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ABSTRACT

The problem of monoenergetic neutral particle transport in a duct with wall migra-

tion for various shielding materials is treated using an approximate one-dimensional

model and a Monte Carlo-based multivariate logistic regression model. The one-

dimensional model is a third-order approximation in a hierarchy of approximations

derived by a weighted residual procedure that accounts for wall migration by means

of a kernel density. Physical constants required for the one-dimensional model—

scattering probability (c) and the average distance traveled in walls (d)— are calcu-

lated using MCNP’s PTRAC and a corresponding parsing code. Numerical results

for the one-dimensional model are based on a discrete ordinates solution and com-

pared to MCNP. The logistic regression models are developed using the R language

in statistical computing for three explanatory variables— duct radius (r), length

(L), and shield thickness plus inner radius (S)— where each parameter is explored

via univariate models. Data for the models is collected from MCNP via automated

processes using Python and shell scripts. The logistic regression models lead to

analytical expressions, which are evaluated by randomly dividing our data set into

training and test sets, and calculating predictions.
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NOMENCLATURE

b Barn

1DWM One-Dimensional Transport Model with Wall Migration

MCNP Monte Carlo N-Particle Code

1DW/O One-Dimensional Transport Model without Wall Migration

GLM Generalized Linear Model

MLE Maximum Likelihood Estimation

IRLS Iteratively Re-weighted Least Squares Regression
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I. INTRODUCTION

Prinja and Pomraning first developed a one-dimensional model, as well as subse-

quently improved models, for neutral particle transport in ducts as an approximation,

using physical arguments to derive a transport equation [1]. Larsen concurrently

developed a rigorous mathematical formulation of the same one-dimensional model,

and demonstrated its equivalence to the lowest order approximation of a chain of

approximations, derived using a method of weighted residuals [2]. The weighted

residual method is based on using N basis functions to approximate the azimuthal

and transverse components of the particle distribution function in the duct, and N

weight functions to transform the original domain to a subspace (z, µ). In each model

the stated quantities of interest were reflection and transmission probability.

Under the weighted residual method, Prinja and Pomraning’s treatment is equivalent

to an N = 1 model, with single basis and weight functions. Prinja proceeded to

expand the model to account for wall migration for one speed particles, resulting in

a nonlocal transport equation, with the scattering kernel displaying spatial memory

[3]. For a semi-infinite duct, Prinja solves the transport equation by a Laplace

transform Wiener-Hopf technique, and numerical results are provided for the albedo

as a function of incident particle direction, probability of absorption in the duct

walls, and degree of nonlocal reemission.

Larsen developed an N = 2 model by formulating basis and weight functions to treat

a semi-infinite duct, with an isotropic particle source distributed uniformly along the

wall’s inner surface [2]. Using the same parameters as Larsen, Garcia developed the

N = 3 one-dimensional model, first by deriving a required third basis function, and
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subsequently by applying an “analytical discrete ordinates” method [4, 5]. Garcia,

moreover, used the one-dimensional duct model, applying both two and three basis

function approximations, to solve the problem of energy-dependent neutral particle

transport. The matrix transport equation in one spatial dimension, which results

from the energy-dependent case, is solved with a numerical version of the discrete

ordinates method.

Each subsequent N model demonstrated vastly improved precision. For circular

ducts with length to radius ratios between 0.1 and 10, Garcia reported a maximum

error of over 300% in the transmission probability for the N = 1 model, while for the

N = 2 and N = 3 maximum error values, produced in the reflection probability, are

only 9% and 5% [5]. Given that the one-dimensional model is based on a variety

of approximations, Garcia tested for the most “severe of approximations” by using

multigroup albedos to describe particle reflection in the wall. An unmodified version

of MCNP was, as such, used to simulate neutron transport with migration in the

walls for ducts of fixed length and wall thickness of 100 cm and 20 cm, and the results

were compared to both the N = 3 albedo model and modified MCNP simulations

with multigroup albedos in the walls [7]. A comparison of the results indicate fairly

uniform agreement between the N = 3 model and the modified MCNP without wall

migration simulations, however there is very poor agreement once accounting for

wall migration. For circular concrete ducts, ranging in radius from 8 cm to 50 cm,

Garcia reports a maximum error of 170% for reflection probability, while for iron

ducts of the same dimensions, he reports a maximum error of approximately 116%.

The transmission probabilities in identical concrete and iron systems give maximum

errors of approximately 22% and 28% [6].

The results reported by Garcia indicated a need for development of a one-dimensional
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model, for two and three basis functions, which can properly account for wall mi-

gration. When a particle strikes the wall and is reflected, the albedo model merely

supposes that it will reappear at the point of incidence; this is an inadequate ap-

proximation given that particles actively migrate in the walls. Garcia reports that in

the albedo model up to 50% of the particles reflected by the wall, just at the duct’s

edge, will leave the system through the duct entrance without a second interaction

[6]. The early exit of particles in the albedo model leads to a vast overestimation

of the reflection probability, and underestimation of the transmission probability .

Moreover, the overestimation of the reflection probability can be expected to increase

proportionally to the mean free path of particles in the walls, and inversely propor-

tionally to the duct radius for a fixed length. In this work we treat the problem of

neutral particle transport in a duct with wall migration by incorporating the kernel

density proposed by Prinja into the third order approximation of the one-dimensional

model, and solving it numerically using a matrix form of discrete ordinates.

Neutral particle transport in ducts with wall migration is intrinsically a three-dimensional

problem, which has been historically approached by Monte Carlo and view factor

methods. However, these methods are computationally taxing, and depending on

the duct’s shielding material and the number of histories, codes can take on the

order of minutes to hours to reach completion. Moreover, Monte Carlo codes such

as MCNP have distribution restrictions, and may be inaccessible to segments of the

nuclear research community. As such, we develop logistic regression models using

the R language for statistical computing [8], which provide analytical expressions,

and can be instantly solved without the need for codes (or a computer).

The logistic regression models are dependent on three explanatory variables— duct

radius (r), length (L), and shielding thickness (S). Each of the independent parame-
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ters are explored via univariate models, where the remaining variables are held fixed.

The results of the univariate models reveal that the behavior of neutral particles

within the duct and walls can be captured by composite expressions consisting of

linear, exponential, and logarithmic functions. Both the one-dimensional model and

the logistic regression models are tested for three shielding materials (iron, graphite,

and concrete), for both a thermal and 14 MeV neutron source. The analytical ex-

pressions of the logistic regression model are evaluated by randomly dividing our

data set into training and test sets—i.e. unseen data—and calculating predictions.
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II. APPROXIMATE ONE-DIMENSIONAL MODELS FOR NEUTRAL

PARTICLE TRANSPORT IN DUCTS

Prinja and Pomraning first developed an approximate one-dimensional model predi-

cated upon on averaging particle-wall collision distances over the duct’s surface and

the azimuthal angle [1]. The duct is assumed to be evacuated, and subject to a mo-

noenergetic neutral particle source. Particles are introduced into the duct through

an open end and stream until striking the inner duct walls. Upon wall collision, the

particles are either scattered into the interior of the duct, according to a probabil-

ity c, or absorbed, according to a probability 1 − c. As such, particles are strictly

removed from the system by wall absorption or by streaming out of the duct ends.

In the one-dimensional model, a duct is considered parallel to the z-axis, with position

coordinates (x, y, z). The duct has a length 0 ≤ z ≤ Z, and a cross-section (assumed

convex) which can be described— independent of z— by the function h(x, y) [1],

R : h(x, y) < 0, (1a)

∂R : h(x, y) = 0, (1b)

where R defines the duct interior, and ∂R defines the duct’s interior wall. For

example, a circular duct with radius ρ can be described by

R : ρ2 − x2 + y2 < 0, (2a)

∂R : ρ2 − x2 + y2 = 0. (2b)
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The boundary conditions at the ends of a duct of length Z are the prescribed incident

fluxes

Ψ(x, y, 0, ~Ω) = f(µ) , h < 0, µ > 0, (3a)

Ψ(x, y, Z, ~Ω) = g(µ) , h < 0, µ < 0, (3b)

where f(µ) and g(µ) are well defined functions. The cross-sectional area and duct

perimeter are expressed as

A =
∫
R
dxdy, (4a)

L =
∫
∂R
ds, (4b)

where ds is the arc length element. Particles in the duct stream with direction ~Ω,

which is defined in terms of µ (i.e. the polar angle with respect to the z-axis) as well

as a corresponding azimuthal angle φ. The direction vector is defined as

~Ω = (sin θ cosφ, sin θ sinφ, sin θ cosφ)

= (
√

1− µ2 cosφ,
√

1− µ2 sinφ, µ), (5)

and ~Ω can now be rewritten as

~Ω =
√

1− µ2~ω + µ~e, (6)

where ~e = (0, 0, 1), and ~ω = (sinφ, cosφ, 0). For particles emitted into the interior

of the pipe, the range of µ is −1 ≤ µ ≤ 1, while φ ranges from 0 ≤ φ ≤ π. The

range of the azimuthal angle corresponds to inward directions relative to the walls
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of the duct; where φ = π
2 refers to a particle emitted parallel to the local inward

normal to the wall. The local inward normal can be taken to be a y-axis, where φ

is measured with respect to a local x-axis. Fig. 1 provides a detailed illustration of

the duct geometry.

Fig. 1: Duct geometry. [4]

II.A. A Heuristic Approach

A one-dimensional transport equation can be derived based on geometric arguments,

as done by Prinja and Pomraning. What follows is a summary of their heuristic

approach, according to the description of the duct system introduced in the previous

section.

A neutral particle is considered at the origin with coordinates (x0, y0, z0). For a line

equation passing through ~r0 = (x0, y0, z0), and coinciding with the direction ~Ω, a
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vector ~r = ~r0 + ~Ωt, can be defined such that,

< x, y, z > = < x0, y0, z0 > + t ~Ω, (7)

< x, y, z > = < x0, y0, z0 > + t (
√

1− µ2 cosφ,
√

1− µ2 sinφ, µ), (8)

where solving for t gives us the following equalities:

x− x0√
1− µ2 cosφ

= y − y0√
1− µ2 sinφ

= z − z0

µ
. (9)

A streaming distance, λ, for the emitted particle can be defined as

λ2 = (x− x0)2 + (y − y0)2 + (z − z0)2. (10)

Now combining Eqs. (9-10) gives the following

λ2 = (
√

1−µ2 cosφ)2+µ2

(
√

1−µ2 sinφ)2
(y − y0)2 + (y − y0)2,

= (
√

1−µ2 cosφ)2+(
√

1−µ2 sinφ)2+µ2

(
√

1−µ2 sinφ)2
(y − y0)2,

where an expression for λ can now be written as

λ = |y − y0|√
1− µ2 sinφ

. (11)
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Eq. (11) indicates the distance traveled by particles, regardless of the duct geometry,

has a µ dependence, i.e. (1 − µ2)− 1
2 . In order to remove any dependence on the

particle’s azimuthal angle or position, λ is averaged over φ and the surface of the

duct:

λ̂(µ) =
∫
S
~ds
∫ π

0 dφ(~n · ~Ω)λ∫
S
~ds
∫ π

0 dφ(~n · ~Ω)
, (12)

where ~n · ~Ω = (1 − µ2) 1
2 sinφ, and this factor accounts for the number of particles

emitted from an isotropic distribution in the direction ~Ω. If S defines the perimeter

of the duct, Eqs. (9-11) imply

λ̂(µ) = 1
2S(1− µ2) 1

2

∫
S

~ds
∫ π

0
|y − y0| dφ. (13)

The double integral can be algebraically eliminated, and λ is reduced to a simple

expression,

λ̂ = πV

S(1− µ2) 1
2
, (14)

where V is defined as the volume per unit length (i.e. the cross sectional area of the

pipe). If the cross section is defined as Σ = 1
λ̂(µ) , and dimensionless primed variables

are introduced,

z′ = Sz

πV
; Z ′ = SZ

πV
, (15)
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as well as a corresponding particle distribution function,

Ψ′(z′, µ) = Ψ(z, µ), (16)

then the transport equation can be expressed as [1]

µ
∂Ψ(z, µ)

∂z
+ (1− µ2) 1

2 Ψ(z, µ)

= c
∫ 1

−1
(1− µ′2) 1

2 Ψ(z, µ′) dµ′ p(µ′ → µ), (17)

and the boundary conditions are expressed as

Ψ(0, µ) = f(µ), µ > 0, (18a)

Ψ(Z, µ) = g(µ), µ < 0, (18b)

where the primes have been dropped from each of the pertinent variables for Eqs.

