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ABSTRACT 

Identifying Components of the Signal Transduction Pathway in Dictyostelium discoideum  

 

Bethany Sump 

Department of Biochemistry and Biophysics 

Texas A&M University 

 

Research Advisor: Dr. Richard Gomer 

Department of Biology 

 

In cancer patients, primary tumors can inhibit the proliferation of distant metastasized tumor 

cells. The subsequent removal of the primary tumor causes the metastasized tumor cells to regain 

the ability to proliferate. Secreted factors that inhibit the proliferation of the cells that secrete the 

factor are called chalones, and while they were originally discovered as a way for tissue size to 

be regulated or as a method to control population densities of specific types of cells, chalones 

could also be used to control tumor cell proliferation and thus are important to this field of study. 

However, their mechanisms for limiting proliferation are still poorly understood. A new possible 

chalone, inorganic polyphosphate, has been identified in the model organism Dictyostelium 

discoideum, a haploid, eukaryotic social amoeba that has already been used to identify two other 

factors that act as chalones. To identify the components of this new chalone’s signal transduction 

pathway, procedures such as restriction-enzyme-mediated insertional (REMI) mutagenesis, 

inverse PCR, and using homologous recombination to create null mutations are being 

implemented.  
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SECTION I 

INTRODUCTION 

 

An important observation in our understanding of cancer is that for many tumors, the primary 

tumor has the ability to keep metastasized tumor cells in a near-dormant state1. The removal of 

the primary tumor appears to have the side effect of allowing the proliferation of the previously 

dormant tumor cells1, 2. This leads to the important questions of what is allowing these primary 

tumors to hold the metastasized tumor cells in this dormant state, and whether this same method 

could be used to stop or slow the growth of tumors as a treatment option 2.  

 

It is a widely accepted idea that some cells have a secreted factor that act as a growth inhibitor as 

cells reach high densities, inducing a stationary phase3, 4. This negative feedback loop with the 

secreted factors, named chalones, then completely stops proliferation of cells once a certain 

threshold has been reached, such as attainment of a certain tissue size 5. Examples of this 

negative feedback loop have already been found. A prime case would be the research that has 

been done on the function of myostatin as a chalone controlling the proliferation of myoblasts 

and ultimately the number of myocytes, or muscle cells, in mice6. Although these chalones are 

clearly important, the identity and the mechanisms of actions of these chalones are not known for 

most organisms.  

 

The model organism Dictyostelium discoideum is a unicellular, eukaryotic slime mold that is 

ideal for further research into chalones5, 7, 8. There have been two secreted factors previously 

found that appear to act as chalones in Dictyostelium discoideum, AprA and CfaD 7, 8. AprA has 
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been found to slow proliferation in both wild type and aprA¯ cells without destroying the cells 8. 

CfaD has also been found to slow proliferation in Dictyostelium discoideum cells without having 

any measureable effect on the growth of the cells 5. Current conclusions lead to the idea cells 

have different receptors for both AprA and CfaD, and that both of these receptors must be 

activated in order to slow proliferation.5, 7 This would clearly be an advantage for the 

Dictyostelium cells to improve their success in an environment that is reaching starvation 

conditions. However, since AprA and CfaD only slow proliferation, and at high density 

proliferation is still stopped in AprA¯ and CfaD¯ cells, it stands to reason that there must be 

another chalone that has the ability to stop proliferation entirely in the Dictyostelium cells that is 

completely independent of those already known.  

 

A current hypothesis for the identity of such a chalone in Dictyostelium discoideum is the 

molecule polyphosphate (polyP). PolyP is found in plants, animals, fungi, and bacteria, and is 

composed of long, linear chains of five to hundreds of phosphates linked with the high energy 

phosphoanhydride bonds similarly found in ATP 9, 10. Researchers have already found a number 

of roles that polyP plays in the cell by creating knockouts of polyP kinase (PPK), the enzyme 

which synthesizes polyP, in Escherichia coli 11 and many other bacteria. Some of the currently 

known roles of polyP in E. coli are its role as an energy source, and its role in assisting in the 

phosphorylation of alcohols 9. It has been shown that polyP has a very important role to play in 

the survival of the cell when in stationary phase, as PPK knockout bacteria lose the ability to 

adapt to starvation conditions 11, 12. While the PPK enzymes, PPK1 and PPK2, are most known 

for being bacterial, both enzymes have been found to have homologs in a few eukaryotes 

including PPK1 being found in multiple photosynthetic eukaryotes and a few non-photosynthetic 
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eukaryotes including three different species of Dictyostelium 13. Researchers have previously 

studied polyP in Dictyostelium discoideum by examining the role of the Dictyostelium 

discoideum PPK homolog polyphosphate kinase (DdPPK1).  Mutants which lack DdPPK1 have 

reduced sporulation and slowed development of fruiting bodies, have altered predator-prey 

interactions with bacteria 10.  

