extra flavor symmetries. Especially in [98], the

O(N) SCFT’s were considered, of which the O(4) case it of special interest for our

case, as will be explicit in the next section.

4.3.2 The CFT dual of AdS5 × T11

The dual theory of AdS5 × T 11 was identified in [92] by Igor R. Klebanov and

Edward Witten, hence sometimes referred as Klebanov-Witten theory. T 11 is a five

dimensional space which could be written in coset form

M5 =
SU(2)× SU(2)

U(1)
=

SU(2)× SU(2)× U(1)

U(1)× U(1)
(4.83)

The dual theory is a four dimensional N = 1 superconformal field theory with

SU(2)×SU(2) global symmetry, and the gauge group SU(N)×SU(N). The field con-

tent could be represented by the same quiver diagram as the ABJM theory [3], see

Figure 1.1. See [99] for the relation between Klebanov-Witten theory and ABJM

theory. The theory contains two set of bi-fundamental of SU(N)×SU(N), Ai and Bi,

transforms as doublet of either of the SU(2)’s. A superpotential of the form

W ∼ εijεklTr[AiBkAjBl]. (4.84)

is present and the SU(2)×SU(2)∼O(4) flavor could be seen explicitly.

The superpotential (4.83) alway has U(1)R-charge R = 2, which means the fields

Ai and Bi has

R = 1/2. (4.85)

When the theory flow to IR fixed point, superconformal algebra fixed the scaling
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dimension of chiral primaries to be

∆I =
3

2
R = 3/4. (4.86)

To do conformal bootstrap, one need to consider four point function of gauge invari-

ant operators. The chiral operator

ΦI ∼ Tr[AiBj]. (4.87)

is in the chiral-ring and therefore has the scaling dimension ∆Φ = 3
2
, they live in

the (1/2,1/2) representation of SU(2)×SU(2). Knowing the scaling dimension ∆Φ

is in fact one of the advantage of picking AdS5 × T 11 as the solution to implement

bootstrap test of AdS/CFT correspondence. This save us a lot of CPU time as we

do not need to change ∆Φ when doing numerics. We could now use superconformal

bootstrap method introduced in previous subsection to study the four point function

< φI(x1)φJ(x2)φ†K(x3)φ†L(x4) > (4.88)

where φI are the lowest component of the superfield ΦI . According to the spin

production rule

(1/2,1/2)1 × (1/2,1/2)−1 → (0,0)0 + (0,1)0 + (1,0)0 + (1,1)0, (4.89)

U(1)R neutral operators which are SU(2)×SU(2) singlets could appear in φI × φ†J

OPE. Another advantage of picking AdS5 × T 11 as to implement bootstrap test of

AdS/CFT correspondence is that the full Kaluza-Klein spectrum is known for this

solution, which was calculated in [95]. For readers who are not familiar with the con-
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ventions of Kaluza-Klein reduction, we recommend the reference [100]. Kaluza-Klein

spectrum tells us that the first U(1)R neutral operators which are also SU(2)×SU(2)

singlets such has the scaling dimension

∆ = 2
√

7− 2 ≈ 3.2915. (4.90)

We hope to get this number from numerical bootstrap. As a generalization to this

direction of research, it would be interesting to test AdS/CFT correspondence for

solutions/dual theories which are not supersymmetric. It should be mentioned that

AdS/CFT has been used to study condense matter system [101], and the whole idea

relies on the assumption that AdS/CFT works even without supersymmetry. We

hope to come back to this in the future.
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5. CONCLUSION AND DISCUSSION

In this dissertation, we first classified all the critical points of both SO(8) gauged

and dyonic ISO(7) gauged N = 8 supergravity in four dimensions with residue

symmetry bigger that SO(3)D × SO(3)L subgroup of the gauge group. The first

N = 3 solution of ten dimensional Romans deformed type IIA supergravity in ten

dimensions was constructed by uplifting the corresponding N = 3 critical point in

four dimensions.

The CFT dual of this solution was proposed to be the three dimensional N = 3

Chern-Simons matter theory [6, 8]. In order to test the correspondence, we studied

the spin-2 Kaluza-Klein reduction of the solution, and found that it match with

the spectrum of short BPS protected operators in the dual field theory. We also

calculated the Euclidean gravitational action, and found that it match precisely

with the free energy of the dual CFT at leading order in 1/N . Based on the two

non-trivial tests, we can conclude that the proposed AdS/CFT correspondence is

indeed correct.

We also reviewed the non-perturbative method “Conformal Bootstrap”, and ap-

plied it to CFT’s with F4/SU(3) flavor symmetry in 6 − ε dimension. The scaling

dimension of the first few operators was first calculated using traditional Feynman

diagrams method up to 1-loop. To test the Feynman diagrams calculation, numerical

conformal bootstrap was preformed. In D = 5.95, the curve of bounds for opera-

tor dimensions shows a sudden change of slope at the valued calculated at 1-loop,

therefore provide strong evidence for the correctness of our Feynman diagram re-

sult. In D = 5, as we chage our assumptions for the operator spectrum, the curve

of bounds start to form a peninsula surrounding certain regions in the (∆φ,∆
(1st)
1 )
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plane, we therefore conjecture that the CFT’s survive in five dimensions as one take

ε → 1. The possibility of using this method to test AdS/CFT correspondence was

also discussed, where we argued that the CFT dual of AdS5 × T 11 solution in type

IIB supergravity is a good candidate to implement numerical bootstrap.

As a newly born technology for strongly coupled system, conformal bootstrap has

been extremely successful in getting critical exponents for various models. For three

dimensional Ising model, the critical exponents provided by conformal bootstrap

is up to two orders of magnitude more precise than the result coming form lattice

Monte Carlo simulation [29]. Also, we expect conformal bootstrap to be applicable to

systems that are not accessible by lattice method. Famously, the Nielsen–Ninomiya

no-go theorem [102] says that it is in general very difficult to define chiral fermions

on a lattice in even dimensions. Such difficulty is however not present in conformal

bootstrap. We hope that within years of development, conformal bootstrap would

be able to answer some of the long-standing unsolved problems in conformal field

theory, such as what’s the lower bound of Nf for Banks-Zaks fixed point [103, 104]

to appear in QCD with Nc = 3? Is there any conformal field theories in space-time

dimension higher that six?

We also want to mention that our discussion of AdS/CFT correspondence has

been focused on solutions of string/M theory and their dual superconformal field

theories. Starting with [101], there has been various attempts in trying to apply

gauge/gravity duality to the down-to-earth problems of condensed matter physics.

It would be very interesting to see whether these ideas could give us some more

insights on dealing with strong coupled systems.
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