(16-18).

II.B. The “N-group” One-Dimensional Model

While the one-dimensional model developed by Prinja and Pomraning was based on

geometric considerations, Larsen demonstrated that the same model could be derived

by projecting a five-variable transport equation onto a (z, µ) subspace. Larsen further

demonstrated that the Prinja and Pomraning model [1] was equivalent to the lowest

order approximation of a hierarchy derived by a method of weighted residuals. What

follows is a derivation of the one-dimension model for N-basis functions, largely using

Larsen’s notation [2].
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The general form of the seven-dimensional transport equation is expressed as

1
v

∂ψ

∂t
+ ~Ω · ∇ψ + Σtψ =

∫ ∞
0

∫
4π

Σs( ~Ω′ → ~Ω, E′ → E)ψ d~Ω′d ~E′ +Q, (19)

with spatial dimensions ~r(x, y, z), angular dimensions ~Ω(θ, φ), energy E, time t, and

the gradient operation, in cartesian coordinates, is ∇ = ( ∂
∂x
, ∂
∂y
, ∂
∂z

). A constrained

expression of the transport equation is applied in the duct system:

~Ω · ∇ψ(~r, ~Ω) = 0, (20)

reducing it to five-variable dependence. The constrained expression assumes a steady-

state (no time dependence), monoenergetic system without collisions between par-

ticles in an evacuated duct, and no external source. The duct geometry is once

more defined according the descriptions in the previous section; i.e in terms of

h(x, y), R, ∂R,A, and L. The boundary conditions at the ends of a duct of length Z

are once more defined as the prescribed incident fluxes,

Ψ(x, y, 0, ~Ω) = f(x, y, ~Ω) , h < 0, µ > 0, (21a)

Ψ(x, y, Z, ~Ω) = g(x, y, ~Ω) , h < 0, µ < 0. (21b)

The boundary conditions which describe partial isotropic reflection on the inner wall

of the duct are expressed as

− ~Ω · ~n Ψ(~r, ~Ω) =
∫
~Ω′·~n > 0

p(~r, ~Ω′ → ~Ω)Ψ(~r, ~Ω)∂~Ω′

h = 0, ~Ω · ~n < 0, (22)

p(x, ~Ω′ → ~Ω) = −c
π

(~Ω · ~n)(~Ω′ · ~n), (23)

11



where ~n is the unit outward normal at ~r, and integration of Eq. (22) over ~Ω · ~n

confirms c as the probability of wall reflection. Moreover, Eq. (22) tells us that for

particles incident upon the walls, with incoming directions ~Ω′, the angle of reflection
~Ω will point towards the interior If the angular vector is written as expressed in Eq.

(6), and boundary conditions are applied, the transport equation can be reformulated

as [2]

µ
∂Ψ
∂z

+ (1− µ2) 1
2~ω · ∇Ψ = 0. (24)

The 3-D duct problem is reduced to a 1-D problem using the Galerkin scheme for

the method of weighted residuals, where Ψ is approximated as ψ,

ψ(x, y, z, µ, φ) =
N∑
j=1

αj(x, y, φ)ψj(z, µ), (25)

αj are basis functions, and ψj are expansion functions. Using Eq. (25) as an ap-

proximation for Ψ yields error terms. As such, the method of weighted residuals

requires the error terms to be orthogonal to particular weight functions βi(x, y, φ),

for 1 ≤ i ≤ N , leading to a number of moment equations. The moment equations

are obtained from the stated boundary conditions and the transport equations as

expressed in Eq. (24): [2]

∫
R

∫ 2π

0
βi

[
µ
∂ψ

∂z
+ (1− µ2) 1

2~ω · ∇ψ
]

= 0, (26)
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∫
∂R

∫
~ω·~n<0

βi

[
~Ω · ~nψ − c

π

∫
~Ω·~n>0

(~Ω · ~n)( ~Ω′ · ~n)× ψ( ~Ω′)d~Ω′
]
dφds = 0, (27)

∫
R

∫ 2π

0
βi
[
Ψ(x, y, 0, ~Ω)− f(x, y, ~Ω)

]
= 0, µ > 0, (28)

∫
R

∫ 2π

0
βi
[
Ψ(x, y, Z, ~Ω)− g(x, y, ~Ω)

]
= 0, µ < 0. (29)

The basis and weight functions are assumed to satisfy orthogonality:

1
2πA

∫
R

∫ 2π

0
βi αj ∂φ∂x∂y = δij, 1 ≤ i, j ≤ N, (30)

where the Kronecker delta function is expressed as,

δij =


0 if i 6= j

1 if i = j

. (31)

Imposing the condition of orthogonality to prescribed basis αj and weight βi functions

as stated in Eq. (30), coupled with the moment equations, clearly implies

ψi = 1
2π

∫
R

∫ 2π

0
βiψ ∂φ∂x∂y, (32)

That is, each expansion function can be expressed as the product of a corresponding

weight function and the approximation ψ, integrated over the volume of the duct.

Ultimately, meeting the conditions stated in Eqs. (26-32) leads to a coupled set of
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N transport equations (and corresponding boundary conditions) for the coefficients

of the approximation ψj(z, µ), j = 1, 2, ..., N , as is shown in the proceeding steps.

By application of the vector identity

βi~ω · ~∇ψ = ~ω · ~∇(βiψ)− ψ~ω · ~∇βi. (33)

Eq. (26) can be expressed as [9]

∫
R

∫ 2π

0
βi

[
µ
∂ψ

∂z
+ (1− µ2) 1

2 · (~ω · ∇(βiψ)− ψ~ω · ∇βi)
]
dφdxdy = 0, (34)

and, applying the divergence theorem, an arc length integral can be introduced as

follows ∫
R

∫ 2π

0
~ω · ∇(βiψ) dφdxdy =

∫
∂R

∫ 2π

0
~ω · ~n βiψ dφds. (35)

If ψ is now expressed in its approximate form and Eq. (32) is applied, Eq. (34) is

written as

µ
∂ψi
∂z

= −(1− µ2) 1
2

2πA
×
(∫

∂R

∫ 2π

0
~ω · ~nβi ψdφds−

∫
R

∫ 2π

0
ψ∇~βi dφdxdy

)
. (36)

The arc length integral term in the preceding equation can be broken up as a sum

over cases ~ω · ~n > 0 and ~ω · ~n < 0, where substituting Eq. (27) into the latter case
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gives [2]

kµ
∂ψi
∂z

=
∫
∂R

∫
~ω·~n>0

~ω · ~nβiψdφds+
∫
∂R

∫
~ω·~n<0

~ω · ~nβi

×
[
c

π

∫
~Ω·~n>0

~Ω′ · ~nψ( ~Ω′)d~Ω′
]
dφds−

∫
∂R

∫ 2π

0
ψ~ω · ∇βidφdxdy, (37)

and k = −2πA
(1−µ2)

1
2

. If the integrals over ~Ω′ · ~n are written according to the identity

∫
~Ω′·~n

( ~Ω′ · ~n)(·)d~Ω =
∫
~ω·~n>0

~ω′ · ~n
∫ 1

−1
dµ′(1− µ2) 1

2 (·)dφ′, (38)

and Eq. (26) is applied to Eq. (37), the general matrix form of the transport equation

with N basis functions,can now be written as [2]

µ
∂Ψ(z, µ)

∂z
+ (1− µ2) 1

2 A Ψ(z, µ)

= 2c
π

(1− µ2) 1
2 B

∫ 1

−1
(1− µ′2) 1

2 Ψ(z, µ′)∂µ′. (39)

The boundary conditions are given as column vectors,

Ψ(0, µ) = F(µ); Ψ(Z,−µ) = G(µ), (40)

where the components ψi are expressed as

ψi(0, µ) = 1
2πA

∫
R

∫ 2π

0
βif dφdxdy, µ > 0, (41)

ψi(Z, µ) = 1
2πA

∫
R

∫ 2π

0
βig dφdxdy, µ < 0. (42)
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A and B are N × N matrices consisting of elements aij, bij, which follow directly

from the derivation of Eq. (39)

aij = 1
2πA [

∫
∂R

∫
ω·n>0

~ω · ~n βiαjdφds−
∫
R

∫ 2π

0
(~ω · ∇βi) αjdφds ], (43)

bij = 1
4πA

∫
∂R

(∫
ω·n<0

~ω · ~n
)
βidφ ×

(∫
~ω·~n>0

~ω · ~n αjdφ
)
ds. (44)

The matrix form of the transport equation with N basis functions and corresponding

boundary conditions, applied to a duct of arbitrary cross-sectional geometry, con-

stitute the general model. Therefore, in order to make use of the model, the duct

geometry, αi, and βi must be specified and the matrix components aij and bij must

evaluated.

It should be noted that the one-dimensional model introduces angular dependence

into the cross-sections, leading to the following interpretation: in a duct of infinite

length, a particle starting at position ~r will travel a deterministic distance [2],

l = (1− µ2)−1
2 D(x, y,−~ω), (45)

before striking a duct wall. The function D(x, y,−~ω) is defined as the distance from

an arbitrary point (x, y, z) in the duct interior to the inner wall ∂R along the direction

−~ω. As such, particles in the duct travel a distance proportional to (1−µ2)−1
2 before

colliding with an inner wall; this distance was interpreted by Prinja and Pomraning

as a mean-free-path [1], implying that the cross-section is proportional to (1− µ2) 1
2 .
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II.C. Basis Functions

The basis functions for the N = 3 model are derived independently by Larsen and

Garcia. In each case, a Galerkin scheme was used to select the corresponding weight

functions, i.e. βi(x, y, φ) = αi(x, y, φ) for i = 1, 2, 3. The first and second basis

functions are expressed as [2, 4]

α1(x, y, φ) = 1, (46)

α2(x, y, φ) = u[D(x, y, ~ω)− v], (47)

where u and v are constants. The first two basis functions are linear combinations

of 1 and D, where this choice is justified by the following arguments. For an arbi-

trary point ~r on the inner duct wall, S(~r0) is defined as the distribution of particles

scattered into the duct. Now, for a point ~r in the duct’s interior and an angle ~Ω,

where

~r0 = ~r − (1− µ2)−1
2 D(x, y, ~ω) ~Ω, (48)

lies on the duct’s inner wall, there exists a corresponding distribution function such

that,

ψ(~r, ~Ω) = S[~r − (1− µ2)−1
2 D(x, y, ~ω) ~Ω]. (49)

Expressing the distribution function in terms ofD and S indicates that it is a constant

along a characteristic curve in a source-free vacuum. If S is weakly dependent on x

and y, then the distribution function can be rewritten as

ψ(~r, ~Ω) ≈ S[z − (1− µ2)
−1
2 D(x, y, ~ω)]. (50)
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Eq. (50) shows that ψ(~r, ~Ω) only depends on x, y and φ via the function D. Moreover,

if S is weakly varying with respect to z, the distribution can be written as

ψ(~r, ~Ω) ≈ S(z)− (1− µ2)
−1
2 D(x, y, ~ω) dS

dz
, (51)

where the derivative is considerably smaller than S; this result indicates that the

ψ(~r, ~Ω) is virtually independent of x, y, and φ, justifying the choice of basis functions

as linear combinations of 1 and D. However, it should be noted that the preceding

arguments apply to long ducts, where S(z) is weakly varying and edge effects can be

considered negligible.