 

Work in the Gomer lab found that Dictyostelium cells secrete increasing amounts of polyP as the 

density of the cells increases, and if the amount of polyP generally observed in stationary phase 

cells is added to cells still in mid-log growth, proliferation rates dramatically decrease, even to 

the point of a complete halt in proliferation (unpublished data by Patrick Suess).  

 

Looking at polyP as a chalone in Dictyostelium is something that is still open to inspection, and 

furthermore, is something that could very well be extremely significant after examination. 

Although DdPPK1 seems to regulate intracellular polyP, DdPPK1 knockout cells have 

completely normal stationary phase and proliferations profiles 10. This would lead to the 

conclusion that the intracellular and the extracellular polyP are being regulated by different 

mechanisms. This could potentially be very telling, since the mechanism for how polyP is 

synthesized in higher level eukaryotes is currently unknown and the yet unknown extracellular 

mechanism in Dictyostelium could be the link that is missing.   

 

Since the polyphosphate-sensing signal transduction pathways in Dictyostelium may be similar 

to chalone signal transduction pathways in higher organisms, once the Dictyostelium 

polyphosphate signal transduction pathway is known, it could then lead to an understanding of 
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the ways that proliferation in higher eukaryotes, such as a patient with a tumor, could be 

controlled.   
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SECTION II 

METHODS 

 

Plasmid 

The plasmid used in the electroporation transformation was pBSR1, obtained from the 

Dictyostelium stock center. pBSR1 has a blasticidin S resistance cassette derived from the bsr 

gene of Bacillus cereus 14. 

 

Digestion of plasmid 

The plasmid pBSR1 was digested using 10X Cutsmart® Buffer and the restriction enzyme 

BamHI-Hf (New England BioLabs, Ipswich, MA). This digestion was incubated in a 35°C 

incubator for approximately 24 hours. The digested plasmid was purified using a Zymoclean® 

Gel DNA Recovery kit (Zymo Research, Irvine, CA). A small sample of the purified pBSR1 was 

then tested on a 1% analytical agarose gel for confirmation of proper digestion and purification. 

    

Restriction-Enzyme-Mediated Insertional (REMI) mutagenesis 

Dictyostelium discoideum AX-2 wild type cells 15 were grown in shaking culture to mid-log (2-4 

x106 cells/mL) in HL-5 medium (Formedium, United Kingdom) supplemented with 

streptomycin. For each REMI reaction, 6 x106 cells were collected by centrifugation at 400 x g 

for 3 minutes, and washed twice with at least half the original culture volume of H-50 

transformation buffer. The recipe for H-50 is 20 mM Hepes, 50 mM KCl, 10 mM NaCl, 1 mM 

Mg2SO4, 5 mM NaHCO3, 1 mM Na2HPO4, adjusted to pH 7.0. The cells were then resuspended 

into 178 µL ice-cold H-50 buffer per reaction. Each 200 µL REMI reaction consisted of 178 µL 
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of resuspended cells, 20 µL of digested and purified pBSR1 plasmid, and 2 µL of the enzyme 

DpnII (New England BioLabs). A negative control was obtained using H-50 buffer instead of the 

plasmid and enzyme in these reactions. These cells were then placed in 0.2 mm gap cuvettes and 

immediately were electroporated usiong a BioRad Gene Pulser set to 0.85 kV and 1 µF with the 

time constants ranging from 0.08-0.2. The cuvettes were then immediately placed in ice for 5 

minutes, after which 100 µL aliquots were added dropwise onto 3.5 inch x 0.625 inch plastic 

petri dishes that contain 10 mL of HL-5 media supplemented with streptomycin. After 

approximately 24 hours at room temperature, 5 µL of 10 mg/mL blasticidin was added to select 

for transformed cells. Colonies visible with an inverted microscope appeared after 4-6 days at 

room temperature.  