The constants v and u, upon which the second basis function depends, are given as

v = 1
2π

∫
R

∫ 2π

0
D(x, y, ~ω)∂φ∂x∂y, (52)

u =
( 1

2π

∫
R

∫ 2π

0
[D(x, y, ~ω)− v]2∂φ∂x∂y

)−1
2
. (53)

Given the definition of D(x, y, ~ω), as the distance in the (x, y) plane, from a point in

the duct to the inner wall, the following properties can be asserted:

~ω · ∇D(x, y, ~ω) = 1, (x, y) ∈ R, (54)

D(x, y, ~ω) = 0, (x, y) ∈ ∂R, ~ω · ~n < 0, (55)

D = (~ω · ∇D2)/2, (56)

(D − v)2 = [~ω · ∇(D − v)3]/3, (57)
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which allows for v and u to be expressed in terms of arc length integrals

v = 1
4π

∫
R

∫ 2π

0
(~ω · ∇D2)dφds, (58)

u =
[ 1
6π

∫
∂R

∫ 2π

0
~ω · ~n(D − v)

]
. (59)

The third basis function is expressed as a linear combination of 1, D(x, y, ~ω), and

D2(x, y, ~ω) based on earlier arguments [4]

α3(x, y, φ) = r[D(x, y, ~ω)− s][D(x, y, ~ω)− t], (60)

where r, s, and t are constants. Noting the conditions of orthogonality for i=1 and

j=3, as well as for i=2 and j=3, the constants s and t must satisfy

(s− v)(t− v) = −1
u2 , (61)

s+ t = 2v + q, (62)

where the following algebraic manipulations can be applied in order to find expres-

sions for s and t independent of each other,

t = 2v + q − s,

⇒ (s− v)(v + q − s) = −1
u2 ,

⇒ s2 − s(2v − q) + (v2 + vq − u−2) = 0,

19



which implies,

s = v + 1
2(q +

√
q2 + 4/u2). (63)

Proceeding with same steps used to find s, t can be expressed as

t = v + 1
2(q −

√
q2 + 4/u2), (64)

where the constant q is defined as

q = u2

2π

∫
R

∫ 2π

0
[D(x, y, ~ω)− v]3dφdxdy. (65)

Substituting the definitions of s and t into the third basis function gives,

α3(x, y, φ) = r[D(x, y, ~ω − v)][D(x, y, ω)− v − q]− r

u2 , (66)

where the orthogonality condition, expressed by Eq. (30), leads to definition of r as

r =
[

1
2π

∫
R

∫ 2π

0
[D(x, y, ~ω)− v]4∂φ∂x∂y −

(q2 + 1
u2 )

u2

] 1
2

. (67)

As previously noted, the basis and weights functions are not directly expressed in

the multi-basis function form of the transport equation. Rather, these functions

compose the elements of the matrices A and B, which are required to apply the

model. Having explicit statements of the first thee basis functions, as well as their

dependencies (constants: u, v, q, r), exact expressions for the matrix elements can be

found by direct substitution into Eqs. (43,44). Below, each of the eighteen elements
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for the N = 3 model are listed [4]:

a11 = b11 = L/(πA) (68a)

a12 = b12 = u− uvL/(πA) (68b)

a21 = b21 = −uvL/(πA) (68c)

a22 = u2v2L/(πA) (68d)

b22 = −uv[u− uvL/(πA)] (68e)

a13 = b13 = −qr + (v2 + qv − 1/u2)rL/(πA) (68f)

a31 = b31 = (v2 + qv − 1/u2)rL/(πA) (68g)

a23 = (2r/u)− (v2 + qv − 1/u2)uvrL/(πA) (68h)

b23 = uv[qr − (v2 + qv − 1/u2)rL/(πA)]. (68i)

a32 = −(v2 + qv − 1/u2)uvrL/(πA) (68j)

b32 = r(v2 + qv − 1/u2)[u− uvL/(πA)] (68k)

a33 = (v2 + qv − 1/u2)2r2L/(πA) (68l)

b33 = −r(v2 + qv − 1/u2)[qr − (v2 + qv − 1/u2)rL/(πA)]. (68m)

Based on the stated results, the N = 3 model depends entirely on six parameters:

A,L, u, v, q, and r (and four for the N = 2 model, where q and r are excluded).

These parameters must account for the duct geometry and orthogonality conditions.

II.D. Wall Migration Model: Methods and Parameters

In this work, we develop a nonlocal transport equation that accounts for particle

migration into duct walls, composed of a specified material, using the N = 3 one-

dimensional model. This equation will be specifically applied to ducts with iron,
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concrete, and graphite walls, subject to a thermal neutron source.

The N -basis functions model developed by Larsen was applied strictly to the case

where duct walls either reflect or absorb particles, without accounting for wall mi-

gration or wall (shielding) material. Garcia subsequently applied an albedo approx-

imation in order to account for wall materials, for a multi-group case [6], but also

excluded wall migration. In order to account for neutral particles that migrate a

fixed distance in the walls and undergo diffuse emission, Prinja introduced a nonlo-

cal kernel density K(z → z′), strictly for the N = 1 case (i.e. the original, heuristic

model), without accounting for wall materials [3]. The kernel density satisfies the

condition ∫ ∞
−∞

K(z′ → z) = 1, (69)

where this ensures that the particle is re-emitted within the duct. In order to realize

an exact solution, Prinja proposed an exponential function (consistent with particle

attenuation within wall material) expressed as [3]

K(z′ → z) = λ

2 exp(−λ|z − z′|), (70)

where λ is a free parameter. Re-emission profiles are obtained by adjusting λ (large:

near-local, small: nonlocal), where

lim
λ→∞

K(z′ → z) = δ(z − z′), (71)

ensures recovery of the local model. A full account of wall migration requires inte-
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grating the kernel density over the entire length of the duct, where

∫ Z

0
K(|z − z′|)dz′ =

∫ Z

0

λ

2 exp(λ|z − z
′|), (72)

is introduced into the transport equation. Accounting for wall migration via the

kernel density, the 1-D duct model transport equation can now be expressed as

µ
∂Ψ(z, µ)

∂z
+ (1− µ2) 1

2 A Ψ(z, µ) = 2c
π

(1− µ2) 1
2

×B
∫ Z

0
∂z′

∫ 1

−1
(1− µ′2) 1

2 K(z′ → z) Ψ(z, µ′)∂µ′, (73)

where Z is the length of the duct. From Eq. (73) it is clear that in addition to the

basis and weight functions, the parameters λ and c must be defined in order to apply

the model accounting for wall migration. The free-parameter λ is expressed as the

mean distance that incident particles travel in the walls before re-emerging (in cm),

λ = 1
d
. (74)

The parameter c defines the wall reflection probability. However, λ and c cannot

be directly calculated; treating the walls as a plane layer, these parameters are

approximated using MCNP simulations for an equivalent disk problem [6] subject to

a thermal neutron source. Comparable to the equivalence proposed by Garcia [6],

simulations are performed for a point source located the center of a planar surface

corresponding to a 20 cm-thick disk with a 100 cm radius. The wall migration

parameters are calculated for each of three materials: iron, concrete, and graphite.

Table I provides a summary of the values of c—calculated as the current ratio— for

each of the wall materials.
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Table I: Values for wall reflection probability computed using MCNP for 106 histories.

Material c

Iron 0.54

Concrete 0.70

Graphite 0.85

Using MCNP’s PTRAC function, which follows the life of individual particles in-

cluding terminal events, the mean distance that particles travel in the disk can be

calculated. PTRAC returns a convoluted output with millions of data points, and

a parsing code is used to calculate the distance traveled by each particle as well as

the mean (this process will be discussed in further detail in a later section). Table

II provides a summary of the PTRAC results.

Table II: Mean distance d (cm) traveled in walls computed using MCNP for 106

histories, and material density ρ (g/cm3).

Materials d ρ

Iron 1.065 7.87

Concrete 2.80 2.30

Graphite 5.905 1.70

It should be noted that the distance traveled by the particles in each case is inversely

proportional to the density of the wall material. Moreover, the distance values are
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consistent with the absorption cross-sections for thermal neutrons for each of the

materials—where iron has a cross-section (E-2 b) one magnitude larger than the

graphite and concrete (E-3 b). Fig. 2 shows the distribution of distances traveled in

the duct walls by particles, for each of the specified materials.

Fig. 2: Distances traveled by particles in the disk.

Accounting for the wall reflection constant and the kernel density, as well the matrix

elements of A and B, the N = 3 nonlocal transport equation can be fully solved

using numerical methods.
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III. DISCRETE ORDINATES SOLUTION TO N = 3 MODEL

III.A. The Discrete Ordinates Approximation

The discrete ordinates method allows for the integro-differential transport equation

to be solved numerically by evaluating the angular distribution of particle flux at

a specified number of discrete directions (that is, applying a discrete treatment of

the angular variable ~Ω), coupled with spatial discretization (“zones”). In theory,

by increasing the number of angles and zones under consideration the accuracy of

solutions can be improved; as such, the accuracy is merely limited by computa-

tional resources [10]. Of particular importance in the application of the discrete

ordinates method is the choice of angles, and the approximation of the integrals over

the direction variable. These issues will be considered in the context of the pla-

nar, isotropic scattering, monoenergetic, steady-state form of the integro-differential

transport equation without external sources (which has the same form as the nonlocal

transport equation) [10]:

µ
∂Ψ(z, µ)

∂z
+ Σt(z)Ψ(z, µ) = c(z)Σs(z)

2

∫ 1

−1
Ψ(z, µ′)∂µ′, (75)

where Σt is the total cross-section, and Σs is the scattering cross-section. Considering

a set of discrete directions µn = µ1, µ2, ..., µN and a set of corresponding weights

wn = w1, w2, ..., wN , the scattering integral in Eq. (75) is approximated by Gaussian

quadrature for µ dependent Ψ:
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∫ a

b
Ψ(µ′)∂µ′ ≈ b− a

2

N∑
j=1

wjΨ
(
b− a

2 µ′j + a+ b

2

)
, (76)

where N is the number of discrete angles. Converting the domain from [a,b] to [-1,1]

—thereby standardizing the weights— the approximation is expressed as

∫ 1

−1
Ψ(µ′)∂µ′ ≈

N∑
j=1

wjΨ(µ′j). (77)

By substituting the quadrature approximation into the planar transport equation,

Eq. (76) can be rewritten in discretized form as

µn
∂Ψ(z, µn)

∂z
+ Σt(z)Ψ(z, µn) = c(z)Σs(z)

2

N∑
j=1

wjΨ(z, µj), (78)

for n = 0, 1, ..., N . Eq. (78) has a similar form to the steady-state, monoener-

getic one-dimensional transport equation and represents a set of N coupled differen-

tial equations, which can be solved by iteration techniques given the corresponding

boundary conditions and specific constraints of the system. In general the directions

and quadrature weights are chosen with the objective of optimizing the solution.

However, for a slab geometry, three specific constraints must also be considered: [10]

1. Because the integral in the scattering term is always positive, the quadrature

weights must also be positive for all cases of n

wn > 0, for all n = 1, 2, ..., N

2. The choice of directions and quadrature weights must be symmetric about µ = 0

(equal weights coupled with a symmetric angular distribution), for an even number

of discrete angles. That is,
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µn − µN+1−n, wn = wN+1−n, for n = 1, 2, ..., N2 .

Symmetry ensures that equal importance is assigned to particles streaming along

each flight direction. Moreover, an even number of directions avoids choosing a

value of n that results in µn = 0. By necessity, µ cannot be 0, as such a result would

lead to the disappearance of the position derivative in Eq. (78):

µn = 0⇒ µn
∂Ψ(x,µn)

∂z
= 0.

A value of µn = 0 would,furthermore, lead the appearance of discontinuities in flux

along the angular coordinate.

3. For low orders of µ, and N distinct quadrature points, given Ψ(x, µ) is a polyno-

mial of degree N − 1, N number of weights can be found such that the quadrature

formula provides an exact value for the scattering term integral. That is [11],

N∑
n=1

wnµ
m
n =

∫ 1

−1
µm∂µ =


2

n+1 if (n even)

0 if (n odd)
, (79)

where m = 0, 1, 2..., N − 1. Integrals can be solved exactly as N → ∞, however for

any finite N , the formula is only exact for linear functions. Given constraints 1-3,

it is possible to determine N parameters µn and wn such that polynomials having

order 0, 2, ..., 2N − 2 can be exactly integrated. That is,

N∑
n=1

wnPk(µn)Pl(µn) =
∫ 1

−1
Pk(µ)Pl(µ)dµ = 2δkl

2k + 1 ,

k, l = 0, 1, ..., N − 1, (80)

where the Legendre polynomials Pn are generally orthogonal on the interval [-1,1],
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and the corresponding weight function wn is unity [11]. The ordinates are specified

as the N roots of the Legendre polynomial of order N ,

PN(µi) = 0. (81)

The angles µn and wn satisfying the stated conditions constitute the Legendre-

Gaussian quadrature set.

A numerical solution is obtained by writing the transport equations in the following

form, where Q is defined as the scattering source:

µn
∂Ψ(z, µn)

∂z
+ Σt(z)Ψ(z, µn) = Q(z, µn), (82)

and solving via an iteration on the source, using a lagging scheme (i.e. source itera-

tion): [10]

µn
∂Ψ[s+1](z, µn)

∂z
+ Σ[s+1]

t (z)Ψ(z, µn) = Q[s](z, µn), (83)

Q[s+1](z, µn) = Σs(2)
2

N∑
n=1

wnΨ[s+1](z, µn). (84)

Source iteration is initiated by setting Q = 0 and first solving the left side of Eq.

(83) using boundary conditions. Having solved for the left side of the equation,

Q may be successively updated. In order to implement source iteration, however,

spatial discretization must be introduced. That is, for ducts of length a, z:[0, a], the

duct is partitioned into I subintervals with uniform properties. Specifically, in each

subinterval zi−1 < z < zi the average values of the angular flux, the emission density,

29



and cross-sections are uniformly defined. Spatial discretization, therefore, allows the

planar transport equation to be rewritten as [11]

µn
Ψ(zi, µn)−Ψ(zi−1, µn)

∆zi
+ ΣsΨ̄i,n = Qi,n (85)

where ∆z = (zi−1, zi), and Ψ̄i,n is the mesh-averaged angular flux. The algorithm

used to solve the discretized transport equation, as expressed in Eq. (85), is de-

scribed in greater detail in the following section, in the context of the nonlocal

one-dimensional form.

III.B. Solution of the Nonlocal One-Dimensional Transport Equation

Accounting for wall migration via the kernel density, the nonlocal one-dimensional

transport equation can be compactly expressed as

µ
∂Ψ(z, µ)

∂z
+ (1− µ2) 1

2 A Ψ(z, µ) = 2c
π

(1− µ2) 1
2

×B
∫ 1

−1
(1− µ′2) 1

2 Ψ̃(z, µ′)∂µ′. (86)

with boundary conditions

Ψ(0, µn) = F(µn); Ψ(Z, µn) = G(−µn). (87)

A Gaussian-Legendre quadrature of order N is used solve the scattering integral term

in Eq. (86). In order to perform the numerical integration, the Legendre polynomials
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Pn are defined using a recursive rule, such that [12]

P0(µ) = 1, (88a)

P1(µ) = µ, (88b)

n Pn(µ) = (2n− 1) µ Pn−1(µ)− (n− 1) Pn−2(µ). (88c)

The derivative of Pn can be written as

P ′n(µ) = n

µ2 − 1(µPn(µ′)− Pn−1(µ)), (89)

and the roots of Pn are approximated using a Newton-Raphson method: [13]

µn+1 = µn −
Ψ(µn)
Ψ′(µn) . (90)

An initial guess µ0 for the j-th root of Pn is given as

µ0 = cos

(
π
j − 1/4
n+ 1/2

)
. (91)

Given the angles µj, the weights are calculated by

wj = 2
(1− µj)2[P ′n(µj)]2

. (92)

Having calculated both the angles and weights, the scattering term can be integrated

according to Eq. (77).
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Introducing the quadrature approximation, Eq. (86) is written as

µn
∂Ψ(z, µn)

∂z
+ (1− µ2

n) 1
2 A Ψ(z, µn)

= 2c
π

(1− µ2
n) 1

2 B
N∑
j=1

(1− µ′2j ) 1
2ωjΨ̃(z, µj), (93)

for n = 1, 2, ..., N . The flux distribution function Ψ̃ incorporates the kernel density

and can be expressed as

Ψ̃(z, µ′j) =
∫ Z

0
K(|z − z′|) Ψ̄(z′, µ′j) dz′

=
∫ Z

0

λ

2 exp (λ|z − z′|) Ψ̄(z′, µ′j) dz′, (94)

for a duct of length Z. Introducing a spatial mesh zi, where i = 0, 1, ..., I, and inte-

grating over each of the mesh intervals (zi−1, zi) using a diamond rule approximation,

Ψ̄i,n = 1
2(Ψi−1,n + Ψi,n), (95)

the mesh average vectors can be eliminated [4] , and Eq. (94) can be rewritten in

the form

µn
∆z [Ψi,n −Ψi−1,n] + (1− µ2

n) 1
2 A

1
2[Ψi−1,n + Ψi,n]

= 2c
π

(1− µ2
n) 1

2 B
N∑
j=1

(1− µ′2j ) 1
2ωj

1
2[Ψ̃i−1,j + Ψ̃i,j]. (96)

If the right side of Eq. (96) is set equal to Q̃i,n,

µn
∆z [Ψi,n −Ψi−1,n] + (1− µ2

n) 1
2 A

1
2[Ψi−1,n + Ψi,n] = Q̃i,n, (97)

32



and the boundaries of the mesh intervals are combined as follows

Ψi,n

 µn
∆z + A(1− µ2) 1

2

2

+ Ψi−1,n

 µn
∆z −

A(1− µ2) 1
2

2

 = Q̃i,n, (98)

Ψi,nM
+
i,n −M−

i,nΨi−1,n = Q̃i,n, (99)

equations for Ψi,n can be written, over values of n, as

Ψi,n = [M+
i,n]−1[M−

i,nΨi−1,n + Q̃i,n], µn > 0, (100a)

Ψi−1,n = [M−
i,n]−1[M+

i,nΨi,n + Q̃i,n], µn < 0. (100b)

Eqs. (100) are solved using a sweeping technique, initialized by setting the scattering

source vector to zero and applying the boundary conditions to Eq. (96), in order to

move across the mesh. M±
k,i have been set to

M±
i,n = I

|µn|
∆z ±

1
2(1− µ2

n) 1
2 A, (101)

and I is the identity matrix. Convergence of the solution is defined when the compo-

nents of Ψk,i do not differ by more than 10−8 in two successive steps, for i = 0, 1, ...I

and n = 1, 2, ...N .

III.C. Circular Duct Case

As a test-case, the N = 3 nonlocal one-dimensional model is applied to a duct

of circular cross section with radius ρ. For a circular duct geometry, the function
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D(x, y, ~ω) is expressed as [2]

D(x, y, ~ω) = ~r · ~ω − [(~r · ~ω)2 − x2 − y2 ] 1
2 , (102)

and is reduced at the inner wall ∂R to

D(x, y, ~ω) =


2ρ ~ω · ~n if ~ω · ~n > 0,

0 if ~ω · ~n < 0.
(103)

The six parameters required to determine the elements of A and B, and thereby

define the N = 3 model, are expressed as [4]

A = πρ2, (104)

L = 2ρπ, (105)

u = 3π(9π2 − 64)
−1
2 / ρ, (106)

v = 8ρ / 3π, (107)

q = 8ρ
[9ρ

5 (9π2 − 64)−1 − 2
3π

]
(108)

r = ρ−2
[
1− 576

25 (9π2 − 64)−1
]−1

2
, (109)

where u and v are determined by Eqs. (58-59), q is determined by Eq. (65), and r

is determined by Eq. (67).
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III.D. Circular Duct Case: Results

The quantities of interest in this case are reflection probability and transmission

probability, corresponding to iron, concrete, and graphite ducts, subject to a thermal

neutron source. That is, the current ratios at each end of the ducts, are calculated

as

R = 2
∫ 1

0
= µΨ1(0,−µ)dµ, (110)

T = 2
∫ 1

0
= µΨ1(Z, µ)dµ, (111)

for values of c and λ corresponding to each of the wall materials. If the quadrature

nodes are ordered such that −1 > µ1 > · · · > µn > 1, and n = N/2, reflection and

transmission probabilities can be expressed in discretized form as [4]

R = 2
N∑

j=n+1
ωj|µj|(1− µ2

j)
1
2 Ψ(0, µj), (112)

T = 2
N∑
j=1

ωjµj(1− µ2
j)

1
2 Ψ(Z, µj). (113)

Ψ1(0, µj), j = n+1, n+2, ...N , and Ψ1(Z, µj), j = 1, 2..., N , are the discretized results

for the first components of the coefficient vectors Ψ(0, µj) for µj < 0, and Ψ(Z, µj)

for µj > 0. The results for Tables III-VIII correspond to a Gaussian quadrature of

640 nodes and weights, coupled with a spatial discretization mesh consisting of 160

intervals.
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Reflection and transmission probabilities are calculated for 100 cm ducts with 20 cm

thick walls, and compared to MCNP simulations for 106 histories. In each table the

nonlocal one-dimensional transport model is abbreviated as “1DWM”. The percent

deviation (% Dev) is calculated as

% Deviation = P1DWM − PMCNP

PMCNP

× 100, (114)

where P is the reflection or transmission probability.

Table III: Reflection Probability for ducts with iron shielding.

Radius 1DWM MCNP % Dev.

8 0.1557 0.1466 6.23

10 0.1597 0.1529 4.48

15 0.1653 0.1621 2.03

20 0.1679 0.1665 0.84

30 0.1691 0.1693 -0.10

50 0.1630 0.1638 -0.49
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Table IV: Transmission Probability for ducts with iron shielding.

Radius 1DWM MCNP % Dev.

8 0.007950 0.008743 -9.98

10 0.01340 0.014736 -9.95

20 0.03381 0.03716 -9.91

20 0.06262 0.06778 -8.23

30 0.1322 0.1390 -5.12

50 0.2691 0.2751 -2.26

Table V: Reflection Probability for ducts with concrete shielding.

Radius 1DWM MCNP % Dev.

8 0.2017 0.1664 21.22

10 0.2139 0.1812 17.92

15 0.2326 0.2050 13.41

20 0.2419 0.2174 11.27

30 0.2473 0.2263 9.28

50 0.2362 0.2180 8.31
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Table VI: Transmission Probability for ducts with concrete shielding.

Radius 1DWM MCNP % Dev.

8 0.009983 0.01314 -24.02

10 0.01799 0.02355 -23.60

15 0.04778 0.0609 -21.48

20 0.08730 0.1059 -17.52

30 0.1734 0.1972 -12.01

50 0.3228 0.3453 -6.51

Table VII: Reflection Probability for ducts with graphite shielding.

Radius 1WMD MCNP % Dev.

8 0.2239 0.1893 18.32

10 0.2484 0.2172 14.39

15 0.2879 0.2684 7.28

20 0.3083 0.2989 3.12

30 0.3203 0.3232 -0.93

50 0.3023 0.3135 -3.56
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Table VIII: Transmission Probability for ducts with graphite shielding.

Radius 1DWM MCNP % Dev.

8 0.01931 0.01875 -3.03

10 0.03319 0.03408 -2.62

15 0.07872 0.08534 -7.75

20 0.1307 0.1431 -8.72

30 0.2289 0.2487 -7.94

50 0.3801 0.4025 -5.59
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IV. MONTE CARLO-BASED LOGISTIC REGRESSION MODELS FOR

NEUTRAL PARTICLE TRANSPORT IN DUCTS

Logistic regression is a standard method for modeling binary outcomes for a particu-

lar response variable and one, or several, explanatory variables and or mixing terms.

Specifically, the response variable yi, which corresponds to an underlying binomial

distribution, can take on the values of 0 or 1. However, a linear regression model is

not fitted to data y = 0 or 1, but rather to the probability that y = 1, [14]

p(yi) = logit−1(β0 +
k∑
i=1

βixi), (115)

where βxi is referred to as a linear predictor. The logit function is defined as the

natural logarithm of an odds ratio,

logit(p) = ln( p

1− p), (116)

where p is the probability of an outcome [15]. The logit function is generally used

to transform an ’S’-shaped curve into an approximate straight line and projects the

curve’s range corresponding to [0,1] onto (−∞ , +∞) [16]. A logit regression model,

therefore, can be expressed as logit(p) = β0 + β1x1 + · · ·+ βkxk, which implies,

p

1− p = eβ0+β1x1+···+βkxk (117)

resulting in,

p = eβ0+β1x1+···+βkxk

1 + eβ0+β1x1+···+βkxk
= logit−1(β0 + β1x1 + · · ·+ βkxk) (118)
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As in the case of linear regression, the intercept β0 represents the model assuming

a zero value for other predictors. To provide a sense of how the logit scale works,

specific values can be tested. For example:

• logit(0.5)=0, logit(0.75)= 1.09. What this implies is that an approximate increase

of 1 on the logit scale will result in an increased probability of 25% (i.e. from 50%

to 75% ).

It should be noted— as seen in Fig. 3— that at either end of the scale probabilities

are compacted, such that the range is kept between 0 and 1. As such, we can see

that approximate increase of 1 at an extremity results in a different percent increase:

• logit(0.04)=-3.178, logit(0.1)= -2.197. In this case, an approximate increase of 1

on the logit scale results in the probability increasing by 6% (i.e. from 4% to 10% ).