 

Screening against polyphosphate  

The transformant plates were then transferred over to shaking culture by first removing the old 

media from the plates and then washing the cells off of the surface of the plate with 10 mL fresh 

HL5 media and promptly transferred to a flask where 7 µL of 10 mg/mL blasticidin was added to 

select for the cells that were successfully transformed with the pBSR1 plasmid, which would 

confer a resistance to the drug. These new cultures were then grown to the mid-log range. The 

cultures were then diluted to 1.0 x 106 cells/mL and subjected to a treatment of 125 µM 

polyphosphate in HL-5, and were left to grow at room temperature on a rotary shaker. Cell 

densities were counted approximately every 24 hours. After 48 hours, the cells were collected by 

centrifugation and resuspended to 0.5 x 106 cells/mL in HL-5 media supplemented with 

streptomycin, but with no polyphosphate, and left to grow for 48 hours, and cell densities were 

counted every 24 hours. This process of 48 hours with polyP and 48 hours without polyP is 
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considered one cycle, and the REMIs were subjected to 5-6 cycles to determine how they reacted 

to polyP as compared a similarly-treated AX-2 wild type culture.      

 

Cloning out REMI mutants 

After the completion of the screening, approximately 1 x 106 cells of the mutants were collected 

by centrifugation for 3 minutes at 1,500 rpm. These cells were washed in 3-5 mL of fresh HL5 

media with streptomycin and resuspended into 1 mL of drug-free HL5 media. For each mutant 

obtained, three plates with E. coli bacterial lawns were obtained and labeled A-C. Different 

amounts of the resuspended mutant cells were spread onto each plate; the different amounts 

being 100 µL, 300 µL, and 500 µL for plates A, B, and C respectively. It is helpful to add an 

extra 200 µL of drug-free HL5 media to plate A to assist in the ease of spreading. After 2-3 days, 

colonies appeared and a single colony was used to make three separate streaks (labeled with 1-3 

and their plate letter, i.e. B-1, B-2, B-3) onto the edges of a new plate with a bacterial lawn. After 

3-4 days these clone colonies were transferred to shaking culture, allowed to grow into mid-log 

range, and frozen down until further study. The clones were subsequently tested with the same 

protocol as described before of 48 hours with polyphosphate and 48 hours without 

polyphosphate to insure that the cloned mutants show the same phenotypic response of 

proliferation in the presence of polyphosphate as the original mutant.  

  

Identifying the location of the REMI insert 

The location of the REMI insert in the genome of cells that were resistant to polyphosphate was 

found using a process called Inverse PCR. First, the genomic DNA was extracted from the 

cloned cultures that did not show a proliferation change when in the presence of polyP as 
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previously described. 16 The genomic DNA was then digested with the endonuclease Alu I, 

purified with a ZymocleanTM Gel DNA Recovery Kit, and ligated into circular DNA with T4 

Ligase. 1 µL of the ligated DNA was used to set up a 15 µL PCR reaction for the mutants and 

the AX-2 control sample. These samples were run on a 1% agarose gel to insure that the mutant 

samples show bands and the control AX-2 samples do not. Once this was verified, three different 

tubes of the same 15 µL PCR reaction were prepared with the same conditions (Forward Primer 

– CGTCGATATGGTGCACTCTC; Reverse primer – TGTCGTTAGAACGCGGCTAC; 

Thermocycler on the following settings: 94°C for 30 seconds, followed by 32 cycles of 94°C for 

30 seconds, 56.3°C for 30 seconds, and 65°C for 90 seconds; this is followed by a 5 minutes of 

68°C and the DNA was stored at 4°C until use). The PCR product DNA from the three different 

tubes was purified with a ZymocleanTM Gel DNA Recovery Kit and sent off for sequencing 

(Lonestar Labs, Houston TX). 

 

 

 

 

 

 

 

 

 

 



11 

 

SECTION III 

RESULTS 

 

REMI mutants show a non-response to inorganic polyphosphate 

It has previously been found that inorganic polyphosphate acts as a chalone in Dictyostelium 

discoideum, by inhibiting proliferation. This has led to interest in the components of the signal 

transduction pathway that begins with inorganic polyphosphate as the signal and the stopping of 

proliferation in the late G2 phase of the cell cycle as the result. To study this, the process known 

as restriction enzyme-mediated insertional (REMI) mutagenesis, was used to create mutants that 

could be screened according to their proliferation abilities. When treated with 125 µM 

polyphosphate, a number of mutants created by REMI mutagenesis show a continuation of 

normal proliferation as opposed to the AX-2 control cells which show almost a complete halt of 

proliferation (Figure 1A). This would indicate that the pBSR1 plasmid that was inserted into the 

genome to create these mutations was inserted in such a place as to interfere with the signal 

transduction pathway between the chalone and the halting of proliferation. It can likewise be 