Fig. 3: The inverse-logit (“logistic”) function, plotted in R. The curve is steepest at
a probability of 0.5, with much more gradual change occurring at the edges.
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IV.A. Maximum Likelihood Estimation

The coefficients of the model, B = β1, . . . , βk, are estimated by the method of max-

imum likelihood. If we define a likelihood function L(B) as the joint probability of

observing a set of collected data, the method of maximum likelihood is then applied

by choosing the estimator of the set of parameters B which maximizes L(B). [17]

The method of maximum likelihood can be explicitly demonstrated by being applied

to a binomial distribution, where the likelihood function is expressed as

L(p) = c× px × (1− p)n−x (119)

where c is a constant, n = number of data points, x is a binary quantity equal to 1,

and p is the probability of x = 1. In this case the maximum likelihood estimator is

denoted as p̂, and is obtained by solving

∂L(p)
∂p

= 0, (120)

for p. As such, p̂ can be found as follows:

∂L(p)
∂p

= ∂(cpx(1− p)n−x)
∂p

= xpx−1(1− p)n−x − px(n− x)(1− p)n−x−1 = 0,

which implies,

n− x
x

= px−1(1− p)n−x
px(1− p)n−x−1 = 1− p

p
,
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thus, the maximum likelihood estimator for a binomial distribution is given as

p̂ = x

n
. (121)

Often finding the maximum likelihood estimator can be considerably simplified by

taking the log of the likelihood function; this is a permissible alternative because

the maximum of L(B) will equal the maximum of ln(L(B)). This can easily be

demonstrated by once more looking at the binomial distribution example,

ln(L) = ln(c) + x ln(p) + (n− x) ln(1− p), (122)

where,
∂lnL
∂p

= x

p
+ n− x

1− p = 0, (123)

which once more gives us p̂ = x
n
.

A more general form of Eq. (121) is expressed as [17]

∂lnL(B)
∂Bi

= 0, i = 0, 1, ..., k. (124)

where k parameters corresponds to a set of k equations with k unknowns. These

systems of equations must be solved iteratively by means of statistical software or

packages in a programming language. In the case of logistic regression models, the

likelihood function takes on one of two forms— an unconditional and conditional

form. The unconditional form of the logistic likelihood function is expressed as the
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product of the joint probability for dichotomous cases (0 vs 1), [17]

Lu =
j∏
i=1

p(xi)
n∏

i=j+1
[1− p(xi)], (125)

where,

p(x) = logistic model = 1
1 + e−β0−

∑
βixi

, (126)

as such,

Lu =
∏n
i=1 e

−β0−
∑

βixi∏n
i=1[1 + e−β0−

∑
βixi ]

. (127)

The conditional form of the logistic likelihood function is expressed as a ratio of the

probability of observed data and the probability of all possible configurations of the

given data, [17]

Lc =
∏j
i=1 p(xi)

∏n
i=j+1[1− p(xi)]∑

u{
∏j
l=1 p(xul)

∏n
l=j[1− p(xul)]}

, (128)

=
∏j
l=1 e

∑k

i=1 βixil∑
u[
∏j
l=1 e

∑k

i=1 βixlui ]
. (129)

In its final form, the unconditional likelihood function for logistic models does not

include the intercept (known as the nuisance parameter) β0, and only coefficient

estimates are calculated.

IV.B. Univariate Reflection and Transmission Models

In this work, multivariate logistic models are developed for circular ducts with iron,

concrete, and graphite shielding, where an isotropically distributed neutron source is
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located at the entrance (z = 0). The models are distinguished by shielding material

and energy distribution of the neutron source. In particular, a Maxwellian distribu-

tion in the thermal-energy range is used as one source, and 14 MeV neutrons as a

second source. Three explanatory variables are defined: duct radius (r), duct length

(l), and thickness of shielding + inner duct radius (s), which are each defined over a

unique range of values. The duct system configurations are similar to those of Ref.

6.

For neutral particles streaming in a duct system, p can be defined as the probability

of reflection or transmission (where y = 1 corresponds to reflection/transmission,

and y = 0 corresponds to no reflection/transmission). As such, logistic regression

models can be applied, where reflection/transmission is the response variable and

geometric features of a duct system serve as explanatory variables.

In order to build multivariate models, the relationship between the response variable

(reflection/transmission) and each of the individual explanatory variables (r, L, S),

while maintaining the remaining explanatory variables fixed, is tested. Each of the

explanatory variables are plotted against the response variable, and univariate lo-

gistic regression models are created based on discernible correlations between the

variables of interest.

In Fig. 4 the plots for radius versus reflection probability corresponds to a duct

system with a thermal neutron source, for all listed shielding materials. In Fig. 5

the plots correspond to a duct system with graphite shielding, subject to a thermal

and 14 MeV neutron source. In each case, the duct length is fixed to 100 cm, wall

thickness is fixed to 20 cm, and the radius varies over a range of 0-500 cm. Figs.

4-5 indicate that models for each of the shielding (wall) materials can be built using
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the same family of functions, differing only by specific factors. In Fig. 5 the plots

indicate that the reflection probability for varying energy sources differ by specific

factors (coefficients), but can be modeled by the same functions.

Fig. 4: Plot for radius vs reflection probability for ducts with a thermal neutron
source.

Fig. 5: Plot for radius vs reflection probability for a thermal neutron source and a
14 MeV (fast) neutron source, and graphite shielding.
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The univariate logistic model is based on functions revealed by plotting our data

versus a change in radius. Fig. 6 shows plots of candidate functions used to produce

the logistic regression models for both reflection and transmission:

Fig. 6: Plots of candidate functions.

The candidate functions are p = r, p = r−1
2 , p = r 1

2 and p = log(r) + 4.

The generalized linear model (GLM), in R, [8] consists of three elements: a probabil-

ity distribution, a linear predictor, and a link function. The probability distribution is

from the exponential family, which includes the normal, binomial, Poisson, gamma,
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and many other common distributions. The general expression for a distribution

form is given by [15]

f(y|θ, τ) = h(y, τ)exp((b(θ)TT (y)− A(θ))/d(τ)). (130)

The functions h, b, T, A, and d are specified for the distribution, and τ , known as the

dispersion parameters, is typically related to the variance. The linear predictor, η

introduces the information about independent variables into the model,

η = Xβ, (131)

where X is the design matrix and the vector β are the unknown coefficients that are

to be determined. The link function relates the linear predictor to the mean of the

probability distribution. For the examples included, the link is the logit function,

Xβ = ln(µ (1− µ)). (132)

The model is fit using maximum likelihood estimation using iteratively re-weighted

least squares (IRLS) regression. [18] IRLS is an optimization method that minimizes

the squared error between the model and the true value.

Based on the plot in Fig. 2, a univariate model, presented (solely) for the case of

iron shielding, for reflection probability (p) is input into R in the following general

form, using the glm function,
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Reflection.model = glm(p ∼ r + logr + rn05,

family = binomial,df) (133)

where logr = Log(r) + 4, and rn05 = r− 1
2 . R gives us the following synopsis for the

reflection model:

Coefficients:

(Intercept) radius logr rn05

0.138469 − 0.003044 − 0.169622 − 2.267581

Degree of Freedom : 23 Total (i.e. Null; 20 Residual)

Null Deviance : 0.3735

Residual Deviance : 0.006296 AIC : 14.65

The performance of a model can be evaluated by the values of the null and residual

deviance. The deviance can be generally thought of as a measure of the lack of

fit between a model and data. In particular, the null deviance indicates how well

the response variable (p) is predicted by a model, if the model consisted solely of

the intercept. The residual deviance indicates how well the response variable is

predicted by a model when explanatory variables are included. Specifically, the

residual deviance indicates whether or not the null hypothesis (i.e. the proposed

model fits the data well) is true. If the value of the null deviance is relatively

small it is an indicator that the null model explains the data well; likewise, a small

value for residual deviance is an indicator that the proposed model explains the

data well. If a proposed model improves upon the null model, the residual deviance
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should be significantly smaller than the null deviance, as is the case for the reflection

probability model (where a reduction of 0.3784 to 0.006296). In this context, the

degree of freedom represents the number of ways the regression equation can vary

(3) in addition to 20 residual terms.

The AIC (Akaike Information Criterion) term is a measure of the relative quality

of candidate statistical models for a given set of data, with a penalty for the number

of parameters (k). [15] AIC can be expressed as

AIC = 2k − 2 ln(L), (134)

where L is the maximum value of the likelihood function. The quality of the model

as measured by the AIC, however, must be considered against reduction in the de-

viance. Table IX shows results for a number of candidate models, which demonstrate

that while the change in AIC is relatively small between them, the accepted model

leads to the most significant reduction in deviance. In each case the AIC values

are on the same order, with the exception of the accepted model, which reduces the

deviance by 2 orders of magnitude.
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Table IX: A comparison of the candidate models for reflection probability.
(**Accepted model.)

Formula AIC Null

Dev.

Residual

Dev.

Reflection ∼ r 10.63 0.3735 0.1462

Reflection ∼ log(r) 10.60 0.3735 0.3381

Reflection ∼ r−1/2 10.60 0.3735 0.3707

Reflection ∼ r + r−1/2 12.64 0.3735 0.01234

Reflection ∼ r+log(r) 12.63 0.3735 0.04285

Reflection ∼ r−1/2 + log(r) 12.64 0.3735 0.04893

**Reflection ∼ r+ r−1/2 + log(r) 14.64 0.3735 0.006296

Under the coefficients heading, R provides the maximum likelihood estimate for each

coefficient. While the coefficients for logistic regression are open to interpretation,

they are generally taken to mean the change in the log-odds of the result for one

unit increases in the explanatory variables. Having defined the coefficients, a logistic

model for reflection probability (p) can be explicitly stated as

p = logit−1(0.1385− 0.003044 ∗ r− 0.1696 ∗ (log(r) + 4)− 2.2675 ∗ r
−1
2 ) (135)

As an example, the analytic expression can be used to find the reflection probability

for a duct of radius = 20 cm,

p = logit−1(0.1385− 0.003044 ∗ (20)− 0.1696 ∗ log(20) + 4− 2.2676 ∗ 20−1
2 )
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= e(0.1385−0.003044∗(20)−0.1696∗(log(20)+4)−2.2676∗20
−1
2 )

1+e(0.1385−0.003044∗(20)−0.1696∗(log(20)+4)−2.2676∗20
−1
2 )

= 0.1657.

The value predicted by the logistic model, p = 0.1657, can be compared to the

actual value (as given by the data) pa = 0.1665, which results in a percent difference

= 0.46%. By use of the R function Reflection.model$fitted a table of predicted

reflection probabilities corresponding to each of the radii in the data can be quickly

produced, and compare them to actual values.

Table X: Comparison of the predicted and actual reflection probability.

Radius Actual Predicted % Dev.

1 0.06177 0.05675 8.12

3 0.1096 0.1146 4.51

5 0.1307 0.1368 4.63

8 0.1466 0.15203 3.72

10 0.1529 0.1573 2.91

15 0.1621 0.1638 1.08

20 0.1666 0.1657 0.46

25 0.1689 0.1658 1.708

30 0.1693 0.1649 2.59

35 0.1689 0.16343 3.29

40 0.1678 0.1616 3.67

45 0.1659 0.1597 3.81

50 0.1638 0.1576 3.84
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Table X continued: Comparison of predicted and actual reflection probability

60 0.1586 0.1532 3.44

75 0.1499 0.1464 2.28

100 0.1351 0.1356 0.39

120 0.1243 0.1273 2.47

140 0.1147 0.1196 4.32

160 0.1062 0.1123 5.83

180 0.09847 0.1054 7.12

200 0.09200 0.09904 7.66

300 0.06874 0.07232 5.21

400 0.05471 0.05279 3.51

500 0.04529 0.03851 14.96

Avg. % Dev. 4.231201

Table X indicates fairly good agreement between the model and the data, with the

exception of the extreme points (where the duct entrance at 1 cm is 1/100 of the

length, and at 500 cm where it is 5 times the length), which are difficult to accurately

capture for physical models as well. Table X shows that the error values are highest

at the extremes (∼8.2 and ∼ 15 %), with an average error of ∼4.2 %.

Fig. 7 shows a plot of the data with an overlapping fit—that is, the regression

equation expressed as a continuous function.
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Fig. 7: Plot of transmission probability values with overlapping fit.

It should be noted that while the model fit featured in Fig. 7 is not unique, and can

be derived using simpler alternatives, e.g. linear interpolation, regression has the

intrinsic advantage of elucidating the relationship between dependent and indepen-

dent variables. In particular, regression modeling establishes a function, or group of

functions, which correlate the dependent and independent variables, and indicates

the weighted importance of each function according to coefficients. For example, Eq.

(136) itself produces the specific, quantifiable changes to reflection probability with

respect to a changing radius, and indicates, via the coefficients, a heavy dependence

on the inverse square root of the radius, and to a lesser degree the logarithm of

the radius. The functions in this case, provide a clear indicator that as the radius

becomes larger the reflection probability increases very slowly with respect to small

radii values, and asymptotically approaches zero with respect to large radii values.

The logarithm function is further indicative of a correlation between increases in
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radius and wall attenuation; where the logarithmic intensity (I) of radiation incident

upon a wall is attenuated according to ln(I0) - µx, and µ and x are the attenuation

coefficient and wall thickness. The form of Eq. (136), moreover, allows for higher

order derivatives, and thus the calculation of sensitivities. That is, the first deriva-

tive can be calculated in order to measure how quickly reflection probability changes

with respect to radius, while the second derivative can be calculated to measure how

the rate of change with respect to radius is itself changing. Ultimately, the functions

which constitute the univariate model indicate the radial features of the duct system

which must be considered when developing a multivariate model.

While the fitted values are in good agreement with the given data, it is important to

test the model against unseen data. To this end, the data was split into training and

testing sets. The R function mutate [8] was used to add a new column, “sampled”,

to the existing data frame. Using the expanded data frame a method was developed,

which allowed for continuous sampling of the data at random, automatically parti-

tioning between training and testing sets after every run of the code. Specifically, a

random number generator was used to partition and sample approximately 80% of

the data to train the logistic model, while the remaining 20% was used as unseen data

to test the logistic regression model. Table XI shows results for a random training

set; while the error increases versus the fitted results, the model provides reasonable

prediction values.
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Table XI: Comparison of the predicted and actual reflection probability for a random
test (unseen) data set.

Radius Actual Predicted % Dev.

20 0.1665 0.1651 0.86

35 0.1689 0.1636 3.18

100 0.1351 0.1372 1.61

160 0.1061 0.1141 7.57

180 0.09847 0.1073 8.97

Avg. % Dev. 4.44

Fig. 8 shows a plot of reflection probability predictions for the unseen/un-sampled

data (corresponding to 0, red) against the predicted values for the training set (cor-

responding to 1, blue), with overlapping linear fits. In theory, the linear fits should

have a slope ∼ 1, indicating that the predicted values and the actual values are in

very close agreement. The graph demonstrates the general trend of the reflection

probability with respect to radius, and indicates fairly good agreement between both

the predicted test and training points and the actual values.
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Fig. 8: Plot for predicted reflection probability for the training and test sets with
overlapping linear fit.

Fig. 9 shows a plot for reflection probability for all 24 radii values, including both

the training and test sets. The values corresponding to the test data (unseen data),

are indicated by circular points versus triangular points for the training data.

Fig. 9: Plots for predicted and actual reflection probability versus radius, for both
test and training sets.
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Using the methods applied to the reflection probability data, a univariate logistic

regression model was developed for transmission probability (t) in a duct. The data

is initially plotted according to shielding material and energy source (see Figs. 10-11).

Fig. 10: Plot for radius versus transmission probability for three different materials,
with a thermal neutron source.

Fig. 11: Plot for radius versus transmission probability for a thermal neutron source
and a fast (14 MeV) neutron source.
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Specifically, the model is applied to a 100 cm long duct with a thermal neutron

source at the entrance, iron shielding, and varying radius. Plotting the transmission

probability values against the radius for ducts with a thermal source (iron, concrete,

and graphite shielding), and a 14 MeV source (iron shielding),as seen in Figs. 10-11,

a comparison is made to the candidate functions in Fig. 6 to derive a number of

competing logistic models. Table XII shows a comparison of several logistic models

for the transmission probability,using the metrics AIC, Null, and Residual deviance

to choose the optimal model.

Table XII: A comparison of the candidate models for reflection probability.
(**Accepted model.)

Formula AIC Null

Dev.

Residual

Dev.

Transmission ∼ r 19.17 10.72 2.7228

Transmission ∼ log(r) 15.60 10.72 0.1023

Transmission ∼ r
1
2 16.51 10.72 1.03

Transmission ∼ r + r
1
2 16.98 10.72 0.22

Transmission ∼ r+log(r) 12.63 0.3735 0.042

Transmission ∼ r
1
2 + log(r) 17.48 10.72 0.01772

**Transmission∼ r + r
1
2 + log(r) 19.74 10.72 0.001704

Based on the results listed in Table XII the optimal glm transmission probability

59



model is expressed as

Transmission.model = glm(t ∼ r + logr + r05,

family = binomial,df), (136)

where r05 = r 1
2 . Having defined the coefficients, a logistic model transmission prob-

ability can be explicitly stated as

t = logit−1(−21.094505 + 0.007988 ∗ r

+ 2.929327 ∗ (log(r) + 4)− 0.488600 ∗ r 1
2 ). (137)

As with the reflection probability model, the R function

Transmission.model$fitted can be used to produce a table of predicted transmis-

sion probabilities, corresponding to each of the radii in the data, and compare them

to actual values.

Table XIII: Comparison of the predicted and actual reflection probability.

Radius Actual Predicted % Dev.

1 0.000106 0.00005233 50.62

3 0.000995 0.0009282 6.71

5 0.002903 0.003285 13.14

8 0.008744 .000013 13.37

10 0.01473 .01634 10.90

15 0.03715 .03853 3.70

20 0.06778 .06742 0.53

25 0.1027 0.1005 2.15
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Table XIII continued: Comparison of the predicted and actual reflection probability.

30 0.1389 0.1358 2.28

35 0.1751 0.1717 1.92

40 0.2103 0.2072 1.50

45 0.2436 0.2415 0.88

50 0.2751 0.2743 0.32

60 0.3326 0.3343 0.49

75 0.4061 0.4104 1.06

100 0.5007 0.5064 1.13

120 0.5579 0.5629 0.89

140 0.6040 0.6072 0.51

160 0.6421 0.6428 0.095

180 0.6734 0.6720 0.21

200 0.6999 0.6966 0.48

300 0.7863 0.7798 0.83

400 0.8343 0.8316 0.33

500 0.8646 0.8695 0.55

Avg. % Dev. 4.231201

Despite very large error for ducts with radius = 1 cm, the transmission probabil-

ity model performs extremely well, giving an average percent error under 5%. In

particular, for radii > 10 cm the error rate quickly approaches zero. With a total

duct length of 100 cm it is difficult to model for very small radii. It is expected

that for a duct with a small entrance, subject to a thermal neutron source, most

neutrons will be absorbed by the shielding or reflected out of the duct, producing a

transmission that is essentially equal to zero. Particularly for natural iron shielding,
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which has a relatively high thermal absorption cross-section (σa = 4.6 · 10−2 b) and

a thermal scattering cross-section of zero, it is expected that a very large fraction of

neutrons will be absorbed. At very large radii (> 100 cm), the transmission prob-

ability increases very gradually, as it reaches a constant value ( of t = 1), and the

error is therefore virtually non-existent. In Fig. 12, below, we see a plot of trans-

mission probability data with an overlapping fit—the regression equation expressed

as a constant function—which match extremely well.

Fig. 12: Plot of reflection probability values with overlapping fit.

Using the same method applied to the reflection probability model, we partition our

data and use the training set to develop the transmission probability model and

subsequently make predictions for a random set of test (unseen) data.
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Table XIV: Comparison of the predicted and actual reflection probability for a ran-
dom test (unseen) data set.

Radius Actual Predicted % Dev.

20 0.1665 0.1651 0.86

35 0.1689 0.1636 3.18

100 0.1351 0.1372 1.61

160 0.1061 0.1141 7.57

180 0.09847 0.1073 8.97

Avg. %Dev. 4.44

As indicated by Table XIV the transmission model for iron ducts performs extremely

well on unseen data, resulting in a mean percent of error of ∼1.74. However, given

that the randomly chosen test set excludes small radii values, it is expected that the

percent error would increase notably if they were included. Fig. 13 shows transmis-

sion probability predictions plotted against actual values, for both the training and

test data with overlapping linear fits.
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Fig. 13: Predicted transmission probability.

Fig. 14 shows radius plotted versus transmission probabilities for all 24 radii values,

including both the training and test sets. The values corresponding to the test

data (unseen data), are indicated by circular points, versus triangular points for the

training data.

Fig. 14: Plots for the predicted and actual transmission probability versus radius,
for both test and training sets.
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Using the methods applied to the derivation of reflection and transmission models

with respect to a change in radius, we derive univariate models accounting for changes

in length and shield thickness. Below (see Figs. 15-16) are plots of reflection and

transmission data, for ducts with a thermal source located at the entrance, versus

length and shield upon which our models are based.

Fig. 15: Reflection probability vs length, for iron (black),concrete (red), and graphite
(purple) ducts.

Fig. 16: Transmission probability vs length, for iron (black),concrete (red), and
graphite (purple) ducts.
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Given the data plotted in Fig. 15, the logistic regression model for length versus

reflection probability, where the radius is kept fixed to 10 cm and the shield is kept

fixed to 20 cm, is summarized as follows:

Coefficients:

(Intercept) length logL ln05

0.1331855 0.0003655 − 0.3430147 − 6.8418396

Degree of Freedom : 13 Total (i.e. Null; 10 Residual)

Null Deviance : 0.2348 Residual Deviance : 0.001762 AIC : 11.67.

The explicit regression equation for reflection probability for ducts with iron shield-

ing, with length as an independent variable, can therefore be expressed as

p = logit−1(0.1331855 + 0.0003655 ∗ L− 0.3430147 ∗ log(L)− 6.8418396 ∗ L
−1
2 ). (138)

By using the R fitted [15] function, the reflection probabilities calculated using

Eq. (138) can be compared directly to our actual data values. Table XV provides

predictions corresponding to the entire data set. It should be noted that predictions

for very small values of length (L < 10 ), high errors are expected as this would

represent a physical case where the radius is considerably larger than the duct length

and the reflection probability would be very near zero. Likewise, for very large values

of length (L > 50) it is expected that the reflection probability would approach a

constant as the transmission probability approaches zero. In the latter case, most

if not all of the neutrons would have scattered out of the system (through the duct

entrance or the shield) or been absorbed before reaching the duct exit. As such,

taking a test set of data which more accurately represents realistic physical systems

66



(i.e. where the ratio L/r >> 1), would lead to a considerably lower mean error. In

this instance, a better indicator of the accuracy of the model is the median, where

the median percent difference, corresponding to the data in Table XV, is 1.31 %.

Table XV: Comparison of the predicted and actual reflection probability.

Radius Actual Predicted % Dev.

1 0.0019 0.001219 35.82

10 0.0497 0.05643 13.55

20 0.0832 0.08188 1.57

30 0.0976 0.09349 4.20

40 0.1030 0.09981 3.09

50 0.1060 0.1035 2.27

60 0.1070 0.1059 0.96

70 0.1080 0.1075 0.44

80 0.1080 0.1085 0.51

90 0.1080 0.1092 1.14

100 0.1080 0.1096 1.54

150 0.1080 0.1101 1.97

200 0.1080 0.1095 1.47

250 0.1080 0.1088 0.82

300 0.1080 0.1082 0.23

350 0.1080 0.1077 0.23

400 0.1080 0.1073 0.57

500 0.1080 0.1070 0.92
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Fig. 17: Reflection probability versus length.

In Fig. 17 the reflection probability and model predictions are plotted versus chang-

ing length, for both training and test sets. Test set values are indicted by circles and

training set values are indicated by triangles. Fig. 18 provides the same information

as Fig. 17 for the transmission probability with respect to changing length. An

analytical expression for transmission probability (t) is given as

t(L) = logit−1(2.40638− 0.003313 ∗ L−

0.157712 ∗ log(L)− 0.918251 ∗ L
1
2 ). (139)
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Fig. 18: Transmission probability versus length.

The median percent difference, between actual values and those predicted using Eq.

(139), is 4.81%.

Fig. 19 shows the change in reflection probability with respect to shielding thickness

(in cm), for concrete, graphite, and iron. The plot indicates that for concrete the

reflection probability reaches a constant value at approximately 20 cm of shielding,

while the same is true for graphite and iron at approximately 40 cm. Notably, the plot

also indicates that regardless of the shielding thickness the reflection probability is

considerably higher in iron ducts, while the probabilities are comparable for graphite

and concrete ducts, except at large thickness values. Fig. 20 indicates that the same

trends do not hold for the transmission probability. The transmission probability

continues to increase beyond 50 cm for both iron and graphite; only concrete quickly

reaches a constant value, once again at approximately 20 cm.
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Fig. 19: Reflection probability versus shield thickness.