seen that when in a control environment (HL-5 media with no polyphosphate), the REMI 

mutants show a slightly higher rate of proliferation than the control AX-2 cells (Figure 1B). This 

finding further backs the idea that the REMI mutants have a disrupted signal transduction 

pathway, because it shows that they do not respond to even the small amounts of polyphosphate 

that would be present in a cell culture even without the experimental conditions adding excess 

amounts.  
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Figure 1: REMI mutant 13 shows the phenotype of continued proliferation in the presence of inorganic 

polyphosphate. (A) REMI 13 mutants and AX-2 control cells were subjected to 48 hours in HL5 media 

supplemented with 125 µM polyphosphate. The control cells show halted proliferation while the REMI mutants 

continue to rapidly proliferate. (B) REMI 13 mutants and AX-2 control cells over a 48 hour period in HL5 media. 

The mutant cells and the control cells proliferate at approximately the same rate, with the REMI mutants 

proliferating slightly faster.   

 

Along with the mutant, REMI 13, seven other REMI mutants showed a proliferation phenotype 

similar to that of REMI 13 (Figure 2). Those seven others are called REMI 5, 17A, 17B, 18A, 

19A, 20A, and 20B. Because all of these have similar results, we can conclude that they also 

have disrupted signal transduction pathways due to the insertion of the pBSR1 plasmid by the 

same reasoning as above. These eight mutants can all eventually be tested to discover the 

location of their plasmid insertions and thus, their mutations, but for the purposes of this 
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experiment only the mutant with the most significant result (REMI 13) has been used for further 

study.   

 

 

Figure 2: More REMI mutants show the phenotype of continued proliferation even in the presence of 

polyphosphate. (A) REMI mutants 17A, 17B, 18A, 19A, 20A, and 20B show greater proliferation than the control 

AX-2 cells over repeated 48 hour periods when grown in HL-5 media supplemented with 125 µM polyP. (B) REMI 

mutants show a slightly higher rate of proliferation over repeated 48 hour periods than the control AX-2 cells in 

normal conditions (HL-5 media with no polyP).  

 

Plasmid insert is located by inverse PCR 

The plasmid that was inserted into the genome to cause the mutations in the REMI cultures 

theoretically could have been inserted into numerous places in the genome. To find the location 

of this insert, we did inverse PCR. After digesting the mutant genomes and ligating the linear 

pieces into circles, primers were designed from the known plasmid sequence to amplify the 
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entire piece of circular DNA that included both the REMI vector DNA and the genomic DNA 

from Dictyostelium that had been interrupted. This was confirmed on a 1% agarose gel (Figure 

3), where it is evident that the AX-2 wildtype DNA has no plasmid insertion, whereas the mutant 

genomes do. 

    

Figure 3:  Gel electrophoresis image of inverse PCR results after digestion and ligation of control (AX-2) and 

mutant (REMI 13-B1) genomes. The AX-2 lane has no bands which proves the lack of plasmid insert, whereas the 

three lanes containing REMI 13-B1 all have bands around 1,700 bp. 

 

The bands in the REMI 13-B1 lanes appear at approximately 1,700 base pairs (Figure 3). Since 

the sequence of the pBSR1 plasmid is known, we can anticipate where the DpnII cut site is in 

relation to the primers designed and thus know that out of the 1,700 base pairs in this small, 

circular piece of DNA, 655 of them are from the plasmid. This leaves over 1,000 base pairs of 

the DNA belonging to the original Dictyostelium genome and showing us where the insert was 

located.  
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Unconfirmed results on interrupted gene 

After sending off DNA for sequencing, results indicated that the most likely gene that was 

interrupted by the plasmid was a gene called Mediator 20 (Med 20).  Mediator 20 codes for 

mediator complex subunit protein. Mediators, first discovered in 1990 by Roger Kornberg 17, are 

known to be used in support of transcriptional activation, and is known to be heavily associated 

with RNA Polymerase II.18 However, these results have not yet been confirmed, as proper 

confirmation requires complete knockout of the Med 20 gene by homologous recombination, and 

this has yet to be completed.   
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SECTION IV 

CONCLUSION 

 

Evidence obtained leads to the conclusion that the mediator protein, Med 20, is a component in 

the chalone signal transduction pathway. This conclusion, however, is still uncertain as the 

intended phenotype of a non-response to the chalone inorganic polyphosphate, was only obtained 

through the interruption of the gene that codes for Med 20, not the complete removal. Further 

testing is necessary to prove its role in this pathway.     
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