Fig. 20: Transmission probability versus shield thickness.

Based on Figs. 19-20, and repeating the model selection process, an analytical
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expression for reflection and transmission probability (p and t, respectively) are given

as:

p(s) = logit−1(−3.05056 + 0.02428 ∗ s+

1.11070 ∗ log(s)− 0.64197 ∗ s
1
2 ), (140)

t(s) = logit−1(−4.482481− 0.011977 ∗ s−

0.003052 ∗ log(s)− 0.198733 ∗ s
1
2 ). (141)

The median percent deviation, between actual reflection probability values and those

predicted using Eq. (141), mpd= 0.0894%; for actual transmission probability ver-

sus predicted values, mpd = 0.2772%. In Figs. 21-22 actual values as well as the

predicted reflection and transmission probability, for both training and test sets, are

plotted with respect to shielding thickness.

Fig. 21: Reflection probability versus shield thickness.
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Fig. 22: Transmission probability versus shield thickness.

IV.C. Multivariate Reflection and Transmission Models

Latin Hypercube Sampling (LHS) is used to ensure that samples are evenly dis-

tributed over a defined sample space. [19] With 100 data points, the sample space

is partitioned into cubes over a 5 × 5 × 4 (Length × Radius × Shield) grid. LHS

ensures that each cube contains at least one sample point.

Fig. 23: Sample space partitioned by LHS.
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Based on the univariate models, numerous candidate models and corresponding di-

agnostic parameters are compared in order to find the optimal model. Table XVI

shows a number of candidate models considered, as well as their corresponding AIC,

residual deviance, and the average percent error of predictions for all 100 data values.

Table XVI: Candidate models for iron ducts with a thermal source.

Model AIC R. D. AE%

RP ∼ logit−1(r−1
2 +L−1

2 +Log(S)+Log(L)+

Log(r))

45.59 0.1119 6.08

RP ∼ logit−1(r−1
2 +L−1

2 +Log(S)+Log(L∗r)) 43.59 0.1119 6.06

RP ∼ logit−1(S + L
−1
2 + Log(S) + Log(L) +

Log(r))

45.59 0.1724 6.86

T ∼ logit−1(r 1
2 + L

−1
2 + Log(S) + Log(L) +

Log(r) + Log(r) ∗ Log(L) ∗ Log(S))

28.12 0.0571 10.26

T ∼ logit−1(r 1
2 + L

−1
2 + Log(S) + Log(L) +

Log(r))

25.28 0.148 40.57

T ∼ logit−1(r−1
2 + L

−1
2 + Log(S) + Log(L) +

Log(r) + Log(r) ∗ Log(L) ∗ Log(S))

28.12 0.0518 9.60

where, r: Radius, L:Length, S:Shield, RP : Reflection Probability, T : Transmission

Probability. Based on the results in Table XVI, an analytical expression for the

reflection probability (p) for iron ducts, subject to a thermal neutron source, is given
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as

p(r, L, S) = logit−1(0.8724 + 0.1013 ∗ Log(S)− 0.2263 ∗ Log(r ∗ L)

− 2.182 ∗ r−1
2 − 6.74 ∗ L−1

2 ). (142)

Generally, in linear regression, the coefficients of a model indicate the effect of each

of the explanatory variables. However, in multivariate logistic regression models,

the logit scale makes interpreting a variable’s impact more complicated. In Eq.

(142) the coefficients indicate that the length of the duct has the greatest impact

on the reflection probability; that is, increasing the duct length appears to reduce

the reflection probability at the fastest rate. However, in order to quantify and

confirm the effect of each of the explanatory variables, predicted difference must be

calculated. The predictive different in probabilities between two cases, which differ

only by a change in a single parameter is defined as [14]

δ(u′, u, v, β) = P (y = 1|u′, v, β)− P (y = 1|u, v, β), (143)

where u is the input of interest, and v is the vector consisting of all other inputs.

The average predictive difference can therefore be calculated as [14]

∆(u, u′) = 1
n

n∑
i=1

δ(u, u′, vi, β). (144)

For example, if two of the explanatory variables for the system are held constant, an

increase in 10 cm (10 cm - 20 cm) for the third variable gives an average predictive

difference for each of the duct parameters can be calculated as
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∆(L,L10) = 0.03627

∆(r, r10) = 0.00596

∆(S, S10) = 0.00846

The predictive differences confirm that changes in length, for iron ducts subject to a

thermal source, has by far the largest effect on the reflection probability— where on

average a change of 10 cm to 20 cm in length leads to an approximately 3.6% increase

in reflection probability. The predictive differences also show that small changes in

the radius and shielding lead to comparable changes in reflection probability. The R

code to calculate predictive change in length (for example) can be input as follows:

c < − coefficients(Reflection.model)

L0 < − 10

L1 < − 20

u1 < − log(L0*r)

u0 < − log(L1*r)

LogS < − log(S) R.I < − r∧(-0.5)

delta = invlogit(c[1] + c[2]LogS +c[3]*u1 + c[4]*R.I + c[5]*L1∧(-0.5) ) -

invlogit(c[1] + c[2]LogS +c[3]*u0 + c[4]*R.I + c[5]*L0∧(-0.5) )

print(mean(delta))

Testing for a much larger change in the parameters, for example a 100 cm change,

leads to ∆L100 = 0.09003,∆r100 = −0.00775, and∆S100 = 0.03111. With much larger

changes in the explanatory variables, changes in length remains the dominant effect;

however, changes in radius now lead to a small decrease in reflection probability,

and changes in shielding thickness now have a larger positive effect on the reflection
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probability.

The appearance of the L ∗ R term in Eq. (142) allows us to test the impact of

increasing the duct’s surface area (2πr ∗ L). In this case, the length and radius

are simultaneously increased (thereby increasing the surface area), while keeping the

shielding thickness constant, and the predictive change is calculated. The predictive

changes, when increasing the surface area by a factor of 4 (L, r = 10 − > L = r = 20

) and 100 (L, r = 10 − > L, r = 100), are ∆4SA = 0.04059,∆100SA = 0.08241. The

predictive changes indicate that increasing the surface area gradually increases the

reflection probability, which is consistent with the previous results; while increases in

the size of the duct radius eventually have a negative effect, it is relatively negligible

compared to the positive effect of length increases.

Table XVII: Predicted reflection probability for a random test set.

Radius Length Shield Actual Predict. %Dev.

40 271 53 0.174994 0.1704271 2.60

12 412 37 0.157366 0.1612695 2.48

35 189 64 0.173483 0.1741763 0.39

13 105 25 0.159038 0.1547263 2.71

9 405 15 0.149805 0.1453504 2.97

46 168 59 0.173936 0.1704594 1.99

36 405 57 0.174199 0.1698746 2.48
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Table XVII continued: Predicted reflection probability for a random test set.

17 436 50 0.164445 0.1679748 2.14

9 46 40 0.149525 0.1372536 8.20

31 115 59 0.170606 0.1699671 0.37

50 318 70 0.176548 0.1717505 2.71

16 222 22 0.162994 0.1594295 2.18

33 193 37 0.169757 0.1667080 1.79

34 255 50 0.173526 0.1708257 1.55

17 347 18 0.110458 0.1556633 40.92

8 18 39 0.136986 0.0961766 29.79

22 60 48 0.162911 0.1549042 4.91

In Table XVII predictions are listed for random test points, where the original data

has been partitioned into training (80 %) and test (20 %) sets. While the the pre-

dictions are generally accurate to a high degree, the mean percent deviation (6.06%)

is skewed by outliers; as such, the median percent deviation (2.55 %) gives a better

representation of the model’s accuracy. Figs. 24-25, where both test and training

predictions are included, provide visual confirmation of how well the model performs;

the linear fits for both sampled and un-sampled values have a slope close to 1, while

the error terms in Fig. 25 are largely clustered around 0.
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Fig. 24: Linear fit for actual and pre-
dicted reflection probability.

Fig. 25: Error terms for reflection
probability.

An analytical expression for transmission probability (t), for iron ducts subject to a

thermal neutron source, is given as:

t(r, L, S) = logit−1(15.1484− 0.7768 ∗ Log(S)− 3.1584 ∗ Log(L)

− 0.2383 ∗ Log(r)− 8.8674 ∗ r
−1
2 − 9.5535 ∗ L

−1
2 +

0.0635 ∗ Log(r) ∗ Log(L) ∗ Log(S)). (145)

The model coefficients in Eq. (146) indicate that, like the reflection probability

model, the duct length has the largest impact on the probability of transmission. In

this case, however, the effect of the duct length is more pronounced. Calculating the

predictive differences, once more for increases of 10 and 100 cm, gives

∆(L,L10) = −0.1485, ∆(L,L100) = −0.5794
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∆(r, r10) = 0.0368, ∆(r, r100) = 0.2459

∆(S, S10) = 0.0031, ∆(S, S100) = 0.0168

The predictive difference results are intuitively consistent with the physical behavior

of radiation in ducts. As the length of the ducts get larger, the neutrons penetrate the

walls and are absorbed or scattered out to a greater degree, reducing the transmis-

sion probability in the process; therefore, as expected, the transmission probability

quickly approaches zero as large increments in the duct’s length are made. While

both increasing the radius and shielding lead to increases in the transmission prob-

ability, it is clear that there combined effects are negligible compared to changes in

length; particularly as the duct lengths get very large.

Table XVIII: Predicted transmission probability for a random test set.

Radius Length Shield Actual Predict. %Dev.

40 271 53 0.03616 0.03622 0.17

12 412 37 0.000939 0.001042 10.98

35 189 64 0.05863 0.05967 1.78

13 105 25 0.02427 0.02623 8.07

9 405 15 0.000529 0.0004984 5.77

46 168 59 0.1204 0.1111 7.83

36 405 57 0.0113 0.01423 25.86

17 436 50 0.001698 0.002255 32.84

9 46 40 0.06401 0.06141 4.06

31 115 59 0.1171 0.1102 5.83
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Table XVIII continued: Predicted transmission probability for a random test set.

50 318 70 0.04171 0.04779 14.58

16 222 22 0.006902 0.007427 7.60

33 193 37 0.04925 0.04214 14.44

34 255 50 0.02891 0.02938 1.62

17 347 18 0.002683 0.002819 5.08

8 18 39 0.2311 0.2124 8.09

22 60 48 0.1856 0.1765 4.90

Table XVIII provides the percent deviation for a random test set, and indicates

that while the median percent deviation is highly accurate, the mean is skewed by

outliers. Figs. 26-27, which included both test and training set predictions, are

consistent with the results of Table XVIII. In Fig. 26 the linear fits for both sampled

and un-sampled data have slopes of almost exactly one; Fig. 27 shows that while a

significant number of outliers are present, the vast majority of error terms are tightly

clustered around a value of 0 (to a greater degree than the reflection probability

model).
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Fig. 26: Linear fit for actual and pre-
dicted transmission probability.

Fig. 27: Error Terms for transmission
probability.

Given that the remainder of the reflection and transmission probability models, re-

gardless of shielding material or source, have the same form as the iron duct models,

they are presented without analysis in the following section, in order to avoid repeti-

tion. However, exceptions are made for graphite ducts subject to a 14 MeV neutron

source, where visualizations are provided for the predictions of both the test and

training set, via a linear fit and error term figures; for concrete ducts, subject to a

14 MeV neutron source, visualizations are provided for reflection and transmission

probability predictions, as plots with respect to length in the former case, and with

respect to shielding in the ladder case. The reasoning behind the analysis for thermal

iron models is wholly applicable to the remaining models. A summary of the mean

and median percent deviation for each of the models is presented at the conclusion

of following section.
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IV.D. Multivariate Models: Summary of Results

An analytical expression for the reflection probability (p) of graphite ducts, subject

to a 14 MeV neutron source, is given as

p(r, L, S) = logit−1(17.62762− 0.0266 ∗ r− 4.16652 ∗Log(S)− 0.30629 ∗Log(L ∗ r)

− 4.68217 ∗ r−1
2 − 11.20193 ∗ L−1

2 + 29.1673 ∗ S −1
2 ). (146)

Fig. 28: Linear fit for actual and pre-
dicted reflection probability.

Fig. 29: Error terms for reflection
probability.

An analytical expression for transmission probability (t) is given as:

t(r, L, S) = logit−1(11.9368− 0.17093 ∗ Log(S)− 2.7043 ∗ Log(L)− 9.5264 ∗ r−1
2

− 6.86216 ∗ L
−1
2 + 0.05592 ∗ Log(r) ∗ Log(L) ∗ Log(S)). (147)
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Fig. 30: Linear fit for actual and pre-
dicted transmission probability.

Fig. 31: Error terms for transmission
probability.

A summary of the analytical expressions for concrete ducts can be seen below:

ph(r, L, S) = logit−1(0.8545 + 0.3919 ∗ Log(S)− 0.2817 ∗ Log(L ∗R)

− 2.9212 ∗ r
−1
2 − 9.0932 ∗ L

−1
2 ), (148)

pf (r, L, S) = logit−1(−1.4733 + 0.9856 ∗ Log(S)− 0.3947 ∗ Log(L ∗R)

− 3.4904 ∗ r−1
2 − 12.1995 ∗ L

−1
2 ), (149)

th(r, L, S) = logit−1(21.4706−2.07575∗Log(S)−3.19662∗Log(L)+0.07342∗Log(r)

− 5.375∗ r−1
2 − 10.1073∗L−1

2 − 17.0386∗S −1
2 + 0.0726∗Log(r)∗Log(L)∗Log(S)),

(150)
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tf (r, L, S) = logit−1(11.1273−0.39242∗Log(S)−2.73353∗Log(L)−0.06618∗Log(r)

− 7.2351 ∗ r−1
2 − 7.23506 ∗ L−1

2 + 0.05254 ∗ Log(r) ∗ Log(L) ∗ Log(S)). (151)

Visualizations for reflection probability predictions, with respect to shield thickness,

and transmission probability predictions, with respect to length, are provided for

concrete ducts in Figs. 32-33. In each case, the predictions follow the general trend of

the actual values (i.e. reflection probability increases as shielding thickness increases,

and transmission probability decreases as length increases), but large errors can be

observed; particularly in the case of reflection probability.

Fig. 32: Reflection probability predictions for concrete ducts, subject to a 14 MeV
neutron source, with respect to shield.
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Fig. 33: Transmission probability predictions for concrete ducts, subject to a 14 MeV
neutron source, with respect to length.

A summary of the analytical expression for iron (14 MeV source:f) and graphite

(thermal:h) ducts:

pg/h(r, L, S) = logit−1(0.1993 + 0.8963 ∗ Log(S)− 0.3698 ∗ Log(L ∗R)

− 3.1052 ∗ r
−1
2 − 12.1254 ∗ L

−1
2 ), (152)

pi/f (r, L, S) = logit−1(−0.8273 + 1.0253 ∗ Log(S)− 0.3826 ∗ Log(L ∗R)

− 3.3089 ∗ r
−1
2 − 11.8660 ∗ L

−1
2 ), (153)

tg/h(r, L, S) = logit−1(16.58141−0.23959∗Log(S)−3.2288∗Log(L)−1.14356∗Log(r)

− 11.9394 ∗ r
−1
2 − 10.09965 ∗ L

−1
2 − 0.07851 ∗ Log(r) ∗ Log(L) ∗ Log(S)), (154)
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ti/f (r, L, S) = logit−1(12.883238−0.2033∗Log(S)−2.94158∗Log(L)−0.44419∗Log(r)

− 8.71323 ∗ r
−1
2 − 9.03433 ∗ L

−1
2 + 0.06017 ∗ Log(r) ∗ Log(L) ∗ Log(S)). (155)

Tables XIX-XX provide summaries of average and median percent deviation for the

training set (”Fit Avg./Median”), and the test set, for each material subject to a

thermal source (h) and a 14 MeV source (f).

Table XIX: Percent difference for reflection probability of test set and fit.

Material Fit Avg. Test Avg. Fit Median Test Median

Iron(h) 5.14 6.07 2.48 2.55

Iron(f) 19.56 19.51 9.24 9.39

Concrete(h) 11.17 13.69 5.88 6.78

Concrete(f) 11.17 13.34 5.88 7.87

Graphite(h) 17.27 16.83 9.15 8.65

Graphite(f) 20.49 13.42 10.77 11.04

Table XX: Percent difference for transmission probability of test set and fit.

Material Fit Avg. Test Avg. Fit Median Test Median

Iron(h) 15.08 9.60 10.38 7.72

Iron(f) 16.24 14.62 10.35 10.86

Concrete(h) 19.90 19.95 10.95 10.95

Concrete(f) 19.90 14.07 10.95 8.01

Graphite(h) 21.53 20.16 12.05 10.90

Graphite(f) 15.42 13.82 9.39 7.15

86



IV.E. MCNP6 and Data Collection

Data is collected via MCNP6, [8] the general purpose Monte Carlo N-Particle code

developed and maintained by Los Alamos National Laboratory, which is generally

accepted as a benchmark for neutron, gamma, and electron transport calculations.

For each of the geometric circular duct configurations a specifically tailored MCNP6

deck is created.

The duct system is defined within MCNP6 as two concentric cylinders, placed at the

origin (0,0,0), with the length of the duct along the z-axis and the outer cylinder

consisting of shielding material. An evacuated duct of radius r is defined as the inner

cylinder, with a neutron source placed at the entrance of the duct. The thickness (in

cm) of the shielding is defined as the length of the outer radius minus the length of

the inner radius. The reflection and transmission probabilities are recorded via the

F1 tally command, which is defined in MCNP as the number of particles crossing a

surface in a given direction [8]

F1 =
∫
A

∫
µ

∫
t

∫
E
J(r̂, E, t, µ)dEdtdµdA, (156)

where J is the surface current, t is time, E is energy of the particles, µ is the flight

angle of particles, and A is the crossing area. Reflection probability is recorded as

the net neutron current crossing the surface of the duct entrance, while transmission

probability is a recorded as the same quantity at the duct exit. In order to ensure the

the current is measured only at the duct entrance/exit (i.e. excluding any current

crossing through the shielding material) we use a segmentation technique within the

MCNP6 decks.
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Given the large quantity of data collected (several hundred data points), the collec-

tion process was automated via codes written in the Python programming language

and terminal shell scripts. Shell scripts (.sh) were used in the command terminal

to automatically read MCNP6 decks into the TAMU nuclear engineering network

(CLUSTER), initiate sequential MCNP6 runs, and then output result decks to a

personal computer. Python scripts are used to manipulate parameters of an MCNP6

deck and write the adjusted deck to new files. Python scripts are also used to parse

output files; that is, to read in reflection and transmission probability results into a

csv file.
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V. CONCLUSIONS

Reduced-physics (one-dimensional) and statistical models were developed as alter-

natives to computationally taxing three-dimensional, Monte Carlo and view factor

codes. In this section, concluding remarks are provided for the reduced-physics and

statstical models individually.

V.A. Nonlocal One-Dimensional Models

The problem of monoenergetic neutral particle transport in a duct is treated using

an approximate one dimensional model for the third basis function, accounting for

wall migration via a kernel density. Comparisons to MCNP results, furthermore,

demonstrate that our one-dimension model performs well for iron and graphite ducts,

while producing higher levels of error for concrete ducts. The higher error in concrete

ducts may be attributed to a greater energy dependence, due to a large number of

isotopes in the material, each with a distinct thermal neutron cross-section.

Garcia addresses the problem of energy-dependence by introducing a multi-group

albedo approximation, where a value for wall reflection probability (c) is calculated

for a number of subgroups in both the thermal and fast-range. The nonlocal one-

dimensional models presented in this work, however, accounts only for one-speed

neutrons (0.025 eV). Nonetheless, by accounting for wall migration the nonlocal one-

dimensional models demonstrate significant improvement over the albedo approx-

imation model for reflection probability, and comparable results for transmission

probability. Direct comparisons between the models, for a thermal neutron source

are provided in Tables XXI-XXII, where the nonlocal model is abbreviated as 1DWM,
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and the albedo approximation model is abbreviated as 1DW/0. [6]

Table XXI: Reflection probability for ducts.

Material 1DWM

Avg.

%Dev.

1DW/O

Avg.

%Dev.

1DWM

Max

%Dev.

1DW/0

Max

%Dev.

Iron 2.17 11.60 6.24 23.06

Concrete 13.57 56.69 21.22 105.3

Graphite 7.93 - 18.32 -

Table XXII: Transmission probability for ducts.

Material 1DWM

Avg.

%Dev.

1DW/O

Avg.

%Dev.

1DWM

Max

%Dev.

1DW/0

Max

%Dev.

Iron -7.58 -5.16 -9.98 -8.12

Concrete -17.98 -6.21 -24.03 -11.91

Graphite 5.94 - -7.94 -

A logical progression for the nonlocal one-dimensional model, therefore, would be

to introduce a multigroup approach, where wall reflection probability (c) and the

90



average distance that particles migrate in walls (d) were calculated for a number of

specified energy groups.

V.B. Multivariate Logistic Regression Model

Multivariate logistic regression models were developed, providing analytical expres-

sions for the treatment of neutral particle transport in ducts with iron, graphite,

and concrete shielding, for both thermal and fast neutron sources. While logistic

regression models exhibit significant levels of error due to outliers, the median error

is relatively low. In each case, the median prediction error falls under or only slightly

above 10%.

Generally the model predictions for reflection probability are more accurate than the

corresponding transmission probability (with the exception of graphite ducts with a

14 MeV neutron source). The median difference in accuracy can be explained by not-

ing that for ducts of very large length, transmission probabilities are approximately

zero; as such these values are difficult to capture, even for Monte Carlo codes. In

general, however, there appears to be no consistent difference in prediction accuracy

between models due to shielding material and energy source. In each case there ex-

ists a significant number of outliers, which can be attributed to a loss of information

(i.e. the models cannot fully capture the physics of the system).

The logistic models presented in this work are intended for use with input values

contained within the sample space; as such, the test sets used to evaluate the ef-

fectiveness of models for unseen data points all fall within the specified space. It

should be noted, however, that the input ranges were quite broad, and chosen so

at to coincide with duct dimensions that one can reasonably expect to see in ex-
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periments and physical systems. Beyond the sample space, the models may entirely

breakdown (though this is not guaranteed). For example, testing for the reflection

and transmission probability in an iron duct system, subject to a thermal source,

with semi-infinite shielding thickness, (specifically S = 100 cm + inner radius) and

varying radius and length, the prediction % deviations can range from reasonably

accurate to completely meaningless, as is seen in Tables XXIII - XXIV. Specifically

the reflection probability predictions for random data points falling outside of the

sample space, seen in Table XXIII, are fairly accurate with a median error of roughly

4 %; on the opposite extreme, the transmission probability predictions for random

data points leads to a median error greater than 103, indicating a total breakdown

of the model. The limitations of the transmission probability model, therefore, are

well defined by the boundaries of the sample space.

Table XXIII: The predicted reflection probability for a random test set falling outside
the sample space

Radius Length Shield Actual Predict. %Dev.

10 40 110 0.1452 0.151 3.80

10 100 110 0.1696 0.153 10.87

25 50 125 0.1592 0.157 1.40

25 100 125 0.1762 0.169 4.28

25 150 125 0.1809 0.170 6.41

30 50 130 0.1587 0.153 3.76

50 550 150 0.1721 0.177 2.75

75 300 175 0.1721 0.178 3.27

75 350 175 0.1713 0.178 3.75

75 600 175 0.1661 0.179 7.18
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Table XXIV: The predicted transmission probability for a random test set falling
outside of the sample space.

Radius Length Shield Actual Predict. %Dev.

10 40 110 0.07876 0.0103 664

10 100 110 0.01505 0.000791 1802

25 50 125 0.2701 0.0129 1994

25 100 125 0.1057 0.00388 2625

25 150 125 0.05423 0.00149 3539

30 50 130 0.3375 0.0135 2400

50 550 150 0.02334 0.000102 > 104

75 300 175 0.1362 0.001270 > 104

75 350 175 0.1092 0.000893 > 104

75 600 175 0.04744 0.000213 > 104

While the multivariate logistic regression models presented in this work produce a

significant number of outliers, due to a loss of information, they produce reasonably

accurate predictions within the sample space, and are therefore useful in instances

where access to Monte Carlo codes is not possible, time constraints exist, or only

estimates are required. In each case, the logistic regression models produces results

instantly for large numbers of input values; that is, in a very small fraction of the

time required for Monte Carlo simulations.
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